1
|
Sarkar P, Raju SV, Velayutham M, Guru A, Pasupuleti M, Al Olayan EM, Boushra AF, Juliet A, Arockiaraj J. A synthetic antioxidant molecule, GP13 derived from cysteine desulfurase of spirulina, Arthrospira platensis exhibited anti-diabetic activity on L6 rat skeletal muscle cells through GLUT-4 pathway. JOURNAL OF KING SAUD UNIVERSITY - SCIENCE 2023; 35:102450. [DOI: 10.1016/j.jksus.2022.102450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2023]
|
2
|
Segrestin B, Delage P, Nemeth A, Seyssel K, Disse E, Nazare JA, Lambert-Porcheron S, Meiller L, Sauvinet V, Chanon S, Simon C, Ratiney H, Beuf O, Pralong F, Yassin NAH, Boizot A, Gachet M, Burton-Pimentel KJ, Vidal H, Meugnier E, Vionnet N, Laville M. Polyphenol Supplementation Did Not Affect Insulin Sensitivity and Fat Deposition During One-Month Overfeeding in Randomized Placebo-Controlled Trials in Men and in Women. Front Nutr 2022; 9:854255. [PMID: 35614978 PMCID: PMC9125251 DOI: 10.3389/fnut.2022.854255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/05/2022] [Indexed: 12/30/2022] Open
Abstract
Two randomized placebo-controlled double-blind paralleled trials (42 men in Lyon, 19 women in Lausanne) were designed to test 2 g/day of a grape polyphenol extract during 31 days of high calorie-high fructose overfeeding. Hyperinsulinemic-euglycemic clamps and test meals with [1,1,1-13C3]-triolein were performed before and at the end of the intervention. Changes in body composition were assessed by dual-energy X-ray absorptiometry (DEXA). Fat volumes of the abdominal region and liver fat content were determined in men only, using 3D-magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) at 3T. Adipocyte's size was measured in subcutaneous fat biopsies. Bodyweight and fat mass increased during overfeeding, in men and in women. While whole body insulin sensitivity did not change, homeostasis model assessment of insulin resistance (HOMA-IR) and the hepatic insulin resistance index (HIR) increased during overfeeding. Liver fat increased in men. However, grape polyphenol supplementation did not modify the metabolic and anthropometric parameters or counteract the changes during overfeeding, neither in men nor in women. Polyphenol intake was associated with a reduction in adipocyte size in women femoral fat. Grape polyphenol supplementation did not counteract the moderated metabolic alterations induced by one month of high calorie-high fructose overfeeding in men and women. The clinical trials are registered under the numbers NCT02145780 and NCT02225457 at ClinicalTrials.gov and available at https://clinicaltrials.gov/ct2/show/NCT02145780 and https://clinicaltrials.gov/ct2/show/NCT02225457.
Collapse
Affiliation(s)
- Bérénice Segrestin
- INSERM, INRAe, CarMeN Laboratory, Claude Bernard Lyon 1 University, Lyon, France.,CRNH-RA, INSERM, INRAe, Hospices Civils de Lyon, Claude Bernard Lyon 1 University, Lyon, France.,Centre Hospitalier Lyon-Sud Service d'Endocrinologie Diabète Nutrition Lyon, Hospices Civils de Lyon, Lyon, France
| | - Pauline Delage
- INSERM, INRAe, CarMeN Laboratory, Claude Bernard Lyon 1 University, Lyon, France
| | - Angéline Nemeth
- CNRS, INSERM, CREATIS, Université de Lyon, INSA-Lyon, Claude Bernard Lyon 1 University, UJM-Saint Etienne, Lyon, France
| | - Kevin Seyssel
- INSERM, INRAe, CarMeN Laboratory, Claude Bernard Lyon 1 University, Lyon, France.,CRNH-RA, INSERM, INRAe, Hospices Civils de Lyon, Claude Bernard Lyon 1 University, Lyon, France
| | - Emmanuel Disse
- INSERM, INRAe, CarMeN Laboratory, Claude Bernard Lyon 1 University, Lyon, France.,CRNH-RA, INSERM, INRAe, Hospices Civils de Lyon, Claude Bernard Lyon 1 University, Lyon, France.,Centre Hospitalier Lyon-Sud Service d'Endocrinologie Diabète Nutrition Lyon, Hospices Civils de Lyon, Lyon, France
| | - Julie-Anne Nazare
- INSERM, INRAe, CarMeN Laboratory, Claude Bernard Lyon 1 University, Lyon, France.,CRNH-RA, INSERM, INRAe, Hospices Civils de Lyon, Claude Bernard Lyon 1 University, Lyon, France
| | | | - Laure Meiller
- CRNH-RA, INSERM, INRAe, Hospices Civils de Lyon, Claude Bernard Lyon 1 University, Lyon, France
| | - Valerie Sauvinet
- CRNH-RA, INSERM, INRAe, Hospices Civils de Lyon, Claude Bernard Lyon 1 University, Lyon, France
| | - Stéphanie Chanon
- INSERM, INRAe, CarMeN Laboratory, Claude Bernard Lyon 1 University, Lyon, France
| | - Chantal Simon
- INSERM, INRAe, CarMeN Laboratory, Claude Bernard Lyon 1 University, Lyon, France.,CRNH-RA, INSERM, INRAe, Hospices Civils de Lyon, Claude Bernard Lyon 1 University, Lyon, France
| | - Hélène Ratiney
- CNRS, INSERM, CREATIS, Université de Lyon, INSA-Lyon, Claude Bernard Lyon 1 University, UJM-Saint Etienne, Lyon, France
| | - Olivier Beuf
- CNRS, INSERM, CREATIS, Université de Lyon, INSA-Lyon, Claude Bernard Lyon 1 University, UJM-Saint Etienne, Lyon, France
| | - François Pralong
- Service of Endocrinology, Diabetes and Metabolism, Lausanne University Hospital, Lausanne, Switzerland
| | - Naba-Al-Huda Yassin
- Service of Endocrinology, Diabetes and Metabolism, Lausanne University Hospital, Lausanne, Switzerland
| | - Alexia Boizot
- Service of Endocrinology, Diabetes and Metabolism, Lausanne University Hospital, Lausanne, Switzerland
| | - Mélanie Gachet
- Service of Endocrinology, Diabetes and Metabolism, Lausanne University Hospital, Lausanne, Switzerland
| | - Kathryn J Burton-Pimentel
- Service of Endocrinology, Diabetes and Metabolism, Lausanne University Hospital, Lausanne, Switzerland
| | - Hubert Vidal
- INSERM, INRAe, CarMeN Laboratory, Claude Bernard Lyon 1 University, Lyon, France.,CRNH-RA, INSERM, INRAe, Hospices Civils de Lyon, Claude Bernard Lyon 1 University, Lyon, France
| | - Emmanuelle Meugnier
- INSERM, INRAe, CarMeN Laboratory, Claude Bernard Lyon 1 University, Lyon, France
| | - Nathalie Vionnet
- Service of Endocrinology, Diabetes and Metabolism, Lausanne University Hospital, Lausanne, Switzerland
| | - Martine Laville
- INSERM, INRAe, CarMeN Laboratory, Claude Bernard Lyon 1 University, Lyon, France.,CRNH-RA, INSERM, INRAe, Hospices Civils de Lyon, Claude Bernard Lyon 1 University, Lyon, France.,Centre Hospitalier Lyon-Sud Service d'Endocrinologie Diabète Nutrition Lyon, Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
3
|
Insulin signaling pathway assessment by enhancing antioxidant activity due to morin using in vitro rat skeletal muscle L6 myotubes cells. Mol Biol Rep 2021; 48:5857-5872. [PMID: 34302266 DOI: 10.1007/s11033-021-06580-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/14/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Plant-derived phytochemicals such as flavonoids have been explored to be powerful antioxidants that protect against oxidative stress-related diseases. In the present study, Morin, a flavonoid compound was studied for its antioxidant and antidiabetic properties in relation to oxidative stress in insulin resistant models conducted in rat skeletal muscle L6 cell line model. METHODS Evaluation of antioxidant property of morin was assayed using in vitro methods such as cell viability by MTT assay, estimation of SOD and CAT activity and NO scavenging activity. The anti-oxidative nature of morin on L6 cell line was conducted by the DCF-DA fluorescent activity. Glucose uptake in morin treated L6 myotubes are accessed by 2-NBDG assay in the presence or absence of IRTK and PI3K inhibitors. Further glycogen content estimation due to the morin treatment in L6 myotubes was performed. Antioxidant and insulin signaling pathway gene expression was examined over RT-PCR analysis. RESULTS Morin has a negligible cytotoxic effect at doses of 20, 40, 60, 80, and 100 µM concentration according to cell viability assay. Morin revealed that the levels of the antioxidant enzymes SOD and CAT in L6 myotubes had increased. When the cells were subjected to the nitro blue tetrazolium assay, morin lowered reactive oxygen species (ROS) formation at 60 µM concentration displaying 39% ROS generation in oxidative stress condition. Lesser NO activity and a drop in green fluorescence emission in the DCFDA assay, demonstrating its anti-oxidative nature by reducing ROS formation in vitro. Glucose uptake by the L6 myotube cells using 2-NBDG, and with IRTK and PI3K inhibitors (genistein and wortmannin) showed a significant increase in glucose uptake by the cells which shows the up regulated GLUT-4 movement from intracellular pool to the plasma membrane. Morin (60 µM) significantly enhanced the expression of antioxidant genes GPx, GST and GCS as well as insulin signalling genes IRTK, IRS-1, PI3K, GLUT-4, GSK-3β and GS in L6 myotubes treated cells. CONCLUSION Morin has the ability to act as an anti-oxidant by lowering ROS levels and demonstrating insulin mimetic activity by reversing insulin resistance associated with oxidative stress.
Collapse
|
4
|
Bharadwaja S, Issac PK, Cleta J, Jeganaathan R, Chandrakumar SS, Sundaresan S. Correction to: An in vitro mechanistic approach towards understanding the distinct pathways regulating insulin resistance and adipogenesis by apocynin. J Biosci 2021. [PMID: 34148872 DOI: 10.1007/s12038-020-00134-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In the 2021 issue of the Journal of Biosciences in the article titled ''An in vitro mechanistic approach towards understanding the distinct pathways regulating insulin resistance and adipogenesis by apocynin'' by Sai Bharadwaja, Praveen Kumar Issac, Jocelyn Cleta, Rakesh Jeganathan, Sri Snehaa Chandrakumar and Sujatha Sundaresan (https://doi.org/10.1007/s12038-020-00134-2; Vol. 46, Article No. 008), the author Rakesh Jeganaathan's name was incorrectly mentioned as ''Rakesh Jeganathan''. The correct name should read as ''Rakesh Jeganaathan''.
Collapse
Affiliation(s)
- Sai Bharadwaja
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Kancheepuram District, Tamil Nadu 603 203, India
| | | | | | | | | | | |
Collapse
|
5
|
Guru A, Issac PK, Saraswathi NT, Seshadri VD, Gabr GA, Arockiaraj J. Deteriorating insulin resistance due to WL15 peptide from cysteine and glycine-rich protein 2 in high glucose-induced rat skeletal muscle L6 cells. Cell Biol Int 2021; 45:1698-1709. [PMID: 33818831 DOI: 10.1002/cbin.11608] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/17/2021] [Accepted: 04/01/2021] [Indexed: 12/19/2022]
Abstract
This study investigates the antioxidant and antidiabetic activity of the WL15 peptide derived from Channa striatus on regulating the antioxidant property in the rat skeletal muscle cell line (L6) and enhancing glucose uptake via glucose metabolism. Increased oxidative stress plays a major role in the development of diabetes and its complications. Strategies are needed to mitigate the oxidative stress that can reduce these pathogenic processes. Our results showed that with treatment with WL15 peptide, the reactive oxygen species significantly decreased in L6 myotubes in a dose-dependent manner, and increased antioxidant enzymes help to prevent the formation of lipid peroxidation in L6 myotubes. The cytotoxicity of WL15 is evaluated in the L6 cells and found to be non-cytotoxic at the tested concentration. Also, for the analysis of glucose uptake activity in L6 cells, the 2-(N-[7-nitrobenz-2-oxa-1,3-diazol-4-yl]amino)-2-deoxy- d -glucose assay was performed in the presence of wortmannin and genistein inhibitors. WL15 demonstrated antidiabetic activities through a dose-dependent increase in glucose uptake (64%) and glycogen storage (7.8 mM). The optimal concentration for the maximum activity was found to be 50 µM. In addition, studies of gene expression in L6 myotubes demonstrated upregulation of antioxidant genes and genes involved in the pathway of insulin signaling. In cell-based assays, WL15 peptide decreased intracellular reactive oxygen species levels and demonstrated insulin mimic activity by enhancing the primary genes involved in the insulin signaling pathway by increased glucose uptake indicating that glucose transporter type 4 (GLUT4) is regulated from the intracellular pool to the plasma membrane.
Collapse
Affiliation(s)
- Ajay Guru
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, India.,Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, India
| | - Praveen Kumar Issac
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, India
| | - N T Saraswathi
- Molecular Biophysics Lab, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, Tamil Nadu, India
| | - Vidya Devanathadesikan Seshadri
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam bin Abdul Aziz University, Al Kharj, Saudi Arabia
| | - Gamal A Gabr
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam bin Abdul Aziz University, Al Kharj, Saudi Arabia
| | - Jesu Arockiaraj
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, India.,Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, India
| |
Collapse
|
6
|
Issac PK, Guru A, Chandrakumar SS, Lite C, Saraswathi NT, Arasu MV, Al-Dhabi NA, Arshad A, Arockiaraj J. Molecular process of glucose uptake and glycogen storage due to hamamelitannin via insulin signalling cascade in glucose metabolism. Mol Biol Rep 2020; 47:6727-6740. [PMID: 32809102 DOI: 10.1007/s11033-020-05728-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/10/2020] [Indexed: 12/19/2022]
Abstract
Understanding the mechanism by which the exogenous biomolecule modulates the GLUT-4 signalling cascade along with the information on glucose metabolism is essential for finding solutions to increasing cases of diabetes and metabolic disease. This study aimed at investigating the effect of hamamelitannin on glycogen synthesis in an insulin resistance model using L6 myotubes. Glucose uptake was determined using 2-deoxy-D-[1-3H] glucose and glycogen synthesis were also estimated in L6 myotubes. The expression levels of key genes and proteins involved in the insulin-signaling pathway were determined using real-time PCR and western blot techniques. The cells treated with various concentrations of hamamelitannin (20 µM to 100 µM) for 24 h showed that, the exposure of hamamelitannin was not cytotoxic to L6 myotubes. Further the 2-deoxy-D-[1-3H] glucose uptake assay was carried out in the presence of wortmannin and Genistein inhibitor for studying the GLUT-4 dependent cell surface recruitment. Hamamelitannin exhibited anti-diabetic activity by displaying a significant increase in glucose uptake (125.1%) and glycogen storage (8.7 mM) in a dose-dependent manner. The optimum concentration evincing maximum activity was found to be 100 µm. In addition, the expression of key genes and proteins involved in the insulin signaling pathway was studied to be upregulated by hamamelitannin treatment. Western blot analysis confirmed the translocation of GLUT-4 protein from an intracellular pool to the plasma membrane. Therefore, it can be conceived that hamamelitannin exhibited an insulinomimetic effect by enhancing the glucose uptake and its further conversion into glycogen by regulating glucose metabolism.
Collapse
Affiliation(s)
- Praveen Kumar Issac
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603 203, India
| | - Ajay Guru
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603 203, India
| | - Sri Snehaa Chandrakumar
- Department of Biotechnology, Anna University, BIT Campus, Tiruchirappalli, Tamil Nadu, 620 024, India
| | - Christy Lite
- Endocrine and Exposome Laboratory, Department of Zoology, Madras Christian College, Tambaram, Chennai, Tamil Nadu, 600 059, India
| | - N T Saraswathi
- Molecular Biophysics Laboratory, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, Tamil Nadu, 613 401, India
| | - Mariadhas Valan Arasu
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Naif Abdullah Al-Dhabi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Aziz Arshad
- International Institute of Aquaculture and Aquatic Sciences (I-AQUAS), Universiti Putra Malaysia, Port Dickson, Negeri Sembilan, 71050, Malaysia
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Selangor, 43400, Malaysia
| | - Jesu Arockiaraj
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603 203, India.
| |
Collapse
|
7
|
Transcriptional Profiling and Biological Pathway(s) Analysis of Type 2 Diabetes Mellitus in a Pakistani Population. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17165866. [PMID: 32823525 PMCID: PMC7460550 DOI: 10.3390/ijerph17165866] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/03/2020] [Accepted: 08/06/2020] [Indexed: 12/22/2022]
Abstract
The epidemic of type 2 diabetes mellitus (T2DM) is an important global health concern. Our earlier epidemiological investigation in Pakistan prompted us to conduct a molecular investigation to decipher the differential genetic pathways of this health condition in relation to non-diabetic controls. Our microarray studies of global gene expression were conducted on the Affymetrix platform using Human Genome U133 Plus 2.0 Array along with Ingenuity Pathway Analysis (IPA) to associate the affected genes with their canonical pathways. High-throughput qRT-PCR TaqMan Low Density Array (TLDA) was performed to validate the selected differentially expressed genes of our interest, viz., ARNT, LEPR, MYC, RRAD, CYP2D6, TP53, APOC1, APOC2, CYP1B1, SLC2A13, and SLC33A1 using a small population validation sample (n = 15 cases and their corresponding matched controls). Overall, our small pilot study revealed a discrete gene expression profile in cases compared to controls. The disease pathways included: Insulin Receptor Signaling, Type II Diabetes Mellitus Signaling, Apoptosis Signaling, Aryl Hydrocarbon Receptor Signaling, p53 Signaling, Mitochondrial Dysfunction, Chronic Myeloid Leukemia Signaling, Parkinson's Signaling, Molecular Mechanism of Cancer, and Cell Cycle G1/S Checkpoint Regulation, GABA Receptor Signaling, Neuroinflammation Signaling Pathway, Dopamine Receptor Signaling, Sirtuin Signaling Pathway, Oxidative Phosphorylation, LXR/RXR Activation, and Mitochondrial Dysfunction, strongly consistent with the evidence from epidemiological studies. These gene fingerprints could lead to the development of biomarkers for the identification of subgroups at high risk for future disease well ahead of time, before the actual disease becomes visible.
Collapse
|
8
|
High expression of CPT1b in skeletal muscle in metabolically healthy older subjects. DIABETES & METABOLISM 2019; 45:152-159. [DOI: 10.1016/j.diabet.2018.01.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 12/21/2017] [Accepted: 01/14/2018] [Indexed: 12/25/2022]
|
9
|
Kumar PM, Venkataranganna MV, Manjunath K, Viswanatha GL, Ashok G. Methanolic leaf extract of Gymnema sylvestre augments glucose uptake and ameliorates insulin resistance by upregulating glucose transporter-4, peroxisome proliferator-activated receptor-gamma, adiponectin, and leptin levels in vitro. JOURNAL OF COMPLEMENTARY MEDICINE RESEARCH 2016; 5:146-52. [PMID: 27104035 PMCID: PMC4835989 DOI: 10.5455/jice.20160224051727] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 02/08/2016] [Indexed: 11/23/2022]
Abstract
Aims: The present study was undertaken to evaluate the effect of methanolic leaf extract of Gymnema sylvestre (MLGS) on glucose transport (GLUT) and insulin resistance in vitro. Materials and Methods: Peroxisome proliferator-activated receptor-gamma (PPAR-γ) and GLUT-4 expression were assessed in L6 myotubes for concluding the GLUT activity, and adiponectin and leptin expression was studied in 3T3 L1 murine adipocyte cell line to determine the effect of MLGS (250-750 μg/ml) on insulin resistance. Results: The findings of the experiments have demonstrated a significant and dose-dependent increase in glucose uptake in all the tested concentrations of MLGS, further the glucose uptake activity of MLGS (750 μg/ml) was at par with rosiglitazone (50 μg/ml). Concomitantly, MLGS has shown enhanced GLUT-4 and PPAR-γ gene expressions in L6 myotubes. Furthermore, cycloheximide (CHX) had completely abolished the glucose uptake activity of MLGS when co-incubated, which further confirmed that glucose uptake activity of MLGS was linked to enhanced expression of GLUT-4 and PPAR-γ. In addition, in another experimental set, MLGS showed enhanced expression of adiponectin and leptin, thus confirms the ameliorative effect of MLGS on insulin resistance. Conclusion: These findings suggest that MLGS has an enhanced glucose uptake activity in L6 myotubes, and ameliorate the insulin resistance in 3T3 L1 murine adipocyte cell line in vitro.
Collapse
Affiliation(s)
| | | | - Kirangadur Manjunath
- Department of Microbiology and Biotechnology, Bangalore University, Bengaluru, Karnataka, India
| | | | - Godavarthi Ashok
- Radiant Research Services Pvt. Ltd., Bengaluru, Karnataka, India
| |
Collapse
|
10
|
Kumar PM, Venkataranganna MV, Manjunath K, Viswanatha GL, Ashok G. Methanolic extract of Momordica cymbalaria enhances glucose uptake in L6 myotubes in vitro by up-regulating PPAR-γ and GLUT-4. Chin J Nat Med 2015; 12:895-900. [PMID: 25556060 DOI: 10.1016/s1875-5364(14)60132-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Indexed: 11/26/2022]
Abstract
The present study was undertaken to evaluate the influence of the methanolic fruit extract of Momordica cymbalaria (MFMC) on PPARγ (Peroxisome Proliferator Activated Receptor gamma) and GLUT-4 (Glucose transporter-4) with respect to glucose transport. Various concentrations of MFMC ranging from 62.5 to 500 μg·mL(-1) were evaluated for glucose uptake activity in vitro using L6 myotubes, rosiglitazone was used as a reference standard. The MFMC showed significant and dose-dependent increase in glucose uptake at the tested concentrations, further, the glucose uptake activity of MFMC (500 μg·mL(-1)) was comparable with rosigilitazone. Furthermore, MFMC has shown up-regulation of GLUT-4 and PPARγ gene expressions in L6 myotubes. In addition, the MFMC when incubated along with cycloheximide (CHX), which is a protein synthesis inhibitor, has shown complete blockade of glucose uptake. This indicates that new protein synthesis is required for increased GLUT-4 translocation. In conclusion, these findings suggest that MFMC is enhancing the glucose uptake significantly and dose dependently through the enhanced expression of PPARγ and GLUT-4 in vitro.
Collapse
Affiliation(s)
| | | | - Kirangadur Manjunath
- Department of Microbiology and Biotechnology, Bangalore University, Bangalore 560056, India
| | | | - Godavarthi Ashok
- Director, Radiant Research Services Pvt Ltd., Bangalore 560050, India
| |
Collapse
|
11
|
Yu H, Zheng L, Xu L, Yin L, Lin Y, Li H, Liu K, Peng J. Potent Effects of the Total Saponins fromDioscorea nipponicaMakino Against Streptozotocin-Induced Type 2 Diabetes Mellitus in Rats. Phytother Res 2014; 29:228-40. [DOI: 10.1002/ptr.5243] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Revised: 08/26/2014] [Accepted: 09/16/2014] [Indexed: 11/06/2022]
Affiliation(s)
- Hao Yu
- College of Pharmacy; Dalian Medical University; Western 9 Lvshunnan Road, Lvshunkou District Dalian Liaoning Province 116044 China
| | - Lingli Zheng
- Department of Pharmacy; The First Affiliated Hospital of Dalian Medical University; Dalian 116011 China
| | - Lina Xu
- College of Pharmacy; Dalian Medical University; Western 9 Lvshunnan Road, Lvshunkou District Dalian Liaoning Province 116044 China
| | - Lianhong Yin
- College of Pharmacy; Dalian Medical University; Western 9 Lvshunnan Road, Lvshunkou District Dalian Liaoning Province 116044 China
| | - Yuan Lin
- College of Pharmacy; Dalian Medical University; Western 9 Lvshunnan Road, Lvshunkou District Dalian Liaoning Province 116044 China
| | - Hua Li
- College of Pharmacy; Dalian Medical University; Western 9 Lvshunnan Road, Lvshunkou District Dalian Liaoning Province 116044 China
| | - Kexin Liu
- College of Pharmacy; Dalian Medical University; Western 9 Lvshunnan Road, Lvshunkou District Dalian Liaoning Province 116044 China
| | - Jinyong Peng
- College of Pharmacy; Dalian Medical University; Western 9 Lvshunnan Road, Lvshunkou District Dalian Liaoning Province 116044 China
- Research Institute of Integrated Traditional and Western Medicine of Dalian Medical University; Dalian 116011 China
| |
Collapse
|
12
|
Seyssel K, Alligier M, Meugnier E, Chanseaume E, Loizon E, Canto C, Disse E, Lambert-Porcheron S, Brozek J, Blond E, Rieusset J, Morio B, Laville M, Vidal H. Regulation of energy metabolism and mitochondrial function in skeletal muscle during lipid overfeeding in healthy men. J Clin Endocrinol Metab 2014; 99:E1254-62. [PMID: 24684464 DOI: 10.1210/jc.2013-4379] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT/OBJECTIVE The aim of this study was to evaluate the regulation of the fuel partitioning and energy metabolism in skeletal muscle during lipid overfeeding in healthy men. Design/Participants/Intervention: Thirty-nine healthy volunteers were overfed for 56 days with a high-fat diet (3180 kJ/d). Energy metabolism (indirect calorimetry) was characterized in the fasting state and during a test meal before and at the end of the diet. Skeletal muscle biopsies were taken at day 0 and day 56. MAIN OUTCOME MEASURES Change in gene expression, mitochondrial respiration, nicotinamide adenine dinucleotide (NAD(+)) content, and acetylation of peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) in skeletal muscle was measured. RESULTS Overfeeding increased body weight (+2.6 kg) and fat mass concomitantly with a shift in the use of substrates as energy fuel toward preferential oxidation of carbohydrates instead of lipids. Changes in lipid metabolic gene expression supported this observation, with a reduction in pyruvate dehydrogenase kinase 4 expression that could be the consequences of decreased NAD(+) concentration and reduced deacetylase activity of the sirtuins, as supported by hyperacetylation of PGC-1α after overfeeding. Interestingly, this reduction of the sirtuin PGC-1α pathway was associated with increased mitochondrial gene expression and higher respiration rate under these conditions. CONCLUSION Adaptation to lipid overfeeding and regulation of fuel partitioning in human muscle appear to rely on a dissociation between the regulatory functions of the sirtuin-PGC-1α pathway on fatty acid oxidation and on mitochondrial regulation. This may facilitate lipid storage during a period of positive energy balance while maintaining mitochondrial functions and oxidative capacities.
Collapse
Affiliation(s)
- K Seyssel
- INSERM Unité Mixte de Recherche 1060 (K.S., M.A., E.M., E.L., E.D., E.B., J.R., M.L., H.V.), Laboratoires CarMeN et Centre Européen pour la Nutrition et la Santé, Université Lyon 1, F-69600 Oullins, France; Centre de Recherche en Nutrition Humaine Rhône-Alpes (K.S., M.A., E.D., S.L.-P., E.B., M.L., H.V.), Centre Hospitalier Lyon-Sud, F-69310 Pierre Bénite, France; Institut National de la Recherche Agronomique Unité 1235 (E.M., J.R., M.L., H.V.), F-69600 Oullins, France; Institut National de la Recherche Agronomique Unité Mixte de Recherche 1019 (E.C., B.M.), Unité de Nutrition Humaine and Centre de Recherche en Nutrition Humaine Auvergne, Université d'Auvergne, F-63000 Clermont-Ferrand, France; Laboratory of Integrative and Systems Physiology (C.C.), Ecole Polytechnique Fédérale de Lausanne, School of Life Sciences - Institute of Bioengineering, CH-1015 Lausanne, Switzerland; and Genfit (J.B.), F-59120 Loos, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Srilatha BR, Ananda S. Antidiabetic effects of Mukia maderaspatana and its phenolics: an in vitro study on gluconeogenesis and glucose uptake in rat tissues. PHARMACEUTICAL BIOLOGY 2014; 52:597-602. [PMID: 24251899 DOI: 10.3109/13880209.2013.858268] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 10/18/2013] [Indexed: 06/02/2023]
Abstract
CONTEXT Traditional medicine is used by over 60% of the world's population for health care. Mukia maderaspatana (L.) M. Roem. (Cucurbitaceae) (Mukia) is extensively used in folklore medicine as an antidiabetic plant. It is rich in phenolics that contribute to its medicinal properties. OBJECTIVE Mukia extract and phenolics such as quercetin and phloroglucinol are investigated for their in vitro antidiabetic activity. MATERIALS AND METHODS Quercetin, phloroglucinol, and methanol extract of the dried whole plant (0.25 and 0.5 mg/ml) were studied for the inhibition of gluconeogenesis in rat liver slices and glucose uptake in isolated rat hemi-diaphragm (50 and 100 µg/ml). Phenolics of Mukia were analyzed by HPLC. RESULTS AND DISCUSSION Glucose (1.2 mg/g/h) was synthesized from pyruvate and the synthesis was completely inhibited by insulin (1 U/ml). Quercetin at 0.25 and 0.5 mg/ml caused 65% and 89% inhibition (0.42 mg/g/h and 0.13 mg/g/h glucose). Addition of insulin did not increase inhibition. Phloroglucinol inhibited 100% glucose production with or without insulin. Mukia (0.25 mg/ml) inhibited gluconeogenesis (0.65 mg/g/h) by 45%, and with insulin, inhibition increased to 50% (0.59 mg/g/h). At 0.5 mg/ml, glucose production was stimulated by1.2-fold, but with insulin it was inhibited by 89% (0.13 mg/g/h glucose). Mukia had no effect on glucose uptake, but potentiated the action of insulin mediated glucose uptake (152.82 ± 13.30 mg/dl/g/30 min) compared with insulin control (112.41 ± 9.14 mg/dl/g/30 min) (p < 0.05). HPLC analysis revealed the presence of phenolics. CONCLUSION Results provide scientific rationale for the use of Mukia in folk medicine as an antidiabetic nutraceutical.
Collapse
Affiliation(s)
- B R Srilatha
- Department of Studies in Chemistry, University of Mysore , Manasagangothri, Mysore, Karnataka , India
| | | |
Collapse
|
14
|
Wang Y, Li G, Mao F, Li X, Liu Q, Chen L, Lv L, Wang X, Wu J, Dai W, Wang G, Zhao E, Tang KF, Sun ZS. Ras-induced epigenetic inactivation of the RRAD (Ras-related associated with diabetes) gene promotes glucose uptake in a human ovarian cancer model. J Biol Chem 2014; 289:14225-38. [PMID: 24648519 DOI: 10.1074/jbc.m113.527671] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
RRAD (Ras-related associated with diabetes) is a small Ras-related GTPase that is frequently inactivated by DNA methylation of the CpG island in its promoter region in cancer tissues. However, the role of the methylation-induced RRAD inactivation in tumorigenesis remains unclear. In this study, the Ras-regulated transcriptome and epigenome were profiled by comparing T29H (a Ras(V12)-transformed human ovarian epithelial cell line) with T29 (an immortalized but non-transformed cell line) through reduced representation bisulfite sequencing and digital gene expression. We found that Ras(V12)-mediated oncogenic transformation was accompanied by RRAD promoter hypermethylation and a concomitant loss of RRAD expression. In addition, we found that the RRAD promoter was hypermethylated, and its transcription was reduced in ovarian cancer versus normal ovarian tissues. Treatment with the DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine resulted in demethylation in the RRAD promoter and restored RRAD expression in T29H cells. Additionally, treatment with farnesyltransferase inhibitor FTI277 resulted in restored RRAD expression and inhibited DNA methytransferase expression and activity in T29H cells. By employing knockdown and overexpression techniques in T29 and T29H, respectively, we found that RRAD inhibited glucose uptake and lactate production by repressing the expression of glucose transporters. Finally, RRAD overexpression in T29H cells inhibited tumor formation in nude mice, suggesting that RRAD is a tumor suppressor gene. Our results indicate that Ras(V12)-mediated oncogenic transformation induces RRAD epigenetic inactivation, which in turn promotes glucose uptake and may contribute to ovarian cancer tumorigenesis.
Collapse
Affiliation(s)
- Yan Wang
- From the Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China, the University of the Chinese Academy of Sciences, Beijing 100080, China
| | - Guiling Li
- the Institute of Genomic Medicine, Wenzhou Medical University, 268 West Xueyuan Road, Wenzhou, Zhejiang Province 325000, China
| | - Fengbiao Mao
- the University of the Chinese Academy of Sciences, Beijing 100080, China, the Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Xianfeng Li
- the State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan Province 410078, China, and
| | - Qi Liu
- the Institute of Genomic Medicine, Wenzhou Medical University, 268 West Xueyuan Road, Wenzhou, Zhejiang Province 325000, China
| | - Lin Chen
- the Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Lu Lv
- the Institute of Genomic Medicine, Wenzhou Medical University, 268 West Xueyuan Road, Wenzhou, Zhejiang Province 325000, China
| | - Xin Wang
- the Institute of Genomic Medicine, Wenzhou Medical University, 268 West Xueyuan Road, Wenzhou, Zhejiang Province 325000, China
| | - Jinyu Wu
- the Institute of Genomic Medicine, Wenzhou Medical University, 268 West Xueyuan Road, Wenzhou, Zhejiang Province 325000, China
| | - Wei Dai
- From the Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
| | - Guan Wang
- the Department of Obstetrics and Gynecology, General Hospital of Chinese People's Liberation Army, Beijing 100853, China
| | - Enfeng Zhao
- the Department of Obstetrics and Gynecology, General Hospital of Chinese People's Liberation Army, Beijing 100853, China
| | - Kai-Fu Tang
- the Institute of Genomic Medicine, Wenzhou Medical University, 268 West Xueyuan Road, Wenzhou, Zhejiang Province 325000, China,
| | - Zhong Sheng Sun
- the Institute of Genomic Medicine, Wenzhou Medical University, 268 West Xueyuan Road, Wenzhou, Zhejiang Province 325000, China, the Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China,
| |
Collapse
|
15
|
Hokayem M, Blond E, Vidal H, Lambert K, Meugnier E, Feillet-Coudray C, Coudray C, Pesenti S, Luyton C, Lambert-Porcheron S, Sauvinet V, Fedou C, Brun JF, Rieusset J, Bisbal C, Sultan A, Mercier J, Goudable J, Dupuy AM, Cristol JP, Laville M, Avignon A. Grape polyphenols prevent fructose-induced oxidative stress and insulin resistance in first-degree relatives of type 2 diabetic patients. Diabetes Care 2013; 36:1454-61. [PMID: 23275372 PMCID: PMC3661802 DOI: 10.2337/dc12-1652] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To assess the clinical efficacy of nutritional amounts of grape polyphenols (PPs) in counteracting the metabolic alterations of high-fructose diet, including oxidative stress and insulin resistance (IR), in healthy volunteers with high metabolic risk. RESEARCH DESIGN AND METHODS Thirty-eight healthy overweight/obese first-degree relatives of type 2 diabetic patients (18 men and 20 women) were randomized in a double-blind controlled trial between a grape PP (2 g/day) and a placebo (PCB) group. Subjects were investigated at baseline and after 8 and 9 weeks of supplementation, the last 6 days of which they all received 3 g/kg fat-free mass/day of fructose. The primary end point was the protective effect of grape PPs on fructose-induced IR. RESULTS In the PCB group, fructose induced 1) a 20% decrease in hepatic insulin sensitivity index (P < 0.05) and an 11% decrease in glucose infusion rate (P < 0.05) as evaluated during a two-step hyperinsulinemic-euglycemic clamp, 2) an increase in systemic (urinary F2-isoprostanes) and muscle (thiobarbituric acid-reactive substances and protein carbonylation) oxidative stress (P < 0.05), and 3) a downregulation of mitochondrial genes and decreased mitochondrial respiration (P < 0.05). All the deleterious effects of fructose were fully blunted by grape PP supplementation. Antioxidative defenses, inflammatory markers, and main adipokines were affected neither by fructose nor by grape PPs. CONCLUSIONS A natural mixture of grape PPs at nutritional doses efficiently prevents fructose-induced oxidative stress and IR. The current interest in grape PP ingredients and products by the global food and nutrition industries could well make them a stepping-stone of preventive nutrition.
Collapse
Affiliation(s)
- Marie Hokayem
- INSERM U1046, Physiologie & Médecine Expérimentale du Cœur et des Muscles, Montpellier, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Sunderland KL, Roberts MD, Dalbo VJ, Kerksick CM. Aging and sequential resistance exercise bout effects on housekeeping gene messenger RNA expression in human skeletal muscle. J Strength Cond Res 2013; 27:1-7. [PMID: 23085978 DOI: 10.1519/jsc.0b013e3182779830] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The purpose of this study was to investigate how age and 1 week of conventional resistance exercise affects commonly used housekeeping gene (HKG) messenger RNAs (mRNAs) in skeletal muscle. Ten college-aged (18-25 years) and 10 older (60-76 years) men completed 3 lower-body resistance exercise bouts on Monday, Wednesday, and Friday, and muscle samples were obtained before bout 1 (T1), 48 hours after the first (T2) and second bouts (T3), and 24 hours after the third bout (T4). Raw Ct values indicated that β-actin and cyclophilin were more highly expressed in older vs. younger males (p < 0.01) at T1. When normalizing each HKG mRNA to the other 4 HKG mRNAs, CYC increased at T3 and glyceraldehyde-3-phosphate dehydrogenase decreased at T2 (p < 0.05) in younger men. This is one of the few studies to suggest that explicit HKG mRNAs should be used depending upon age group and resistance exercise intervention.
Collapse
Affiliation(s)
- Kyle L Sunderland
- Department of Health and Exercise Science, University of Oklahoma, Norman, OK, USA
| | | | | | | |
Collapse
|
17
|
Independent and combined effects of acute physiological hyperglycaemia and hyperinsulinaemia on metabolic gene expression in human skeletal muscle. Clin Sci (Lond) 2013; 124:675-84. [DOI: 10.1042/cs20120481] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Physiological hyperglycaemia and hyperinsulinaemia are strong modulators of gene expression, which underpins some of their well-known effects on insulin action and energy metabolism. The aim of the present study was to examine whether acute in vivo exposure of healthy humans to hyperinsulinaemia and hyperglycaemia have independent or additive effects on expression of key metabolic genes in skeletal muscle. On three randomized occasions, seven young subjects underwent a 4 h (i) hyperinsulinaemic (50 m-units·m−2·min−1) hyperglycaemic (10 mmol/l) clamp (HIHG), (ii) hyperglycaemic (10 mmol/l) euinsulinaemic (5 m-units·m−2·min−1) clamp (LIHG) and (iii) hyperinsulinaemic (50 m-units·m−2·min−1) euglycaemic (4.5 mmol/l) clamp (HING). Muscle biopsies were obtained before and after each clamp for the determination of expression of genes involved in energy metabolism, and phosphorylation of key insulin signalling proteins. Hyperinsulinaemia and hyperglycaemia exerted independent effects with similar direction of modulation on PI3KR1 (phosphatidylinositol 3-kinase, regulatory 1), LXRα (liver X receptor α), PDK4 (pyruvate dehydrogenase kinase 4) and FOXO1 (forkhead box O1A) and produced an additive effect on PI3KR1, the gene that encodes the p85α subunit of PI3K in human skeletal muscle. Acute hyperglycaemia itself altered the expression of genes involved in fatty acid transport and oxidation [fatty acid transporter (CD36), LCAD (long-chain acyl-CoA dehydrogenase) and FOXO1], and lipogenesis [LXRα, ChREBP (carbohydrate-responseelement-binding protein), ABCA1 (ATP-binding cassette transporter A1) and G6PD (glucose-6-phosphate dehydrogenase). Surperimposing hyperinsulinaemia on hyperglycaemia modulated a number of genes involved in insulin signalling, glucose metabolism and intracellular lipid accumulation and exerted an additive effect on PI3KR1. These may be early molecular events that precede the development of glucolipotoxicity and insulin resistance normally associated with more prolonged periods of hyperglycaemia and hyperinsulinaemia.
Collapse
|
18
|
Schrauwen-Hinderling VB, Kooi ME, Hesselink MKC, Moonen-Kornips E, Schaart G, Mustard KJ, Hardie DG, Saris WHM, Nicolay K, Schrauwen P. Intramyocellular Lipid Content and Molecular Adaptations in Response to a 1-Week High-Fat Diet. ACTA ACUST UNITED AC 2012; 13:2088-94. [PMID: 16421342 DOI: 10.1038/oby.2005.259] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE To investigate molecular adaptations that accompany the elevation of intramyocellular lipid (IMCL) content on a high-fat (HF) diet for 1 week. RESEARCH METHODS AND PROCEDURES Ten subjects consumed a normal-fat (NF) diet for 1 week, followed by an HF diet for another week. After both dietary periods, we determined the IMCL content by proton magnetic resonance spectroscopy in the vastus lateralis muscle and quantified changes in gene expression, protein content, and activity in biopsy samples. We investigated genes involved in carbohydrate and fatty acid handling [lipoprotein lipase, acetyl-coenzyme A carboxylase (ACC) 2, hormone-sensitive lipase, hexokinase II, and glucose transporter 4] and measured protein levels of CD36 and phosphorylated and unphosphorylated ACC2 and the activity of adenosine monophosphate-activated kinase. RESULTS IMCL content was increased by 54% after the HF period. Lipoprotein lipase mRNA concentration was increased by 33%, whereas ACC2 mRNA concentration tended to be increased after the HF diet. Hexokinase II, glucose transporter 4, and hormone-sensitive lipase mRNA were unchanged after the HF diet. ACC2 and CD36 protein levels, phosphorylation status of ACC2, and adenosine monophosphate-activated kinase activity did not change in response to the HF diet. DISCUSSION We found that IMCL content in skeletal muscle increased after 1 week of HF feeding, accompanied by molecular adaptations that favor fat storage in muscle rather than oxidation.
Collapse
|
19
|
McCurdy CE, Schenk S, Holliday MJ, Philp A, Houck JA, Patsouris D, MacLean PS, Majka SM, Klemm DJ, Friedman JE. Attenuated Pik3r1 expression prevents insulin resistance and adipose tissue macrophage accumulation in diet-induced obese mice. Diabetes 2012; 61:2495-505. [PMID: 22698915 PMCID: PMC3447911 DOI: 10.2337/db11-1433] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Obese white adipose tissue (AT) is characterized by large-scale infiltration of proinflammatory macrophages, in parallel with systemic insulin resistance; however, the cellular stimulus that initiates this signaling cascade and chemokine release is still unknown. The objective of this study was to determine the role of the phosphoinositide 3-kinase (PI3K) regulatory subunits on AT macrophage (ATM) infiltration in obesity. Here, we find that the Pik3r1 regulatory subunits (i.e., p85α/p55α/p50α) are highly induced in AT from high-fat diet-fed obese mice, concurrent with insulin resistance. Global heterozygous deletion of the Pik3r1 regulatory subunits (αHZ), but not knockout of Pik3r2 (p85β), preserves whole-body, AT, and skeletal muscle insulin sensitivity, despite severe obesity. Moreover, ATM accumulation, proinflammatory gene expression, and ex vivo chemokine secretion in obese αHZ mice are markedly reduced despite endoplasmic reticulum (ER) stress, hypoxia, adipocyte hypertrophy, and Jun NH(2)-terminal kinase activation. Furthermore, bone marrow transplant studies reveal that these improvements in obese αHZ mice are independent of reduced Pik3r1 expression in the hematopoietic compartment. Taken together, these studies demonstrate that Pik3r1 expression plays a critical role in mediating AT insulin sensitivity and, more so, suggest that reduced PI3K activity is a key step in the initiation and propagation of the inflammatory response in obese AT.
Collapse
Affiliation(s)
- Carrie E McCurdy
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Gniuli D, Rosa G, Manco M, Scarfone A, Vega N, Greco AV, Castagneto M, Vidal H, Mingrone G. Changes in Fat Mass InfluenceSREBP-1candUCP-2Gene Expression in Formerly Obese Subjects. ACTA ACUST UNITED AC 2012; 13:567-73. [PMID: 15833942 DOI: 10.1038/oby.2005.60] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
OBJECTIVE To investigate the effect of fat mass (FM) reduction on adipose tissue gene expression in terms of lipid synthesis [sterol regulatory binding protein 1c (SREBP-1c)] and lipid oxidation [uncoupling protein 2 (UCP-2)] 2 years after lipid malabsorption and to assess the influence of lipid malabsorption on fat-free mass (FFM) maintenance evaluating the expression of genes related to glycolysis [hexokinase (HKII)] and glucose storage [glycogen synthase (GS)]. RESEARCH METHOD AND PROCEDURES SREBP-1c, UCP-2, HKII, and GS mRNA expression were studied by reverse transcriptase-competitive polymerase chain reaction in 10 massively obese subjects before and 2 years after bilio-pancreatic diversion (BPD). Body composition was assessed by isotopic dilution method and insulin sensitivity by euglycemic-hyperinsulinemic clamp. RESULTS FM decrease was approximately 60%, whereas FFM remained at normal physiological levels. In adipose tissue, SREBP-1c mRNA reduction (-39%, p < 0.005) was related only to FM changes after BPD, and UCP-2 decrease (-37%, p < 0.05) was dependent on free fatty acid (FFA) changes. No significant variations were observed in HKII and GS gene expression in skeletal muscle. DISCUSSION Lipid malabsorption induced by BPD altered the expression of genes involved in glucose and lipid metabolism, with different consequences on FM and FFM. The degree of FM loss seems to interfere with SREBP-1c gene suppression to preserve an adequate amount of fat storage, in accordance with the thrifty genotype hypothesis. The reduction of FFAs induced by BPD acts in inhibiting FFA transportation to the mitochondria (UCP-2), contributing to the decreased lipid oxidation inside the adipose tissue.
Collapse
Affiliation(s)
- Donatella Gniuli
- Department of Internal Medicine, Catholic University of the Sacred Heart, Rome, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Davis JA, Sharma S, Mittra S, Sujatha S, Kanaujia A, Shukla G, Katiyar C, Lakshmi BS, Bansal VS, Bhatnagar PK. Antihyperglycemic effect of Annona squamosa hexane extract in type 2 diabetes animal model: PTP1B inhibition, a possible mechanism of action? Indian J Pharmacol 2012; 44:326-32. [PMID: 22701240 PMCID: PMC3371453 DOI: 10.4103/0253-7613.96304] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 01/02/2012] [Accepted: 03/31/2012] [Indexed: 11/25/2022] Open
Abstract
AIM The mechanism of action of Annona squamosa hexane extract in mediating antihyperglycemic and antitriglyceridimic effect were investigated in this study. MATERIALS AND METHODS The effects of extract on glucose uptake, insulin receptor-β (IR-β), insulin receptor substrate-1 (IRS-1) phosphorylation and glucose transporter type 4 (GLUT4) and phosphoinositide 3-kinase (PI3 kinase) mRNA expression were studied in L6 myotubes. The in vitro mechanism of action was tested in protein-tyrosine phosphatase 1B (PTP1B), G-protein-coupled receptor 40 (GPR40), silent mating type information regulation 2 homolog 1 (SIRT1) and dipeptidyl peptidase-IV (DPP-IV) assays. The in vivo efficacy was characterized in ob/ob mice after an oral administration of the extract for 21 days. RESULTS The effect of extract promoted glucose uptake, IR-β and IRS-1 phosphorylation and GLUT4 and PI3 kinase mRNA upregulation in L6 myotubes. The extract inhibited PTP1B with an IC(50) 17.4 μg/ml and did not modulate GPR40, SIRT1 or DPP-IV activities. An oral administration of extract in ob/ob mice for 21 days improved random blood glucose, triglyceride and oral glucose tolerance. Further, the extract did not result in body weight gain before and after treatment (29.3 vs. 33.6 g) compared to rosiglitazone where significant body weight gain was observed (28.4 vs. 44.5 g; *P<0.05 after treatment compared to before treatment). CONCLUSION The results suggest that Annona squamosa hexane extract exerts its action by modulating insulin signaling through inhibition of PTP1B.
Collapse
Affiliation(s)
- Joseph Alex Davis
- Department of Pharmacology, New Drug Discovery Research, Ranbaxy Laboratories Ltd., Gurgaon, Haryana, India.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Ruge T, Sukonina V, Kroupa O, Makoveichuk E, Lundgren M, Svensson MK, Olivecrona G, Eriksson JW. Effects of hyperinsulinemia on lipoprotein lipase, angiopoietin-like protein 4, and glycosylphosphatidylinositol-anchored high-density lipoprotein binding protein 1 in subjects with and without type 2 diabetes mellitus. Metabolism 2012; 61:652-60. [PMID: 22078753 DOI: 10.1016/j.metabol.2011.09.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 09/27/2011] [Indexed: 11/22/2022]
Abstract
Our aims were to compare the systemic effects of insulin on lipoprotein lipase (LPL) in tissues from subjects with different degrees of insulin sensitivity. The effects of insulin on LPL during a 4-hour hyperinsulinemic, euglycemic clamp were studied in skeletal muscle, adipose tissue, and postheparin plasma from young healthy subjects (YS), older subjects with type 2 diabetes mellitus (DS), and older control subjects (CS). In addition, we studied the effects of insulin on the expression of 2 recently recognized candidate genes for control of LPL activity: angiopoietin-like protein 4 (ANGPTL4) and glycosylphosphatidylinositol-anchored high-density lipoprotein binding protein 1. As an effect of insulin, LPL activity decreased by 20% to 25% in postheparin plasma and increased by 20% to 30% in adipose tissue in all groups. In YS, the levels of ANGPTL4 messenger RNA in adipose tissue decreased 3-fold during the clamp. In contrast, there was no significant change in DS or CS. Regression analysis showed that the ability of insulin to reduce the expression of ANGPTL4 was positively correlated with M-values and inversely correlated with factors linked to the metabolic syndrome. Expression of glycosylphosphatidylinositol-anchored high-density lipoprotein binding protein 1 tended to be higher in YS than in DS or CS, but the expression was not affected by insulin in any of the groups. Our data imply that the insulin-mediated regulation of LPL is not directly linked to the control of glucose turnover by insulin or to ANGPTL4 expression in adipose tissue or plasma. Interestingly, the response of ANGPTL4 expression in adipose tissue to insulin was severely blunted in both DS and CS.
Collapse
Affiliation(s)
- Toralph Ruge
- Department of Surgery and Peri-Operative Sciences/Surgery, Umeå University, SE-901 85 Umeå, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Veerapur V, Prabhakar K, Thippeswamy B, Bansal P, Srinivasan K, Unnikrishnan M. Antidiabetic effect of Ficus racemosa Linn. stem bark in high-fat diet and low-dose streptozotocin-induced type 2 diabetic rats: A mechanistic study. Food Chem 2012; 132:186-93. [DOI: 10.1016/j.foodchem.2011.10.052] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2011] [Revised: 10/13/2011] [Accepted: 10/13/2011] [Indexed: 11/25/2022]
|
24
|
Ghiretti AE, Paradis S. The GTPase Rem2 regulates synapse development and dendritic morphology. Dev Neurobiol 2011; 71:374-89. [PMID: 21485012 DOI: 10.1002/dneu.20868] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Rem2 is a member of the Rad/Rem/Rem2/Gem/Kir subfamily of small Ras-like GTPases that was identified as an important mediator of synapse development. We performed a comprehensive, loss- of-function analysis of Rem2 function in cultured hippocampal neurons using RNAi to substantially decrease Rem2 protein levels. We found that knockdown of Rem2 decreases the density and maturity of dendritic spines, the primary site of excitatory synapses onto pyramidal neurons in the hippocampus. Knockdown of Rem2 also alters the gross morphology of dendritic arborizations, increasing the number of dendritic branches without altering total neurite length. Thus, Rem2 functions to inhibit dendritic branching and promote the development of dendritic spines and excitatory synapses. Interestingly, binding to the calcium-binding protein calmodulin is required for the Rem2 regulation of dendritic branching. However, this interaction is completely dispensable for synapse development. Overall, our results suggest that Rem2 regulates dendritic branching and synapse development via distinct and overlapping signal transduction pathways.
Collapse
Affiliation(s)
- Amy E Ghiretti
- Department of Biology and Volen Center for Complex Systems, Brandeis University, Waltham, Massachusetts 02454, USA
| | | |
Collapse
|
25
|
Suagee JK, Corl BA, Hulver MW, McCutcheon LJ, Geor RJ. Effects of hyperinsulinemia on glucose and lipid transporter expression in insulin-sensitive horses. Domest Anim Endocrinol 2011; 40:173-81. [PMID: 21292427 DOI: 10.1016/j.domaniend.2010.11.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Revised: 11/28/2010] [Accepted: 11/30/2010] [Indexed: 11/20/2022]
Abstract
Plasma insulin concentrations are elevated (hyperinsulinemia) in horses with obesity-associated insulin resistance. In other species, insulin resistance is partly due to reduced levels of insulin receptor and the insulin-sensitive glucose transporter, and, in vitro, chronic hyperinsulinemic conditions reduce the expression of these proteins. Consumption of grain-based concentrate feeds results in postprandial hyperinsulinemia in horses, and adaptation to these diets is associated with insulin resistance. As such, it is possible that the repeated, chronic postprandial hyperinsulinemia associated with these diets could contribute to the development of insulin resistance. The purpose of the current study was to investigate the influence of a 6-h insulin infusion that increased plasma insulin concentrations to >1,000 mIU/L, on the expression of insulin receptor and glucose and lipid transporters in skeletal muscle and adipose tissue of lean, insulin-sensitive horses. Insulin infusion decreased transcript abundance of the glucose transporter 4 (P<0.05), glucose transporter 1 (GLUT1; P<0.09), and the insulin receptor (P<0.001) in adipose tissue, while increasing transcript abundance of GLUT1 (P<0.09) and decreasing protein abundance of the insulin receptor (P<0.09) in skeletal muscle. The acute, 6 hyperinsulinemic conditions achieved in this experiment resulted in alterations to mechanisms of glucose transport that could promote insulin resistance via reduced insulin-stimulated glucose disposal. Insulin infusion also reduced transcript abundance of the lipid transporters CD36 (P<0.001) and fatty acid transporter protein (FATP; P<0.05) in adipose tissue while increasing FATP (P<0.05) and lipoprotein lipase (P<0.01) in skeletal muscle. The reduction in adipose tissue lipid transporters could have been due to the decreased plasma lipid concentrations, whereas the increase in skeletal muscle may indicate that insulin stimulates lipid uptake into equine skeletal muscle. This report provides preliminary evidence that severe hyperinsulinemia alters glucose and lipid transporter expression that could promote an insulin-resistant state; these should be further investigated in horses consuming grain-based concentrates.
Collapse
Affiliation(s)
- J K Suagee
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24060-0306, USA
| | | | | | | | | |
Collapse
|
26
|
Pinto A, Speckmann B, Heisler M, Sies H, Steinbrenner H. Delaying of insulin signal transduction in skeletal muscle cells by selenium compounds. J Inorg Biochem 2011; 105:812-20. [PMID: 21497580 DOI: 10.1016/j.jinorgbio.2011.03.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2011] [Revised: 03/15/2011] [Accepted: 03/15/2011] [Indexed: 11/30/2022]
Abstract
Supranutritional selenium (Se) intake and high serum Se levels have been associated epidemiologically with increased risk for type 2 diabetes, suggesting adverse effects of dietary Se compounds and/or antioxidant selenoenzymes on the sensitivity of target tissues for insulin. Here, we compared the capability of inorganic (sodium selenite and sodium selenate) and organic (selenomethionine and methylseleninic acid (MSeA)) Se compounds to interfere with insulin signaling in rat L6 myotubes, differentiated skeletal muscle cells. When applied at doses of 1 μM, only selenite and MSeA were capable of delaying insulin-induced phosphorylation of protein kinase B (Akt) and attenuating insulin-induced phosphorylation of forkhead box class O transcription factors FoxO1a and FoxO3. Insulin-stimulated glucose uptake was lowered by selenite and MSeA as well. Even though all tested Se compounds strongly stimulated expression/activity of the cellular selenoproteins glutathione peroxidase 1 and selenoprotein W, selenite and MSeA were the most efficiently utilized Se donors. Moreover, at doses of 1 μM, only selenite and MSeA had a significant inhibitory effect on generation of intracellular reactive oxygen species (ROS). These results suggest that the Se(IV) compounds selenite and MSeA may impair the insulin sensitivity of myocytes by influencing cellular redox homeostasis.
Collapse
Affiliation(s)
- Antonio Pinto
- Institute for Biochemistry and Molecular Biology I, Heinrich-Heine-University, Düsseldorf, Germany
| | | | | | | | | |
Collapse
|
27
|
Prabhakar PK, Doble M. Interaction of phytochemicals with hypoglycemic drugs on glucose uptake in L6 myotubes. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2011; 18:285-291. [PMID: 20724125 DOI: 10.1016/j.phymed.2010.06.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Revised: 05/10/2010] [Accepted: 06/25/2010] [Indexed: 05/29/2023]
Abstract
The present study analyses the effect of eugenol, arecoline and vanillic acid alone and in combination with two oral hypoglycemic drugs (OHD), namely, metformin and 2,4-thiazolodinedione (THZ), on 2-deoxyglucose (2DG) uptake in L6 myotubes. 2DG uptake in L6 myotubes was determined using an enzymatic assay developed by Yamamoto et al. (2006). Lipid content inside the cells has been estimated with oil red O assay. The absorption, distribution, metabolism, and excretion (ADME) and drug likeness properties of these phytochemicals are estimated using software QikProp(®). All the three phytochemicals enhance 2DG uptake both in time- and dose-dependent manner. Eugenol and arecoline enhances 2DG uptake synergistically with both the OHD; whereas vanillic acid showing partly synergy with THZ and antagonistic activity with metformin on 2DG uptake. Eugenol and arecoline significantly increase the expressions of the glucose transporter type 4 (GLUT4) and phosphoinositide 3-kinase (PI3K) genes, but not the peroxisome proliferator-activated receptor (PPAR) gamma. Whereas vanillic acid does not has any significant effect on the expressions of these genes, the ADME results indicate that these phytochemicals are satisfying all the conditions to have a good oral bioavailability. These findings suggest that these phytochemicals can replace the commercial drugs in part, which could lead to a reduction in toxicity and side effects caused by the later as well as reduce the secondary complications.
Collapse
Affiliation(s)
- Pranav Kumar Prabhakar
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600 036, India
| | | |
Collapse
|
28
|
Bravard A, Lefai E, Meugnier E, Pesenti S, Disse E, Vouillarmet J, Peretti N, Rabasa-Lhoret R, Laville M, Vidal H, Rieusset J. FTO is increased in muscle during type 2 diabetes, and its overexpression in myotubes alters insulin signaling, enhances lipogenesis and ROS production, and induces mitochondrial dysfunction. Diabetes 2011; 60:258-68. [PMID: 20943749 PMCID: PMC3012179 DOI: 10.2337/db10-0281] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE A strong association between genetic variants and obesity was found for the fat mass and obesity-associated gene (FTO). However, few details are known concerning the expression and function of FTO in skeletal muscle of patients with metabolic diseases. RESEARCH DESIGN AND METHODS We investigated basal FTO expression in skeletal muscle from obese nondiabetic subjects and type 1 and type 2 diabetic patients, compared with age-matched control subjects, and its regulation in vivo by insulin, glucose, or rosiglitazone. The function of FTO was further studied in myotubes by overexpression experiments. RESULTS We found a significant increase of FTO mRNA and protein levels in muscle from type 2 diabetic patients, whereas its expression was unchanged in obese or type 1 diabetic patients. Moreover, insulin or glucose infusion during specific clamps did not regulate FTO expression in skeletal muscle from control or type 2 diabetic patients. Interestingly, rosiglitazone treatment improved insulin sensitivity and reduced FTO expression in muscle from type 2 diabetic patients. In myotubes, adenoviral FTO overexpression increased basal protein kinase B phosphorylation, enhanced lipogenesis and oxidative stress, and reduced mitochondrial oxidative function, a cluster of metabolic defects associated with type 2 diabetes. CONCLUSIONS This study demonstrates increased FTO expression in skeletal muscle from type 2 diabetic patients, which can be normalized by thiazolidinedione treatment. Furthermore, in vitro data support a potential implication of FTO in oxidative metabolism, lipogenesis and oxidative stress in muscle, suggesting that it could be involved in the muscle defects that characterize type 2 diabetes.
Collapse
Affiliation(s)
- Amélie Bravard
- INSERM, U-870, IFR62, Faculté de Médecine Lyon Sud, Oullins, France
- INRA, UMR1235, Oullins, France
- INSA-Lyon, RMND, Villeurbanne, France
- Université Lyon 1, Lyon, France
- Hospices Civils de Lyon, Service de Nutrition et Diabétologie, Lyon, France
| | - Etienne Lefai
- INSERM, U-870, IFR62, Faculté de Médecine Lyon Sud, Oullins, France
- INRA, UMR1235, Oullins, France
- INSA-Lyon, RMND, Villeurbanne, France
- Université Lyon 1, Lyon, France
- Hospices Civils de Lyon, Service de Nutrition et Diabétologie, Lyon, France
| | - Emmanuelle Meugnier
- INSERM, U-870, IFR62, Faculté de Médecine Lyon Sud, Oullins, France
- INRA, UMR1235, Oullins, France
- INSA-Lyon, RMND, Villeurbanne, France
- Université Lyon 1, Lyon, France
- Hospices Civils de Lyon, Service de Nutrition et Diabétologie, Lyon, France
| | - Sandra Pesenti
- INSERM, U-870, IFR62, Faculté de Médecine Lyon Sud, Oullins, France
- INRA, UMR1235, Oullins, France
- INSA-Lyon, RMND, Villeurbanne, France
- Université Lyon 1, Lyon, France
- Hospices Civils de Lyon, Service de Nutrition et Diabétologie, Lyon, France
| | - Emmanuel Disse
- Hospices Civils de Lyon, Service de Nutrition et Diabétologie, Lyon, France
| | - Julien Vouillarmet
- Hospices Civils de Lyon, Service de Nutrition et Diabétologie, Lyon, France
| | - Nöel Peretti
- INSERM, U-870, IFR62, Faculté de Médecine Lyon Sud, Oullins, France
- INRA, UMR1235, Oullins, France
- INSA-Lyon, RMND, Villeurbanne, France
- Université Lyon 1, Lyon, France
- Hospices Civils de Lyon, Service de Nutrition et Diabétologie, Lyon, France
| | - Rémi Rabasa-Lhoret
- Montreal Diabetes Research Center, Montreal University, Montreal, Canada
| | - Martine Laville
- INSERM, U-870, IFR62, Faculté de Médecine Lyon Sud, Oullins, France
- INRA, UMR1235, Oullins, France
- INSA-Lyon, RMND, Villeurbanne, France
- Université Lyon 1, Lyon, France
- Hospices Civils de Lyon, Service de Nutrition et Diabétologie, Lyon, France
| | - Hubert Vidal
- INSERM, U-870, IFR62, Faculté de Médecine Lyon Sud, Oullins, France
- INRA, UMR1235, Oullins, France
- INSA-Lyon, RMND, Villeurbanne, France
- Université Lyon 1, Lyon, France
- Hospices Civils de Lyon, Service de Nutrition et Diabétologie, Lyon, France
| | - Jennifer Rieusset
- INSERM, U-870, IFR62, Faculté de Médecine Lyon Sud, Oullins, France
- INRA, UMR1235, Oullins, France
- INSA-Lyon, RMND, Villeurbanne, France
- Université Lyon 1, Lyon, France
- Hospices Civils de Lyon, Service de Nutrition et Diabétologie, Lyon, France
- Corresponding author: Jennifer Rieusset,
| |
Collapse
|
29
|
Veerapur VP, Prabhakar KR, Kandadi MR, Srinivasan KK, Unnikrishnan MK. Antidiabetic effect of Dodonaea viscosa aerial parts in high fat diet and low dose streptozotocin-induced type 2 diabetic rats: a mechanistic approach. PHARMACEUTICAL BIOLOGY 2010; 48:1137-1148. [PMID: 20815701 DOI: 10.3109/13880200903527736] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
CONTEXT High fat diet (HFD) and low-dose streptozotocin (STZ) is an ideal model for type 2 diabetes mellitus (T2DM) that would closely reflect the natural history and metabolic characteristics of human T2DM and is also suitable for pharmacological screening. OBJECTIVE The present study was designed to investigate the effect of the water extract (DVW) and the polar fraction of ethanol extract (DVE-4) of Dodonaea viscosa (L). Jacq. (Sapindaceae) on biochemical parameters in type 2 diabetes induced by a standardized HFD and low dose streptozotocin (25 mg/kg) in rats. Further, to elucidate the mode of action we evaluated its effects on a battery of targets involved in glucose homeostasis (in vitro studies). MATERIALS AND METHODS Different doses of DVW and DVE-4 were administered once daily for two weeks to HFD + STZ diabetic rats. Quantification of biomarker quercetin was done using HPLC. RESULTS AND DISCUSSION Both DVW and DVE-4 dose-dependently reduced blood glucose, serum insulin, homeostatic model assessment (HOMA), lipid profiles, and significantly improved glucose tolerance and HDL-c levels. In addition, the extract and fraction also decreased oxidative stress by improving endogenous antioxidants. In different, bioassays, DVW and DVE-4 showed inhibition of PTP-1B and at a concentration of 10 μg/mL showed 60 and 54.2% binding to PPARγ, respectively. Both extract/fraction exhibited stimulation of glucose uptake by skeletal muscles. CONCLUSION Taken together, these results suggest that DVW and DVE-4 inhibits HFD + STZ-induced insulin resistance, lipid abnormalities and oxidative stress indicating that these effects may be mediated by interacting with multiple targets operating in diabetes mellitus.
Collapse
Affiliation(s)
- V P Veerapur
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal, Karnataka, India
| | | | | | | | | |
Collapse
|
30
|
Sujatha S, Anand S, Sangeetha K, Shilpa K, Lakshmi J, Balakrishnan A, Lakshmi B. Biological evaluation of (3β)-STIGMAST-5-EN-3-OL as potent anti-diabetic agent in regulating glucose transport using in vitro model. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/j.ijdm.2009.12.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
31
|
Anand S, Muthusamy V, Sujatha S, Sangeetha K, Bharathi Raja R, Sudhagar S, Poornima Devi N, Lakshmi B. Aloe emodin glycosides stimulates glucose transport and glycogen storage through PI3K dependent mechanism in L6 myotubes and inhibits adipocyte differentiation in 3T3L1 adipocytes. FEBS Lett 2010; 584:3170-8. [DOI: 10.1016/j.febslet.2010.06.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Revised: 05/14/2010] [Accepted: 06/04/2010] [Indexed: 11/29/2022]
|
32
|
Dray C, Debard C, Jager J, Disse E, Daviaud D, Martin P, Attané C, Wanecq E, Guigné C, Bost F, Tanti JF, Laville M, Vidal H, Valet P, Castan-Laurell I. Apelin and APJ regulation in adipose tissue and skeletal muscle of type 2 diabetic mice and humans. Am J Physiol Endocrinol Metab 2010; 298:E1161-9. [PMID: 20233941 DOI: 10.1152/ajpendo.00598.2009] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Apelin, an adipocyte-secreted factor upregulated by insulin, is increased in adipose tissue (AT) and plasma with obesity. Apelin was recently identified as a new player in the control of glucose homeostasis. However, the regulation of apelin and APJ (apelin receptor) expression in skeletal muscle in relation to insulin resistance or type 2 diabetes is not known. Thus we studied apelin and APJ expression in AT and muscle in different mice models of obesity and in type 2 diabetic patients. In insulin-resistant high-fat (HF)-fed mice, apelin and APJ expression were increased in AT compared with control. This was not the case in AT of highly insulin-resistant db/db mice. In skeletal muscle, apelin expression was similar in control and HF-fed mice and decreased in db/db mice. APJ expression was decreased in both HF-fed and db/db mice. Control subjects and type 2 diabetic patients were subjected to a hyperinsulinemic-euglycemic clamp, and tissues biopsies were obtained before and at the end of the clamp. There was no significant difference in basal apelin and APJ expression in AT and muscle between control and diabetic patients. However, apelin plasma levels were significantly increased in diabetic patients. During the clamp, hyperinsulinemia increased apelin and APJ expression in AT of control but not in diabetic subjects. In muscle, only APJ mRNA levels were increased in control but also in diabetic patients. Taken together, these data show that apelin and APJ expression in mice and humans is regulated in a tissue-dependent manner and according to the severity of insulin resistance.
Collapse
Affiliation(s)
- Cédric Dray
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 858, Toulouse, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Kumar R, Balaji S, Uma TS, Sehgal PK. Fruit extracts of Momordica charantia potentiate glucose uptake and up-regulate Glut-4, PPAR gamma and PI3K. JOURNAL OF ETHNOPHARMACOLOGY 2009; 126:533-537. [PMID: 19744549 DOI: 10.1016/j.jep.2009.08.048] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2008] [Revised: 07/17/2009] [Accepted: 08/31/2009] [Indexed: 05/28/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Momordica charantia fruit is a widely used traditional medicinal herb as, anti-diabetic, anti-HIV, anti-ulcer, anti-inflammatory, anti-leukemic, anti-microbial, and anti-tumor. AIMS OF STUDY The present study is undertaken to investigate the possible mode of action of fruit extracts derived from Momordica charantia (MC) and study its pharmacological effects for controlling diabetic mellitus. Effects of aqueous and chloroform extracts of Momordica charantia fruit on glucose uptake and up-regulation of glucose transporter (Glut-4), peroxisome proliferator activator receptor gamma (PPAR gamma) and phosphatidylinositol-3 kinase (PI3K), were investigated to show its efficacy as a hypoglycaemic agent. MATERIALS AND METHODS Dose dependent glucose uptake assay was performed on L6 myotubes using 2-deoxy-D-[1-(3)H] glucose. Up-regulatory effects of the extracts on the mRNA expression level of Glut-4, PPAR gamma and PI3K have been studied. RESULTS The association of Momordica charantia with the aqueous and chloroform extracts of Momordica charantia fruit at 6 microg/ml has shown significant up-regulatory effect, respectively, by 3.6-, 2.8- and 3.8-fold on the battery of targets Glut-4, PPAR gamma and PI3K involved in glucose transport. The up-regulation of glucose uptake was comparable with insulin and rosiglitazone which was approximately 2-fold over the control. Moreover, the inhibitory effect of the cyclohexamide on Momordica charantia fruit extract mediated glucose uptake suggested the requirement of new protein synthesis for the enhanced glucose uptake. CONCLUSION This study demonstrated the significance of Glut-4, PPAR gamma and PI3K up-regulation by Momordica charantia in augmenting the glucose uptake and homeostasis.
Collapse
Affiliation(s)
- Ramadhar Kumar
- Bio-products Laboratory, Central Leather Research Institute, Council of Scientific and Industrial Research, Adyar, Chennai 600 020, Tamil Nadu, India
| | | | | | | |
Collapse
|
34
|
Prabhakar PK, Doble M. Synergistic effect of phytochemicals in combination with hypoglycemic drugs on glucose uptake in myotubes. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2009; 16:1119-1126. [PMID: 19660925 DOI: 10.1016/j.phymed.2009.05.021] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2009] [Revised: 05/10/2009] [Accepted: 05/29/2009] [Indexed: 05/28/2023]
Abstract
The present study analyses the effect of two plant phenolic compounds, namely chlorogenic acid and ferulic acid, and a plant alkaloid, berberine, alone and also in combination with two commercial oral hypoglycemic drugs (OHD), namely metformin and 2,4-thiazolodinedione (THZ), on the uptake of 2-deoxyglucose (2DG) by L6 myotubes. 2-DG uptake is determined using an enzymatic assay. All the three natural products enhance the uptake of 2DG in time- and dose-dependent manner. A combination of different concentrations of chlorogenic acid and metformin or THZ, has a synergistic effect in the uptake of 2DG with a maximum of 5.0- and 5.3-times respectively, with reference to the base value (without the drugs or the natural products). Ferulic acid in combination with metformin or THZ has also shown a synergistic effect and the 2DG uptake increases by 4.98- and 5.11-fold when compared to the control respectively. Whereas, berberine, in combination with either metformin or THZ, has shown an additive effect with maximum 2DG uptake of 4.1- and 4.7-times from the base value, respectively. The synergistic interaction has been explained with the use of combination index and isobologram. Expression of GLUT4 and PPAR-gamma gene were elevated in chlorogenic acid and berberine treated cells, whereas expression of GLUT4 and PI3K transcripts were significantly enhanced in ferulic acid treated cells. The studies indicate that chlorogenic acid enhances glucose uptake by increasing GLUT4 expression via PI3K independent pathway whereas ferulic acid increases glucose uptake by PI3K dependent pathway. The current findings suggest that the phytochemicals can replace the commercial drugs in part, which could lead to a reduction in toxicity and side effects of the later.
Collapse
Affiliation(s)
- Pranav Kumar Prabhakar
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600 036, India
| | | |
Collapse
|
35
|
Rome S, Meugnier E, Lecomte V, Berbe V, Besson J, Cerutti C, Pesenti S, Granjon A, Disse E, Clement K, Lefai E, Laville M, Vidal H. Microarray analysis of genes with impaired insulin regulation in the skeletal muscle of type 2 diabetic patients indicates the involvement of basic helix-loop-helix domain-containing, class B, 2 protein (BHLHB2). Diabetologia 2009; 52:1899-912. [PMID: 19590847 DOI: 10.1007/s00125-009-1442-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Accepted: 06/05/2009] [Indexed: 02/03/2023]
Abstract
AIMS/HYPOTHESIS One of the major processes by which insulin exerts its multiple biological actions is through gene expression regulation. Thus, the identification of transcription factors affected by insulin in target tissues represents an important challenge. The aim of the present study was to gain a greater insight into this issue through the identification of transcription factor genes with insulin-regulated expression in human skeletal muscle. METHODS Using microarray analysis, we defined the sets of genes modulated during a 3 h hyperinsulinaemic-euglycaemic clamp (2 mU min(-1) kg(-1)) in the skeletal muscle of insulin-sensitive control volunteers and in moderately obese insulin-resistant type 2 diabetic patients. RESULTS Of the 1,529 and 1,499 genes regulated during the clamp in control and diabetic volunteers, respectively, we identified 30 transcription factors with impaired insulin-regulation in type 2 diabetic patients. Analysis of the promoters of the genes encoding these factors revealed a possible contribution of the transcriptional repressor basic helix-loop-helix domain-containing, class B, 2 protein (BHLHB2), insulin regulation of which is strongly altered in the muscle of diabetic patients. Gene ontology analysis of BHLHB2 target genes, identified after BHLHB2 overexpression in human primary myotubes, demonstrated that about 10% of the genes regulated in vivo during hyperinsulinaemia are potentially under the control of this repressor. The data also suggested that BHLHB2 is situated at the crossroads of a complex transcriptional network that is able to modulate major metabolic and biological pathways in skeletal muscle, including the regulation of a cluster of genes involved in muscle development and contraction. CONCLUSIONS/INTERPRETATION We have identified BHLHB2 as a potential novel mediator of insulin transcriptional action in human skeletal muscle.
Collapse
Affiliation(s)
- S Rome
- INRA 1235, INSERM 870, INSA-Lyon, Régulations Métaboliques Nutrition et Diabète, Université de Lyon, Oullins, 69600, France.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Kok K, Nock GE, Verrall EAG, Mitchell MP, Hommes DW, Peppelenbosch MP, Vanhaesebroeck B. Regulation of p110delta PI 3-kinase gene expression. PLoS One 2009; 4:e5145. [PMID: 19357769 PMCID: PMC2663053 DOI: 10.1371/journal.pone.0005145] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2008] [Accepted: 02/19/2009] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Despite an intense interest in the biological functions of the phosphoinositide 3-kinase (PI3K) signalling enzymes, little is known about the regulation of PI3K gene expression. This also applies to the leukocyte-enriched p110delta catalytic subunit of PI3K, an enzyme that has attracted widespread interest because of its role in immunity and allergy. PRINCIPAL FINDINGS We show that p110delta expression is mainly regulated at the transcriptional level. In fibroblasts, lymphocytes and myeloid cells, p110delta gene transcription appears to be constitutive and not subject to acute stimulation. 5'RACE experiments revealed that p110delta mRNA transcripts contain distinct upstream untranslated exons (named exon -1, -2a, -2b, -2c and -2d), which are located up to 81 kb upstream of the translational start codon in exon 1. The levels of all the different p110delta transcripts are higher in leukocytes compared to non-leukocytes, with the p110delta transcript containing exon -2a most abundantly expressed. We have identified a highly conserved transcription factor (TF) binding cluster in the p110delta gene which has enhanced promoter activity in leukocytes compared to non-leukocytes. In human, this TF cluster is located immediately upstream of exon -2a whilst in mouse, it is located within exon -2a. CONCLUSION This study identifies a conserved PIK3CD promoter region that may account for the predominant leukocyte expression of p110delta.
Collapse
Affiliation(s)
- Klaartje Kok
- Centre for Cell Signalling, Institute of Cancer, Queen Mary University of London, Charterhouse Square, London, United Kingdom
- Department of Cell Biology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Gemma E. Nock
- Centre for Cell Signalling, Institute of Cancer, Queen Mary University of London, Charterhouse Square, London, United Kingdom
| | - Elizabeth A. G. Verrall
- Centre for Cell Signalling, Institute of Cancer, Queen Mary University of London, Charterhouse Square, London, United Kingdom
| | - Michael P. Mitchell
- Bioinformatics and Biostatistics, Cancer Research UK London Research Institute, London, United Kingdom
| | - Daan W. Hommes
- Department of Gastroenterology and Hepatology; Leiden University Medical Centre, Leiden, The Netherlands
| | - Maikel P. Peppelenbosch
- Department of Cell Biology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Bart Vanhaesebroeck
- Centre for Cell Signalling, Institute of Cancer, Queen Mary University of London, Charterhouse Square, London, United Kingdom
| |
Collapse
|
37
|
Kok K, Geering B, Vanhaesebroeck B. Regulation of phosphoinositide 3-kinase expression in health and disease. Trends Biochem Sci 2009; 34:115-27. [DOI: 10.1016/j.tibs.2009.01.003] [Citation(s) in RCA: 167] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2008] [Revised: 01/08/2009] [Accepted: 01/08/2009] [Indexed: 11/24/2022]
|
38
|
Alterations of insulin signaling in type 2 diabetes: A review of the current evidence from humans. Biochim Biophys Acta Mol Basis Dis 2009; 1792:83-92. [DOI: 10.1016/j.bbadis.2008.10.019] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Revised: 10/21/2008] [Accepted: 10/21/2008] [Indexed: 01/03/2023]
|
39
|
Casey WM, Brodie T, Yoon L, Ni H, Jordan HL, Cariello NF. Correlation analysis of gene expression and clinical chemistry to identify biomarkers of skeletal myopathy in mice treated with PPAR agonist GW610742X. Biomarkers 2008; 13:364-76. [DOI: 10.1080/13547500801903545] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
40
|
Coletta DK, Balas B, Chavez AO, Baig M, Abdul-Ghani M, Kashyap SR, Folli F, Tripathy D, Mandarino LJ, Cornell JE, Defronzo RA, Jenkinson CP. Effect of acute physiological hyperinsulinemia on gene expression in human skeletal muscle in vivo. Am J Physiol Endocrinol Metab 2008; 294:E910-7. [PMID: 18334611 PMCID: PMC3581328 DOI: 10.1152/ajpendo.00607.2007] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This study was undertaken to test the hypothesis that short-term exposure (4 h) to physiological hyperinsulinemia in normal, healthy subjects without a family history of diabetes would induce a low grade inflammatory response independently of glycemic status. Twelve normal glucose tolerant subjects received a 4-h euglycemic hyperinsulinemic clamp with biopsies of the vastus lateralis muscle. Microarray analysis identified 121 probe sets that were significantly altered in response to physiological hyperinsulinemia while maintaining euglycemia. In normal, healthy human subjects insulin increased the mRNAs of a number of inflammatory genes (CCL2, CXCL2 and THBD) and transcription factors (ATF3, BHLHB2, HES1, KLF10, JUNB, FOS, and FOSB). A number of other genes were upregulated in response to insulin, including RRAD, MT, and SGK. CITED2, a known coactivator of PPARalpha, was significantly downregulated. SGK and CITED2 are located at chromosome 6q23, where we previously detected strong linkage to fasting plasma insulin concentrations. We independently validated the mRNA expression changes in an additional five subjects and closely paralleled the results observed in the original 12 subjects. A saline infusion in healthy, normal glucose-tolerant subjects without family history of diabetes demonstrated that the genes altered during the euglycemic hyperinsulinemic clamp were due to hyperinsulinemia and were unrelated to the biopsy procedure per se. The results of the present study demonstrate that insulin acutely regulates the levels of mRNAs involved in inflammation and transcription and identifies several candidate genes, including HES1 and BHLHB2, for further investigation.
Collapse
Affiliation(s)
- Dawn K Coletta
- Division of Diabetes, Department of Medicine, University of Texas Health Science Centre, San Antonio, TX, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Cozzone D, Fröjdö S, Disse E, Debard C, Laville M, Pirola L, Vidal H. Isoform-specific defects of insulin stimulation of Akt/protein kinase B (PKB) in skeletal muscle cells from type 2 diabetic patients. Diabetologia 2008; 51:512-21. [PMID: 18204829 DOI: 10.1007/s00125-007-0913-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2007] [Accepted: 11/30/2007] [Indexed: 02/07/2023]
Abstract
AIMS/HYPOTHESIS The serine/threonine kinase Akt/protein kinase B (PKB) is required for the metabolic actions of insulin. Controversial data have been reported regarding Akt defective activation in the muscle of type 2 diabetic patients. Because three Akt isoforms exist, each having a distinct physiological role, we investigated the contribution of isoform-specific defects to insulin signalling in human muscle. METHODS The phosphorylation pattern and kinase activity of each Akt isoform were compared in primary myotubes from healthy control participants and type 2 diabetic patients. Phosphorylation of Ser(473) and of Thr(308) in each isoform was determined after immunoprecipitation in myotubes treated or not with insulin. RESULTS Muscle cells from diabetic patients displayed defective insulin action and a drastic reduction of insulin-stimulated activity of all Akt isoforms. This was associated with specific defects of their phosphorylation pattern in response to insulin, with impaired Akt2- (and to a lower extent Akt3-) Ser(473) phosphorylation, and with altered Akt1-Thr(308) phosphorylation. These defects were not due to faulty phosphoinositide-dependent protein kinase 1 (PDK1) production or activation. Rather, we found higher levels of the Akt2-Ser(473)-specific protein phosphatase PH domain leucine-rich repeat protein phosphatase 1 (PHLPP1) in muscle from diabetic patients, which may contribute to the alteration of Akt2-Ser(473) phosphorylation. CONCLUSIONS/INTERPRETATION These results suggest that several mechanisms affecting Akt isoforms, including deregulated production of PHLPP1, could underlie the alterations of skeletal muscle insulin signalling in type 2 diabetes. Taking into account the recently described isoform-specific metabolic functions of Akt, our results provide mechanistic insight that may contribute to the defective regulation of glucose and lipid metabolisms in the muscle of diabetic patients.
Collapse
Affiliation(s)
- D Cozzone
- INSERM, U-870, IFR62, Faculté de Médecine Lyon Sud, Chemin du Grand Revoyet, F-69600 Oullins, France
| | | | | | | | | | | | | |
Collapse
|
42
|
Correll RN, Pang C, Niedowicz DM, Finlin BS, Andres DA. The RGK family of GTP-binding proteins: regulators of voltage-dependent calcium channels and cytoskeleton remodeling. Cell Signal 2008; 20:292-300. [PMID: 18042346 PMCID: PMC2254326 DOI: 10.1016/j.cellsig.2007.10.028] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2007] [Accepted: 10/30/2007] [Indexed: 02/05/2023]
Abstract
RGK proteins constitute a novel subfamily of small Ras-related proteins that function as potent inhibitors of voltage-dependent (VDCC) Ca(2+) channels and regulators of actin cytoskeletal dynamics. Within the larger Ras superfamily, RGK proteins have distinct regulatory and structural characteristics, including nonconservative amino acid substitutions within regions known to participate in nucleotide binding and hydrolysis and a C-terminal extension that contains conserved regulatory sites which control both subcellular localization and function. RGK GTPases interact with the VDCC beta-subunit (Ca(V)beta) and inhibit Rho/Rho kinase signaling to regulate VDCC activity and the cytoskeleton respectively. Binding of both calmodulin and 14-3-3 to RGK proteins, and regulation by phosphorylation controls cellular trafficking and the downstream signaling of RGK proteins, suggesting that a complex interplay between interacting protein factors and trafficking contribute to their regulation.
Collapse
Affiliation(s)
- Robert N Correll
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536, United States
| | | | | | | | | |
Collapse
|
43
|
Zhang JQ, Ji LL, Fogt DL, Fretwell VS. Effect of exercise duration on postprandial hypertriglyceridemia in men with metabolic syndrome. J Appl Physiol (1985) 2007; 103:1339-45. [PMID: 17641215 DOI: 10.1152/japplphysiol.00181.2007] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We examined the effect of exercise on postprandial hypertriglyceridemia (PHTG) and insulin resistance in individuals with metabolic syndrome. Subjects were 10 hypertriglyceridemic men with insulin resistance [age = 35.0 ± 1.8 yr, body weight = 90.7 ± 3.3 kg, fasting triglyceride (TG) = 2.6 ± 0.4 mmol/l, peak oxygen consumption (V̇o2peak) = 36.0 ± 1.3 ml−1·kg−1·min−1, and homeostatic model assessment of insulin resistance (HOMA-IR)= 3.1 ± 0.3]. Each participant performed a control trial (Ctr; no exercise) and three exercise trials at 60% of their V̇o2peakfor 30 min (30 min-Ex), 45 min (45 min-Ex) and 60 min (60 min-Ex). All subjects had a fat meal in each trial. In the exercise trials, the subject jogged on a treadmill for a designated duration of 12 h before ingestion of a fat meal. Blood samples were taken at 0 h (before the meal) and at 2, 4, 6, and 8 h after the meal. The plasma TG, area score under TG concentration curve over an 8-h period (TG AUC) after the meal, and HOMA-IR were analyzed. The TG AUC scores in both the 45 min-Ex and 60 min-Ex were 31 and 33% lower, respectively, than Ctr ( P < 0.02). There were no significant differences in TG AUC scores between the 30 min-Ex and the Ctr ( P > 0.05). There were no trial differences in the fasting plasma glucose concentration ( P > 0.05). HOMA-IR values in the 30 min-Ex, 45 min-Ex, and 60 min-Ex trials were lower than the Ctr ( P < 0.03), but no significant differences were found in HOMA-IR among the exercise trials. The results suggest that for physically inactive individuals with metabolic syndrome, exercising at moderate intensity for 45 min effectively attenuates PHTG while exercise for 30 min is sufficient to improve insulin action.
Collapse
Affiliation(s)
- John Q Zhang
- Laboratory of Cardiovascular Research, University of Texas--San Antonio, 1 UTSA Circle, San Antonio, TX 78249, USA.
| | | | | | | |
Collapse
|
44
|
Nazare JA, de la Perrière AB, Bonnet F, Desage M, Peyrat J, Maitrepierre C, Louche-Pelissier C, Bruzeau J, Goudable J, Lassel T, Vidal H, Laville M. Daily intake of conjugated linoleic acid-enriched yoghurts: effects on energy metabolism and adipose tissue gene expression in healthy subjects. Br J Nutr 2007; 97:273-80. [PMID: 17298695 DOI: 10.1017/s0007114507191911] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Conjugated linoleic acid (CLA) is a group of positional and geometric isomers of conjugated dienoic derivatives of linoleic acid. The present study was designed to determine whether 14-week CLA supplementation as triacylglycerols (3.76 g) with a 50 : 50 combination of the two main isomers (35 % cis-9, trans-11 and 35 % trans-10, cis-12) added to flavoured yoghurt-like products was able to alter body composition in healthy subjects and to alter the expression of several key adipose tissue genes (PPAR gamma, lipoprotein lipase (LPL), hormone-sensitive lipase (HSL) and uncoupling protein 2 (UCP-2)). Forty-four healthy subjects were randomly assigned to consume daily either a CLA-supplemented yoghurt-like product or a placebo yoghurt for 98 d. There were no significant effects of CLA supplementation on body weight, fat mass or free fat mass. Basal energy expenditure expressed as kg free fat mass increased significantly in the CLA group (123.3 (SEM 2.5) kJ/kg free fat mass per d on day 98 v. 118.7 (SEM 2.3) kJ/kg free fat mass per d on day 0, P = 0.03). PPAR gamma mRNA gene expression increased significantly with CLA supplementation (53 (SEM 20) %, P < 0.01) and a significant reduction in mRNA levels of HSL was observed ( - 42 (SEM 7) %, P = 0.01). The levels of UCP-2 and LPL mRNA were not affected. The present results suggest that a 98 d supplementation diet with a 50 : 50 mixture of the two CLA isomers cis-9, trans-11 and trans-10, cis-12 in a dairy product was unable to alter body composition, although a significant increase in the RMR has been induced. Moreover, changes in mRNA PPAR gamma and HSL in adipose tissue were recorded.
Collapse
Affiliation(s)
- Julie-Anne Nazare
- Centre de Recherche en Nutrition Humaine de Lyon, Université Claude Bernard Lyon 1, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Wu X, Wang J, Cui X, Maianu L, Rhees B, Rosinski J, So WV, Willi SM, Osier MV, Hill HS, Page GP, Allison DB, Martin M, Garvey WT. The effect of insulin on expression of genes and biochemical pathways in human skeletal muscle. Endocrine 2007; 31:5-17. [PMID: 17709892 DOI: 10.1007/s12020-007-0007-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 11/24/2022]
Abstract
To study the insulin effects on gene expression in skeletal muscle, muscle biopsies were obtained from 20 insulin sensitive individuals before and after euglycemic hyperinsulinemic clamps. Using microarray analysis, we identified 779 insulin-responsive genes. Particularly noteworthy were effects on 70 transcription factors, and an extensive influence on genes involved in both protein synthesis and degradation. The genetic program in skeletal muscle also included effects on signal transduction, vesicular traffic and cytoskeletal function, and fuel metabolic pathways. Unexpected observations were the pervasive effects of insulin on genes involved in interacting pathways for polyamine and S-adenoslymethionine metabolism and genes involved in muscle development. We further confirmed that four insulin-responsive genes, RRAD, IGFBP5, INSIG1, and NGFI-B (NR4A1), were significantly up-regulated by insulin in cultured L6 skeletal muscle cells. Interestingly, insulin caused an accumulation of NGFI-B (NR4A1) protein in the nucleus where it functions as a transcription factor, without translocation to the cytoplasm to promote apoptosis. The role of NGFI-B (NR4A1) as a new potential mediator of insulin action highlights the need for greater understanding of nuclear transcription factors in insulin action.
Collapse
Affiliation(s)
- Xuxia Wu
- Department of Nutrition Sciences, University of Alabama at Birmingham, 1675 University Boulevard, Birmingham, AL 35294-3360, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Zhang JQ, Ji LL, Fretwell VS, Nunez G. Effect of exercise on postprandial lipemia in men with hypertriglyceridemia. Eur J Appl Physiol 2006; 98:575-82. [PMID: 17006711 DOI: 10.1007/s00421-006-0304-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2006] [Indexed: 11/26/2022]
Abstract
We examined the effect of exercise on postprandial lipemia (PPL) and insulin resistance in individuals with metabolic syndrome. Subjects were 10 hypertriglyceridemia (HTG) males with insulin resistance [age = 40.1 +/- 2.2 years, body weight = 96.3 +/- 3.3 kg, fasting triglyceride (TG) = 263 +/- 25 mg/dl, VO(2)max = 37 +/- 1.1 ml/kg/min, and Homeostatic Model Assessment (HOMA-IR, an index of insulin resistance) = 3.05 +/- 0.40]. Each subject performed a control trial (Ctr, no exercise), and three exercise trials at 40% (40%T), 60% (60%T), and 70% (70%T) of their VO(2)max. The order of trials was randomized and there were 1-2 weeks wash-out period between the trials. All subjects had a fat-meal in each trial. In the exercise trials, subjects jogged on a treadmill for 1 h at a designated intensity 12 h prior to a fat-meal ingestion. Blood samples were taken at 0 h (before the meal), and 2, 4, 6, and 8 h after the meal. The plasma TG, area score under TG concentration curve for over an 8 h-period (TG AUC) after the meal, and HOMA-IR were analyzed. The TG AUC score in 40%T was 30% lower (P = 0.003), 60%T was 31% lower (P = 0.02), and 70%T was 39% lower (P = 0.02) than Ctr. There were no significant differences in the TG AUC scores among the exercise trials (P > 0.05). The insulin concentrations in both 60 and 70%T were lower than Ctr (P < 0.01) which did not differ from 40%T. HOMA-IR in both 60%T (P = 0.041) and 70%T (P = 0.002) were lower than Ctr, but not different from 40%T (HOMA-IR: Ctr = 3.05 +/- 0.40, 40%T = 2.67 +/- 0.35, 60%T = 2.49 +/- 0.31, 70%T = 2.21 +/- 0.27). The results suggest that for physically inactive individuals with metabolic syndrome, exercising at low to moderate intensity may be sufficient to attenuate PPL and increase insulin sensitivity, whereas higher intensity exercise may be needed to normalize blood glucose.
Collapse
Affiliation(s)
- John Q Zhang
- Department of Health and Kinesiology, University of Texas San Antonio, San Antonio, TX 78249, USA.
| | | | | | | |
Collapse
|
47
|
Moldes M, Beauregard G, Faraj M, Peretti N, Ducluzeau PH, Laville M, Rabasa-Lhoret R, Vidal H, Clément K. Adiponutrin gene is regulated by insulin and glucose in human adipose tissue. Eur J Endocrinol 2006; 155:461-8. [PMID: 16914601 DOI: 10.1530/eje.1.02229] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Adiponutrin is a new transmembrane protein specifically expressed in adipose tissue. In obese subjects, short- or long-term calorie restriction diets were associated with a reduction in adiponutrin gene expression. Adiponut.rin mRNA level was previously shown to be negatively correlated with fasting glucose plasma levels and associated with insulin sensitivity of non-diabetic obese and non-obese subjects. The purpose of the present work was to get more insight into the regulation of adiponutrin gene expression by insulin and/or glucose using clamp studies and to examine its potential dysregulation in subjects with a deterioration of glucose homeostasis. METHODS Adiponutrin gene expression was quantified by reverse transcriptase-quantitative PCR in s.c. adipose tissue of healthy lean subjects after an euglycemic hyperinsulinemic clamp (EGHI), a hyperglycemic euinsulinemic clamp, and a hyperglycemic hyperinsulinemic (HGHI) clamp. Adiponutrin gene expression was also analyzed in patients with different levels of insulin resistance. RESULTS During EGHI, insulin infusion induced adiponutrin gene expression 8.4-fold (P = 0.008). Its expression was also induced by glucose infusion, although to a lesser extend (2.2-fold, P = 0.03). Infusion of both insulin and glucose (HGHI) had an additive effect on the adiponutrin expression (tenfold, P = 0.008). In a pathological context, adiponutrin gene was highly expressed in the adipose tissue of type-1 diabetic patients with chronic hyperglycemia compared with healthy subjects. Conversely, adiponutrin gene expression was significantly reduced in type-2 diabetics (P = 0.01), but remained moderately regulated in these patients after the EGHI clamp (2.5-fold increased). CONCLUSION These results suggest a strong relationship between adiponutrin expression, insulin sensitivity, and glucose metabolism in human adipose tissue.
Collapse
Affiliation(s)
- Marthe Moldes
- Department of Endocrinology, Cancer and Metabolism, Institut Cochin, Paris F-75014, France, Inserm, U567, Paris F-75014, France
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Anandharajan R, Jaiganesh S, Shankernarayanan NP, Viswakarma RA, Balakrishnan A. In vitro glucose uptake activity of Aegles marmelos and Syzygium cumini by activation of Glut-4, PI3 kinase and PPARgamma in L6 myotubes. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2006; 13:434-41. [PMID: 16716914 DOI: 10.1016/j.phymed.2005.03.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2004] [Accepted: 03/24/2005] [Indexed: 05/09/2023]
Abstract
The purpose of the present study is to investigate the effect of methanolic extracts of Aegles marmelos and Syzygium cumini on a battery of targets glucose transporter (Glut-4), peroxisome proliferator activator receptor gamma (PPARgamma) and phosphatidylinositol 3' kinase (PI3 kinase) involved in glucose transport. A. marmelos and S. cumini are anti-diabetic medicinal plants being used in Indian traditional medicine. Different solvent extracts extracted sequentially were analysed for glucose uptake activity at each step and methanol extracts were found to be significantly active at 100ng/ml dose comparable with insulin and rosiglitazone. Elevation of Glut-4, PPARgamma and PI3 kinase by A. marmelos and S. cumini in association with glucose transport supported the up-regulation of glucose uptake. The inhibitory effect of cycloheximide on A. marmelos- and S. cumini-mediated glucose uptake suggested that new protein synthesis is required for the elevated glucose transport. Current observation concludes that methanolic extracts of A. marmelos and S. cumini activate glucose transport in a PI3 kinase-dependent fashion.
Collapse
Affiliation(s)
- R Anandharajan
- Centre For Biotechnology, Anna University, Chennai 600025, India
| | | | | | | | | |
Collapse
|
49
|
Cozzone D, Debard C, Dif N, Ricard N, Disse E, Vouillarmet J, Rabasa-Lhoret R, Laville M, Pruneau D, Rieusset J, Lefai E, Vidal H. Activation of liver X receptors promotes lipid accumulation but does not alter insulin action in human skeletal muscle cells. Diabetologia 2006; 49:990-9. [PMID: 16482468 DOI: 10.1007/s00125-006-0140-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2005] [Accepted: 11/14/2005] [Indexed: 01/22/2023]
Abstract
AIMS/HYPOTHESIS The aim of this study was to investigate the effects of liver X receptor (LXR) activation on lipid metabolism and insulin action in human skeletal muscle cells prepared from control subjects and from patients with type 2 diabetes. SUBJECTS AND METHODS Cultured myotubes were obtained from muscle biopsies of 11 lean, healthy control subjects and ten patients with type 2 diabetes. The mRNA levels of LXR isoforms and lipogenic genes were estimated by RT-quantitative PCR, and the effects of LXR agonists on insulin action were evaluated by assays of protein kinase B serine 473 phosphorylation and glycogen synthesis. RESULTS Both LXRalpha and LXRbeta were expressed in human skeletal muscle and adipose tissue and there was no difference in their mRNA abundance in tissues from patients with type 2 diabetes compared with control subjects. In cultured muscle cells, LXR activation by T0901317 strongly increased expression of the genes encoding lipogenic enzymes, including sterol regulatory element binding protein 1c, fatty acid synthase and stearoyl-CoA desaturase 1, and also promoted triglyceride accumulation in the presence of a high glucose concentration. Importantly, these effects on lipid metabolism did not affect protein kinase B activation by insulin. Furthermore, LXR agonists did not modify insulin action in muscle cells from patients with type 2 diabetes. CONCLUSIONS/INTERPRETATION These data suggest that LXR agonists may lead to increased utilisation of lipids and glucose in muscle cells without affecting the mechanism of action of insulin. However, the long-term consequences of triglyceride accumulation in muscle should be evaluated before the development of effective LXR-based therapeutic agents.
Collapse
Affiliation(s)
- D Cozzone
- INSERM U449, INRA U1235, Laennec Faculty of Medicine, Claude Bernard University of Lyon, Lyon, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Ilany J, Bilan PJ, Kapur S, Caldwell JS, Patti ME, Marette A, Kahn CR. Overexpression of Rad in muscle worsens diet-induced insulin resistance and glucose intolerance and lowers plasma triglyceride level. Proc Natl Acad Sci U S A 2006; 103:4481-6. [PMID: 16537411 PMCID: PMC1450197 DOI: 10.1073/pnas.0511246103] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Rad is a low molecular weight GTPase that is overexpressed in skeletal muscle of some patients with type 2 diabetes mellitus and/or obesity. Overexpression of Rad in adipocytes and muscle cells in culture results in diminished insulin-stimulated glucose uptake. To further elucidate the potential role of Rad in vivo, we have generated transgenic (tg) mice that overexpress Rad in muscle using the muscle creatine kinase (MCK) promoter-enhancer. Rad tg mice have a 6- to 12-fold increase in Rad expression in muscle as compared to wild-type littermates. Rad tg mice grow normally and have normal glucose tolerance and insulin sensitivity, but have reduced plasma triglyceride levels. On a high-fat diet, Rad tg mice develop more severe glucose intolerance than the wild-type mice; this is due to increased insulin resistance in muscle, as exemplified by a rightward shift in the dose-response curve for insulin stimulated 2-deoxyglucose uptake. There is also a unexpected further reduction of the plasma triglyceride levels that is associated with increased levels of lipoprotein lipase in the Rad tg mice. These results demonstrate a potential synergistic interaction between increased expression of Rad and high-fat diet in creation of insulin resistance and altered lipid metabolism present in type 2 diabetes.
Collapse
Affiliation(s)
- Jacob Ilany
- *Research Division, Joslin Diabetes Center and Harvard Medical School, Boston, MA 02215; and
| | - Philip J. Bilan
- *Research Division, Joslin Diabetes Center and Harvard Medical School, Boston, MA 02215; and
| | - Sonia Kapur
- Laval University, Quebec, QC, Canada G1K 7P4
| | - James S. Caldwell
- *Research Division, Joslin Diabetes Center and Harvard Medical School, Boston, MA 02215; and
| | - Mary-Elizabeth Patti
- *Research Division, Joslin Diabetes Center and Harvard Medical School, Boston, MA 02215; and
| | | | - C. Ronald Kahn
- *Research Division, Joslin Diabetes Center and Harvard Medical School, Boston, MA 02215; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|