1
|
Gomaa S, Nassef M, Hafez A. Potentials of bone marrow cells-derived from naïve or diabetic mice in autoimmune type 1 diabetes: immunomodulatory, anti-inflammatory, anti hyperglycemic, and antioxidative. Endocrine 2024:10.1007/s12020-024-03929-7. [PMID: 39014283 DOI: 10.1007/s12020-024-03929-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/11/2024] [Indexed: 07/18/2024]
Abstract
BACKGROUND The scarcity of transplanted human islet tissue and the requirement for immunosuppressive drugs to prevent the rejection of allogeneic grafts have hindered the treatment of autoimmune type 1 diabetes mellitus (T1DM) through islet transplantation. However, there is hope in adoptively transferred bone marrow cells (BMCs) therapy, which has emerged as a propitious pathway for forthcoming medications. BMCs have the potential to significantly impact both replacement and regenerative therapies for a range of disorders, including diabetes mellitus, and have demonstrated anti-diabetic effects. AIM The main goal of this study is to evaluate the effectiveness of adoptively transferred bone marrow cells derived from either naïve mice (nBMCs) or diabetic mice (dBMCs) in treating a T1DM mice model. METHODS Male Swiss albino mice were starved for 16 h and then injected with streptozotocin (STZ) at a dose of 40 mg/kg body weight for 5 consecutive days to induce T1DM. After 14 days, the diabetic mice were distributed into four groups. The first group served as a diabetic control treated with sodium citrate buffer, while the other three groups were treated for two weeks, respectively, with insulin (subcutaneously at a dose of 8 U/kg/day), nBMCs (intravenously at a dose of 1 × 106 cells/mouse/once), and dBMCs (intravenously at a dose of 1 × 106 cells/mouse/once). RESULTS It is worth noting that administering adoptively transferred nBMCs or adoptively transferred dBMCs to STZ-induced T1DM mice resulted in a significant amelioration in glycemic condition, accompanied by a considerable reduction in the level of blood glucose and glycosylated hemoglobin % (HbA1C %), ultimately restoring serum insulin levels to their initial state in control mice. Administering nBMCs or dBMCs to STZ-induced T1DM mice led to a remarkable decrease in levels of inflammatory cytokine markers in the serum, including interferon-γ (INF-γ), tumor necrosis factor- α (TNF-α), tumor growth factor-β (TGF-β), interleukin-1 β (L-1β), interlekin-4 (IL-4), interleukin-6 (IL-6), and interleukin-10 (IL-10). Additionally, STZ-induced T1DM mice, when treated with nBMCs or dBMCs, experienced a notable rise in total immunoglobulin (Ig) level. Furthermore, there was a significant reduction in the levels of islet cell autoantibodies (ICA) and insulin autoantibodies (IAA). Furthermore, the serum of STZ-induced T1DM mice showed a significant increase in Zinc transporter 8 antigen protein (ZnT8), islet antigen 2 protein (IA-2), and glutamic acid decarboxylase antigen protein (GAD) levels. Interestingly, the administration of nBMCs or dBMCs resulted in a heightened expression of IA-2 protein in STZ-induced T1DM mice treated with nBMCs or dBMCs. Furthermore, the level of malondialdehyde (MDA) was increased, while the levels of catalase (CAT) and superoxide dismutase (SOD) were decreased in non-treated STZ-induced T1DM mice. However, when nBMCs or dBMCs were administered to STZ-induced T1DM mice, it had a significant impact on reducing oxidative stress. This was accomplished by reducing the levels of MDA in the serum and enhancing the activities of enzymatic antioxidants like CAT and SOD. STZ-induced T1DM mice displayed a significant elevation in the levels of liver enzymes ALT and AST, as well as heightened levels of creatinine and urea. Considering the crucial roles of the liver and kidney in metabolism and excretion, this research further examined the effects of administering nBMCs or dBMCs to STZ-induced T1DM mice. Notably, the administration of these cells alleviated the observed effects. CONCLUSION The present study suggests that utilizing adoptively transferred nBMCs or adoptively transferred dBMCs in the treatment of T1DM led to noteworthy decreases in blood glucose levels, possibly attributed to their capacity to enhance insulin secretion and improve the performance of pancreatic islets. Additionally, BMCs may exert their beneficial effects on the pancreatic islets of diabetic mice through their immunomodulatory, antioxidant, anti-inflammatory, and anti-oxidative stress properties.
Collapse
Affiliation(s)
- Soha Gomaa
- Zoology Department, Faculty of Science, Tanta University, Tanta, Egypt.
| | - Mohamed Nassef
- Zoology Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Amira Hafez
- Zoology Department, Faculty of Science, Tanta University, Tanta, Egypt
| |
Collapse
|
2
|
Sacks DB, Arnold M, Bakris GL, Bruns DE, Horvath AR, Lernmark Å, Metzger BE, Nathan DM, Kirkman MS. Guidelines and Recommendations for Laboratory Analysis in the Diagnosis and Management of Diabetes Mellitus. Diabetes Care 2023; 46:e151-e199. [PMID: 37471273 PMCID: PMC10516260 DOI: 10.2337/dci23-0036] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 05/11/2023] [Indexed: 07/22/2023]
Abstract
BACKGROUND Numerous laboratory tests are used in the diagnosis and management of diabetes mellitus. The quality of the scientific evidence supporting the use of these assays varies substantially. APPROACH An expert committee compiled evidence-based recommendations for laboratory analysis in screening, diagnosis, or monitoring of diabetes. The overall quality of the evidence and the strength of the recommendations were evaluated. The draft consensus recommendations were evaluated by invited reviewers and presented for public comment. Suggestions were incorporated as deemed appropriate by the authors (see Acknowledgments). The guidelines were reviewed by the Evidence Based Laboratory Medicine Committee and the Board of Directors of the American Association for Clinical Chemistry and by the Professional Practice Committee of the American Diabetes Association. CONTENT Diabetes can be diagnosed by demonstrating increased concentrations of glucose in venous plasma or increased hemoglobin A1c (HbA1c) in the blood. Glycemic control is monitored by the people with diabetes measuring their own blood glucose with meters and/or with continuous interstitial glucose monitoring (CGM) devices and also by laboratory analysis of HbA1c. The potential roles of noninvasive glucose monitoring, genetic testing, and measurement of ketones, autoantibodies, urine albumin, insulin, proinsulin, and C-peptide are addressed. SUMMARY The guidelines provide specific recommendations based on published data or derived from expert consensus. Several analytes are found to have minimal clinical value at the present time, and measurement of them is not recommended.
Collapse
Affiliation(s)
- David B. Sacks
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, MD
| | - Mark Arnold
- Department of Chemistry, University of Iowa, Iowa City, IA
| | - George L. Bakris
- Department of Medicine, American Heart Association Comprehensive Hypertension Center, Section of Endocrinology, Diabetes and Metabolism, University of Chicago Medicine, Chicago, IL
| | - David E. Bruns
- Department of Pathology, University of Virginia Medical School, Charlottesville, VA
| | - Andrea R. Horvath
- New South Wales Health Pathology Department of Chemical Pathology, Prince of Wales Hospital, Sydney, New South Wales, Australia
| | - Åke Lernmark
- Department of Clinical Sciences, Lund University/CRC, Skane University Hospital Malmö, Malmö, Sweden
| | - Boyd E. Metzger
- Division of Endocrinology, Northwestern University, The Feinberg School of Medicine, Chicago, IL
| | - David M. Nathan
- Massachusetts General Hospital Diabetes Center and Harvard Medical School, Boston, MA
| | - M. Sue Kirkman
- Department of Medicine, University of North Carolina, Chapel Hill, NC
| |
Collapse
|
3
|
Sacks DB, Arnold M, Bakris GL, Bruns DE, Horvath AR, Lernmark Å, Metzger BE, Nathan DM, Kirkman MS. Guidelines and Recommendations for Laboratory Analysis in the Diagnosis and Management of Diabetes Mellitus. Clin Chem 2023:hvad080. [PMID: 37473453 DOI: 10.1093/clinchem/hvad080] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 05/12/2023] [Indexed: 07/22/2023]
Abstract
BACKGROUND Numerous laboratory tests are used in the diagnosis and management of diabetes mellitus. The quality of the scientific evidence supporting the use of these assays varies substantially. APPROACH An expert committee compiled evidence-based recommendations for laboratory analysis in screening, diagnosis, or monitoring of diabetes. The overall quality of the evidence and the strength of the recommendations were evaluated. The draft consensus recommendations were evaluated by invited reviewers and presented for public comment. Suggestions were incorporated as deemed appropriate by the authors (see Acknowledgments). The guidelines were reviewed by the Evidence Based Laboratory Medicine Committee and the Board of Directors of the American Association of Clinical Chemistry and by the Professional Practice Committee of the American Diabetes Association. CONTENT Diabetes can be diagnosed by demonstrating increased concentrations of glucose in venous plasma or increased hemoglobin A1c (Hb A1c) in the blood. Glycemic control is monitored by the people with diabetes measuring their own blood glucose with meters and/or with continuous interstitial glucose monitoring (CGM) devices and also by laboratory analysis of Hb A1c. The potential roles of noninvasive glucose monitoring, genetic testing, and measurement of ketones, autoantibodies, urine albumin, insulin, proinsulin, and C-peptide are addressed. SUMMARY The guidelines provide specific recommendations based on published data or derived from expert consensus. Several analytes are found to have minimal clinical value at the present time, and measurement of them is not recommended.
Collapse
Affiliation(s)
- David B Sacks
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, MD, United States
| | - Mark Arnold
- Department of Chemistry, University of Iowa, Iowa City, IA, United States
| | - George L Bakris
- Department of Medicine, American Heart Association Comprehensive Hypertension Center, Section of Endocrinology, Diabetes and Metabolism, University of Chicago Medicine, Chicago, ILUnited States
| | - David E Bruns
- Department of Pathology, University of Virginia Medical School, Charlottesville, VA, United States
| | - Andrea R Horvath
- New South Wales Health Pathology Department of Chemical Pathology, Prince of Wales Hospital, Sydney, NSW, Australia
| | - Åke Lernmark
- Department of Clinical Sciences, Lund University/CRC, Skane University Hospital Malmö, Malmö, Sweden
| | - Boyd E Metzger
- Division of Endocrinology, Northwestern University, The Feinberg School of Medicine, Chicago, IL, United States
| | - David M Nathan
- Massachusetts General Hospital Diabetes Center and Harvard Medical School, Boston, MA, United States
| | - M Sue Kirkman
- Department of Medicine, University of North Carolina, Chapel Hill, NC, United States
| |
Collapse
|
4
|
Slepchenko KG, Chen S, Counts GP, Corbin KL, Colvin RA, Nunemaker CS. Synchrotron fluorescence imaging of individual mouse beta-cells reveals changes in zinc, calcium, and iron in a model of low-grade inflammation. Metallomics 2021; 13:6353533. [PMID: 34402906 DOI: 10.1093/mtomcs/mfab051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/02/2021] [Indexed: 12/31/2022]
Abstract
Pancreatic beta-cells synthesize and secrete insulin maintaining an organism's energy homeostasis. In humans, beta-cell dysfunction and death contribute to the pathogenesis of type 2 diabetes (T2D). Although the causes of beta-cell dysfunction are complex, obesity-induced low-grade systemic inflammation plays a role. For example, obese individuals exhibiting increased levels of proinflammatory cytokines IL-6 and IL-1beta have a higher risk of beta-cell dysfunction and T2D. Interestingly, obesity-induced inflammation changes the expression of several cellular metal regulating genes, prompting this study to examine changes in the beta-cell metallome after exposure to proinflammatory-cytokines. Primary mouse beta-cells were exposed to a combination of IL-6 and IL-1beta for 48 hours, were chemically fixed and imaged by synchrotron X-ray fluorescent microscopy. Quantitative analysis showed a surprising 2.4-fold decrease in the mean total cellular content of zinc from 158 ± 57.7 femtograms (fg) to 65.7 ± 29.7 fg; calcium decreased from 216 ± 67.4 to 154.3 ± 68.7 fg (control vs. cytokines, respectively). The mean total cellular iron content slightly increased from 30.4 ± 12.2 to 47.2 ± 36.4 fg after cytokine treatment; a sub-population of cells (38%) exhibited larger increases of iron density. Changes in the subcellular distributions of zinc and calcium were observed after cytokine exposure. Beta-cells contained numerous iron puncta that accumulated still more iron after exposure to cytokines. These findings provide evidence that exposure to low levels of cytokines is sufficient to cause changes in the total cellular content and/or subcellular distribution of several metals known to be critical for normal beta-cell function.
Collapse
Affiliation(s)
- Kira G Slepchenko
- Department of Biological Sciences, Ohio University, Athens, Ohio, USA.,Molecular and Cellular Biology, Ohio University, Athens, Ohio, USA.,Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, USA
| | - Si Chen
- Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois, USA
| | - Grace P Counts
- Department of Biological Sciences, Ohio University, Athens, Ohio, USA
| | - Kathryn L Corbin
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, USA
| | - Robert A Colvin
- Department of Biological Sciences, Ohio University, Athens, Ohio, USA.,Molecular and Cellular Biology, Ohio University, Athens, Ohio, USA
| | - Craig S Nunemaker
- Molecular and Cellular Biology, Ohio University, Athens, Ohio, USA.,Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, USA
| |
Collapse
|
5
|
Current Pharmacological Treatment of Type 2 Diabetes Mellitus in Undocumented Migrants: Is It Appropriate for the Phenotype of the Disease? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17218169. [PMID: 33167380 PMCID: PMC7663831 DOI: 10.3390/ijerph17218169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/29/2020] [Accepted: 10/31/2020] [Indexed: 11/22/2022]
Abstract
Type 2 diabetes is increasingly recognized as a spectrum of metabolic disorders sharing chronic hyperglycaemia. In Europe, the continually growing number of migrants from developing countries could affect diabetes phenotypes. We evaluated a population of 426 Italians and 412 undocumented migrants. Using 17 variables (with the exclusion of ethnic origin) we performed a multiple component analysis to detect potential clusters, independently from ethnicity. We also compared the two groups to evaluate potential ethnicity associated differences. We found five clusters of patients with different disease phenotypes. Comparing Italians with undocumented migrants, we noted that the first had more often cardiovascular risk factors and neurologic involvement, while the latter had a higher frequency of diabetic ulcers and renal involvement. Metformin was used in a comparable percentage of patients in all clusters, but other antidiabetic treatments showed some differences. Italians were more often on insulin, due to a larger use of long acting insulin, and received a larger number of oral antidiabetics in combination. Pharmacological treatment of comorbidities showed some differences too. We suggest that type 2 diabetes should be considered as a spectrum of diseases with different phenotypes also in heterogeneous populations, and that this is not due only to ethnic differences.
Collapse
|
6
|
Douthwaite J, Moisan J, Privezentzev C, Soskic B, Sabbah S, Cohen S, Collinson A, England E, Huntington C, Kemp B, Zhuang L, Hudak S, Rees DG, Goldberg D, Barton C, Chang L, Vainshtein I, Liang M, Iciek L, Ambery P, Peakman M, Vaughan TJ, Tree TIM, Sansom DM, Bowen MA, Minter RR, Jermutus L. A CD80-Biased CTLA4-Ig Fusion Protein with Superior In Vivo Efficacy by Simultaneous Engineering of Affinity, Selectivity, Stability, and FcRn Binding. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 198:528-537. [PMID: 27881707 DOI: 10.4049/jimmunol.1600682] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 10/13/2016] [Indexed: 12/16/2022]
Abstract
Affinity- and stability-engineered variants of CTLA4-Ig fusion molecules with enhanced pharmacokinetic profiles could yield improved therapies with the potential of higher efficacy and greater convenience to patients. In this study, to our knowledge, we have, for the first time, used in vitro evolution to simultaneously optimize CTLA4 affinity and stability. We selected for improved binding to both ligands, CD80 and CD86, and screened as dimeric Fc fusions directly in functional assays to identify variants with stronger suppression of in vitro T cell activation. The majority of CTLA4 molecules showing the largest potency gains in primary in vitro and ex vivo human cell assays, using PBMCs from type 1 diabetes patients, had significant improvements in CD80, but only modest gains in CD86 binding. We furthermore observed different potency rankings between our lead molecule MEDI5265, abatacept, and belatacept, depending on which type of APC was used, with MEDI5265 consistently being the most potent. We then created fusions of both stability- and potency-optimized CTLA4 moieties with human Fc variants conferring extended plasma t1/2 In a cynomolgus model of T cell-dependent Ab response, the CTLA4-Ig variant MEDI5265 could be formulated at >100 mg/ml for s.c. administration and showed superior efficacy and significantly prolonged serum t1/2 The combination of higher stability and potency with prolonged pharmacokinetics could be compatible with very infrequent, s.c. dosing while maintaining a similar level of immune suppression to more frequently and i.v. administered licensed therapies.
Collapse
Affiliation(s)
| | | | | | - Blagoje Soskic
- Royal Free Campus, Institute of Immunity and Transplantation, University College London, London NW3 2PF, United Kingdom
| | - Shereen Sabbah
- Department of Immunobiology, King's College London, London SE1 9RT, United Kingdom
- Faculty of Life Sciences and Medicine, King's College London, London SE1 9RT, United Kingdom
- National Institutes of Health Research Biomedical Research Centre at Guy's and St. Thomas' National Health Service Foundation Trust, London SE1 9RT, United Kingdom; and
| | | | | | | | | | - Ben Kemp
- MedImmune, Cambridge CB21 6GH, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | - Mark Peakman
- Department of Immunobiology, King's College London, London SE1 9RT, United Kingdom
- Faculty of Life Sciences and Medicine, King's College London, London SE1 9RT, United Kingdom
- National Institutes of Health Research Biomedical Research Centre at Guy's and St. Thomas' National Health Service Foundation Trust, London SE1 9RT, United Kingdom; and
| | | | - Tim I M Tree
- Department of Immunobiology, King's College London, London SE1 9RT, United Kingdom
- Faculty of Life Sciences and Medicine, King's College London, London SE1 9RT, United Kingdom
- National Institutes of Health Research Biomedical Research Centre at Guy's and St. Thomas' National Health Service Foundation Trust, London SE1 9RT, United Kingdom; and
| | - David M Sansom
- Royal Free Campus, Institute of Immunity and Transplantation, University College London, London NW3 2PF, United Kingdom
| | | | | | | |
Collapse
|
7
|
Doran TM, Sarkar M, Kodadek T. Chemical Tools To Monitor and Manipulate Adaptive Immune Responses. J Am Chem Soc 2016; 138:6076-94. [PMID: 27115249 PMCID: PMC5332222 DOI: 10.1021/jacs.6b02954] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Methods to monitor and manipulate the immune system are of enormous clinical interest. For example, the development of vaccines represents one of the earliest and greatest accomplishments of the biomedical research enterprise. More recently, drugs capable of "reawakening" the immune system to cancer have generated enormous excitement. But, much remains to be done. All drugs available today that manipulate the immune system cannot distinguish between "good" and "bad" immune responses and thus drive general and systemic immune suppression or activation. Indeed, with the notable exception of vaccines, our ability to monitor and manipulate antigen-specific immune responses is in its infancy. Achieving this finer level of control would be highly desirable. For example, it might allow the pharmacological editing of pathogenic immune responses without restricting the ability of the immune system to defend against infection. On the diagnostic side, a method to comprehensively monitor the circulating, antigen-specific antibody population could provide a treasure trove of clinically useful biomarkers, since many diseases expose the immune system to characteristic molecules that are deemed foreign and elicit the production of antibodies against them. This Perspective will discuss the state-of-the-art of this area with a focus on what we consider seminal opportunities for the chemistry community to contribute to this important field.
Collapse
Affiliation(s)
- Todd M. Doran
- Departments of Chemistry & Cancer Biology, The Scripps Research
Institute, 130 Scripps Way, Jupiter, FL 33458
| | - Mohosin Sarkar
- Departments of Chemistry & Cancer Biology, The Scripps Research
Institute, 130 Scripps Way, Jupiter, FL 33458
| | - Thomas Kodadek
- Departments of Chemistry & Cancer Biology, The Scripps Research
Institute, 130 Scripps Way, Jupiter, FL 33458
| |
Collapse
|
8
|
Buckner JH, Nepom GT. Obstacles and opportunities for targeting the effector T cell response in type 1 diabetes. J Autoimmun 2016; 71:44-50. [PMID: 26948997 DOI: 10.1016/j.jaut.2016.02.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 02/23/2016] [Indexed: 01/06/2023]
Abstract
Autoreactive lymphocytes display a programmed set of characteristic effector functions and phenotypic markers that, in combination with antigen-specific profiling, provide a detailed picture of the adaptive immune response in Type 1 diabetes (T1D). The CD4+ T cell effector compartment (referred to as "Teff" in this article) has been extensively analyzed, particularly because the HLA genes most strongly associated with T1D are MHC class II alleles that form restriction elements for CD4+ T cell recognition. This "guilt by association" can now be revisited in terms of specific immune mechanisms and specific forms of T cell recognition that are displayed by Teff found in subjects with T1D. In this review, we describe properties of Teff that correlate with T1D, and discuss several characteristics that advance our understanding of disease persistence and progression. Focusing on functional disease-associated immunological pathways within these Teff suggests a rationale for next-generation clinical trials with targeted interventions. Indeed, immune modulation therapies in T1D that do not address these properties of Teff are unlikely to achieve durable clinical response.
Collapse
Affiliation(s)
- Jane H Buckner
- Benaroya Research Institute at Virginia Mason, The University of Washington School of Medicine, Seattle, WA, USA.
| | - Gerald T Nepom
- Benaroya Research Institute at Virginia Mason, The University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
9
|
Parthasarathy S, Choudhary P. Epidemiology and pathogenesis of type 1 diabetes. ADVANCED NUTRITION AND DIETETICS IN DIABETES 2015:51-59. [DOI: 10.1002/9781119121725.ch7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
|
10
|
Pipi E, Marketou M, Tsirogianni A. Distinct clinical and laboratory characteristics of latent autoimmune diabetes in adults in relation to type 1 and type 2 diabetes mellitus. World J Diabetes 2014; 5:505-510. [PMID: 25126396 PMCID: PMC4127585 DOI: 10.4239/wjd.v5.i4.505] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 03/14/2014] [Accepted: 06/18/2014] [Indexed: 02/05/2023] Open
Abstract
Ever since its first appearance among the multiple forms of diabetes, latent autoimmune diabetes in adults (LADA), has been the focus of endless discussions concerning mainly its existence as a special type of diabetes. In this mini-review, through browsing important peer-reviewed publications, (original articles and reviews), we will attempt to refresh our knowledge regarding LADA hoping to enhance our understanding of this controversial diabetes entity. A unique combination of immunological, clinical and metabolic characteristics has been identified in this group of patients, namely persistent islet cell antibodies, high frequency of thyroid and gastric autoimmunity, DR3 and DR4 human leukocyte antigen haplotypes, progressive loss of beta cells, adult disease onset, normal weight, defective glycaemic control, and without tendency to ketoacidosis. Although anthropomorphic measurements are useful as a first line screening, the detection of C-peptide levels and the presence of glutamic acid decarboxylase (GAD) autoantibodies is undoubtedly the sine qua non condition for a confirmatory LADA diagnosis. In point of fact, GAD autoantibodies are far from being solely a biomarker and the specific role of these autoantibodies in disease pathogenesis is still to be thoroughly studied. Nevertheless, the lack of diagnostic criteria and guidelines still puzzle the physicians, who struggle between early diagnosis and correct timing for insulin treatment.
Collapse
|
11
|
Roep BO, Peakman M. Antigen targets of type 1 diabetes autoimmunity. Cold Spring Harb Perspect Med 2013; 2:a007781. [PMID: 22474615 DOI: 10.1101/cshperspect.a007781] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Type 1 diabetes is characterized by recognition of one or more β-cell proteins by the immune system. The list of target antigens in this disease is ever increasing and it is conceivable that additional islet autoantigens, possibly including pivotal β-cell targets, remain to be discovered. Many knowledge gaps remain with respect to the disorder's pathogenesis, including the cause of loss of tolerance to islet autoantigens and an explanation as to why targeting of proteins with a distribution of expression beyond β cells may result in selective β-cell destruction and type 1 diabetes. Yet, our knowledge of β-cell autoantigens has already led to translation into tissue-specific immune intervention strategies that are currently being assessed in clinical trials for their efficacy to halt or delay disease progression to type 1 diabetes, as well as to reverse type 1 diabetes. Here we will discuss recently gained insights into the identity, biology, structure, and presentation of islet antigens in relation to disease heterogeneity and β-cell destruction.
Collapse
Affiliation(s)
- Bart O Roep
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2333 Leiden, The Netherlands
| | | |
Collapse
|
12
|
Abstract
Insulin is the hormone produced by pancreatic β-cells, with a central role in carbohydrate and fat metabolism. Together with its precursors preproinsulin and proinsulin, insulin is also a key target antigen (Ag) of the autoimmune islet destruction leading to type 1 diabetes. Being recognized by both autoantibodies (aAbs) and autoreactive T cells, insulin plays a triggering role, at least in rodent models, in diabetes pathogenesis. It is expressed not only by β-cells but also in the thymus, where it plays a major role in central tolerance mechanisms. We will summarize current knowledge concerning insulin, its role in β-cell autoimmunity as initial target Ag, its recognition by aAbs and autoreactive T cells, and the detection of these immune responses to provide biomarkers for clinical trials employing insulin as an immune modulatory agent.
Collapse
Affiliation(s)
- Sloboda Culina
- INSERM, U986, DeAR Lab Avenir, Saint Vincent de Paul Hospital, 82 Avenue Denfert Rochereau, 75674 Paris Cedex 14, France
| | | | | |
Collapse
|
13
|
Arvan P, Pietropaolo M, Ostrov D, Rhodes CJ. Islet autoantigens: structure, function, localization, and regulation. Cold Spring Harb Perspect Med 2012; 2:cshperspect.a007658. [PMID: 22908193 DOI: 10.1101/cshperspect.a007658] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Islet autoantigens associated with autoimmune type 1 diabetes (T1D) are expressed in pancreatic β cells, although many show wider patterns of expression in the neuroendocrine system. Within pancreatic β cells, every T1D autoantigen is in one way or another linked to the secretory pathway. Together, these autoantigens play diverse roles in glucose regulation, metabolism of biogenic amines, as well as the regulation, formation, and packaging of secretory granules. The mechanism(s) by which immune tolerance to islet-cell antigens is lost during the development of T1D, remains unclear. Antigenic peptide creation for immune presentation may potentially link to the secretory biology of β cells in a number of ways, including proteasomal digestion of misfolded products, exocytosis and endocytosis of cell-surface products, or antigen release from dying β cells during normal or pathological turnover. In this context, we evaluate the biochemical nature and immunogenicity of the major autoantigens in T1D including (pro)insulin, GAD65, ZnT8, IA2, and ICA69.
Collapse
Affiliation(s)
- Peter Arvan
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor, MI 48105, USA.
| | | | | | | |
Collapse
|
14
|
Brezar V, Carel JC, Boitard C, Mallone R. Beyond the hormone: insulin as an autoimmune target in type 1 diabetes. Endocr Rev 2011; 32:623-69. [PMID: 21700723 DOI: 10.1210/er.2011-0010] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Insulin is not only the hormone produced by pancreatic β-cells but also a key target antigen of the autoimmune islet destruction leading to type 1 diabetes. Despite cultural biases between the fields of endocrinology and immunology, these two facets should not be regarded separately, but rather harmonized in a unifying picture of diabetes pathogenesis. There is increasing evidence suggesting that metabolic factors (β-cell dysfunction, insulin resistance) and immunological components (inflammation and β-cell-directed adaptive immune responses) may synergize toward islet destruction, with insulin standing at the crossroad of these pathways. This concept further calls for a revision of the classical dichotomy between type 1 and type 2 diabetes because metabolic and immune mechanisms may both contribute to different extents to the development of different forms of diabetes. After providing a background on the mechanisms of β-cell autoimmunity, we will explain the role of insulin and its precursors as target antigens expressed not only by β-cells but also in the thymus. Available knowledge on the autoimmune antibody and T-cell responses against insulin will be summarized. A unifying scheme will be proposed to show how different aspects of insulin biology may lead to β-cell destruction and may be therapeutically exploited. We will argue about possible reasons why insulin remains the mainstay of metabolic control in type 1 diabetes but has so far failed to prevent or halt β-cell autoimmunity as an immune modulatory reagent.
Collapse
Affiliation(s)
- Vedran Brezar
- Institut National de la Santé et de la Recherche Médicale, Unité 986, DeAR Lab Avenir, Saint Vincent de Paul Hospital, and Paris Descartes University, 82 avenue Denfert Rochereau, 75674 Paris Cedex 14, France
| | | | | | | |
Collapse
|
15
|
Sacks DB, Arnold M, Bakris GL, Bruns DE, Horvath AR, Kirkman MS, Lernmark A, Metzger BE, Nathan DM. Guidelines and recommendations for laboratory analysis in the diagnosis and management of diabetes mellitus. Diabetes Care 2011; 34:e61-99. [PMID: 21617108 PMCID: PMC3114322 DOI: 10.2337/dc11-9998] [Citation(s) in RCA: 316] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Accepted: 02/28/2011] [Indexed: 02/06/2023]
Abstract
BACKGROUND Multiple laboratory tests are used to diagnose and manage patients with diabetes mellitus. The quality of the scientific evidence supporting the use of these tests varies substantially. APPROACH An expert committee compiled evidence-based recommendations for the use of laboratory testing for patients with diabetes. A new system was developed to grade the overall quality of the evidence and the strength of the recommendations. Draft guidelines were posted on the Internet and presented at the 2007 Arnold O. Beckman Conference. The document was modified in response to oral and written comments, and a revised draft was posted in 2010 and again modified in response to written comments. The National Academy of Clinical Biochemistry and the Evidence-Based Laboratory Medicine Committee of the American Association for Clinical Chemistry jointly reviewed the guidelines, which were accepted after revisions by the Professional Practice Committee and subsequently approved by the Executive Committee of the American Diabetes Association. CONTENT In addition to long-standing criteria based on measurement of plasma glucose, diabetes can be diagnosed by demonstrating increased blood hemoglobin A(1c) (HbA(1c)) concentrations. Monitoring of glycemic control is performed by self-monitoring of plasma or blood glucose with meters and by laboratory analysis of HbA(1c). The potential roles of noninvasive glucose monitoring, genetic testing, and measurement of autoantibodies, urine albumin, insulin, proinsulin, C-peptide, and other analytes are addressed. SUMMARY The guidelines provide specific recommendations that are based on published data or derived from expert consensus. Several analytes have minimal clinical value at present, and their measurement is not recommended.
Collapse
Affiliation(s)
- David B Sacks
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, Maryland, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Sacks DB, Arnold M, Bakris GL, Bruns DE, Horvath AR, Kirkman MS, Lernmark A, Metzger BE, Nathan DM. Guidelines and recommendations for laboratory analysis in the diagnosis and management of diabetes mellitus. Clin Chem 2011; 57:e1-e47. [PMID: 21617152 DOI: 10.1373/clinchem.2010.161596] [Citation(s) in RCA: 306] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Multiple laboratory tests are used to diagnose and manage patients with diabetes mellitus. The quality of the scientific evidence supporting the use of these tests varies substantially. APPROACH An expert committee compiled evidence-based recommendations for the use of laboratory testing for patients with diabetes. A new system was developed to grade the overall quality of the evidence and the strength of the recommendations. Draft guidelines were posted on the Internet and presented at the 2007 Arnold O. Beckman Conference. The document was modified in response to oral and written comments, and a revised draft was posted in 2010 and again modified in response to written comments. The National Academy of Clinical Biochemistry and the Evidence Based Laboratory Medicine Committee of the AACC jointly reviewed the guidelines, which were accepted after revisions by the Professional Practice Committee and subsequently approved by the Executive Committee of the American Diabetes Association. CONTENT In addition to long-standing criteria based on measurement of plasma glucose, diabetes can be diagnosed by demonstrating increased blood hemoglobin A(1c) (Hb A(1c)) concentrations. Monitoring of glycemic control is performed by self-monitoring of plasma or blood glucose with meters and by laboratory analysis of Hb A(1c). The potential roles of noninvasive glucose monitoring, genetic testing, and measurement of autoantibodies, urine albumin, insulin, proinsulin, C-peptide, and other analytes are addressed. SUMMARY The guidelines provide specific recommendations that are based on published data or derived from expert consensus. Several analytes have minimal clinical value at present, and their measurement is not recommended.
Collapse
Affiliation(s)
- David B Sacks
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, MD 20892-1508, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Heras P, Mantzioros M, Mendrinos D, Heras V, Hatzopoulos A, Xourafas V, Kritikos K, Karagiannis S. Autoantibodies in type 1 diabetes. Diabetes Res Clin Pract 2010; 90:e40-2. [PMID: 20833441 DOI: 10.1016/j.diabres.2010.08.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2010] [Accepted: 08/16/2010] [Indexed: 12/01/2022]
Abstract
Type 1 diabetes is an autoimmune disease manifested by an autoimmune attack on the pancreatic beta-islet cells. It is also known that Type 1 diabetes is associated with other autoimmune diseases. The aim of the present study was to seek autoantibodies in the serum of people with Type 1 diabetes.
Collapse
Affiliation(s)
- Panagiotis Heras
- Hellenic Medical Society for the Study of Psychosomatic Disorders, Athens, Greece.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Villalba A, Iacono RF, Valdez SN, Poskus E. Detection and immunochemical characterization of glutamic acid decarboxylase autoantibodies in patients with autoimmune diabetes mellitus. Autoimmunity 2009; 41:143-53. [DOI: 10.1080/08916930701783338] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
19
|
Qu HQ, Polychronakos C. The effect of the MHC locus on autoantibodies in type 1 diabetes. J Med Genet 2009; 46:469-71. [PMID: 19429597 DOI: 10.1136/jmg.2009.066647] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
OBJECTIVE To investigate whether the presence of autoantibodies specific for type 1 diabetes (T1D) is determined by the major genetic susceptibility locus for the disease at the HLA genes, using the T1D Genetics Consortium data. METHODS We analysed anti-IA-2 and anti-GAD 65 autoantibody data from 2282 T1D patients from 1117 multiplex families. HLA genotyping was available for all cases and their parents and association with autoantibody positivity was tested by the transmission disequilibrium test. RESULTS Association of anti-IA-2 with the HLA genes was detected at high statistical significance. HLA-DRB1*0401 confers both the strongest type 1 diabetes risk, and positive association of anti-IA-2, whereas the DRB1*03- DQA1*0501-DQB1*0201 haplotype, associated less strongly with T1D, showed a significant negative association with anti-IA-2 positivity. Interestingly, HLA-A*24 is also negatively associated with anti-IA-2, independently of the DRB1*03- DQA1*0501-DQB1*0201 haplotype. No statistically significant association was identified between anti-GAD65 and HLA. CONCLUSIONS This study highlights that IA-2 as an autoantigen depends on HLA genotype and suggests new insights into the mechanism of loss of immune tolerance.
Collapse
|
20
|
Tsirogianni A, Pipi E, Soufleros K. Specificity of islet cell autoantibodies and coexistence with other organ specific autoantibodies in type 1 diabetes mellitus. Autoimmun Rev 2009; 8:687-91. [PMID: 19217947 DOI: 10.1016/j.autrev.2009.02.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Accepted: 02/10/2009] [Indexed: 12/19/2022]
Abstract
Type 1 diabetes mellitus (T1DM) has been shown to be a disease characterized by immune-mediated destruction of the insulin-producing islet beta-cells (beta-cells) in the pancreas. Intensive studies, in both patients and animal models are trying to elucidate the specific antigenic targets that are responsible for islet cell autoimmunity. So far, the most important molecules that have been recognized are the native insulin, the 65-kDa form of glutamic acid decarboxylase (GAD(65)) and the insulinoma-antigen 2 (IA-2). Identification of those specific autoantibodies that are involved in the primary immunological events of the autoimmune disease process will allow the development of novel diagnostic procedures for early detection and initiation of potential therapy prior to irreversible loss of beta-cells. Within the framework of polyglandular disorders, T1DM may coexist with other organ specific autoimmune diseases such as autoimmune thyroid disease (ATD), autoimmune gastritis (AG), celiac disease (CD) and Addison's disease (AD), which are associated with the production of organ-specific autoantibodies. So, as a subset of patients with those autoantibodies will develop clinical disease, screening T1DM patients could prognosticate morbidity relative to unrecognised clinical entities. The close follow-up of patients with organ-specific autoantibodies could lead to seasonable identification of those requiring therapy.
Collapse
Affiliation(s)
- Alexandra Tsirogianni
- Department of Immunology-Histocompatibility, Evangelismos General Hospital, Athens, Greece.
| | | | | |
Collapse
|
21
|
Giannoukakis N, Phillips B, Trucco M. Toward a cure for type 1 diabetes mellitus: diabetes-suppressive dendritic cells and beyond. Pediatr Diabetes 2008; 9:4-13. [PMID: 18540865 DOI: 10.1111/j.1399-5448.2008.00401.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Insulin has been the gold standard therapy for diabetes since its discovery and commercial availability. It remains the only pharmacologic therapy for type 1 diabetes (T1D), an autoimmune disease in which autoreactive T cells specifically kill the insulin-producing beta cells. Nevertheless, not even molecularly produced insulin administered four or five times per day can provide a physiologic regulation able to prevent the complications that account for the morbidity and mortality of diabetic patients. Also, insulin does not eliminate the T1D hallmark: beta-cell-specific autoimmunity. In other words, insulin is not a 'cure'. A successful cure must meet the following criteria: (i) it must either replace or maintain the functional integrity of the natural, insulin-producing tissue, the endocrine islets of Langerhans' and, more specifically, the insulin-producing beta cells; (ii) it must, at least, control the autoimmunity or eliminate it altogether; and (iii) it must be easy to apply to a large number of patients. Criterion 1 has been partially realized by allogeneic islet transplantation. Criterion 2 has been partially realized using monoclonal antibodies specific for T-cell surface proteins. Criterion 3 has yet to be realized, given that most of the novel therapies are currently quasi-patient-specific. Herein, we outline the current status of non-insulin-based therapies for T1D, with a focus on cell-based immunomodulation which we propose can achieve all three criteria illustrated above.
Collapse
Affiliation(s)
- Nick Giannoukakis
- Division of Immunogenetics, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | | |
Collapse
|
22
|
de Leiva A, Mauricio D, Corcoy R. Diabetes-related autoantibodies and gestational diabetes. Diabetes Care 2007; 30 Suppl 2:S127-33. [PMID: 17596460 DOI: 10.2337/dc07-s204] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Alberto de Leiva
- Servei d'Endocrinologia i Nutrició, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Avinguda Sant Antoni M. Claret, 167, 08025, Barcelona, Spain.
| | | | | |
Collapse
|
23
|
Villalba A, Valdez SN, Iacono RF, Poskus E. Development of 2 alternative enzyme-linked immunosorbent assays for routine screening of glutamic acid decarboxylase autoantibodies. Clin Chim Acta 2007; 376:82-7. [PMID: 16963012 DOI: 10.1016/j.cca.2006.07.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2006] [Revised: 07/17/2006] [Accepted: 07/18/2006] [Indexed: 11/16/2022]
Abstract
BACKGROUND Antibodies to GAD65 (GADA) are considered highly predictive humoral markers of the type 1 diabetes mellitus and also of the insulin requirement in adult-onset patients presumptively classified as type 2 diabetics or LADA. METHODS We present 2 methods for GADA assessment. The first one (fluid phase, ELISA Protocol A) is carried out in a 2-step procedure in which serum GADA are first allowed to react with a fixed dose of GAD65-biotin in solution and the residual free antigen is later assayed by a conventional ELISA. In the second test (solid phase, ELISA Protocol B) GADA are measured in an ELISA that depends on the ability of divalent autoantibodies to form a bridge between immobilized TrxGAD65 and liquid-phase biotinylated TrxGAD65. RESULTS All normal control samples scored negative in both variants of ELISA and RBA, hence specificity was 100% for all methods; the relative sensitivity of ELISA Protocol A respect of the RBA was 94% and that of ELISA Protocol B was 76%. CONCLUSIONS Although ELISA Protocol A exhibited a better performance in terms of relative sensitivity than ELISA Protocol B, the simplicity of execution and the intended use of the assay must also be taken in consideration for the final choice.
Collapse
Affiliation(s)
- Anabel Villalba
- School of Pharmacy and Biochemistry, University of Buenos Aires (UBA), Argentina
| | | | | | | |
Collapse
|
24
|
Shatavi SV, Llanes B, Luborsky JL. Association of Unexplained Infertility with Gonadotropin and Ovarian Antibodies. Am J Reprod Immunol 2006; 56:286-91. [PMID: 17076672 DOI: 10.1111/j.1600-0897.2006.00428.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
PROBLEM To determine the prevalence and characteristics of gonadotropin autoantibodies (GAB) associated with unexplained infertility, and to assess the relationship between ovarian autoantibodies (OVAB) and GAB. METHOD OF STUDY Ovarian antibodies and GABs in sera of patients with unexplained infertility (n = 53) and a comparison (population) group from a blood bank (n = 40) were detected by immunoassay. Patients with unexplained infertility had either no prior gonadotropin treatment (n = 15) or two or more gonadotropin cycles to induce ovulation (n = 38). RESULTS The GABs were detected in 67% of women with treatment, 27% of women without treatment and 8% of women in the population. The GABs recognized follicle stimulating hormone (FSH) and luteinizing hormone (LH) and their alpha and beta subunits and to a lesser extent thyroid stimulating hormone (TSH) and prolactin. There was no significant difference in OVAB prevalence between gonadotropin treated or untreated women while GABs were significantly more frequent in gonadotropin treated women (P < or = 0.01). CONCLUSION Gonadotropin antibodies may represent a separate marker of ovarian autoimmunity in unexplained infertility as they are correlated with OVAB and are present in patients not treated with gonadotropin. However, as a higher frequency of GAB is associated with gonadotropin treatment, patients with ovarian autoimmunity may tend to have an immune response to gonadotropins in addition to an endocrine response.
Collapse
Affiliation(s)
- Seerin V Shatavi
- Department of Pharmacology, Rush University Medical Center, Chicago, IL 60612, USA
| | | | | |
Collapse
|
25
|
Perone MJ, Bertera S, Tawadrous ZS, Shufesky WJ, Piganelli JD, Baum LG, Trucco M, Morelli AE. Dendritic Cells Expressing Transgenic Galectin-1 Delay Onset of Autoimmune Diabetes in Mice. THE JOURNAL OF IMMUNOLOGY 2006; 177:5278-89. [PMID: 17015713 DOI: 10.4049/jimmunol.177.8.5278] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Type 1 diabetes (T1D) is a disease caused by the destruction of the beta cells of the pancreas by activated T cells. Dendritic cells (DC) are the APC that initiate the T cell response that triggers T1D. However, DC also participate in T cell tolerance, and genetic engineering of DC to modulate T cell immunity is an area of active research. Galectin-1 (gal-1) is an endogenous lectin with regulatory effects on activated T cells including induction of apoptosis and down-regulation of the Th1 response, characteristics that make gal-1 an ideal transgene to transduce DC to treat T1D. We engineered bone marrow-derived DC to synthesize transgenic gal-1 (gal-1-DC) and tested their potential to prevent T1D through their regulatory effects on activated T cells. NOD-derived gal-1-DC triggered rapid apoptosis of diabetogenic BDC2.5 TCR-transgenic CD4+ T cells by TCR-dependent and -independent mechanisms. Intravenously administered gal-1-DC trafficked to pancreatic lymph nodes and spleen and delayed onset of diabetes and insulitis in the NODrag1(-/-) lymphocyte adoptive transfer model. The therapeutic effect of gal-1-DC was accompanied by increased percentage of apoptotic T cells and reduced number of IFN-gamma-secreting CD4+ T cells in pancreatic lymph nodes. Treatment with gal-1-DC inhibited proliferation and secretion of IFN-gamma of T cells in response to beta cell Ag. Unlike other DC-based approaches to modulate T cell immunity, the use of the regulatory properties of gal-1-DC on activated T cells might help to delete beta cell-reactive T cells at early stages of the disease when the diabetogenic T cells are already activated.
Collapse
Affiliation(s)
- Marcelo J Perone
- Thomas E. Starzl Transplantation Institute and Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213-2582, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Faideau B, Lotton C, Lucas B, Tardivel I, Elliott JF, Boitard C, Carel JC. Tolerance to proinsulin-2 is due to radioresistant thymic cells. THE JOURNAL OF IMMUNOLOGY 2006; 177:53-60. [PMID: 16785498 DOI: 10.4049/jimmunol.177.1.53] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Proinsulin is a key Ag in type 1 diabetes, but the mechanisms regulating proinsulin immune tolerance are unknown. We have shown that preproinsulin-2 gene-deficient mice (proins-2(-/-)) are intolerant to proinsulin-2. In this study, we analyzed the mechanisms underlying T cell-mediated tolerance to proinsulin-2 in 129/Sv nonautoimmune mice. The expression of one proinsulin-2 allele, whatever its parental origin, was sufficient to maintain tolerance. The site of proinsulin-2 expression relevant to tolerance was evaluated in thymus and bone marrow chimeras. CD4+ T cell reactivity to proinsulin-2 was independent of proinsulin-2 expression in radiation-sensitive bone marrow-derived cells. A wt thymus restored tolerance in proins-2(-/-) mice. Conversely, the absence of the preproinsulin-2 gene in radioresistant thymic cells was sufficient to break tolerance. Although chimeric animals had proinsulin-2-reactive CD4+ T cells in their peripheral repertoire, they displayed no insulitis or insulin Abs, suggesting additional protective mechanisms. In a model involving transfer to immunodeficient (CD3epsilon(-/-)) mice, naive and proinsulin-2-primed CD4+ T cells were not activated, but could be activated by immunization regardless of whether the recipient mice expressed proinsulin-2. Furthermore, we could not identify a role for putative specific T cells regulating proinsulin-2-reactive CD4+ T in transfer experiments. Thus, proinsulin-2 gene expression by radioresistant thymic epithelial cells is involved in the induction of self-tolerance, and additional factors are required to induce islet abnormalities.
Collapse
Affiliation(s)
- Béatrice Faideau
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 561, Groupe Hospitalier Cochin-Saint Vincent de Paul, 82 avenue Denfert Rochereau, 75014 Paris, France
| | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Whether autoimmunity results primarily from a defect of the immune system, target organ dysfunction, or both remains an open issue in most human autoimmune diseases. The highly multigenic background on which diabetes develops in the NOD mouse and in the human suggests that numerous gene variants associate in contributing to activation of autoimmunity to beta-cells. Both immune genes and islet-related genes are involved. The presence of beta-cells is required for initiation of diabetes autoimmunity to proceed. Available experiments in the NOD mouse and epidemiological evidence in the human point to proinsulin as a key autoantigen in diabetes. The functional importance of insulin, the high number of autoantigens characterized at different stages of diabetes, and their clustering within beta-cell subparticles point to the islet as a starting point in the initiation phase of the disease. Genes that direct the autoimmune reaction toward the beta-cell target, autoantigens that are recognized by autoreactive B- and T-cells along the autoimmune process, the importance of beta-cells in the activation of autoreactive lymphocytes, and the expression level of key beta-cell molecules along diabetes development are successively considered in this review.
Collapse
Affiliation(s)
- Béatrice Faideau
- INSERM U561, Hôpital Cochin-Saint Vincent de Paul, 82 Avenue Denfert Rochereau, 75014 Paris, France
| | | | | | | | | |
Collapse
|
28
|
Abstract
Autoantibodies have been used as good markers for the prediction of future development of type 1 diabetes mellitus (T1DM), but are not thought to be pathogenic in this disease. The role of B cells that produce autoantibodies in the pathogenesis of human T1DM is largely unknown. In the non-obese diabetic (NOD) mouse model of autoimmune diabetes, it has been shown that B cells may contribute multifariously to the pathogenesis of the disease. Some aspects of deficiencies of B cell tolerance may lead to the circulation of autoreactive B cells. In addition, the antigen-presenting function of autoantigen specific B cells is likely to be particularly important, and autoantibodies are also considered to play a critical role. This review discusses the possible aspects of B cells involved in the development of autoimmune diabetes.
Collapse
Affiliation(s)
- F Susan Wong
- Department of Cellular and Molecular Medicine, University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom.
| | | |
Collapse
|
29
|
Franke B, Galloway TS, Wilkin TJ. Developments in the prediction of type 1 diabetes mellitus, with special reference to insulin autoantibodies. Diabetes Metab Res Rev 2005; 21:395-415. [PMID: 15895384 DOI: 10.1002/dmrr.554] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The prodromal phase of type 1 diabetes is characterised by the appearance of multiple islet-cell related autoantibodies (Aab). The major target antigens are islet-cell antigen, glutamic acid decarboxylase (GAD), protein-tyrosine phosphatase-2 (IA-2) and insulin. Insulin autoantibodies (IAA), in contrast to the other autoimmune markers, are the only beta-cell specific antibodies. There is general consensus that the presence of multiple Aab (> or = 3) is associated with a high risk of developing diabetes, where the presence of a single islet-cell-related Aab has usually a low predictive value. The most commonly used assay format for the detection of Aab to GAD, IA-2 and insulin is the fluid-phase radiobinding assay. The RBA does not identify or measure Aab, but merely detects its presence. However, on the basis of molecular studies, disease-specific constructs of GAD and IA-2 have been employed leading to somewhat improved sensitivity and specificity of the RBA. Serological studies have shown epitope restriction of IAA that can differentiate diabetes-related from unrelated IAA, but current assays do not distinguish between disease-predictive and non-predictive IAA or between IAA and insulin antibodies (IA). More recently, phage display technology has been successful in identifying disease-specific anti-idiotopes of insulin. In addition, phage display has facilitated the in vitro production of antibodies with high affinity. Identification of disease-specific anti-idiotopes of insulin should enable the production of a high affinity reagent against the same anti-idiotope. Such a development would form the basis of a disease-specific radioimmunoassay able to identify and measure particular idiotypes, rather than merely detect and titrate IAA.
Collapse
Affiliation(s)
- Bernd Franke
- Department of Diabetes/Endocrinology Level D, Rotherham General Hospital, UK.
| | | | | |
Collapse
|
30
|
Toma A, Haddouk S, Briand JP, Camoin L, Gahery H, Connan F, Dubois-Laforgue D, Caillat-Zucman S, Guillet JG, Carel JC, Muller S, Choppin J, Boitard C. Recognition of a subregion of human proinsulin by class I-restricted T cells in type 1 diabetic patients. Proc Natl Acad Sci U S A 2005; 102:10581-6. [PMID: 16030147 PMCID: PMC1180789 DOI: 10.1073/pnas.0504230102] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2005] [Indexed: 11/18/2022] Open
Abstract
Proinsulin is a key autoantigen in type 1 diabetes. Evidence in the mouse has underscored the importance of the insulin B chain region in autoimmunity to pancreatic beta cells. In man, a majority of proteasome cleavage sites are predicted by proteasome cleavage algorithms within this region. To study CD8+ T cell responses to the insulin B chain and adjacent C peptide, we selected 8- to 11-mer peptides according to proteasome cleavage patterns obtained by digestion of two peptides covering proinsulin residues 28 to 64. We studied their binding to purified HLA class I molecules and their recognition by T cells from diabetic patients. Peripheral blood mononuclear cells from 17 of 19 recent-onset and 12 of 13 long-standing type 1 diabetic patients produced IFN-gamma in response to proinsulin peptides as shown by using an ELISPOT assay. In most patients, the response was against several class I-restricted peptides. Nine peptides were recognized within the proinsulin region covering residues 34 to 61. Four yielded a high frequency of recognition in HLA-A1 and -B8 patients. Three peptides located in the proinsulin region 41-51 were shown to bind several HLA molecules and to be recognized in a high percentage of diabetic patients.
Collapse
Affiliation(s)
- Andréa Toma
- Institut National de la Santé et de la Recherche Médicale U561, Hôpital Cochin-Saint Vincent de Paul, Université Paris V, 75014 Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Han G, Li Y, Wang J, Wang R, Chen G, Song L, Xu R, Yu M, Wu X, Qian J, Shen B. Active Tolerance Induction and Prevention of Autoimmune Diabetes by Immunogene Therapy Using Recombinant Adenoassociated Virus Expressing Glutamic Acid Decarboxylase 65 Peptide GAD500–585. THE JOURNAL OF IMMUNOLOGY 2005; 174:4516-24. [PMID: 15814672 DOI: 10.4049/jimmunol.174.8.4516] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Tolerance induction of autoreactive T cells against pancreatic beta cell-specific autoantigens such as glutamic acid decarboxylase 65 (GAD65) and insulin has been attempted as a method to prevent autoimmune diabetes. In this study, we investigate whether adenoassociated virus (AAV) gene delivery of multiple immunodominant epitopes expressing GAD(500-585) could induce potent immune tolerance and persistently suppress autoimmune diabetes in NOD mice. A single muscle injection of 7-wk-old female NOD mice with rAAV/GAD(500-585) (3 x 10(11) IU/mouse) quantitatively reduced pancreatic insulitis and efficiently prevented the development of overt type I diabetes. This prevention was marked by the inactivation of GAD(500-585)-responsive T lymphocytes, the enhanced GAD(500-585)-specific Th2 response (characterized by increased IL-4, IL-10 production, and decreased IFN-gamma production; especially elevated anti-GAD(500-585) IgG1 titer; and relatively unchanged anti-GAD(500-585) IgG2b titer), the increased secretion of TGF-beta, and the production of protective regulatory cells. Our studies also revealed that peptides 509-528, 570-585, and 554-546 in the region of GAD(500-585) played important roles in rAAV/GAD(500-585) immunization-induced immune tolerance. These data indicate that using AAV, a vector with advantage for therapeutic gene delivery, to transfer autoantigen peptide GAD(500-585), can induce immunological tolerance through active suppression of effector T cells and prevent type I diabetes in NOD mice.
Collapse
Affiliation(s)
- Gencheng Han
- Department of Molecular Immunology, Institute of Basic Medical Sciences, Beijing, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Nagai T, Imamura M, Mori M. Seroconversion of glutamic acid decarboxylase antibodies in a patient initially diagnosed as having type 2 diabetes mellitus. Intern Med 2005; 44:299-302. [PMID: 15897639 DOI: 10.2169/internalmedicine.44.299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A 61-year-old man admitted in July 1998 had suffered from thirst, polydipsia and polyuria for three years. Diet and transient insulin therapy had induced good blood glucose control which was maintained by metformin hydrochloride for a year. Although it worsened, conventional insulin treatment re-implemented good blood glucose control. Glutamic acid decarboxylase antibodies (GAD-Ab) had been negative up to this point. After 8 months, blood glucose levels became elevated. To date, the GAD-Ab has been positive (112-120 U/ml), and the serum and urine C-peptide levels are decreased. Seroconversion of GAD-Ab should be noted in patients initially diagnosed as having GAD-Ab negative type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Takashi Nagai
- Department of Internal Medicine, Public Tomioka General Hospital, Tomioka
| | | | | |
Collapse
|
33
|
Affiliation(s)
- Gerald T Nepom
- Benaroya Research Institute at Virginia Mason, Seattle, WA 98101, USA.
| |
Collapse
|
34
|
Thébault-Baumont K, Dubois-Laforgue D, Krief P, Briand JP, Halbout P, Vallon-Geoffroy K, Morin J, Laloux V, Lehuen A, Carel JC, Jami J, Muller S, Boitard C. Acceleration of type 1 diabetes mellitus in proinsulin 2-deficient NOD mice. J Clin Invest 2003; 111:851-7. [PMID: 12639991 PMCID: PMC153768 DOI: 10.1172/jci16584] [Citation(s) in RCA: 171] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Accumulating evidence favors a role for proinsulin as a key autoantigen in diabetes. In the mouse, two proinsulin isoforms coexist. Most studies point to proinsulin 2 as the major isoform recognized by T cells in the NOD mouse. We studied mice in which a null proinsulin 2 mutation was transferred from proinsulin 2-deficient 129 mice onto the NOD background along with 16 genetic markers (including I-A(g7) MHC molecule) associated with diabetes. Intercross mice from the fourth backcross generation showed that proinsulin 2(-/-) mice develop accelerated insulitis and diabetes. The high prevalence of anti-insulin autoantibodies in proinsulin 2(-/-) mice indicates that diabetes acceleration relates to altered recognition of proinsulin. The prevalence of anti-glutamic acid decarboxylase autoantibodies and of sialitis is not increased in proinsulin 2(-/-) mice. We give evidence that proinsulin 2 expression leads to silencing of T cells specific for an epitope shared by proinsulin 1 and proinsulin 2. In the human, alleles located in the VNTR region flanking the insulin gene control beta cell response to glucose and proinsulin expression in the thymus and are key determinants of diabetes susceptibility. Proinsulin 2(-/-) NOD mice provide a model to study the role of thymic expression of insulin in susceptibility to diabetes.
Collapse
Affiliation(s)
- Karine Thébault-Baumont
- Institut National de la Santé et de la Recherche Médicale (INSERM) U561, Hôpital Cochin-Saint Vincent de Paul, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Hänninen A, Hamilton-Williams E, Kurts C. Development of new strategies to prevent type 1 diabetes: the role of animal models. Ann Med 2003; 35:546-63. [PMID: 14708966 DOI: 10.1080/07853890310014597] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Type 1 diabetes is an immune-mediated disease typically preceded by a long preclinical stage during which a growing number of islet-cell-specific autoantibodies appear in the serum. Although antigen-specific T lymphocytes and cytokines rather than these autoantibodies are the likely executors of beta-cell-destruction, these autoantibodies reflect the existence of autoimmunity that targets islet beta-cells. Abrogation of this autoimmunity during the preclinical stage would be the key to the prevention of type 1 diabetes. However, the quest of protecting islet-cells from the immune attack requires detailed knowledge of mechanisms that control islet-inflammation and beta-cell-destruction, and of mechanisms that control immune tolerance to peripheral self-antigens in general. This knowledge can only be obtained through further innovative research in experimental animal models. In this review, we will first examine how research in non-obese diabetic mice has already led to promising new strategies of diabetes prevention now being tested in human clinical trials. Thereafter, we will discuss how recent advances in understanding the mechanisms that control immune response to peripheral self-antigens such as beta-cell antigens may help to develop even more selective and effective strategies to prevent diabetes in the future.
Collapse
Affiliation(s)
- Arno Hänninen
- MediCity Research Laboratory, Turku University, Finland,
| | | | | |
Collapse
|
36
|
Tarbell KV, Lee M, Ranheim E, Chao CC, Sanna M, Kim SK, Dickie P, Teyton L, Davis M, McDevitt H. CD4(+) T cells from glutamic acid decarboxylase (GAD)65-specific T cell receptor transgenic mice are not diabetogenic and can delay diabetes transfer. J Exp Med 2002; 196:481-92. [PMID: 12186840 PMCID: PMC2196059 DOI: 10.1084/jem.20011845] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Glutamic acid decarboxylase (GAD)65 is an early and important antigen in both human diabetes mellitus and the nonobese diabetic (NOD) mouse. However, the exact role of GAD65-specific T cells in diabetes pathogenesis is unclear. T cell responses to GAD65 occur early in diabetes pathogenesis, yet only one GAD65-specific T cell clone of many identified can transfer diabetes. We have generated transgenic mice on the NOD background expressing a T cell receptor (TCR)-specific for peptide epitope 286-300 (p286) of GAD65. These mice have GAD65-specific CD4(+) T cells, as shown by staining with an I-A(g7)(p286) tetramer reagent. Lymphocytes from these TCR transgenic mice proliferate and make interferon gamma, interleukin (IL)-2, tumor necrosis factor (TNF)-alpha, and IL-10 when stimulated in vitro with GAD65 peptide 286-300, yet these TCR transgenic animals do not spontaneously develop diabetes, and insulitis is virtually undetectable. Furthermore, in vitro activated CD4 T cells from GAD 286 TCR transgenic mice express higher levels of CTL-associated antigen (CTLA)-4 than nontransgenic littermates. CD4(+) T cells, or p286-tetramer(+)CD4(+) Tcells, from GAD65 286-300-specific TCR transgenic mice delay diabetes induced in NOD.scid mice by diabetic NOD spleen cells. This data suggests that GAD65 peptide 286-300-specific T cells have disease protective capacity and are not pathogenic.
Collapse
MESH Headings
- Abatacept
- Animals
- Antigens, CD
- Antigens, Differentiation/genetics
- CD4-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/immunology
- CTLA-4 Antigen
- Cell Division
- Cytokines/biosynthesis
- Diabetes Mellitus/immunology
- Epitopes, T-Lymphocyte/immunology
- Gene Expression
- Glutamate Decarboxylase/immunology
- Immunoconjugates
- Isoenzymes/immunology
- Mice
- Mice, Inbred NOD
- Mice, Transgenic
- Peptides/immunology
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Interleukin-2
Collapse
Affiliation(s)
- Kristin V Tarbell
- Program in Immunology, Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Takeda H, Kawasaki E, Shimizu I, Konoue E, Fujiyama M, Murao S, Tanaka K, Mori K, Tarumi Y, Seto I, Fujii Y, Kato K, Kondo S, Takada Y, Kitsuki N, Kaino Y, Kida K, Hashimoto N, Yamane Y, Yamawaki T, Onuma H, Nishimiya T, Osawa H, Saito Y, Makino H. Clinical, autoimmune, and genetic characteristics of adult-onset diabetic patients with GAD autoantibodies in Japan (Ehime Study). Diabetes Care 2002; 25:995-1001. [PMID: 12032105 DOI: 10.2337/diacare.25.6.995] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To characterize the clinical, autoimmune, and genetic features in Japanese adult-onset diabetic patients with GAD autoantibodies. RESEARCH DESIGN AND METHODS GAD autoantibodies (GADab) were screened in 4,980 diabetic patients with age of onset >20 years in the hospital-based Ehime Study, and the GADab-positive (GADab(+)) patients were then divided into two groups according to their insulin secretion and compared with nondiabetic subjects. The insulin-deficient state was defined as <0.33 nmol/l serum C-peptide (CPR) at 2 h postprandial or 6 min after a 1-mg glucagon load. RESULTS GADab was detected in 188 (3.8%) of the 4,980 diabetic patients tested. Of these patients, 72 (38.3%) were classified as insulin deficient, 97 (51.6%) were classified as non-insulin deficient, and 19 (10.1%) were unclassified. The GADab(+) insulin-deficient patients were characterized by young age at onset of diabetes, low BMI, low maximum BMI, and high levels of HbA(1c). The prevalence of IA-2 autoantibodies and thyrogastric autoantibodies in the GADab(+) insulin-deficient patients were significantly higher than those in the GADab(+) non-insulin-deficient patients (P < 0.05). GADab(+) patients with insulin deficiency had increased frequencies of HLA DRB1*0405-DQB1*0401, *0802-*0302, and *0901-*0303 haplotypes, whereas the frequency of only HLA DRB1*0405-DQB1*0401 was increased in the case of GADab(+) non-insulin-deficient patients. Of note is the fact that the GADab(+) non-insulin-deficient group did not differ from healthy control subjects with respect to type 1 diabetes protective haplotype HLA DRB1*1502-DQB1*0601. A total of 13% of the GADab(+) patients with diabetes had genotypes comprising the DRB1*1501-DQB1*0602 or *1502-*0601 and were characterized by old age at onset of diabetes, high BMI, resistance to the insulin-deficient state, low titer of GADab, and low frequency of other organ-specific autoantibodies. CONCLUSIONS We conclude that GADab(+) non-insulin-deficient patients differ from GADab(+) patients with insulin deficiency with respect to clinical characteristics, humoral autoimmunity to other organ-specific autoantibodies, as well as HLA class II genes.
Collapse
Affiliation(s)
- Haruyo Takeda
- Department of Laboratory Medicine, Ehime University School of Medicine, Shigenobu, Ehime, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Sacks DB, Bruns DE, Goldstein DE, Maclaren NK, McDonald JM, Parrott M. Guidelines and Recommendations for Laboratory Analysis in the Diagnosis and Management of Diabetes Mellitus. Clin Chem 2002. [DOI: 10.1093/clinchem/48.3.436] [Citation(s) in RCA: 603] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
AbstractBackground: Multiple laboratory tests are used in the diagnosis and management of patients with diabetes mellitus. The quality of the scientific evidence supporting the use of these assays varies substantially.Approach: An expert committee drafted evidence-based recommendations for the use of laboratory analysis in patients with diabetes. An external panel of experts reviewed a draft of the guidelines, which were modified in response to the reviewers’ suggestions. A revised draft was posted on the Internet and was presented at the AACC Annual Meeting in July, 2000. The recommendations were modified again in response to oral and written comments. The guidelines were reviewed by the Professional Practice Committee of the American Diabetes Association.Content: Measurement of plasma glucose remains the sole diagnostic criterion for diabetes. Monitoring of glycemic control is performed by the patients, who measure their own plasma or blood glucose with meters, and by laboratory analysis of glycated hemoglobin. The potential roles of noninvasive glucose monitoring, genetic testing, autoantibodies, microalbumin, proinsulin, C-peptide, and other analytes are addressed.Summary: The guidelines provide specific recommendations based on published data or derived from expert consensus. Several analytes are of minimal clinical value at the present time, and measurement of them is not recommended.
Collapse
Affiliation(s)
- David B Sacks
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Thorn 530, 75 Francis St., Boston, MA 02115
| | - David E Bruns
- Department of Pathology, University of Virginia Medical School, PO Box 800214, Charlottesville, VA 22908
| | - David E Goldstein
- Department of Child Health, University of Missouri School of Medicine, 1 Hospital Dr., Columbia, MO 65212
| | - Noel K Maclaren
- Weill Medical College of Cornell University, 1300 York Ave., Suite LC-623, New York, NY 10021
| | - Jay M McDonald
- Department of Pathology, University of Alabama at Birmingham, 701 S. 19th St., Birmingham, AL 35294
- Veterans Administration Medical Center, Birmingham, AL 35233
| | - Marian Parrott
- American Diabetes Association, 1701 Beauregard St., Alexandria, VA 22311
| |
Collapse
|
39
|
Rizza RA, Jensen MD, Nair KS. Type I Diabetes Mellitus (Insulin‐Dependent Diabetes Mellitus). Compr Physiol 2001. [DOI: 10.1002/cphy.cp070236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
40
|
Mbanya JC, Sobngwi E, Mbanya DN. HLA-DRB1, -DQA1, -DQB1 and DPB1 susceptibility alleles in Cameroonian type 1 diabetes patients and controls. EUROPEAN JOURNAL OF IMMUNOGENETICS : OFFICIAL JOURNAL OF THE BRITISH SOCIETY FOR HISTOCOMPATIBILITY AND IMMUNOGENETICS 2001; 28:459-62. [PMID: 11532022 DOI: 10.1046/j.0960-7420.2001.00247.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
It is known that certain combinations of alleles within the human leucocyte antigen (HLA) complex are associated with susceptibility or resistance to type 1 diabetes. Variable associations of DR and DQ with type 1 diabetes are documented in Caucasians but rarely in African populations; however, the role of HLA-DP genes in type 1 diabetes remains uncertain. In order to investigate the HLA class II associations with type 1 diabetes in Cameroonians, we used sequence-specific oligonucleotide probing (SSOP) to identify DRB1, DQA1, DQB1 and DPB1 alleles in 10 unrelated C-peptide negative patients with type 1 diabetes and 90 controls from a homogeneous population of rural Cameroon. We found a significantly higher frequency of the alleles DRB1*03 (chi2 = 17.9; P = 0.001), DRB1*1301 (chi2 = 37.4; P < 0.0001), DQA1*0301 (chi2 = 18.5; P = 0.001) and DQB1*0201 (chi2 = 37.4; P < 0.001) in diabetes patients compared to the control group. The most frequent alleles in the control population were DQA1*01, DQB1*0602 and DRB1*15. The DRB1*04 allele was not significantly associated with type I diabetes in our study population. We observed no significant difference between patients and controls in DPB1 allele frequency. In conclusion, the data in Cameroonian diabetes patients suggest the existence of HLA class II predisposing and specific protective markers, but do not support previous reports of a primary association between HLA-DP polymorphism and development of type I diabetes.
Collapse
Affiliation(s)
- J C Mbanya
- Centre Hospitalier et Universitaire Yaoundé and Department of Medicine, Faculty of Medicine and Biomedical Sciences, University of Yaoundé, Cameroon.
| | | | | |
Collapse
|
41
|
Abstract
Recently, gut K cells have been shown to express glucokinase, the glucose sensor of pancreatic beta cells, and transgenic mice expressing human insulin under the control of a K cell-specific promoter are resistant to diabetes development induced by the beta-cell toxin streptozotocin. These novel findings suggest that gut K cells might be a suitable target for gene therapeutic treatment of type 1 diabetes mellitus.
Collapse
Affiliation(s)
- J A Corbett
- The Edward A. Doisy Dept of Biochemistry and Molecular Biology, St Louis University School of Medicine, 1402 South Grand Blvd, St Louis, MO 63104, USA.
| |
Collapse
|
42
|
Kimura K, Kawamura T, Kadotani S, Inada H, Niihira S, Yamano T. Peptide-specific cytotoxicity of T lymphocytes against glutamic acid decarboxylase and insulin in type 1 diabetes mellitus. Diabetes Res Clin Pract 2001; 51:173-9. [PMID: 11269889 DOI: 10.1016/s0168-8227(00)00225-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cytotoxic T lymphocytes (CTL) against pancreatic beta-cells probably play a major role in the etiology of type 1 diabetes mellitus (DM). CTLs recognize a complex formed between MHC class I and antigenic peptides fragments derived from intracellular processing of proteins. However, the exogenous peptides, which show strong affinities to MHC class I, can be presented. In this study, we focused on the cytotoxic activity of peripheral lymphocytes in patients with type 1 DM against the peptides of glutamic acid decarboxylase (GAD) and insulin, which can bind MHC class 1 A24. Lymphocytes were isolated from peripheral blood of 12 type 1 DM patients and eight healthy control subjects. The effector cells were cultured with peptides, IL-2 and IL-7, restimulated weekly by autologous antigen presenting cells, which were cultured with IL-4 and GM-CSF. On day 21, CTL activities of cultured effector cells were tested against autologous EB-blast cells as target cells pulsed with the stimulating peptides using 51Cr release assay. The results showed that cytotoxicity against insulin peptide binding to MHC class I A24 was observed in lymphocytes of four out of ten patients with type 1 DM. The mean cytotoxicity was 46.0% of the maximum release. The antibody against HLA-class I inhibited this effect. Cytotoxicity against GAD peptide which bind MHC class I A24 was not observed in seven patients. None of healthy controls showed cytotoxicity against GAD or insulin peptides was observed. This is the first report describing the cytotoxic activity of CD8+ T lymphocytes against insulin in type 1 DM.
Collapse
Affiliation(s)
- K Kimura
- Department of Pediatrics, Osaka City University Graduate School of Medicine, 1-5-7, Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| | | | | | | | | | | |
Collapse
|
43
|
Affiliation(s)
- J W Yoon
- Dept of Microbiology and Infectious Disease, The University of Calgary, 3330 Hospital Drive N.W., Calgary, Alberta, T2N 4N1, Canada
| | | | | | | |
Collapse
|
44
|
Affiliation(s)
- D R Wegmann
- Barbara Davis Center for Childhood Diabetes, University of Colorado Health Sciences Center, Denver, CO 80262, USA
| | | |
Collapse
|
45
|
Lindberg B, Carlsson A, Ericsson UB, Kockum I, Lernmark A, Landin-Olsson M, Sundkvist G, Ivarsson SA. Prevalence of beta-cell and thyroid autoantibody positivity in schoolchildren during three-year follow-up. Autoimmunity 2000; 31:175-85. [PMID: 10739334 DOI: 10.3109/08916939908994062] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The prevalence of autoantibodies against the 65 kD isoform of glutamic acid decarboxylase (GAD65Ab), insulin (IAA), islet cells (ICA), thyroid peroxidase (TPOAb) and thyroglobulin (TgAb), in relation to HLA-DR types, was assessed in 310 (HLA in 280) twelve-year-old children during three-year follow-up. Altogether, 26.8% (83/310) of the children were found to carry at least one autoantibody. The HLA-DR3/DR4 genotype was significantly more prevalent in the subgroup of children GAD65Ab-positive on at least one occasion than among GAD65Ab-negative children [33% (2/6) vs. 5% (12/274); p = 0.031, as was the HLA-DR4/x genotype among children seropositive for at least one thyroid autoantibody, compared to the corresponding seronegative subgroup 152% (34/65) vs. 34% (74/215); p=0.01]. The proportion of children seropositive in at least one of the three tests was 1.9% (6/310) for GAD65Ab, 2.6% (8/310) for IAA, 5.2% (16/310) for ICA, 11.3% (35/310) for TPOAb and 19.4% (60/310) for TgAb. All autoantibodies except GAD65Ab tended to disappear during follow-up, and at the three-year follow-up IAA had disappeared in 50% (2/4) of cases, ICA in 67% (6/9), TPOAb in 30% (6/20) and TgAb in 38% (18/47) of cases. The turnover of seropositive subjects and the large proportion of children seropositive for at least one islet or thyroid autoantibody during a three-year follow-up suggest transient autoantibodies to be more common than is discernible in cross-sectional investigations.
Collapse
Affiliation(s)
- B Lindberg
- Department of Pediatrics, University Hospital of Malmö, University of Lund, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Falta MT, Atkinson MA, Allegretta M, Vacek PM, Albertini RJ. Azathioprine associated T-cell mutations in insulin-dependent diabetes mellitus. Scand J Immunol 2000; 51:626-33. [PMID: 10849375 DOI: 10.1046/j.1365-3083.2000.00742.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Somatic mutations arise regularly in human T lymphocytes. As these events occur at increased frequencies in several autoimmune disorders, presumably because of increased T-cell proliferation, we investigated if this is also true for insulin-dependent diabetes mellitus (IDDM). Mutations of the hypoxanthine guanine phosphoribosyltransferase (hprt) gene measured by 6-thioguanine (TG) selection were studied in 28 patients (60 determinations) enrolled in a prospective double-blinded placebo-controlled study of azathioprine immunosuppression: 17 patients (34 determinations) were receiving azathioprine and 11 (26 determinations) placebo. Mean hprt T-cell mutant frequencies (MFs) were elevated in both patient groups, but only in the azathioprine group were elevations large and statistically correlated with the duration of the therapy. These results suggest that the organ-specific antigenic stimulus of the T-cell proliferation in IDDM does increase mutant cells in the peripheral blood, but this increase is relatively small. However, azathioprine, which is converted to 6-mercaptopurine in vivo, selects and amplifies the hprt mutants that do arise. Clinical azathioprine resistance may be explained by hprt mutations arising in T cells relevant to the underlying autoimmune process. Monitoring for these mutations should allow more effective use of this immunosuppressive agent.
Collapse
Affiliation(s)
- M T Falta
- Genetic Toxicology Laboratory, University of Vermont, Burlington, VT 05401, USA
| | | | | | | | | |
Collapse
|
47
|
Cilio CM, Bosco S, Moretti C, Farilla L, Savignoni F, Colarizi P, Multari G, Di Mario U, Bucci G, Dotta F. Congenital autoimmune diabetes mellitus. N Engl J Med 2000; 342:1529-31. [PMID: 10819656 DOI: 10.1056/nejm200005183422015] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
48
|
Yu L, Robles DT, Abiru N, Kaur P, Rewers M, Kelemen K, Eisenbarth GS. Early expression of antiinsulin autoantibodies of humans and the NOD mouse: evidence for early determination of subsequent diabetes. Proc Natl Acad Sci U S A 2000; 97:1701-6. [PMID: 10677521 PMCID: PMC26499 DOI: 10.1073/pnas.040556697] [Citation(s) in RCA: 349] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/1999] [Accepted: 12/20/1999] [Indexed: 11/18/2022] Open
Abstract
With the development of an insulin autoantibody (IAA) assay performed in 96-well filtration plates, we have evaluated prospectively the development of IAA in NOD mice (from 4 weeks of age) and children (from 7 to 10 months of age) at genetic risk for the development of type 1 diabetes. NOD mice had heterogeneous expression of IAA despite being inbred. IAA reached a peak between 8 and 16 weeks and then declined. IAA expression by NOD mice at 8 weeks of age was strongly associated with early development of diabetes, which occurred at 16-18 weeks of age (NOD mice IAA(+) at 8 weeks: 83% (5/6) diabetic by 18 weeks versus 11% (1/9) of IAA negative at 8 weeks; P <.01). In man, IAA was frequently present as early as 9 months of age, the first sampling time. Of five children found to have persistent IAA before 1 year of age, four have progressed to diabetes (all before 3.5 years of age) and the fifth is currently less than age 2. Of the 929 children not expressing persistent IAA before age 1, only one has progressed to diabetes to date (age onset 3), and this child expressed IAA at his second visit (age 1.1). In new onset patients, the highest levels of IAA correlated with an earlier age of diabetes onset. Our data suggest that the program for developing diabetes of NOD mice and humans is relatively "fixed" early in life and, for NOD mice, a high risk of early development of diabetes is often determined by 8 weeks of age. With such early determination of high risk of progression to diabetes, immunologic therapies in humans may need to be tested in children before the development of IAA for maximal efficacy.
Collapse
Affiliation(s)
- L Yu
- Barbara Davis Center for Childhood Diabetes, University of Colorado Health Sciences Center, Denver, CO 80262, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Abiru N, Eisenbarth GS. Multiple genes/multiple autoantigens role in type 1 diabetes. Clin Rev Allergy Immunol 2000; 18:27-40. [PMID: 10907105 DOI: 10.1385/criai:18:1:27] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- N Abiru
- Barbara Davis Center for Childhood Diabetes, University of Colorado Health Sciences Center, Denver, USA
| | | |
Collapse
|
50
|
Sato AK, Sturniolo T, Sinigaglia F, Stern LJ. Substitution of aspartic acid at beta57 with alanine alters MHC class II peptide binding activity but not protein stability: HLA-DQ (alpha1*0201, beta1*0302) and (alpha1*0201, beta1*0303). Hum Immunol 1999; 60:1227-36. [PMID: 10626736 DOI: 10.1016/s0198-8859(99)00120-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In class II major histocompatibility complex (MHC) proteins, residue beta57 is usually aspartic acid. Alleles carrying serine, valine, or alanine at this position are strongly correlated with the development of insulin-dependent diabetes mellitus (IDDM). Asp(beta)57 participates in a conserved salt bridge that bridges the alpha and beta subunits in the peptide-binding site. It has been proposed that the correlation between IDDM and MHC alleles lacking Asp(beta)57 may be due to an instability of the protein caused by loss of this salt bridge. Using a pair of HLA-DQ proteins (alpha1*0201, beta1*0302) and (alpha1*0201, beta1*0303) differing only in having aspartic acid or alanine at position beta57, we show that the polymorphism does not have a significant effect on protein stability for either the empty or peptide-loaded forms. However, the circular dichroism spectra indicate that empty and peptide-loaded Alabeta57 proteins display slightly different secondary structures relative to their Aspbeta57 counterparts. A set of three peptides shows different binding affinities for DQ(alpha1*0201, beta1*0302) relative to DQ(alpha1*0201, beta1*0303). We propose that substitution of Asp(beta)57 residue causes a local rearrangement within the DQ peptide-binding site that alters the peptide-binding specificity. This rearrangement may help to explain the previously observed differences in SDS stability between Asp and non-Asp(beta)57 DQ proteins.
Collapse
Affiliation(s)
- A K Sato
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | | | | | |
Collapse
|