1
|
Li S, Li H, Bennewitz K, Poschet G, Buettner M, Hausser I, Szendroedi J, Nawroth PP, Kroll J. Combined loss of glyoxalase 1 and aldehyde dehydrogenase 3a1 amplifies dicarbonyl stress, impairs proteasome activity resulting in hyperglycemia and activated retinal angiogenesis. Metabolism 2025; 165:156149. [PMID: 39892865 DOI: 10.1016/j.metabol.2025.156149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/04/2025]
Abstract
BACKGROUND & AIMS Any energy consumption results in the generation of highly reactive dicarbonyls and the need to prevent excessive dicarbonyls accumulation through the activity of several interdependent detoxification enzymes. Glyoxalase 1 (GLO1) knockout zebrafish showed only moderately elevated methylglyoxal (MG) levels, but increased Aldehyde Dehydrogenases (ALDH) activity and increased aldh3a1 expression. Elevated levels of 4-hydroxynonenal (4-HNE) but no MG increase were observed in ALDH3A1KO. The question of whether ALDH3A1 prevents MG formation as a compensatory mechanism in the absence of GLO1 remained unclear. METHODS To investigate whether ALDH3A1 detoxifies MG as a compensatory mechanism in the absence of GLO1, the GLO1/ALDH3A1 double knockout (DKO) zebrafish was first generated. Various metabolites including advanced glycation end products (AGEs), as well as glucose metabolism and hyaloid vasculature were analyzed in GLO1KO, ALDH3A1KO and GLO1/ALDH3A1DKO zebrafish. RESULTS In the absence of GLO1 and ALDH3A1, MG-H1 levels were increased. MG-H1 accumulation led to a severe deterioration of proteasome function, resulting in impaired glucose homeostasis and consequently amplified angiogenic activation of the hyaloid and retinal vasculature. Rescue of these pathological processes could be observed by using L-carnosine, and proteasome activator betulinic acid. CONCLUSION The present data, together with previous studies, suggest that ALDH3A1 and GLO1 are important detoxification enzymes that prevent the deleterious effects of MG-H1 accumulation on proteasome function, glucose homeostasis and vascular function.
Collapse
Affiliation(s)
- Shu Li
- Department of Vascular Biology, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim 68167, Germany
| | - Hao Li
- German Cancer Research Center (DKFZ), Unit D400, Heidelberg 69120, Germany
| | - Katrin Bennewitz
- Department of Vascular Biology, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim 68167, Germany
| | - Gernot Poschet
- Metabolomics Core Technology Platform, Centre for Organismal Studies, Heidelberg University, Heidelberg 69120, Germany
| | - Michael Buettner
- Metabolomics Core Technology Platform, Centre for Organismal Studies, Heidelberg University, Heidelberg 69120, Germany
| | - Ingrid Hausser
- Institute of Pathology IPH, EM Lab, Heidelberg University Hospital, Heidelberg 69120, Germany
| | - Julia Szendroedi
- Department of Internal Medicine I and Clinical Chemistry, Heidelberg University Hospital, Heidelberg 69120, Germany
| | - Peter Paul Nawroth
- Medical Clinic and Polyclinic II, University Hospital Dresden, Dresden 01307, Germany
| | - Jens Kroll
- Department of Vascular Biology, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim 68167, Germany.
| |
Collapse
|
2
|
Duță C, Muscurel C, Dogaru CB, Stoian I. Ferroptosis-A Shared Mechanism for Parkinson's Disease and Type 2 Diabetes. Int J Mol Sci 2024; 25:8838. [PMID: 39201524 PMCID: PMC11354749 DOI: 10.3390/ijms25168838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/31/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Type 2 diabetes (T2D) and Parkinson's disease (PD) are the two most frequent age-related chronic diseases. There are many similarities between the two diseases: both are chronic diseases; both are the result of a decrease in a specific substance-insulin in T2D and dopamine in PD; and both are caused by the destruction of specific cells-beta pancreatic cells in T2D and dopaminergic neurons in PD. Recent epidemiological and experimental studies have found that there are common underlying mechanisms in the pathophysiology of T2D and PD: chronic inflammation, mitochondrial dysfunction, impaired protein handling and ferroptosis. Epidemiological research has indicated that there is a higher risk of PD in individuals with T2D. Moreover, clinical studies have observed that the symptoms of Parkinson's disease worsen significantly after the onset of T2D. This article provides an up-to-date review on the intricate interplay between oxidative stress, reactive oxygen species (ROS) and ferroptosis in PD and T2D. By understanding the shared molecular pathways and how they can be modulated, we can develop more effective therapies, or we can repurpose existing drugs to improve patient outcomes in both disorders.
Collapse
|
3
|
Jung WK, Park SB, Yu HY, Kim J. Improvement effect of gemigliptin on salivary gland dysfunction in exogenous methylglyoxal-injected rats. Heliyon 2024; 10:e29362. [PMID: 38628768 PMCID: PMC11019235 DOI: 10.1016/j.heliyon.2024.e29362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 04/01/2024] [Accepted: 04/07/2024] [Indexed: 04/19/2024] Open
Abstract
The symptom of hyposalivation associated with hypofunction of the salivary glands is a common feature of diabetes. Inadequate saliva production can cause tissue damage in the mouth, making it susceptible to infections and leading to oral health diseases. Previous studies have highlighted the harmful effects of methylglyoxal (MGO) and MGO-derived advanced glycation end products (AGEs) in diabetes. In this study, we investigated the protective effects of gemigliptin, a dipeptidyl peptidase-4 (DPP-4) inhibitor, against MGO-induced salivary gland dysfunction. MGO treatment of immortalized human salivary gland acinar cells induced apoptosis via reactive oxygen species (ROS)-mediated pathways, but this effect was mitigated by gemigliptin. In vivo experiments involved the simultaneous administration of MGO (17.25 mg/kg) with aminoguanidine (100 mg/kg) and gemigliptin (10 and 100 mg/kg) daily to rats for two weeks. Gemigliptin increased the saliva volume and amylase levels in MGO-injected rats. Gemigliptin reduced the DPP-4 activity in both the salivary glands and serum of MGO-injected rats. Furthermore, gemigliptin exerted anti-glycation effects by reducing the accumulation of AGEs in the saliva, salivary glands, and serum and suppressing the expression of the receptor for AGEs. These actions protected the salivary gland cells from ROS-mediated apoptosis. Overall, gemigliptin protected the salivary gland cells from ROS-mediated cell death, reduced the accumulation of amylase and mucins in the salivary glands, and enhanced the salivary function by upregulating aquaporin 5 expression, and it exerted protective effects against MGO-induced salivary gland dysfunction by enhancing the anti-glycation, antioxidant, and salivary secretion activities. Our findings suggest gemigliptin as a potential therapeutic for patients with salivary gland dysfunction caused by the complications of diabetes.
Collapse
Affiliation(s)
- Woo Kwon Jung
- Department of Oral Pathology, School of Dentistry, Jeonbuk National University, Jeonju, 54896, South Korea
| | - Su-Bin Park
- Department of Oral Pathology, School of Dentistry, Jeonbuk National University, Jeonju, 54896, South Korea
| | - Hwa Young Yu
- Department of Oral Pathology, School of Dentistry, Jeonbuk National University, Jeonju, 54896, South Korea
| | - Junghyun Kim
- Department of Oral Pathology, School of Dentistry, Jeonbuk National University, Jeonju, 54896, South Korea
| |
Collapse
|
4
|
Kong LR, Gupta K, Wu AJ, Perera D, Ivanyi-Nagy R, Ahmed SM, Tan TZ, Tan SLW, Fuddin A, Sundaramoorthy E, Goh GS, Wong RTX, Costa ASH, Oddy C, Wong H, Patro CPK, Kho YS, Huang XZ, Choo J, Shehata M, Lee SC, Goh BC, Frezza C, Pitt JJ, Venkitaraman AR. A glycolytic metabolite bypasses "two-hit" tumor suppression by BRCA2. Cell 2024; 187:2269-2287.e16. [PMID: 38608703 DOI: 10.1016/j.cell.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 02/01/2024] [Accepted: 03/07/2024] [Indexed: 04/14/2024]
Abstract
Knudson's "two-hit" paradigm posits that carcinogenesis requires inactivation of both copies of an autosomal tumor suppressor gene. Here, we report that the glycolytic metabolite methylglyoxal (MGO) transiently bypasses Knudson's paradigm by inactivating the breast cancer suppressor protein BRCA2 to elicit a cancer-associated, mutational single-base substitution (SBS) signature in nonmalignant mammary cells or patient-derived organoids. Germline monoallelic BRCA2 mutations predispose to these changes. An analogous SBS signature, again without biallelic BRCA2 inactivation, accompanies MGO accumulation and DNA damage in Kras-driven, Brca2-mutant murine pancreatic cancers and human breast cancers. MGO triggers BRCA2 proteolysis, temporarily disabling BRCA2's tumor suppressive functions in DNA repair and replication, causing functional haploinsufficiency. Intermittent MGO exposure incites episodic SBS mutations without permanent BRCA2 inactivation. Thus, a metabolic mechanism wherein MGO-induced BRCA2 haploinsufficiency transiently bypasses Knudson's two-hit requirement could link glycolysis activation by oncogenes, metabolic disorders, or dietary challenges to mutational signatures implicated in cancer evolution.
Collapse
Affiliation(s)
- Li Ren Kong
- Cancer Science Institute of Singapore, Singapore 117599, Singapore; NUS Centre for Cancer Research (N2CR), National University of Singapore, Singapore 117599, Singapore; MRC Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, UK; Department of Pharmacology, National University of Singapore, Singapore 117600, Singapore
| | - Komal Gupta
- Cancer Science Institute of Singapore, Singapore 117599, Singapore; MRC Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, UK
| | - Andy Jialun Wu
- Cancer Science Institute of Singapore, Singapore 117599, Singapore
| | - David Perera
- MRC Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, UK
| | | | - Syed Moiz Ahmed
- Cancer Science Institute of Singapore, Singapore 117599, Singapore
| | - Tuan Zea Tan
- Cancer Science Institute of Singapore, Singapore 117599, Singapore
| | - Shawn Lu-Wen Tan
- MRC Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, UK; Institute of Molecular and Cell Biology (IMCB), A(∗)STAR, Singapore 138673, Singapore
| | | | | | | | | | - Ana S H Costa
- MRC Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, UK
| | - Callum Oddy
- Department of Oncology, University of Cambridge, Cambridge CB2 0XZ, UK
| | - Hannan Wong
- Cancer Science Institute of Singapore, Singapore 117599, Singapore
| | - C Pawan K Patro
- Cancer Science Institute of Singapore, Singapore 117599, Singapore
| | - Yun Suen Kho
- Cancer Science Institute of Singapore, Singapore 117599, Singapore; NUS Centre for Cancer Research (N2CR), National University of Singapore, Singapore 117599, Singapore
| | - Xiao Zi Huang
- Cancer Science Institute of Singapore, Singapore 117599, Singapore; NUS Centre for Cancer Research (N2CR), National University of Singapore, Singapore 117599, Singapore
| | - Joan Choo
- Department of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Mona Shehata
- MRC Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, UK; Department of Oncology, University of Cambridge, Cambridge CB2 0XZ, UK
| | - Soo Chin Lee
- Cancer Science Institute of Singapore, Singapore 117599, Singapore; NUS Centre for Cancer Research (N2CR), National University of Singapore, Singapore 117599, Singapore; Department of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Boon Cher Goh
- Cancer Science Institute of Singapore, Singapore 117599, Singapore; NUS Centre for Cancer Research (N2CR), National University of Singapore, Singapore 117599, Singapore; Department of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Christian Frezza
- MRC Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, UK; University of Cologne, 50923 Köln, Germany
| | - Jason J Pitt
- Cancer Science Institute of Singapore, Singapore 117599, Singapore; NUS Centre for Cancer Research (N2CR), National University of Singapore, Singapore 117599, Singapore; Genome Institute of Singapore, A(∗)STAR, Singapore 138673, Singapore
| | - Ashok R Venkitaraman
- Cancer Science Institute of Singapore, Singapore 117599, Singapore; NUS Centre for Cancer Research (N2CR), National University of Singapore, Singapore 117599, Singapore; MRC Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, UK; Institute of Molecular and Cell Biology (IMCB), A(∗)STAR, Singapore 138673, Singapore; Department of Oncology, University of Cambridge, Cambridge CB2 0XZ, UK; Department of Medicine, National University of Singapore, Singapore 119228, Singapore.
| |
Collapse
|
5
|
Uceda AB, Mariño L, Casasnovas R, Adrover M. An overview on glycation: molecular mechanisms, impact on proteins, pathogenesis, and inhibition. Biophys Rev 2024; 16:189-218. [PMID: 38737201 PMCID: PMC11078917 DOI: 10.1007/s12551-024-01188-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2024] [Indexed: 05/14/2024] Open
Abstract
The formation of a heterogeneous set of advanced glycation end products (AGEs) is the final outcome of a non-enzymatic process that occurs in vivo on long-life biomolecules. This process, known as glycation, starts with the reaction between reducing sugars, or their autoxidation products, with the amino groups of proteins, DNA, or lipids, thus gaining relevance under hyperglycemic conditions. Once AGEs are formed, they might affect the biological function of the biomacromolecule and, therefore, induce the development of pathophysiological events. In fact, the accumulation of AGEs has been pointed as a triggering factor of obesity, diabetes-related diseases, coronary artery disease, neurological disorders, or chronic renal failure, among others. Given the deleterious consequences of glycation, evolution has designed endogenous mechanisms to undo glycation or to prevent it. In addition, many exogenous molecules have also emerged as powerful glycation inhibitors. This review aims to provide an overview on what glycation is. It starts by explaining the similarities and differences between glycation and glycosylation. Then, it describes in detail the molecular mechanism underlying glycation reactions, and the bio-molecular targets with higher propensity to be glycated. Next, it discusses the precise effects of glycation on protein structure, function, and aggregation, and how computational chemistry has provided insights on these aspects. Finally, it reports the most prevalent diseases induced by glycation, and the endogenous mechanisms and the current therapeutic interventions against it.
Collapse
Affiliation(s)
- Ana Belén Uceda
- Departament de Química, Universitat de Les Illes Balears, Health Research Institute of the Balearic Islands (IdISBa), Ctra. Valldemossa Km 7.5, 07122 Palma, Spain
| | - Laura Mariño
- Departament de Química, Universitat de Les Illes Balears, Health Research Institute of the Balearic Islands (IdISBa), Ctra. Valldemossa Km 7.5, 07122 Palma, Spain
| | - Rodrigo Casasnovas
- Departament de Química, Universitat de Les Illes Balears, Health Research Institute of the Balearic Islands (IdISBa), Ctra. Valldemossa Km 7.5, 07122 Palma, Spain
| | - Miquel Adrover
- Departament de Química, Universitat de Les Illes Balears, Health Research Institute of the Balearic Islands (IdISBa), Ctra. Valldemossa Km 7.5, 07122 Palma, Spain
| |
Collapse
|
6
|
Alhujaily M. Molecular Assessment of Methylglyoxal-Induced Toxicity and Therapeutic Approaches in Various Diseases: Exploring the Interplay with the Glyoxalase System. Life (Basel) 2024; 14:263. [PMID: 38398772 PMCID: PMC10890012 DOI: 10.3390/life14020263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/31/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
This comprehensive exploration delves into the intricate interplay of methylglyoxal (MG) and glyoxalase 1 (GLO I) in various physiological and pathological contexts. The linchpin of the narrative revolves around the role of these small molecules in age-related issues, diabetes, obesity, cardiovascular diseases, and neurodegenerative disorders. Methylglyoxal, a reactive dicarbonyl metabolite, takes center stage, becoming a principal player in the development of AGEs and contributing to cell and tissue dysfunction. The dual facets of GLO I-activation and inhibition-unfold as potential therapeutic avenues. Activators, spanning synthetic drugs like candesartan to natural compounds like polyphenols and isothiocyanates, aim to restore GLO I function. These molecular enhancers showcase promising outcomes in conditions such as diabetic retinopathy, kidney disease, and beyond. On the contrary, GLO I inhibitors emerge as crucial players in cancer treatment, offering new possibilities in diseases associated with inflammation and multidrug resistance. The symphony of small molecules, from GLO I activators to inhibitors, presents a nuanced understanding of MG regulation. From natural compounds to synthetic drugs, each element contributes to a molecular orchestra, promising novel interventions and personalized approaches in the pursuit of health and wellbeing. The abstract concludes with an emphasis on the necessity of rigorous clinical trials to validate these findings and acknowledges the importance of individual variability in the complex landscape of health.
Collapse
Affiliation(s)
- Muhanad Alhujaily
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha 61922, Saudi Arabia
| |
Collapse
|
7
|
Garai S, Bhowal B, Gupta M, Sopory SK, Singla-Pareek SL, Pareek A, Kaur C. Role of methylglyoxal and redox homeostasis in microbe-mediated stress mitigation in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 338:111922. [PMID: 37952767 DOI: 10.1016/j.plantsci.2023.111922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/04/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023]
Abstract
One of the general consequences of stress in plants is the accumulation of reactive oxygen (ROS) and carbonyl species (like methylglyoxal) to levels that are detrimental for plant growth. These reactive species are inherently produced in all organisms and serve different physiological functions but their excessive accumulation results in cellular toxicity. It is, therefore, essential to restore equilibrium between their synthesis and breakdown to ensure normal cellular functioning. Detoxification mechanisms that scavenge these reactive species are considered important for stress mitigation as they maintain redox balance by restricting the levels of ROS, methylglyoxal and other reactive species in the cellular milieu. Stress tolerance imparted to plants by root-associated microbes involves a multitude of mechanisms, including maintenance of redox homeostasis. By improving the overall antioxidant response in plants, microbes can strengthen defense pathways and hence, the adaptive abilities of plants to sustain growth under stress. Hence, through this review we wish to highlight the contribution of root microbiota in modulating the levels of reactive species and thereby, maintaining redox homeostasis in plants as one of the important mechanisms of stress alleviation. Further, we also examine the microbial mechanisms of resistance to oxidative stress and their role in combating plant stress.
Collapse
Affiliation(s)
- Sampurna Garai
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Bidisha Bhowal
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Mayank Gupta
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Sudhir K Sopory
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Sneh L Singla-Pareek
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Ashwani Pareek
- National Agri-Food Biotechnology Institute, SAS Nagar, Mohali, Punjab 140306, India
| | - Charanpreet Kaur
- National Agri-Food Biotechnology Institute, SAS Nagar, Mohali, Punjab 140306, India.
| |
Collapse
|
8
|
Nikray N, Abharian N, Jafari Ashtiani S, Kobarfard F, Faizi M. Comparative Evaluation of Aminoguanidine, Semicarbazide and Thiosemicarbazide Treatment for Methylglyoxal-Induced Neurological Toxicity in Experimental Models. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2024; 23:e153322. [PMID: 39830657 PMCID: PMC11742376 DOI: 10.5812/ijpr-153322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 08/24/2024] [Accepted: 08/26/2024] [Indexed: 01/22/2025]
Abstract
Background Advanced glycation end products (AGEs) are complex compounds that play a critical role in neurological disorders, including the pathogenesis of Alzheimer's disease. Methylglyoxal (MG) is recognized as the primary precursor of AGEs. Methylglyoxal is produced endogenously and also introduced through dietary exposures. Objectives This study aimed to investigate and compare the effects of aminoguanidine (AG), semicarbazide (SC), and thiosemicarbazide (TSC) on MG-induced neurological toxicity in rats. Methods Male Wistar rats were exposed orally to MG, MG + AG, MG + SC, and MG + TSC for 70 days. Neurobehavioral, biochemical, and histopathological changes were evaluated. Results The findings indicated that oral administration of MG for 70 days resulted in memory impairment and increased anxiety in neurobehavioral tests. Additionally, MG elevated protein carbonylation in brain tissues. Semicarbazide was found to prevent MG-induced memory problems, while both SC and AG reduced carbonyl content in brain tissues. Aminoguanidine and TSC were effective in alleviating anxiety induced by MG exposure. Histopathological analysis revealed that MG caused cell damage and neuronal necrosis in the hippocampus, particularly in the cornu ammonis 1 and 3 (CA1 and CA3) and AG, SC, and TSC improved neuronal survival specifically in the CA1 and DG areas. Conclusions The data suggest that SC, AG, and TSC may offer neuroprotective effects against MG-induced neurobehavioral toxicity. Further studies are required to explore the mechanisms of action of these compounds.
Collapse
Affiliation(s)
- Noushin Nikray
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nikoo Abharian
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahin Jafari Ashtiani
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzad Kobarfard
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrdad Faizi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Berdowska I, Matusiewicz M, Fecka I. Methylglyoxal in Cardiometabolic Disorders: Routes Leading to Pathology Counterbalanced by Treatment Strategies. Molecules 2023; 28:7742. [PMID: 38067472 PMCID: PMC10708463 DOI: 10.3390/molecules28237742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/13/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Methylglyoxal (MGO) is the major compound belonging to reactive carbonyl species (RCS) responsible for the generation of advanced glycation end products (AGEs). Its upregulation, followed by deleterious effects at the cellular and systemic levels, is associated with metabolic disturbances (hyperglycemia/hyperinsulinemia/insulin resistance/hyperlipidemia/inflammatory processes/carbonyl stress/oxidative stress/hypoxia). Therefore, it is implicated in a variety of disorders, including metabolic syndrome, diabetes mellitus, and cardiovascular diseases. In this review, an interplay between pathways leading to MGO generation and scavenging is addressed in regard to this system's impairment in pathology. The issues associated with mechanistic MGO involvement in pathological processes, as well as the discussion on its possible causative role in cardiometabolic diseases, are enclosed. Finally, the main strategies aimed at MGO and its AGEs downregulation with respect to cardiometabolic disorders treatment are addressed. Potential glycation inhibitors and MGO scavengers are discussed, as well as the mechanisms of their action.
Collapse
Affiliation(s)
- Izabela Berdowska
- Department of Medical Biochemistry, Wroclaw Medical University, 50-368 Wroclaw, Poland;
| | | | - Izabela Fecka
- Department of Pharmacognosy and Herbal Medicines, Wroclaw Medical University, 50-556 Wroclaw, Poland
| |
Collapse
|
10
|
Haydinger CD, Oliver GF, Ashander LM, Smith JR. Oxidative Stress and Its Regulation in Diabetic Retinopathy. Antioxidants (Basel) 2023; 12:1649. [PMID: 37627644 PMCID: PMC10451779 DOI: 10.3390/antiox12081649] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/09/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Diabetic retinopathy is the retinal disease associated with hyperglycemia in patients who suffer from type 1 or type 2 diabetes. It includes maculopathy, involving the central retina and characterized by ischemia and/or edema, and peripheral retinopathy that progresses to a proliferative stage with neovascularization. Approximately 10% of the global population is estimated to suffer from diabetes, and around one in 5 of these individuals have diabetic retinopathy. One of the major effects of hyperglycemia is oxidative stress, the pathological state in which elevated production of reactive oxygen species damages tissues, cells, and macromolecules. The retina is relatively prone to oxidative stress due to its high metabolic activity. This review provides a summary of the role of oxidative stress in diabetic retinopathy, including a description of the retinal cell players and the molecular mechanisms. It discusses pathological processes, including the formation and effects of advanced glycation end-products, the impact of metabolic memory, and involvements of non-coding RNA. The opportunities for the therapeutic blockade of oxidative stress in diabetic retinopathy are also considered.
Collapse
Affiliation(s)
| | | | | | - Justine R. Smith
- College of Medicine and Public Health, Flinders University, Adelaide, SA 5042, Australia; (C.D.H.); (G.F.O.); (L.M.A.)
| |
Collapse
|
11
|
Khan MI, Ashfaq F, Alsayegh AA, Hamouda A, Khatoon F, Altamimi TN, Alhodieb FS, Beg MMA. Advanced glycation end product signaling and metabolic complications: Dietary approach. World J Diabetes 2023; 14:995-1012. [PMID: 37547584 PMCID: PMC10401445 DOI: 10.4239/wjd.v14.i7.995] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/08/2023] [Accepted: 04/27/2023] [Indexed: 07/12/2023] Open
Abstract
Advanced glycation end products (AGEs) are a heterogeneous collection of compounds formed during industrial processing and home cooking through a sequence of nonenzymatic glycation reactions. The modern western diet is full of heat-treated foods that contribute to AGE intake. Foods high in AGEs in the contemporary diet include processed cereal products. Due to industrialization and marketing strategies, restaurant meals are modified rather than being traditionally or conventionally cooked. Fried, grilled, baked, and boiled foods have the greatest AGE levels. Higher AGE-content foods include dry nuts, roasted walnuts, sunflower seeds, fried chicken, bacon, and beef. Animal proteins and processed plant foods contain furosine, acrylamide, heterocyclic amines, and 5-hydroxymethylfurfural. Furosine (2-furoil-methyl-lysine) is an amino acid found in cooked meat products and other processed foods. High concentrations of carboxymethyl-lysine, carboxyethyl-lysine, and methylglyoxal-O are found in heat-treated nonvegetarian foods, peanut butter, and cereal items. Increased plasma levels of AGEs, which are harmful chemicals that lead to age-related diseases and physiological aging, diabetes, and autoimmune/inflammatory rheumatic diseases such as systemic lupus erythematosus and rheumatoid arthritis. AGEs in the pathophysiology of metabolic diseases have been linked to individuals with diabetes mellitus who have peripheral nerves with high amounts of AGEs and diabetes has been linked to increased myelin glycation. Insulin resistance and hyperglycemia can impact numerous human tissues and organs, leading to long-term difficulties in a number of systems and organs, including the cardiovascular system. Plasma AGE levels are linked to all-cause mortality in individuals with diabetes who have fatal or nonfatal coronary artery disease, such as ventricular dysfunction. High levels of tissue AGEs are independently associated with cardiac systolic dysfunction in diabetic patients with heart failure compared with diabetic patients without heart failure. It is widely recognized that AGEs and oxidative stress play a key role in the cardiovascular complications of diabetes because they both influence and are impacted by oxidative stress. All chronic illnesses involve protein, lipid, or nucleic acid modifications including crosslinked and nondegradable aggregates known as AGEs. Endogenous AGE formation or dietary AGE uptake can result in additional protein modifications and stimulation of several inflammatory signaling pathways. Many of these systems, however, require additional explanation because they are not entirely obvious. This review summarizes the current evidence regarding dietary sources of AGEs and metabolism-related complications associated with AGEs.
Collapse
Affiliation(s)
- Mohammad Idreesh Khan
- Department of Clinical Nutrition, College of Applied Health Sciences in Ar Rass, Qassim University, Ar Rass 51921, Saudi Arabia
| | - Fauzia Ashfaq
- Clinical Nutrition Department, Applied Medical Sciences College, Jazan University, Jazan 82817, Saudi Arabia
| | - Abdulrahman A Alsayegh
- Clinical Nutrition Department, Applied Medical Sciences College, Jazan University, Jazan 82817, Saudi Arabia
| | - Alshaimaa Hamouda
- Clinical Nutrition Department, Applied Medical Sciences College, Jazan University, Jazan 82817, Saudi Arabia
| | - Fahmida Khatoon
- Department of Biochemistry, College of Medicine, University of Hail, Hail 2240, Saudi Arabia
| | - Tahani Nasser Altamimi
- Department of Family and Community Medicine, College of Medicine, University of Hail, Hail 2240, Saudi Arabia
| | - Fahad Saad Alhodieb
- Department of Clinical Nutrition, College of Applied Health Sciences in Ar Rass, Qassim University, Ar Rass 51921, Saudi Arabia
| | | |
Collapse
|
12
|
Nasimi Shad A, Fanoodi A, Maharati A, Akhlaghipour I, Moghbeli M. Molecular mechanisms of microRNA-301a during tumor progression and metastasis. Pathol Res Pract 2023; 247:154538. [PMID: 37209575 DOI: 10.1016/j.prp.2023.154538] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/10/2023] [Accepted: 05/16/2023] [Indexed: 05/22/2023]
Abstract
Cancer is known as one of the leading causes of human deaths globally. Late diagnosis is considered as one of the main reasons for the high mortality rate among cancer patients. Therefore, the introduction of early diagnostic tumor markers can improve the efficiency of therapeutic modalities. MicroRNAs (miRNAs) have a key role in regulation of cell proliferation and apoptosis. MiRNAs deregulation has been frequently reported during tumor progressions. Since, miRNAs have a high stability in body fluids; they can be used as the reliable non-invasive tumor markers. Here, we discussed the role of miR-301a during tumor progressions. MiR-301a mainly functions as an oncogene via the modulation of transcription factors, autophagy, epithelial-mesenchymal transition (EMT), and signaling pathways. This review paves the way to suggest miR-301a as a non-invasive marker for the early tumor diagnosis. MiR-301a can also be suggested as an effective target in cancer therapy.
Collapse
Affiliation(s)
- Arya Nasimi Shad
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Fanoodi
- Student Research Committee, Faculty of Medicine, Birjand University of Medical Sciences, Mashhad, Iran
| | - Amirhosein Maharati
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Iman Akhlaghipour
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
13
|
Waseem R, Shamsi A, Khan T, Anwer A, Shahid M, Kazim SN, Hassan MI, Islam A. Characterization of advanced glycation end products and aggregates of irisin: Multispectroscopic and microscopic approaches. J Cell Biochem 2023; 124:156-168. [PMID: 36502526 DOI: 10.1002/jcb.30353] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/18/2022] [Accepted: 11/20/2022] [Indexed: 12/14/2022]
Abstract
Glycation of proteins leading to the formation of advanced glycation end products (AGEs) has been demonstrated to contribute to the pathogenesis of several diseases. Irisin is a clinically significant protein, putatively involved in obesity, diabetes, and neurological disorders. This study aimed to monitor the methyl-glyoxal (MG) induced AGEs and aggregate formation of irisin, as a function of time, employing multispectroscopic and microscopic approaches. ANS fluorescence suggested a molten globule-like state on Day 6, followed by the formation of irisin AGEs adducts, as confirmed by AGE-specific fluorescence. Glycation of irisin led to aggregate formation, which was characterized by Thioflavin T fluorescence, CD spectroscopy, and microscopic studies. These aggregates were confirmed by exploiting fluorescence microscopy, confocal, and transmission electron microscopy. Molecular docking was performed to determine the crucial residues of irisin involved in irisin-MG interaction. Usually, MG is present in trace amounts as a metabolic by-product in the body, which is found to be elevated in diseased conditions viz. diabetes and Alzheimer's disease. This study characterized the AGEs and aggregates of clinically important protein, irisin; and since MG level has been found to be increased in various pathological conditions, this study provides a clinical perspective. There is a possibility that elevated MG concentrations might glycate irisin resulting in reduced irisin levels as reported in pathological conditions. However, further investigations are required to prove it.
Collapse
Affiliation(s)
- Rashid Waseem
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Anas Shamsi
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Tanzeel Khan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Ayesha Anwer
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Mohammad Shahid
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Syed Naqui Kazim
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
14
|
Gu S, Zhou Z, Zhang S, Cai Y. Advances in Anti-Diabetic Cognitive Dysfunction Effect of Erigeron Breviscapus (Vaniot) Hand-Mazz. Pharmaceuticals (Basel) 2022; 16:ph16010050. [PMID: 36678547 PMCID: PMC9867432 DOI: 10.3390/ph16010050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/22/2022] [Accepted: 12/24/2022] [Indexed: 12/31/2022] Open
Abstract
Diabetic cognitive dysfunction (DCD) is the decline in memory, learning, and executive function caused by diabetes. Although its pathogenesis is unclear, molecular biologists have proposed various hypotheses, including insulin resistance, amyloid β hypothesis, tau protein hyperphosphorylation hypothesis, oxidative stress and neuroinflammation. DCD patients have no particular treatment options and current pharmacological regimens are suboptimal. In recent years, Chinese medicine research has shown that herbs with multi-component, multi-pathway and multi-target synergistic activities can prevent and treat DCD. Yunnan is home to the medicinal herb Erigeron breviscapus (Vant.) Hand-Mazz. (EBHM). Studies have shown that EBHM and its active components have a wide range of pharmacological effects and applications in cognitive disorders. EBHM's anti-DCD properties have been seldom reviewed. Through a literature study, we were able to evaluate the likely pathophysiology of DCD, prescribe anti-DCD medication and better grasp EBHM's therapeutic potential. EBHM's pharmacological mechanism and active components for DCD treatment were also summarized.
Collapse
Affiliation(s)
- Shanye Gu
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Ziyi Zhou
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China
- Guangdong Provincial Key Laboratory of Research on Emergency in Traditional Chinese Medicine, Guangzhou 510120, China
| | - Shijie Zhang
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China
- Guangdong Provincial Key Laboratory of Research on Emergency in Traditional Chinese Medicine, Guangzhou 510120, China
| | - Yefeng Cai
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China
- Guangdong Provincial Key Laboratory of Research on Emergency in Traditional Chinese Medicine, Guangzhou 510120, China
- Correspondence: ; Tel.: +86-136-3133-3842
| |
Collapse
|
15
|
RAGE Inhibitors for Targeted Therapy of Cancer: A Comprehensive Review. Int J Mol Sci 2022; 24:ijms24010266. [PMID: 36613714 PMCID: PMC9820344 DOI: 10.3390/ijms24010266] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/28/2022] [Accepted: 12/16/2022] [Indexed: 12/28/2022] Open
Abstract
The receptor for advanced glycation end products (RAGE) is a member of the immunoglobulin family that is overexpressed in several cancers. RAGE is highly expressed in the lung, and its expression increases proportionally at the site of inflammation. This receptor can bind a variety of ligands, including advanced glycation end products, high mobility group box 1, S100 proteins, adhesion molecules, complement components, advanced lipoxidation end products, lipopolysaccharides, and other molecules that mediate cellular responses related to acute and chronic inflammation. RAGE serves as an important node for the initiation and stimulation of cell stress and growth signaling mechanisms that promote carcinogenesis, tumor propagation, and metastatic potential. In this review, we discuss different aspects of RAGE and its prominent ligands implicated in cancer pathogenesis and describe current findings that provide insights into the significant role played by RAGE in cancer. Cancer development can be hindered by inhibiting the interaction of RAGE with its ligands, and this could provide an effective strategy for cancer treatment.
Collapse
|
16
|
Yang Z, Zhang W, Lu H, Cai S. Methylglyoxal in the Brain: From Glycolytic Metabolite to Signalling Molecule. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227905. [PMID: 36432007 PMCID: PMC9696358 DOI: 10.3390/molecules27227905] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 11/17/2022]
Abstract
Advances in molecular biology technology have piqued tremendous interest in glycometabolism and bioenergetics in homeostasis and neural development linked to ageing and age-related diseases. Methylglyoxal (MGO) is a by-product of glycolysis, and it can covalently modify proteins, nucleic acids, and lipids, leading to cell growth inhibition and, eventually, cell death. MGO can alter intracellular calcium homeostasis, which is a major cell-permeant precursor to advanced glycation end-products (AGEs). As side-products or signalling molecules, MGO is involved in several pathologies, including neurodevelopmental disorders, ageing, and neurodegenerative diseases. In this review, we demonstrate that MGO (the metabolic side-product of glycolysis), the GLO system, and their analogous relationship with behavioural phenotypes, epigenetics, ageing, pain, and CNS degeneration. Furthermore, we summarise several therapeutic approaches that target MGO and the glyoxalase (GLO) system in neurodegenerative diseases.
Collapse
Affiliation(s)
- Zeyong Yang
- Department of Anesthesiology, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Embryo Original Disease, Shanghai Municipal Key Clinical Specialty, Huashan Rd. 1961, Shanghai 200030, China
- Correspondence: (Z.Y.); (S.C.)
| | - Wangping Zhang
- Department of Anesthesiology, Women and Children’s Hospital of Jiaxing University, No. 2468 Zhonghuan East Road, Jiaxing 314000, China
| | - Han Lu
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shu Cai
- School of Nursing, Guangdong Pharmaceutical University, No. 283 Jianghai Avenue, Haizhu District, Guangzhou 510310, China
- Correspondence: (Z.Y.); (S.C.)
| |
Collapse
|
17
|
Fernandes ACF, Melo JB, Genova VM, Santana ÁL, Macedo G. Phytochemicals as Potential Inhibitors of Advanced Glycation End Products: Health Aspects and Patent Survey. RECENT ADVANCES IN FOOD, NUTRITION & AGRICULTURE 2022; 13:3-16. [PMID: 34053432 DOI: 10.2174/2212798412666210528130001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/17/2021] [Accepted: 03/06/2021] [Indexed: 12/29/2022]
Abstract
BACKGROUND The glycation of proteins and lipids synthesizes the advanced glycation end products (AGEs), i.e., substances that irreversibly damage macromolecules present in tissues and organs, which contribute to the impairment of biological functions. For instance, the accumulation of AGEs induces oxidative stress, the inflammatory responses, and consequently the on set/worsening of diseases, including obesity, asthma, cognitive impairment, and cancer. There is a current demand on natural and low-cost sources of anti-AGE agents. As a result, food phytochemicals presented promising results to inhibit glycation and consequently, the formation of AGEs. OBJECTIVE Here we describe how the AGEs are present in food via Maillard reaction and in organs via natural aging, as well as the effects of AGEs on the worsening of diseases. Also we described the methods used to detect AGEs in samples, and the current findings on the use of phytochemicals (phenolic compounds, phytosterols, carotenoids, terpenes and vitamins) as natural therapeuticals to inhibit health damages via inhibition of AGEs in vitro and in vivo. METHODS This manuscript reviewed publications available in the PubMed and Science Direct databases dated from the last 20 years on the uses of phytochemicals for the inhibition of AGEs. Recent patents on the use of anti-AGEs drugs were reviewed with the use of Google Advanced Patents database. RESULTS AND DISCUSSION There is no consensus about which concentration of AGEs in blood serum should not be hazardous to the health of individuals. Food phytochemicals derived from agroindustry wastes, including peanut skins, and the bagasses derived from citrus and grapes are promising anti-AGEs agents via scavenging of free radicals, metal ions, the suppression of metabolic pathways that induces inflammation, the activation of pathways that promote antioxidant defense, and the blocking of AGE connection with the receptor for advanced glycation endproducts (RAGE). CONCLUSION Phytochemicals derived from agroindustry are promising anti-AGEs, which can be included to replace synthetic drugs to inhibit AGE formation, and consequently to act as therapeutical strategy to prevent and treat diseases caused by AGEs, including diabetes, ovarian cancer, osteoporosis, and Alzheimer's disease.
Collapse
Affiliation(s)
- Annayara C F Fernandes
- Bioprocesses Laboratory, Food and Nutrition Department, School of Food Engineering, University of Campinas, UNICAMP, Campinas, SP, Brazil, Cidade Universitária "ZeferinoVaz", Rua Monteiro Lobato, 80, Campinas 13083-862, Brazil
| | - Jeane B Melo
- Bioprocesses Laboratory, Food and Nutrition Department, School of Food Engineering, University of Campinas, UNICAMP, Campinas, SP, Brazil, Cidade Universitária "ZeferinoVaz", Rua Monteiro Lobato, 80, Campinas 13083-862, Brazil
| | - Vanize M Genova
- Bioprocesses Laboratory, Food and Nutrition Department, School of Food Engineering, University of Campinas, UNICAMP, Campinas, SP, Brazil, Cidade Universitária "ZeferinoVaz", Rua Monteiro Lobato, 80, Campinas 13083-862, Brazil
| | - Ádina L Santana
- Bioprocesses Laboratory, Food and Nutrition Department, School of Food Engineering, University of Campinas, UNICAMP, Campinas, SP, Brazil, Cidade Universitária "ZeferinoVaz", Rua Monteiro Lobato, 80, Campinas 13083-862, Brazil.,264 Food Innovation Center, Nebraska Innovation Campus, University of Nebraska-Lincoln, 1901 N 21st street, Lincoln, NE, USA
| | - Gabriela Macedo
- Bioprocesses Laboratory, Food and Nutrition Department, School of Food Engineering, University of Campinas, UNICAMP, Campinas, SP, Brazil, Cidade Universitária "ZeferinoVaz", Rua Monteiro Lobato, 80, Campinas 13083-862, Brazil
| |
Collapse
|
18
|
Genova VM, Gambero A, de Souza Freitas Campos P, Macedo GA. Polyphenolic Compounds Mechanisms as Inhibitors of Advanced Glycation End Products and Their Relationship to Health and Disease. MOLECULAR MECHANISMS OF FUNCTIONAL FOOD 2022:1-27. [DOI: 10.1002/9781119804055.ch1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
19
|
Lai SWT, Lopez Gonzalez EDJ, Zoukari T, Ki P, Shuck SC. Methylglyoxal and Its Adducts: Induction, Repair, and Association with Disease. Chem Res Toxicol 2022; 35:1720-1746. [PMID: 36197742 PMCID: PMC9580021 DOI: 10.1021/acs.chemrestox.2c00160] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Metabolism is an essential part of life that provides energy for cell growth. During metabolic flux, reactive electrophiles are produced that covalently modify macromolecules, leading to detrimental cellular effects. Methylglyoxal (MG) is an abundant electrophile formed from lipid, protein, and glucose metabolism at intracellular levels of 1-4 μM. MG covalently modifies DNA, RNA, and protein, forming advanced glycation end products (MG-AGEs). MG and MG-AGEs are associated with the onset and progression of many pathologies including diabetes, cancer, and liver and kidney disease. Regulating MG and MG-AGEs is a potential strategy to prevent disease, and they may also have utility as biomarkers to predict disease risk, onset, and progression. Here, we review recent advances and knowledge surrounding MG, including its production and elimination, mechanisms of MG-AGEs formation, the physiological impact of MG and MG-AGEs in disease onset and progression, and the latter in the context of its receptor RAGE. We also discuss methods for measuring MG and MG-AGEs and their clinical application as prognostic biomarkers to allow for early detection and intervention prior to disease onset. Finally, we consider relevant clinical applications and current therapeutic strategies aimed at targeting MG, MG-AGEs, and RAGE to ultimately improve patient outcomes.
Collapse
Affiliation(s)
- Seigmund Wai Tsuen Lai
- Department of Diabetes and Cancer Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Comprehensive Cancer Center, Duarte, California 91010, United States
| | - Edwin De Jesus Lopez Gonzalez
- Department of Diabetes and Cancer Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Comprehensive Cancer Center, Duarte, California 91010, United States
| | - Tala Zoukari
- Department of Diabetes and Cancer Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Comprehensive Cancer Center, Duarte, California 91010, United States
| | - Priscilla Ki
- Department of Diabetes and Cancer Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Comprehensive Cancer Center, Duarte, California 91010, United States
| | - Sarah C Shuck
- Department of Diabetes and Cancer Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Comprehensive Cancer Center, Duarte, California 91010, United States
| |
Collapse
|
20
|
Methylglyoxal and glyoxalase 1-a metabolic stress pathway-linking hyperglycemia to the unfolded protein response and vascular complications of diabetes. Clin Sci (Lond) 2022; 136:819-824. [PMID: 35635155 PMCID: PMC9152679 DOI: 10.1042/cs20220099] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 11/23/2022]
Abstract
The study of the glyoxalase system by Thornalley and co-workers in clinical diabetes mellitus and correlation with diabetic complications revealed increased exposure of patients with diabetes to the reactive, dicarbonyl metabolite methylglyoxal (MG). Twenty-eight years later, extended and built on by Thornalley and co-workers and others, the glyoxalase system is an important pathway contributing to the development of insulin resistance and vascular complications of diabetes. Other related advances have been: characterization of a new kind of metabolic stress—‘dicarbonyl stress’; identification of the major physiological advanced glycation endproduct (AGE), MG-H1; physiological substrates of the unfolded protein response (UPR); new therapeutic agents—‘glyoxalase 1 (Glo1) inducers’; and a refined mechanism underlying the link of dysglycemia to the development of insulin resistance and vascular complications of diabetes.
Collapse
|
21
|
Wang F, Fan B, Chen C, Zhang W. Acrylamide causes neurotoxicity by inhibiting glycolysis and causing the accumulation of carbonyl compounds in BV2 microglial cells. Food Chem Toxicol 2022; 163:112982. [DOI: 10.1016/j.fct.2022.112982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/26/2022] [Accepted: 03/30/2022] [Indexed: 10/18/2022]
|
22
|
Audat SA, Al-Balas QA, Al-Oudat BA, Athamneh MJ, Bryant-Friedrich A. Design, Synthesis and Biological Evaluation of 1,4-Benzenesulfonamide Derivatives as Glyoxalase I Inhibitors. Drug Des Devel Ther 2022; 16:873-885. [PMID: 35378924 PMCID: PMC8976160 DOI: 10.2147/dddt.s356621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/10/2022] [Indexed: 11/23/2022] Open
Abstract
Background Glyoxalase system is one of the defense cellular mechanisms that protect cells against endogenous harmful metabolites, mainly methylglyoxal (MG), through conversion of cytotoxic methylglyoxal into the non-toxic lactic acid. Glyoxalase system comprises of two enzymes glyoxalase I, glyoxalase II, and a catalytic amount of reduced glutathione. Cancerous cells overexpress glyoxalase I, making it a target for cancer therapy. Many studies have been conducted to identify potent Glx-I inhibitors. Methods Aiming to discover and develop novel Glx-I inhibitors, a series of 1,4-benzenesulfonamide derivatives were designed, synthesized, and biologically evaluated in vitro against human Glx-I enzyme. Seventeen compounds were designed based on the hit compound that was obtained from searching the National Cancer Institute (NCI) database. The synthesis of the target compounds (13-29) was accomplished utilizing an azo coupling reaction of aniline derivatives and activated substituted aromatic compounds. To understand the binding mode of the active compounds at the active site of Glx-I, docking studies were performed. Results Structure activity relationship (SAR) studies were accomplished which led to the identification of several compounds that showed potent inhibitory activity with IC50 values below 10 μM. Among the compounds tested, compounds (E)-2-hydroxy-5-((4-sulfamoylphenyl)diazenyl)benzoic acid (26) and (E)-4-((8-hydroxyquinolin-5-yl)diazenyl) benzenesulfonamide (28) displayed potent Glx-I inhibitory activity with IC50 values of 0.39 μM and 1.36 µM, respectively. Docking studies of compounds 26 and 28 were carried out to illustrate the binding mode of the molecules into the Glx-I active site. Conclusion Our results show that compounds 26 and 28 displayed potent Glx-I inhibitory activity and can bind the Glx-I well. These findings should lead us to discover new classes of compounds with better Glx-I inhibition.
Collapse
Affiliation(s)
- Suaad Abdallah Audat
- Department of Chemistry, College of Science and Arts, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Qosay Ali Al-Balas
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Buthina Abdallah Al-Oudat
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Mo’ad Jamil Athamneh
- Department of Chemistry, College of Science and Arts, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Amanda Bryant-Friedrich
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, 48202, USA
| |
Collapse
|
23
|
Teissier T, Temkin V, Pollak RD, Cox LS. Crosstalk Between Senescent Bone Cells and the Bone Tissue Microenvironment Influences Bone Fragility During Chronological Age and in Diabetes. Front Physiol 2022; 13:812157. [PMID: 35388291 PMCID: PMC8978545 DOI: 10.3389/fphys.2022.812157] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/27/2022] [Indexed: 01/10/2023] Open
Abstract
Bone is a complex organ serving roles in skeletal support and movement, and is a source of blood cells including adaptive and innate immune cells. Structural and functional integrity is maintained through a balance between bone synthesis and bone degradation, dependent in part on mechanical loading but also on signaling and influences of the tissue microenvironment. Bone structure and the extracellular bone milieu change with age, predisposing to osteoporosis and increased fracture risk, and this is exacerbated in patients with diabetes. Such changes can include loss of bone mineral density, deterioration in micro-architecture, as well as decreased bone flexibility, through alteration of proteinaceous bone support structures, and accumulation of senescent cells. Senescence is a state of proliferation arrest accompanied by marked morphological and metabolic changes. It is driven by cellular stress and serves an important acute tumor suppressive mechanism when followed by immune-mediated senescent cell clearance. However, aging and pathological conditions including diabetes are associated with accumulation of senescent cells that generate a pro-inflammatory and tissue-destructive secretome (the SASP). The SASP impinges on the tissue microenvironment with detrimental local and systemic consequences; senescent cells are thought to contribute to the multimorbidity associated with advanced chronological age. Here, we assess factors that promote bone fragility, in the context both of chronological aging and accelerated aging in progeroid syndromes and in diabetes, including senescence-dependent alterations in the bone tissue microenvironment, and glycation changes to the tissue microenvironment that stimulate RAGE signaling, a process that is accelerated in diabetic patients. Finally, we discuss therapeutic interventions targeting RAGE signaling and cell senescence that show promise in improving bone health in older people and those living with diabetes.
Collapse
Affiliation(s)
- Thibault Teissier
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Vladislav Temkin
- Division of Medicine, Department of Endocrinology and Metabolism, The Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Rivka Dresner Pollak
- Division of Medicine, Department of Endocrinology and Metabolism, The Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Lynne S. Cox
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
24
|
Food-Related Carbonyl Stress in Cardiometabolic and Cancer Risk Linked to Unhealthy Modern Diet. Nutrients 2022; 14:nu14051061. [PMID: 35268036 PMCID: PMC8912422 DOI: 10.3390/nu14051061] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 02/01/2023] Open
Abstract
Carbonyl stress is a condition characterized by an increase in the steady-state levels of reactive carbonyl species (RCS) that leads to accumulation of their irreversible covalent adducts with biological molecules. RCS are generated by the oxidative cleavage and cellular metabolism of lipids and sugars. In addition to causing damage directly, the RCS adducts, advanced glycation end-products (AGEs) and advanced lipoxidation end-products (ALEs), cause additional harm by eliciting chronic inflammation through receptor-mediated mechanisms. Hyperglycemia- and dyslipidemia-induced carbonyl stress plays a role in diabetic cardiovascular complications and diabetes-related cancer risk. Moreover, the increased dietary exposure to AGEs/ALEs could mediate the impact of the modern, highly processed diet on cardiometabolic and cancer risk. Finally, the transient carbonyl stress resulting from supraphysiological postprandial spikes in blood glucose and lipid levels may play a role in acute proinflammatory and proatherogenic changes occurring after a calorie dense meal. These findings underline the potential importance of carbonyl stress as a mediator of the cardiometabolic and cancer risk linked to today’s unhealthy diet. In this review, current knowledge in this field is discussed along with future research courses to offer new insights and open new avenues for therapeutic interventions to prevent diet-associated cardiometabolic disorders and cancer.
Collapse
|
25
|
Muraoka MY, Justino AB, Caixeta DC, Queiroz JS, Sabino-Silva R, Salmen Espindola F. Fructose and methylglyoxal-induced glycation alters structural and functional properties of salivary proteins, albumin and lysozyme. PLoS One 2022; 17:e0262369. [PMID: 35061788 PMCID: PMC8782344 DOI: 10.1371/journal.pone.0262369] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/21/2021] [Indexed: 01/08/2023] Open
Abstract
Glycation process refers to reactions between reduction sugars and amino acids that can lead to formation of advanced glycation end products (AGEs) which are related to changes in chemical and functional properties of biological structures that accumulate during aging and diseases. The aim of this study was to perform and analyze in vitro glycation by fructose and methylglyoxal (MGO) using salivary fluid, albumin, lysozyme, and salivary α-amylase (sAA). Glycation effect was analyzed by biochemical and spectroscopic methods. The results were obtained by fluorescence analysis, infrared spectroscopy (total attenuated reflection-Fourier transform, ATR-FTIR) followed by multivariate analysis of principal components (PCA), protein profile, immunodetection, enzymatic activity and oxidative damage to proteins. Fluorescence increased in all glycated samples, except in saliva with fructose. The ATR-FTIR spectra and PCA analysis showed structural changes related to the vibrational mode of glycation of albumin, lysozyme, and salivary proteins. Glycation increased the relative molecular mass (Mr) in protein profile of albumin and lysozyme. Saliva showed a decrease in band intensity when glycated. The analysis of sAA immunoblotting indicated a relative reduction in intensity of its correspondent Mr after sAA glycation; and a decrease in its enzymatic activity was observed. Carbonylation levels increased in all glycated samples, except for saliva with fructose. Thiol content decreased only for glycated lysozyme and saliva with MGO. Therefore, glycation of salivary fluid and sAA may have the potential to identify products derived by glycation process. This opens perspectives for further studies on the use of saliva, an easy and non-invasive collection fluid, to monitor glycated proteins in the aging process and evolution of diseases.
Collapse
Affiliation(s)
- Mariane Yumiko Muraoka
- Biochemistry and Molecular Biology Laboratory, Institute of Biotechnology, Federal University of Uberlandia, Uberlandia, Minas Gerais, Brazil
| | - Allisson Benatti Justino
- Biochemistry and Molecular Biology Laboratory, Institute of Biotechnology, Federal University of Uberlandia, Uberlandia, Minas Gerais, Brazil
| | - Douglas Carvalho Caixeta
- Biochemistry and Molecular Biology Laboratory, Institute of Biotechnology, Federal University of Uberlandia, Uberlandia, Minas Gerais, Brazil
- Innovation Center in Salivary Diagnostic and Nanotheranostics, Institute of Biomedical Sciences, Federal University of Uberlandia, Uberlandia, Minas Gerais, Brazil
| | - Julia Silveira Queiroz
- Biochemistry and Molecular Biology Laboratory, Institute of Biotechnology, Federal University of Uberlandia, Uberlandia, Minas Gerais, Brazil
| | - Robinson Sabino-Silva
- Innovation Center in Salivary Diagnostic and Nanotheranostics, Institute of Biomedical Sciences, Federal University of Uberlandia, Uberlandia, Minas Gerais, Brazil
| | - Foued Salmen Espindola
- Biochemistry and Molecular Biology Laboratory, Institute of Biotechnology, Federal University of Uberlandia, Uberlandia, Minas Gerais, Brazil
- * E-mail:
| |
Collapse
|
26
|
Pucci M, Aria F, Premoli M, Maccarinelli G, Mastinu A, Bonini S, Memo M, Uberti D, Abate G. Methylglyoxal affects cognitive behaviour and modulates RAGE and Presenilin-1 expression in hippocampus of aged mice. Food Chem Toxicol 2021; 158:112608. [PMID: 34656697 DOI: 10.1016/j.fct.2021.112608] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/08/2021] [Accepted: 10/10/2021] [Indexed: 12/12/2022]
Abstract
Methylglyoxal (MG), a potent glycotoxin that can be found in the diet, is one of the main precursors of Advanced glycation end products (AGEs). It is well known that modifications in lifestyle such as nutritional interventions can be of great value for preventing brain deterioration. This study aimed to evaluate in vivo how an oral MG treatment, that mimics a high MG dietary intake, could affect brain health. From our results, we demonstrated that MG administration affected working memory, and induced neuroinflammation and oxidative stress by modulating the Receptor for Advanced glycation end products (RAGE). The gene and protein expressions of RAGE were increased in the hippocampus of MG mice, an area where the activity of glyoxalase 1, one of the main enzymes involved in MG detoxification, was found reduced. Furthermore, at hippocampus level, MG mice showed increased expression of proinflammatory cytokines and increased activities of NADPH oxidase and catalase. MG administration also increased the gene and protein expressions of Presenilin-1, a subunit of the gamma-secretase protein complex linked to Alzheimer's disease. These findings suggest that high MG oral intake induces alteration directly in the brain and might establish an environment predisposing to AD-like pathological conditions.
Collapse
Affiliation(s)
- M Pucci
- Department of Molecular and Translational Medicine, University of Brescia, Italy
| | - F Aria
- Department of Molecular and Translational Medicine, University of Brescia, Italy; Center for Neural Science, New York University, New York, United States
| | - M Premoli
- Department of Molecular and Translational Medicine, University of Brescia, Italy
| | - G Maccarinelli
- Department of Molecular and Translational Medicine, University of Brescia, Italy
| | - A Mastinu
- Department of Molecular and Translational Medicine, University of Brescia, Italy
| | - S Bonini
- Department of Molecular and Translational Medicine, University of Brescia, Italy
| | - M Memo
- Department of Molecular and Translational Medicine, University of Brescia, Italy
| | - D Uberti
- Department of Molecular and Translational Medicine, University of Brescia, Italy; Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.
| | - G Abate
- Department of Molecular and Translational Medicine, University of Brescia, Italy
| |
Collapse
|
27
|
Park SY, Suh KS, Jung WW, Chin SO. Spironolactone Attenuates Methylglyoxal-induced Cellular Dysfunction in MC3T3-E1 Osteoblastic Cells. J Korean Med Sci 2021; 36:e265. [PMID: 34609092 PMCID: PMC8490790 DOI: 10.3346/jkms.2021.36.e265] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/29/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Methylglyoxal (MG) is associated with the pathogenesis of age- and diabetes-related complications. Spironolactone is a competitive antagonist of aldosterone that is widely employed in the treatment of hypertension and heart failure. This study examined the effects of spironolactone on MG-induced cellular dysfunction in MC3T3-E1 osteoblastic cells. METHODS MC3T3-E1 cells were treated with spironolactone in the presence of MG. The mitochondrial function, bone formation activity, oxidative damage, inflammatory cytokines, glyoxalase I activity, and glutathione (GSH) were measured. RESULTS Pretreatment of MC3T3-E1 osteoblastic cells with spironolactone prevented MG-induced cell death, and improved bone formation activity. Spironolactone reduced MG-induced endoplasmic reticulum stress, production of intracellular reactive oxygen species, mitochondrial superoxides, cardiolipin peroxidation, and inflammatory cytokines. Pretreatment with spironolactone also increased the level of reduced GSH and the activity of glyoxalase I. MG induced mitochondrial dysfunction, but markers of mitochondrial biogenesis such as mitochondrial membrane potential, adenosine triphosphate, proliferator-activated receptor gamma coactivator 1α, and nitric oxide were significantly improved by treatment of spironolactone. CONCLUSION Spironolactone could prevent MG-induced cytotoxicity in MC3T3-E1 osteoblastic cells by reduction of oxidative stress. The oxidative stress reduction was explained by spironolactone's inhibition of advanced glycation end-product formation, restoring mitochondrial dysfunction, and anti-inflammatory effect.
Collapse
Affiliation(s)
- So Young Park
- Department of Endocrinology and Metabolism, Kyung Hee University Hospital, Seoul, Korea
| | - Kwang Sik Suh
- Department of Endocrinology and Metabolism, Kyung Hee University School of Medicine, Seoul, Korea
| | - Woon-Won Jung
- Department of Biomedical Laboratory Science, College of Health and Medical Sciences, Cheongju University, Cheongju, Korea
| | - Sang Ouk Chin
- Department of Endocrinology and Metabolism, Kyung Hee University Hospital, Seoul, Korea
- Department of Endocrinology and Metabolism, Kyung Hee University School of Medicine, Seoul, Korea.
| |
Collapse
|
28
|
The Glyoxalase System in Age-Related Diseases: Nutritional Intervention as Anti-Ageing Strategy. Cells 2021; 10:cells10081852. [PMID: 34440621 PMCID: PMC8393707 DOI: 10.3390/cells10081852] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/09/2021] [Accepted: 07/15/2021] [Indexed: 12/19/2022] Open
Abstract
The glyoxalase system is critical for the detoxification of advanced glycation end-products (AGEs). AGEs are toxic compounds resulting from the non-enzymatic modification of biomolecules by sugars or their metabolites through a process called glycation. AGEs have adverse effects on many tissues, playing a pathogenic role in the progression of molecular and cellular aging. Due to the age-related decline in different anti-AGE mechanisms, including detoxifying mechanisms and proteolytic capacities, glycated biomolecules are accumulated during normal aging in our body in a tissue-dependent manner. Viewed in this way, anti-AGE detoxifying systems are proposed as therapeutic targets to fight pathological dysfunction associated with AGE accumulation and cytotoxicity. Here, we summarize the current state of knowledge related to the protective mechanisms against glycative stress, with a special emphasis on the glyoxalase system as the primary mechanism for detoxifying the reactive intermediates of glycation. This review focuses on glyoxalase 1 (GLO1), the first enzyme of the glyoxalase system, and the rate-limiting enzyme of this catalytic process. Although GLO1 is ubiquitously expressed, protein levels and activities are regulated in a tissue-dependent manner. We provide a comparative analysis of GLO1 protein in different tissues. Our findings indicate a role for the glyoxalase system in homeostasis in the eye retina, a highly oxygenated tissue with rapid protein turnover. We also describe modulation of the glyoxalase system as a therapeutic target to delay the development of age-related diseases and summarize the literature that describes the current knowledge about nutritional compounds with properties to modulate the glyoxalase system.
Collapse
|
29
|
Adornetto A, Gesualdo C, Laganà ML, Trotta MC, Rossi S, Russo R. Autophagy: A Novel Pharmacological Target in Diabetic Retinopathy. Front Pharmacol 2021; 12:695267. [PMID: 34234681 PMCID: PMC8256993 DOI: 10.3389/fphar.2021.695267] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/09/2021] [Indexed: 01/18/2023] Open
Abstract
Autophagy is the major catabolic pathway involved in removing and recycling damaged macromolecules and organelles and several evidences suggest that dysfunctions of this pathway contribute to the onset and progression of central and peripheral neurodegenerative diseases. Diabetic retinopathy (DR) is a serious complication of diabetes mellitus representing the main preventable cause of acquired blindness worldwide. DR has traditionally been considered as a microvascular disease, however this concept has evolved and neurodegeneration and neuroinflammation have emerged as important determinants in the pathogenesis and evolution of the retinal pathology. Here we review the role of autophagy in experimental models of DR and explore the potential of this pathway as a target for alternative therapeutic approaches.
Collapse
Affiliation(s)
- Annagrazia Adornetto
- Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Carlo Gesualdo
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Maria Luisa Laganà
- Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Maria Consiglia Trotta
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Settimio Rossi
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Rossella Russo
- Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| |
Collapse
|
30
|
Saeed M, Kausar MA, Singh R, Siddiqui AJ, Akhter A. The Role of Glyoxalase in Glycation and Carbonyl Stress Induced Metabolic Disorders. Curr Protein Pept Sci 2021; 21:846-859. [PMID: 32368974 DOI: 10.2174/1389203721666200505101734] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/09/2019] [Accepted: 12/08/2019] [Indexed: 12/14/2022]
Abstract
Glycation refers to the covalent binding of sugar molecules to macromolecules, such as DNA, proteins, and lipids in a non-enzymatic reaction, resulting in the formation of irreversibly bound products known as advanced glycation end products (AGEs). AGEs are synthesized in high amounts both in pathological conditions, such as diabetes and under physiological conditions resulting in aging. The body's anti-glycation defense mechanisms play a critical role in removing glycated products. However, if this defense system fails, AGEs start accumulating, which results in pathological conditions. Studies have been shown that increased accumulation of AGEs acts as key mediators in multiple diseases, such as diabetes, obesity, arthritis, cancer, atherosclerosis, decreased skin elasticity, male erectile dysfunction, pulmonary fibrosis, aging, and Alzheimer's disease. Furthermore, glycation of nucleotides, proteins, and phospholipids by α-oxoaldehyde metabolites, such as glyoxal (GO) and methylglyoxal (MGO), causes potential damage to the genome, proteome, and lipidome. Glyoxalase-1 (GLO-1) acts as a part of the anti-glycation defense system by carrying out detoxification of GO and MGO. It has been demonstrated that GLO-1 protects dicarbonyl modifications of the proteome and lipidome, thereby impeding the cell signaling and affecting age-related diseases. Its relationship with detoxification and anti-glycation defense is well established. Glycation of proteins by MGO and GO results in protein misfolding, thereby affecting their structure and function. These findings provide evidence for the rationale that the functional modulation of the GLO pathway could be used as a potential therapeutic target. In the present review, we summarized the newly emerged literature on the GLO pathway, including enzymes regulating the process. In addition, we described small bioactive molecules with the potential to modulate the GLO pathway, thereby providing a basis for the development of new treatment strategies against age-related complications.
Collapse
Affiliation(s)
- Mohd Saeed
- Department of Biology, College of Sciences, University of Hail, Hail, Saudi Arabia
| | - Mohd Adnan Kausar
- Department of Biochemistry, College of Medicine, University of Hail, Hail, Saudi Arabia
| | - Rajeev Singh
- Department of Environmental Studies, Sataywati College, Delhi University, Delhi, India
| | - Arif J Siddiqui
- Department of Biology, College of Sciences, University of Hail, Hail, Saudi Arabia
| | - Asma Akhter
- Department of Biosciences, Integral University, Lucknow, Uttar Pradesh 226026, India
| |
Collapse
|
31
|
Fujii J, Homma T, Miyata S, Takahashi M. Pleiotropic Actions of Aldehyde Reductase (AKR1A). Metabolites 2021; 11:343. [PMID: 34073440 PMCID: PMC8227408 DOI: 10.3390/metabo11060343] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 05/23/2021] [Accepted: 05/24/2021] [Indexed: 12/16/2022] Open
Abstract
We provide an overview of the physiological roles of aldehyde reductase (AKR1A) and also discuss the functions of aldose reductase (AKR1B) and other family members when necessary. Many types of aldehyde compounds are cytotoxic and some are even carcinogenic. Such toxic aldehydes are detoxified via the action of AKR in an NADPH-dependent manner and the resulting products may exert anti-diabetic and anti-tumorigenic activity. AKR1A is capable of reducing 3-deoxyglucosone and methylglyoxal, which are reactive intermediates that are involved in glycation, a non-enzymatic glycosylation reaction. Accordingly, AKR1A is thought to suppress the formation of advanced glycation end products (AGEs) and prevent diabetic complications. AKR1A and, in part, AKR1B are responsible for the conversion of d-glucuronate to l-gulonate which constitutes a process for ascorbate (vitamin C) synthesis in competent animals. AKR1A is also involved in the reduction of S-nitrosylated glutathione and coenzyme A and thereby suppresses the protein S-nitrosylation that occurs under conditions in which the production of nitric oxide is stimulated. As the physiological functions of AKR1A are currently not completely understood, the genetic modification of Akr1a could reveal the latent functions of AKR1A and differentiate it from other family members.
Collapse
Affiliation(s)
- Junichi Fujii
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata 990-9585, Japan;
| | - Takujiro Homma
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata 990-9585, Japan;
| | - Satoshi Miyata
- Miyata Diabetes and Metabolism Clinic, 5-17-21 Fukushima, Fukushima-ku, Osaka 553-0003, Japan;
| | - Motoko Takahashi
- Department of Biochemistry, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan;
| |
Collapse
|
32
|
Hara T, Toyoshima M, Hisano Y, Balan S, Iwayama Y, Aono H, Futamura Y, Osada H, Owada Y, Yoshikawa T. Glyoxalase I disruption and external carbonyl stress impair mitochondrial function in human induced pluripotent stem cells and derived neurons. Transl Psychiatry 2021; 11:275. [PMID: 33966051 PMCID: PMC8106684 DOI: 10.1038/s41398-021-01392-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/09/2021] [Accepted: 04/19/2021] [Indexed: 12/14/2022] Open
Abstract
Carbonyl stress, a specific form of oxidative stress, is reported to be involved in the pathophysiology of schizophrenia; however, little is known regarding the underlying mechanism. Here, we found that disruption of GLO1, the gene encoding a major catabolic enzyme scavenging the carbonyl group, increases vulnerability to external carbonyl stress, leading to abnormal phenotypes in human induced pluripotent stem cells (hiPSCs). The viability of GLO1 knockout (KO)-hiPSCs decreased and activity of caspase-3 was increased upon addition of methylglyoxal (MGO), a reactive carbonyl compound. In the GLO1 KO-hiPSC-derived neurons, MGO administration impaired neurite extension and cell migration. Further, accumulation of methylglyoxal-derived hydroimidazolone (MG-H1; a derivative of MGO)-modified proteins was detected in isolated mitochondria. Mitochondrial dysfunction, including diminished membrane potential and dampened respiratory function, was observed in the GLO1 KO-hiPSCs and derived neurons after addition of MGO and hence might be the mechanism underlying the effects of carbonyl stress. The susceptibility to MGO was partially rescued by the administration of pyridoxamine, a carbonyl scavenger. Our observations can be used for designing an intervention strategy for diseases, particularly those induced by enhanced carbonyl stress or oxidative stress.
Collapse
Affiliation(s)
- Tomonori Hara
- grid.474690.8Laboratory of Molecular Psychiatry, RIKEN Center for Brain Science, Wako, Saitama 351-0198 Japan ,grid.69566.3a0000 0001 2248 6943Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575 Japan
| | - Manabu Toyoshima
- grid.474690.8Laboratory of Molecular Psychiatry, RIKEN Center for Brain Science, Wako, Saitama 351-0198 Japan
| | - Yasuko Hisano
- grid.474690.8Laboratory of Molecular Psychiatry, RIKEN Center for Brain Science, Wako, Saitama 351-0198 Japan
| | - Shabeesh Balan
- grid.474690.8Laboratory of Molecular Psychiatry, RIKEN Center for Brain Science, Wako, Saitama 351-0198 Japan ,Neuroscience Research Laboratory, Institute of Mental Health and Neurosciences (IMHANS), Kozhikode, Kerala 673008 India
| | - Yoshimi Iwayama
- grid.474690.8Support Unit for Bio-Material Analysis, Research Division, RIKEN Center for Brain Science, Wako, Saitama 351-0198 Japan
| | - Harumi Aono
- grid.509461.fChemical Biology Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198 Japan
| | - Yushi Futamura
- grid.509461.fChemical Biology Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198 Japan
| | - Hiroyuki Osada
- grid.509461.fChemical Biology Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198 Japan
| | - Yuji Owada
- grid.69566.3a0000 0001 2248 6943Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575 Japan
| | - Takeo Yoshikawa
- Laboratory of Molecular Psychiatry, RIKEN Center for Brain Science, Wako, Saitama, 351-0198, Japan.
| |
Collapse
|
33
|
Iacobini C, Vitale M, Pesce C, Pugliese G, Menini S. Diabetic Complications and Oxidative Stress: A 20-Year Voyage Back in Time and Back to the Future. Antioxidants (Basel) 2021; 10:727. [PMID: 34063078 PMCID: PMC8147954 DOI: 10.3390/antiox10050727] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 02/07/2023] Open
Abstract
Twenty years have passed since Brownlee and colleagues proposed a single unifying mechanism for diabetic complications, introducing a turning point in this field of research. For the first time, reactive oxygen species (ROS) were identified as the causal link between hyperglycemia and four seemingly independent pathways that are involved in the pathogenesis of diabetes-associated vascular disease. Before and after this milestone in diabetes research, hundreds of articles describe a role for ROS, but the failure of clinical trials to demonstrate antioxidant benefits and some recent experimental studies showing that ROS are dispensable for the pathogenesis of diabetic complications call for time to reflect. This twenty-year journey focuses on the most relevant literature regarding the main sources of ROS generation in diabetes and their role in the pathogenesis of cell dysfunction and diabetic complications. To identify future research directions, this review discusses the evidence in favor and against oxidative stress as an initial event in the cellular biochemical abnormalities induced by hyperglycemia. It also explores possible alternative mechanisms, including carbonyl stress and the Warburg effect, linking glucose and lipid excess, mitochondrial dysfunction, and the activation of alternative pathways of glucose metabolism leading to vascular cell injury and inflammation.
Collapse
Affiliation(s)
- Carla Iacobini
- Department of Clinical and Molecular Medicine, “La Sapienza” University, 00189 Rome, Italy; (C.I.); (M.V.); (S.M.)
| | - Martina Vitale
- Department of Clinical and Molecular Medicine, “La Sapienza” University, 00189 Rome, Italy; (C.I.); (M.V.); (S.M.)
| | - Carlo Pesce
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal Infantile Sciences (DINOGMI), Department of Excellence of MIUR, University of Genoa Medical School, 16132 Genoa, Italy;
| | - Giuseppe Pugliese
- Department of Clinical and Molecular Medicine, “La Sapienza” University, 00189 Rome, Italy; (C.I.); (M.V.); (S.M.)
| | - Stefano Menini
- Department of Clinical and Molecular Medicine, “La Sapienza” University, 00189 Rome, Italy; (C.I.); (M.V.); (S.M.)
| |
Collapse
|
34
|
Hepatocyte growth factor ameliorates methylglyoxal-induced peritoneal inflammation and fibrosis in mouse model. Clin Exp Nephrol 2021; 25:935-943. [PMID: 33909175 DOI: 10.1007/s10157-021-02067-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 04/21/2021] [Indexed: 01/20/2023]
Abstract
BACKGROUND Peritoneal dialysis (PD) is essential for patients with end-stage renal disease. Peritoneal fibrosis (PF) is a complex inflammatory, fibrogenic process. No effective treatments are available to prevent these processes. Hepatocyte growth factor (HGF) possesses anti-inflammatory and anti-fibrotic properties. The aim of this study was to analyze whether HGF suppresses MGO-induced peritoneal inflammation and fibrosis in a mouse model. METHODS PF was induced by intraperitoneal (IP) injections of MGO for 14 days. C57/BL/6 mice were divided into three groups: Sham group (only vehicle); Sham + MGO group (PF induced by MGO); and HGF + MGO group (PF mice treated with recombinant human-HGF). PF was assessed from tissue samples by Masson's trichrome staining. Inflammation and fibrosis-associated factors were assessed by immunohistochemistry and quantitative real-time PCR. RESULTS MGO-injected mice showed significant thickening of the submesothelial compact zone with PF. Treatment with HGF significantly reduced PM thickness and suppressed the expression of collagen I and III and α-SMA. Expression of profibrotic and proinflammatory cytokines (TGF-β, TNF-α, IL-1β) was reduced by HGF treatment. The number of macrophages, and M1 and M2 macrophage-related markers, such as CD86, CD206, and CD163, was reduced in HGF + MGO mice. CONCLUSION HGF attenuates MGO-induced PF in mice. Furthermore, HGF treatment reduces myofibroblast and macrophage infiltration, and attenuates the upregulated expression of proinflammatory and profibrotic genes in peritoneal tissues. HGF might be an effective approach to prevent the development of PF in patients undergoing PD.
Collapse
|
35
|
Pleiotropic consequences of metabolic stress for the major histocompatibility complex class II molecule antigen processing and presentation machinery. Immunity 2021; 54:721-736.e10. [PMID: 33725478 DOI: 10.1016/j.immuni.2021.02.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/30/2020] [Accepted: 02/24/2021] [Indexed: 01/11/2023]
Abstract
Hyperglycemia and hyperlipidemia are often observed in individuals with type II diabetes (T2D) and related mouse models. One dysmetabolic biochemical consequence is the non-enzymatic reaction between sugars, lipids, and proteins, favoring protein glycation, glycoxidation, and lipoxidation. Here, we identified oxidative alterations in key components of the major histocompatibility complex (MHC) class II molecule antigen processing and presentation machinery in vivo under conditions of hyperglycemia-induced metabolic stress. These modifications were linked to epitope-specific changes in endosomal processing efficiency, MHC class II-peptide binding, and DM editing activity. Moreover, we observed some quantitative and qualitative changes in the MHC class II immunopeptidome of Ob/Ob mice on a high-fat diet compared with controls, including changes in the presentation of an apolipoprotein B100 peptide associated previously with T2D and metabolic syndrome-related clinical complications. These findings highlight a link between glycation reactions and altered MHC class II antigen presentation that may contribute to T2D complications.
Collapse
|
36
|
Prantner D, Nallar S, Richard K, Spiegel D, Collins KD, Vogel SN. Classically activated mouse macrophages produce methylglyoxal that induces a TLR4- and RAGE-independent proinflammatory response. J Leukoc Biol 2021; 109:605-619. [PMID: 32678947 PMCID: PMC7855181 DOI: 10.1002/jlb.3a0520-745rr] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 01/05/2023] Open
Abstract
The highly reactive compound methylglyoxal (MG) can cause direct damage to cells and tissues by reacting with cellular macromolecules. MG has been identified as a biomarker associated with increased sepsis-induced mortality. Patients undergoing septic shock have significantly elevated circulating MG levels compared to postoperative patients and healthy controls. Furthermore, MG has been implicated in the development of type II diabetes mellitus and Alzheimer's disease. Because MG is generated during glycolysis, we hypothesized that MG may be produced by classically activated (M1) macrophages, possibly contributing to the inflammatory response. LPS and IFN-γ-treated macrophages acquired an M1 phenotype (as evidenced by M1 markers and enhanced glycolysis) and formed MG adducts, MG-H1, MG-H2, and MG-H3, which were detected using antibodies specific for MG-modified proteins (methylglyoxal 5-hydro-5-methylimidazolones). MG adducts were also increased in the lungs of LPS-treated mice. Macrophages treated with LPS and IFN-γ also exhibited decreased expression of glyoxalase 1 (Glo1), an enzyme that metabolizes MG. Concentrations of exogenous, purified MG > 0.5 mM were toxic to macrophages; however, a nontoxic dose of 0.3 mM induced TNF-α and IL-1β, albeit to a lesser extent than LPS stimulation. Despite prior evidence that MG adducts may signal through "receptor for advanced glycation endproducts" (RAGE), MG-mediated cell death and cytokine induction by exogenous MG was RAGE-independent in primary macrophages. Finally, RAGE-deficient mice did not exhibit a significant survival advantage following lethal LPS injection. Overall, our evidence suggests that MG may be produced by M1 macrophages during sepsis, following IFN-γ-dependent down-regulation of Glo1, contributing to over-exuberant inflammation.
Collapse
Affiliation(s)
- Daniel Prantner
- Dept. of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, MD
| | - Shreeram Nallar
- Dept. of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, MD
| | - Katharina Richard
- Dept. of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, MD
| | - David Spiegel
- Department of Chemistry, Yale University, New Haven, CT
| | - Kim D. Collins
- Dept. of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, MD
- Institute of Marine and Environmental Technology (IMET), University of Maryland, Baltimore, Baltimore, MD
| | - Stefanie N. Vogel
- Dept. of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, MD
| |
Collapse
|
37
|
Lee DY, Lin YC, Chang GD. Biochemical Regulation of the Glyoxalase System in Response to Insulin Signaling. Antioxidants (Basel) 2021; 10:antiox10020326. [PMID: 33671767 PMCID: PMC7926409 DOI: 10.3390/antiox10020326] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 11/18/2022] Open
Abstract
Methylglyoxal (MG) is a reactive glycation metabolite and potentially induces dicarbonyl stress. The production of MG in cells is increased along with an increase in carbohydrate metabolism. The efficiency of the glyoxalase system, consisting of glyoxalase 1 (GlxI) and glyoxalase 2 (GlxII), is crucial for turning the accumulated MG into nontoxic metabolites. Converting MG-glutathione hemithioacetal to S-d-lactoylglutathione by GlxI is the rate-determining step of the enzyme system. In this study, we found lactic acid accumulated during insulin stimulation in cells, however, cellular MG and S-d-lactoylglutathione also increased due to the massive flux of glycolytic intermediates. The insulin-induced accumulation of MG and S-d-lactoylglutathione were efficiently removed by the treatment of metformin, possibly via affecting the glyoxalase system. With the application of isotopic 13C3-MG, the flux of MG from extracellular and intracellular origins was dissected. While insulin induced an influx of extracellular MG, metformin inhibited the trafficking of MG across the plasma membrane. Therefore, metformin could maintain the extracellular MG by means of reducing the secretion of MG rather than facilitating the scavenging. In addition, metformin may affect the glyoxalase system by controlling the cellular redox state through replenishing reduced glutathione. Overall, alternative biochemical regulation of the glyoxalase system mediated by insulin signaling or molecules like biguanides may control cellular MG homeostasis.
Collapse
Affiliation(s)
- Der-Yen Lee
- Graduate Institute of Integrated Medicine, China Medical University, No. 91, Hsueh-Shih Road, Taichung 40402, Taiwan
- Correspondence: (D.-Y.L.); (G.-D.C.); Tel.: +886-4-22053366#3505 (D.-Y.L.); +886-2-33664071 (G.-D.C.); Fax: +886-2-22037690 (D.-Y.L.); +886-2-23635038 (G.-D.C.)
| | - Yu-Chin Lin
- Ph.D. Program for Health Science and Industry, China Medical University, No. 91, Hsueh-Shih Road, Taichung 40402, Taiwan;
| | - Geen-Dong Chang
- Graduate Institute of Biochemical Sciences, National Taiwan University, No.1, Section 4, Roosevelt Road, Taipei 106, Taiwan
- Correspondence: (D.-Y.L.); (G.-D.C.); Tel.: +886-4-22053366#3505 (D.-Y.L.); +886-2-33664071 (G.-D.C.); Fax: +886-2-22037690 (D.-Y.L.); +886-2-23635038 (G.-D.C.)
| |
Collapse
|
38
|
Maasen K, Hanssen NMJ, van der Kallen CJH, Stehouwer CDA, van Greevenbroek MMJ, Schalkwijk CG. Polymorphisms in Glyoxalase I Gene Are Not Associated with Glyoxalase I Expression in Whole Blood or Markers of Methylglyoxal Stress: The CODAM Study. Antioxidants (Basel) 2021; 10:antiox10020219. [PMID: 33540757 PMCID: PMC7913097 DOI: 10.3390/antiox10020219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 11/16/2022] Open
Abstract
Glyoxalase 1 (Glo1) is the rate-limiting enzyme in the detoxification of methylglyoxal (MGO) into D-lactate. MGO is a major precursor of advanced glycation endproducts (AGEs), and both are associated with development of age-related diseases. Since genetic variation in GLO1 may alter the expression and/or the activity of Glo1, we examined the association of nine SNPs in GLO1 with Glo1 expression and markers of MGO stress (MGO in fasting plasma and after an oral glucose tolerance test, D-lactate in fasting plasma and urine, and MGO-derived AGEs CEL and MG-H1 in fasting plasma and urine). We used data of the Cohort on Diabetes and Atherosclerosis Maastricht (CODAM, n = 546, 60 ± 7 y, 25% type 2 diabetes). Outcomes were compared across genotypes using linear regression, adjusted for age, sex, and glucose metabolism status. We found that SNP4 (rs13199033) was associated with Glo1 expression (AA as reference, standardized beta AT = −0.29, p = 0.02 and TT = −0.39, p = 0.3). Similarly, SNP13 (rs3799703) was associated with Glo1 expression (GG as reference, standardized beta AG = 0.17, p = 0.14 and AA = 0.36, p = 0.005). After correction for multiple testing these associations were not significant. For the other SNPs, we observed no consistent associations over the different genotypes. Thus, polymorphisms of GLO1 were not associated with Glo1 expression or markers of MGO stress, suggesting that these SNPs are not functional, although activity/expression might be altered in other tissues.
Collapse
Affiliation(s)
- Kim Maasen
- Department of Internal Medicine, CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands; (K.M.); (C.J.H.v.d.K.); (C.D.A.S.); (M.M.J.v.G.)
| | - Nordin M. J. Hanssen
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centres, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands;
| | - Carla J. H. van der Kallen
- Department of Internal Medicine, CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands; (K.M.); (C.J.H.v.d.K.); (C.D.A.S.); (M.M.J.v.G.)
| | - Coen D. A. Stehouwer
- Department of Internal Medicine, CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands; (K.M.); (C.J.H.v.d.K.); (C.D.A.S.); (M.M.J.v.G.)
| | - Marleen M. J. van Greevenbroek
- Department of Internal Medicine, CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands; (K.M.); (C.J.H.v.d.K.); (C.D.A.S.); (M.M.J.v.G.)
| | - Casper G. Schalkwijk
- Department of Internal Medicine, CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands; (K.M.); (C.J.H.v.d.K.); (C.D.A.S.); (M.M.J.v.G.)
- Correspondence: ; Tel.: +31-43-388-2186
| |
Collapse
|
39
|
Dicarbonyl derived post-translational modifications: chemistry bridging biology and aging-related disease. Essays Biochem 2020; 64:97-110. [PMID: 31939602 DOI: 10.1042/ebc20190057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/17/2019] [Accepted: 12/19/2019] [Indexed: 01/17/2023]
Abstract
In living systems, nucleophilic amino acid residues are prone to non-enzymatic post-translational modification by electrophiles. α-Dicarbonyl compounds are a special type of electrophiles that can react irreversibly with lysine, arginine, and cysteine residues via complex mechanisms to form post-translational modifications known as advanced glycation end-products (AGEs). Glyoxal, methylglyoxal, and 3-deoxyglucosone are the major endogenous dicarbonyls, with methylglyoxal being the most well-studied. There are several routes that lead to the formation of dicarbonyl compounds, most originating from glucose and glucose metabolism, such as the non-enzymatic decomposition of glycolytic intermediates and fructosyl amines. Although dicarbonyls are removed continuously mainly via the glyoxalase system, several conditions lead to an increase in dicarbonyl concentration and thereby AGE formation. AGEs have been implicated in diabetes and aging-related diseases, and for this reason the elucidation of their structure as well as protein targets is of great interest. Though the dicarbonyls and reactive protein side chains are of relatively simple nature, the structures of the adducts as well as their mechanism of formation are not that trivial. Furthermore, detection of sites of modification can be demanding and current best practices rely on either direct mass spectrometry or various methods of enrichment based on antibodies or click chemistry followed by mass spectrometry. Future research into the structure of these adducts and protein targets of dicarbonyl compounds may improve the understanding of how the mechanisms of diabetes and aging-related physiological damage occur.
Collapse
|
40
|
Shen CY, Lu CH, Wu CH, Li KJ, Kuo YM, Hsieh SC, Yu CL. The Development of Maillard Reaction, and Advanced Glycation End Product (AGE)-Receptor for AGE (RAGE) Signaling Inhibitors as Novel Therapeutic Strategies for Patients with AGE-Related Diseases. Molecules 2020; 25:molecules25235591. [PMID: 33261212 PMCID: PMC7729569 DOI: 10.3390/molecules25235591] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/21/2020] [Accepted: 11/25/2020] [Indexed: 12/12/2022] Open
Abstract
Advanced glycation end products (AGEs) are generated by nonenzymatic modifications of macromolecules (proteins, lipids, and nucleic acids) by saccharides (glucose, fructose, and pentose) via Maillard reaction. The formed AGE molecules can be catabolized and cleared by glyoxalase I and II in renal proximal tubular cells. AGE-related diseases include physiological aging, neurodegenerative/neuroinflammatory diseases, diabetes mellitus (DM) and its complications, autoimmune/rheumatic inflammatory diseases, bone-degenerative diseases, and chronic renal diseases. AGEs, by binding to receptors for AGE (RAGEs), alter innate and adaptive immune responses to induce inflammation and immunosuppression via the generation of proinflammatory cytokines, reactive oxygen species (ROS), and reactive nitrogen intermediates (RNI). These pathological molecules cause vascular endothelial/smooth muscular/connective tissue-cell and renal mesangial/endothelial/podocytic-cell damage in AGE-related diseases. In the present review, we first focus on the cellular and molecular bases of AGE–RAGE axis signaling pathways in AGE-related diseases. Then, we discuss in detail the modes of action of newly discovered novel biomolecules and phytochemical compounds, such as Maillard reaction and AGE–RAGE signaling inhibitors. These molecules are expected to become the new therapeutic strategies for patients with AGE-related diseases in addition to the traditional hypoglycemic and anti-hypertensive agents. We particularly emphasize the importance of “metabolic memory”, the “French paradox”, and the pharmacokinetics and therapeutic dosing of the effective natural compounds associated with pharmacogenetics in the treatment of AGE-related diseases. Lastly, we propose prospective investigations for solving the enigmas in AGE-mediated pathological effects.
Collapse
Affiliation(s)
- Chieh-Yu Shen
- Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei 10002, Taiwan; (C.-Y.S.); (C.-H.L.); (C.-H.W.); (Y.-M.K.)
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10002, Taiwan;
| | - Cheng-Hsun Lu
- Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei 10002, Taiwan; (C.-Y.S.); (C.-H.L.); (C.-H.W.); (Y.-M.K.)
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10002, Taiwan;
| | - Cheng-Han Wu
- Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei 10002, Taiwan; (C.-Y.S.); (C.-H.L.); (C.-H.W.); (Y.-M.K.)
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10002, Taiwan;
| | - Ko-Jen Li
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10002, Taiwan;
| | - Yu-Min Kuo
- Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei 10002, Taiwan; (C.-Y.S.); (C.-H.L.); (C.-H.W.); (Y.-M.K.)
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10002, Taiwan;
| | - Song-Chou Hsieh
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10002, Taiwan;
- Correspondence: (S.-C.H.); (C.-L.Y.)
| | - Chia-Li Yu
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10002, Taiwan;
- Department of Internal Medicine, Kaohsiung Medical University College of Medicine, Kaohsiung 80756, Taiwan
- Correspondence: (S.-C.H.); (C.-L.Y.)
| |
Collapse
|
41
|
Aragonès G, Rowan S, G Francisco S, Yang W, Weinberg J, Taylor A, Bejarano E. Glyoxalase System as a Therapeutic Target against Diabetic Retinopathy. Antioxidants (Basel) 2020; 9:antiox9111062. [PMID: 33143048 PMCID: PMC7692619 DOI: 10.3390/antiox9111062] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/25/2020] [Accepted: 10/27/2020] [Indexed: 12/14/2022] Open
Abstract
Hyperglycemia, a defining characteristic of diabetes, combined with oxidative stress, results in the formation of advanced glycation end products (AGEs). AGEs are toxic compounds that have adverse effects on many tissues including the retina and lens. AGEs promote the formation of reactive oxygen species (ROS), which, in turn, boost the production of AGEs, resulting in positive feedback loops, a vicious cycle that compromises tissue fitness. Oxidative stress and the accumulation of AGEs are etiologically associated with the pathogenesis of multiple diseases including diabetic retinopathy (DR). DR is a devastating microvascular complication of diabetes mellitus and the leading cause of blindness in working-age adults. The onset and development of DR is multifactorial. Lowering AGEs accumulation may represent a potential therapeutic approach to slow this sight-threatening diabetic complication. To set DR in a physiological context, in this review we first describe relations between oxidative stress, formation of AGEs, and aging in several tissues of the eye, each of which is associated with a major age-related eye pathology. We summarize mechanisms of AGEs generation and anti-AGEs detoxifying systems. We specifically feature the potential of the glyoxalase system in the retina in the prevention of AGEs-associated damage linked to DR. We provide a comparative analysis of glyoxalase activity in different tissues from wild-type mice, supporting a major role for the glyoxalase system in the detoxification of AGEs in the retina, and present the manipulation of this system as a therapeutic strategy to prevent the onset of DR.
Collapse
Affiliation(s)
- Gemma Aragonès
- Laboratory for Nutrition and Vision Research, USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02155, USA; (G.A.); (S.R.); (S.G.F.); (W.Y.); (J.W.)
| | - Sheldon Rowan
- Laboratory for Nutrition and Vision Research, USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02155, USA; (G.A.); (S.R.); (S.G.F.); (W.Y.); (J.W.)
- Department of Ophthalmology, Tufts University School of Medicine, Boston, MA 02155, USA
- Friedman School of Nutrition and Science Policy, Tufts University, Boston, MA 02155, USA
| | - Sarah G Francisco
- Laboratory for Nutrition and Vision Research, USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02155, USA; (G.A.); (S.R.); (S.G.F.); (W.Y.); (J.W.)
| | - Wenxin Yang
- Laboratory for Nutrition and Vision Research, USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02155, USA; (G.A.); (S.R.); (S.G.F.); (W.Y.); (J.W.)
| | - Jasper Weinberg
- Laboratory for Nutrition and Vision Research, USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02155, USA; (G.A.); (S.R.); (S.G.F.); (W.Y.); (J.W.)
| | - Allen Taylor
- Laboratory for Nutrition and Vision Research, USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02155, USA; (G.A.); (S.R.); (S.G.F.); (W.Y.); (J.W.)
- Department of Ophthalmology, Tufts University School of Medicine, Boston, MA 02155, USA
- Friedman School of Nutrition and Science Policy, Tufts University, Boston, MA 02155, USA
- Correspondence: (A.T.); (E.B.); Tel.: +617-556-3156 (A.T.)
| | - Eloy Bejarano
- Laboratory for Nutrition and Vision Research, USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02155, USA; (G.A.); (S.R.); (S.G.F.); (W.Y.); (J.W.)
- Universidad Cardenal Herrera-CEU, CEU Universities, 46115 Valencia, Spain
- Correspondence: (A.T.); (E.B.); Tel.: +617-556-3156 (A.T.)
| |
Collapse
|
42
|
Morgenstern J, Campos Campos M, Nawroth P, Fleming T. The Glyoxalase System-New Insights into an Ancient Metabolism. Antioxidants (Basel) 2020; 9:antiox9100939. [PMID: 33019494 PMCID: PMC7600140 DOI: 10.3390/antiox9100939] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 02/07/2023] Open
Abstract
The glyoxalase system was discovered over a hundred years ago and since then it has been claimed to provide the role of an indispensable enzyme system in order to protect cells from a toxic byproduct of glycolysis. This review gives a broad overview of what has been postulated in the last 30 years of glyoxalase research, but within this context it also challenges the concept that the glyoxalase system is an exclusive tool of detoxification and that its substrate, methylglyoxal, is solely a detrimental burden for every living cell due to its toxicity. An overview of consequences of a complete loss of the glyoxalase system in various model organisms is presented with an emphasis on the role of alternative detoxification pathways of methylglyoxal. Furthermore, this review focuses on the overlooked posttranslational modification of Glyoxalase 1 and its possible implications for cellular maintenance under various (patho-)physiological conditions. As a final note, an intriguing point of view for the substrate methylglyoxal is offered, the concept of methylglyoxal (MG)-mediated hormesis.
Collapse
Affiliation(s)
- Jakob Morgenstern
- Department of Internal Medicine I and Clinical Chemistry, University Hospital Heidelberg, 69120 Heidelberg, Germany; (M.C.C.); (P.N.); (T.F.)
- Correspondence:
| | - Marta Campos Campos
- Department of Internal Medicine I and Clinical Chemistry, University Hospital Heidelberg, 69120 Heidelberg, Germany; (M.C.C.); (P.N.); (T.F.)
| | - Peter Nawroth
- Department of Internal Medicine I and Clinical Chemistry, University Hospital Heidelberg, 69120 Heidelberg, Germany; (M.C.C.); (P.N.); (T.F.)
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
- Institute for Diabetes and Cancer at Helmholtz Zentrum Munich, 85764 Neuherberg, Germany
| | - Thomas Fleming
- Department of Internal Medicine I and Clinical Chemistry, University Hospital Heidelberg, 69120 Heidelberg, Germany; (M.C.C.); (P.N.); (T.F.)
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| |
Collapse
|
43
|
Salt-Tolerant Phenomena, Sequencing and Characterization of a Glyoxalase I ( Jojo-Gly I) Gene from Jojoba in Comparison with Other Glyoxalase I Genes. PLANTS 2020; 9:plants9101285. [PMID: 33003277 PMCID: PMC7601343 DOI: 10.3390/plants9101285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 09/10/2020] [Accepted: 09/16/2020] [Indexed: 11/17/2022]
Abstract
Plant response to salt stress and the mechanism of salt tolerance have received major focus by plant biology researchers. Biotic stresses cause extensive losses in agricultural production globally, but abiotic stress causes significant increase in the methylglyoxal (MG) level of GlyoxalaseI (Gly I). Identification of salt-tolerant genes when characterizing their phenotypes will help to identify novel genes using polymerase chain reaction (PCR) to amplify the DNA coding region for glyoxalase I. This method is specific, requiring only genomic DNA and two pairs of PCR primers, and involving two successive PCR reactions. This method was used rapidly and easily identified glyoxalase I sequences as salt-tolerant genes from Jojoba (Simmondsia chinensis (Link) Schneider). In the present study, the glyoxalase I gene was isolated, amplified by PCR using gene-specific primers and sequenced from the jojoba plant, then compared with other glyoxalase I sequences in other plants and glyoxalase I genes like in Brassica napus, ID: KT720495.1; Brassica juncea ID: Y13239.1, Arachis hypogaea; ID: DQ989209.2; and Arabidopsis thaliana L, ID: AAL84986. The structural gene of glyoxalase I, when sequenced and analyzed, revealed that the uninterrupted open reading frame (ORF) of jojoba Gly I (Jojo-Gly I) spans 775 bp, corresponding to 185 amino acid residues, and shares 45.2% amino acid sequence identity to jojoba (Jojo-Gly I). The cloned ORF, in a multicopy constitutive expression plasmid, complemented the Jojo-Gly I, confirming that the encoded Jojo-Gly I in jojoba showed some homology with other known glyoxalase I sequences of plants.
Collapse
|
44
|
Zhu X, Liu H, Liu Y, Chen Y, Liu Y, Yin X. The Antidepressant-Like Effects of Hesperidin in Streptozotocin-Induced Diabetic Rats by Activating Nrf2/ARE/Glyoxalase 1 Pathway. Front Pharmacol 2020; 11:1325. [PMID: 32982741 PMCID: PMC7485173 DOI: 10.3389/fphar.2020.01325] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 08/10/2020] [Indexed: 01/16/2023] Open
Abstract
The co-occurrence of diabetes and depression is a challenging and underrecognized clinical problem. Alpha-carbonyl aldehydes and their detoxifying enzyme glyoxalase 1 (Glo-1) play vital roles in the pathogenesis of diabetic complications, including depression. Hesperidin, a naturally occurring flavanone glycoside, possesses numerous pharmacological properties, but neuroprotection by hesperidin in depression-like behaviors in diabetes was not observed. This study aimed to investigate the mechanisms and signaling pathways by which hesperidin regulates depression-like behaviors in diabetic rats and to identify potential targets of hesperidin. Rats with streptozotocin-induced diabetes were treated orally with hesperidin (50 and 150 mg/kg) or the nuclear factor erythroid 2-related factor 2 (Nrf2) inducer tert-butylhydroquinone (TBHQ, 25 mg/kg) for 10 weeks. After behavioral test, the brains were collected to evaluate the effects of hesperidin on Glo-1, Nrf2, protein glycation, and oxidative stress. Hesperidin showed antidepressant and anxiolytic effects in diabetic rats, as evidenced by the decreased immobility time in the forced swimming test, increased time spent in the center area of the open field test, and increased percentage of open-arm entries and time spent in the open arms in the elevated plus maze, as well as by the enhancement of Glo-1 and the inhibition of the AGEs/RAGE axis and oxidative stress in the brain. In addition, hesperidin caused significant increases in the Nrf2 levels and upregulated γ-glutamylcysteine synthetase, a well-known target gene of Nrf2/ARE signaling. In vitro, the effects of hesperidin on N2a cell injury caused by high glucose (HG) was assessed by MTT and LDH, and the effects on Nrf2 signaling were also assessed. We found that the Nrf2 inhibitor ML385 reversed the protective effects of hesperidin on the cell injury induced by HG. Hesperidin prevented the HG-induced reduction in the Nrf2 and Glo-1 levels, and ML385 reversed the effects of hesperidin on the expression of the proteins mentioned above, indicating that Nrf2 signaling is involved in the hesperidin-induced neuroprotective effects. Our findings indicate that the effects of hesperidin on ameliorating the depression- and anxiety-like behaviors of diabetic rats, which are mediated by the enhancement of Glo-1, may be due to the activation of the Nrf2/ARE pathway.
Collapse
Affiliation(s)
- Xia Zhu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Haiyan Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Yuan Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Yajing Chen
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Yaowu Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Xiaoxing Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
45
|
Senatus L, López-Díez R, Egaña-Gorroño L, Liu J, Hu J, Daffu G, Li Q, Rahman K, Vengrenyuk Y, Barrett TJ, Dewan MZ, Guo L, Fuller D, Finn AV, Virmani R, Li H, Friedman RA, Fisher EA, Ramasamy R, Schmidt AM. RAGE impairs murine diabetic atherosclerosis regression and implicates IRF7 in macrophage inflammation and cholesterol metabolism. JCI Insight 2020; 5:137289. [PMID: 32641587 PMCID: PMC7406264 DOI: 10.1172/jci.insight.137289] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/21/2020] [Indexed: 12/27/2022] Open
Abstract
Despite advances in lipid-lowering therapies, people with diabetes continue to experience more limited cardiovascular benefits. In diabetes, hyperglycemia sustains inflammation and preempts vascular repair. We tested the hypothesis that the receptor for advanced glycation end-products (RAGE) contributes to these maladaptive processes. We report that transplantation of aortic arches from diabetic, Western diet-fed Ldlr-/- mice into diabetic Ager-/- (Ager, the gene encoding RAGE) versus WT diabetic recipient mice accelerated regression of atherosclerosis. RNA-sequencing experiments traced RAGE-dependent mechanisms principally to the recipient macrophages and linked RAGE to interferon signaling. Specifically, deletion of Ager in the regressing diabetic plaques downregulated interferon regulatory factor 7 (Irf7) in macrophages. Immunohistochemistry studies colocalized IRF7 and macrophages in both murine and human atherosclerotic plaques. In bone marrow-derived macrophages (BMDMs), RAGE ligands upregulated expression of Irf7, and in BMDMs immersed in a cholesterol-rich environment, knockdown of Irf7 triggered a switch from pro- to antiinflammatory gene expression and regulated a host of genes linked to cholesterol efflux and homeostasis. Collectively, this work adds a new dimension to the immunometabolic sphere of perturbations that impair regression of established diabetic atherosclerosis and suggests that targeting RAGE and IRF7 may facilitate vascular repair in diabetes.
Collapse
Affiliation(s)
- Laura Senatus
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine
| | - Raquel López-Díez
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine
| | - Lander Egaña-Gorroño
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine
| | - Jianhua Liu
- Marc and Ruti Bell Program in Vascular Biology, Leon H. Charney Division of Cardiology, Department of Medicine
| | - Jiyuan Hu
- Division of Biostatistics, Department of Population Health, and Department of Environmental Medicine, and
| | - Gurdip Daffu
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine
| | - Qing Li
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine
| | - Karishma Rahman
- Marc and Ruti Bell Program in Vascular Biology, Leon H. Charney Division of Cardiology, Department of Medicine
| | - Yuliya Vengrenyuk
- Marc and Ruti Bell Program in Vascular Biology, Leon H. Charney Division of Cardiology, Department of Medicine
| | - Tessa J. Barrett
- Marc and Ruti Bell Program in Vascular Biology, Leon H. Charney Division of Cardiology, Department of Medicine
| | - M. Zahidunnabi Dewan
- Experimental Pathology Research Laboratory, Department of Pathology, New York University (NYU) Langone Medical Center, New York, New York, USA
| | - Liang Guo
- CVPath Institute, Gaithersburg, Maryland, USA
| | | | | | | | - Huilin Li
- Division of Biostatistics, Department of Population Health, and Department of Environmental Medicine, and
| | - Richard A. Friedman
- Biomedical Informatics Shared Resource, Herbert Irving Comprehensive Cancer Center, and Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, New York, USA
| | - Edward A. Fisher
- Marc and Ruti Bell Program in Vascular Biology, Leon H. Charney Division of Cardiology, Department of Medicine
| | - Ravichandran Ramasamy
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine
| | - Ann Marie Schmidt
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine
| |
Collapse
|
46
|
Suantawee T, Thilavech T, Cheng H, Adisakwattana S. Cyanidin Attenuates Methylglyoxal-Induced Oxidative Stress and Apoptosis in INS-1 Pancreatic β-Cells by Increasing Glyoxalase-1 Activity. Nutrients 2020; 12:nu12051319. [PMID: 32384625 PMCID: PMC7284759 DOI: 10.3390/nu12051319] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/28/2020] [Accepted: 05/02/2020] [Indexed: 02/07/2023] Open
Abstract
Recently, the mechanisms responsible for anti-glycation activity of cyanidin and its derivatives on the inhibition of methylglyoxal (MG)-induced protein glycation and advanced glycation-end products (AGEs) as well as oxidative DNA damage were reported. In this study, we investigated the protective effect of cyanidin against MG-induced oxidative stress and apoptosis in rat INS-1 pancreatic β-cells. Exposure of cells to cytotoxic levels of MG (500 µM) for 12 h caused a significant reduction in cell viability. However, the pretreatment of cells with cyanidin alone (6.25–100 μM) for 12 h, or cotreatment of cells with cyanidin (3.13–100 μM) and MG, protected against cell cytotoxicity. In the cotreatment condition, cyanidin (33.3 and 100 μM) also decreased MG-induced apoptosis as determined by caspase-3 activity. Furthermore, INS-1 cells treated with MG increased the generation of reactive oxygen species (ROS) during a 6 h exposure. The MG-induced increase in ROS production was inhibited by cyanidin (33.3 and 100 μM) after 3 h stimulation. Furthermore, MG diminished the activity of glyoxalase 1 (Glo-1) and its gene expression as well as the level of total glutathione. In contrast, cyanidin reversed the inhibitory effect of MG on Glo-1 activity and glutathione levels. Interestingly, cyanidin alone was capable of increasing Glo-1 activity and glutathione levels without affecting Glo-1 mRNA expression. These findings suggest that cyanidin exerts a protective effect against MG-induced oxidative stress and apoptosis in pancreatic β-cells by increasing the activity of Glo-1.
Collapse
Affiliation(s)
- Tanyawan Suantawee
- Program in Biomedical Sciences, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand;
- Phytochemical and Functional Food Research Unit for Clinical Nutrition, Department of Nutrition and Dietetics, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Thavaree Thilavech
- Department of Food Chemistry, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand;
| | - Henrique Cheng
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA;
| | - Sirichai Adisakwattana
- Phytochemical and Functional Food Research Unit for Clinical Nutrition, Department of Nutrition and Dietetics, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: ; Tel.: +662-218-1099 (ext. 111)
| |
Collapse
|
47
|
Pekel G, Ari F. Therapeutic Targeting of Cancer Metabolism with Triosephosphate Isomerase. Chem Biodivers 2020; 17:e2000012. [PMID: 32180338 DOI: 10.1002/cbdv.202000012] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 03/16/2020] [Indexed: 01/25/2023]
Abstract
The increase in glycolytic flux in cancer, known as aerobic glycolysis, is one of the most important hallmarks of cancer. Therefore, glycolytic enzymes have importance in understanding the molecular mechanism of cancer progression. Triosephosphate isomerase (TPI) is one of the key glycolytic enzymes. Furthermore, it takes a part in gluconeogenesis, pentose phosphate pathway and fatty acid biosynthesis. To date, it has been shown altered levels of TPI in various cancer types, especially in metastatic phenotype. According to other studies, TPI might be considered as a potential therapeutic target and a cancer-related biomarker in different types of cancer. However, its function in tumor formation and development has not been fully understood. Here, we reviewed the relationship between TPI and cancer for the first time.
Collapse
Affiliation(s)
- Gonca Pekel
- Department of Biology, Science and Art Faculty, Bursa Uludag University, 16059, Nilüfer, Bursa, Turkey
| | - Ferda Ari
- Department of Biology, Science and Art Faculty, Bursa Uludag University, 16059, Nilüfer, Bursa, Turkey
| |
Collapse
|
48
|
Murali A, Krishnakumar S, Subramanian A, Parameswaran S. Bruch's membrane pathology: A mechanistic perspective. Eur J Ophthalmol 2020; 30:1195-1206. [PMID: 32345040 DOI: 10.1177/1120672120919337] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Bruch's membrane, an extracellular matrix located between the retinal pigment epithelium and the choroid, plays a vital role as structural and functional support to the retinal pigment epithelium. Dysfunction of Bruch's membrane in both age-related macular degeneration and other ocular diseases is caused mostly by extracellular matrix degeneration, deposit formation, and angiogenesis. Although these factors are dealt in greater detail with respect to the cells that are degenerated such as the retinal pigment epithelium and the endothelial cells, the pathology involving the Bruch's membrane is often underrated. Since in most of the macular degenerations early degenerative changes are also observed in the Bruch's membrane, addressing only the cellular component without the underlying membrane will not yield an ideal clinical benefit. This review aims to discuss the factors and the mechanisms affecting the integrity of the Bruch's membrane, which would aid in developing an effective therapy for these pathologies.
Collapse
Affiliation(s)
- Aishwarya Murali
- Radheshyam Kanoi Stem Cell Laboratory, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Vision Research Foundation, Chennai, India
| | - Subramanian Krishnakumar
- Radheshyam Kanoi Stem Cell Laboratory, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Vision Research Foundation, Chennai, India
| | - Anuradha Subramanian
- Centre for Nanotechnology & Advanced Biomaterials, School of Chemical & Biotechnology, SASTRA University, Thanjavur, India
| | - Sowmya Parameswaran
- Radheshyam Kanoi Stem Cell Laboratory, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Vision Research Foundation, Chennai, India
| |
Collapse
|
49
|
Zunkel K, Simm A, Bartling B. Long-term intake of the reactive metabolite methylglyoxal is not toxic in mice. Food Chem Toxicol 2020; 141:111333. [PMID: 32298726 DOI: 10.1016/j.fct.2020.111333] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/13/2020] [Accepted: 04/08/2020] [Indexed: 01/09/2023]
Abstract
Reactive carbonyls, including methylglyoxal (MG), are considered toxic compounds in foodstuffs because they irreversibly modify proteins and produce advanced glycation end products (AGEs). Therefore, we studied the long-term effect of increased MG intake in mature adult mice. Six-month-old C57BL/6N mice received MG by drinking water (2.5 mg/ml; i.e., 200-300 mg/kg BW/d) until death. This treatment caused an immediate strong increase in urine MG and a delayed moderate increase in plasma MG. At 24 months of age, mice administered MG showed no changes in the blood and tissue activity of glyoxalase-1 (Glo1), an intracellular MG-detoxifying enzyme; no signs of renal insufficiency and diabetes, including unchanged AGE modifications of plasma and vessel proteins; reduced tumour incidence; and slightly increased survival. Mice simultaneously deficient in the receptor for AGEs (RAGE) and overexpressing Glo1 exhibited higher basal plasma MG levels and did generally not respond to long-term MG intake. In vitro experiments supported the minor relevance of Glo1 in the detoxification of circulating MG but the important role of plasma albumin as an MG scavenger. In conclusion, the detoxification of dietary MG through renal excretion and further mechanisms largely prevents the toxicity of MG and possibly other food-derived reactive carbonyls in mature adults.
Collapse
Affiliation(s)
- Katja Zunkel
- Department of Cardiac Surgery, Mid-German Heart Centre, University Hospital Halle (Saale), Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Andreas Simm
- Department of Cardiac Surgery, Mid-German Heart Centre, University Hospital Halle (Saale), Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Babett Bartling
- Department of Cardiac Surgery, Mid-German Heart Centre, University Hospital Halle (Saale), Martin Luther University Halle-Wittenberg, Halle (Saale), Germany; Department of Animal Health Management, Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.
| |
Collapse
|
50
|
Patel DM, Bose M, Cooper ME. Glucose and Blood Pressure-Dependent Pathways-The Progression of Diabetic Kidney Disease. Int J Mol Sci 2020; 21:ijms21062218. [PMID: 32210089 PMCID: PMC7139394 DOI: 10.3390/ijms21062218] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/17/2020] [Accepted: 03/17/2020] [Indexed: 12/11/2022] Open
Abstract
The major clinical associations with the progression of diabetic kidney disease (DKD) are glycemic control and systemic hypertension. Recent studies have continued to emphasize vasoactive hormone pathways including aldosterone and endothelin which suggest a key role for vasoconstrictor pathways in promoting renal damage in diabetes. The role of glucose per se remains difficult to define in DKD but appears to involve key intermediates including reactive oxygen species (ROS) and dicarbonyls such as methylglyoxal which activate intracellular pathways to promote fibrosis and inflammation in the kidney. Recent studies have identified a novel molecular interaction between hemodynamic and metabolic pathways which could lead to new treatments for DKD. This should lead to a further improvement in the outlook of DKD building on positive results from RAAS blockade and more recently newer classes of glucose-lowering agents such as SGLT2 inhibitors and GLP1 receptor agonists.
Collapse
Affiliation(s)
- Devang M. Patel
- Department of Diabetes, Monash University Central, Clinical School, Melbourne, VIC 3004, Australia;
- Correspondence: (D.M.P.); (M.E.C.)
| | - Madhura Bose
- Department of Diabetes, Monash University Central, Clinical School, Melbourne, VIC 3004, Australia;
| | - Mark E. Cooper
- Department of Diabetes, Monash University Central, Clinical School, Melbourne, VIC 3004, Australia;
- Department of Endocrinology and Diabetes, The Alfred Hospital, Melbourne, VIC 3004, Australia
- Correspondence: (D.M.P.); (M.E.C.)
| |
Collapse
|