1
|
Xiao S, Yuan Z, Huang Y. The Potential Role of Nitric Oxide as a Therapeutic Agent against SARS-CoV-2 Infection. Int J Mol Sci 2023; 24:17162. [PMID: 38138990 PMCID: PMC10742813 DOI: 10.3390/ijms242417162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/28/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
The global coronavirus disease 2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become the greatest worldwide public health threat of this century, which may predispose multi-organ failure (especially the lung) and death despite numerous mild and moderate symptoms. Recent studies have unraveled the molecular and clinical characteristics of the infectivity, pathogenicity, and immune evasion of SARS-CoV-2 and thus improved the development of many different therapeutic strategies to combat COVID-19, including treatment and prevention. Previous studies have indicated that nitric oxide (NO) is an antimicrobial and anti-inflammatory molecule with key roles in pulmonary vascular function in the context of viral infections and other pulmonary disease states. This review summarized the recent advances of the pathogenesis of SARS-CoV-2, and accordingly elaborated on the potential application of NO in the management of patients with COVID-19 through antiviral activities and anti-inflammatory properties, which mitigate the propagation of this disease. Although there are some limits of NO in the treatment of COVID-19, it might be a worthy candidate in the multiple stages of COVID-19 prevention or therapy.
Collapse
Affiliation(s)
| | | | - Yi Huang
- National Biosafety Laboratory, Chinese Academy of Sciences, Wuhan 430020, China
| |
Collapse
|
2
|
Ranjbar T, Oza PP, Kashfi K. The Renin-Angiotensin-Aldosterone System, Nitric Oxide, and Hydrogen Sulfide at the Crossroads of Hypertension and COVID-19: Racial Disparities and Outcomes. Int J Mol Sci 2022; 23:ijms232213895. [PMID: 36430371 PMCID: PMC9699619 DOI: 10.3390/ijms232213895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Coronavirus disease 2019 is caused by SARS-CoV-2 and is more severe in the elderly, racial minorities, and those with comorbidities such as hypertension and diabetes. These pathologies are often controlled with medications involving the renin-angiotensin-aldosterone system (RAAS). RAAS is an endocrine system involved in maintaining blood pressure and blood volume through components of the system. SARS-CoV-2 enters the cells through ACE2, a membrane-bound protein related to RAAS. Therefore, the use of RAAS inhibitors could worsen the severity of COVID-19's symptoms, especially amongst those with pre-existing comorbidities. Although a vaccine is currently available to prevent and reduce the symptom severity of COVID-19, other options, such as nitric oxide and hydrogen sulfide, may also have utility to prevent and treat this virus.
Collapse
Affiliation(s)
- Tara Ranjbar
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY 10031, USA
| | - Palak P. Oza
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY 10031, USA
| | - Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY 10031, USA
- Graduate Program in Biology, City University of New York Graduate Center, New York, NY 10016, USA
- Correspondence:
| |
Collapse
|
3
|
Oza PP, Kashfi K. Utility of NO and H 2S donating platforms in managing COVID-19: Rationale and promise. Nitric Oxide 2022; 128:72-102. [PMID: 36029975 PMCID: PMC9398942 DOI: 10.1016/j.niox.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/01/2022] [Accepted: 08/10/2022] [Indexed: 01/08/2023]
Abstract
Viral infections are a continuing global burden on the human population, underscored by the ramifications of the COVID-19 pandemic. Current treatment options and supportive therapies for many viral infections are relatively limited, indicating a need for alternative therapeutic approaches. Virus-induced damage occurs through direct infection of host cells and inflammation-related changes. Severe cases of certain viral infections, including COVID-19, can lead to a hyperinflammatory response termed cytokine storm, resulting in extensive endothelial damage, thrombosis, respiratory failure, and death. Therapies targeting these complications are crucial in addition to antiviral therapies. Nitric oxide and hydrogen sulfide are two endogenous gasotransmitters that have emerged as key signaling molecules with a broad range of antiviral actions in addition to having anti-inflammatory properties and protective functions in the vasculature and respiratory system. The enhancement of endogenous nitric oxide and hydrogen sulfide levels thus holds promise for managing both early-stage and later-stage viral infections, including SARS-CoV-2. Using SARS-CoV-2 as a model for similar viral infections, here we explore the current evidence regarding nitric oxide and hydrogen sulfide's use to limit viral infection, resolve inflammation, and reduce vascular and pulmonary damage.
Collapse
Affiliation(s)
- Palak P Oza
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY, 10031, USA
| | - Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY, 10031, USA; Graduate Program in Biology, City University of New York Graduate Center, New York, 10091, USA.
| |
Collapse
|
4
|
Mir JM, Maurya RC. Nitric oxide boosters as defensive agents against COVID-19 infection: an opinion. J Biomol Struct Dyn 2022; 40:4285-4291. [PMID: 33251965 PMCID: PMC7754890 DOI: 10.1080/07391102.2020.1852969] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 11/15/2020] [Indexed: 01/19/2023]
Abstract
In the prevailing covid times, scientific community is busy in developing vaccine against COVID-19. Under such fascination this article describes the possible role of nitric oxide (NO) releasers in aiding the immune system of a human body against this dreadful pandemic disease. Despite some prodrug antiviral compounds are in practice to recover the patients suffering from covid-19, however, co-morbidity deaths are highest among the total deaths happened so far. This concurrence of a number of diseases in a patient along with this viral infection is indicative of the poor immunity. Literature background supports the use of NO as immunity boosting agent and hence, the nitric oxide releasing compounds could act as lucrative in this context. Some dietary suggestions of NO-containing food items have also been introduced in this article. Also, the profound effect of NO in relieving symptomatic severity of covid-19 has been opined in this work.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Jan Mohammad Mir
- Department of Chemistry, Islamic University of Science and Technology Awantipora, Pulwama, India
- Coordination, Metallopharmaceutical and Computational Chemistry Laboratory, Department of P. G. Studies and Research in Chemistry and Pharmacy, R. D. University, Jabalpur, M. P., India
| | - Ram Charitra Maurya
- Coordination, Metallopharmaceutical and Computational Chemistry Laboratory, Department of P. G. Studies and Research in Chemistry and Pharmacy, R. D. University, Jabalpur, M. P., India
| |
Collapse
|
5
|
Yu K, Zhou L, Wang Y, Yu C, Wang Z, Liu H, Wei H, Han L, Cheng J, Wang F, Wang DW, Zhao C. Mechanisms and Therapeutic Strategies of Viral Myocarditis Targeting Autophagy. Front Pharmacol 2022; 13:843103. [PMID: 35479306 PMCID: PMC9035591 DOI: 10.3389/fphar.2022.843103] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/23/2022] [Indexed: 11/13/2022] Open
Abstract
Viral myocarditis is caused by infection with viruses or bacteria, including coxsackievirus B3 (CVB3), and is characterized by acute or chronic inflammatory responses in the heart. The mortality associated with severe viral myocarditis is considerable. In some patients, viral myocarditis may develop into dilated cardiomyopathy or heart failure. Autophagy is involved in a wide range of physiological processes, including viral infection and replication. In the present review, we focus on the responses of cardiac tissues, cardiomyocytes, and cardiac fibroblasts to CVB3 infection. Subsequently, the effects of altered autophagy on the development of viral myocarditis are discussed. Finally, this review also examined and assessed the use of several popular autophagy modulating drugs, such as metformin, resveratrol, rapamycin, wortmannin, and 3-methyladenine, as alternative treatment strategies for viral myocarditis.
Collapse
Affiliation(s)
- Kun Yu
- Division of Cardiology, Departments of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ling Zhou
- Division of Cardiology, Departments of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yinhui Wang
- Division of Cardiology, Departments of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chengxin Yu
- GI Cancer Research Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ziyi Wang
- Division of Cardiology, Departments of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Liu
- Division of Cardiology, Departments of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haoran Wei
- Division of Cardiology, Departments of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liang Han
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Jia Cheng
- Division of Cardiology, Departments of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Wang
- Division of Cardiology, Departments of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dao Wen Wang
- Division of Cardiology, Departments of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunxia Zhao
- Division of Cardiology, Departments of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Chunxia Zhao,
| |
Collapse
|
6
|
Sodano F, Gazzano E, Fruttero R, Lazzarato L. NO in Viral Infections: Role and Development of Antiviral Therapies. Molecules 2022; 27:2337. [PMID: 35408735 PMCID: PMC9000700 DOI: 10.3390/molecules27072337] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 03/31/2022] [Accepted: 04/02/2022] [Indexed: 11/16/2022] Open
Abstract
Nitric oxide is a ubiquitous signaling radical that influences critical body functions. Its importance in the cardiovascular system and the innate immune response to bacterial and viral infections has been extensively investigated. The overproduction of NO is an early component of viral infections, including those affecting the respiratory tract. The production of high levels of NO is due to the overexpression of NO biosynthesis by inducible NO synthase (iNOS), which is involved in viral clearance. The development of NO-based antiviral therapies, particularly gaseous NO inhalation and NO-donors, has proven to be an excellent antiviral therapeutic strategy. The aim of this review is to systematically examine the multiple research studies that have been carried out to elucidate the role of NO in viral infections and to comprehensively describe the NO-based antiviral strategies that have been developed thus far. Particular attention has been paid to the potential mechanisms of NO and its clinical use in the prevention and therapy of COVID-19.
Collapse
Affiliation(s)
- Federica Sodano
- Department of Drug Science and Technology, University of Torino, 10125 Torino, Italy; (R.F.); (L.L.)
- Department of Pharmacy, “Federico II” University of Naples, 80131 Naples, Italy
| | - Elena Gazzano
- Department of Life Sciences and Systems Biology, University of Torino, 10123 Torino, Italy
| | - Roberta Fruttero
- Department of Drug Science and Technology, University of Torino, 10125 Torino, Italy; (R.F.); (L.L.)
| | - Loretta Lazzarato
- Department of Drug Science and Technology, University of Torino, 10125 Torino, Italy; (R.F.); (L.L.)
| |
Collapse
|
7
|
Bath PM, Coleman CM, Gordon AL, Lim WS, Webb AJ. Nitric oxide for the prevention and treatment of viral, bacterial, protozoal and fungal infections. F1000Res 2021; 10:536. [PMID: 35685687 PMCID: PMC9171293 DOI: 10.12688/f1000research.51270.2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/15/2021] [Indexed: 12/15/2022] Open
Abstract
Although the antimicrobial potential of nitric oxide (NO) is widely published, it is little used clinically. NO is a key signalling molecule modulating vascular, neuronal, inflammatory and immune responses. Endogenous antimicrobial activity is largely mediated by high local NO concentrations produced by cellular inducible nitric oxide synthase, and by derivative reactive nitrogen oxide species including peroxynitrite and S-nitrosothiols. NO may be taken as dietary substrate (inorganic nitrate, L-arginine), and therapeutically as gaseous NO, and transdermal, sublingual, oral, intranasal and intravenous nitrite or nitrate. Numerous preclinical studies have demonstrated that NO has generic static and cidal activities against viruses (including β-coronaviruses such as SARS-CoV-2), bacteria, protozoa and fungi/yeasts in vitro. Therapeutic effects have been seen in animal models in vivo, and phase II trials have demonstrated that NO donors can reduce microbial infection. Nevertheless, excess NO, as occurs in septic shock, is associated with increased morbidity and mortality. In view of the dose-dependent positive and negative effects of NO, safety and efficacy trials of NO and its donors are needed for assessing their role in the prevention and treatment of infections. Trials should test dietary inorganic nitrate for pre- or post-exposure prophylaxis and gaseous NO or oral, topical or intravenous nitrite and nitrate for treatment of mild-to-severe infections, including due to SARS-CoV-2 (COVID-19). This review summarises the evidence base from in vitro, in vivo and early phase clinical studies of NO activity in viral, bacterial, protozoal and fungal infections.
Collapse
Affiliation(s)
- Philip M Bath
- Stroke Trials Unit, Division of Clinical Neuroscience, University of Nottingham, Nottingham, Notts, NG7 2UH, UK
- Stroke, Nottingham University Hospitals NHS Trust, Nottingham, Notts, NG7 2UH, UK
| | - Christopher M Coleman
- Division of Infection, Immunity and Microbes, School of Life Sciences, University of Nottingham, Nottingham, Notts, NG7 2UH, UK
| | - Adam L Gordon
- Unit of Injury, Inflammation and Recovery Sciences, University of Nottingham, Derby, Derbyshire, DE22 3NE, UK
- NIHR Applied Research Collaboration-East Midlands (ARC-EM), Nottingham, Notts, UK
| | - Wei Shen Lim
- Respiratory Medicine, Nottingham University Hospitals NHS Trust, Nottingham, NG5 1PB, UK
| | - Andrew J Webb
- Clinical Pharmacology, School of Cardiovascular Medicine & Sciences, Kings College London British Heart Foundation Centre of Research Excellence, St Thomas' Hospital, London, SE1 7EH, UK
| |
Collapse
|
8
|
Bath PM, Coleman CM, Gordon AL, Lim WS, Webb AJ. Nitric oxide for the prevention and treatment of viral, bacterial, protozoal and fungal infections. F1000Res 2021; 10:536. [PMID: 35685687 PMCID: PMC9171293 DOI: 10.12688/f1000research.51270.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/21/2021] [Indexed: 12/18/2023] Open
Abstract
Although the antimicrobial potential of nitric oxide (NO) is widely published, it is little used clinically. NO is a key signalling molecule modulating vascular, neuronal, inflammatory and immune responses. Endogenous antimicrobial activity is largely mediated by high local NO concentrations produced by cellular inducible nitric oxide synthase, and by derivative reactive nitrogen oxide species including peroxynitrite and S-nitrosothiols. NO may be taken as dietary substrate (inorganic nitrate, L-arginine), and therapeutically as gaseous NO, and transdermal, sublingual, oral, intranasal and intravenous nitrite or nitrate. Numerous preclinical studies have demonstrated that NO has generic static and cidal activities against viruses (including β-coronaviruses such as SARS-CoV-2), bacteria, protozoa and fungi/yeasts in vitro. Therapeutic effects have been seen in animal models in vivo, and phase II trials have demonstrated that NO donors can reduce microbial infection. Nevertheless, excess NO, as occurs in septic shock, is associated with increased morbidity and mortality. In view of the dose-dependent positive and negative effects of NO, safety and efficacy trials of NO and its donors are needed for assessing their role in the prevention and treatment of infections. Trials should test dietary inorganic nitrate for pre- or post-exposure prophylaxis and gaseous NO or oral, topical or intravenous nitrite and nitrate for treatment of mild-to-severe infections, including due to SARS-CoV-2 (COVID-19). This review summarises the evidence base from in vitro, in vivo and early phase clinical studies of NO activity in viral, bacterial, protozoal and fungal infections.
Collapse
Affiliation(s)
- Philip M. Bath
- Stroke Trials Unit, Division of Clinical Neuroscience, University of Nottingham, Nottingham, Notts, NG7 2UH, UK
- Stroke, Nottingham University Hospitals NHS Trust, Nottingham, Notts, NG7 2UH, UK
| | - Christopher M. Coleman
- Division of Infection, Immunity and Microbes, School of Life Sciences, University of Nottingham, Nottingham, Notts, NG7 2UH, UK
| | - Adam L. Gordon
- Unit of Injury, Inflammation and Recovery Sciences, University of Nottingham, Derby, Derbyshire, DE22 3NE, UK
- NIHR Applied Research Collaboration-East Midlands (ARC-EM), Nottingham, Notts, UK
| | - Wei Shen Lim
- Respiratory Medicine, Nottingham University Hospitals NHS Trust, Nottingham, NG5 1PB, UK
| | - Andrew J. Webb
- Clinical Pharmacology, School of Cardiovascular Medicine & Sciences, Kings College London British Heart Foundation Centre of Research Excellence, St Thomas' Hospital, London, SE1 7EH, UK
| |
Collapse
|
9
|
Garren MR, Ashcraft M, Qian Y, Douglass M, Brisbois EJ, Handa H. Nitric oxide and viral infection: Recent developments in antiviral therapies and platforms. APPLIED MATERIALS TODAY 2021; 22:100887. [PMID: 38620577 PMCID: PMC7718584 DOI: 10.1016/j.apmt.2020.100887] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 11/11/2020] [Accepted: 11/14/2020] [Indexed: 05/09/2023]
Abstract
Nitric oxide (NO) is a gasotransmitter of great significance to developing the innate immune response to many bacterial and viral infections, while also modulating vascular physiology. The generation of NO from the upregulation of endogenous nitric oxide synthases serves as an efficacious method for inhibiting viral replication in host defense and warrants investigation for the development of antiviral therapeutics. With increased incidence of global pandemics concerning several respiratory-based viral infections, it is necessary to develop broad therapeutic platforms for inhibiting viral replication and enabling more efficient host clearance, as well as to fabricate new materials for deterring viral transmission from medical devices. Recent developments in creating stabilized NO donor compounds and their incorporation into macromolecular scaffolds and polymeric substrates has created a new paradigm for developing NO-based therapeutics for long-term NO release in applications for bactericidal and blood-contacting surfaces. Despite this abundance of research, there has been little consideration of NO-releasing scaffolds and substrates for reducing passive transmission of viral infections or for treating several respiratory viral infections. The aim of this review is to highlight the recent advances in developing gaseous NO, NO prodrugs, and NO donor compounds for antiviral therapies; discuss the limitations of NO as an antiviral agent; and outline future prospects for guiding materials design of a next generation of NO-releasing antiviral platforms.
Collapse
Key Words
- ACE, angiotensin converting enzyme
- AP1, activator protein 1
- COVID-19
- COVID-19, coronavirus disease 2019
- ECMO, extracorporeal membrane oxygenation, FDA, United States Food and Drug Administration
- GNSO, S-nitrosoglutathione
- H1N1, influenza A virus subtype H1N1
- HI, Host Immunology
- HIV, human immunodeficiency virus
- HPV, human papillomavirus
- HSV, herpes simplex virus
- I/R, pulmonary ischemia-reperfusion
- IC50, inhibitory concentration 50
- IFN, interferon
- IFNγ, interferon gamma
- IKK, inhibitor of nuclear factor kappa B kinase
- IRF-1, interferon regulatory factor 1
- Inhalation therapy
- Medical Terminology: ARDS, acute respiratory distress syndrome
- NF-κB, nuclear factor kappa-light-chain enhancer of activated B cells
- NO, nitric oxide
- NOS, nitric oxide synthase
- Nitric Oxide and Related Compounds: eNOS/NOS 3, endothelial nitric oxide synthase
- Nitric oxide
- Other: DNA, deoxyribonucleic acid
- P38-MAPK, P38 mitogen-activated protein kinases
- PAMP, pathogen-associated molecular pattern
- PCV2, porcine circovirus type 2
- PHT, pulmonary hypertension
- PKR, protein kinase R
- RNA, ribonucleic acid
- RNI, reactive nitrogen intermediate
- RSNO, S-nitrosothiol
- SARS, severe acute respiratory syndrome
- SARS-CoV-2, severe acute respiratory syndrome coronavirus 2
- SNAP, S-nitroso-N-acetyl-penicillamine
- STAT-1, signal transducer and activator of transcription 1
- Severe acute respiratory distress
- TAK1, transforming growth factor β-activated kinases-1
- TLR, toll-like receptor
- VAP, ventilator associated pneumonia
- Viral infection
- Viruses: CVB3, coxsackievirus
- dsRNA, double stranded (viral) ribonucleic acid
- gNO, gaseous nitric oxide
- iNOS/NOS 2, inducible nitric oxide synthase
- mtALDH, mitochondrial aldehyde dehydrogenase
- nNOS/NOS 1, neuronal nitric oxide synthase
Collapse
Affiliation(s)
- Mark R Garren
- School of Chemical, Materials, and Biochemical Engineering, College of Engineering, University of Georgia, Athens, GA, USA
| | - Morgan Ashcraft
- School of Chemical, Materials, and Biochemical Engineering, College of Engineering, University of Georgia, Athens, GA, USA
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA, USA
| | - Yun Qian
- School of Chemical, Materials, and Biochemical Engineering, College of Engineering, University of Georgia, Athens, GA, USA
| | - Megan Douglass
- School of Chemical, Materials, and Biochemical Engineering, College of Engineering, University of Georgia, Athens, GA, USA
| | - Elizabeth J Brisbois
- School of Chemical, Materials, and Biochemical Engineering, College of Engineering, University of Georgia, Athens, GA, USA
| | - Hitesh Handa
- School of Chemical, Materials, and Biochemical Engineering, College of Engineering, University of Georgia, Athens, GA, USA
| |
Collapse
|
10
|
Mir JM, Maurya RC. Nitric oxide as a therapeutic option for COVID-19 treatment: a concise perspective. NEW J CHEM 2021. [DOI: 10.1039/d0nj03823g] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Among several possible therapies applicable for treating COVID-19, nitric oxide therapy has also gained considerable interest. This article describes the same with mechanistic details.
Collapse
Affiliation(s)
- Jan Mohammad Mir
- Coordination, Metallopharmaceutical and Computational Laboratory
- Department of PG Studies and Research in Chemistry and Pharmacy
- R. D. University
- Jabalpur
- India
| | - Ram Charitra Maurya
- Coordination, Metallopharmaceutical and Computational Laboratory
- Department of PG Studies and Research in Chemistry and Pharmacy
- R. D. University
- Jabalpur
- India
| |
Collapse
|
11
|
Khan NA, Ninawe AS, Sharma J, Chakrabarti R. Effect of light intensity on survival, growth and physiology of rohu,Labeo rohita(Cyprinidae) fry. Int J Radiat Biol 2020; 96:552-559. [DOI: 10.1080/09553002.2020.1704905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Nawaz Alam Khan
- Aqua Research Lab, Department of Zoology, University of Delhi, New Delhi, India
| | | | - JaiGopal Sharma
- Department of Biotechnology, Delhi Technological University, New Delhi, India
| | - Rina Chakrabarti
- Aqua Research Lab, Department of Zoology, University of Delhi, New Delhi, India
| |
Collapse
|
12
|
Treuer AV, Gonzalez DR. Nitric oxide synthases, S-nitrosylation and cardiovascular health: from molecular mechanisms to therapeutic opportunities (review). Mol Med Rep 2014; 11:1555-65. [PMID: 25405382 PMCID: PMC4270315 DOI: 10.3892/mmr.2014.2968] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 08/05/2014] [Indexed: 12/13/2022] Open
Abstract
The understanding of nitric oxide (NO) signaling has grown substantially since the identification of endothelial derived relaxing factor (EDRF). NO has emerged as a ubiquitous signaling molecule involved in diverse physiological and pathological processes. Perhaps the most significant function, independent of EDRF, is that of NO signaling mediated locally in signaling modules rather than relying upon diffusion. In this context, NO modulates protein function via direct post-translational modification of cysteine residues. This review explores NO signaling and related reactive nitrogen species involved in the regulation of the cardiovascular system. A critical concept in the understanding of NO signaling is that of the nitroso-redox balance. Reactive nitrogen species bioactivity is fundamentally linked to the production of reactive oxygen species. This interaction occurs at the chemical, enzymatic and signaling effector levels. Furthermore, the nitroso-redox equilibrium is in a delicate balance, involving the cross-talk between NO and oxygen-derived species signaling systems, including NADPH oxidases and xanthine oxidase.
Collapse
Affiliation(s)
- Adriana V Treuer
- Laboratory of Organic Synthesis, Institute of Chemistry of Natural Resources, University of Talca, Talca 3460000, Chile
| | - Daniel R Gonzalez
- Department of Biomedical Basic Sciences, School of Health Sciences, University of Talca, Talca 3460000, Chile
| |
Collapse
|
13
|
Downregulation of inducible nitric oxide synthase (iNOS) expression is implicated in the antiviral activity of acetylsalicylic acid in HCV-expressing cells. Arch Virol 2014; 159:3321-8. [PMID: 25106115 DOI: 10.1007/s00705-014-2201-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 07/30/2014] [Indexed: 12/30/2022]
Abstract
Previously, we described that acetylsalicylic acid (ASA) decreases HCV expression, but the mechanisms involved have not been clearly established. We evaluated the participation of inducible nitric oxide synthase (iNOS) in the regulation of HCV-RNA induced by ASA. Huh7 cells expressing non-structural HCV proteins were exposed to 4 mM ASA and incubated at the same times we reported HCV downregulation (24-72 h), and iNOS mRNA and protein levels were then measured by real-time PCR and Western blot, respectively. Nitric oxide levels were measured at the same time. Inhibition of iNOS mRNA by small interfering RNAs (siRNA) and activation of the iNOS gene promoter by ASA treatment were evaluated. In Huh7 replicon cells treated with ASA, we found decreased levels of iNOS mRNA, iNOS protein and nitrosylated protein levels at 48-72 h. ASA exposure also reduced the transactivation of the iNOS promoter in HCV replicon cells at 48 h, and this was partly due to the decrease in the affinity of transcription factor C/EBP-β for its binding site in the iNOS promoter. siRNA silencing of iNOS decreased HCV-RNA expression (65 %) and potentiated the antiviral effect (80 %) of ASA compared with control cells. ASA reduces iNOS expression by downregulating promoter activity, mRNA and protein levels at the same time that it decreases HCV expression. These findings suggest that the antiviral activity of ASA is mediated partially through the modulation of iNOS.
Collapse
|
14
|
Hendry RG, Bilawchuk LM, Marchant DJ. Targeting matrix metalloproteinase activity and expression for the treatment of viral myocarditis. J Cardiovasc Transl Res 2014; 7:212-25. [PMID: 24381086 DOI: 10.1007/s12265-013-9528-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 11/29/2013] [Indexed: 01/17/2023]
Abstract
Infectious agents including viruses can infect the heart muscle, resulting in the development of heart inflammation called myocarditis. Chronic myocarditis can lead to dilated cardiomyopathy (DCM). DCM develops from the extensive extracellular matrix (ECM) remodeling caused by myocarditis and may result in heart failure. Epidemiological data for viral myocarditis has long suggested a worse pathology in males, with more recent data demonstrating sex-dependent pathogenesis in DCM as well. Matrix metalloproteinases (MMPs), long known modulators of the extracellular matrix, have important roles in mediating heart inflammation and remodeling during disease and in convalescence. This ability of MMPs to control both the inflammatory response and ECM remodeling during myocarditis makes them potential drug targets. In this review, we analyze the role of MMPs in mediating myocarditis/DCM disease progression, their sex-dependent expression, and their potential as drug targets during viral myocarditis and DCM.
Collapse
MESH Headings
- Animals
- Cardiomyopathy, Dilated/drug therapy
- Cardiomyopathy, Dilated/enzymology
- Cardiomyopathy, Dilated/genetics
- Cardiomyopathy, Dilated/immunology
- Cardiomyopathy, Dilated/virology
- Extracellular Matrix/metabolism
- Female
- Gene Expression Regulation, Enzymologic
- Humans
- Male
- Matrix Metalloproteinase Inhibitors/therapeutic use
- Matrix Metalloproteinases/genetics
- Matrix Metalloproteinases/metabolism
- Molecular Targeted Therapy
- Myocarditis/drug therapy
- Myocarditis/enzymology
- Myocarditis/genetics
- Myocarditis/immunology
- Myocarditis/virology
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/enzymology
- Myocytes, Cardiac/immunology
- Myocytes, Cardiac/virology
- Sex Factors
- Treatment Outcome
Collapse
Affiliation(s)
- Reid G Hendry
- Li Ka Shing Institute of Virology, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | | | | |
Collapse
|
15
|
Imanishi N, Andoh T, Sakai S, Satoh M, Katada Y, Ueda K, Terasawa K, Ochiai H. Induction of Inducible Nitric Oxide (NO) Synthase mRNA and NO Production in Macrophages Infected with Influenza A/PR/8 Virus and Stimulated with Its Ether-Split Product. Microbiol Immunol 2013; 49:41-8. [PMID: 15665452 DOI: 10.1111/j.1348-0421.2005.tb03638.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We investigated the inductive activity of infective influenza A/PR/8/34 (PR8) virus and its ether-split product (ESP) on the expression of inducible nitric oxide (NO) synthase (iNOS) and NO production in RAW264.7 (RAW) cells, a murine macrophage (M psi) cell line, and thioglycolate-elicited peritoneal M psi (TPM). In both cells, PR8 virus infection induced iNOS mRNA between 4 hr and 24 hr, attaining a peak value at 12 hr. In correlation with induction of iNOS mRNA, NO amounts increased significantly from 12 to 24 hr. Moreover, this study demonstrated that ESP with the same hemagglutination titer as PR8 virus could induce iNOS mRNA and NO production, although the inductive activity of ESP was weaker than that of PR8 virus. Considering the dual role (beneficial and detrimental roles) of NO on certain inflammatory disorders and virus infections, the inductive activity of influenza virus on the iNOS-mediated NO production independent of its infectivity might contribute to a modification of influenza virus infection.
Collapse
Affiliation(s)
- Nobuko Imanishi
- Department of Japanese Oriental Medicine, Toyama Medical and Pharmaceutical University, Toyama, Toyama, Japan
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Regev-Shoshani G, Vimalanathan S, McMullin B, Road J, Av-Gay Y, Miller C. Gaseous nitric oxide reduces influenza infectivity in vitro. Nitric Oxide 2013; 31:48-53. [PMID: 23562771 PMCID: PMC7110511 DOI: 10.1016/j.niox.2013.03.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 03/22/2013] [Accepted: 03/26/2013] [Indexed: 12/02/2022]
Abstract
Gaseous nitric oxide (gNO) is an approved vasodilator drug for inhalation up to a maximum dose of 80 ppm. While gNO has been shown, in vitro, to be an effective antibacterial agent (at 160 ppm), NO-donor compounds have been shown to inhibit a variety of viruses at varying stages of replication. This research was done in order to determine whether gNO at 80 or 160 ppm possesses an antiviral effect on influenza viruses. Three strains of influenza (A and B) were exposed to gNO for up to 180 min, before and after infection of MDCK cells. In search for possible mechanism of antiviral action, Neuraminidase (NA) inhibition assay of H1N1 that was exposed to gNO was performed. Results show that when virions were exposed to gNO prior to infection a complete inhibition of infectivity was achieved for all three strains. Post infection exposure of influenza with gNO resulted in about 30% inhibition of infectivity. Further testing showed that when eliminating the pH effect by exposing a dried virus to gNO, 90% inhibition was found after 2h exposure. NA activity, of whole dried H1N1 virus, was found to be inhibited by gNO (80%). These results suggest that 80 and 160 ppm gNO have a time dependent antiviral effect on influenza strains of viruses during various stages of cellular infection, which are not due to concomitant changes in pH in the surrounding milieu. Viral NA inhibition by gNO was shown and may be responsible for this antiviral effect.
Collapse
Affiliation(s)
- Gilly Regev-Shoshani
- Department of Respiratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Division of Infectious Diseases, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Selvarani Vimalanathan
- Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Bevin McMullin
- Department of Respiratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Division of Infectious Diseases, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Respiratory Services, Vancouver Coastal Health – UBCH Site, Vancouver, British Columbia, Canada
| | - Jeremy Road
- Department of Respiratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Yossef Av-Gay
- Division of Infectious Diseases, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Medical Microbiology and Infections Control, Vancouver Coastal Health at Vancouver General Hospital and at University of British Columbia, Vancouver, British Columbia, Canada
| | - Chris Miller
- Department of Respiratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Division of Infectious Diseases, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
17
|
Management of the virulent influenza virus infection by oral formulation of nonhydrolized carnosine and isopeptide of carnosine attenuating proinflammatory cytokine-induced nitric oxide production. Am J Ther 2012; 19:e25-47. [PMID: 20841992 DOI: 10.1097/mjt.0b013e3181dcf589] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Inducible nitric oxide synthase (iNOS) plays an important role in mediating inflammation. In our studies, we found that iNOS-derived NO was significantly increased in the serum samples of 150 patients infected with influenza A virus in comparison with samples of 140 healthy individuals. In human lung epithelial cells, infection with influenza A virus or stimulation with poly(I:C) + interferon-gamma resulted in increased mRNA and protein levels of both interleukin-32 and iNOS, with subsequent release of NO. Activated macrophages are also a source of nitric oxide (NO), which is largely produced by iNOS in response to proinflammatory cytokines. In this review article, the presented findings have many important implications for understanding the Influenza A (H1N1) viral pathogenesis, prevention, and treatment. The direct viral cytotoxicity (referred cytopathic effect) is only a fraction of several types of events induced by virus infection. Nitric oxide and oxygen free radicals such as superoxide anion (O₂⁻˙) are generated markedly in influenza A (including H1N1) virus-infected host boosts, and these molecular species are identified as the potent pathogenic agents. The mutual interaction of NO with O₂⁻˙ resulting in formation of peroxynitrite is operative in the pathogenic mechanism of influenza virus pneumonia. The toxicity and reactivity of oxygen radicals, generated in excessive amounts mediate the overreaction of the host's immune response against the organs or tissues in which viruses are replicating, and this may explain the mechanism of tissue injuries observed in influenza virus infection of various types. The authors revealed the protection that carnosine and its bioavailable nonhydrolized forms provide against peroxynitrite damage and other types of viral injuries in which immunologic interactions are usually involved. Carnosine (beta-alanyl-L-histidine) shows the pharmacologic intracellular correction of NO release which might be one of the important factors of natural immunity in controlling the initial stages of influenza A virus infection (inhibition of virus replication) and virus-induced regulation of cytokine gene expression. The protective effects of orally applied nonhydrolized formulated species of carnosine include at least direct interaction with nitric oxide, inhibition of cytotoxic NO-induced proinflammatory condition, and attenuation of the effects of cytokines and chemokines that can exert profound effects on inflammatory cells. These data are consistent with the hypothesis that natural products, such as chicken soup and chicken breast extracts rich in carnosine and its derivative anserine (beta-alanyl-1-methyl-L-histidine) could contribute to the pathogenesis and prevention of influenza virus infections and cold but have a limitation due to susceptibility to enzymatic hydrolysis of dipeptides with serum carnosinase and urine excretion after oral ingestion of a commercial chicken extract. The developed and patented by the authors formulations of nonhydrolized in digestive tract and blood natural carnosine peptide and isopeptide (gamma-glutamyl-carnosine) products have a promise in the Influenza A (H1N1) virus infection disease control and prevention.
Collapse
|
18
|
Lewis RS, Kolesnik TB, Kuang Z, D'Cruz AA, Blewitt ME, Masters SL, Low A, Willson T, Norton RS, Nicholson SE. TLR regulation of SPSB1 controls inducible nitric oxide synthase induction. THE JOURNAL OF IMMUNOLOGY 2011; 187:3798-805. [PMID: 21876038 DOI: 10.4049/jimmunol.1002993] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The mammalian innate immune system has evolved to recognize foreign molecules derived from pathogens via the TLRs. TLR3 and TLR4 can signal via the TIR domain-containing adapter inducing IFN-β (TRIF), which results in the transcription of a small array of genes, including IFN-β. Inducible NO synthase (iNOS), which catalyzes the production of NO, is induced by a range of stimuli, including cytokines and microbes. NO is a potent source of reactive nitrogen species that play an important role in killing intracellular pathogens and forms a crucial component of host defense. We have recently identified iNOS as a target of the mammalian SPSB2 protein. The SOCS box is a peptide motif, which, in conjunction with elongins B and C, recruits cullin-5 and Rbx-2 to form an active E3 ubiquitin ligase complex. In this study, we show that SPSB1 is the only SPSB family member to be regulated by the same TLR pathways that induce iNOS expression and characterize the interaction between SPSB1 and iNOS. Through the use of SPSB1 transgenic mouse macrophages and short hairpin RNA knockdown of SPSB1, we show that SPSB1 controls both the induction of iNOS and the subsequent production of NO downstream of TLR3 and TLR4. Further, we demonstrate that regulation of iNOS by SPSB1 is dependent on the proteasome. These results suggest that SPSB1 acts through a negative-feedback loop that, together with SPSB2, controls the extent of iNOS induction and NO production.
Collapse
Affiliation(s)
- Rowena S Lewis
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Tarin C, Lavin B, Gomez M, Saura M, Diez-Juan A, Zaragoza C. The extracellular matrix metalloproteinase inducer EMMPRIN is a target of nitric oxide in myocardial ischemia/reperfusion. Free Radic Biol Med 2011; 51:387-95. [PMID: 21570464 DOI: 10.1016/j.freeradbiomed.2011.04.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Revised: 03/29/2011] [Accepted: 04/11/2011] [Indexed: 12/20/2022]
Abstract
Nitric oxide (NO) is an important defense against myocardial ischemia/reperfusion (I/R) injury. Although matrix metalloproteinase (MMP)-mediated necrosis of cardiac myocytes is well characterized, the role of inducible NO synthase (iNOS)-derived NO in this process is poorly understood. I/R injury was increased in iNOS-deficient mice and in mice treated with 1400 W (a pharmacological iNOS inhibitor) and was associated with significantly increased expression of extracellular matrix metalloproteinase inducer (EMMPRIN) and EMMPRIN-associated MMPs. Transcriptional activity of an EMMPRIN luciferase promoter reporter expressed in cardiac myocytes was inhibited by NO in a cGMP-dependent manner, and this transcriptional inhibition was abolished by mutation of a putative E2F site. Consistent with these findings, EMMPRIN null mice, in which iNOS is normally induced, are partially protected against I/R injury. Pharmacological inhibition of iNOS in EMMPRIN null mice had no additional protective effect, suggesting that EMMPRIN is a downstream target of NO. Administration of anti-EMMPRIN neutralizing antibodies partly reduced the excess heart damage and MMP-9 expression induced by I/R in iNOS null mice, indicating that regulation of EMMPRIN is an important mechanism of NO-mediated cardioprotection.
Collapse
Affiliation(s)
- Carlos Tarin
- Fundación Centro Nacional de Investigaciones Cardiovasculares, Madrid 28029, Spain
| | | | | | | | | | | |
Collapse
|
20
|
Rollinger JM, Schmidtke M. The human rhinovirus: human-pathological impact, mechanisms of antirhinoviral agents, and strategies for their discovery. Med Res Rev 2011; 31:42-92. [PMID: 19714577 PMCID: PMC7168442 DOI: 10.1002/med.20176] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
As the major etiological agent of the common cold, human rhinoviruses (HRV) cause millions of lost working and school days annually. Moreover, clinical studies proved an association between harmless upper respiratory tract infections and more severe diseases e.g. sinusitis, asthma, and chronic obstructive pulmonary disease. Both the medicinal and socio-economic impact of HRV infections and the lack of antiviral drugs substantiate the need for intensive antiviral research. A common structural feature of the approximately 100 HRV serotypes is the icosahedrally shaped capsid formed by 60 identical copies of viral capsid proteins VP1-4. The capsid protects the single-stranded, positive sense RNA genome of about 7,400 bases in length. Both structural as well as nonstructural proteins produced during the viral life cycle have been identified as potential targets for blocking viral replication at the step of attachment, entry, uncoating, RNA and protein synthesis by synthetic or natural compounds. Moreover, interferon and phytoceuticals were shown to protect host cells. Most of the known inhibitors of HRV replication were discovered as a result of empirical or semi-empirical screening in cell culture. Structure-activity relationship studies are used for hit optimization and lead structure discovery. The increasing structural insight and molecular understanding of viral proteins on the one hand and the advent of innovative computer-assisted technologies on the other hand have facilitated a rationalized access for the discovery of small chemical entities with antirhinoviral (anti-HRV) activity. This review will (i) summarize existing structural knowledge about HRV, (ii) focus on mechanisms of anti-HRV agents from synthetic and natural origin, and (iii) demonstrate strategies for efficient lead structure discovery.
Collapse
Affiliation(s)
- Judith M Rollinger
- Institute of Pharmacy/Pharmacognosy and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 52c, A-6020 Innsbruck, Austria.
| | | |
Collapse
|
21
|
Van Linthout S, Savvatis K, Miteva K, Peng J, Ringe J, Warstat K, Schmidt-Lucke C, Sittinger M, Schultheiss HP, Tschöpe C. Mesenchymal stem cells improve murine acute coxsackievirus B3-induced myocarditis. Eur Heart J 2010; 32:2168-78. [PMID: 21183501 PMCID: PMC3164101 DOI: 10.1093/eurheartj/ehq467] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Aims Coxsackievirus B3 (CVB3)-induced myocarditis, initially considered a sole immune-mediated disease, also results from a direct CVB3-mediated injury of the cardiomyocytes. Mesenchymal stem cells (MSCs) have, besides immunomodulatory, also anti-apoptotic features. In view of clinical translation, we first analysed whether MSCs can be infected by CVB3. Next, we explored whether and how MSCs could reduce the direct CVB3-mediated cardiomyocyte injury and viral progeny release, in vitro, in the absence of immune cells. Finally, we investigated whether MSC application could improve murine acute CVB3-induced myocarditis. Methods and results Phase contrast pictures and MTS viability assay demonstrated that MSCs did not suffer from CVB3 infection 4–12–24–48 h after CVB3 infection. Coxsackievirus B3 RNA copy number decreased in this time frame, suggesting that no CVB3 replication took place. Co-culture of MSCs with CVB3-infected HL-1 cardiomyocytes resulted in a reduction of CVB3-induced HL-1 apoptosis, oxidative stress, intracellular viral particle production, and viral progeny release in a nitric oxide (NO)-dependent manner. Moreover, MSCs required priming via interferon-γ (IFN-γ) to exert their protective effects. In vivo, MSC application improved the contractility and relaxation parameters in CVB3-induced myocarditis, which was paralleled with a reduction in cardiac apoptosis, cardiomyocyte damage, left ventricular tumour necrosis factor-α mRNA expression, and cardiac mononuclear cell activation. Mesenchymal stem cells reduced the CVB3-induced CD4− and CD8− T cell activation in an NO-dependent way and required IFN-γ priming. Conclusion We conclude that MSCs improve murine acute CVB3-induced myocarditis via their anti-apoptotic and immunomodulatory properties, which occur in an NO-dependent manner and require priming via IFN-γ.
Collapse
Affiliation(s)
- S Van Linthout
- Berlin-Brandenburg Center for Regenerative Therapies, Charité-University Medicine Berlin, Campus Virchow, Berlin, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Brocato RL, Voss TG. Pichinde virus induces microvascular endothelial cell permeability through the production of nitric oxide. Virol J 2009; 6:162. [PMID: 19814828 PMCID: PMC2765958 DOI: 10.1186/1743-422x-6-162] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Accepted: 10/08/2009] [Indexed: 11/17/2022] Open
Abstract
This report is the first to demonstrate infection of human endothelial cells by Pichinde virus (PIC). PIC infection induces an upregulation of the inducible nitric oxide synthase gene; as well as an increase in detectable nitric oxide (NO). PIC induces an increase in permeability in endothelial cell monolayers which can be abrogated at all measured timepoints with the addition of a nitric oxide synthase inhibitor, indicating a role for NO in the alteration of endothelial barrier function. Because NO has shown antiviral activity against some viruses, viral titer was measured after addition of the NO synthase inhibitor and found to have no effect in altering virus load in infected EC. The NO synthase inhibition also has no effect on levels of activated caspases induced by PIC infection. Taken together, these data indicate NO production induced by Pichinde virus infection has a pathogenic effect on endothelial cell monolayer permeability.
Collapse
Affiliation(s)
- Rebecca L Brocato
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA.
| | | |
Collapse
|
23
|
Role of nitric oxide in the pathogenesis of encephalomyocarditis virus-induced diabetes in mice. J Virol 2009; 83:8004-11. [PMID: 19535454 DOI: 10.1128/jvi.00205-09] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The D variant of encephalomyocarditis virus (EMC-D virus) causes diabetes in mice by destroying pancreatic beta cells. In mice infected with a low dose of EMC-D virus, macrophages play an important role in beta-cell destruction by producing soluble mediators such as interleukin-1beta (IL-1beta), tumor necrosis factor alpha (TNF-alpha), and nitric oxide (NO). To investigate the role of NO and inducible NO synthase (iNOS) in the development of diabetes in EMC-D virus-infected mice, we infected iNOS-deficient DBA/2 mice with EMC-D virus (2 x 10(2) PFU/mouse). Mean blood glucose levels in EMC-D virus-infected iNOS-deficient mice and wild-type mice were 205.5 and 466.7 mg/dl, respectively. Insulitis and macrophage infiltration were reduced in islets of iNOS-deficient mice compared with wild-type mice at 3 days after EMC-D virus infection. Apoptosis of beta cells was decreased in iNOS-deficient mice, as evidenced by reduced numbers of terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling-positive cells. There were no differences in mRNA expression of antiapoptotic molecules Bcl-2, Bcl-xL, Bcl-w, Mcl-1, cIAP-1, and cIAP-2 between wild-type and iNOS-deficient mice, whereas expression of proapoptotic Bax and Bak mRNAs was significantly decreased in iNOS-deficient mice. Expression of IL-1beta and TNF-alpha mRNAs was significantly decreased in both islets and macrophages of iNOS-deficient mice compared with wild-type mice after EMC-D virus infection. Nuclear factor kappaB was less activated in macrophages of iNOS-deficient mice after virus infection. We conclude that NO plays an important role in the activation of macrophages and apoptosis of pancreatic beta cells in EMC-D virus-infected mice and that deficient iNOS gene expression inhibits macrophage activation and beta-cell apoptosis, contributing to prevention of EMC-D virus-induced diabetes.
Collapse
|
24
|
Chaturvedi UC, Nagar R. Nitric oxide in dengue and dengue haemorrhagic fever: necessity or nuisance? FEMS IMMUNOLOGY AND MEDICAL MICROBIOLOGY 2009; 56:9-24. [PMID: 19239490 PMCID: PMC7110348 DOI: 10.1111/j.1574-695x.2009.00544.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2008] [Revised: 12/23/2008] [Accepted: 01/22/2009] [Indexed: 01/03/2023]
Abstract
Advances in free radical research show that reactive oxygen and nitrogen oxide species, for example superoxide, nitric oxide (NO) and peroxynitrite, play an important role in the pathogenesis of different viral infections, including dengue virus. The pathogenic mechanism of dengue haemorrhagic fever (DHF) is complicated and is not clearly understood. The hallmarks of the dengue disease, the antibody-dependent enhancement, the shift from T-helper type 1 (Th1) to Th2 cytokine response and the cytokine tsunami resulting in vascular leakage can now be explained much better with the knowledge gained about NO and peroxynitrite. This paper makes an effort to present a synthesis of the current opinions to explain the pathogenesis of DHF/shock syndrome with NO on centre stage.
Collapse
|
25
|
Nitric oxide inhibits the replication cycle of porcine parvovirus in vitro. Arch Virol 2009; 154:999-1003. [PMID: 19437101 PMCID: PMC7087247 DOI: 10.1007/s00705-009-0392-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2008] [Accepted: 04/23/2009] [Indexed: 01/11/2023]
Abstract
This study investigated the inhibitory effect and mechanism of nitric oxide (NO) on porcine parvovirus (PPV) replication in PK-15 cells. The results showed that two NO-generating compounds, S-nitroso-l-acetylpenicillamine (SNAP) and l-arginine (LA), at a noncytotoxic concentration could reduce PPV replication in a dose-dependent manner and that this anti-PPV effect could be reversed by the NO synthase (NOS) inhibitor N-nitro-l-arginine methyl ester (l-NAME). By assaying the steps of the PPV life cycle, we also show that NO inhibits viral DNA and protein synthesis. This experiment provides a frame of reference for the study of the anti-viral mechanism of NO.
Collapse
|
26
|
Yang CS, Yuk JM, Jo EK. The role of nitric oxide in mycobacterial infections. Immune Netw 2009; 9:46-52. [PMID: 20107543 PMCID: PMC2803309 DOI: 10.4110/in.2009.9.2.46] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Accepted: 03/10/2009] [Indexed: 12/24/2022] Open
Abstract
Although tuberculosis poses a significant health threat to the global population, it is a challenge to develop new and effective therapeutic strategies. Nitric oxide (NO) and inducible NO synthase (iNOS) are important in innate immune responses to various intracellular bacterial infections, including mycobacterial infections. It is generally recognized that reactive nitrogen intermediates play an effective role in host defense mechanisms against tuberculosis. In a murine model of tuberculosis, NO plays a crucial role in antimycobacterial activity; however, it is controversial whether NO is critically involved in host defense against Mycobacterium tuberculosis in humans. Here, we review the roles of NO in host defense against murine and human tuberculosis. We also discuss the specific roles of NO in the central nervous system and lung epithelial cells during mycobacterial infection. A greater understanding of these defense mechanisms in human tuberculosis will aid in the development of new strategies for the treatment of disease.
Collapse
Affiliation(s)
- Chul-Su Yang
- Department of Microbiology and Infection Signaling Network Research Center, College of Medicine, Chungnam National University, Daejeon 301-747, Korea
| | | | | |
Collapse
|
27
|
Kulka M, Calvo MS, Ngo DT, Wales SQ, Goswami BB. Activation of the 2-5OAS/RNase L pathway in CVB1 or HAV/18f infected FRhK-4 cells does not require induction of OAS1 or OAS2 expression. Virology 2009; 388:169-84. [PMID: 19383565 DOI: 10.1016/j.virol.2009.03.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Revised: 02/09/2009] [Accepted: 03/14/2009] [Indexed: 01/23/2023]
Abstract
The latent, constitutively expressed protein RNase L is activated in coxsackievirus and HAV strain 18f infected FRhK-4 cells. Endogenous oligoadenylate synthetase (OAS) from uninfected and virus infected cell extracts synthesizes active forms of the triphosphorylated 2-5A oligomer (the only known activator of RNase L) in vitro and endogenous 2-5A is detected in infected cell extracts. However, only the largest OAS isoform, OAS3, is readily detected throughout the time course of infection. While IFNbeta treatment results in an increase in the level of all three OAS isoforms in FRhK-4 cells, IFNbeta pretreatment does not affect the temporal onset or enhancement of RNase L activity nor inhibit virus replication. Our results indicate that CVB1 and HAV/18f activate the 2-5OAS/RNase L pathway in FRhK-4 cells during permissive infection through endogenous levels of OAS, but contrary to that reported for some picornaviruses, CVB1 and HAV/18f replication is insensitive to this activated antiviral pathway.
Collapse
Affiliation(s)
- Michael Kulka
- Division of Molecular Biology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, US Food and Drug Administration, Laurel, MD 20708, USA.
| | | | | | | | | |
Collapse
|
28
|
Proto S, Taylor JA, Chokshi S, Navaratnam N, Naoumov NV. APOBEC and iNOS are not the main intracellular effectors of IFN-gamma-mediated inactivation of Hepatitis B virus replication. Antiviral Res 2008; 78:260-7. [PMID: 18313151 DOI: 10.1016/j.antiviral.2008.01.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2007] [Revised: 10/12/2007] [Accepted: 01/16/2008] [Indexed: 02/08/2023]
Abstract
BACKGROUND/AIM Interferon-gamma (IFN-gamma) produced by activated T-cells is the principle mediator of non-cytolytic Hepatitis B virus (HBV) inactivation; however the intracellular pathways responsible are poorly defined. We investigated the role of IFN-gamma-inducible nitric oxide synthase (iNOS) and APOBEC3 (A3) enzyme family in the inhibition of HBV replication by IFN-gamma. METHODS Hepatoma-cell lines transfected with HBV DNA were treated with IFN-gamma. Viral replication, iNOS and A3 mRNAs were quantitated by TaqManPCR and the direct nitric oxide (NO) effect on HBV replication was investigated using an NO-donor. A3G antiviral activity was verified by co-transfection with its inhibitor, human immunodeficiency virus (HIV)-associated virion infectivity factor (Vif). RESULTS IFN-gamma caused a dose-dependent reduction (>50%) of HBV DNA in the absence of cytotoxicity. Although iNOS mRNA increased 45-fold in IFN-gamma treated cells, NO2- was not detectable in supernatants and the use of an NO-donor did not inhibit HBV replication. A3 enzyme mRNAs varied between cells and were >10-fold higher in lymphocytes than in liver tissue. IFN-gamma up-regulated A3G mRNA by three-fold, associated with significant HBV DNA decrease. However, A3G degradation by Vif did not abolish the antiviral effect of IFN-gamma against HBV. CONCLUSIONS IFN-gamma inhibits HBV replication and up-regulates both iNOS and A3G. However, other pathways appear to have a greater role in IFN-gamma-induced HBV inactivation in the liver.
Collapse
Affiliation(s)
- Sandra Proto
- Institute of Hepatology, University College London, and MRC Clinical Sciences Centre, Hammersmith Hospital, London WC1E 6HX, UK.
| | | | | | | | | |
Collapse
|
29
|
Moraes MP, de Los Santos T, Koster M, Turecek T, Wang H, Andreyev VG, Grubman MJ. Enhanced antiviral activity against foot-and-mouth disease virus by a combination of type I and II porcine interferons. J Virol 2007; 81:7124-35. [PMID: 17459931 PMCID: PMC1933294 DOI: 10.1128/jvi.02775-06] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Previously, we showed that type I interferon (alpha/beta interferon [IFN-alpha/beta]) can inhibit foot-and-mouth disease virus (FMDV) replication in cell culture, and swine inoculated with 10(9) PFU of human adenovirus type 5 expressing porcine IFN-alpha (Ad5-pIFN-alpha) were protected when challenged 1 day later. In this study, we found that type II pIFN (pIFN-gamma) also has antiviral activity against FMDV in cell culture and that, in combination with pIFN-alpha, it has a synergistic antiviral effect. We also observed that while each IFN alone induced a number of IFN-stimulated genes (ISGs), the combination resulted in a synergistic induction of some ISGs. To extend these studies to susceptible animals, we inoculated groups of swine with a control Ad5, 10(8) PFU of Ad5-pIFN-alpha, low- or high-dose Ad5-pIFN-gamma, or a combination of Ad5-pIFN-alpha and low- or high-dose Ad5-pIFN-gamma and challenged all groups with FMDV 1 day later. The control group and the groups inoculated with either Ad5-pIFN-alpha or a low dose of Ad5-pIFN-gamma developed clinical disease and viremia. However, the group that received the combination of both Ad5-IFNs with the low dose of Ad5-pIFN-gamma was completely protected from challenge and had no viremia. Similarly the groups inoculated with the combination of Ad5s with the higher dose of Ad5-pIFN-gamma or with only high-dose Ad5-pIFN-gamma were protected. The protected animals did not develop antibodies against viral nonstructural (NS) proteins, while all infected animals were NS protein seropositive. No antiviral activity or significant levels of IFNs were detected in the protected groups, but there was an induction of some ISGs. The results indicate that the combination of type I and II IFNs act synergistically to inhibit FMDV replication in vitro and in vivo.
Collapse
Affiliation(s)
- Mauro Pires Moraes
- Plum Island Animal Disease Center, USDA, ARS, NAA, P.O. Box 848, Greenport, NY 11944, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Kittleson MM, Lowenstein CJ, Hare JM. Novel pathogenetic mechanisms in myocarditis: nitric oxide signaling. Heart Fail Clin 2007; 1:345-61. [PMID: 17386859 DOI: 10.1016/j.hfc.2005.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
31
|
Szalay G, Sauter M, Hald J, Weinzierl A, Kandolf R, Klingel K. Sustained nitric oxide synthesis contributes to immunopathology in ongoing myocarditis attributable to interleukin-10 disorders. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 169:2085-93. [PMID: 17148671 PMCID: PMC1762471 DOI: 10.2353/ajpath.2006.060350] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Ongoing coxsackievirus B3 (CVB3) myocarditis is characterized by persistence of viral RNA and chronic inflammation primarily mediated by macrophages and T cells. Activated macrophages produce anti-viral effector molecules comprising reactive nitrogen intermediates; however, reactive nitrogen intermediates also contribute to host tissue damage. Controlled activation of macrophages depends on interferon (IFN)-gamma and interleukin (IL)-10. To evaluate mechanisms involved in CVB3-induced pathogenesis of myocarditis, we determined the relationship of inducible nitric-oxide synthase (iNOS) mRNA expression with IFN-gamma and IL-10 secretion during CVB3 infection in different mouse strains. We found in susceptible A.BY/SnJ mice that develop ongoing myocarditis, a low and delayed IFN-gamma secretion and highly diminished IL-10 production compared with resistant C57BL/6 mice. Consequently, iNOS mRNA synthesis was delayed but clearly prolonged in susceptible mice. IL-10 gene-deficient mice confirmed the regulatory role of IL-10 in the outcome of CVB3 myocarditis. These mice did not establish a persistent cardiac infection and revealed IFN-gamma secretion kinetics similar to resistant mice but showed a slightly elongated cardiac iNOS mRNA expression resulting in extended myocarditis. We conclude that coordinated secretion of IFN-gamma and IL-10 is crucial for the effective resolution of CVB3 myocarditis. Moreover, lack of regulatory IL-10 leads to uncontrolled iNOS mRNA production, thus contributing to ongoing myocardial injury.
Collapse
Affiliation(s)
- Gudrun Szalay
- Dept. of Molecular Pathology, Institute for Pathology, University Hospital Tübingen, Liebermeisterstr. 8, D-72076 Tübingen, Germany
| | | | | | | | | | | |
Collapse
|
32
|
Zaragoza C, Saura M, Padalko EY, Lopez-Rivera E, Lizarbe TR, Lamas S, Lowenstein CJ. Viral protease cleavage of inhibitor of kappaBalpha triggers host cell apoptosis. Proc Natl Acad Sci U S A 2006; 103:19051-6. [PMID: 17138672 PMCID: PMC1748175 DOI: 10.1073/pnas.0606019103] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2006] [Indexed: 01/05/2023] Open
Abstract
Apoptosis is an innate immune response to viral infection that limits viral replication. However, the mechanisms by which cells detect viral infection and activate apoptosis are not completely understood. We now show that during Coxsackievirus infection, the viral protease 3C(pro) cleaves inhibitor of kappaBalpha (IkappaBalpha). A proteolytic fragment of IkappaBalpha then forms a stable complex with NF-kappaB, translocates to the nucleus, and inhibits NF-kappaB transactivation, increasing apoptosis and decreasing viral replication. In contrast, cells with reduced IkappaBalpha expression are more susceptible to viral infection, with less apoptosis and more viral replication. IkappaBalpha thus acts as a sensor of viral infection. Cleavage of host proteins by pathogen proteases is a novel mechanism by which the host recognizes and responds to viral infection.
Collapse
Affiliation(s)
- Carlos Zaragoza
- *Fundación Centro Nacional de Investigaciones Cardiovasculares, Melchor Fernandez Almagro 3, 28029 Madrid, Spain
| | - Marta Saura
- Departamento de Fisiologia, Facultad de Medicina, Universidad de Alcala, Carretera Barcelona Km 33, 28017 Alcala de Henares, Spain
| | - Elizaveta Y. Padalko
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 950, Baltimore, MD 21205; and
| | - Ester Lopez-Rivera
- *Fundación Centro Nacional de Investigaciones Cardiovasculares, Melchor Fernandez Almagro 3, 28029 Madrid, Spain
| | - Tania R. Lizarbe
- *Fundación Centro Nacional de Investigaciones Cardiovasculares, Melchor Fernandez Almagro 3, 28029 Madrid, Spain
| | - Santiago Lamas
- *Fundación Centro Nacional de Investigaciones Cardiovasculares, Melchor Fernandez Almagro 3, 28029 Madrid, Spain
- Centro de Investigaciones Biologicas, Instituto Reina Sofia de Investigaciones Nefrologicas, 28006 Madrid, Spain
| | - Charles J. Lowenstein
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 950, Baltimore, MD 21205; and
| |
Collapse
|
33
|
Bratslavska O, Platace D, Miklasevics E, Fuchs D, Martinsons A. Influence of neopterin and 7,8-dihydroneopterin on the replication of Coxsackie type B5 and influenza A viruses. Med Microbiol Immunol 2006; 196:23-9. [PMID: 16868770 DOI: 10.1007/s00430-006-0025-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2006] [Indexed: 10/24/2022]
Abstract
Pteridine derivatives neopterin and 7,8-dihydroneopterin are produced by human macrophages and dendritic cells upon stimulation with interferon-gamma (IFN-gamma) and therefore become detectable in increased amounts in humans during cell-mediated (Th1-type) immune response. Compounds produced upon influence of cytokine IFN-gamma often exert antiproliferative and antiviral activity. The aim of this study was to investigate the effect of neopterin and 7,8-dihydroneopterin on the replication of Coxsackie type B5 and influenza A viruses. The changes in the replication of these viruses were evaluated by the degree of cytopathic effect and their ability to form plaques in Coxsackie B5-infected human larynx carcinoma epithelial (Hep-2) cells and in influenza A-infected canine kidney epithelial cells (MDCK). Potential toxicity of neopterin and 7,8-dihydroneopterin was estimated by the incorporation of (3)H-thymidine and (3)H-uridine into Hep-2 and MDCK cells. Whereas 30 nmol/l neopterin delayed the development of the cytopathic effect of Coxsackie B5 virus in Hep-2 cells (P < 0.01), 7,8-dihydroneopterin did not have any essential influence at any of the concentrations tested between 10 nmol/l and 1,000 micromol/l. However, 100-1,500 micromol/l 7,8-dihydroneopterin significantly suppressed the propagation of influenza A virus. Neopterin and 7,8-dihydroneopterin were practically nontoxic for Hep-2 and MDCK cells even at high microM concentration. Results suggest that the increased production of neopterin derivatives by activated macrophages and dendritic cells may represent part of the antiviral armature induced by IFN-gamma. The mechanisms of the inhibitory effects of neopterin and 7,8-dihydroneopterin on virus replication apparently are different.
Collapse
Affiliation(s)
- Olga Bratslavska
- August Kirchenstein Institute of Microbiology and Virology, University of Latvia, Rātsupītes iela 1, 1067 Riga, Latvia
| | | | | | | | | |
Collapse
|
34
|
Xu W, Zheng S, Dweik RA, Erzurum SC. Role of epithelial nitric oxide in airway viral infection. Free Radic Biol Med 2006; 41:19-28. [PMID: 16781449 PMCID: PMC7127628 DOI: 10.1016/j.freeradbiomed.2006.01.037] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2005] [Revised: 01/20/2006] [Accepted: 01/23/2006] [Indexed: 12/13/2022]
Abstract
The airway mucosal epithelium is the first site of virus contact with the host, and the main site of infection and inflammation. Nitric oxide (NO) produced by the airway epithelium is vital to antiviral inflammatory and immune defense in the lung. Multiple mechanisms function coordinately to support high-level basal NO synthesis in healthy airway epithelium and further induction of NO synthesis in the infected airway of normal hosts. Hosts deficient in NO synthesis, such as those patients with cystic fibrosis, have impaired antiviral defense and may benefit from therapies to augment NO levels in the airways.
Collapse
Key Words
- balf, bronchoalveolar lavage fluid
- cf, cystic fibrosis
- cgmp, guanosine 3′,5′-cyclic monophosphate
- cmv, cytomegalovirus
- dsrna, double-stranded rna
- epo, eosinophil peroxidase
- gas, γ-activated site
- gsh, reduced glutathione
- hiv, human immunodeficiency virus
- hocl, hypochlorous acid
- hpivs, human parainfluenza viruses
- hrsv, human respiratory syncytial virus
- h2o2, hydrogen peroxide
- irf, interferon regulatory factor
- lpo, lactoperoidase
- mpo, myeloperoxidase
- no3−, nitrate
- no, nitric oxide
- nos, nitric oxide synthases
- no2−, nitrite
- onoo−, peroxynitrite
- pkr, dsrna-activated protein kinase
- poly(ic), polyinosinic-polycytidylic acid
- ros, reactive oxygen species
- o2−, superoxide
- gsno, s-nitrosoglutathione
- ssrna, single-stranded rna
- stat, signal transducer and activator of transcription
- antiviral host defense
- nitric oxide
Collapse
Affiliation(s)
- Weiling Xu
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Ave., NC 20, Cleveland, OH 44195, USA.
| | | | | | | |
Collapse
|
35
|
Simon M, Falk KI, Lundkvist A, Mirazimi A. Exogenous nitric oxide inhibits Crimean Congo hemorrhagic fever virus. Virus Res 2006; 120:184-90. [PMID: 16632039 DOI: 10.1016/j.virusres.2006.03.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2006] [Revised: 03/07/2006] [Accepted: 03/13/2006] [Indexed: 11/17/2022]
Abstract
Crimean Congo hemorrhagic fever virus (CCHFV) is a geographically widespread pathogen that causes severe hemorrhagic fever with high mortality. Even though one of the main objectives focuses on the progress of antiviral agents, the research on CCHFV is strongly hampered due to its BSL-4 classification. Nitric oxide (NO), a mediator with broad biological effects, has been shown to possess inhibitory properties against various pathogens. The molecule constitutes a component of the innate immunity and serves to assist in the early immunological events where it contributes to clearance of microorganisms. In this study, we investigated the inhibitory properties of exogenous NO on CCHFV. We found that NO had a significant antiviral activity against CCHFV replication. By using the NO-donor S-nitroso-N-acetylpenicillamine (SNAP) we were able to show up to 99% reduction in virion progeny yield. In contrast, 3-morpholinosydnonimine hydrochloride (SIN-1), a peroxynitrite donor, had no significant antiviral activity against CCHFV. Furthermore the expression of viral proteins; the nucleocapsid protein and the glycoprotein, were clearly reduced with increasing concentrations of SNAP. We have also shown that the amount of total vRNA in SNAP-treated cells was reduced by about 50% compared to the controls.
Collapse
Affiliation(s)
- M Simon
- Swedish Institute for Infectious Disease Control, SE-171 82 Solna, Sweden
| | | | | | | |
Collapse
|
36
|
Affiliation(s)
- Jared W Magnani
- Cardiology Division, Massachusetts General Hospital, Boston, Massachusetts, USA
| | | |
Collapse
|
37
|
Jarasch N, Martin U, Kamphausen E, Zell R, Wutzler P, Henke A. Interferon-gamma-induced activation of nitric oxide-mediated antiviral activity of macrophages caused by a recombinant coxsackievirus B3. Viral Immunol 2005; 18:355-64. [PMID: 16035947 DOI: 10.1089/vim.2005.18.355] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cardiovascular disease is one of the major causes of human death and has been linked to many different risks including viral infections. Coxsackievirus B3 (CVB3) is one of the most important pathogens responsible for virus-induced myocarditis. Cytokines are normally involved in the control of CVB3 replication and pathogenesis. Among them, interferon-gamma (IFN-gamma) in particular is highly protective against CVB3. A novel strategy to circumvent virus-caused heart disease is based on the development of cytokine-expressing recombinant virus vectors. Using in vitro co-culture experiments, the release of IFN-gamma by the recombinant virus variant CVB3/IFN-gamma activates the expression of the inducible nitric oxide synthase (iNOS) in CVB3 non-susceptible murine macrophages and the release of nitric oxide (NO), which reduce coxsackieviral replication directly. In addition, the expression of IFN-gamma by CVB3/IFN-gamma contributes to protect mice from lethal infections by iNOS induction in murine peritoneal macrophages, viral load reduction, and pancreatic tissue protection.
Collapse
Affiliation(s)
- Nadine Jarasch
- Institute of Virology and Antiviral Therapy, Medical Center, Friedrich Schiller University, Hans-Knöll-Str. 2, D-07745 Jena, Germany
| | | | | | | | | | | |
Collapse
|
38
|
Kadowaki S, Chikumi H, Yamamoto H, Yoneda K, Yamasaki A, Sato K, Shimizu E. Down-regulation of inducible nitric oxide synthase by lysophosphatidic acid in human respiratory epithelial cells. Mol Cell Biochem 2005; 262:51-9. [PMID: 15532709 DOI: 10.1023/b:mcbi.0000038215.89821.7f] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Viral infection generally results in the activation of inducible nitric oxide synthase (iNOS or NOS2) in respiratory epithelial cells by inflammatory cytokines. Activated NOS2 catalyzes synthesis of nitric oxide (NO), which in excess can cause cellular injury. On the other hand, lysophosphatidic acid (LPA), a lipid mediator released from epithelial cells, platelets, and fibroblasts in injured tissue, functions in repair of cell injury. However, details of the mechanism for repair by LPA remain unknown. We demonstrated one effect of LPA favoring repair, specifically inhibition by LPA of cytokine-induced NOS2 protein and mRNA expression by human respiratory epithelial cells in vitro. NO production by LPA-treated, cytokine-stimulated cells was also reduced. These decreases were prevented by Rho kinase inhibition with Y-27632. Thus, down-regulation by LPA of cytokine-induced increases in NOS2 activity is likely to involve a Rho-dependent signaling pathway. Harmful biologic effects of NO in viral respiratory infection might be modified by therapeutic manipulations involving LPA or Rho.
Collapse
Affiliation(s)
- Saori Kadowaki
- Division of Internal Medicine and Molecular Therapeutics, Department of Multidisciplinary Internal Medicine, Faculty of Medicine, Tottori University, Yonago Tottori, Japan
| | | | | | | | | | | | | |
Collapse
|
39
|
Chung SK, Kim JY, Kim IB, Park SI, Paek KH, Nam JH. Internalization and trafficking mechanisms of coxsackievirus B3 in HeLa cells. Virology 2005; 333:31-40. [PMID: 15708590 DOI: 10.1016/j.virol.2004.12.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2004] [Revised: 10/22/2004] [Accepted: 12/02/2004] [Indexed: 11/21/2022]
Abstract
Coxsackievirus B3 (CVB3) is nonenveloped and has a single-stranded positive-sense RNA genome. CVB3 induces myocarditis and ultimately dilated cardiomyopathy. Although there are mounting evidences of an interaction between CVB3 particles and the cellular receptors, coxsackievirus and adenovirus receptor (CAR) and decay-accelerating factor (DAF), very little is known about the mechanisms of internalization and trafficking. In the present study, we used the CVB3 H3 strain, which is CAR-dependent but DAF-independent Woodruff variant and found that during entry, CVB3 particles were colocalized in clathrin, after interacting primarily with CAR, which was not recycled to the plasma membrane. We also found that CVB3 internalization was dependent on the function of dynamin, a large GTPase that has an essential role in endocytosis. Heat-shock cognate protein, Hsc70, which acts as a chaperone in the release of coat proteins from clathrin-coated vesicles (CCV), played a role in CVB3 trafficking processes. Moreover, endosomal acidification was crucial for CVB3 endocytosis. Finally, CVB3 was colocalized in early endosome autoantigen 1 (EEA1) molecules, which are involved in endosome-endosome tethering and fusion. In conclusion, these data together indicate that CVB3 uses clathrin-mediated endocytosis and is transcytosed to early endosomes.
Collapse
Affiliation(s)
- Sun-Ku Chung
- Department of Biomedical Sciences, National Institute of Health, 5 Nokbun-dong, Eunpyung-gu, Seoul, 122-701 Korea
| | | | | | | | | | | |
Collapse
|
40
|
Nijs J, De Meirleir K. Oxidative stress might reduce essential fatty acids in erythrocyte membranes of chronic fatigue syndrome patients. Nutr Neurosci 2005; 7:251-3. [PMID: 15682653 DOI: 10.1080/10284150400004148] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
41
|
Nijs J, Van de Velde B, De Meirleir K. Pain in patients with chronic fatigue syndrome: Does nitric oxide trigger central sensitisation? Med Hypotheses 2005; 64:558-62. [PMID: 15617866 DOI: 10.1016/j.mehy.2004.07.037] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2004] [Accepted: 07/19/2004] [Indexed: 11/19/2022]
Abstract
Previous studies have provided evidence supportive of the clinical importance of widespread pain in patients with chronic fatigue syndrome (CFS): pain severity may account for 26-34% of the variability in the CFS patient's activity limitations and participation restrictions. The etiology of widespread pain in CFS remains to be elucidated, but sensitisation of the central nervous system has been suggested to take part of CFS pathophysiology. It is hypothesised that a nitric oxide (NO)-dependent reduction in inhibitory activity of the central nervous system and consequent central sensitisation accounts for chronic widespread pain in CFS patients. In CFS patients, deregulation of the 2',5'-oligoadenylate synthetase/RNase L pathway is accompanied by activation of the protein kinase R enzyme. Activation of the protein kinase R and subsequent nuclear factor-kappaB activation might account for the increased production of NO, while infectious agents frequently associated with CFS (Coxsackie B virus, Epstein-Barr Virus, Mycoplasma) might initiate or accelerate this process. In addition, the evidence addressing behavioural changes in CFS patients fits the central sensitisation-hypothesis: catastrophizing, avoidance behaviour, and somatization may result in, or are initiated by sensitisation of the central nervous system.
Collapse
Affiliation(s)
- Jo Nijs
- Department of Human Physiology, Faculty of Physical Education and Physical Therapy, Vrije Universiteit Brussel (VUB), Belgium.
| | | | | |
Collapse
|
42
|
Zaki MH, Akuta T, Akaike T. Nitric Oxide-Induced Nitrative Stress Involved in Microbial Pathogenesis. J Pharmacol Sci 2005; 98:117-29. [PMID: 15937405 DOI: 10.1254/jphs.crj05004x] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
The pathogenic mechanism of infections is a complicated but important scientific theme that is now attracting great attention because of its association with host-derived as well as microbial factors. Recent advances in free radical research revealed that reactive oxygen and nitrogen oxide species such as superoxide (O(2)(-)) and nitric oxide (NO) play a leading role in the pathogenesis of infections caused by viral pathogens including influenza virus and other RNA viruses. Although NO and O(2)(-) have antimicrobial activity against bacteria, fungi, and parasites, in some viral infections they have an opposite effect. This exacerbation caused by NO and O(2)(-) is mediated by reactive nitrogen oxides, for example, peroxynitrite (ONOO(-)), generated by reaction of NO with O(2)(-). These nitrogen oxides have strong oxidation and nitration potential and can modify biological molecules, thereby creating oxidative and nitrative stress that contributes to pathogenic processes during viral infection. Nitrative stress-mediated 8-nitroguanosine formation during influenza or Sendai virus infection has been the focus of enormous interest because it involves unique biochemical and pharmacological properties such as redox activity and mutagenic potential. In this review, we discuss the nature and impact of nitrative stress in viral infection, with emphasis on nitrative stress-mediated viral pathogenesis, which we have recently been investigating.
Collapse
Affiliation(s)
- Mohammad Hasan Zaki
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Japan
| | | | | |
Collapse
|
43
|
Nijs J, De Meirleir K, Meeus M, McGregor NR, Englebienne P. Chronic fatigue syndrome: intracellular immune deregulations as a possible etiology for abnormal exercise response. Med Hypotheses 2004; 62:759-65. [PMID: 15082102 DOI: 10.1016/j.mehy.2003.11.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2003] [Accepted: 11/09/2003] [Indexed: 02/06/2023]
Abstract
The exacerbation of symptoms after exercise differentiates Chronic fatigue syndrome (CFS) from several other fatigue-associated disorders. Research data point to an abnormal response to exercise in patients with CFS compared to healthy sedentary controls, and to an increasing amount of evidence pointing to severe intracellular immune deregulations in CFS patients. This manuscript explores the hypothetical interactions between these two separately reported observations. First, it is explained that the deregulation of the 2-5A synthetase/RNase L pathway may be related to a channelopathy, capable of initiating both intracellular hypomagnesaemia in skeletal muscles and transient hypoglycemia. This might explain muscle weakness and the reduction of maximal oxygen uptake, as typically seen in CFS patients. Second, the activation of the protein kinase R enzyme, a characteristic feature in atleast subsets of CFS patients, might account for the observed excessive nitric oxide (NO) production in patients with CFS. Elevated NO is known to induce vasidilation, which may limit CFS patients to increase blood flow during exercise, and may even cause and enhanced postexercise hypotension. Finally, it is explored how several types of infections, frequently identified in CFS patients, fit into these hypothetical pathophysiological interactions.
Collapse
Affiliation(s)
- Jo Nijs
- Department of Human Physiology, Faculty of Physical Education and Physical Therapy Science, Vrije Universiteit Brussel, Brussel 1090, Belgium.
| | | | | | | | | |
Collapse
|
44
|
Padalko E, Ohnishi T, Matsushita K, Sun H, Fox-Talbot K, Bao C, Baldwin WM, Lowenstein CJ. Peroxynitrite inhibition of Coxsackievirus infection by prevention of viral RNA entry. Proc Natl Acad Sci U S A 2004; 101:11731-6. [PMID: 15286280 PMCID: PMC511044 DOI: 10.1073/pnas.0400518101] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Although peroxynitrite is harmful to the host, the beneficial effects of peroxynitrite are less well understood. We explored the role of peroxynitrite in the host immune response to Coxsackievirus infection. Peroxynitrite inhibits viral replication in vitro, in part by inhibiting viral RNA entry into the host cell. Nitrotyrosine, a marker for peroxynitrite production, is colocalized with viral antigens in the hearts of infected mice but not control mice. Nitrotyrosine coprecipitates with the viral polypeptide VP1 as well. Guanidinoethyl disulfide, a scavenger of peroxynitrite, blocks peroxynitrite inhibition of viral replication in vitro and permits an increase in viral replication in vivo. These data suggest that peroxynitrite is an endogenous effector of the immune response to viruses.
Collapse
Affiliation(s)
- Elizaveta Padalko
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Zell R, Markgraf R, Schmidtke M, Görlach M, Stelzner A, Henke A, Sigusch HH, Glück B. Nitric oxide donors inhibit the coxsackievirus B3 proteinases 2A and 3C in vitro, virus production in cells, and signs of myocarditis in virus-infected mice. Med Microbiol Immunol 2004; 193:91-100. [PMID: 14513374 DOI: 10.1007/s00430-003-0198-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2003] [Indexed: 10/26/2022]
Abstract
The antiviral effect of nitric oxide (NO)-releasing compounds was investigated. Using bacterially expressed and purified proteinases 2A and 3C of coxsackievirus B3, in vitro assays demonstrated the inhibition of the 2A proteinase activity in the presence of S-nitroso- N-acetyl-penicillamine (SNAP), 3-morpholinosydnonimine (SIN-1), 4-phenyl-3-furoxancarbonitrile (PFC), glyceryl trinitrate (GTN), and isosorbide dinitrate (ISDN). Sodium nitroprusside (SNP), which releases NO after metabolization, had no effect. The 3C proteinase was inactivated by SNAP, GTN, and ISDN. The vasodilators GTN and ISDN, widely used in the treatment of angina pectoris, exhibited antiviral activity in CVB3-infected GMK cells. CVB3-infected NMRI outbred mice showed significantly reduced signs of myocarditis after treatment with GTN or ISDN. Inhibitors of the cellular inducible NO synthase (iNOS) such as N(G)-nitro-L-arginine methyl ester (L-NAME), N(G)-nitro-L-arginine (L-NNA), and S-methyl-isothiourea (SMT), had no deleterious effect on CVB3-infected NMRI mice, indicating that endogenous NO synthesis is unlikely to be a major defense mechanism after enterovirus infection of outbred mice.
Collapse
Affiliation(s)
- Roland Zell
- Institute for Virology, Medical Center at the Friedrich Schiller University, Winzerlaer Strasse 10, 07745 Jena, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Henke A, Zell R, Martin U, Stelzner A. Direct interferon-gamma-mediated protection caused by a recombinant coxsackievirus B3. Virology 2003; 315:335-44. [PMID: 14585336 DOI: 10.1016/s0042-6822(03)00538-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Coxsackievirus B3 (CVB3) is one of the most important causes of viral myocarditis. Cytokines are involved in the control of CVB3 replication and pathogenesis. Local expression of specific cytokines by recombinant CVB3 confers prevention of virus-caused myocarditis. Expression of IFN-gamma by CVB3(IFN-gamma) protected BALB/c and C57BL/6 mice when the lethal infection with the highly pathogenic CVB3H3 variant was given directly after or prior to CVB3(IFN-gamma) inoculation by decreasing the viral load and spread as well as tissue destruction. This direct effect was not restricted to the homologous virus. In vitro, cocultivation of CVB3(IFN-gamma)-infected cells induced a reduction of CVB3H3 replication and virus-induced cytopathogenicity.
Collapse
Affiliation(s)
- Andreas Henke
- Institute of Virology and Antiviral Therapy, Medical Center, Friedrich Schiller University, Winzerlaer Strasse 10, D-07745 Jena, Germany.
| | | | | | | |
Collapse
|
47
|
Zheng S, De BP, Choudhary S, Comhair SAA, Goggans T, Slee R, Williams BRG, Pilewski J, Haque SJ, Erzurum SC. Impaired innate host defense causes susceptibility to respiratory virus infections in cystic fibrosis. Immunity 2003; 18:619-30. [PMID: 12753739 DOI: 10.1016/s1074-7613(03)00114-6] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Viral infection is the primary cause of respiratory morbidity in cystic fibrosis (CF) infants. Here, we identify that host factors allow increased virus replication and cytokine production, providing a mechanism for understanding the severity of virus disease in CF. Increased virus is due to lack of nitric oxide synthase 2 (NOS2) and 2', 5' oligoadenylate synthetase (OAS) 1 induction in response to virus or IFNgamma. This can be attributed to impairment of activation of signal transducer and activator of transcription (STAT)1, a fundamental component to antiviral defense. NO donor or NOS2 overexpression provides protection from virus infection in CF, suggesting that NO is sufficient for antiviral host defense in the human airway and is one strategy for antiviral therapy in CF children.
Collapse
Affiliation(s)
- Shuo Zheng
- Department of Pulmonary and Critical Care Medicine, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Chesler DA, Reiss CS. The role of IFN-gamma in immune responses to viral infections of the central nervous system. Cytokine Growth Factor Rev 2002; 13:441-54. [PMID: 12401479 DOI: 10.1016/s1359-6101(02)00044-8] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Interferon (IFN)-gamma, is not only a marker of T(H)1 CD4, CD8 and natural killer (NK) cells, it is also a critical antiviral mediator which is central to the elimination of viruses from the CNS. In this review, we describe IFN-gamma, its receptor, signal transduction from receptor engagement, and antiviral downstream mediators. We demonstrate that although neurons are post-mitotic and non-renewing, they respond to IFN-gamma in a fashion similar to peripheral fibroblasts or lymphocytes. We have illustrated this review with details about studies on the role(s) of IFN-gamma in the pathogenesis of measles virus (MV), herpes simplex virus (HSV) type 1, and vesicular stomatitis virus (VSV) infections of the CNS. For VSV infection, IFN-gamma signals through Jaks 1 and 2 and STAT1 to activate (interferon regulatory factor) IRF-1; although viral protein synthesis is inhibited, PKR is not a critical mediator in the antiviral response to VSV in murine neurons. In contrast, induction of nitric oxide synthase (NOS) type 1 and its production of nitric oxide is essential in the elimination of viruses from neurons.
Collapse
Affiliation(s)
- David A Chesler
- Department of Biology, New York University, 1009 Main Building, 100 Washington Square East, New York, NY 10003, USA
| | | |
Collapse
|
49
|
Chen N, Reis CS. Distinct roles of eicosanoids in the immune response to viral encephalitis: or why you should take NSAIDS. Viral Immunol 2002; 15:133-46. [PMID: 11952135 DOI: 10.1089/088282402317340288] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Prostaglandins (PGs) and leukotrienes (LTs) are important proinflammatory mediators. They are both derived from arachidonic acid (AA). Cyclooxygenase (COX), the key enzyme in transforming AA into PGs, has two isoforms: COX-1 is constitutively expressed, and COX-2, is inducible. Lipoxygenase (5-LO) is the key enzyme for LT production. PGs and LTs have been intensively studied. Release of these molecules is associated with mucus secretion, redness, pain, fever and other inflammatory manifestations. Both PGs and LTs are involved in host defense against various pathogens. In addition to mediating inflammatory symptoms, PGs might suppress some innate immune factors, including nitric oxide (NO) production. PGs also suppress a TH1 response. LTs have pathologic potential, especially in asthma. LTs also have been found to have positive roles in host defense, either against virus or bacteria. Finally, PGs and LTs might regulate the production of each other, possibly at the level of substrate competition by their enzymes. Because they are clinically important molecules, a further understanding of the roles that PGs and LTs played in host defense will have great impact on therapeutic research.
Collapse
Affiliation(s)
- Nannan Chen
- Department of Biology, New York University, New York 10003-6688, USA
| | | |
Collapse
|
50
|
Badorff C, Fichtlscherer B, Muelsch A, Zeiher AM, Dimmeler S. Selective delivery of nitric oxide to a cellular target: a pseudosubstrate-coupled dinitrosyl-iron complex inhibits the enteroviral protease 2A. Nitric Oxide 2002; 6:305-12. [PMID: 12009848 DOI: 10.1006/niox.2001.0413] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Nitric oxide (NO) regulates multiple biological processes. To use NO as a potential therapeutic substance, a more selective modulation of individual NO targets is desirable. Here, we tested whether peptide conjugation of the dinitrosyl-iron complex (DNIC), a potent NO donor, confers targeted NO delivery. As target, we used the protease 2A of Coxsackie-B-viruses (2A(pro)), which can cause dilated cardiomyopathy. Through S-nitrosylation, NO inhibits this protease, which is essential for viral replication. The tetrapeptide Leu-Ser-Thr-Cys (LSTC) (based on the 2A(pro) substrate recognition motif) and DNIC generated LSTC-DNIC in vitro by S-nitrosylation as evidenced by reverse-phase chromatography. In vitro, LSTC-DNIC (IC(50) 510 nM) dose-dependently inhibited purified 2A(pro) 4.7-fold more effectively than DNIC (IC(50) 2.4 microM), whereas LSTC alone had no effect. In intact cells, expression of Coxsackievirus protease 2A by transient transfection led to eIF4G-I-cleavage. LSTC-DNIC (IC(50) 23 microM) dose-dependently inhibited eIF4G cleavage in 2A(pro)-transfected cells 3.8-fold more effectively than DNIC (IC(50) 88 microM). To test the specificity of the DNIC-conjugated LSTC peptide part, we investigated its influence on Caspase-3, a known target for S-nitrosylation. LSTC-DNIC and DNIC inhibited purified Caspase-3 in vitro (IC(50) 3.7 microM) and in intact cells similarly. LSTC conjugation of DNIC enhances its fidelity for inhibition of 2A(pro) in vitro and intracellularly. Peptide-DNIC may be useful to selectively modulate cellular processes by NO, i.e., to enhance its antiviral properties.
Collapse
Affiliation(s)
- Cornel Badorff
- Molecular Cardiology Unit, Department of Medicine, Goethe-University, 60590 Frankfurt, Germany
| | | | | | | | | |
Collapse
|