1
|
Li Y, Xu X, Wu X, Li J, Chen S, Chen D, Li G, Tang Z. Cell polarization in ischemic stroke: molecular mechanisms and advances. Neural Regen Res 2025; 20:632-645. [PMID: 38886930 PMCID: PMC11433909 DOI: 10.4103/nrr.nrr-d-23-01336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/23/2023] [Accepted: 12/18/2023] [Indexed: 06/20/2024] Open
Abstract
Ischemic stroke is a cerebrovascular disease associated with high mortality and disability rates. Since the inflammation and immune response play a central role in driving ischemic damage, it becomes essential to modulate excessive inflammatory reactions to promote cell survival and facilitate tissue repair around the injury site. Various cell types are involved in the inflammatory response, including microglia, astrocytes, and neutrophils, each exhibiting distinct phenotypic profiles upon stimulation. They display either proinflammatory or anti-inflammatory states, a phenomenon known as 'cell polarization.' There are two cell polarization therapy strategies. The first involves inducing cells into a neuroprotective phenotype in vitro, then reintroducing them autologously. The second approach utilizes small molecular substances to directly affect cells in vivo. In this review, we elucidate the polarization dynamics of the three reactive cell populations (microglia, astrocytes, and neutrophils) in the context of ischemic stroke, and provide a comprehensive summary of the molecular mechanisms involved in their phenotypic switching. By unraveling the complexity of cell polarization, we hope to offer insights for future research on neuroinflammation and novel therapeutic strategies for ischemic stroke.
Collapse
Affiliation(s)
- Yuanwei Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xiaoxiao Xu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xuan Wu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Jiarui Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Shiling Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Danyang Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Gaigai Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Zhouping Tang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
2
|
Maida CD, Norrito RL, Rizzica S, Mazzola M, Scarantino ER, Tuttolomondo A. Molecular Pathogenesis of Ischemic and Hemorrhagic Strokes: Background and Therapeutic Approaches. Int J Mol Sci 2024; 25:6297. [PMID: 38928006 PMCID: PMC11203482 DOI: 10.3390/ijms25126297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Stroke represents one of the neurological diseases most responsible for death and permanent disability in the world. Different factors, such as thrombus, emboli and atherosclerosis, take part in the intricate pathophysiology of stroke. Comprehending the molecular processes involved in this mechanism is crucial to developing new, specific and efficient treatments. Some common mechanisms are excitotoxicity and calcium overload, oxidative stress and neuroinflammation. Furthermore, non-coding RNAs (ncRNAs) are critical in pathophysiology and recovery after cerebral ischemia. ncRNAs, particularly microRNAs, and long non-coding RNAs (lncRNAs) are essential for angiogenesis and neuroprotection, and they have been suggested to be therapeutic, diagnostic and prognostic tools in cerebrovascular diseases, including stroke. This review summarizes the intricate molecular mechanisms underlying ischemic and hemorrhagic stroke and delves into the function of miRNAs in the development of brain damage. Furthermore, we will analyze new perspectives on treatment based on molecular mechanisms in addition to traditional stroke therapies.
Collapse
Affiliation(s)
- Carlo Domenico Maida
- Department of Internal Medicine, S. Elia Hospital, 93100 Caltanissetta, Italy;
- Molecular and Clinical Medicine Ph.D. Programme, University of Palermo, 90133 Palermo, Italy
| | - Rosario Luca Norrito
- U.O.C di Medicina Interna con Stroke Care, Dipartimento di Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro”, University of Palermo, 90133 Palermo, Italy; (R.L.N.); (M.M.); (A.T.)
| | - Salvatore Rizzica
- Department of Internal Medicine, S. Elia Hospital, 93100 Caltanissetta, Italy;
| | - Marco Mazzola
- U.O.C di Medicina Interna con Stroke Care, Dipartimento di Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro”, University of Palermo, 90133 Palermo, Italy; (R.L.N.); (M.M.); (A.T.)
| | - Elisa Rita Scarantino
- Division of Geriatric and Intensive Care Medicine, Azienda Ospedaliera Universitaria Careggi, University of Florence, 50134 Florence, Italy;
| | - Antonino Tuttolomondo
- U.O.C di Medicina Interna con Stroke Care, Dipartimento di Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro”, University of Palermo, 90133 Palermo, Italy; (R.L.N.); (M.M.); (A.T.)
| |
Collapse
|
3
|
Sun F, Zhou J, Chen X, Yang T, Wang G, Ge J, Zhang Z, Mei Z. No-reflow after recanalization in ischemic stroke: From pathomechanisms to therapeutic strategies. J Cereb Blood Flow Metab 2024; 44:857-880. [PMID: 38420850 PMCID: PMC11318407 DOI: 10.1177/0271678x241237159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 01/07/2024] [Accepted: 02/18/2024] [Indexed: 03/02/2024]
Abstract
Endovascular reperfusion therapy is the primary strategy for acute ischemic stroke. No-reflow is a common phenomenon, which is defined as the failure of microcirculatory reperfusion despite clot removal by thrombolysis or mechanical embolization. It has been reported that up to 25% of ischemic strokes suffer from no-reflow, which strongly contributes to an increased risk of poor clinical outcomes. No-reflow is associated with functional and structural alterations of cerebrovascular microcirculation, and the injury to the microcirculation seriously hinders the neural functional recovery following macrovascular reperfusion. Accumulated evidence indicates that pathology of no-reflow is linked to adhesion, aggregation, and rolling of blood components along the endothelium, capillary stagnation with neutrophils, astrocytes end-feet, and endothelial cell edema, pericyte contraction, and vasoconstriction. Prevention or treatment strategies aim to alleviate or reverse these pathological changes, including targeted therapies such as cilostazol, adhesion molecule blocking antibodies, peroxisome proliferator-activated receptors (PPARs) activator, adenosine, pericyte regulators, as well as adjunctive therapies, such as extracorporeal counterpulsation, ischemic preconditioning, and alternative or complementary therapies. Herein, we provide an overview of pathomechanisms, predictive factors, diagnosis, and intervention strategies for no-reflow, and attempt to convey a new perspective on the clinical management of no-reflow post-ischemic stroke.
Collapse
Affiliation(s)
- Feiyue Sun
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jing Zhou
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Xiangyu Chen
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Tong Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Guozuo Wang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jinwen Ge
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Hunan Academy of Chinese Medicine, Changsha, Hunan, China
| | - Zhanwei Zhang
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Zhigang Mei
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, College of Medicine and Health Sciences, China Three Gorges University, Yichang, Hubei, China
| |
Collapse
|
4
|
Noll JM, Sherafat AA, Ford GD, Ford BD. The case for neuregulin-1 as a clinical treatment for stroke. Front Cell Neurosci 2024; 18:1325630. [PMID: 38638304 PMCID: PMC11024452 DOI: 10.3389/fncel.2024.1325630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 03/01/2024] [Indexed: 04/20/2024] Open
Abstract
Ischemic stroke is the leading cause of serious long-term disability and the 5th leading cause of death in the United States. Revascularization of the occluded cerebral artery, either by thrombolysis or endovascular thrombectomy, is the only effective, clinically-approved stroke therapy. Several potentially neuroprotective agents, including glutamate antagonists, anti-inflammatory compounds and free radical scavenging agents were shown to be effective neuroprotectants in preclinical animal models of brain ischemia. However, these compounds did not demonstrate efficacy in clinical trials with human patients following stroke. Proposed reasons for the translational failure include an insufficient understanding on the cellular and molecular pathophysiology of ischemic stroke, lack of alignment between preclinical and clinical studies and inappropriate design of clinical trials based on the preclinical findings. Therefore, novel neuroprotective treatments must be developed based on a clearer understanding of the complex spatiotemporal mechanisms of ischemic stroke and with proper clinical trial design based on the preclinical findings from specific animal models of stroke. We and others have demonstrated the clinical potential for neuregulin-1 (NRG-1) in preclinical stroke studies. NRG-1 significantly reduced ischemia-induced neuronal death, neuroinflammation and oxidative stress in rodent stroke models with a therapeutic window of >13 h. Clinically, NRG-1 was shown to be safe in human patients and improved cardiac function in multisite phase II studies for heart failure. This review summarizes previous stroke clinical candidates and provides evidence that NRG-1 represents a novel, safe, neuroprotective strategy that has potential therapeutic value in treating individuals after acute ischemic stroke.
Collapse
Affiliation(s)
- Jessica M. Noll
- Division of Biomedical Sciences, University of California-Riverside School of Medicine, Riverside, CA, United States
- Nanostring Technologies, Seattle, WA, United States
| | - Arya A. Sherafat
- Division of Biomedical Sciences, University of California-Riverside School of Medicine, Riverside, CA, United States
| | - Gregory D. Ford
- Southern University-New Orleans, New Orleans, LA, United States
| | - Byron D. Ford
- Department of Anatomy, Howard University College of Medicine, Washington, DC, United States
| |
Collapse
|
5
|
Guerra-Espinosa C, Jiménez-Fernández M, Sánchez-Madrid F, Serrador JM. ICAMs in Immunity, Intercellular Adhesion and Communication. Cells 2024; 13:339. [PMID: 38391953 PMCID: PMC10886500 DOI: 10.3390/cells13040339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 02/24/2024] Open
Abstract
Interactions among leukocytes and leukocytes with immune-associated auxiliary cells represent an essential feature of the immune response that requires the involvement of cell adhesion molecules (CAMs). In the immune system, CAMs include a wide range of members pertaining to different structural and functional families involved in cell development, activation, differentiation and migration. Among them, β2 integrins (LFA-1, Mac-1, p150,95 and αDβ2) are predominantly involved in homotypic and heterotypic leukocyte adhesion. β2 integrins bind to intercellular (I)CAMs, actin cytoskeleton-linked receptors belonging to immunoglobulin superfamily (IgSF)-CAMs expressed by leukocytes and vascular endothelial cells, enabling leukocyte activation and transendothelial migration. β2 integrins have long been viewed as the most important ICAMs partners, propagating intracellular signalling from β2 integrin-ICAM adhesion receptor interaction. In this review, we present previous evidence from pioneering studies and more recent findings supporting an important role for ICAMs in signal transduction. We also discuss the contribution of immune ICAMs (ICAM-1, -2, and -3) to reciprocal cell signalling and function in processes in which β2 integrins supposedly take the lead, paying particular attention to T cell activation, differentiation and migration.
Collapse
Affiliation(s)
- Claudia Guerra-Espinosa
- Immune System Development and Function Unit, Centro de Biología Molecular “Severo Ochoa”, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, 28049 Madrid, Spain;
| | - María Jiménez-Fernández
- Immunology Department, Instituto de Investigación Sanitaria Hospital Universitario La Princesa, Universidad Autónoma de Madrid, 28006 Madrid, Spain; (M.J.-F.); (F.S.-M.)
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 29029 Madrid, Spain
| | - Francisco Sánchez-Madrid
- Immunology Department, Instituto de Investigación Sanitaria Hospital Universitario La Princesa, Universidad Autónoma de Madrid, 28006 Madrid, Spain; (M.J.-F.); (F.S.-M.)
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 29029 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Juan M. Serrador
- Immune System Development and Function Unit, Centro de Biología Molecular “Severo Ochoa”, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, 28049 Madrid, Spain;
| |
Collapse
|
6
|
Gong Z, Guo J, Liu B, Guo Y, Cheng C, Jiang Y, Liang N, Hu M, Song T, Yang L, Li H, Zhang H, Zong X, Che Q, Shi N. Mechanisms of immune response and cell death in ischemic stroke and their regulation by natural compounds. Front Immunol 2024; 14:1287857. [PMID: 38274789 PMCID: PMC10808662 DOI: 10.3389/fimmu.2023.1287857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 12/26/2023] [Indexed: 01/27/2024] Open
Abstract
Ischemic stroke (IS), which is the third foremost cause of disability and death worldwide, has inflammation and cell death as its main pathological features. IS can lead to neuronal cell death and release factors such as damage-related molecular patterns, stimulating the immune system to release inflammatory mediators, thereby resulting in inflammation and exacerbating brain damage. Currently, there are a limited number of treatment methods for IS, which is a fact necessitating the discovery of new treatment targets. For this review, current research on inflammation and cell death in ischemic stroke was summarized. The complex roles and pathways of the principal immune cells (microglia, astrocyte, neutrophils, T lymphocytes, and monocytes/macrophage) in the immune system after IS in inflammation are discussed. The mechanisms of immune cell interactions and the cytokines involved in these interactions are summarized. Moreover, the cell death mechanisms (pyroptosis, apoptosis, necroptosis, PANoptosis, and ferroptosis) and pathways after IS are explored. Finally, a summary is provided of the mechanism of action of natural pharmacological active ingredients in the treatment of IS. Despite significant recent progress in research on IS, there remain many challenges that need to be overcome.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Qianzi Che
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Nannan Shi
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
7
|
Deng G, Chu YH, Xiao J, Shang K, Zhou LQ, Qin C, Tian DS. Risk Factors, Pathophysiologic Mechanisms, and Potential Treatment Strategies of Futile Recanalization after Endovascular Therapy in Acute Ischemic Stroke. Aging Dis 2023; 14:2096-2112. [PMID: 37199580 PMCID: PMC10676786 DOI: 10.14336/ad.2023.0321-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/22/2023] [Indexed: 05/19/2023] Open
Abstract
Endovascular therapy is the first-line treatment for acute ischemic stroke. However, studies have shown that, even with the timely opening of occluded blood vessels, nearly half of all patients treated with endovascular therapy for acute ischemic stroke still have poor functional recovery, a phenomenon called "futile recanalization.". The pathophysiology of futile recanalization is complex and may include tissue no-reflow (microcirculation reperfusion failure despite recanalization of the occluded large artery), early arterial reocclusion (reocclusion of the recanalized artery 24-48 hours post endovascular therapy), poor collateral circulation, hemorrhagic transformation (cerebral bleeding following primary ischemic stroke), impaired cerebrovascular autoregulation, and large hypoperfusion volume. Therapeutic strategies targeting these mechanisms have been attempted in preclinical research; however, translation to the bedside remains to be explored. This review summarizes the risk factors, pathophysiological mechanisms, and targeted therapy strategies of futile recanalization, focusing on the mechanisms and targeted therapy strategies of no-reflow to deepen the understanding of this phenomenon and provide new translational research ideas and potential intervention targets for improving the efficacy of endovascular therapy for acute ischemic stroke.
Collapse
Affiliation(s)
- Gang Deng
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yun-hui Chu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jun Xiao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ke Shang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Luo-Qi Zhou
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chuan Qin
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Dai-Shi Tian
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
8
|
Li C, Hu J, Xing Y, Han J, Zhang A, Zhang Y, Hua Y, Tian Z, Bai Y. Constraint-induced movement therapy alleviates motor impairment by inhibiting the accumulation of neutrophil extracellular traps in ischemic cortex. Neurobiol Dis 2023; 179:106064. [PMID: 36878327 DOI: 10.1016/j.nbd.2023.106064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 02/25/2023] [Accepted: 03/01/2023] [Indexed: 03/07/2023] Open
Abstract
Stroke is a major cause of mortality and morbidity and most acute strokes are ischemic. Evidence-based medicine has demonstrated the effectiveness of constraint-induced movement therapy (CIMT) in the recovery of motor function in patients after ischemic stroke, but the specific treatment mechanism remains unclear. Herein, our integrated transcriptomics and multiple enrichment analysis studies, including Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and gene set enrichment analysis (GSEA) studies show that CIMT conduction broadly curtails immune response, neutrophil chemotaxis, and chemokine-mediated signaling pathway, CCR chemokine receptor binding. Those suggest the potential effect of CIMT on neutrophils in ischemic mice brain parenchyma. Recent studies have found that accumulating granulocytes release extracellular web-like structures composed of DNA and proteins called neutrophil extracellular traps (NETs), which destruct neurological function primarily by disrupting the blood-brain barrier and promoting thrombosis. However, the temporal and spatial distribution of neutrophils and their released NETs in parenchyma and their damaging effects on nerve cells remain unclear. Thus, utilizing immunofluorescence and flow cytometry, our analyses uncovered that NETs erode multiple regions such as primary motor cortex (M1), striatum (Str), nucleus of the vertical limb of the diagonal band (VDB), nucleus of the horizontal limb of the diagonal band (HDB) and medial septal nucleus (MS), and persist in the brain parenchyma for at least 14 days, while CIMT can reduce the content of NETs and chemokines CCL2 and CCL5 in M1. Intriguingly, CIMT failed to further reduce neurological deficits after inhibiting the NET formation by pharmacologic inhibition of peptidylarginine deiminase 4 (PAD4). Collectively, these results demonstrate that CIMT could alleviate cerebral ischemic injury induced locomotor deficits by modulating the activation of neutrophils. These data are expected to provide direct evidence for the expression of NETs in ischemic brain parenchyma and novel insights into the mechanisms of CIMT protecting against ischemic brain injury.
Collapse
Affiliation(s)
- Congqin Li
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jian Hu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Ying Xing
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jing Han
- State Key Laboratory of Medical Neurobiology, Department of Integrative Medicine and Neurobiology, Brain Science Collaborative Innovation Center, School of Basic Medical Sciences, Institutes of Brain Science, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Anjing Zhang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yuqian Zhang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yan Hua
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhanzhuang Tian
- State Key Laboratory of Medical Neurobiology, Department of Integrative Medicine and Neurobiology, Brain Science Collaborative Innovation Center, School of Basic Medical Sciences, Institutes of Brain Science, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Yulong Bai
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China; National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, China; National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
9
|
Foussard N, Rouault P, Cornuault L, Reynaud A, Buys ES, Chapouly C, Gadeau AP, Couffinhal T, Mohammedi K, Renault MA. Praliciguat Promotes Ischemic Leg Reperfusion in Leptin Receptor-Deficient Mice. Circ Res 2023; 132:34-48. [PMID: 36448444 DOI: 10.1161/circresaha.122.322033] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
BACKGROUND Lower-limb peripheral artery disease is one of the major complications of diabetes. Peripheral artery disease is associated with poor limb and cardiovascular prognoses, along with a dramatic decrease in life expectancy. Despite major medical advances in the treatment of diabetes, a substantial therapeutic gap remains in the peripheral artery disease population. Praliciguat is an orally available sGC (soluble guanylate cyclase) stimulator that has been reported both preclinically and in early stage clinical trials to have favorable effects in metabolic and hemodynamic outcomes, suggesting that it may have a potential beneficial effect in peripheral artery disease. METHODS We evaluated the effect of praliciguat on hind limb ischemia recovery in a mouse model of type 2 diabetes. Hind limb ischemia was induced in leptin receptor-deficient (Leprdb/db) mice by ligation and excision of the left femoral artery. Praliciguat (10 mg/kg/day) was administered in the diet starting 3 days before surgery. RESULTS Twenty-eight days after surgery, ischemic foot perfusion and function parameters were better in praliciguat-treated mice than in vehicle controls. Improved ischemic foot perfusion was not associated with either improved traditional cardiovascular risk factors (ie, weight, glycemia) or increased angiogenesis. However, treatment with praliciguat significantly increased arteriole diameter, decreased ICAM1 (intercellular adhesion molecule 1) expression, and prevented the accumulation of oxidative proangiogenic and proinflammatory muscle fibers. While investigating the mechanism underlying the beneficial effects of praliciguat therapy, we found that praliciguat significantly downregulated Myh2 and Cxcl12 mRNA expression in cultured myoblasts and that conditioned medium form praliciguat-treated myoblast decreased ICAM1 mRNA expression in endothelial cells. These results suggest that praliciguat therapy may decrease ICAM1 expression in endothelial cells by downregulating Cxcl12 in myocytes. CONCLUSIONS Our results demonstrated that praliciguat promotes blood flow recovery in the ischemic muscle of mice with type 2 diabetes, at least in part by increasing arteriole diameter and by downregulating ICAM1 expression.
Collapse
Affiliation(s)
- Ninon Foussard
- Univ. Bordeaux, Inserm, Biology of Cardiovascular Diseases, Pessac, France (N.F., P.R., L.C., A.R., C.C., A.-P.G., T.C., K.M., M.-A.R.)
| | - Paul Rouault
- Univ. Bordeaux, Inserm, Biology of Cardiovascular Diseases, Pessac, France (N.F., P.R., L.C., A.R., C.C., A.-P.G., T.C., K.M., M.-A.R.)
| | - Lauriane Cornuault
- Univ. Bordeaux, Inserm, Biology of Cardiovascular Diseases, Pessac, France (N.F., P.R., L.C., A.R., C.C., A.-P.G., T.C., K.M., M.-A.R.)
| | - Annabel Reynaud
- Univ. Bordeaux, Inserm, Biology of Cardiovascular Diseases, Pessac, France (N.F., P.R., L.C., A.R., C.C., A.-P.G., T.C., K.M., M.-A.R.)
| | | | - Candice Chapouly
- Univ. Bordeaux, Inserm, Biology of Cardiovascular Diseases, Pessac, France (N.F., P.R., L.C., A.R., C.C., A.-P.G., T.C., K.M., M.-A.R.)
| | - Alain-Pierre Gadeau
- Univ. Bordeaux, Inserm, Biology of Cardiovascular Diseases, Pessac, France (N.F., P.R., L.C., A.R., C.C., A.-P.G., T.C., K.M., M.-A.R.)
| | - Thierry Couffinhal
- Univ. Bordeaux, Inserm, Biology of Cardiovascular Diseases, Pessac, France (N.F., P.R., L.C., A.R., C.C., A.-P.G., T.C., K.M., M.-A.R.)
| | - Kamel Mohammedi
- Univ. Bordeaux, Inserm, Biology of Cardiovascular Diseases, Pessac, France (N.F., P.R., L.C., A.R., C.C., A.-P.G., T.C., K.M., M.-A.R.)
| | - Marie-Ange Renault
- Univ. Bordeaux, Inserm, Biology of Cardiovascular Diseases, Pessac, France (N.F., P.R., L.C., A.R., C.C., A.-P.G., T.C., K.M., M.-A.R.)
| |
Collapse
|
10
|
Caimi G, Lo Presti R, Carollo C, Montana M, Carlisi M. Polymorphonuclear phenotypical expression of CD18, at baseline and after in vitro activation, in several clinical disorders: Revision of our case series. Clin Hemorheol Microcirc 2023; 85:41-58. [PMID: 37482987 DOI: 10.3233/ch-231771] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
BACKGROUND In relation to the different and important roles of the beta2 integrins, we have revisited the expression of polymorphonuclear leukocyte CD18 in several clinical disorders, at baseline and after in vitro activation. SUBJECTS we have examined subjects with type 1 diabetes mellitus, vascular atherosclerotic disease, type 2 diabetes mellitus without and with macrovascular complications, chronic renal failure on conservative treatment, essential hypertension, deep venous thrombosis, acute ischemic stroke and subjects with venous leg ulcers. METHODS unfractioned leukocyte suspension was prepared according to the Mikita's method, while the leukocyte were separated into mononuclear and polymorphonuclear cells with a Ficoll-Hypaque medium. Using specific monoclonal antibody, the CD18 expression was evaluated with cytofluorimetric analysis, using FACScan (Becton Dickinson) be Cellquest software; the activation in vitro with PMA was effected according to modified Yasui and Masuda methods. RESULTS in type 1 diabetes mellitus, at baseline CD18 is under expressed in comparison with normal control, and not changes after PMA activation were observed; in subjects with vascular atherosclerotic disease, in type 2 diabetes mellitus CD18 is over expressed at baseline but does not vary after activation; in subjects with chronic renal failure, essential hypertension and in subjects with acute ischemic stroke the CD18 up-regulate at baseline compared to normal control, and it increases further after activation; in subjects with deep venous thrombosis the CD18 expression is not different from control group at baseline, but it increases after activation; finally, in subjects with venous leg ulcers the CD18 is normally expressed at baseline, and it does not change after PMA activation. CONCLUSIONS in the different clinical disorders, the trend of this integrin subunit provides some specific information, useful to select the best therapeutic strategy in clinical practice.
Collapse
Affiliation(s)
- Gregorio Caimi
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Rosalia Lo Presti
- Department of Psychology, Educational Science and Human Movement, University of Palermo, Palermo, Italy
| | - Caterina Carollo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Maria Montana
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Melania Carlisi
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| |
Collapse
|
11
|
Soni N, Tripathi A, Mukherjee S, Gupta S, Mohanty S, Basu A, Banerjee A. Bone marrow-derived extracellular vesicles modulate the abundance of infiltrating immune cells in the brain and exert an antiviral effect against the Japanese encephalitis virus. FASEB Bioadv 2022; 4:798-815. [PMID: 36479206 PMCID: PMC9721092 DOI: 10.1096/fba.2022-00071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/02/2022] [Accepted: 09/19/2022] [Indexed: 01/18/2024] Open
Abstract
Mesenchymal stem cells (MSCs) have regenerative capacity and have reported a beneficial effect on the Japanese encephalitis virus (JEV) in an encephalitis model. However, the MSCs do not cross the blood-brain barrier and have other disadvantages limiting their therapeutic utility scope. Recently, there has been a shift in concept from a cell-based to a cell-free approach using MSCs-derived extracellular vesicles (MSC-EVs). The MSC-EVs retain regenerative and immunomodulatory capacity as their parental cells. However, the role of MSC-EVs in limiting JEV pathology remains elusive. In this study, we have used Bone marrow (BM)-derived EV (BM-EVs) and assessed their effect on JEV replication and pathogenesis in primary neuronal stem cells and a murine model. The in vitro and in vivo studies suggested that BM-derived EVs delay JEV-induced symptoms and death in mice, improve the length of survival, accelerate neurogenesis in primary neuronal stem cells, reduce JEV-induced neuronal death, and attenuate viral replication. BM-EVs treatment upregulated interferon-stimulated genes. Flow cytometry analysis revealed a reduction in the frequency of macrophages. At the same time, CD4+ T cells and neutrophils were significantly augmented, accompanied by the alteration of cytokine expression with the administration of BM-EVs, reinforcing the immunomodulatory role of EVs during JEV-induced encephalitis. In conclusion, our study describes the beneficial role of BM-EVs in limiting JEV pathology by attenuating virus replication, enhancing antiviral response, and neurogenesis in primary neuronal stem cells. However, BM-EVs do not seem to protect BBB integrity and alter immune cell infiltration into the treated brain.
Collapse
Affiliation(s)
- Naina Soni
- Laboratory of Virology Regional Centre for Biotechnology Faridabad India
| | - Aarti Tripathi
- Laboratory of Virology Regional Centre for Biotechnology Faridabad India
| | - Sriparna Mukherjee
- National Brain Research Centre Manesar India
- Department of Pharmacology and Physiology Pavilion Roger-Gaudry, Universite de Montréal Montréal Québec Canada
| | - Suchi Gupta
- DBT-Centre of Excellence for Stem Cell Research, Stem Cell Facility All India Institute of Medical Sciences New Delhi India
| | - Sujata Mohanty
- DBT-Centre of Excellence for Stem Cell Research, Stem Cell Facility All India Institute of Medical Sciences New Delhi India
| | | | - Arup Banerjee
- Laboratory of Virology Regional Centre for Biotechnology Faridabad India
| |
Collapse
|
12
|
Nadkarni NA, Arias E, Fang R, Haynes ME, Zhang HF, Muller WA, Batra A, Sullivan DP. Platelet Endothelial Cell Adhesion Molecule (PECAM/CD31) Blockade Modulates Neutrophil Recruitment Patterns and Reduces Infarct Size in Experimental Ischemic Stroke. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:1619-1632. [PMID: 35952762 PMCID: PMC9667712 DOI: 10.1016/j.ajpath.2022.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 07/05/2022] [Accepted: 07/14/2022] [Indexed: 12/15/2022]
Abstract
The infiltration of polymorphonuclear leukocytes (PMNs) in ischemia-reperfusion injury (I/RI) has been implicated as a critical component of inflammatory damage following ischemic stroke. However, successful blockade of PMN transendothelial migration (TEM) in preclinical studies has not translated to meaningful clinical outcomes. To investigate this further, leukocyte infiltration patterns were quantified, and these patterns were modulated by blocking platelet endothelial cell adhesion molecule-1 (PECAM), a key regulator of TEM. LysM-eGFP mice and microscopy were used to visualize all myeloid leukocyte recruitment following ischemia/reperfusion. Visual examination showed heterogeneous leukocyte distribution across the infarct at both 24 and 72 hours after I/RI. A semiautomated process was designed to precisely map PMN position across brain sections. Treatment with PECAM function-blocking antibodies did not significantly affect total leukocyte recruitment but did alter their distribution, with more observed at the cortex at both early and later time points (24 hours: 89% PECAM blocked vs. 72% control; 72 hours: 69% PECAM blocked vs. 51% control). This correlated with a decrease in infarct volume. These findings suggest that TEM, in the setting of I/RI in the cerebrovasculature, occurs primarily at the cortical surface. The reduction of stroke size with PECAM blockade suggests that infiltrating PMNs may exacerbate I/RI and indicate the potential therapeutic benefit of regulating the timing and pattern of leukocyte infiltration after stroke.
Collapse
Affiliation(s)
- Neil A Nadkarni
- Department of Neurology, Northwestern University, Chicago, Illinois
| | - Erika Arias
- Department of Pathology, Northwestern University, Chicago, Illinois
| | - Raymond Fang
- Department of Biomedical Engineering, Northwestern University, Chicago, Illinois
| | - Maureen E Haynes
- Department of Pathology, Northwestern University, Chicago, Illinois
| | - Hao F Zhang
- Department of Biomedical Engineering, Northwestern University, Chicago, Illinois
| | - William A Muller
- Department of Pathology, Northwestern University, Chicago, Illinois
| | - Ayush Batra
- Department of Neurology, Northwestern University, Chicago, Illinois; Department of Pathology, Northwestern University, Chicago, Illinois
| | - David P Sullivan
- Department of Pathology, Northwestern University, Chicago, Illinois.
| |
Collapse
|
13
|
Liu X, Xiao G, Wang Y, Shang T, Li Z, Wang H, Pu L, He S, Shao R, Orgah JO, Zhu Y. Qishen Yiqi Dropping Pill facilitates post-stroke recovery of motion and memory loss by modulating ICAM-1-mediated neuroinflammation. Biomed Pharmacother 2022; 153:113325. [DOI: 10.1016/j.biopha.2022.113325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/09/2022] [Accepted: 06/22/2022] [Indexed: 11/28/2022] Open
|
14
|
Stanzione R, Forte M, Cotugno M, Bianchi F, Marchitti S, Rubattu S. Role of DAMPs and of Leukocytes Infiltration in Ischemic Stroke: Insights from Animal Models and Translation to the Human Disease. Cell Mol Neurobiol 2022; 42:545-556. [PMID: 32996044 PMCID: PMC11441194 DOI: 10.1007/s10571-020-00966-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/22/2020] [Indexed: 02/08/2023]
Abstract
Stroke is a leading cause of death and disability worldwide. Several mechanisms are involved in the pathogenesis of ischemic stroke (IS). The contributory role of the inflammatory and immunity processes was demonstrated both in vitro and in animal models, and was confirmed in humans. IS evokes an immediate inflammatory response that involves complex cellular and molecular mechanisms. All components of the innate and adaptive immunity systems are involved in several steps of the ischemic cascade. In the early phase, inflammatory and immune mechanisms contribute to the brain tissue damage, whereas, in the late phase, they participate to the tissue repair processes. In particular, damage-associated molecular patterns (DAMPs) appear critical for the promotion of altered blood brain barrier permeability, leukocytes infiltration, tissue edema and brain injury. Conversely, the activation of regulatory T lymphocytes (Tregs) plays protective effects. The identification of specific cellular/molecular elements belonging to the inflammatory and immune responses, contributing to the brain ischemic injury and tissue remodeling, offers the advantage to design adequate therapeutic strategies. In this article, we will present an overview of the knowledge on inflammatory and immunity processes in IS, with a particular focus on the role of DAMPs and leukocytes infiltration. We will discuss evidence obtained in preclinical models of IS and in humans. The main molecular mechanisms useful for the development of novel therapeutic approaches will be highlighted. The translation of experimental findings to the human disease is still a difficult step to pursue. Further investigations are required to fill up the existing gaps.
Collapse
Affiliation(s)
| | | | | | | | | | - Speranza Rubattu
- IRCCS Neuromed, Pozzilli, IS, Italy.
- Department of Clinical and Molecular Medicine, School of Medicine and Psychology, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
15
|
Yang R, Chen M, Zheng J, Li X, Zhang X. The Role of Heparin and Glycocalyx in Blood-Brain Barrier Dysfunction. Front Immunol 2022; 12:754141. [PMID: 34992593 PMCID: PMC8724024 DOI: 10.3389/fimmu.2021.754141] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/29/2021] [Indexed: 11/13/2022] Open
Abstract
The blood-brain barrier (BBB) functions as a dynamic boundary that protects the central nervous system from blood and plays an important role in maintaining the homeostasis of the brain. Dysfunction of the BBB is a pathophysiological characteristic of multiple neurologic diseases. Glycocalyx covers the luminal side of vascular endothelial cells(ECs). Damage of glycocalyx leads to disruption of the BBB, while inhibiting glycocalyx degradation maintains BBB integrity. Heparin has been recognized as an anticoagulant and it protects endothelial glycocalyx from destruction. In this review, we summarize the role of glycocalyx in BBB formation and the therapeutic potency of heparin to provide a theoretical basis for the treatment of neurological diseases related to BBB breakdown.
Collapse
Affiliation(s)
- Rui Yang
- Department of Critical Care Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Mingming Chen
- Department of Critical Care Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Jiayin Zheng
- Department of Critical Care Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xin Li
- Department of Critical Care Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xiaojuan Zhang
- Department of Critical Care Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
16
|
Sienel RI, Kataoka H, Kim SW, Seker FB, Plesnila N. Adhesion of Leukocytes to Cerebral Venules Precedes Neuronal Cell Death and Is Sufficient to Trigger Tissue Damage After Cerebral Ischemia. Front Neurol 2022; 12:807658. [PMID: 35140676 PMCID: PMC8818753 DOI: 10.3389/fneur.2021.807658] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/20/2021] [Indexed: 12/18/2022] Open
Abstract
Background Leukocytes contribute to tissue damage after cerebral ischemia; however, the mechanisms underlying this process are still unclear. This study investigates the temporal and spatial relationship between vascular leukocyte recruitment and tissue damage and aims to uncover which step of the leukocyte recruitment cascade is involved in ischemic brain injury. Methods Male wild-type, ICAM-1-deficient, anti-CD18 antibody treated, or selectin-deficient [fucusyltransferase (FucT IV/VII−/−)] mice were subjected to 60 min of middle cerebral artery occlusion (MCAo). The interaction between leukocytes and the cerebrovascular endothelium was quantified by in vivo fluorescence microscopy up to 15 h thereafter. Temporal dynamics of neuronal cell death and leukocyte migration were assessed at the same time points and in the same tissue volume by histology. Results In wild-type mice, leukocytes started to firmly adhere to the wall of pial postcapillary venules two hours after reperfusion. Three hours later, neuronal loss started and 13 h later, leukocytes transmigrated into brain tissue. Loss of selectin function did not influence this process. Application of an anti-CD18 antibody or genetic deletion of ICAM-1, however, significantly reduced tight adhesion of leukocytes to the cerebrovascular endothelium (-60%; p < 0.01) and increased the number of viable neurons in the ischemic penumbra by 5-fold (p < 0.01); the number of intraparenchymal leukocytes was not affected. Conclusions Our findings suggest that ischemia triggers only a transient adhesion of leukocytes to the venous endothelium and that inhibition of this process is sufficient to partly prevent ischemic tissue damage.
Collapse
Affiliation(s)
- Rebecca Isabella Sienel
- Laboratory of Experimental Stroke Research, Institute for Stroke and Dementia Research (ISD), University of Munich Medical Center, Munich, Germany
- Munich Cluster of Systems Neurology (Synergy), Munich, Germany
| | - Hiroharu Kataoka
- Department of Neurosurgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Seong-Woong Kim
- Department of Neurosurgery, University of Giessen, Giessen, Germany
| | - Fatma Burcu Seker
- Laboratory of Experimental Stroke Research, Institute for Stroke and Dementia Research (ISD), University of Munich Medical Center, Munich, Germany
- Munich Cluster of Systems Neurology (Synergy), Munich, Germany
| | - Nikolaus Plesnila
- Laboratory of Experimental Stroke Research, Institute for Stroke and Dementia Research (ISD), University of Munich Medical Center, Munich, Germany
- Munich Cluster of Systems Neurology (Synergy), Munich, Germany
- *Correspondence: Nikolaus Plesnila
| |
Collapse
|
17
|
Neutrophil Extracellular Traps Exacerbate Ischemic Brain Damage. Mol Neurobiol 2021; 59:643-656. [PMID: 34748205 DOI: 10.1007/s12035-021-02635-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 11/02/2021] [Indexed: 12/11/2022]
Abstract
Most acute strokes are ischemic, and subsequent neuroinflammation promotes further damage leading to cell death but also plays a beneficial role by promoting cellular repair. Neutrophils are forerunners to brain lesions after ischemic stroke and exert elaborate functions. While neutrophil extracellular traps (NETs) possess a fundamental antimicrobial function within the innate immune system under physiological circumstances, increasing evidence indicates that NETosis, the release process of NETs, occurs in the pathogenic process of stroke. In this review, we focus on the processes of NET formation and clearance, the temporal and spatial alterations of neutrophils and NETs after ischemic damage, and how NETs are involved in several stroke-related phenomena. Generally, NET formation and release processes depend on the generation of reactive oxygen species (ROS) and the activation of nuclear peptidylarginine deiminase-4 (PAD4). The acid-base environment, oxygen concentration, and iron ions around the infarct may also impact NET formation. DNase 1 has been identified as the primary degrader of NETs in serum, while reactive microglia are expected to inhibit the formation of NETs around ischemic lesions by phagocytosis of neutrophils. The neutrophils and NETs are present in the perivascular space ipsilateral to the infarct arising after ischemic damage, peaking between 1 and 3 days postischemia, but their location in the brain parenchyma remains controversial. After the ischemic injury, NETs are involved in the destruction of neurological function primarily by disrupting the blood-brain barrier and promoting thrombosis. The potential effects of NETs on various ischemic nerve cells need to be further investigated, especially in the chronic ischemic phase.
Collapse
|
18
|
Brain Immune Interactions-Novel Emerging Options to Treat Acute Ischemic Brain Injury. Cells 2021; 10:cells10092429. [PMID: 34572077 PMCID: PMC8472028 DOI: 10.3390/cells10092429] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/12/2021] [Accepted: 09/13/2021] [Indexed: 12/25/2022] Open
Abstract
Ischemic stroke is still among the leading causes of mortality and morbidity worldwide. Despite intensive advancements in medical sciences, the clinical options to treat ischemic stroke are limited to thrombectomy and thrombolysis using tissue plasminogen activator within a narrow time window after stroke. Current state of the art knowledge reveals the critical role of local and systemic inflammation after stroke that can be triggered by interactions taking place at the brain and immune system interface. Here, we discuss different cellular and molecular mechanisms through which brain–immune interactions can take place. Moreover, we discuss the evidence how the brain influence immune system through the release of brain derived antigens, damage-associated molecular patterns (DAMPs), cytokines, chemokines, upregulated adhesion molecules, through infiltration, activation and polarization of immune cells in the CNS. Furthermore, the emerging concept of stemness-induced cellular immunity in the context of neurodevelopment and brain disease, focusing on ischemic implications, is discussed. Finally, we discuss current evidence on brain–immune system interaction through the autonomic nervous system after ischemic stroke. All of these mechanisms represent potential pharmacological targets and promising future research directions for clinically relevant discoveries.
Collapse
|
19
|
Bhowmick S, Malat A, Caruso D, Ponery N, D'Mello V, Finn C, Muneer PMA. Intercellular Adhesion Molecule-1-Induced Posttraumatic Brain Injury Neuropathology in the Prefrontal Cortex and Hippocampus Leads to Sensorimotor Function Deficits and Psychological Stress. eNeuro 2021; 8:ENEURO.0242-21.2021. [PMID: 34135004 PMCID: PMC8287878 DOI: 10.1523/eneuro.0242-21.2021] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 06/04/2021] [Indexed: 02/07/2023] Open
Abstract
Intercellular adhesion molecule-1 (ICAM-1) promotes adhesion and transmigration of circulating leukocytes across the blood-brain barrier (BBB). Traumatic brain injury (TBI) causes transmigrated immunocompetent cells to release mediators [function-associated antigen (LFA)-1 and macrophage-1 antigen (Mac-1)] that stimulate glial and endothelial cells to express ICAM-1 and release cytokines, sustaining neuroinflammation and neurodegeneration. Although a strong correlation exists between TBI-mediated inflammation and impairment in functional outcome following brain trauma, the role of ICAM-1 in impairing functional outcome by inducing neuroinflammation and neurodegeneration after TBI remains inconclusive. The experimental TBI was induced in vivo by fluid percussion injury (FPI; 10 and 20 psi) in wild-type (WT) and ICAM-1-/- mice and in vitro by stretch injury (3 psi) in brain endothelial cells. We manipulate ICAM-1 pharmacologically and genetically and conducted several biochemical analyses to gain insight into the mechanisms underlying ICAM-1-mediated neuroinflammation and performed rotarod, grid-walk, sucrose preference, and light-dark tests to assess functional outcome. TBI-induced ICAM-1-mediated neuroinflammation and cell death occur via LFA-1 or Mac-1 signaling pathways that rely on oxidative stress, matrix metalloproteinase (MMP), and vascular endothelial growth factor (VEGF) pathways. The deletion or blocking of ICAM-1 resulted in a better outcome in attenuating neuroinflammation and cell death as marked by the markers such as NF-kB, IL-1β, TNF-α, cleaved-caspase-3 (cl-caspase-3), Annexin V, and by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL), and Trypan blue staining. ICAM-1 deletion in TBI improves sensorimotor, depression, and anxiety-like behavior with significant upregulation of norepinephrine (NE), dopamine (DA) D1 receptor (DAD1R), serotonin (5-HT)1AR, and neuropeptide Y (NPY). This study could establish the significance of ICAM-1 as a novel therapeutic target against the pathophysiology to establish functional recovery after TBI.
Collapse
Affiliation(s)
- Saurav Bhowmick
- Laboratory of CNS injury and Molecular Therapy, JFK Neuroscience Institute, Hackensack Meridian Health JFK University Medical Center, Edison, NJ 08820
| | - Anitha Malat
- Laboratory of CNS injury and Molecular Therapy, JFK Neuroscience Institute, Hackensack Meridian Health JFK University Medical Center, Edison, NJ 08820
| | - Danielle Caruso
- Laboratory of CNS injury and Molecular Therapy, JFK Neuroscience Institute, Hackensack Meridian Health JFK University Medical Center, Edison, NJ 08820
| | - Nizmi Ponery
- Laboratory of CNS injury and Molecular Therapy, JFK Neuroscience Institute, Hackensack Meridian Health JFK University Medical Center, Edison, NJ 08820
| | - Veera D'Mello
- Laboratory of CNS injury and Molecular Therapy, JFK Neuroscience Institute, Hackensack Meridian Health JFK University Medical Center, Edison, NJ 08820
| | - Christina Finn
- Laboratory of CNS injury and Molecular Therapy, JFK Neuroscience Institute, Hackensack Meridian Health JFK University Medical Center, Edison, NJ 08820
| | - P M Abdul Muneer
- Laboratory of CNS injury and Molecular Therapy, JFK Neuroscience Institute, Hackensack Meridian Health JFK University Medical Center, Edison, NJ 08820
- Department of Neurology, Hackensack Meridian School of Medicine, Nutley, NJ 07110
| |
Collapse
|
20
|
Pluta R, Januszewski S, Czuczwar SJ. Neuroinflammation in Post-Ischemic Neurodegeneration of the Brain: Friend, Foe, or Both? Int J Mol Sci 2021; 22:4405. [PMID: 33922467 PMCID: PMC8122836 DOI: 10.3390/ijms22094405] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/18/2021] [Accepted: 04/19/2021] [Indexed: 12/12/2022] Open
Abstract
One of the leading causes of neurological mortality, disability, and dementia worldwide is cerebral ischemia. Among the many pathological phenomena, the immune system plays an important role in the development of post-ischemic degeneration of the brain, leading to the development of neuroinflammatory changes in the brain. After cerebral ischemia, the developing neuroinflammation causes additional damage to the brain cells, but on the other hand it also plays a beneficial role in repair activities. Inflammatory mediators are sources of signals that stimulate cells in the brain and promote penetration, e.g., T lymphocytes, monocytes, platelets, macrophages, leukocytes, and neutrophils from systemic circulation to the brain ischemic area, and this phenomenon contributes to further irreversible ischemic brain damage. In this review, we focus on the issues related to the neuroinflammation that occurs in the brain tissue after ischemia, with particular emphasis on ischemic stroke and its potential treatment strategies.
Collapse
Affiliation(s)
- Ryszard Pluta
- Laboratory of Ischemic and Neurodegenerative Brain Research, Mossakowski Medical Research Institute, Polish Academy of Sciences, PL 02-106 Warsaw, Poland;
| | - Sławomir Januszewski
- Laboratory of Ischemic and Neurodegenerative Brain Research, Mossakowski Medical Research Institute, Polish Academy of Sciences, PL 02-106 Warsaw, Poland;
| | - Stanisław J. Czuczwar
- Department of Pathophysiology, Medical University of Lublin, PL 20-090 Lublin, Poland;
| |
Collapse
|
21
|
Platelet endothelial cell adhesion molecule-1 is a gatekeeper of neutrophil transendothelial migration in ischemic stroke. Brain Behav Immun 2021; 93:277-287. [PMID: 33388423 DOI: 10.1016/j.bbi.2020.12.026] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/24/2020] [Accepted: 12/22/2020] [Indexed: 11/21/2022] Open
Abstract
RATIONALE Adhesion molecules are key elements in stroke-induced brain injury by regulating the migration of effector immune cells from the circulation to the lesion site. Platelet endothelial cell adhesion molecule-1 (PECAM-1) is an adhesion molecule highly expressed on endothelial cells and leukocytes, which controls the final steps of trans-endothelial migration. A functional role for PECAM-1 in post-ischemic brain injury has not yet been demonstrated. OBJECTIVE Using genetic Pecam-1 depletion and PECAM-1 blockade using a neutralizing anti-PECAM-1 antibody, we evaluated the role of PECAM-1 mediated trans-endothelial immune cell migration for ischemic injury, delayed brain atrophy, and brain immune cell infiltrates. Trans-endothelial immune cell migration was furthermore evaluated in cultured human cerebral microvascular endothelial cells. METHODS AND RESULTS Transient middle cerebral artery occlusion (tMCAO) was induced in 10-12-week-old male Pecam-1-/- and Pecam-1+/+ wildtype mice. PECAM-1 levels increased in the ischemic brain tissue due to the infiltration of PECAM-1+ leukocytes. Using magnetic resonance imaging, we observed smaller infarct volume, less edema formation, and less brain atrophy in Pecam-1-/- compared with Pecam-1+/+ wildtype mice. The transmigration of leukocytes, specifical neutrophils, was selectively reduced by Pecam-1-/-, as shown by immune fluorescence and flow cytometry in vivo and transmigration assays in vitro. Importantly, inhibition with an anti-PECAM-1 antibody in wildtype mice decreased neutrophil brain influx and infarct. CONCLUSION PECAM-1 controls the trans-endothelial migration of neutrophils in a mouse model of ischemic stroke. Antibody blockade of PECAM-1 after stroke onset ameliorates stroke severity in mice, making PECAM-1 an interesting target to dampen post-stroke neuroinflammation, reduce ischemic brain injury, and enhance post-ischemic brain remodeling.
Collapse
|
22
|
Profaci CP, Munji RN, Pulido RS, Daneman R. The blood-brain barrier in health and disease: Important unanswered questions. J Exp Med 2020; 217:151582. [PMID: 32211826 PMCID: PMC7144528 DOI: 10.1084/jem.20190062] [Citation(s) in RCA: 412] [Impact Index Per Article: 82.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/21/2019] [Accepted: 11/21/2019] [Indexed: 12/11/2022] Open
Abstract
The blood vessels vascularizing the central nervous system exhibit a series of distinct properties that tightly control the movement of ions, molecules, and cells between the blood and the parenchyma. This "blood-brain barrier" is initiated during angiogenesis via signals from the surrounding neural environment, and its integrity remains vital for homeostasis and neural protection throughout life. Blood-brain barrier dysfunction contributes to pathology in a range of neurological conditions including multiple sclerosis, stroke, and epilepsy, and has also been implicated in neurodegenerative diseases such as Alzheimer's disease. This review will discuss current knowledge and key unanswered questions regarding the blood-brain barrier in health and disease.
Collapse
Affiliation(s)
- Caterina P Profaci
- Department of Neurosciences, University of California, San Diego, San Diego, CA.,Department of Pharmacology, University of California, San Diego, San Diego, CA
| | - Roeben N Munji
- Department of Neurosciences, University of California, San Diego, San Diego, CA.,Department of Pharmacology, University of California, San Diego, San Diego, CA
| | - Robert S Pulido
- Department of Neurosciences, University of California, San Diego, San Diego, CA.,Department of Pharmacology, University of California, San Diego, San Diego, CA
| | - Richard Daneman
- Department of Neurosciences, University of California, San Diego, San Diego, CA.,Department of Pharmacology, University of California, San Diego, San Diego, CA
| |
Collapse
|
23
|
Jiang J, Yu Y. Small molecules targeting cyclooxygenase/prostanoid cascade in experimental brain ischemia: Do they translate? Med Res Rev 2020; 41:828-857. [PMID: 33094540 DOI: 10.1002/med.21744] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/02/2020] [Accepted: 10/11/2020] [Indexed: 12/15/2022]
Abstract
Acute brain ischemia accounts for most of stroke cases and constitutes a leading cause of deaths among adults and permanent disabilities in survivors. Currently, the intravenous thrombolysis is the only available medication for ischemic stroke; mechanical thrombectomy is an emerging alternative treatment for occlusion of large arteries and has shown some promise in selected subsets of patients. However, the overall narrow treatment window and potential risks largely limit the patient eligibility. New druggable targets are needed to innovate the treatment of brain ischemia. As the rate-limiting enzyme in the biosyntheses of prostanoids, cyclooxygenase (COX), particularly the inducible isoform COX-2, has long been implicated in mechanisms of acute stroke-induced brain injury and inflammation. However, the notion of therapeutically targeting COX has been diminished over the past two decades due to significant complications of the cardiovascular and cerebrovascular systems caused by long-term use of COX-2 inhibitor drugs. New treatment strategies targeting the downstream prostanoid signaling receptors regulating the deleterious effects of COX cascade have been proposed. As such, a large number of selective small molecules that negatively or positively modulate these important inflammatory regulators have been evaluated for neuroprotection and other beneficial effects in various animal models of brain ischemia. These timely preclinical studies, though not yet led to clinical innovation, provided new insights into the regulation of inflammatory reactions in the ischemic brain and could guide drug discovery efforts aiming for novel adjunctive strategies, along with current reperfusion therapy, to treat acute brain ischemia with higher specificity and longer therapeutic window.
Collapse
Affiliation(s)
- Jianxiong Jiang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Ying Yu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| |
Collapse
|
24
|
Nanomedicine for Ischemic Stroke. Int J Mol Sci 2020; 21:ijms21207600. [PMID: 33066616 PMCID: PMC7590220 DOI: 10.3390/ijms21207600] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/11/2020] [Accepted: 10/12/2020] [Indexed: 02/07/2023] Open
Abstract
Stroke is a severe brain disease leading to disability and death. Ischemic stroke dominates in stroke cases, and there are no effective therapies in clinic, partly due to the challenges in delivering therapeutics to ischemic sites in the brain. This review is focused on the current knowledge of pathogenesis in ischemic stroke, and its potential therapies and diagnosis. Furthermore, we present recent advances in developments of nanoparticle-based therapeutics for improved treatment of ischemic stroke using polymeric NPs, liposomes and cell-derived nanovesicles. We also address several critical questions in ischemic stroke, such as understanding how nanoparticles cross the blood brain barrier and developing in vivo imaging technologies to address this critical question. Finally, we discuss new opportunities in developing novel therapeutics by targeting activated brain endothelium and inflammatory neutrophils to improve the current therapies for ischemic stroke.
Collapse
|
25
|
Hagemann N, Mohamud Yusuf A, Martiny C, Zhang X, Kleinschnitz C, Gunzer M, Kolesnick R, Gulbins E, Hermann DM. Homozygous Smpd1 deficiency aggravates brain ischemia/ reperfusion injury by mechanisms involving polymorphonuclear neutrophils, whereas heterozygous Smpd1 deficiency protects against mild focal cerebral ischemia. Basic Res Cardiol 2020; 115:64. [PMID: 33057972 PMCID: PMC7560939 DOI: 10.1007/s00395-020-00823-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 09/15/2020] [Indexed: 12/29/2022]
Abstract
By cleaving sphingomyelin into ceramide, which is an essential component of plasma membrane microdomains, acid sphingomyelinase (Asm) pivotally controls cell signaling. To define how the activation of the Asm/ceramide pathway, which occurs within seconds to minutes upon stress stimuli, influences brain ischemia/reperfusion (I/R) injury, we exposed male and female wildtype mice carrying both alleles of Asm's gene sphingomyelinase phosphodiesterase-1 (Smpd1+/+), heterozygously Asm-deficient mice (Smpd1+/-) and homozygously Asm-deficient mice (Smpd1-/-) of different age (8, 12 or 16 weeks) to 30, 60 or 90 min intraluminal middle cerebral artery occlusion (MCAO). For studying the contribution of brain-invading polymorphonuclear neutrophils (PMN) to I/R injury, PMNs were depleted by delivery of a PMN-specific Ly6G antibody. In male and female mice exposed to 30 min, but not 60 or 90 min MCAO, homozygous Smpd1-/- consistently increased I/R injury, blood-brain barrier permeability and brain leukocyte and PMN infiltration, whereas heterozygous Smpd1+/- reduced I/R injury. Increased abundance of the intercellular leukocyte adhesion molecule ICAM-1 was noted on cerebral microvessels of Smpd1-/- mice. PMN depletion by anti-Ly6G delivery prevented the exacerbation of I/R injury in Smpd1-/- compared with wildtype mice and reduced brain leukocyte infiltrates. Our results show that Asm tempers leukocyte entry into the reperfused ischemic brain, thereby attenuating I/R injury.
Collapse
Affiliation(s)
- Nina Hagemann
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Ayan Mohamud Yusuf
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Carlotta Martiny
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Xiaoni Zhang
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Christoph Kleinschnitz
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Matthias Gunzer
- Institute of Experimental Immunology and Imaging, University Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | | | - Erich Gulbins
- Department of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Dirk M Hermann
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany.
| |
Collapse
|
26
|
Maida CD, Norrito RL, Daidone M, Tuttolomondo A, Pinto A. Neuroinflammatory Mechanisms in Ischemic Stroke: Focus on Cardioembolic Stroke, Background, and Therapeutic Approaches. Int J Mol Sci 2020; 21:E6454. [PMID: 32899616 PMCID: PMC7555650 DOI: 10.3390/ijms21186454] [Citation(s) in RCA: 341] [Impact Index Per Article: 68.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 08/29/2020] [Accepted: 09/02/2020] [Indexed: 12/12/2022] Open
Abstract
One of the most important causes of neurological morbidity and mortality in the world is ischemic stroke. It can be a result of multiple events such as embolism with a cardiac origin, occlusion of small vessels in the brain, and atherosclerosis affecting the cerebral circulation. Increasing evidence shows the intricate function played by the immune system in the pathophysiological variations that take place after cerebral ischemic injury. Following the ischemic cerebral harm, we can observe consequent neuroinflammation that causes additional damage provoking the death of the cells; on the other hand, it also plays a beneficial role in stimulating remedial action. Immune mediators are the origin of signals with a proinflammatory position that can boost the cells in the brain and promote the penetration of numerous inflammatory cytotypes (various subtypes of T cells, monocytes/macrophages, neutrophils, and different inflammatory cells) within the area affected by ischemia; this process is responsible for further ischemic damage of the brain. This inflammatory process seems to involve both the cerebral tissue and the whole organism in cardioembolic stroke, the stroke subtype that is associated with more severe brain damage and a consequent worse outcome (more disability, higher mortality). In this review, the authors want to present an overview of the present learning of the mechanisms of inflammation that takes place in the cerebral tissue and the role of the immune system involved in ischemic stroke, focusing on cardioembolic stroke and its potential treatment strategies.
Collapse
Affiliation(s)
- Carlo Domenico Maida
- U.O.C di Medicina Interna con Stroke Care, Dipartimento di Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro”, University of Palermo, 90127 Palermo, Italy; (R.L.N.); (M.D.); (A.T.); (A.P.)
- Molecular and Clinical Medicine PhD Programme, University of Palermo, 90127 Palermo, Italy
| | - Rosario Luca Norrito
- U.O.C di Medicina Interna con Stroke Care, Dipartimento di Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro”, University of Palermo, 90127 Palermo, Italy; (R.L.N.); (M.D.); (A.T.); (A.P.)
| | - Mario Daidone
- U.O.C di Medicina Interna con Stroke Care, Dipartimento di Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro”, University of Palermo, 90127 Palermo, Italy; (R.L.N.); (M.D.); (A.T.); (A.P.)
| | - Antonino Tuttolomondo
- U.O.C di Medicina Interna con Stroke Care, Dipartimento di Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro”, University of Palermo, 90127 Palermo, Italy; (R.L.N.); (M.D.); (A.T.); (A.P.)
| | - Antonio Pinto
- U.O.C di Medicina Interna con Stroke Care, Dipartimento di Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro”, University of Palermo, 90127 Palermo, Italy; (R.L.N.); (M.D.); (A.T.); (A.P.)
| |
Collapse
|
27
|
Hou Y, Yang D, Zhang Q, Wang X, Yang J, Wu C. Pseudoginsenoside-F11 ameliorates ischemic neuron injury by regulating the polarization of neutrophils and macrophages in vitro. Int Immunopharmacol 2020; 85:106564. [DOI: 10.1016/j.intimp.2020.106564] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 04/15/2020] [Accepted: 05/03/2020] [Indexed: 01/20/2023]
|
28
|
Ito S, Oishi M, Ogata S, Uemura T, Couraud PO, Masuda T, Ohtsuki S. Identification of Cell-Surface Proteins Endocytosed by Human Brain Microvascular Endothelial Cells In Vitro. Pharmaceutics 2020; 12:pharmaceutics12060579. [PMID: 32585920 PMCID: PMC7356521 DOI: 10.3390/pharmaceutics12060579] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/15/2020] [Accepted: 06/18/2020] [Indexed: 12/19/2022] Open
Abstract
Cell-surface proteins that can endocytose into brain microvascular endothelial cells serve as promising candidates for receptor-mediated transcytosis across the blood–brain barrier (BBB). Here, we comprehensively screened endocytic cell-surface proteins in hCMEC/D3 cells, a model of human brain microvascular endothelial cells, using surface biotinylation methodology and sequential window acquisition of all theoretical fragment-ion spectra-mass spectrometry (SWATH-MS)-based quantitative proteomics. Using this method, we identified 125 endocytic cell-surface proteins from hCMEC/D3 cells. Of these, 34 cell-surface proteins were selectively internalized into human brain microvascular endothelial cells, but not into human umbilical vein endothelial cells (HUVECs), a model of human peripheral microvascular endothelial cells. Two cell-surface proteins, intercellular adhesion molecule-1 (ICAM1) and podocalyxin (PODXL), were identified as BBB-localized endocytic cell-surface proteins in humans, using open mRNA and protein databases. Immunohistochemical evaluation confirmed PODXL expression in the plasma membrane of hCMEC/D3 cells and revealed that anti-PODXL antibody-labeled cell-surface PODXL internalized into hCMEC/D3 cells. Immunohistochemistry further revealed that PODXL is localized at the luminal side of human brain microvessels, supporting its potential suitability for translational applications. In conclusion, our findings highlight novel endocytic cell-surface proteins capable of internalizing into human brain microvascular endothelial cells. ICAM1 or PODXL targeted antibody or ligand-labeled biopharmaceuticals and nanocarriers may provide effective targeted delivery to the brain across the BBB for the treatment of central nervous system (CNS) diseases.
Collapse
Affiliation(s)
- Shingo Ito
- Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (S.I.); (T.M.)
- Department of Pharmaceutical Microbiology, School of Pharmacy, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan;
- Department of Pharmaceutical Microbiology, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (S.O.); (T.U.)
| | - Mariko Oishi
- Department of Pharmaceutical Microbiology, School of Pharmacy, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan;
| | - Seiryo Ogata
- Department of Pharmaceutical Microbiology, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (S.O.); (T.U.)
| | - Tatsuki Uemura
- Department of Pharmaceutical Microbiology, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (S.O.); (T.U.)
| | - Pierre-Olivier Couraud
- Institut Cochin, Universite de Paris, Inserm U1016, CNRS UMR8104, 22 rue Méchain, 75014 Paris, France;
| | - Takeshi Masuda
- Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (S.I.); (T.M.)
- Department of Pharmaceutical Microbiology, School of Pharmacy, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan;
- Department of Pharmaceutical Microbiology, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (S.O.); (T.U.)
| | - Sumio Ohtsuki
- Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (S.I.); (T.M.)
- Department of Pharmaceutical Microbiology, School of Pharmacy, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan;
- Department of Pharmaceutical Microbiology, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (S.O.); (T.U.)
- Correspondence: ; Tel.: +81-96-371-4323
| |
Collapse
|
29
|
Neurovascular protection by peroxisome proliferator-activated receptor α in ischemic stroke. Exp Neurol 2020; 331:113323. [PMID: 32320699 DOI: 10.1016/j.expneurol.2020.113323] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 04/14/2020] [Accepted: 04/17/2020] [Indexed: 12/11/2022]
Abstract
Ischemic stroke is a leading cause of death and disability worldwide. Currently, the only pharmacological therapy for ischemic stroke is thrombolysis with tissue plasminogen activator that has a narrow therapeutic window and increases the risk of intracerebral hemorrhage. New pharmacological treatments for ischemic stroke are desperately needed, but no neuroprotective drugs have successfully made it through clinical trials. Beneficial effects of peroxisome proliferator-activated receptor alpha (PPARα) activation on vascular integrity and function have been reported, and PPARα agonists have clinically been used for many years to manage cardiovascular disease. Thus, PPARα has gained interest in recent years as a target for neurovascular disease such as ischemic stroke. Accumulating preclinical evidence suggests that PPARα activation modulates several pathophysiological hallmarks of stroke such as oxidative stress, blood-brain barrier (BBB) dysfunction, and neuroinflammation to improve functional recovery. Therefore, this review summarizes the various actions PPARα exerts in neurovascular health and disease and the potential of employing exogenous PPARα agonists for future pharmacological treatment of ischemic stroke.
Collapse
|
30
|
Zera KA, Buckwalter MS. The Local and Peripheral Immune Responses to Stroke: Implications for Therapeutic Development. Neurotherapeutics 2020; 17:414-435. [PMID: 32193840 PMCID: PMC7283378 DOI: 10.1007/s13311-020-00844-3] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The immune response to stroke is an exciting target for future stroke therapies. Stroke is a leading cause of morbidity and mortality worldwide, and clot removal (mechanical or pharmacological) to achieve tissue reperfusion is the only therapy currently approved for patient use. Due to a short therapeutic window and incomplete effectiveness, however, many patients are left with infarcted tissue that stimulates inflammation. Although this is critical to promote repair, it can also damage surrounding healthy brain tissue. In addition, acute immunodepression and subsequent infections are common and are associated with worse patient outcomes. Thus, the acute immune response is a major focus of researchers attempting to identify ways to amplify its benefits and suppress its negative effects to improve short-term recovery of patients. Here we review what is known about this powerful process. This includes the role of brain resident cells such as microglia, peripherally activated cells such as macrophages and neutrophils, and activated endothelium. The role of systemic immune activation and subsequent immunodepression in the days after stroke is also discussed, as is the chronic immune responses and its effects on cognitive function. The biphasic role of inflammation, as well as complex timelines of cell production, differentiation, and trafficking, suggests that the relationship between the acute and chronic phases of stroke recovery is complex. Gaining a more complete understanding of this intricate process by which inflammation is initiated, propagated, and terminated may potentially lead to therapeutics that can treat a larger population of stroke patients than what is currently available. The immune response plays a critical role in patient recovery in both the acute and chronic phases after stroke. In patients, the immune response can be beneficial by promoting repair and recovery, and also detrimental by propagating a pro-inflammatory microenvironment. Thus, it is critical to understand the mechanisms of immune activation following stroke in order to successfully design therapeutics.
Collapse
Affiliation(s)
- Kristy A Zera
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Marion S Buckwalter
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA.
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
- Department of Neurosurgery, Stanford Univeristy School of Medicine, Stanford, CA, USA.
| |
Collapse
|
31
|
Hou Y, Yang D, Xiang R, Wang H, Wang X, Zhang H, Wang P, Zhang Z, Che X, Liu Y, Gao Y, Yu X, Gao X, Zhang W, Yang J, Wu C. N2 neutrophils may participate in spontaneous recovery after transient cerebral ischemia by inhibiting ischemic neuron injury in rats. Int Immunopharmacol 2019; 77:105970. [DOI: 10.1016/j.intimp.2019.105970] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/28/2019] [Accepted: 10/09/2019] [Indexed: 12/22/2022]
|
32
|
Wang Y, Zhang JH, Sheng J, Shao A. Immunoreactive Cells After Cerebral Ischemia. Front Immunol 2019; 10:2781. [PMID: 31849964 PMCID: PMC6902047 DOI: 10.3389/fimmu.2019.02781] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/13/2019] [Indexed: 12/20/2022] Open
Abstract
The immune system is rapidly activated after ischemic stroke. As immune cells migrate and infiltrate across the blood-brain barrier into the ischemic region, a cascade of cellular and molecular biological reactions occur, involving migrated immune cells, resident glial cells, and the vascular endothelium. These events regulate infarction evolution and thus influence the outcome of ischemic stroke. Most immune cells exert dual effects on cerebral ischemia, and some crucial cells may become central targets in ischemic stroke treatment and rehabilitation.
Collapse
Affiliation(s)
- Yijie Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Jifang Sheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Anwen Shao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
33
|
Munji RN, Soung AL, Weiner GA, Sohet F, Semple BD, Trivedi A, Gimlin K, Kotoda M, Korai M, Aydin S, Batugal A, Cabangcala AC, Schupp PG, Oldham MC, Hashimoto T, Noble-Haeusslein LJ, Daneman R. Profiling the mouse brain endothelial transcriptome in health and disease models reveals a core blood-brain barrier dysfunction module. Nat Neurosci 2019; 22:1892-1902. [PMID: 31611708 PMCID: PMC6858546 DOI: 10.1038/s41593-019-0497-x] [Citation(s) in RCA: 208] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 08/13/2019] [Indexed: 01/08/2023]
Abstract
Blood vessels in the CNS form a specialized and critical structure, the blood-brain barrier (BBB). We present a resource to understand the molecular mechanisms that regulate BBB function in health and dysfunction during disease. Using endothelial cell enrichment and RNA sequencing, we analyzed the gene expression of endothelial cells in mice, comparing brain endothelial cells with peripheral endothelial cells. We also assessed the regulation of CNS endothelial gene expression in models of stroke, multiple sclerosis, traumatic brain injury and seizure, each having profound BBB disruption. We found that although each is caused by a distinct trigger, they exhibit strikingly similar endothelial gene expression changes during BBB disruption, comprising a core BBB dysfunction module that shifts the CNS endothelial cells into a peripheral endothelial cell-like state. The identification of a common pathway for BBB dysfunction suggests that targeting therapeutic agents to limit it may be effective across multiple neurological disorders.
Collapse
Affiliation(s)
- Roeben Nocon Munji
- Departments of Pharmacology and Neurosciences, University of California, San Diego, San Diego, CA, USA
| | - Allison Luen Soung
- Departments of Pharmacology and Neurosciences, University of California, San Diego, San Diego, CA, USA
| | - Geoffrey Aaron Weiner
- Departments of Pharmacology and Neurosciences, University of California, San Diego, San Diego, CA, USA
| | - Fabien Sohet
- Departments of Pharmacology and Neurosciences, University of California, San Diego, San Diego, CA, USA
| | - Bridgette Deanne Semple
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Alpa Trivedi
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Kayleen Gimlin
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Masakazu Kotoda
- Department of Neurosurgery and Neurobiology, Barrow Aneurysm and AVM Research Center, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Masaaki Korai
- Department of Neurosurgery and Neurobiology, Barrow Aneurysm and AVM Research Center, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Sidar Aydin
- Departments of Pharmacology and Neurosciences, University of California, San Diego, San Diego, CA, USA
| | - Austin Batugal
- Departments of Pharmacology and Neurosciences, University of California, San Diego, San Diego, CA, USA
| | | | - Patrick Georg Schupp
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Michael Clark Oldham
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Tomoki Hashimoto
- Department of Neurosurgery and Neurobiology, Barrow Aneurysm and AVM Research Center, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Linda J Noble-Haeusslein
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Richard Daneman
- Departments of Pharmacology and Neurosciences, University of California, San Diego, San Diego, CA, USA.
| |
Collapse
|
34
|
Krishnan S, Lawrence CB. Old Dog New Tricks; Revisiting How Stroke Modulates the Systemic Immune Landscape. Front Neurol 2019; 10:718. [PMID: 31312180 PMCID: PMC6614437 DOI: 10.3389/fneur.2019.00718] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 06/18/2019] [Indexed: 12/27/2022] Open
Abstract
Infections in the post-acute phase of cerebral ischaemia impede optimal recovery by exacerbating morbidity and mortality. Our review aims to reconcile the increased infection susceptibility of patients post-stroke by consolidating our understanding of compartmentalised alterations to systemic immunity. Mounting evidence has catalogued alterations to numerous immune cell populations but an understanding of the mechanisms of long-range communication between the immune system, nervous system and other organs beyond the involvement of autonomic signalling is lacking. By taking our cues from established and emerging concepts of neuro-immune interactions, immune-mediated inter-organ cross-talk, innate immune training and the role of microbiota-derived signals in central nervous system (CNS) function we will explore mechanisms of how cerebral ischaemia could shape systemic immune function. In this context, we will also discuss a key question: how are immune requirements critical for mediating repair of the ischaemic insult balanced by the need for anti-microbial immunity post-stroke, given that they are mediated by mutually exclusive immune networks? Our reformed understanding of the immune landscape post-stroke and novel mechanisms at play could guide targeted therapeutic interventions and initiate a step-change in the clinical management of these infectious complications post-stroke.
Collapse
Affiliation(s)
- Siddharth Krishnan
- Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom.,Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester, United Kingdom.,Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Catherine B Lawrence
- Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom.,Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
35
|
Nepal G, Yadav JK, Kong Y. Association between K469E polymorphism of ICAM‐1 gene and susceptibility of ischemic stroke: An updated meta‐analysis. Mol Genet Genomic Med 2019; 7:e00784. [PMID: 31157518 PMCID: PMC6625125 DOI: 10.1002/mgg3.784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/08/2019] [Accepted: 05/17/2019] [Indexed: 12/03/2022] Open
Abstract
Background The intercellular adhesion molecule‐1 (ICAM‐1)/leukocyte function associated antigen‐1 (LFA‐1) adhesion system regulates leukocyte interactions, migration, and adhesion, and appears to play an important role in atherosclerosis and thrombosis. Therefore, single nucleotide polymorphisms (SNPs) of the ICAM‐1 gene may strongly influence the expression and biological activity of ICAM‐1 and play a potentially important role in the pathogenesis of ischemic stroke. In the current meta‐analysis, we investigated the relationship between the ICAM‐1 gene K469E SNP and the risk of ischemic stroke. Methods Two investigators independently searched PubMed, Web of Science, Google Scholar, WANFANG, China National Knowledge Infrastructure (CNKI) and J‐STAGE for studies published from January 2000 to February 2019 without language restriction. The association of K469E polymorphism and ischemic stroke in three genetic models (allelic, recessive, and dominant) were evaluated using Pooled odds ratios (ORs) with 95% confidence intervals (CIs). Results Our study included 20 studies from four continents and four different countries, including 3,137 cases and 15,382 controls. Meta‐analysis results did not show a significant association between K469E polymorphism of ICAM‐1 gene and ischemic stroke when assuming allelic model (OR: 1.12; 95% CI: 0.8 to 1.55; p = 0.51; I2 = 93%) or recessive model (OR: 1.28; 95% CI: 0.89 to 1.84; p = 0.18; I2 = 82%) or dominant model (OR: 1.20; 95% CI: 0.92 to 1.56; p = 0.17; I2 = 85%). However, in all three genetic models, subgroup analysis revealed that the K469E polymorphism of the ICAM‐1 gene is associated with ischemic stroke in the Caucasian population. Conclusion K469E polymorphism of ICAM‐1 gene might be a risk factor for ischemic stroke in Caucasians, which suggested that K469E polymorphism might help in early identification of those at risk and help in primary prevention of ischemic stroke.
Collapse
Affiliation(s)
- Gaurav Nepal
- Tribhuvan University Institute of Medicine Kathmandu Nepal
| | | | - YuHui Kong
- Chengdu University of Information Technology Chengdu Sichuan China
| |
Collapse
|
36
|
Malone K, Amu S, Moore AC, Waeber C. Immunomodulatory Therapeutic Strategies in Stroke. Front Pharmacol 2019; 10:630. [PMID: 31281252 PMCID: PMC6595144 DOI: 10.3389/fphar.2019.00630] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 05/16/2019] [Indexed: 12/14/2022] Open
Abstract
The role of immunity in all stages of stroke is increasingly being recognized, from the pathogenesis of risk factors to tissue repair, leading to the investigation of a range of immunomodulatory therapies. In the acute phase of stroke, proposed therapies include drugs targeting pro-inflammatory cytokines, matrix metalloproteinases, and leukocyte infiltration, with a key objective to reduce initial brain cell toxicity. Systemically, the early stages of stroke are also characterized by stroke-induced immunosuppression, where downregulation of host defences predisposes patients to infection. Therefore, strategies to modulate innate immunity post-stroke have garnered greater attention. A complementary objective is to reduce longer-term sequelae by focusing on adaptive immunity. Following stroke onset, the integrity of the blood–brain barrier is compromised, exposing central nervous system (CNS) antigens to systemic adaptive immune recognition, potentially inducing autoimmunity. Some pre-clinical efforts have been made to tolerize the immune system to CNS antigens pre-stroke. Separately, immune cell populations that exhibit a regulatory phenotype (T- and B- regulatory cells) have been shown to ameliorate post-stroke inflammation and contribute to tissue repair. Cell-based therapies, established in oncology and transplantation, could become a strategy to treat the acute and chronic stages of stroke. Furthermore, a role for the gut microbiota in ischaemic injury has received attention. Finally, the immune system may play a role in remote ischaemic preconditioning-mediated neuroprotection against stroke. The development of stroke therapies involving organs distant to the infarct site, therefore, should not be overlooked. This review will discuss the immune mechanisms of various therapeutic strategies, surveying published data and discussing more theoretical mechanisms of action that have yet to be exploited.
Collapse
Affiliation(s)
- Kyle Malone
- Department of Pharmacology and Therapeutics, School of Pharmacy, University College Cork, Cork, Ireland
| | - Sylvie Amu
- Cancer Research @UCC, University College Cork, Cork, Ireland
| | - Anne C Moore
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Christian Waeber
- Department of Pharmacology and Therapeutics, School of Pharmacy, University College Cork, Cork, Ireland
| |
Collapse
|
37
|
Edwards DN, Bix GJ. The Inflammatory Response After Ischemic Stroke: Targeting β 2 and β 1 Integrins. Front Neurosci 2019; 13:540. [PMID: 31191232 PMCID: PMC6546847 DOI: 10.3389/fnins.2019.00540] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 05/09/2019] [Indexed: 12/20/2022] Open
Abstract
Ischemic stroke is a leading cause of death and disability with limited therapeutic options. Resulting inflammatory mechanisms after reperfusion (removal of the thrombus) result in cytokine activation, calcium influx, and leukocytic infiltration to the area of ischemia. In particular, leukocytes migrate toward areas of inflammation by use of integrins, particularly integrins β1 and β2. Integrins have been shown to be necessary for leukocyte adhesion and migration, and thus are of immediate interest in many inflammatory diseases, including ischemic stroke. In this review, we identify the main integrins involved in leukocytic migration following stroke (α L β2, αDβ2, α4β1, and α5β1) and targeted clinical therapeutic interventions.
Collapse
Affiliation(s)
- Danielle N. Edwards
- Sanders–Brown Center on Aging, University of Kentucky, Lexington, KY, United States
- Department of Neuroscience, University of Kentucky, Lexington, KY, United States
| | - Gregory J. Bix
- Department of Neurology, University of Kentucky, Lexington, KY, United States
- Department of Neurosurgery, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
38
|
Huțanu A, Iancu M, Maier S, Bălaşa R, Dobreanu M. Plasma Biomarkers as Potential Predictors of Functional Dependence in Daily Life Activities after Ischemic Stroke: A Single Center Study. Ann Indian Acad Neurol 2019; 23:496-503. [PMID: 33223667 PMCID: PMC7657279 DOI: 10.4103/aian.aian_74_19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 02/26/2019] [Accepted: 03/28/2019] [Indexed: 12/18/2022] Open
Abstract
Objective: Despite advances made in the treatment of ischemic stroke, it still remains one of the leading causes of mortality and disability worldwide. The main objective of this study was to identify from a panel of 10 inflammatory markers and chemokines those biomarkers that have a potential predictive role in the evolution of disability and functional dependence in daily activities after an ischemic stroke. Methods: The study included 116 patients with ischemic stroke and 40 healthy volunteers matched for gender and age. Stroke severity was assessed by the National Institute of Health Stroke Scale (NIHSS) on admission and during hospitalization and functional mobility in daily activities by Barthel index (BI). Multiplex panel with 10 biomarkers [brain-derived neurotrophic factor (BDNF), platelet-derived growth factor (PDGF)-AA, PDGF-AB/BB, neural cell adhesion molecule (NCAM), cathepsin D, soluble vascular cell adhesion molecule (sVCAM), soluble intercellular cell adhesion molecule (sICAM), myeloperoxidase (MPO), regulated on activation, normal T cell expressed and secreted (RANTES), plasminogen activator inhibitor (PAI)-1] was analyzed on days 1 and 5 after admission using the xMAP technology. Results: Plasma concentrations of RANTES and NCAM were significantly lower in patients with ischemic stroke compared with healthy controls, while MPO and sICAM were significantly higher in patients versus controls. Plasma concentrations of sICAM, sVCAM, and RANTES significantly decreased during the analyzed period. For the first-day measurement, the bivariate analysis revealed the association of NIHSS on admission with sVCAM, and on discharge negative association with PDGF-AA, PDGR-AB/BB, BDNF, and RANTES. Plasma levels of PDGF-AA, PDGF-AB/BB, BDNF, and RANTES were found to be significantly lower in patients with BI ≤ 80, on day 5 after disease onset. PDGF-AA, PDGF-AB/BB, and BDNF were univariate and multivariate predictors for functional dependence in daily life activity (BI ≤ 80), having a protective effect (odds ratio < 1). Conclusion: Plasma levels of BDNF, PDGF-AA, and PDGF-AB/BB are independent predictors for functional dependency in daily life activities and may be useful prognostic markers in the evaluation of ischemic stroke patients.
Collapse
Affiliation(s)
- Adina Huțanu
- Center for Advanced Medical and Pharmaceutical Research, University of Medicine, Pharmacy, Sciences and Technology Tîrgu-Mureş, Romania.,Department of Laboratory Medicine, University of Medicine, Pharmacy, Sciences and Technology Tîrgu-Mureş, Romania
| | - Mihaela Iancu
- University of Medicine and Pharmacy "Iuliu Hațieganu", Department of Medical Informatics and Biostatistics, Cluj-Napoca, Romania
| | - Smaranda Maier
- Department of Neurology, Clinic, Emergency County Hospital Targu Mures, University of Medicine, Pharmacy, Sciences and Technology Tîrgu Mureş
| | - Rodica Bălaşa
- Department of Neurology, Clinic, Emergency County Hospital Targu Mures, University of Medicine, Pharmacy, Sciences and Technology Tîrgu Mureş
| | - Minodora Dobreanu
- Center for Advanced Medical and Pharmaceutical Research, University of Medicine, Pharmacy, Sciences and Technology Tîrgu-Mureş, Romania.,Department of Laboratory Medicine, University of Medicine, Pharmacy, Sciences and Technology Tîrgu-Mureş, Romania
| |
Collapse
|
39
|
Otxoa-de-Amezaga A, Gallizioli M, Pedragosa J, Justicia C, Miró-Mur F, Salas-Perdomo A, Díaz-Marugan L, Gunzer M, Planas AM. Location of Neutrophils in Different Compartments of the Damaged Mouse Brain After Severe Ischemia/Reperfusion. Stroke 2019; 50:1548-1557. [PMID: 31084324 DOI: 10.1161/strokeaha.118.023837] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Background and Purpose- Ischemia attracts neutrophils to the injured brain. However, neutrophil location and access to the damaged brain tissue is not yet entirely understood. We aimed to investigate neutrophil location in a mouse model of cerebral ischemia/reperfusion. Methods- Adult male C57BL/6 mice (n=52) received 45-minute intraluminal middle cerebral artery occlusion followed by 14, 24, 48, or 96 hours of reperfusion. Sham-operated mice (n=9) were subjected to the entire surgical procedure. We used wild-type mice and CatchupIVM mice expressing a red fluorescent protein in neutrophils. In addition, fluorescent neutrophils obtained from reporter DsRed (discosoma red fluorescent protein) mice were transferred intravenously to wild-type mice after ischemia. Mice received transcardial paraformaldehyde perfusion, the brain was cryoprotected, frozen, and cryostat sections were studied by immunofluorescence and confocal microscopy. Results- Ischemia induced a time-dependent increase in brain neutrophil numbers versus sham operation. We detected neutrophils in the leptomeninges, ventricles, capillary lumen, perivascular spaces, and parenchyma within the infarcted core. Most ischemic mice showed neutrophils in the leptomeninges and perivascular spaces, whereas the presence and number of neutrophils in the parenchyma was variable among ischemic mice. During the first 24 hours, only a few mice showed parenchymal neutrophils, but the frequency of mice showing neutrophils in the parenchyma and neutrophil numbers increased at 48 and 96 hours. We also detected signs of basement membrane disruption and hints of occasional neutrophil degranulation and formation of neutrophil extracellular traps. Conclusions- After ischemia/reperfusion, neutrophils accumulate in the leptomeninges and perivascular spaces, and eventually can reach the infarcted brain parenchyma.
Collapse
Affiliation(s)
- Amaia Otxoa-de-Amezaga
- From the Department of Brain Ischemia and Neurodegeneration, Institut d'Investigacions Biomèdiques de Barcelona (IIBB)-Consejo Superior de Investigaciones Científicas (CSIC), Spain (A.O.-d.-A., M. Gallizioli, J.P., C.J., A.S.-P., A.M.P.).,Area of Neuroscience, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (A.O.-d.-A., M. Gallizioli, J.P., C.J., F.M.-M., A.S.-P., L.D.-M., A.M.P.)
| | - Mattia Gallizioli
- From the Department of Brain Ischemia and Neurodegeneration, Institut d'Investigacions Biomèdiques de Barcelona (IIBB)-Consejo Superior de Investigaciones Científicas (CSIC), Spain (A.O.-d.-A., M. Gallizioli, J.P., C.J., A.S.-P., A.M.P.).,Area of Neuroscience, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (A.O.-d.-A., M. Gallizioli, J.P., C.J., F.M.-M., A.S.-P., L.D.-M., A.M.P.)
| | - Jordi Pedragosa
- From the Department of Brain Ischemia and Neurodegeneration, Institut d'Investigacions Biomèdiques de Barcelona (IIBB)-Consejo Superior de Investigaciones Científicas (CSIC), Spain (A.O.-d.-A., M. Gallizioli, J.P., C.J., A.S.-P., A.M.P.).,Area of Neuroscience, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (A.O.-d.-A., M. Gallizioli, J.P., C.J., F.M.-M., A.S.-P., L.D.-M., A.M.P.)
| | - Carles Justicia
- From the Department of Brain Ischemia and Neurodegeneration, Institut d'Investigacions Biomèdiques de Barcelona (IIBB)-Consejo Superior de Investigaciones Científicas (CSIC), Spain (A.O.-d.-A., M. Gallizioli, J.P., C.J., A.S.-P., A.M.P.).,Area of Neuroscience, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (A.O.-d.-A., M. Gallizioli, J.P., C.J., F.M.-M., A.S.-P., L.D.-M., A.M.P.)
| | - Francesc Miró-Mur
- Area of Neuroscience, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (A.O.-d.-A., M. Gallizioli, J.P., C.J., F.M.-M., A.S.-P., L.D.-M., A.M.P.)
| | - Angelica Salas-Perdomo
- From the Department of Brain Ischemia and Neurodegeneration, Institut d'Investigacions Biomèdiques de Barcelona (IIBB)-Consejo Superior de Investigaciones Científicas (CSIC), Spain (A.O.-d.-A., M. Gallizioli, J.P., C.J., A.S.-P., A.M.P.).,Area of Neuroscience, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (A.O.-d.-A., M. Gallizioli, J.P., C.J., F.M.-M., A.S.-P., L.D.-M., A.M.P.)
| | - Laura Díaz-Marugan
- Area of Neuroscience, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (A.O.-d.-A., M. Gallizioli, J.P., C.J., F.M.-M., A.S.-P., L.D.-M., A.M.P.)
| | - Matthias Gunzer
- Institute for Experimental Immunology and Imaging, University Hospital, University Duisburg-Essen, Germany (M. Gunzer)
| | - Anna M Planas
- From the Department of Brain Ischemia and Neurodegeneration, Institut d'Investigacions Biomèdiques de Barcelona (IIBB)-Consejo Superior de Investigaciones Científicas (CSIC), Spain (A.O.-d.-A., M. Gallizioli, J.P., C.J., A.S.-P., A.M.P.).,Area of Neuroscience, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (A.O.-d.-A., M. Gallizioli, J.P., C.J., F.M.-M., A.S.-P., L.D.-M., A.M.P.)
| |
Collapse
|
40
|
Yang C, Hawkins KE, Doré S, Candelario-Jalil E. Neuroinflammatory mechanisms of blood-brain barrier damage in ischemic stroke. Am J Physiol Cell Physiol 2019; 316:C135-C153. [PMID: 30379577 PMCID: PMC6397344 DOI: 10.1152/ajpcell.00136.2018] [Citation(s) in RCA: 531] [Impact Index Per Article: 88.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 10/29/2018] [Accepted: 10/30/2018] [Indexed: 12/25/2022]
Abstract
As part of the neurovascular unit, the blood-brain barrier (BBB) is a unique, dynamic regulatory boundary that limits and regulates the exchange of molecules, ions, and cells between the blood and the central nervous system. Disruption of the BBB plays an important role in the development of neurological dysfunction in ischemic stroke. Blood-borne substances and cells have restricted access to the brain due to the presence of tight junctions between the endothelial cells of the BBB. Following stroke, there is loss of BBB tight junction integrity, leading to increased paracellular permeability, which results in vasogenic edema, hemorrhagic transformation, and increased mortality. Thus, understanding principal mediators and molecular mechanisms involved in BBB disruption is critical for the development of novel therapeutics to treat ischemic stroke. This review discusses the current knowledge of how neuroinflammation contributes to BBB damage in ischemic stroke. Specifically, we provide an updated overview of the role of cytokines, chemokines, oxidative and nitrosative stress, adhesion molecules, matrix metalloproteinases, and vascular endothelial growth factor as well as the role of different cell types in the regulation of BBB permeability in ischemic stroke.
Collapse
Affiliation(s)
- Changjun Yang
- Department of Neuroscience, McKnight Brain Institute, University of Florida , Gainesville, Florida
| | - Kimberly E Hawkins
- Department of Neuroscience, McKnight Brain Institute, University of Florida , Gainesville, Florida
| | - Sylvain Doré
- Department of Neuroscience, McKnight Brain Institute, University of Florida , Gainesville, Florida
- Departments of Anesthesiology, Neurology, Psychiatry, Psychology, and Pharmaceutics, McKnight Brain Institute, University of Florida , Gainesville, Florida
| | - Eduardo Candelario-Jalil
- Department of Neuroscience, McKnight Brain Institute, University of Florida , Gainesville, Florida
| |
Collapse
|
41
|
Hadley G, Beard DJ, Couch Y, Neuhaus AA, Adriaanse BA, DeLuca GC, Sutherland BA, Buchan AM. Rapamycin in ischemic stroke: Old drug, new tricks? J Cereb Blood Flow Metab 2019; 39:20-35. [PMID: 30334673 PMCID: PMC6311672 DOI: 10.1177/0271678x18807309] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 08/16/2018] [Accepted: 09/06/2018] [Indexed: 12/19/2022]
Abstract
The significant morbidity that accompanies stroke makes it one of the world's most devastating neurological disorders. Currently, proven effective therapies have been limited to thrombolysis and thrombectomy. The window for the administration of these therapies is narrow, hampered by the necessity of rapidly imaging patients. A therapy that could extend this window by protecting neurons may improve outcome. Endogenous neuroprotection has been shown to be, in part, due to changes in mTOR signalling pathways and the instigation of productive autophagy. Inducing this effect pharmacologically could improve clinical outcomes. One such therapy already in use in transplant medicine is the mTOR inhibitor rapamycin. Recent evidence suggests that rapamycin is neuroprotective, not only via neuronal autophagy but also through its broader effects on other cells of the neurovascular unit. This review highlights the potential use of rapamycin as a multimodal therapy, acting on the blood-brain barrier, cerebral blood flow and inflammation, as well as directly on neurons. There is significant potential in applying this old drug in new ways to improve functional outcomes for patients after stroke.
Collapse
Affiliation(s)
- Gina Hadley
- Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Daniel J Beard
- Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Yvonne Couch
- Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Ain A Neuhaus
- Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Bryan A Adriaanse
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Gabriele C DeLuca
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Brad A Sutherland
- Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Alastair M Buchan
- Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Acute Vascular Imaging Centre, University of Oxford, Oxford University Hospitals, Oxford, UK
| |
Collapse
|
42
|
Multiomic Signature of Glaucoma Predisposition in Flammer Syndrome Affected Individuals – Innovative Predictive, Preventive and Personalised Strategies in Disease Management. FLAMMER SYNDROME 2019. [DOI: 10.1007/978-3-030-13550-8_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
43
|
Zhang H, Sun X, Xie Y, Tian F, Hu H, Tan W. Isosteviol Sodium Inhibits Astrogliosis after Cerebral Ischemia/Reperfusion Injury in Rats. Biol Pharm Bull 2018; 41:575-584. [PMID: 29607930 DOI: 10.1248/bpb.b17-00921] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous reports have indicated that isosteviol sodium (STVNa) has neuroprotective effects against acute focal cerebral ischemia in rats; however, the exact underlying mechanisms and ideal treatment paradigm are not known. To find a reasonable method for STVNa administration and to determine its possible therapeutic mechanisms, we characterized the protective effects of single-dose and multiple-dose STVNa in cerebral ischemic/reperfusion (I/R) injury in rats. Single and multiple treatments with 10 mg/kg STVNa were administered intraperitoneally after injury to investigate its neuroprotective effects. Neurobehavioral deficits and infarct volume were assessed 7 d after ischemia. Both STVNa treatments reduced infarct volumes, improved neurological behaviors, preserved cellular morphology, enhanced neuronal survival, and suppressed cell apoptosis. Multiple treatments performed better than single treatment. Reactive astrogliosis was apparent at 7 d after injury and was significantly inhibited by multiple STVNa treatments but not single treatment. These results indicate that STVNa exerts neuroprotection by different mechanisms in the acute and delayed phases of I/R. Specifically, STVNa neuroprotection in the delayed phase of injury was found to be accompanied with the inhibition of astrogliosis.
Collapse
Affiliation(s)
- Hao Zhang
- School of Bioscience & Bioengineering, South China University of Technology
| | - Xiaoou Sun
- Institute of Biomedical & Pharmaceutical Sciences, Guangdong University of Technology
| | - Yanxiang Xie
- School of Bioscience & Bioengineering, South China University of Technology
| | - Fang Tian
- School of Bioscience & Bioengineering, South China University of Technology
| | - Hui Hu
- Institute of Biomedical & Pharmaceutical Sciences, Guangdong University of Technology
| | - Wen Tan
- Institute of Biomedical & Pharmaceutical Sciences, Guangdong University of Technology
| |
Collapse
|
44
|
Malone K, Amu S, Moore AC, Waeber C. The immune system and stroke: from current targets to future therapy. Immunol Cell Biol 2018; 97:5-16. [DOI: 10.1111/imcb.12191] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 07/11/2018] [Accepted: 07/16/2018] [Indexed: 01/15/2023]
Affiliation(s)
- Kyle Malone
- Department of Pharmacology and Therapeutics; School of Pharmacy; University College Cork; Cork Ireland
| | - Sylvie Amu
- Department of Pharmacology and Therapeutics; School of Pharmacy; University College Cork; Cork Ireland
| | - Anne C Moore
- Department of Pharmacology and Therapeutics; School of Pharmacy; University College Cork; Cork Ireland
| | - Christian Waeber
- Department of Pharmacology and Therapeutics; School of Pharmacy; University College Cork; Cork Ireland
| |
Collapse
|
45
|
Recombinant Tissue Plasminogen Activator-conjugated Nanoparticles Effectively Targets Thrombolysis in a Rat Model of Middle Cerebral Artery Occlusion. Curr Med Sci 2018; 38:427-435. [PMID: 30074208 DOI: 10.1007/s11596-018-1896-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/09/2017] [Indexed: 10/28/2022]
Abstract
The efficacy and safety of recombinant tissue plasminogen activator (rtPA) need to be improved due to its low bioavailability and requirement of large dose administration. The purpose of this study was to develop a fibrin-targeted nanoparticle (NP) drug delivery system for thrombosis combination therapy. We conjugated rtPA to poly(ethylene glycol)- poly(e-caprolactone) (PEG-PCL) nanoparticles (rtPA-NP) and investigated its physicochemical characteristics such as particle size, zeta potential, enzyme activity of conjugated rtPA and its storage stability at 4°C. The thrombolytic activity of rtPA-NP was evaluated in vitro and in vivo as well as the half-life of rtPA-NP, the properties to fibrin targeting and its influences on systemic hemostasis in vivo. The results showed that rtPA-NP equivalent to 10% of a typical dose of rtPA could dissolve fibrin clots and were demonstrated to have a neuroprotective effect after focal cerebral ischemia as evidenced by decreased infarct volume and improved neurological deficit (P<0.001). RtPA-NP did not influence the in vivo hemostasis or coagulation system. The half-life of conjugated rtPA was shown to be approximately 18 times longer than that of free rtPA. These experiments suggested that rtPA-conjugated PEG-PCL nanoparticles might be a promising fibrin-targeted delivery system for a combination treatment of thrombosis.
Collapse
|
46
|
Boese AC, Le QSE, Pham D, Hamblin MH, Lee JP. Neural stem cell therapy for subacute and chronic ischemic stroke. Stem Cell Res Ther 2018; 9:154. [PMID: 29895321 PMCID: PMC5998588 DOI: 10.1186/s13287-018-0913-2] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Neural stem cells (NSCs) play vital roles in brain homeostasis and exhibit a broad repertoire of potentially therapeutic actions following neurovascular injury. One such injury is stroke, a worldwide leading cause of death and disability. Clinically, extensive injury from ischemic stroke results from ischemia-reperfusion (IR), which is accompanied by inflammation, blood-brain barrier (BBB) damage, neural cell death, and extensive tissue loss. Tissue plasminogen activator (tPA) is still the only US Food and Drug Administration-approved clot-lysing agent. Whereas the thrombolytic role of tPA within the vasculature is beneficial, the effects of tPA (in a non-thrombolytic role) within the brain parenchyma have been reported as harmful. Thus, new therapies are needed to reduce the deleterious side effects of tPA and quickly facilitate vascular repair following stroke. The Stroke Treatment Academic Industry Roundtable (STAIR) recommends that stroke therapies "focus on drugs/devices/treatments with multiple mechanisms of action and that target multiple pathways". Thus, based on multifactorial ischemic cascades in various stroke stages, effective stroke therapies need to focus on targeting and ameliorating early IR injury as well as facilitating angiogenesis, neurogenesis, and neurorestorative mechanisms following stroke. This review will discuss the preclinical perspectives of NSC transplantation as a promising treatment for neurovascular injury and will emphasize both the subacute and chronic phase of ischemic stroke.
Collapse
Affiliation(s)
- Austin C Boese
- Department of Physiology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Quan-Son Eric Le
- Department of Physiology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Dylan Pham
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Milton H Hamblin
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Jean-Pyo Lee
- Department of Physiology, Tulane University School of Medicine, New Orleans, LA, 70112, USA. .,Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, LA, 70112, USA.
| |
Collapse
|
47
|
Zhou Z, Lu J, Liu WW, Manaenko A, Hou X, Mei Q, Huang JL, Tang J, Zhang JH, Yao H, Hu Q. Advances in stroke pharmacology. Pharmacol Ther 2018; 191:23-42. [PMID: 29807056 DOI: 10.1016/j.pharmthera.2018.05.012] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Stroke occurs when a cerebral blood vessel is blocked or ruptured, and it is the major cause of death and adult disability worldwide. Various pharmacological agents have been developed for the treatment of stroke either through interrupting the molecular pathways leading to neuronal death or enhancing neuronal survival and regeneration. Except for rtPA, few of these agents have succeeded in clinical trials. Recently, with the understanding of the pathophysiological process of stroke, there is a resurrection of research on developing neuroprotective agents for stroke treatment, and novel molecular targets for neuroprotection and neurorestoration have been discovered to predict or offer clinical benefits. Here we review the latest major progress of pharmacological studies in stroke, especially in ischemic stroke; summarize emerging potential therapeutic mechanisms; and highlight recent clinical trials. The aim of this review is to provide a panorama of pharmacological interventions for stroke and bridge basic and translational research to guide the clinical management of stroke therapy.
Collapse
Affiliation(s)
- Zhenhua Zhou
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA; Department of Neurology, Southwest Hospital, the Third Military Medical University, Chongqing 400038, China
| | - Jianfei Lu
- Discipline of Neuroscience, Department of Physiology and Anatomy, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wen-Wu Liu
- Department of Diving and Hyperbaric Medicine, the Second Military Medical University, Shanghai 200433, China
| | - Anatol Manaenko
- Department of Neurology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Xianhua Hou
- Department of Neurology, Southwest Hospital, the Third Military Medical University, Chongqing 400038, China
| | - Qiyong Mei
- Department of Neurosurgery, Changzheng Hospital, the Second Military Medical University, Shanghai 200003, China
| | - Jun-Long Huang
- Discipline of Neuroscience, Department of Physiology and Anatomy, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jiping Tang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Honghong Yao
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, China.
| | - Qin Hu
- Discipline of Neuroscience, Department of Physiology and Anatomy, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
48
|
Liu YW, Li S, Dai SS. Neutrophils in traumatic brain injury (TBI): friend or foe? J Neuroinflammation 2018; 15:146. [PMID: 29776443 PMCID: PMC5960133 DOI: 10.1186/s12974-018-1173-x] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 04/23/2018] [Indexed: 12/26/2022] Open
Abstract
Our knowledge of the pathophysiology about traumatic brain injury (TBI) is still limited. Neutrophils, as the most abundant leukocytes in circulation and the first-line transmigrated immune cells at the sites of injury, are highly involved in the initiation, development, and recovery of TBI. Nonetheless, our understanding about neutrophils in TBI is obsolete, and mounting evidences from recent studies have challenged the conventional views. This review summarizes what is known about the relationships between neutrophils and pathophysiology of TBI. In addition, discussions are made on the complex roles as well as the controversial views of neutrophils in TBI.
Collapse
Affiliation(s)
- Yang-Wuyue Liu
- Department of Biochemistry and Molecular Biology, Army Medical University, Chongqing, 400038, People's Republic of China.,Center for Pharmacogenetics, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261, USA
| | - Song Li
- Center for Pharmacogenetics, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261, USA
| | - Shuang-Shuang Dai
- Department of Biochemistry and Molecular Biology, Army Medical University, Chongqing, 400038, People's Republic of China. .,Molecular Biology Center, State Key Laboratory of Trauma, Burn, and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, People's Republic of China.
| |
Collapse
|
49
|
Zhu B, Pan Y, Jing J, Meng X, Zhao X, Liu L, Wang D, Johnston SC, Li H, Wang Y, Wang Z, Wang Y. Neutrophil counts, neutrophil ratio, and new stroke in minor ischemic stroke or TIA. Neurology 2018; 90:e1870-e1878. [DOI: 10.1212/wnl.0000000000005554] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 03/01/2018] [Indexed: 12/20/2022] Open
Abstract
ObjectiveEvidence about whether neutrophil counts or neutrophil ratio is associated with new stroke is scant. The aim of this study is to assess the association of neutrophil counts or neutrophil ratio with a new stroke in patients with minor stroke or TIA.MethodsWe derived data from the Clopidogrel in High-Risk Patients With Acute Nondisabling Cerebrovascular Events trial. Patients with a minor stroke or TIA were categorized into 4 groups according to the quartile of neutrophil counts or neutrophil ratio. The primary outcome was a new stroke (ischemic or hemorrhagic), and secondary outcomes included a new composite vascular event (stroke, myocardial infarction, or death resulting from cardiovascular causes) and ischemic stroke during the 90-day follow-up. We assessed the association between neutrophil counts, neutrophil ratio, and risk of new stroke.ResultsA total of 4,854 participants were enrolled, among whom 495 had new strokes at 90 days. Compared with the first quartile, the second, third, and fourth quartiles of neutrophil counts were associated with increased risk of new stroke (adjusted hazard ratio 1.40 [95% confidence interval (CI) 1.05–1.87], 1.55 [95% CI 1.17–2.05], and 1.69 [95% CI 1.28–2.23], respectively, p for trend <0.001). Similar results were observed for the endpoint of composite events and ischemic stroke. Parallel results were found for neutrophil ratio.ConclusionHigh levels of both neutrophil counts and neutrophil ratio were associated with an increased risk of new stroke, composite events, and ischemic stroke in patients with a minor ischemic stroke or TIA.
Collapse
|
50
|
Rayasam A, Hsu M, Kijak JA, Kissel L, Hernandez G, Sandor M, Fabry Z. Immune responses in stroke: how the immune system contributes to damage and healing after stroke and how this knowledge could be translated to better cures? Immunology 2018; 154:363-376. [PMID: 29494762 DOI: 10.1111/imm.12918] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 02/08/2018] [Accepted: 02/09/2018] [Indexed: 12/15/2022] Open
Abstract
Stroke is one of the leading causes of death and disability worldwide. The long-standing dogma that stroke is exclusively a vascular disease has been questioned by extensive clinical findings of immune factors that are associated mostly with inflammation after stroke. These have been confirmed in preclinical studies using experimental animal models. It is now accepted that inflammation and immune mediators are critical in acute and long-term neuronal tissue damage and healing following thrombotic and ischaemic stroke. Despite mounting information delineating the role of the immune system in stroke, the mechanisms of how inflammatory cells and their mediators are involved in stroke-induced neuroinflammation are still not fully understood. Currently, there is no available treatment for targeting the acute immune response that develops in the brain during cerebral ischaemia. No new treatment has been introduced to stroke therapy since the discovery of tissue plasminogen activator therapy in 1996. Here, we review current knowledge of the immunity of stroke and identify critical gaps that hinder current therapies. We will discuss advances in the understanding of the complex innate and adaptive immune responses in stroke; mechanisms of immune cell-mediated and factor-mediated vascular and tissue injury; immunity-induced tissue repair; and the importance of modulating immunity in stroke.
Collapse
Affiliation(s)
- Aditya Rayasam
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA.,Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Martin Hsu
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA.,Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Julie A Kijak
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Lee Kissel
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA.,Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Gianna Hernandez
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA.,Cellular and Molecular Pathology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Matyas Sandor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA.,Cellular and Molecular Pathology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Zsuzsanna Fabry
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA.,Cellular and Molecular Pathology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|