1
|
Hansen MS, Pokharel P, Piganelli J, Sussel L. The Chicken or the Egg Dilemma: Understanding the Interplay between the Immune System and the β Cell in Type 1 Diabetes. Cold Spring Harb Perspect Med 2025; 15:a041591. [PMID: 38951031 PMCID: PMC11960692 DOI: 10.1101/cshperspect.a041591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
In this review, we explore the complex interplay between the immune system and pancreatic β cells in the context of type 1 diabetes (T1D). While T1D is predominantly considered a T-cell-mediated autoimmune disease, the inability of human leukocyte antigen (HLA)-risk alleles alone to explain disease development suggests a role for β cells in initiating and/or propagating disease. This review delves into the vulnerability of β cells, emphasizing their susceptibility to endoplasmic reticulum (ER) stress and protein modifications, which may give rise to neoantigens. Additionally, we discuss the role of viral infections as contributors to T1D onset, and of genetic factors with dual impacts on the immune system and β cells. A greater understanding of the interplay between environmental triggers, autoimmunity, and the β cell will not only lead to insight as to why the islet β cells are specifically targeted by the immune system in T1D but may also reveal potential novel therapeutic interventions.
Collapse
Affiliation(s)
- Maria Skjøtt Hansen
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Pravil Pokharel
- Division of Endocrinology Diabetes and Metabolism, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | - Jon Piganelli
- Division of Endocrinology Diabetes and Metabolism, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | - Lori Sussel
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| |
Collapse
|
2
|
Dalakas MC. Stiff-person syndrome and related disorders - diagnosis, mechanisms and therapies. Nat Rev Neurol 2024; 20:587-601. [PMID: 39227464 DOI: 10.1038/s41582-024-01012-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2024] [Indexed: 09/05/2024]
Abstract
Stiff-person syndrome (SPS) is the prototypical and most common autoimmune neuronal hyperexcitability disorder. It presents with stiffness in the limbs and axial muscles, stiff gait with uncontrolled falls, and episodic painful muscle spasms triggered by anxiety, task-specific phobias and startle responses, collectively leading to disability. Increased awareness of SPS among patients and physicians has created concerns about diagnosis, misdiagnosis and treatment. This Review addresses the evolving diagnostic challenges in SPS and overlapping glutamic acid decarboxylase (GAD) antibody spectrum disorders, highlighting the growing number of overdiagnoses and focusing on the progress made in our understanding of SPS pathophysiology, antibodies against GAD and other inhibitory synaptic antigens, and the fundamentals of neuronal hyperexcitability. It considers the role of impaired GABAergic or glycinergic inhibition in the cortex and at multiple levels in the neuraxis; the underlying autoimmunity and involvement of GAD antibodies; immunopathogenic mechanisms beyond antibodies, including environmental triggers; familial and immunogenetic susceptibility; and potential T cell cytotoxicity. Finally, the mechanistic rationale for target-specific therapeutic interventions is presented along with the available therapeutic approaches, including enhancers of GABA signalling drugs and immunotherapies.
Collapse
Affiliation(s)
- Marinos C Dalakas
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA.
- Neuroimmunology Unit, National and Kapodistrian University of Athens Medical School, Athens, Greece.
| |
Collapse
|
3
|
Vecchio F, Carré A, Korenkov D, Zhou Z, Apaolaza P, Tuomela S, Burgos-Morales O, Snowhite I, Perez-Hernandez J, Brandao B, Afonso G, Halliez C, Kaddis J, Kent SC, Nakayama M, Richardson SJ, Vinh J, Verdier Y, Laiho J, Scharfmann R, Solimena M, Marinicova Z, Bismuth E, Lucidarme N, Sanchez J, Bustamante C, Gomez P, Buus S, the nPOD-Virus Working Group, You S, Pugliese A, Hyoty H, Rodriguez-Calvo T, Flodstrom-Tullberg M, Mallone R. Coxsackievirus infection induces direct pancreatic β cell killing but poor antiviral CD8 + T cell responses. SCIENCE ADVANCES 2024; 10:eadl1122. [PMID: 38446892 PMCID: PMC10917340 DOI: 10.1126/sciadv.adl1122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/30/2024] [Indexed: 03/08/2024]
Abstract
Coxsackievirus B (CVB) infection of pancreatic β cells is associated with β cell autoimmunity and type 1 diabetes. We investigated how CVB affects human β cells and anti-CVB T cell responses. β cells were efficiently infected by CVB in vitro, down-regulated human leukocyte antigen (HLA) class I, and presented few, selected HLA-bound viral peptides. Circulating CD8+ T cells from CVB-seropositive individuals recognized a fraction of these peptides; only another subfraction was targeted by effector/memory T cells that expressed exhaustion marker PD-1. T cells recognizing a CVB epitope cross-reacted with β cell antigen GAD. Infected β cells, which formed filopodia to propagate infection, were more efficiently killed by CVB than by CVB-reactive T cells. Our in vitro and ex vivo data highlight limited CD8+ T cell responses to CVB, supporting the rationale for CVB vaccination trials for type 1 diabetes prevention. CD8+ T cells recognizing structural and nonstructural CVB epitopes provide biomarkers to differentially follow response to infection and vaccination.
Collapse
Affiliation(s)
- Federica Vecchio
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
| | - Alexia Carré
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
| | - Daniil Korenkov
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
| | - Zhicheng Zhou
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
| | - Paola Apaolaza
- Institute of Diabetes Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Soile Tuomela
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | | | - Isaac Snowhite
- Diabetes Research Institute, Leonard Miller School of Medicine, University of Miami, Miami, FL, USA
- Department of Diabetes Immunology, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | | | - Barbara Brandao
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
| | - Georgia Afonso
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
| | - Clémentine Halliez
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
- Assistance Publique Hôpitaux de Paris, Service de Diabétologie et Immunologie Clinique, Cochin Hospital, Paris, France
| | - John Kaddis
- Department of Diabetes Immunology, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA, USA
- Department of Diabetes and Cancer Discovery Science, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Sally C. Kent
- Diabetes Center of Excellence, Department of Medicine, University of Massachusetts Medical Chan School, Worcester, MA, USA
| | - Maki Nakayama
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO, USA
| | - Sarah J. Richardson
- Islet Biology Exeter (IBEx), Exeter Centre of Excellence for Diabetes Research (EXCEED), Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Exeter, UK
| | - Joelle Vinh
- ESPCI Paris, PSL University, Spectrométrie de Masse Biologique et Protéomique, CNRS UMR8249, Paris, France
| | - Yann Verdier
- ESPCI Paris, PSL University, Spectrométrie de Masse Biologique et Protéomique, CNRS UMR8249, Paris, France
| | - Jutta Laiho
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | | | - Michele Solimena
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
- Paul Langerhans Institute Dresden (PLID), Helmholtz Munich, University Hospital and Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Zuzana Marinicova
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
- Paul Langerhans Institute Dresden (PLID), Helmholtz Munich, University Hospital and Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Elise Bismuth
- Assistance Publique Hôpitaux de Paris, Service d’Endocrinologie Pédiatrique, Robert Debré Hospital, Paris, France
| | - Nadine Lucidarme
- Assistance Publique Hôpitaux de Paris, Service de Pédiatrie, Jean Verdier Hospital, Bondy, France
| | - Janine Sanchez
- Department of Pediatrics, Division of Pediatric Endocrinology, Leonard Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Carmen Bustamante
- Department of Pediatrics, Division of Pediatric Endocrinology, Leonard Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Patricia Gomez
- Department of Pediatrics, Division of Pediatric Endocrinology, Leonard Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Soren Buus
- Department of Immunology and Microbiology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - the nPOD-Virus Working Group
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
- Institute of Diabetes Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
- Diabetes Research Institute, Leonard Miller School of Medicine, University of Miami, Miami, FL, USA
- Department of Diabetes Immunology, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA, USA
- Assistance Publique Hôpitaux de Paris, Service de Diabétologie et Immunologie Clinique, Cochin Hospital, Paris, France
- Department of Diabetes and Cancer Discovery Science, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA, USA
- Diabetes Center of Excellence, Department of Medicine, University of Massachusetts Medical Chan School, Worcester, MA, USA
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO, USA
- Islet Biology Exeter (IBEx), Exeter Centre of Excellence for Diabetes Research (EXCEED), Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Exeter, UK
- ESPCI Paris, PSL University, Spectrométrie de Masse Biologique et Protéomique, CNRS UMR8249, Paris, France
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Paul Langerhans Institute Dresden (PLID), Helmholtz Munich, University Hospital and Faculty of Medicine, TU Dresden, Dresden, Germany
- Assistance Publique Hôpitaux de Paris, Service d’Endocrinologie Pédiatrique, Robert Debré Hospital, Paris, France
- Assistance Publique Hôpitaux de Paris, Service de Pédiatrie, Jean Verdier Hospital, Bondy, France
- Department of Pediatrics, Division of Pediatric Endocrinology, Leonard Miller School of Medicine, University of Miami, Miami, FL, USA
- Department of Immunology and Microbiology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Indiana Biosciences Research Institute, Indianapolis, IN, USA
- Fimlab Laboratories, Tampere, Finland
- Department of Pediatrics, Tampere University Hospital, Tampere, Finland
| | - Sylvaine You
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
- Indiana Biosciences Research Institute, Indianapolis, IN, USA
| | - Alberto Pugliese
- Diabetes Research Institute, Leonard Miller School of Medicine, University of Miami, Miami, FL, USA
- Department of Diabetes Immunology, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Heikki Hyoty
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Fimlab Laboratories, Tampere, Finland
- Department of Pediatrics, Tampere University Hospital, Tampere, Finland
| | - Teresa Rodriguez-Calvo
- Institute of Diabetes Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Malin Flodstrom-Tullberg
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Roberto Mallone
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
- Assistance Publique Hôpitaux de Paris, Service de Diabétologie et Immunologie Clinique, Cochin Hospital, Paris, France
- Indiana Biosciences Research Institute, Indianapolis, IN, USA
| |
Collapse
|
4
|
Mistry S, Gouripeddi R, Facelli JC. Prioritization of infectious epitopes for translational investigation in type 1 diabetes etiology. J Autoimmun 2023; 140:103115. [PMID: 37774556 PMCID: PMC10965504 DOI: 10.1016/j.jaut.2023.103115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/28/2023] [Accepted: 09/14/2023] [Indexed: 10/01/2023]
Abstract
Molecular mimicry is one mechanism by which infectious agents are thought to trigger islet autoimmunity in type 1 diabetes. With a growing number of reported infectious agents and islet antigens, strategies to prioritize the study of infectious agents are critically needed to expedite translational research into the etiology of type 1 diabetes. In this work, we developed an in-silico pipeline for assessing molecular mimicry in type 1 diabetes etiology based on sequence homology, empirical binding affinity to specific MHC molecules, and empirical potential for T-cell immunogenicity. We then assess whether potential molecular mimics were conserved across other pathogens known to infect humans. Overall, we identified 61 potentially high-impact molecular mimics showing sequence homology, strong empirical binding affinity, and empirical immunogenicity linked with specific MHC molecules. We further found that peptide sequences from 32 of these potential molecular mimics were conserved across several human pathogens. These findings facilitate translational evaluation of molecular mimicry in type 1 diabetes etiology by providing a curated and prioritized list of peptides from infectious agents for etiopathologic investigation. These results may also provide evidence for generation of infectious and HLA-specific preclinical models and inform future screening and preventative efforts in genetically susceptible populations.
Collapse
Affiliation(s)
- Sejal Mistry
- Department of Biomedical Informatics, University of Utah, Salt Lake City, USA; Center of Excellence for Exposure Health Informatics, University of Utah, Salt Lake City, USA
| | - Ramkiran Gouripeddi
- Department of Biomedical Informatics, University of Utah, Salt Lake City, USA; Center of Excellence for Exposure Health Informatics, University of Utah, Salt Lake City, USA; Clinical and Translational Science Institute, University of Utah, Salt Lake City, USA
| | - Julio C Facelli
- Department of Biomedical Informatics, University of Utah, Salt Lake City, USA; Center of Excellence for Exposure Health Informatics, University of Utah, Salt Lake City, USA; Clinical and Translational Science Institute, University of Utah, Salt Lake City, USA.
| |
Collapse
|
5
|
Trier NH, Houen G. Antibody Cross-Reactivity in Auto-Immune Diseases. Int J Mol Sci 2023; 24:13609. [PMID: 37686415 PMCID: PMC10487534 DOI: 10.3390/ijms241713609] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/25/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
Autoimmunity is defined by the presence of antibodies and/or T cells directed against self-components. Although of unknown etiology, autoimmunity commonly is associated with environmental factors such as infections, which have been reported to increase the risk of developing autoimmune diseases. Occasionally, similarities between infectious non-self and self-tissue antigens may contribute to immunological cross-reactivity in autoimmune diseases. These reactions may be interpreted as molecular mimicry, which describes cross-reactivity between foreign pathogens and self-antigens that have been reported to cause tissue damage and to contribute to the development of autoimmunity. By focusing on the nature of antibodies, cross-reactivity in general, and antibody-antigen interactions, this review aims to characterize the nature of potential cross-reactive immune reactions between infectious non-self and self-tissue antigens which may be associated with autoimmunity but may not actually be the cause of disease onset.
Collapse
Affiliation(s)
- Nicole Hartwig Trier
- Department of Neurology, Rigshospitalet Glostrup, Valdemar Hansens Vej 1-23, 2600 Glostrup, Denmark
| | - Gunnar Houen
- Department of Neurology, Rigshospitalet Glostrup, Valdemar Hansens Vej 1-23, 2600 Glostrup, Denmark
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| |
Collapse
|
6
|
Vecchio F, Carré A, Korenkov D, Zhou Z, Apaolaza P, Tuomela S, Burgos-Morales O, Snowhite I, Perez-Hernandez J, Brandao B, Afonso G, Halliez C, Kaddis J, Kent SC, Nakayama M, Richardson SJ, Vinh J, Verdier Y, Laiho J, Scharfmann R, Solimena M, Marinicova Z, Bismuth E, Lucidarme N, Sanchez J, Bustamante C, Gomez P, Buus S, the nPOD-Virus Working Group, You S, Pugliese A, Hyoty H, Rodriguez-Calvo T, Flodstrom-Tullberg M, Mallone R. Coxsackievirus infection induces direct pancreatic β-cell killing but poor anti-viral CD8+ T-cell responses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.19.553954. [PMID: 37662376 PMCID: PMC10473604 DOI: 10.1101/2023.08.19.553954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Coxsackievirus B (CVB) infection of pancreatic β cells is associated with β-cell autoimmunity. We investigated how CVB impacts human β cells and anti-CVB T-cell responses. β cells were efficiently infected by CVB in vitro, downregulated HLA Class I and presented few, selected HLA-bound viral peptides. Circulating CD8+ T cells from CVB-seropositive individuals recognized only a fraction of these peptides, and only another sub-fraction was targeted by effector/memory T cells that expressed the exhaustion marker PD-1. T cells recognizing a CVB epitope cross-reacted with the β-cell antigen GAD. Infected β cells, which formed filopodia to propagate infection, were more efficiently killed by CVB than by CVB-reactive T cells. Thus, our in-vitro and ex-vivo data highlight limited T-cell responses to CVB, supporting the rationale for CVB vaccination trials for type 1 diabetes prevention. CD8+ T cells recognizing structural and non-structural CVB epitopes provide biomarkers to differentially follow response to infection and vaccination.
Collapse
Affiliation(s)
- Federica Vecchio
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
| | - Alexia Carré
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
| | - Daniil Korenkov
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
| | - Zhicheng Zhou
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
| | - Paola Apaolaza
- Institute of Diabetes Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Soile Tuomela
- Center for Infectious Medicine, Department of medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | | | - Isaac Snowhite
- Diabetes Research Institute, Leonard Miller School of Medicine, University of Miami, FL, USA
- Department of Diabetes Immunology, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | | | - Barbara Brandao
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
| | - Georgia Afonso
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
| | | | - John Kaddis
- Department of Diabetes Immunology, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA, USA
- Department of Diabetes and Cancer Discovery Science, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Sally C. Kent
- University of Massachusetts Medical Chan School, Diabetes Center of Excellence, Department of Medicine, Worcester, MA, USA
| | - Maki Nakayama
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO, USA
| | - Sarah J. Richardson
- Islet Biology Exeter (IBEx), Exeter Centre of Excellence for Diabetes Research (EXCEED), Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Exeter, UK
| | - Joelle Vinh
- ESPCI Paris, PSL University, Spectrométrie de Masse Biologique et Protéomique, CNRS UMR8249, Paris, France
| | - Yann Verdier
- ESPCI Paris, PSL University, Spectrométrie de Masse Biologique et Protéomique, CNRS UMR8249, Paris, France
| | - Jutta Laiho
- Tampere University, Faculty of Medicine and Health Technology and Fimlab Laboratories, Tampere, Finland
| | | | - Michele Solimena
- Paul Langerhans Institute, Technical University Dresden, Germany
| | | | - Elise Bismuth
- Assistance Publique Hôpitaux de Paris, Service d’Endocrinologie Pédiatrique, Robert Debré Hospital, Paris, France
| | - Nadine Lucidarme
- Assistance Publique Hôpitaux de Paris, Service de Pédiatrie, Jean Verdier Hospital, Bondy, France
| | - Janine Sanchez
- Department of Pediatrics, Division of pediatric Endocrinology, Leonard Miller School of Medicine, University of Miami, FL, USA
| | - Carmen Bustamante
- Department of Pediatrics, Division of pediatric Endocrinology, Leonard Miller School of Medicine, University of Miami, FL, USA
| | - Patricia Gomez
- Department of Pediatrics, Division of pediatric Endocrinology, Leonard Miller School of Medicine, University of Miami, FL, USA
| | - Soren Buus
- Panum Institute, Department of International Health, Immunology and Microbiology, Copenhagen, Denmark
| | | | - Sylvaine You
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
- Indiana Biosciences Research Institute, Indianapolis, IN, USA
| | - Alberto Pugliese
- Diabetes Research Institute, Leonard Miller School of Medicine, University of Miami, FL, USA
- Department of Diabetes Immunology, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Heikki Hyoty
- Tampere University, Faculty of Medicine and Health Technology and Fimlab Laboratories, Tampere, Finland
| | - Teresa Rodriguez-Calvo
- Institute of Diabetes Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Malin Flodstrom-Tullberg
- Center for Infectious Medicine, Department of medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Roberto Mallone
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
- Indiana Biosciences Research Institute, Indianapolis, IN, USA
- Assistance Publique Hôpitaux de Paris, Service de Diabétologie et Immunologie Clinique, Cochin Hospital, Paris, France
| |
Collapse
|
7
|
Mistry S, Gouripeddi R, Raman V, Facelli JC. Sequential data mining of infection patterns as predictors for onset of type 1 diabetes in genetically at-risk individuals. J Biomed Inform 2023; 142:104385. [PMID: 37169058 PMCID: PMC10247497 DOI: 10.1016/j.jbi.2023.104385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/13/2023]
Abstract
Infections are implicated in the etiology of type 1 diabetes mellitus (T1DM); however, conflicting epidemiologic evidence makes designing effective strategies for presymptomatic screening and disease prevention difficult. Considering the temporality and combination in which infections occur may provide valuable insights into understanding T1DM etiology but is rarely studied due to limited longitudinal datasets and insufficient analytical techniques. The objective of this work was to demonstrate a computational approach to classify the temporality and combination of infections in presymptomatic T1DM. We present a sequential data mining pipeline that leverages routinely collected infectious disease data from a prospective cohort study, the Environmental Determinants of Diabetes in the Young (TEDDY) study, to extract, interpret, and compare infection sequences. We then utilize this pipeline to assess risk for developing presymptomatic biomarkers of islet autoimmunity and clinical onset of T1DM. Overall, we identified 229 significant sequential rules that increased the risk for developing presymptomatic biomarkers of islet autoimmunity or clinical onset of T1DM. Multiple significant sequential rules involving varicella increased the risk for all presymptomatic biomarker-specific outcomes, while a single significant sequential rule involving parasites significantly increased risk for T1DM. Significant sequential rules involving respiratory illnesses were differentially represented among the presymptomatic biomarkers of islet autoimmunity and clinical onset of T1DM. Risk for T1DM was significantly increased by a single episode of sixth disease at 12 months, representing the only single-event sequence that increased disease risk. Together, these findings provide the first insights into the timing and combination of infections in T1DM etiology, which may ultimately lead to personalized disease screening and prevention strategies. The sequential data mining pipeline developed in this work demonstrates how temporal data mining can be used to address clinically meaningful questions. This method can be adapted to other presymptomatic factors and clinical conditions.
Collapse
Affiliation(s)
- Sejal Mistry
- Department of Biomedical Informatics, University of Utah, Salt Lake City, UT, USA; Center of Excellence for Exposure Health Informatics, University of Utah, Salt Lake City, UT, USA
| | - Ramkiran Gouripeddi
- Department of Biomedical Informatics, University of Utah, Salt Lake City, UT, USA; Center of Excellence for Exposure Health Informatics, University of Utah, Salt Lake City, UT, USA; Clinical and Translational Science Institute, University of Utah, Salt Lake City, UT, USA
| | - Vandana Raman
- Division of Pediatric Endocrinology, Department of Pediatrics, University of Utah, Salt Lake City, UT, USA
| | - Julio C Facelli
- Department of Biomedical Informatics, University of Utah, Salt Lake City, UT, USA; Center of Excellence for Exposure Health Informatics, University of Utah, Salt Lake City, UT, USA; Clinical and Translational Science Institute, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
8
|
Quiros-Roldan E, Sottini A, Signorini SG, Serana F, Tiecco G, Imberti L. Autoantibodies to Interferons in Infectious Diseases. Viruses 2023; 15:v15051215. [PMID: 37243300 DOI: 10.3390/v15051215] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
Anti-cytokine autoantibodies and, in particular, anti-type I interferons are increasingly described in association with immunodeficient, autoimmune, and immune-dysregulated conditions. Their presence in otherwise healthy individuals may result in a phenotype characterized by a predisposition to infections with several agents. For instance, anti-type I interferon autoantibodies are implicated in Coronavirus Disease 19 (COVID-19) pathogenesis and found preferentially in patients with critical disease. However, autoantibodies were also described in the serum of patients with viral, bacterial, and fungal infections not associated with COVID-19. In this review, we provide an overview of anti-cytokine autoantibodies identified to date and their clinical associations; we also discuss whether they can act as enemies or friends, i.e., are capable of acting in a beneficial or harmful way, and if they may be linked to gender or immunosenescence. Understanding the mechanisms underlying the production of autoantibodies could improve the approach to treating some infections, focusing not only on pathogens, but also on the possibility of a low degree of autoimmunity in patients.
Collapse
Affiliation(s)
- Eugenia Quiros-Roldan
- Department of Infectious and Tropical Diseases, ASST Spedali Civili, Brescia and University of Brescia, 25123 Brescia, Italy
| | - Alessandra Sottini
- Clinical Chemistry Laboratory, ASST Spedali Civili of Brescia, 25123 Brescia, Italy
| | | | - Federico Serana
- Clinical Chemistry Laboratory, ASST Spedali Civili of Brescia, 25123 Brescia, Italy
| | - Giorgio Tiecco
- Department of Infectious and Tropical Diseases, ASST Spedali Civili, Brescia and University of Brescia, 25123 Brescia, Italy
| | - Luisa Imberti
- Section of Microbiology, University of Brescia, P. le Spedali Civili, 1, 25123 Brescia, Italy
| |
Collapse
|
9
|
Sundaresan B, Shirafkan F, Ripperger K, Rattay K. The Role of Viral Infections in the Onset of Autoimmune Diseases. Viruses 2023; 15:v15030782. [PMID: 36992490 PMCID: PMC10051805 DOI: 10.3390/v15030782] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 03/31/2023] Open
Abstract
Autoimmune diseases (AIDs) are the consequence of a breach in immune tolerance, leading to the inability to sufficiently differentiate between self and non-self. Immune reactions that are targeted towards self-antigens can ultimately lead to the destruction of the host's cells and the development of autoimmune diseases. Although autoimmune disorders are comparatively rare, the worldwide incidence and prevalence is increasing, and they have major adverse implications for mortality and morbidity. Genetic and environmental factors are thought to be the major factors contributing to the development of autoimmunity. Viral infections are one of the environmental triggers that can lead to autoimmunity. Current research suggests that several mechanisms, such as molecular mimicry, epitope spreading, and bystander activation, can cause viral-induced autoimmunity. Here we describe the latest insights into the pathomechanisms of viral-induced autoimmune diseases and discuss recent findings on COVID-19 infections and the development of AIDs.
Collapse
Affiliation(s)
- Bhargavi Sundaresan
- Institute of Pharmacology, Biochemical Pharmacological Center, University of Marburg, 35043 Marburg, Germany
| | - Fatemeh Shirafkan
- Institute of Pharmacology, Biochemical Pharmacological Center, University of Marburg, 35043 Marburg, Germany
| | - Kevin Ripperger
- Institute of Pharmacology, Biochemical Pharmacological Center, University of Marburg, 35043 Marburg, Germany
| | - Kristin Rattay
- Institute of Pharmacology, Biochemical Pharmacological Center, University of Marburg, 35043 Marburg, Germany
| |
Collapse
|
10
|
Majumdar S, Lin Y, Bettini ML. Host-microbiota interactions shaping T-cell response and tolerance in type 1 diabetes. Front Immunol 2022; 13:974178. [PMID: 36059452 PMCID: PMC9434376 DOI: 10.3389/fimmu.2022.974178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/25/2022] [Indexed: 11/29/2022] Open
Abstract
Type-1 Diabetes (T1D) is a complex polygenic autoimmune disorder involving T-cell driven beta-cell destruction leading to hyperglycemia. There is no cure for T1D and patients rely on exogenous insulin administration for disease management. T1D is associated with specific disease susceptible alleles. However, the predisposition to disease development is not solely predicted by them. This is best exemplified by the observation that a monozygotic twin has just a 35% chance of developing T1D after their twin's diagnosis. This makes a strong case for environmental triggers playing an important role in T1D incidence. Multiple studies indicate that commensal gut microbiota and environmental factors that alter their composition might exacerbate or protect against T1D onset. In this review, we discuss recent literature highlighting microbial species associated with T1D. We explore mechanistic studies which propose how some of these microbial species can modulate adaptive immune responses in T1D, with an emphasis on T-cell responses. We cover topics ranging from gut-thymus and gut-pancreas communication, microbial regulation of peripheral tolerance, to molecular mimicry of islet antigens by microbial peptides. In light of the accumulating evidence on commensal influences in neonatal thymocyte development, we also speculate on the link between molecular mimicry and thymic selection in the context of T1D pathogenesis. Finally, we explore how these observations could inform future therapeutic approaches in this disease.
Collapse
Affiliation(s)
- Shubhabrata Majumdar
- Immunology Graduate Program, Baylor College of Medicine, Houston, TX, United States
- Department of Pathology, University of Utah, Salt Lake City, UT, United States
| | - Yong Lin
- Immunology Graduate Program, Baylor College of Medicine, Houston, TX, United States
- Department of Pathology, University of Utah, Salt Lake City, UT, United States
| | - Matthew L. Bettini
- Department of Pathology, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
11
|
A gut microbial peptide and molecular mimicry in the pathogenesis of type 1 diabetes. Proc Natl Acad Sci U S A 2022; 119:e2120028119. [PMID: 35878027 PMCID: PMC9351354 DOI: 10.1073/pnas.2120028119] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease characterized by the destruction of pancreatic β-cells. One of the earliest aspects of this process is the development of autoantibodies and T cells directed at an epitope in the B-chain of insulin (insB:9-23). Analysis of microbial protein sequences with homology to the insB:9-23 sequence revealed 17 peptides showing >50% identity to insB:9-23. Of these 17 peptides, the hprt4-18 peptide, found in the normal human gut commensal Parabacteroides distasonis, activated both human T cell clones from T1D patients and T cell hybridomas from nonobese diabetic (NOD) mice specific to insB:9-23. Immunization of NOD mice with P. distasonis insB:9-23 peptide mimic or insB:9-23 peptide verified immune cross-reactivity. Colonization of female NOD mice with P. distasonis accelerated the development of T1D, increasing macrophages, dendritic cells, and destructive CD8+ T cells, while decreasing FoxP3+ regulatory T cells. Western blot analysis identified P. distasonis-reacting antibodies in sera of NOD mice colonized with P. distasonis and human T1D patients. Furthermore, adoptive transfer of splenocytes from P. distasonis-treated mice to NOD/SCID mice enhanced disease phenotype in the recipients. Finally, analysis of human children gut microbiome data from a longitudinal DIABIMMUNE study revealed that seroconversion rates (i.e., the proportion of individuals developing two or more autoantibodies) were consistently higher in children whose microbiome harbored sequences capable of producing the hprt4-18 peptide compared to individuals who did not harbor it. Taken together, these data demonstrate the potential role of a gut microbiota-derived insB:9-23-mimic peptide as a molecular trigger of T1D pathogenesis.
Collapse
|
12
|
Khilji MS, Faridi P, Pinheiro-Machado E, Hoefner C, Dahlby T, Aranha R, Buus S, Nielsen M, Klusek J, Mandrup-Poulsen T, Pandey K, Purcell AW, Marzec MT. Defective Proinsulin Handling Modulates the MHC I Bound Peptidome and Activates the Inflammasome in β-Cells. Biomedicines 2022; 10:biomedicines10040814. [PMID: 35453564 PMCID: PMC9024965 DOI: 10.3390/biomedicines10040814] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/23/2022] [Accepted: 03/28/2022] [Indexed: 12/04/2022] Open
Abstract
How immune tolerance is lost to pancreatic β-cell peptides triggering autoimmune type 1 diabetes is enigmatic. We have shown that loss of the proinsulin chaperone glucose-regulated protein (GRP) 94 from the endoplasmic reticulum (ER) leads to mishandling of proinsulin, ER stress, and activation of the immunoproteasome. We hypothesize that inadequate ER proinsulin folding capacity relative to biosynthetic need may lead to an altered β-cell major histocompatibility complex (MHC) class-I bound peptidome and inflammasome activation, sensitizing β-cells to immune attack. We used INS-1E cells with or without GRP94 knockout (KO), or in the presence or absence of GRP94 inhibitor PU-WS13 (GRP94i, 20 µM), or exposed to proinflammatory cytokines interleukin (IL)-1β or interferon gamma (IFNγ) (15 pg/mL and 10 ng/mL, respectively) for 24 h. RT1.A (rat MHC I) expression was evaluated using flow cytometry. The total RT1.A-bound peptidome analysis was performed on cell lysates fractionated by reverse-phase high-performance liquid chromatography (RP-HPLC), followed by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). The nucleotide-binding oligomerization domain, leucine rich repeat and pyrin domain containing protein (NLRP1), nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor alpha (IκBα), and (pro) IL-1β expression and secretion were investigated by Western blotting. GRP94 KO increased RT1.A expression in β-cells, as did cytokine exposure compared to relevant controls. Immunopeptidome analysis showed increased RT1.A-bound peptide repertoire in GRP94 KO/i cells as well as in the cells exposed to cytokines. The GRP94 KO/cytokine exposure groups showed partial overlap in their peptide repertoire. Notably, proinsulin-derived peptide diversity increased among the total RT1.A peptidome in GRP94 KO/i along with cytokines exposure. NLRP1 expression was upregulated in GRP94 deficient cells along with decreased IκBα content while proIL-1β cellular levels declined, coupled with increased secretion of mature IL-1β. Our results suggest that limiting β-cell proinsulin chaperoning enhances RT1.A expression alters the MHC-I peptidome including proinsulin peptides and activates inflammatory pathways, suggesting that stress associated with impeding proinsulin handling may sensitize β-cells to immune-attack.
Collapse
Affiliation(s)
- Muhammad Saad Khilji
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (M.S.K.); (C.H.); (T.M.-P.)
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3168, Australia; (R.A.); (K.P.)
- Department of Physiology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Pouya Faridi
- Department of Medicine, School of Clinical Sciences, Monash Univesity, Clayton, VIC 3168, Australia;
| | - Erika Pinheiro-Machado
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9713 Groningen, The Netherlands;
| | - Carolin Hoefner
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (M.S.K.); (C.H.); (T.M.-P.)
| | - Tina Dahlby
- Laboratory of Translational Nutrition Biology, Department of Health Sciences and Technology, Institute of Food, Nutrition and Health, ETH Zürich, 8603 Zürich, Switzerland;
| | - Ritchlynn Aranha
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3168, Australia; (R.A.); (K.P.)
| | - Søren Buus
- Department of Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark;
| | - Morten Nielsen
- Department of Health Technology, Section for Bioinformatics, Technical University of Denmark, 2800 Lyngby, Denmark;
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, San Martín CP1650, Argentina
| | - Justyna Klusek
- Laboratory of Medical Genetics, Department of Surgical Medicine, Collegium Medicum, Jan Kochanowski University, 25-369 Kielce, Poland;
| | - Thomas Mandrup-Poulsen
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (M.S.K.); (C.H.); (T.M.-P.)
| | - Kirti Pandey
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3168, Australia; (R.A.); (K.P.)
| | - Anthony W. Purcell
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3168, Australia; (R.A.); (K.P.)
- Correspondence: (A.W.P.); (M.T.M.); Tel.: +61-39-902-9265 (A.W.P.); +45-25-520-256 (M.T.M.)
| | - Michal T. Marzec
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (M.S.K.); (C.H.); (T.M.-P.)
- Institute of Health Sciences, Collegium Medicum, Jan Kochanowski University, 25-002 Kielce, Poland
- Correspondence: (A.W.P.); (M.T.M.); Tel.: +61-39-902-9265 (A.W.P.); +45-25-520-256 (M.T.M.)
| |
Collapse
|
13
|
Li Y, Gao J, Xue L, Shang Y, Cai W, Xie X, Jiang T, Chen H, Zhang J, Wang J, Chen M, Ding Y, Wu Q. Determination of Antiviral Mechanism of Centenarian Gut-Derived Limosilactobacillus fermentum Against Norovirus. Front Nutr 2022; 9:812623. [PMID: 35419394 PMCID: PMC8997286 DOI: 10.3389/fnut.2022.812623] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/11/2022] [Indexed: 01/03/2023] Open
Abstract
Although noroviruses are the causative agents of most non-bacterial foodborne disease outbreaks, effective antivirals are currently unavailable. Certain probiotic strains have been reported as active antivirals for norovirus infections, but their mechanisms have not been fully elucidated. Herein, we examined the antiviral potential of 122 lactic acid bacteria isolates against murine norovirus (MNV), a human norovirus surrogate. A centenarian gut-derived strain, Limosilactobacillus fermentum PV22, exhibited the strongest MNV antagonism and reduced the viral titer by 2.23 ± 0.38 (log-value) in 5 min with stable activity at 25°C (P < 0.01). Genome mining revealed that its antiviral activity can be attributed to the synthesis of γ-aminobutyric acid, and this finding was experimentally verified. Furthermore, we demonstrated the safety of the isolate and its high intestinal colonization ability. In conclusion, we discovered a centenarian gut-derived L. fermentum strain with strong anti-norovirus activity and identified its antiviral metabolite. Our results will offer new solutions for the prevention and treatment of food-related norovirus infections.
Collapse
Affiliation(s)
- Ying Li
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, State Key Laboratory of Applied Microbiology Southern China, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Junshan Gao
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, State Key Laboratory of Applied Microbiology Southern China, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Liang Xue
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, State Key Laboratory of Applied Microbiology Southern China, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yanyan Shang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, State Key Laboratory of Applied Microbiology Southern China, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Weicheng Cai
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, State Key Laboratory of Applied Microbiology Southern China, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xinqiang Xie
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, State Key Laboratory of Applied Microbiology Southern China, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Tong Jiang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, State Key Laboratory of Applied Microbiology Southern China, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Huizhen Chen
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, State Key Laboratory of Applied Microbiology Southern China, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Jumei Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, State Key Laboratory of Applied Microbiology Southern China, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Juan Wang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Moutong Chen
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, State Key Laboratory of Applied Microbiology Southern China, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yu Ding
- Department of Food Science and Technology, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, State Key Laboratory of Applied Microbiology Southern China, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
14
|
Thomas S, Ouhtit A, Al Khatib HA, Eid AH, Mathew S, Nasrallah GK, Emara MM, Al Maslamani MA, Yassine HM. Burden and Disease Pathogenesis of Influenza and Other Respiratory Viruses in Diabetic Patients. J Infect Public Health 2022; 15:412-424. [DOI: 10.1016/j.jiph.2022.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 02/24/2022] [Accepted: 03/07/2022] [Indexed: 02/07/2023] Open
|
15
|
Pöllänen PM, Härkönen T, Ilonen J, Toppari J, Veijola R, Siljander H, Knip M. Autoantibodies to N-terminally Truncated GAD65(96-585): HLA Associations and Predictive Value for Type 1 Diabetes. J Clin Endocrinol Metab 2022; 107:e935-e946. [PMID: 34747488 PMCID: PMC8851925 DOI: 10.1210/clinem/dgab816] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Indexed: 11/19/2022]
Abstract
OBJECTIVE To evaluate the role of autoantibodies to N-terminally truncated glutamic acid decarboxylase GAD65(96-585) (t-GADA) as a marker for type 1 diabetes (T1D) and to assess the potential human leukocyte antigen (HLA) associations with such autoantibodies. DESIGN In this cross-sectional study combining data from the Finnish Pediatric Diabetes Register, the Type 1 Diabetes Prediction and Prevention study, the DIABIMMUNE study, and the Early Dietary Intervention and Later Signs of Beta-Cell Autoimmunity study, venous blood samples from 760 individuals (53.7% males) were analyzed for t-GADA, autoantibodies to full-length GAD65 (f-GADA), and islet cell antibodies. Epitope-specific GAD autoantibodies were analyzed from 189 study participants. RESULTS T1D had been diagnosed in 174 (23%) participants. Altogether 631 (83%) individuals tested positive for f-GADA and 451 (59%) for t-GADA at a median age of 9.0 (range 0.2-61.5) years. t-GADA demonstrated higher specificity (46%) and positive predictive value (30%) for T1D than positivity for f-GADA alone (15% and 21%, respectively). Among participants positive for f-GADA, those who tested positive for t-GADA carried more frequently HLA genotypes conferring increased risk for T1D than those who tested negative for t-GADA (77% vs 53%; P < 0.001). CONCLUSIONS Autoantibodies to N-terminally truncated GAD improve the screening for T1D compared to f-GADA and may facilitate the selection of participants for clinical trials. HLA class II-mediated antigen presentation of GAD(96-585)-derived or structurally similar peptides might comprise an important pathomechanism in T1D.
Collapse
Affiliation(s)
- Petra M Pöllänen
- Pediatric Research Center, Children’s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Taina Härkönen
- Pediatric Research Center, Children’s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jorma Ilonen
- Immunogenetic Laboratory, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Jorma Toppari
- Department of Pediatrics, Turku University Hospital, and Institute of Biomedicine and Centre for Population Health Research, University of Turku, Turku, Finland
| | - Riitta Veijola
- Department of Pediatrics, PEDEGO Research Group, Medical Research Center, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Heli Siljander
- Pediatric Research Center, Children’s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Mikael Knip
- Pediatric Research Center, Children’s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Tampere Center for Child Health Research, Tampere University Hospital, Tampere, Finland
- Correspondence: Mikael Knip; MD, PhD, Children’s Hospital, University of Helsinki, PO Box 22 (Stenbäckinkatu 11), FI-00014 Helsinki, Finland. E-mail:
| |
Collapse
|
16
|
Esposito S, Mariotti Zani E, Torelli L, Scavone S, Petraroli M, Patianna V, Predieri B, Iughetti L, Principi N. Childhood Vaccinations and Type 1 Diabetes. Front Immunol 2021; 12:667889. [PMID: 34512622 PMCID: PMC8427438 DOI: 10.3389/fimmu.2021.667889] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 08/12/2021] [Indexed: 12/17/2022] Open
Abstract
Type 1 diabetes (T1D) is the most common paediatric endocrine disease, and its frequency has been found to increase worldwide. Similar to all conditions associated with poorly regulated glucose metabolism, T1D carries an increased risk of infection. Consequently, careful compliance by T1D children with schedules officially approved for child immunization is strongly recommended. However, because patients with T1D show persistent and profound limitations in immune function, vaccines may evoke a less efficient immune response, with corresponding lower protection. Moreover, T1D is an autoimmune condition that develops in genetically susceptible individuals and some data regarding T1D triggering factors appear to indicate that infections, mainly those due to viruses, play a major role. Accordingly, the use of viral live attenuated vaccines is being debated. In this narrative review, we discussed the most effective and safe use of vaccines in patients at risk of or with overt T1D. Literature analysis showed that several problems related to the use of vaccines in children with T1D have not been completely resolved. There are few studies regarding the immunogenicity and efficacy of vaccines in T1D children, and the need for different immunization schedules has not been precisely established. Fortunately, the previous presumed relationship between vaccine administration and T1D appears to have been debunked, though some doubts regarding rotavirus vaccines remain. Further studies are needed to completely resolve the problems related to vaccine administration in T1D patients. In the meantime, the use of vaccines remains extensively recommended in children with this disease.
Collapse
Affiliation(s)
- Susanna Esposito
- Paediatric Clinic, Department of Medicine and Surgery, University Hospital, University of Parma, Parma, Italy
| | - Elena Mariotti Zani
- Paediatric Clinic, Department of Medicine and Surgery, University Hospital, University of Parma, Parma, Italy
| | - Lisa Torelli
- Paediatric Clinic, Department of Medicine and Surgery, University Hospital, University of Parma, Parma, Italy
| | - Sara Scavone
- Paediatric Clinic, Department of Medicine and Surgery, University Hospital, University of Parma, Parma, Italy
| | - Maddalena Petraroli
- Paediatric Clinic, Department of Medicine and Surgery, University Hospital, University of Parma, Parma, Italy
| | - Viviana Patianna
- Paediatric Clinic, Department of Medicine and Surgery, University Hospital, University of Parma, Parma, Italy
| | - Barbara Predieri
- Pediatric Unit, Department of Medical and Surgical Sciences of the Mothers, Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Lorenzo Iughetti
- Pediatric Unit, Department of Medical and Surgical Sciences of the Mothers, Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Nicola Principi
- Paediatric Clinic, Department of Medicine and Surgery, University Hospital, University of Parma, Parma, Italy
| |
Collapse
|
17
|
Rodriguez-Calvo T, Johnson JD, Overbergh L, Dunne JL. Neoepitopes in Type 1 Diabetes: Etiological Insights, Biomarkers and Therapeutic Targets. Front Immunol 2021; 12:667989. [PMID: 33953728 PMCID: PMC8089389 DOI: 10.3389/fimmu.2021.667989] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
The mechanisms underlying type 1 diabetes (T1D) pathogenesis remain largely unknown. While autoantibodies to pancreatic beta-cell antigens are often the first biological response and thereby a useful biomarker for identifying individuals in early stages of T1D, their role in T1D pathogenesis is not well understood. Recognition of these antigenic targets by autoreactive T-cells plays a pathological role in T1D development. Recently, several beta-cell neoantigens have been described, indicating that both neoantigens and known T1D antigens escape central or peripheral tolerance. Several questions regarding the mechanisms by which tolerance is broken in T1D remain unanswered. Further delineating the timing and nature of antigenic responses could allow their use as biomarkers to improve staging, as targets for therapeutic intervention, and lead to a better understanding of the mechanisms leading to loss of tolerance. Multiple factors that contribute to cellular stress may result in the generation of beta-cell derived neoepitopes and contribute to autoimmunity. Understanding the cellular mechanisms that induce beta-cells to produce neoantigens has direct implications on development of therapies to intercept T1D disease progression. In this perspective, we will discuss evidence for the role of neoantigens in the pathogenesis of T1D, including antigenic responses and cellular mechanisms. We will additionally discuss the pathways leading to neoepitope formation and the cross talk between the immune system and the beta-cells in this regard. Ultimately, delineating the timing of neoepitope generation in T1D pathogenesis will determine their role as biomarkers as well as therapeutic targets.
Collapse
Affiliation(s)
- Teresa Rodriguez-Calvo
- Institute of Diabetes Research, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Munich, Germany
| | - James D. Johnson
- Diabetes Research Group, Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Lut Overbergh
- Laboratory Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Jessica L. Dunne
- Janssen Research and Development, LLC, Raritan, NJ, United States
| |
Collapse
|
18
|
Real-Fernández F, Gallo A, Nuti F, Altamore L, Del Vescovo GG, Traldi P, Ragazzi E, Rovero P, Lapolla A, Papini AM. Cross-reactive peptide epitopes of Enterovirus Coxsackie B4 and human glutamic acid decarboxylase detecting antibodies in latent autoimmune diabetes in adults versus type 1 diabetes. Clin Chim Acta 2021; 515:73-79. [PMID: 33422493 DOI: 10.1016/j.cca.2021.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/31/2020] [Accepted: 01/05/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND Diagnosis of latent autoimmune diabetes in adults (LADA) is usually based on the adult age, anti-pancreatic islet cell antibodies detection, and insulin independence. This study investigates the diagnostic value of antibodies against human glutamic acid decarboxylase (hGAD) peptides in LADA and type 1 diabetes mellitus (T1DM) patients, and their cross-reactivity with an Enterovirus Coxsackie B4 (CVB4) shared epitope. METHODS Sera from 27 LADA patients, 23 T1DM patients, and 24 controls were tested in ELISA for antibodies against hGAD peptides and a selected sequence of P2C protein of CVB4 (CVB4P2C). Diagnostic power of peptides was analyzed by ROC-curve analysis and cross-reactivity among peptides evaluated. RESULTS IgM and IgG antibodies showed significant differences between LADA and T1DM versus controls for all peptides. Antibody responses present high agreement among peptides for IgM and IgG-isotypes in T1DM, which is not reproduced in LADA. IgM antibodies showed high predicting diagnostic power particularly in LADA (sensitivity > 85%, specificity 95.8%). CONCLUSIONS Our study highlights the usefulness of peptides as diagnostic antigens in T1DM and LADA, and extends previous findings by comparing IgM and IgG-isotype antibodies in the same population. Additionally, results highlight the role of the entourage in the shared sequon PEVKXK in GAD and CVB4P2C particularly in IgMs identification.
Collapse
Affiliation(s)
- Feliciana Real-Fernández
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy
| | - Alessandra Gallo
- Diabetology and Dietetics, Department of Medicine (DIMED), University of Padova, Padova, Italy
| | - Francesca Nuti
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy
| | - Lorenzo Altamore
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy
| | | | - Pietro Traldi
- Istituto di Ricerca Pediatrica, Città della Speranza, Padova, Italy
| | - Eugenio Ragazzi
- Department of Pharmaceutical and Pharmacological Sciences, School of Medicine and Surgery, University of Padova, Padova, Italy
| | - Paolo Rovero
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Neurosciences, Psychology, Drug Research and Child Health, Section of Pharmaceutical Sciences and Nutraceutics, University of Florence, Sesto Fiorentino, Italy
| | - Annunziata Lapolla
- Diabetology and Dietetics, Department of Medicine (DIMED), University of Padova, Padova, Italy.
| | - Anna Maria Papini
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy; PeptLab@UCP, CY Cergy Paris Université, Cergy Pontoise, France.
| |
Collapse
|
19
|
Basavalingappa RH, Arumugam R, Lasrado N, Yalaka B, Massilamany C, Gangaplara A, Riethoven JJ, Xiang SH, Steffen D, Reddy J. Viral myocarditis involves the generation of autoreactive T cells with multiple antigen specificities that localize in lymphoid and non-lymphoid organs in the mouse model of CVB3 infection. Mol Immunol 2020; 124:218-228. [PMID: 32615275 DOI: 10.1016/j.molimm.2020.06.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 06/02/2020] [Accepted: 06/11/2020] [Indexed: 02/08/2023]
Abstract
Autoreactive T cells may contribute to post-viral myocarditis induced with Coxsackievirus B3 (CVB3), but the underlying mechanisms of their generation are unclear. Here, we have comprehensively analyzed the generation of antigen-specific, autoreactive T cells in the mouse model of CVB3 infection for antigens implicated in patients with myocarditis/dilated cardiomyopathy. First, comparative analysis of CVB3 proteome with five autoantigens led us to identify three mimicry epitopes, one each from adenine nucleotide translocator 1 (ANT), sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2a (SERCA2a) and cardiac troponin I. None of these induced cross-reactive T cell responses. Next, we generated major histocompatibility complex (MHC) class II dextramers to enumerate the frequencies of antigen-specific T cells to determine whether T cells with multiple antigen specificities are generated by CVB3 infection. These analyses revealed appearance of CD4 T cells positive for SERCA2a 971-990, and cardiac myosin heavy chain-α (Myhc) 334-352 dextramers, both in the periphery and also in the hearts of CVB3-infected animals. While ANT 21-40 dextramer+ T cells were inconsistently detected, the β1-adrenergic receptor 181-200/211-230 or branched chain α-ketoacid dehydrogenase kinase 111-130 dextramer+ cells were absent. Interestingly, SERCA2a 971-990, Myhc 334-352 and ANT 21-40 dextramer+ cells were also detected in the liver indicating that they may have a pathogenic role. Finally, we demonstrate that the SERCA2a 971-990-reactive T cells generated in CVB3 infection could transfer disease to naïve mice. The data suggest that CVB3 infection can lead to the generation of autoreactive T cells for multiple antigens indicating a possibility that the autoreactive T cells localized in the liver can potentially circulate and contribute to the development of viral myocarditis.
Collapse
Affiliation(s)
- Rakesh H Basavalingappa
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Rajkumar Arumugam
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Ninaad Lasrado
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | | | | | - Arunakumar Gangaplara
- Laboratory of Early Sickle Mortality Prevention, Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute, Bethesda, MD, USA
| | | | - Shi-Hua Xiang
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - David Steffen
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Jay Reddy
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA.
| |
Collapse
|
20
|
A possible role for autoimmunity through molecular mimicry in alphavirus mediated arthritis. Sci Rep 2020; 10:938. [PMID: 31969581 PMCID: PMC6976597 DOI: 10.1038/s41598-019-55730-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 09/11/2019] [Indexed: 01/23/2023] Open
Abstract
Alphaviral infections are foremost in causing debilitating clinical outcomes in humans characterized by rheumatic arthritis like conditions. Though the presence of virus in joints and associated inflammation has been implicated as one of the reasons for the acute and chronic polyarthritis post alphaviral infections, the basis for rheumatic like outcomes is not clear. Through an in silico analysis, we have investigated the possibility of an autoimmune process mediated through molecular mimicry in alphaviral infection induced pathogenicity. Interestingly, sequence alignment of the structural polyproteins belonging to arthritogenic alphaviruses revealed conserved regions which share homology with human proteins implicated in rheumatoid arthritis (RA). These conserved regions were predicted to exhibit binding to HLA class II alleles, showcasing their potential to incite T cell help. Molecular docking of the viral peptide and the corresponding homologous region in the human protein onto HLA-DRB1 revealed strong similarities in their binding patterns. Linear and conformational B cell epitope prediction analyses showed that these potential mimics have high propensity to elicit an efficient B cell response. We thus propose that the origin of polyarthritis post-arthritogenic alphaviral infections may also be mediated through a hitherto unknown autoimmune response due to the presence of cross-reactive epitopes between viral and human proteins.
Collapse
|
21
|
Pearson JA, Tai N, Ekanayake-Alper DK, Peng J, Hu Y, Hager K, Compton S, Wong FS, Smith PC, Wen L. Norovirus Changes Susceptibility to Type 1 Diabetes by Altering Intestinal Microbiota and Immune Cell Functions. Front Immunol 2019; 10:2654. [PMID: 31798584 PMCID: PMC6863139 DOI: 10.3389/fimmu.2019.02654] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 10/28/2019] [Indexed: 01/10/2023] Open
Abstract
Environmental factors contribute to Type 1 diabetes (T1D) susceptibility. The gut microbiome, which includes bacteria, viruses, and fungi, contributes to this environmental influence, and can induce immunological changes. The gut viral component of the microbiome, related to T1D has mostly focused on coxsackieviruses and rotavirus. The role of norovirus, another common enteric virus, in susceptibility to T1D was hitherto unknown. Norovirus is highly infectious and encountered by many children. We studied the mouse norovirus 4 (MNV4), related to human noroviruses, in the Non-obese diabetic (NOD) mouse model, to determine its role in influencing susceptibility to T1D. We infected MNV-free NOD mice with MNV4 by exposing the mice to MNV4-positive bedding from an endemically-infected mouse colony to mimic a natural infection. Control MNV-free NOD mice were exposed to MNV-free bedding from the same colony. Interestingly, MNV4 infection protected NOD mice from the development of T1D and was associated with an expansion of Tregs and reduced proinflammatory T cells. We also found MNV4 significantly modified the gut commensal bacteria composition, promoting increased α-diversity and Firmicutes/Bacteroidetes ratio. To elucidate whether T1D protection was directly related to MNV4, or indirectly through modulating gut microbiota, we colonized germ-free (GF) NOD mice with the MNV4-containing or non-MNV4-containing viral filtrate, isolated from filtered fecal material. We found that MNV4 induced significant changes in mucosal immunity, including altered Tuft cell markers, cytokine secretion, antiviral immune signaling markers, and the concentration of mucosal antibodies. Systemically, MNV4-infection altered the immune cells including B cell subsets, macrophages and T cells, and especially induced an increase in Treg number and function. Furthermore, in vitro primary exposure of the norovirus filtrate to naïve splenocytes identified significant increases in the proportion of activated and CTLA4-expressing Tregs. Our data provide novel knowledge that norovirus can protect NOD mice from T1D development by inducing the expansion of Tregs and reducing inflammatory T cells. Our study also highlights the importance of distinguishing the mucosal immunity mediated by bacteria from that by enteric viruses.
Collapse
Affiliation(s)
- James A. Pearson
- Endocrinology, Internal Medicine, School of Medicine, Yale University, New Haven, CT, United States
| | - Ningwen Tai
- Endocrinology, Internal Medicine, School of Medicine, Yale University, New Haven, CT, United States
| | - Dilrukshi K. Ekanayake-Alper
- Colombia Center for Transplant Immunology and Institute of Comparative Medicine, Columbia University Medical Center, Colombia University, New York, NY, United States
- Department of Comparative Medicine, School of Medicine, Yale University, New Haven, CT, United States
| | - Jian Peng
- Endocrinology, Internal Medicine, School of Medicine, Yale University, New Haven, CT, United States
| | - Youjia Hu
- Endocrinology, Internal Medicine, School of Medicine, Yale University, New Haven, CT, United States
| | - Karl Hager
- Department of Lab Medicine, School of Medicine, Yale University, New Haven, CT, United States
| | - Susan Compton
- Department of Comparative Medicine, School of Medicine, Yale University, New Haven, CT, United States
| | - F. Susan Wong
- Diabetes Research Group, Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Peter C. Smith
- Department of Comparative Medicine, School of Medicine, Yale University, New Haven, CT, United States
| | - Li Wen
- Endocrinology, Internal Medicine, School of Medicine, Yale University, New Haven, CT, United States
| |
Collapse
|
22
|
Huang Q, Kahn CR, Altindis E. Viral Hormones: Expanding Dimensions in Endocrinology. Endocrinology 2019; 160:2165-2179. [PMID: 31310273 PMCID: PMC6736053 DOI: 10.1210/en.2019-00271] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 07/10/2019] [Indexed: 02/07/2023]
Abstract
Viruses have developed different mechanisms to manipulate their hosts, including the process of viral mimicry in which viruses express important host proteins. Until recently, examples of viral mimicry were limited to mimics of growth factors and immunomodulatory proteins. Using a comprehensive bioinformatics approach, we have shown that viruses possess the DNA/RNA with potential to encode 16 different peptides with high sequence similarity to human peptide hormones and metabolically important regulatory proteins. We have characterized one of these families, the viral insulin/IGF-1-like peptides (VILPs), which we identified in four members of the Iridoviridae family. VILPs can bind to human insulin and IGF-1 receptors and stimulate classic postreceptor signaling pathways. Moreover, VILPs can stimulate glucose uptake in vitro and in vivo and stimulate DNA synthesis. DNA sequences of some VILP-carrying viruses have been identified in the human enteric virome. In addition to VILPs, sequences with homology to 15 other peptide hormones or cytokines can be identified in viral DNA/RNA sequences, some with a very high identity to hormones. Recent data by others has identified a peptide that resembles and mimics α-melanocyte-stimulating hormone's anti-inflammatory effects in in vitro and in vivo models. Taken together, these studies reveal novel mechanisms of viral and bacterial pathogenesis in which the microbe can directly target or mimic the host endocrine system. These findings also introduce the concept of a system of microbial hormones that provides new insights into the evolution of peptide hormones, as well as potential new roles of microbial hormones in health and disease.
Collapse
Affiliation(s)
- Qian Huang
- Boston College Biology Department, Chestnut Hill, Massachusetts
| | - C Ronald Kahn
- Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts
| | - Emrah Altindis
- Boston College Biology Department, Chestnut Hill, Massachusetts
- Correspondence: Emrah Altindis, PhD, Boston College Biology Department, Higgins Hall 515, 140 Commonwealth Avenue, Chestnut Hill, Massachusetts 02467. E-mail:
| |
Collapse
|
23
|
Kibirige D, Lumu W, Jones AG, Smeeth L, Hattersley AT, Nyirenda MJ. Understanding the manifestation of diabetes in sub Saharan Africa to inform therapeutic approaches and preventive strategies: a narrative review. Clin Diabetes Endocrinol 2019; 5:2. [PMID: 30783538 PMCID: PMC6376682 DOI: 10.1186/s40842-019-0077-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 02/05/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Globally, the burden of diabetes mellitus has increased to epidemic proportions. Estimates from the International Diabetes Federation predict that the greatest future increase in the prevalence of diabetes mellitus will occur in Africa. METHODS This article reviews literature on the manifestation of diabetes in adult patients in sub-Saharan Africa highlighting the distinct phenotypes, plausible explanations for this unique manifestation and the clinical significance of comprehensively defining and understanding the African diabetes phenotype. RESULTS There are few studies on the manifestation or phenotype of diabetes in Africa. The limited data available suggests that, compared to the Western world, the majority of patients with diabetes in Africa are young and relatively lean in body size. In addition, hyperglycaemia in most cases is characterised by a significantly blunted acute first phase of insulin secretion in response to an oral or intravenous glucose load and pancreatic beta cell secretory dysfunction, rather than peripheral insulin resistance predominates. Genetic and environmental factors like chronic infections/inflammation, early life malnutrition and epigenetic modifications are thought to contribute to these distinct differences in manifestation. CONCLUSIONS While published data is limited, there appears to be distinct phenotypes of diabetes in sub-Saharan Africa. Large and more detailed studies are needed especially among newly diagnosed patients to fully characterize diabetes in this region. This will further improve the understanding of manifestation of diabetes and guide the formulation of optimal therapeutic approaches and preventive strategies of the condition on the continent.
Collapse
Affiliation(s)
- Davis Kibirige
- Non-Communicable Diseases Theme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Plot 51-59, Nakiwogo Road, P.O. BOX 49 Entebbe, Uganda
- Department of Medicine, Uganda Martyrs hospital Lubaga, Kampala, Uganda
| | - William Lumu
- Department of Medicine, Mengo Hospital, Kampala, Uganda
| | - Angus G. Jones
- National Institute for Health Research, Exeter Clinical Research Facility, University of Exeter Medical School, Exeter, UK
| | - Liam Smeeth
- Department of Non-Communicable Diseases Epidemiology, London School of Hygiene and Tropical Medicine, London, UK
| | - Andrew T. Hattersley
- National Institute for Health Research, Exeter Clinical Research Facility, University of Exeter Medical School, Exeter, UK
| | - Moffat J. Nyirenda
- Non-Communicable Diseases Theme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Plot 51-59, Nakiwogo Road, P.O. BOX 49 Entebbe, Uganda
- Department of Non-Communicable Diseases Epidemiology, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
24
|
Kim KW, Horton JL, Pang CNI, Jain K, Leung P, Isaacs SR, Bull RA, Luciani F, Wilkins MR, Catteau J, Lipkin WI, Rawlinson WD, Briese T, Craig ME. Higher abundance of enterovirus A species in the gut of children with islet autoimmunity. Sci Rep 2019; 9:1749. [PMID: 30741981 PMCID: PMC6370883 DOI: 10.1038/s41598-018-38368-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 12/19/2018] [Indexed: 12/16/2022] Open
Abstract
Enteroviruses (EVs) are prime candidate environmental triggers of islet autoimmunity (IA), with potential as vaccine targets for type 1 diabetes prevention. However, the use of targeted virus detection methods and the selective focus on EVs by most studies increases the risk for substantial investigation bias and an overestimated association between EV and type 1 diabetes. Here we performed comprehensive virome-capture sequencing to examine all known vertebrate-infecting viruses without bias in 182 specimens (faeces and plasma) collected before or at seroconversion from 45 case children with IA and 48 matched controls. From >2.6 billion reads, 28 genera of viruses were detected and 62% of children (58/93) were positive for ≥1 vertebrate-infecting virus. We identified 129 viruses as differentially abundant between the gut of cases and controls, including 5 EV-A types significantly more abundant in the cases. Our findings further support EV’s hypothesised contribution to IA and corroborate the proposal that viral load may be an important parameter in disease pathogenesis. Furthermore, our data indicate a previously unrecognised association of IA with higher EV-A abundance in the gut of children and provide a catalog of viruses to be interrogated further to determine a causal link between virus infection and type 1 diabetes.
Collapse
Affiliation(s)
- Ki Wook Kim
- School of Women's and Children's Health, University of New South Wales Faculty of Medicine, Sydney, Australia.,Virology Research Laboratory, Prince of Wales Hospital Randwick, Sydney, Australia
| | - Jessica L Horton
- School of Women's and Children's Health, University of New South Wales Faculty of Medicine, Sydney, Australia.,Virology Research Laboratory, Prince of Wales Hospital Randwick, Sydney, Australia
| | - Chi Nam Ignatius Pang
- School of Biotechnology and Biomedical Sciences, University of New South Wales Faculty of Science, Sydney, Australia
| | - Komal Jain
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, USA
| | - Preston Leung
- Systems Medicine, Inflammation and Infection Research Centre, School of Medical Sciences, University of New South Wales Faculty of Medicine, Sydney, Australia
| | - Sonia R Isaacs
- School of Women's and Children's Health, University of New South Wales Faculty of Medicine, Sydney, Australia.,Virology Research Laboratory, Prince of Wales Hospital Randwick, Sydney, Australia
| | - Rowena A Bull
- Systems Medicine, Inflammation and Infection Research Centre, School of Medical Sciences, University of New South Wales Faculty of Medicine, Sydney, Australia
| | - Fabio Luciani
- Systems Medicine, Inflammation and Infection Research Centre, School of Medical Sciences, University of New South Wales Faculty of Medicine, Sydney, Australia
| | - Marc R Wilkins
- School of Biotechnology and Biomedical Sciences, University of New South Wales Faculty of Science, Sydney, Australia
| | - Jacki Catteau
- Institute of Endocrinology and Diabetes, Children's Hospital at Westmead, Sydney, Australia
| | - W Ian Lipkin
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, USA.,Department of Pathology and Neurology, College of Physicians & Surgeons, Columbia University, New York, USA
| | - William D Rawlinson
- School of Women's and Children's Health, University of New South Wales Faculty of Medicine, Sydney, Australia.,Virology Research Laboratory, Prince of Wales Hospital Randwick, Sydney, Australia.,Serology and Virology Division, South Eastern Area Laboratory Services Microbiology, Prince of Wales Hospital, Sydney, Australia
| | - Thomas Briese
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, USA.,Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, USA
| | - Maria E Craig
- School of Women's and Children's Health, University of New South Wales Faculty of Medicine, Sydney, Australia. .,Virology Research Laboratory, Prince of Wales Hospital Randwick, Sydney, Australia. .,Institute of Endocrinology and Diabetes, Children's Hospital at Westmead, Sydney, Australia. .,Discipline of Child and Adolescent Health, University of Sydney, Sydney, Australia.
| |
Collapse
|
25
|
Esposito S, Toni G, Tascini G, Santi E, Berioli MG, Principi N. Environmental Factors Associated With Type 1 Diabetes. Front Endocrinol (Lausanne) 2019; 10:592. [PMID: 31555211 PMCID: PMC6722188 DOI: 10.3389/fendo.2019.00592] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 08/12/2019] [Indexed: 12/15/2022] Open
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disorder that leads to progressive pancreatic ß-cell destruction and culminates in absolute insulin deficiency and stable hyperglycaemia. It is very likely that environmental factors play a role in triggering islet autoimmunity. Knowing whether they have true relevance in favoring T1D development is essential for the effective prevention of the disease. Moreover, prevention could be obtained directly interfering with the development of autoimmunity through autoantigen-based immunotherapy. In this narrative review, the present possibilities for the prevention of T1D are discussed. Presently, interventions to prevent T1D are generally made in subjects in whom autoimmunity is already activated and autoantibodies against pancreatic cell components have been detected. Practically, the goal is to slow down the immune process by preserving the normal structure of the pancreatic islets for as long as possible. Unfortunately, presently methods able to avoid the risk of autoimmune activation are not available. Elimination of environmental factors associated with T1D development, reverse of epigenetic modifications that favor initiation of autoimmunity in subjects exposed to environmental factors and use of autoantigen-based immunotherapy are possible approaches, although for all these measures definitive conclusions cannot be drawn. However, the road is traced and it is possible that in a not so distant future an effective prevention of the disease to all the subjects at risk can be offered.
Collapse
Affiliation(s)
- Susanna Esposito
- Pediatric Clinic, Department of Surgical and Biomedical Sciences, Università degli Studi di Perugia, Perugia, Italy
- *Correspondence: Susanna Esposito
| | - Giada Toni
- Pediatric Clinic, Department of Surgical and Biomedical Sciences, Università degli Studi di Perugia, Perugia, Italy
| | - Giorgia Tascini
- Pediatric Clinic, Department of Surgical and Biomedical Sciences, Università degli Studi di Perugia, Perugia, Italy
| | - Elisa Santi
- Pediatric Clinic, Department of Surgical and Biomedical Sciences, Università degli Studi di Perugia, Perugia, Italy
| | - Maria Giulia Berioli
- Pediatric Clinic, Department of Surgical and Biomedical Sciences, Università degli Studi di Perugia, Perugia, Italy
| | | |
Collapse
|
26
|
Yang J, Jing L, James EA, Gebe JA, Koelle DM, Kwok WW. A Novel Approach of Identifying Immunodominant Self and Viral Antigen Cross-Reactive T Cells and Defining the Epitopes They Recognize. Front Immunol 2018; 9:2811. [PMID: 30619245 PMCID: PMC6298415 DOI: 10.3389/fimmu.2018.02811] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 11/14/2018] [Indexed: 11/13/2022] Open
Abstract
Infection and vaccination can lead to activation of autoreactive T cells, including the activation of cross-reactive T cells. However, detecting these cross-reactive T cells and identifying the non-self and self-antigen epitopes is difficult. The current study demonstrates the utility of a novel approach that effectively accomplishes both. We utilized surface expression of CD38 on newly activated CD4 memory T cells as a strategy to identify type 1 diabetes associated autoreactive T cells activated by influenza vaccination in healthy subjects. We identified an influenza A matrix protein (MP) specific CD4+ T cell clone that cross-recognizes an immunodominant epitope from Glutamic Acid Decarboxylase 65 (GAD65) protein. The sequences of the MP and GAD65 peptides are rather distinct, with only 2 identical amino acids within the HLA-DR binding region. This result suggests that activation of autoreactive T cells by microbial infection under certain physiological conditions can occur amongst peptides with minimum amino acid sequence homology. This novel strategy also provides a new research pathway in which to examine activation of autoreactive CD4+ T cells after vaccination or natural infection.
Collapse
Affiliation(s)
- Junbao Yang
- Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | - Lichen Jing
- Department of Medicine, University of Washington, Seattle, WA, United States
| | - Eddie A James
- Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | - John A Gebe
- Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | - David M Koelle
- Benaroya Research Institute at Virginia Mason, Seattle, WA, United States.,Department of Medicine, University of Washington, Seattle, WA, United States.,Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - William W Kwok
- Benaroya Research Institute at Virginia Mason, Seattle, WA, United States.,Department of Medicine, University of Washington, Seattle, WA, United States
| |
Collapse
|
27
|
Rojas M, Restrepo-Jiménez P, Monsalve DM, Pacheco Y, Acosta-Ampudia Y, Ramírez-Santana C, Leung PS, Ansari AA, Gershwin ME, Anaya JM. Molecular mimicry and autoimmunity. J Autoimmun 2018; 95:100-123. [DOI: 10.1016/j.jaut.2018.10.012] [Citation(s) in RCA: 214] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/12/2018] [Accepted: 10/16/2018] [Indexed: 12/15/2022]
|
28
|
Rodriguez-Calvo T. Enterovirus infection and type 1 diabetes: unraveling the crime scene. Clin Exp Immunol 2018; 195:15-24. [PMID: 30307605 DOI: 10.1111/cei.13223] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/02/2018] [Accepted: 10/02/2018] [Indexed: 12/15/2022] Open
Abstract
Enteroviruses (EV) have been historically associated to type 1 diabetes. Definitive proof for their implication in disease development is lacking, but growing evidence suggests that they could be involved in beta cell destruction either directly by killing beta cells or indirectly by creating an exacerbated inflammatory response in the islets, capable of attracting autoreactive T cells to the 'scene of the crime'. Epidemiological and serological studies have been associated with the appearance of islet autoimmunity and EV RNA has been detected in prospective studies. In addition, the EV capsid protein has been detected in the islets of recent-onset type 1 diabetic donors, suggesting the existence of a low-grade EV infection that could become persistent. Increasing evidence in the field shows that a 'viral signature' exists in type 1 diabetes and involves interferon responses that could be sustained during prolonged periods. These include the up-regulation of markers such as protein kinase R (PKR), melanoma differentiation-associated protein 5 (MDA5), retinoic acid inducible gene I (RIG-I), myxovirus resistance protein (MxA) and human leukocyte antigen-I (HLA-I) and the release of chemokines able to attract immune cells to the islets leading to insulitis. In this scenario, the hyperexpression of HLA-I molecules would promote antigen presentation to autoreactive T cells, favoring beta cell recognition and, ultimately, destruction. In this review, an overview is provided of the standing evidence that implicates EVs in beta cell 'murder', the time-line of events is investigated from EV entry in the cell to beta cell death and possible accomplices are highlighted that might be involved in beta cell demise.
Collapse
Affiliation(s)
- T Rodriguez-Calvo
- Institute for Diabetes Research, Helmholtz Diabetes Center at Helmholtz Zentrum München, Munich, Germany
| |
Collapse
|
29
|
Bystander T Cells: A Balancing Act of Friends and Foes. Trends Immunol 2018; 39:1021-1035. [PMID: 30413351 DOI: 10.1016/j.it.2018.10.003] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/27/2018] [Accepted: 10/04/2018] [Indexed: 02/07/2023]
Abstract
T cell responses are essential for appropriate protection against pathogens. T cell immunity is achieved through the ability to discriminate between foreign and self-molecules, and this relies heavily on stringent T cell receptor (TCR) specificity. Recently, bystander activated T lymphocytes, that are specific for unrelated epitopes during an antigen-specific response, have been implicated in diverse diseases. Numerous infection models have challenged the classic dogma of T cell activation as being solely dependent on TCR and major histocompatibility complex (MHC) interactions, indicating an unappreciated role for pathogen-associated receptors on T cells. We discuss here the specific roles of bystander activated T cells in pathogenesis, shedding light on the ability of these cells to modulate disease severity independently from TCR recognition.
Collapse
|
30
|
Dhanda SK, Karosiene E, Edwards L, Grifoni A, Paul S, Andreatta M, Weiskopf D, Sidney J, Nielsen M, Peters B, Sette A. Predicting HLA CD4 Immunogenicity in Human Populations. Front Immunol 2018; 9:1369. [PMID: 29963059 PMCID: PMC6010533 DOI: 10.3389/fimmu.2018.01369] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 06/01/2018] [Indexed: 12/12/2022] Open
Abstract
Background Prediction of T cell immunogenicity is a topic of considerable interest, both in terms of basic understanding of the mechanisms of T cells responses and in terms of practical applications. HLA binding affinity is often used to predict T cell epitopes, since HLA binding affinity is a key requisite for human T cell immunogenicity. However, immunogenicity at the population it is complicated by the high level of variability of HLA molecules, potential other factors beyond HLA as well as the frequent lack of HLA typing data. To overcome those issues, we explored an alternative approach to identify the common characteristics able to distinguish immunogenic peptides from non-recognized peptides. Methods Sets of dominant epitopes derived from peer-reviewed published papers were used in conjunction with negative peptides from the same experiments/donors to train neural networks and generate an “immunogenicity score.” We also compared the performance of the immunogenicity score with previously described method for immunogenicity prediction based on HLA class II binding at the population level. Results The immunogenicity score was validated on a series of independent datasets derived from the published literature, representing 57 independent studies where immunogenicity in human populations was assessed by testing overlapping peptides spanning different antigens. Overall, these testing datasets corresponded to over 2,000 peptides and tested in over 1,600 different human donors. The 7-allele method prediction and the immunogenicity score were associated with similar performance [average area under the ROC curve (AUC) values of 0.703 and 0.702, respectively] while the combined methods reached an average AUC of 0.725. This increase in average AUC value is significant compared with the immunogenicity score (p = 0.0135) and a strong trend toward significance is observed when compared to the 7-allele method (p = 0.0938). The new immunogenicity score method is now freely available using CD4 T cell immunogenicity prediction tool on the Immune Epitope Database website (http://tools.iedb.org/CD4episcore). Conclusion The new immunogenicity score predicts CD4 T cell immunogenicity at the population level starting from protein sequences and with no need for HLA typing. Its efficacy has been validated in the context of different antigen sources, ethnicities, and disparate techniques for epitope identification.
Collapse
Affiliation(s)
- Sandeep Kumar Dhanda
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - Edita Karosiene
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - Lindy Edwards
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - Alba Grifoni
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - Sinu Paul
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - Massimo Andreatta
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, Buenos Aires, Argentina
| | - Daniela Weiskopf
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - John Sidney
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - Morten Nielsen
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, Buenos Aires, Argentina.,Department of Bio and Health Informatics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Bjoern Peters
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States.,University of California San Diego, La Jolla, CA, United States
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States.,University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
31
|
Karin N. Autoantibodies to Chemokines and Cytokines Participate in the Regulation of Cancer and Autoimmunity. Front Immunol 2018; 9:623. [PMID: 29651292 PMCID: PMC5884937 DOI: 10.3389/fimmu.2018.00623] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 03/13/2018] [Indexed: 01/27/2023] Open
Abstract
We have previously shown that predominant expression of key inflammatory cytokines and chemokines at autoimmune sites or tumor sites induces loss of B cells tolerance, resulting in autoantibody production against the dominant cytokine/chemokine that is largely expressed at these sites. These autoantibodies are high-affinity neutralizing antibodies. Based on animal models studies, we suggested that they participate in the regulation of cancer and autoimmunity, albeit at the level of their production cannot entirely prevent the development and progression of these diseases. We have, therefore, named this selective breakdown of tolerance as “Beneficial Autoimmunity.” Despite its beneficial outcome, this process is likely to be stochastic and not directed by a deterministic mechanism, and is likely to be associated with the dominant expression of these inflammatory mediators at sites that are partially immune privileged. A recent study conducted on autoimmune regulator-deficient patients reported that in human this type of breakdown of B cell tolerance is T cell dependent. This explains, in part, why the response is highly restricted, and includes high-affinity antibodies. The current mini-review explores this subject from different complementary perspectives. It also discusses three optional translational aspects: amplification of autoantibody production as a therapeutic approach, development of autoantibody based diagnostic tools, and the use of B cells from donors that produce these autoantibodies for the development of high-affinity human monoclonal antibodies.
Collapse
Affiliation(s)
- Nathan Karin
- Department of Immunology, Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
32
|
Rajesh Kumar M, Joice Sophia P. Nanoparticles as Precious Stones in the Crown of Modern Molecular Biology. TRENDS IN INSECT MOLECULAR BIOLOGY AND BIOTECHNOLOGY 2018. [PMCID: PMC7123693 DOI: 10.1007/978-3-319-61343-7_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
33
|
Principi N, Berioli MG, Bianchini S, Esposito S. Type 1 diabetes and viral infections: What is the relationship? J Clin Virol 2017; 96:26-31. [PMID: 28934695 DOI: 10.1016/j.jcv.2017.09.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 08/09/2017] [Accepted: 09/06/2017] [Indexed: 12/16/2022]
Abstract
Type 1 diabetes (T1D) is the most common chronic metabolic disorder in children. Epigenetic and environmental factors capable of altering the penetrance of major susceptibility genes or capable of increasing the penetrance of low-risk genes are currently thought to play a role in triggering autoimmunity and T1D development. This paper discusses the current knowledge of the role of viruses in T1D. Most studies that have evaluated the potential association between viral infections and T1D have indicated that it is highly likely that some of these infectious agents play a role in T1D development. However, most T1D cases are immune-mediated, and it is supposed that the initial viral infection is capable of creating, in genetically predisposed subjects, a particular condition in which chronic local inflammation occurs through the persistence of the infecting virus in pancreatic tissue and the activation of autoimmunity by means of molecular mimicry, bystander activation, or both. Theoretically, this knowledge could lead to possible prophylaxis and therapy for T1D. Further studies devoted to evaluating which infectious agents are linked to T1D and which immune mechanisms induce or protect against the disease are needed before adequate prophylactic and therapeutic measures can be developed.
Collapse
Affiliation(s)
- Nicola Principi
- Professor Emeritus, Università degli Studi di Milano, Milan, Italy
| | | | - Sonia Bianchini
- Pediatric Clinic, Università degli Studi di Perugia, Perugia, Italy
| | - Susanna Esposito
- Pediatric Clinic, Università degli Studi di Perugia, Perugia, Italy.
| |
Collapse
|
34
|
Nasir IA, Emeribe AU, Shuwa HA, Zakari MM, Peters NO. Type 1 diabetes mellitus and enterovirus linkage: search for associated etiopathology. THE EGYPTIAN JOURNAL OF INTERNAL MEDICINE 2017. [DOI: 10.4103/ejim.ejim_25_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
35
|
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disease that causes severe loss of pancreatic β cells. Autoreactive T cells are key mediators of β cell destruction. Studies of organ donors with T1D that have examined T cells in pancreas, the diabetogenic insulitis lesion, and lymphoid tissues have revealed a broad repertoire of target antigens and T cell receptor (TCR) usage, with initial evidence of public TCR sequences that are shared by individuals with T1D. Neoepitopes derived from post-translational modifications of native antigens are emerging as novel targets that are more likely to evade self-tolerance. Further studies will determine whether T cell responses to neoepitopes are major disease drivers that could impact prediction, prevention, and therapy. This Review provides an overview of recent progress in our knowledge of autoreactive T cells that has emerged from experimental and clinical research as well as pathology investigations.
Collapse
|
36
|
Fan Y. Bait and Trap: Enriching Autoreactive T Cells With β-Cell Antigen-Loading Biomaterial Scaffolds for Early Detection of Type 1 Diabetes. Diabetes 2017; 66:2066-2068. [PMID: 28733307 PMCID: PMC5521872 DOI: 10.2337/dbi17-0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Yong Fan
- Institute of Cellular Therapeutics, Allegheny Health Network, Pittsburgh, PA
| |
Collapse
|
37
|
Vorobjova T, Raikkerus H, Kadaja L, Talja I, Uibo O, Heilman K, Uibo R. Circulating Zonulin Correlates with Density of Enteroviruses and Tolerogenic Dendritic Cells in the Small Bowel Mucosa of Celiac Disease Patients. Dig Dis Sci 2017; 62:358-371. [PMID: 27995404 DOI: 10.1007/s10620-016-4403-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 11/29/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND Impaired intestinal integrity, including increased permeability of the small bowel mucosa, has been shown in patients with celiac disease (CD) as well as with type 1 diabetes (T1D). Zonulin (ZO, pre-haptoglobin), a tight junction regulator, plays a particular role in the regulation of intestinal barrier function and in the pathogenesis of the above-mentioned diseases. AIM To investigate whether enteroviruses (EVs) and immunoregulatory cells are associated with intestinal permeability in patients with CD alone and with coexistent T1D. MATERIALS AND METHODS Altogether 80 patients (mean age 10.68 ± 6.69 years) who had undergone small bowel biopsy were studied. Forty patients with functional dyspepsia and normal small bowel mucosa formed the control group. The circulating ZO level in sera was evaluated using ELISA. The densities of EV, FOXP3+ regulatory T cells (Tregs), indoleamine 2,3-dioxygenase (IDO+) dendritic cells (DCs) and glutamic acid dexarboxylase (GAD)65+ cells in small bowel mucosa were investigated by immunohistochemistry. The expression analysis of FOXP3, tight junction protein 1 (TJP1), gap junction (GJA1), IDO and CD103 genes was evaluated by real-time PCR. RESULTS The ZO level was higher in CD patients compared to subjects with a normal small bowel mucosa, particularly in those with Marsh IIIc atrophy (p = 0.01), and correlated with the density of EV (r = 0.63; p = 0.0003) and IDO+ DCs (r = 0.58; p = 0.01) in the small bowel mucosa. The density of GAD65+ epithelial cells was correlated with the density of EV (r = 0.59; p = 0.03) and IDO+ DCs (r = 0.78; p = 0.004) in CD patients. The relative expression of FOXP3 mRNA in the small bowel mucosa tissue was significantly higher in patients with CD, compared to subjects with a normal mucosa, and correlated with the density of EV (r = 0.62; p = 0.017) as well as with the relative expression of IDO mRNA (r = 0.54; p = 0.019). CONCLUSIONS The CD is associated with elevation of the circulating ZO level, the value of which correlates with the density of EV in CD patients with severe atrophic changes in the small bowel mucosa, particularly in cases of concomitant T1D. The CD is also characterized by the close relationship of the density of GAD65+ epithelial cells with the EV, ZO level and IDO+ DCs.
Collapse
MESH Headings
- Adolescent
- Antibodies, Viral/immunology
- Antigens, CD/genetics
- Autoantibodies/immunology
- Case-Control Studies
- Celiac Disease/complications
- Celiac Disease/metabolism
- Celiac Disease/pathology
- Celiac Disease/virology
- Child
- Child, Preschool
- Cholera Toxin/blood
- Connexin 43/genetics
- Dendritic Cells/metabolism
- Dendritic Cells/pathology
- Diabetes Mellitus, Type 1/complications
- Enterovirus/immunology
- Enzyme-Linked Immunosorbent Assay
- Female
- Forkhead Transcription Factors/genetics
- Forkhead Transcription Factors/metabolism
- Glutamate Decarboxylase/immunology
- Glutamate Decarboxylase/metabolism
- Haptoglobins
- Humans
- Immunoglobulin A/immunology
- Immunohistochemistry
- Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics
- Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism
- Integrin alpha Chains/genetics
- Intestinal Mucosa/metabolism
- Intestinal Mucosa/pathology
- Intestinal Mucosa/virology
- Intestine, Small/metabolism
- Intestine, Small/pathology
- Intestine, Small/virology
- Male
- Permeability
- Protein Precursors
- RNA, Messenger/metabolism
- Real-Time Polymerase Chain Reaction
- T-Lymphocytes, Regulatory/metabolism
- T-Lymphocytes, Regulatory/pathology
- Zonula Occludens-1 Protein/genetics
Collapse
Affiliation(s)
- Tamara Vorobjova
- Department of Immunology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 19, 51014, Tartu, Estonia.
| | - Helerin Raikkerus
- Department of Immunology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 19, 51014, Tartu, Estonia
| | - Lumme Kadaja
- Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Ija Talja
- Department of Immunology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 19, 51014, Tartu, Estonia
| | - Oivi Uibo
- Department of Pediatrics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Children's Clinic, Tartu University Hospital, Tartu, Estonia
| | - Kaire Heilman
- Department of Pediatrics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Tallinn Children's Hospital, Tallinn, Estonia
| | - Raivo Uibo
- Department of Immunology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 19, 51014, Tartu, Estonia
| |
Collapse
|
38
|
Marré ML, Piganelli JD. Environmental Factors Contribute to β Cell Endoplasmic Reticulum Stress and Neo-Antigen Formation in Type 1 Diabetes. Front Endocrinol (Lausanne) 2017; 8:262. [PMID: 29033899 PMCID: PMC5626851 DOI: 10.3389/fendo.2017.00262] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 09/20/2017] [Indexed: 12/16/2022] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease in which immune-mediated targeting and destruction of insulin-producing pancreatic islet β cells leads to chronic hyperglycemia. There are many β cell proteins that are targeted by autoreactive T cells in their native state. However, recent studies have demonstrated that many β cell proteins are recognized as neo-antigens following posttranslational modification (PTM). Although modified neo-antigens are well-established targets of pathology in other autoimmune diseases, the effects of neo-antigens in T1D progression and the mechanisms by which they are generated are not well understood. We have demonstrated that PTM occurs during endoplasmic reticulum (ER) stress, a process to which β cells are uniquely susceptible due to the high rate of insulin production in response to dynamic glucose sensing. In the context of genetic susceptibility to autoimmunity, presentation of these modified neo-antigens may activate autoreactive T cells and cause pathology. However, inherent β cell ER stress and protein PTM do not cause T1D in every genetically susceptible individual, suggesting the contribution of additional factors. Indeed, many environmental factors, such as viral infection, chemicals, or inflammatory cytokines, are associated with T1D onset, but the mechanisms by which these factors lead to disease onset remain unknown. Since these environmental factors also cause ER stress, exposure to these factors may enhance production of neo-antigens, therefore boosting β cell recognition by autoreactive T cells and exacerbating T1D pathogenesis. Therefore, the combined effects of physiological ER stress and the stress that is induced by environmental factors may lead to breaks in peripheral tolerance, contribute to antigen spread, and hasten disease onset. This Hypothesis and Theory article summarizes what is currently known about ER stress and protein PTM in autoimmune diseases including T1D and proposes a role for environmental factors in breaking immune tolerance to β cell antigens through neo-antigen formation.
Collapse
Affiliation(s)
- Meghan L Marré
- Division of Pediatric Surgery, Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jon D Piganelli
- Division of Pediatric Surgery, Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
39
|
Abstract
Type 1 diabetes mellitus (T1DM) is caused by progressive autoimmune-mediated loss of pancreatic β-cell mass via apoptosis. The onset of T1DM depends on environmental factors that interact with predisposing genes to induce an autoimmune assault against β cells. Epidemiological, clinical and pathology studies in humans support viral infection--particularly by enteroviruses (for example, coxsackievirus)--as an environmental trigger for the development of T1DM. Many candidate genes for T1DM, such as MDA5, PTPN2 and TYK2, regulate antiviral responses in both β cells and the immune system. Cellular permissiveness to viral infection is modulated by innate antiviral responses that vary among different tissues or cell types. Some data indicate that pancreatic islet α cells trigger a more efficient antiviral response to infection with diabetogenic viruses than do β cells, and so are able to eradicate viral infections without undergoing apoptosis. This difference could account for the varying ability of islet-cell subtypes to clear viral infections and explain why chronically infected pancreatic β cells, but not α cells, are targeted by an autoimmune response and killed during the development of T1DM. These issues and attempts to target viral infection as a preventive therapy for T1DM are discussed in the present Review.
Collapse
Affiliation(s)
- Anne Op de Beeck
- Center for Diabetes Research, Universite Libre de Bruxelles, 808 Route de Lennik, CP618, B-1070, Brussels, Belgium
| | - Decio L Eizirik
- Center for Diabetes Research, Universite Libre de Bruxelles, 808 Route de Lennik, CP618, B-1070, Brussels, Belgium
- Welbio, Universite Libre de Bruxelles, 808 Route de Lennik, CP618, B-1070, Brussels, Belgium
| |
Collapse
|
40
|
Taherzadeh M, Esmaeili A, Ganjalikhany MR. In silico vaccine design against type 1 diabetes based on molecular modeling of coxsackievirus B4 epitopes. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/s13721-016-0112-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
41
|
Massilamany C, Koenig A, Reddy J, Huber S, Buskiewicz I. Autoimmunity in picornavirus infections. Curr Opin Virol 2015; 16:8-14. [PMID: 26554915 DOI: 10.1016/j.coviro.2015.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 10/14/2015] [Accepted: 10/18/2015] [Indexed: 12/16/2022]
Abstract
Enteroviruses are small, non-enveloped, positive-sense single-strand RNA viruses, and are ubiquitously found throughout the world. These viruses usually cause asymptomatic or mild febrile illnesses, but have a propensity to induce severe diseases including type 1 diabetes and pancreatitis, paralysis and neuroinflammatory disease, myocarditis, or hepatitis. This pathogenicity may result from induction of autoimmunity to organ-specific antigens. While enterovirus-triggered autoimmunity can arise from multiple mechanisms including antigenic mimicry and release of sequestered antigens, the recent demonstration of T cells expressing dual T cell receptors arising as a natural consequence of Theiler's virus infection is the first demonstration of this autoimmune mechanism.
Collapse
Affiliation(s)
- Chandirasegaran Massilamany
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Andreas Koenig
- Department of Medicine and University of Vermont, Colchester, VT 05446, USA
| | - Jay Reddy
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Sally Huber
- Department of Pathology and Vermont Center for Immunobiology and Infectious Diseases, University of Vermont, Colchester, VT 05446, USA
| | - Iwona Buskiewicz
- Department of Pathology and Vermont Center for Immunobiology and Infectious Diseases, University of Vermont, Colchester, VT 05446, USA.
| |
Collapse
|
42
|
Marré ML, James EA, Piganelli JD. β cell ER stress and the implications for immunogenicity in type 1 diabetes. Front Cell Dev Biol 2015; 3:67. [PMID: 26579520 PMCID: PMC4621612 DOI: 10.3389/fcell.2015.00067] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 10/08/2015] [Indexed: 12/11/2022] Open
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disease characterized by hyperglycemia due to progressive immune-mediated destruction of insulin-producing pancreatic islet β cells. Although many elegant studies have identified β cell autoantigens that are targeted by the autoimmune response, the mechanisms by which these autoantigens are generated remain poorly understood. Normal β cell physiology includes a high demand for insulin production and secretion in response to dynamic glucose sensing. This secretory function predisposes β cells to significantly higher levels of endoplasmic reticulum (ER) stress compared to nonsecretory cells. In addition, many environmental triggers associated with T1D onset further augment this inherent ER stress in β cells. ER stress may increase abnormal post-translational modification (PTM) of endogenous β cell proteins. Indeed, in other autoimmune disorders such as celiac disease, systemic lupus erythematosus, multiple sclerosis, and rheumatoid arthritis, abnormally modified neo-antigens are presented by antigen presenting cells (APCs) in draining lymph nodes. In the context of genetic susceptibility to autoimmunity, presentation of neo-antigens activates auto-reactive T cells and pathology ensues. Therefore, the ER stress induced by normal β cell secretory physiology and environmental triggers may be sufficient to generate neo-antigens for the autoimmune response in T1D. This review summarizes what is currently known about ER stress and protein PTM in target organs of other autoimmune disease models, as well as the data supporting a role for ER stress-induced neo-antigen formation in β cells in T1D.
Collapse
Affiliation(s)
- Meghan L Marré
- Division of Pediatric Surgery, Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh Pittsburgh, PA, USA
| | - Eddie A James
- Benaroya Research Institute at Virginia Mason Seattle, WA, USA
| | - Jon D Piganelli
- Division of Pediatric Surgery, Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh Pittsburgh, PA, USA
| |
Collapse
|
43
|
Abstract
Type 1 diabetes (T1D) results from genetic predisposition and environmental factors leading to the autoimmune destruction of pancreatic beta cells. Recently, a rapid increase in the incidence of childhood T1D has been observed worldwide; this is too fast to be explained by genetic factors alone, pointing to the spreading of environmental factors linked to the disease. Enteroviruses (EVs) are perhaps the most investigated environmental agents in relationship to the pathogenesis of T1D. While several studies point to the likelihood of such correlation, epidemiological evidence in its support is inconclusive or in some instances even against it. Hence, it is still unknown if and how EVs are involved in the development of T1D. Here we review recent findings concerning the biology of EV in beta cells and the potential implications of this knowledge for the understanding of beta cell dysfunction and autoimmune destruction in T1D.
Collapse
Affiliation(s)
- Antje Petzold
- />Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, Fetscherstr.74, 01307 Dresden, Germany
- />German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Michele Solimena
- />Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, Fetscherstr.74, 01307 Dresden, Germany
- />German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
- />Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Klaus-Peter Knoch
- />Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, Fetscherstr.74, 01307 Dresden, Germany
- />German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| |
Collapse
|
44
|
Huang M, Ma Q, Liu X, Li B, Ma H. Initiator Integrated Poly(dimethysiloxane)-Based Microarray as a Tool for Revealing the Relationship between Nonspecific Interactions and Irreproducibility. Anal Chem 2015; 87:7085-91. [PMID: 26095857 DOI: 10.1021/acs.analchem.5b00694] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nonspecific interactions (NSIs) and irreproducibility greatly reduce the accuracy of antigen-antibody screening, which is key to the discovery of monoclonal antibody drugs and biomarkers identification. We previously developed a solid supporting material, polymer-coated initiator integrated poly(dimethysiloxane) (iPDMS), which is able to provide near-zero background for microarray screening. Here, we applied two monoclonal antibodies (mAbs), namely, anti-FLAG and HM1, to screen an iPDMS-based peptide microarray with 2083 peptides from 62 proteins to evaluate NSIs and irreproducibility. In addition to recognizing their cognate epitopes, the two mAbs also cross-reacted with random sequences, especially when they were used at high concentrations. At 50 μg mL(-1), 295 peptides (14.2% of the peptide library) had positive reactions to anti-FLAG and only 39 peptides (1.9%) reacted positively to HM1. Virtually all cross-reactions disappeared when the [mAbs] reached 0.01 μg mL(-1). Reproducible experiments of 404 peptides at various [mAbs] showed that only specific interactions, molecular mimicry, and mimotope were reproducible between different experiments. These findings suggest that irreproducibility was at least partially caused by NSIs. We also demonstrated that repeating tests and mAb dilution could effectively avoid NSI-related irreproducibility in serological screening. This will not only largely simplify the data analysis, but will also make immunoassays more reliable for clinical research.
Collapse
Affiliation(s)
- Mo Huang
- †Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, People's Republic of China.,‡University of Chinese Academy of Sciences, Beijing, 100039, People's Republic of China
| | - Qing Ma
- †Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, People's Republic of China.,‡University of Chinese Academy of Sciences, Beijing, 100039, People's Republic of China
| | - Xing Liu
- †Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, People's Republic of China
| | - Boan Li
- §Center of Lab Test, 302 Military Hospital, Beijing, 100039, People's Republic of China
| | - Hongwei Ma
- †Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, People's Republic of China
| |
Collapse
|
45
|
Bergamin CS, Dib SA. Enterovirus and type 1 diabetes: What is the matter? World J Diabetes 2015; 6:828-839. [PMID: 26131324 PMCID: PMC4478578 DOI: 10.4239/wjd.v6.i6.828] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 01/30/2015] [Accepted: 04/09/2015] [Indexed: 02/05/2023] Open
Abstract
A complex interaction of genetic and environmental factors can trigger the immune-mediated mechanism responsible for type 1 diabetes mellitus (T1DM) establishment. Environmental factors may initiate and possibly sustain, accelerate, or retard damage to β-cells. The role of environmental factors in this process has been exhaustive studied and viruses are among the most probable ones, especially enteroviruses. Improvements in enterovirus detection methods and randomized studies with patient follow-up have confirmed the importance of human enterovirus in the pathogenesis of T1DM. The genetic risk of T1DM and particular innate and acquired immune responses to enterovirus infection contribute to a tolerance to T1DM-related autoantigens. However, the frequency, mechanisms, and pathways of virally induced autoimmunity and β-cell destruction in T1DM remain to be determined. It is difficult to investigate the role of enterovirus infection in T1DM because of several concomitant mechanisms by which the virus damages pancreatic β-cells, which, consequently, may lead to T1DM establishment. Advances in molecular and genomic studies may facilitate the identification of pathways at earlier stages of autoimmunity when preventive and therapeutic approaches may be more effective.
Collapse
|
46
|
Pane JA, Coulson BS. Lessons from the mouse: potential contribution of bystander lymphocyte activation by viruses to human type 1 diabetes. Diabetologia 2015; 58:1149-59. [PMID: 25794781 DOI: 10.1007/s00125-015-3562-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 03/04/2015] [Indexed: 02/07/2023]
Abstract
Viruses are considered to be potential key modulators of type 1 diabetes mellitus, with several possible mechanisms proposed for their modes of action. Here we discuss the evidence for virus involvement, including pancreatic infection and the induction of T cell-mediated molecular mimicry. A particular focus of this review is the further possibility that virus infection triggers bystander activation of pre-existing autoreactive lymphocytes. In this scenario, the virus triggers dendritic cell maturation and proinflammatory cytokine secretion by engaging pattern recognition receptors. These proinflammatory cytokines provoke bystander autoreactive lymphocyte activation in the presence of cognate autoantigen, which leads to enhanced beta cell destruction. Importantly, this mechanism does not necessarily involve pancreatic virus infection, and its virally non-specific nature suggests that it might represent a means commonly employed by multiple viruses. The ability of viruses specifically associated with type 1 diabetes, including group B coxsackievirus, rotavirus and influenza A virus, to induce these responses is also examined. The elucidation of a mechanism shared amongst several viruses for accelerating progression to type 1 diabetes would facilitate the identification of important targets for disease intervention.
Collapse
Affiliation(s)
- Jessica A Pane
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Melbourne, VIC, 3010, Australia
| | | |
Collapse
|
47
|
Abstract
Each individual harbours a unique set of commensal microorganisms, collectively referred to as the microbiota. Notably, these microorganisms exceed the number of cells in the human body by 10-fold. This finding has accelerated a shift in our understanding of human physiology, with the realization that traits necessary for health are both encoded and influenced by the human genome and the microbiota. Our understanding of the aetiology of complex diseases has, therefore, evolved with increasing awareness that the human microbiota has an active and critical role in maintaining health and inducing disease. Indeed, findings from bioinformatic studies indicate that the microbiota and microbiome have multiple effects on the innate and adaptive immune systems, with effects on infection, autoimmune disease and cancer. In this Review, we first address the important statistical and informatics aspects that should be considered when characterizing the composition of microbiota. We next highlight the effects of the microbiota on the immune system and the implications of these effects on organ failure and transplantation. Finally, we reflect on the future perspectives for studies of the microbiota, including novel diagnostic tests and therapeutics.
Collapse
|
48
|
Precechtelova J, Borsanyiova M, Sarmirova S, Bopegamage S. Type I diabetes mellitus: genetic factors and presumptive enteroviral etiology or protection. J Pathog 2014; 2014:738512. [PMID: 25574400 PMCID: PMC4276674 DOI: 10.1155/2014/738512] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 07/14/2014] [Accepted: 11/09/2014] [Indexed: 02/06/2023] Open
Abstract
We review type 1 diabetes and host genetic components, as well as epigenetics and viruses associated with type 1 diabetes, with added emphasis on the enteroviruses, which are often associated with triggering the disease. Genus Enterovirus is classified into twelve species of which seven (Enterovirus A, Enterovirus B, Enterovirus C, and Enterovirus D and Rhinovirus A, Rhinovirus B, and Rhinovirus C) are human pathogens. These viruses are transmitted mainly by the fecal-oral route; they may also spread via the nasopharyngeal route. Enterovirus infections are highly prevalent, but these infections are usually subclinical or cause a mild flu-like illness. However, infections caused by enteroviruses can sometimes be serious, with manifestations of meningoencephalitis, paralysis, myocarditis, and in neonates a fulminant sepsis-like syndrome. These viruses are often implicated in chronic (inflammatory) diseases as chronic myocarditis, chronic pancreatitis, and type 1 diabetes. In this review we discuss the currently suggested mechanisms involved in the viral induction of type 1 diabetes. We recapitulate current basic knowledge and definitions.
Collapse
Affiliation(s)
- Jana Precechtelova
- Enterovirus Laboratory, Faculty of Medicine, Slovak Medical University, Limbova 12, 83303 Bratislava, Slovakia
| | - Maria Borsanyiova
- Enterovirus Laboratory, Faculty of Medicine, Slovak Medical University, Limbova 12, 83303 Bratislava, Slovakia
| | - Sona Sarmirova
- Enterovirus Laboratory, Faculty of Medicine, Slovak Medical University, Limbova 12, 83303 Bratislava, Slovakia
| | - Shubhada Bopegamage
- Enterovirus Laboratory, Faculty of Medicine, Slovak Medical University, Limbova 12, 83303 Bratislava, Slovakia
| |
Collapse
|
49
|
Szablewski L. Role of immune system in type 1 diabetes mellitus pathogenesis. Int Immunopharmacol 2014; 22:182-91. [PMID: 24993340 DOI: 10.1016/j.intimp.2014.06.033] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 06/16/2014] [Accepted: 06/18/2014] [Indexed: 12/26/2022]
Abstract
The immune system is the body's natural defense system against invading pathogens. It protects the body from infection and works to communicate an individual's well-being through a complex network of interconnected cells and cytokines. This system is an associated host defense. An uncontrolled immune system has the potential to trigger negative complications in the host. Type 1 diabetes results from the destruction of pancreatic β-cells by a β-cell-specific autoimmune process. Examples of β-cell autoantigens are insulin, glutamic acid decarboxylase, tyrosine phosphatase, and insulinoma antigen. There are many autoimmune diseases, but type 1 diabetes mellitus is one of the well-characterized autoimmune diseases. The mechanisms involved in the β-cell destruction are still not clear; it is generally believed that β-cell autoantigens, macrophages, dendritic cells, B lymphocytes, and T lymphocytes are involved in the β-cell-specific autoimmune process. It is necessary to determine what exact factors are causing the immune system to become unregulated in such a manner as to promote an autoimmune response.
Collapse
Affiliation(s)
- Leszek Szablewski
- General Biology and Parasitology, Center of Biostructure Research, Medical University of Warsaw, 5 Chalubinskiego Str., 02-004 Warsaw, Poland.
| |
Collapse
|
50
|
Sarkar T, Das S, Nandy P, Bhowmick R, Nandy A. In silico study of potential autoimmune threats from rotavirus infection. Comput Biol Chem 2014; 51:51-6. [PMID: 24929545 DOI: 10.1016/j.compbiolchem.2014.05.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 05/17/2014] [Accepted: 05/27/2014] [Indexed: 02/05/2023]
Abstract
Rotavirus, the major cause of infantile nonbacterial diarrhea, was found to be associated with development of diabetes-associated auto-antibodies. In our study we tried to find out further potential autoimmune threats of this virus using bioinformatics approach. We took rotaviral proteins to study similarity with Homo sapiens proteome and found most conserved structural protein VP6 matches at two regions with ryanodine receptor, an autoimmune target associated with myasthenia gravis. Myasthenia gravis, a chronic neurodegenerative autoimmune disorder with no typical known reason, is characterized by fluctuating muscle weakness which is typically enhanced during muscular effort. Affected patients generate auto antibodies against mainly acetyl choline receptor and sarcoplasmic reticulum calcium-release channel protein ryanodine receptor. Further, we observed that two regions which matched with ryanodine receptor remain conserved in all circulating rotaviral strains and showed significant antigenecity with respect to myasthenia gravis associated HLA haplotypes. Overall, our study detected rotaviral VP6 as a potential threat for myasthenia gravis and enlighten an area of virus associated autoimmune research.
Collapse
Affiliation(s)
- Tapati Sarkar
- Department of Physics, Jadavpur University, Kolkata 700 032, India.
| | - Sukhen Das
- Department of Physics, Jadavpur University, Kolkata 700 032, India
| | - Papiya Nandy
- Department of Physics, Jadavpur University, Kolkata 700 032, India
| | - Rahul Bhowmick
- Department of Virology, National Institute of Cholera and Enteric Diseases, Kolkata 700010, India
| | - Ashesh Nandy
- Centre for Interdisciplinary Research and Education, Kolkata 700032, India
| |
Collapse
|