1
|
HIV-Related Immune Activation and Inflammation: Current Understanding and Strategies. J Immunol Res 2021; 2021:7316456. [PMID: 34631899 PMCID: PMC8494587 DOI: 10.1155/2021/7316456] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/20/2021] [Indexed: 02/07/2023] Open
Abstract
Although antiretroviral therapy effectively controls human immunodeficiency virus (HIV) replication, a residual chronic immune activation/inflammation persists throughout the disease. This aberrant immune activation and inflammation are considered an accelerator of non-AIDS-related events and one of the driving forces of CD4+ T cell depletion. Unfortunately, HIV-associated immune activation is driven by various factors, while the mechanism of excessive inflammation has not been formally clarified. To date, several clinical interventions or treatment candidates undergoing clinical trials have been proposed to combat this systemic immune activation/inflammation. However, these strategies revealed limited results, or their nonspecific anti-inflammatory properties are similar to previous interventions. Here, we reviewed recent learnings of immune activation and persisting inflammation associated with HIV infection, as well as the current directions to overcome it. Of note, a more profound understanding of the specific mechanisms for aberrant inflammation is still imperative for identifying an effective clinical intervention strategy.
Collapse
|
2
|
Devaux CA, Melenotte C, Piercecchi-Marti MD, Delteil C, Raoult D. Cyclosporin A: A Repurposable Drug in the Treatment of COVID-19? Front Med (Lausanne) 2021; 8:663708. [PMID: 34552938 PMCID: PMC8450353 DOI: 10.3389/fmed.2021.663708] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 08/04/2021] [Indexed: 12/22/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is now at the forefront of major health challenge faced globally, creating an urgent need for safe and efficient therapeutic strategies. Given the high attrition rates, high costs, and quite slow development of drug discovery, repurposing of known FDA-approved molecules is increasingly becoming an attractive issue in order to quickly find molecules capable of preventing and/or curing COVID-19 patients. Cyclosporin A (CsA), a common anti-rejection drug widely used in transplantation, has recently been shown to exhibit substantial anti-SARS-CoV-2 antiviral activity and anti-COVID-19 effect. Here, we review the molecular mechanisms of action of CsA in order to highlight why this molecule seems to be an interesting candidate for the therapeutic management of COVID-19 patients. We conclude that CsA could have at least three major targets in COVID-19 patients: (i) an anti-inflammatory effect reducing the production of proinflammatory cytokines, (ii) an antiviral effect preventing the formation of the viral RNA synthesis complex, and (iii) an effect on tissue damage and thrombosis by acting against the deleterious action of angiotensin II. Several preliminary CsA clinical trials performed on COVID-19 patients report lower incidence of death and suggest that this strategy should be investigated further in order to assess in which context the benefit/risk ratio of repurposing CsA as first-line therapy in COVID-19 is the most favorable.
Collapse
Affiliation(s)
- Christian A. Devaux
- Aix-Marseille Univ, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France
- CNRS, Marseille, France
| | - Cléa Melenotte
- Aix-Marseille Univ, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France
| | - Marie-Dominique Piercecchi-Marti
- Department of Legal Medicine, Hôpital de la Timone, Marseille University Hospital Center, Marseille, France
- Aix Marseille Univ, CNRS, EFS, ADES, Marseille, France
| | - Clémence Delteil
- Department of Legal Medicine, Hôpital de la Timone, Marseille University Hospital Center, Marseille, France
- Aix Marseille Univ, CNRS, EFS, ADES, Marseille, France
| | - Didier Raoult
- Aix-Marseille Univ, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France
| |
Collapse
|
3
|
Zhang Y, Jiang T, Li A, Li Z, Hou J, Gao M, Huang X, Su B, Wu H, Zhang T, Jiang W. Adjunct Therapy for CD4 + T-Cell Recovery, Inflammation and Immune Activation in People Living With HIV: A Systematic Review and Meta-Analysis. Front Immunol 2021; 12:632119. [PMID: 33679779 PMCID: PMC7925844 DOI: 10.3389/fimmu.2021.632119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 01/22/2021] [Indexed: 01/21/2023] Open
Abstract
Background: HIV infection results in immune homeostasis perturbations, which is characterized by CD4+ T-cell depletion, immune activation, and inflammation. Effective antiretroviral therapy (ART) does not fully restore immunologic and clinical health in people living with HIV (PLWH). Various drugs have been used to improve their immune status and CD4+ T-cell counts, but no measures have been tested effective. Here we conduct a systematic review and meta-analysis of existing clinical studies on improving CD4+ T-cell count while decreasing inflammation and immune activation. Methods: We retrieved possible relevant publications from a total of five electronic databases and selected eligible studies, which dealt with outcomes of medical therapy for CD4+ T-cell count recovery, inflammation, and immune activation with or without ART. We paid particular attention to immunologic non-responders with a favorable treatment regimen. Results: Thirty-three articles were included in the systematic review and meta-analysis. However, there were no safe and effective medications specific for improving CD4+ T-cell reconstitution. The immunological benefits or adverse events mainly depend on the safety, dosage, and duration of the candidate medication use, as well as whether it is combined with ART. Conclusion: Under the “safe, combined, adequate and long (SCAL)” principles, alternative approaches are needed to accelerate the recovery of CD4+ T-cells, and to prevent adverse long-term outcomes in PLWH with standard ART treatment.
Collapse
Affiliation(s)
- Yang Zhang
- Center for Infectious Diseases, Beijing YouAn Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of AIDS Research, Beijing, China.,Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
| | - Taiyi Jiang
- Center for Infectious Diseases, Beijing YouAn Hospital, Capital Medical University, Beijing, China
| | - Aixin Li
- Center for Infectious Diseases, Beijing YouAn Hospital, Capital Medical University, Beijing, China
| | - Zhen Li
- Center for Infectious Diseases, Beijing YouAn Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of AIDS Research, Beijing, China
| | - Jianhua Hou
- Center for Infectious Diseases, Beijing YouAn Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of AIDS Research, Beijing, China
| | - Meixia Gao
- Center for Infectious Diseases, Beijing YouAn Hospital, Capital Medical University, Beijing, China
| | - Xiaojie Huang
- Center for Infectious Diseases, Beijing YouAn Hospital, Capital Medical University, Beijing, China
| | - Bin Su
- Center for Infectious Diseases, Beijing YouAn Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of AIDS Research, Beijing, China
| | - Hao Wu
- Center for Infectious Diseases, Beijing YouAn Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of AIDS Research, Beijing, China
| | - Tong Zhang
- Center for Infectious Diseases, Beijing YouAn Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of AIDS Research, Beijing, China
| | - Wei Jiang
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States.,Division of Infectious Diseases, Department of Medicine, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
4
|
Pediatric HIV: the Potential of Immune Therapeutics to Achieve Viral Remission and Functional Cure. Curr HIV/AIDS Rep 2020; 17:237-248. [PMID: 32356090 DOI: 10.1007/s11904-020-00495-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
PURPOSE OF REVIEW In the absence of antiretroviral therapy (ART), more than 50% of perinatally HIV-infected children die by 2 years of age. Early ART from infancy is therefore a global recommendation and significantly improves immune health, child survival, and disease outcome. However, even early treatment does not prevent or eradicate the latent reservoir necessitating life-long ART. Adherence to life-long ART is challenging for children and longstanding ART during chronic HIV infection led to higher risks of non-AIDS co-morbidities and virologic failure in infected children. Thus, HIV-infected children are an important population for consideration for immune-based interventions to achieve ART-free remission and functional cure. This review summarizes how the uniqueness of the early life immune system can be harnessed for the development of ART-free remission and functional cure, which means complete virus control in absence of ART. In addition, recent advances in therapeutics in the HIV cure field and their potential for the treatment of pediatric HIV infections are discussed. RECENT FINDINGS Preclinical studies and clinical trials demonstrated that immune-based interventions target HIV replication, limit size of virus reservoir, maintain virus suppression, and delay time to virus rebound. However, these studies have been performed so far only in carefully selected HIV-infected adults, highlighting the need to evaluate the efficacy of immune-based therapeutics in HIV-infected children and to design interventions tailored to the early life maturing immune system. Immune-based therapeutics alone or in combination with ART should be actively explored as potential strategies to achieve viral remission and functional cure in HIV-infected pediatric populations.
Collapse
|
5
|
Cavagna L, Seminari E, Zanframundo G, Gregorini M, Di Matteo A, Rampino T, Montecucco C, Pelenghi S, Cattadori B, Pattonieri EF, Vitulo P, Bertani A, Sambataro G, Vancheri C, Biglia A, Bozzalla-Cassione E, Bonetto V, Monti MC, Ticozzelli E, Turco A, Oggionni T, Corsico A, Bertuccio F, Zuccaro V, Codullo V, Morosini M, Marena C, Gnecchi M, Pellegrini C, Meloni F. Calcineurin Inhibitor-Based Immunosuppression and COVID-19: Results from a Multidisciplinary Cohort of Patients in Northern Italy. Microorganisms 2020; 8:E977. [PMID: 32629788 PMCID: PMC7409165 DOI: 10.3390/microorganisms8070977] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/27/2020] [Accepted: 06/28/2020] [Indexed: 12/23/2022] Open
Abstract
The role of immunosuppression in SARS-CoV-2-related disease (COVID-19) is a matter of debate. We here describe the course and the outcome of COVID-19 in a cohort of patients undergoing treatment with calcineurin inhibitors. In this monocentric cohort study, data were collected from the COVID-19 outbreak in Italy up to April 28th 2020. Patients were followed at our hospital for solid organ transplantation or systemic rheumatic disorders (RMDs) and were on calcineurin inhibitor (CNI)-based therapy. Selected patients were referred from the North of Italy. The aim of our study was to evaluate the clinical course of COVID-19 in this setting. We evaluated 385 consecutive patients (220 males, 57%; median age 61 years, IQR 48-69); 331 (86%) received solid organ transplantation and 54 (14%) had a RMD. CNIs were the only immunosuppressant administered in 47 patients (12%). We identified 14 (4%) COVID-19 patients, all transplanted, mainly presenting with fever (86%) and diarrhea (71%). Twelve patients were hospitalized and two of them died, both with severe comorbidities. No patients developed acute respiratory distress syndrome or infectious complications. The surviving 10 patients are now fully recovered. The clinical course of COVID-19 patients on CNIs is generally mild, and the risk of superinfection seems low.
Collapse
Affiliation(s)
- Lorenzo Cavagna
- Rheumatology Division, University of Pavia and IRCCS Policlinico S. Matteo Foundation of Pavia, 27100 Pavia, Italy; (G.Z.); (C.M.); (A.B.); (E.B.-C.); (V.C.)
| | - Elena Seminari
- Infectious Diseases Clinic, University of Pavia and IRCCS Policlinico S. Matteo Foundation, 27100 Pavia, Italy; (E.S.); (A.D.M.); (V.Z.)
| | - Giovanni Zanframundo
- Rheumatology Division, University of Pavia and IRCCS Policlinico S. Matteo Foundation of Pavia, 27100 Pavia, Italy; (G.Z.); (C.M.); (A.B.); (E.B.-C.); (V.C.)
| | - Marilena Gregorini
- Nephrology, Dialysis and Transplantation Unit, University of Pavia and IRCCS Policlinico S. Matteo Foundation of Pavia, 27100 Pavia, Italy; (M.G.); (T.R.); (E.F.P.)
| | - Angela Di Matteo
- Infectious Diseases Clinic, University of Pavia and IRCCS Policlinico S. Matteo Foundation, 27100 Pavia, Italy; (E.S.); (A.D.M.); (V.Z.)
| | - Teresa Rampino
- Nephrology, Dialysis and Transplantation Unit, University of Pavia and IRCCS Policlinico S. Matteo Foundation of Pavia, 27100 Pavia, Italy; (M.G.); (T.R.); (E.F.P.)
| | - Carlomaurizio Montecucco
- Rheumatology Division, University of Pavia and IRCCS Policlinico S. Matteo Foundation of Pavia, 27100 Pavia, Italy; (G.Z.); (C.M.); (A.B.); (E.B.-C.); (V.C.)
| | - Stefano Pelenghi
- Division of Cardiac Surgery, IRCCS Policlinico S. Matteo Foundation of Pavia, 27100 Pavia, Italy; (S.P.); (B.C.); (C.P.)
| | - Barbara Cattadori
- Division of Cardiac Surgery, IRCCS Policlinico S. Matteo Foundation of Pavia, 27100 Pavia, Italy; (S.P.); (B.C.); (C.P.)
| | - Eleonora Francesca Pattonieri
- Nephrology, Dialysis and Transplantation Unit, University of Pavia and IRCCS Policlinico S. Matteo Foundation of Pavia, 27100 Pavia, Italy; (M.G.); (T.R.); (E.F.P.)
| | - Patrizio Vitulo
- Pulmonology Unit, IRCCS Istituto Mediterraneo Trapianti e Terapie ad Alta Specializzazione (ISMETT), 90100 Palermo, Italy;
| | - Alessandro Bertani
- Thoracic Surgery Unit, IRCCS Istituto Mediterraneo Trapianti e Terapie ad Alta Specializzazione (ISMETT), 90100 Palermo, Italy;
| | - Gianluca Sambataro
- Regional Referral Centre for Rare Lung Diseases, A. O. U. “Policlinico-Vittorio Emanuele” Department of Clinical and Experimental Medicine, University of Catania, 95125 Catania, Italy; (G.S.); (C.V.)
| | - Carlo Vancheri
- Regional Referral Centre for Rare Lung Diseases, A. O. U. “Policlinico-Vittorio Emanuele” Department of Clinical and Experimental Medicine, University of Catania, 95125 Catania, Italy; (G.S.); (C.V.)
| | - Alessandro Biglia
- Rheumatology Division, University of Pavia and IRCCS Policlinico S. Matteo Foundation of Pavia, 27100 Pavia, Italy; (G.Z.); (C.M.); (A.B.); (E.B.-C.); (V.C.)
| | - Emanuele Bozzalla-Cassione
- Rheumatology Division, University of Pavia and IRCCS Policlinico S. Matteo Foundation of Pavia, 27100 Pavia, Italy; (G.Z.); (C.M.); (A.B.); (E.B.-C.); (V.C.)
| | - Valentina Bonetto
- Department of Biochemistry and Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy;
| | - Maria Cristina Monti
- Department of Public Health, Unit of Biostatistics and Clinical Epidemiology, University of Pavia, 27100 Pavia, Italy;
| | - Elena Ticozzelli
- General Surgery Unit, IRCCS Policlinico S. Matteo Foundation of Pavia, 27100 Pavia, Italy;
| | - Annalisa Turco
- Cardiology Department, IRCCS Policlinico S. Matteo Foundation of Pavia, 27100 Pavia, Italy;
| | - Tiberio Oggionni
- Department of Respiratory Diseases, University of Pavia and IRCCS Policlinico S. Matteo Foundation of Pavia, 27100 Pavia, Italy; (T.O.); (A.C.); (F.B.); (M.M.); (F.M.)
| | - Angelo Corsico
- Department of Respiratory Diseases, University of Pavia and IRCCS Policlinico S. Matteo Foundation of Pavia, 27100 Pavia, Italy; (T.O.); (A.C.); (F.B.); (M.M.); (F.M.)
| | - Francesco Bertuccio
- Department of Respiratory Diseases, University of Pavia and IRCCS Policlinico S. Matteo Foundation of Pavia, 27100 Pavia, Italy; (T.O.); (A.C.); (F.B.); (M.M.); (F.M.)
| | - Valentina Zuccaro
- Infectious Diseases Clinic, University of Pavia and IRCCS Policlinico S. Matteo Foundation, 27100 Pavia, Italy; (E.S.); (A.D.M.); (V.Z.)
| | - Veronica Codullo
- Rheumatology Division, University of Pavia and IRCCS Policlinico S. Matteo Foundation of Pavia, 27100 Pavia, Italy; (G.Z.); (C.M.); (A.B.); (E.B.-C.); (V.C.)
| | - Monica Morosini
- Department of Respiratory Diseases, University of Pavia and IRCCS Policlinico S. Matteo Foundation of Pavia, 27100 Pavia, Italy; (T.O.); (A.C.); (F.B.); (M.M.); (F.M.)
| | - Carlo Marena
- SC Direzione Medica di Presidio, IRCCS Policlinico S. Matteo Foundation of Pavia, 27100 Pavia, Italy;
| | - Massimiliano Gnecchi
- Coronary Care Unit and Laboratory of Clinical and Experimental Cardiology, Department of Medical Sciences and Infectious Disease, IRCCS Policlinico S. Matteo Foundation of Pavia, 27100 Pavia, Italy;
- Department of Molecular Medicine, Cardiology Unit, University of Pavia, 27100 Pavia, Italy
| | - Carlo Pellegrini
- Division of Cardiac Surgery, IRCCS Policlinico S. Matteo Foundation of Pavia, 27100 Pavia, Italy; (S.P.); (B.C.); (C.P.)
| | - Federica Meloni
- Department of Respiratory Diseases, University of Pavia and IRCCS Policlinico S. Matteo Foundation of Pavia, 27100 Pavia, Italy; (T.O.); (A.C.); (F.B.); (M.M.); (F.M.)
| |
Collapse
|
6
|
Jean MJ, Fiches G, Hayashi T, Zhu J. Current Strategies for Elimination of HIV-1 Latent Reservoirs Using Chemical Compounds Targeting Host and Viral Factors. AIDS Res Hum Retroviruses 2019; 35:1-24. [PMID: 30351168 DOI: 10.1089/aid.2018.0153] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Since the implementation of combination antiretroviral therapy (cART), rates of HIV type 1 (HIV-1) mortality, morbidity, and newly acquired infections have decreased dramatically. In fact, HIV-1-infected individuals under effective suppressive cART approach normal life span and quality of life. However, long-term therapy is required because the virus establish a reversible state of latency in memory CD4+ T cells. Two principle strategies, namely "shock and kill" approach and "block and lock" approach, are currently being investigated for the eradication of these HIV-1 latent reservoirs. Actually, both of these contrasting approaches are based on the use of small-molecule compounds to achieve the cure for HIV-1. In this review, we discuss the recent progress that has been made in designing and developing small-molecule compounds for both strategies.
Collapse
Affiliation(s)
- Maxime J. Jean
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York
| | - Guillaume Fiches
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Tsuyoshi Hayashi
- National Institute of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Jian Zhu
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| |
Collapse
|
7
|
Chaudhary O, Narayan V, Lelis F, Linz B, Watkins M, Veazey R, Aldovini A. Inhibition of p38 MAPK in combination with ART reduces SIV-induced immune activation and provides additional protection from immune system deterioration. PLoS Pathog 2018; 14:e1007268. [PMID: 30161247 PMCID: PMC6135519 DOI: 10.1371/journal.ppat.1007268] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 09/12/2018] [Accepted: 08/08/2018] [Indexed: 12/12/2022] Open
Abstract
Differences in immune activation were identified as the most significant difference between AIDS-susceptible and resistant species. p38 MAPK, activated in HIV infection, is key to induction of interferon-stimulated genes and cytokine-mediated inflammation and is associated with some of the pathology produced by HIV or SIV infection in AIDS-susceptible primates. As small molecule p38 MAPK inhibitors are being tested in human trials for inflammatory diseases, we evaluated the effects of treating SIV-infected macaques with the p38 MAPK inhibitor PH-797804 in conjunction with ART. PH-797804 had no side effects, did not impact negatively the antiviral immune response and, used alone, had no significant effect on levels of immune activation and did not reduced the viremia. When administered with ART, it significantly reduced numerous immune activation markers compared to ART alone. CD38+/HLA-DR+ and Ki-67+ T-cell percentages in blood, lymph node and rectal CD4+ and CD8+ T cells, PD-1 expression in CD8+ T cells and plasma levels of IFNα, IFNγ, TNFα, IL-6, IP-10, sCD163 and C-reactive protein were all significantly reduced. Significant preservation of CD4+, CD4+ central memory, CD4+/IL-22+ and CD4+/IL-17+ T-cell percentages and improvement of Th17/Treg ratio in blood and rectal mucosa were also observed. Importantly, the addition of PH-797804 to ART initiated during chronic SIV infection reduced immune activation and restored immune system parameters to the levels observed when ART was initiated on week 1 after infection. After ART interruption, viremia rebounded in a similar fashion in all groups, regardless of when ART was initiated. We concluded that the inhibitor PH-797804 significantly reduced, even if did not normalized, the immune activation parameters evaluated during ART treatment, improved preservation of critical populations of the immune system targeted by SIV, and increased the efficacy of ART treatment initiated in chronic infection to levels similar to those observed when initiated in acute infection but did not affect positively or negatively viral reservoirs. The hallmark of Human Immunodeficiency Virus and Simian Immunodeficiency Virus infection in disease-susceptible species is the progressive decline of the CD4+ T cell population and heightened immune activation, which by itself can contribute to CD4+ T-cell death. The cellular pathway regulated by p38 MAPK, which is activated in HIV and SIV infection, can contribute significantly to immune activation. We tested in SIV-infected macaques a p38 MAPK inhibitor in combination with anti-retroviral therapy. This drug is already being evaluated in humans for treatment of immune activation associated with other diseases. We found that, when combined with antiretroviral therapy, the inhibitor PH-797804 significantly reduced a few parameters of SIV-induced immune activation and improved preservation of critical populations of the immune system targeted by SIV, but did not modulate viral reservoirs. Importantly, the addition of the inhibitor to anti-retroviral therapy during the chronic phase of the infection, which is the time when most HIV-infected individuals initiate treatment, permitted a more significant preservation of the immune system compared to antiretroviral therapy alone that was similar to that observed when anti-retroviral therapy was initiated in the acute phase of the infection, which rarely occurs in HIV infection.
Collapse
Affiliation(s)
- Omkar Chaudhary
- Boston Children’s Hospital, Department of Medicine, and Harvard Medical School, Department of Pediatrics, Boston MA, United States of America
| | - Vivek Narayan
- Boston Children’s Hospital, Department of Medicine, and Harvard Medical School, Department of Pediatrics, Boston MA, United States of America
| | - Felipe Lelis
- Boston Children’s Hospital, Department of Medicine, and Harvard Medical School, Department of Pediatrics, Boston MA, United States of America
| | - Brandon Linz
- Boston Children’s Hospital, Department of Medicine, and Harvard Medical School, Department of Pediatrics, Boston MA, United States of America
| | - Meagan Watkins
- Tulane National Primate Research Center, Division of Comparative Pathology, Covington LA, United States of America
| | - Ronald Veazey
- Tulane National Primate Research Center, Division of Comparative Pathology, Covington LA, United States of America
| | - Anna Aldovini
- Boston Children’s Hospital, Department of Medicine, and Harvard Medical School, Department of Pediatrics, Boston MA, United States of America
- * E-mail:
| |
Collapse
|
8
|
Coiras M, Ambrosioni J, Cervantes F, Miró JM, Alcamí J. Tyrosine kinase inhibitors: potential use and safety considerations in HIV-1 infection. Expert Opin Drug Saf 2017; 16:547-559. [PMID: 28387147 DOI: 10.1080/14740338.2017.1313224] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Infection caused by HIV-1 is nowadays a chronic disease due to a highly efficient antiretroviral treatment that is nevertheless, unable to eliminate the virus from the organism. New strategies are necessary in order to impede the formation of the viral reservoirs, responsible for the failure of the antiretroviral treatment to cure the infection. Areas covered: The purpose of this review is to discuss the possibility of using tyrosine kinase inhibitors (TKIs) for the treatment of HIV-1 infection. These inhibitors are successfully used in patients with distinct cancers such as chronic myeloid leukemia. The most relevant papers have been selected and commented. Expert opinion: The family of TKIs are directed against the activation of tyrosine kinases from the Src family. Some of these kinases are essential for the activation of CD4 + T cells, the major target of HIV-1. During acute or primary infection the CD4 + T cells are massively activated, which is mostly responsible for the generation of the reservoirs, the spread of the infection and the destruction of activated CD4 + T cells, infected or not. Consequently, we discuss the possibility of using TKIs as adjuvant of the antiretroviral treatment against HIV-1 infection mostly, but not exclusively, during the acute/recent phase.
Collapse
Affiliation(s)
- Mayte Coiras
- a AIDS Immunopathology Unit , National Center of Microbiology, Instituto de Salud Carlos III , Madrid , Spain
| | - Juan Ambrosioni
- b Infectious Diseases Service , AIDS Research Group, Institut d´Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS) , Barcelona , Spain
| | | | - José M Miró
- b Infectious Diseases Service , AIDS Research Group, Institut d´Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS) , Barcelona , Spain
| | - José Alcamí
- a AIDS Immunopathology Unit , National Center of Microbiology, Instituto de Salud Carlos III , Madrid , Spain
| |
Collapse
|
9
|
Ripa M, Chiappetta S, Tambussi G. Immunosenescence and hurdles in the clinical management of older HIV-patients. Virulence 2017; 8:508-528. [PMID: 28276994 DOI: 10.1080/21505594.2017.1292197] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
People living with HIV (PLWH) who are treated with effective highly active antiretroviral therapy (HAART) have a similar life expectancy to the general population. Moreover, an increasing proportion of new HIV diagnoses are made in people older than 50 y. The number of older HIV-infected patients is thus constantly growing and it is expected that by 2030 around 70% of PLWH will be more than 50 y old. On the other hand, HIV infection itself is responsible for accelerated immunosenescence, a progressive decline of immune system function in both the adaptive and the innate arm, which impairs the ability of an individual to respond to infections and to give rise to long-term immunity; furthermore, older patients tend to have a worse immunological response to HAART. In this review we focus on the pathogenesis of HIV-induced immunosenescence and on the clinical management of older HIV-infected patients.
Collapse
Affiliation(s)
- Marco Ripa
- a Department of Infectious and Tropical Diseases , Ospedale San Raffaele , Milan , Italy
| | - Stefania Chiappetta
- a Department of Infectious and Tropical Diseases , Ospedale San Raffaele , Milan , Italy
| | - Giuseppe Tambussi
- a Department of Infectious and Tropical Diseases , Ospedale San Raffaele , Milan , Italy
| |
Collapse
|
10
|
Abstract
While highly active anti-retroviral therapy has greatly improved the lives of HIV-infected individuals, current treatments are unable to completely eradicate the virus. This is due to the presence of HIV latently infected cells which harbor transcriptionally silent HIV. Latent HIV does not replicate or produce viral proteins, thereby preventing efficient targeting by anti-retroviral drugs. Strategies to target the HIV latent reservoir include viral reactivation, enhancing host defense mechanisms, keeping latent HIV silent, and using gene therapy techniques to knock out or reactivate latent HIV. While research into each of these areas has yielded promising results, currently no one mechanism eradicates latent HIV. Instead, combinations of these approaches should be considered for a potential HIV functional cure.
Collapse
Affiliation(s)
- Daniele C Cary
- Departments of Medicine, Microbiology and Immunology, University of California at San Francisco, San Francisco, CA, USA
| | - B Matija Peterlin
- Departments of Medicine, Microbiology and Immunology, University of California at San Francisco, San Francisco, CA, USA
| |
Collapse
|
11
|
Zhang C, Zhou S, Groppelli E, Pellegrino P, Williams I, Borrow P, Chain BM, Jolly C. Hybrid spreading mechanisms and T cell activation shape the dynamics of HIV-1 infection. PLoS Comput Biol 2015; 11:e1004179. [PMID: 25837979 PMCID: PMC4383537 DOI: 10.1371/journal.pcbi.1004179] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 02/04/2015] [Indexed: 02/07/2023] Open
Abstract
HIV-1 can disseminate between susceptible cells by two mechanisms: cell-free infection following fluid-phase diffusion of virions and by highly-efficient direct cell-to-cell transmission at immune cell contacts. The contribution of this hybrid spreading mechanism, which is also a characteristic of some important computer worm outbreaks, to HIV-1 progression in vivo remains unknown. Here we present a new mathematical model that explicitly incorporates the ability of HIV-1 to use hybrid spreading mechanisms and evaluate the consequences for HIV-1 pathogenenesis. The model captures the major phases of the HIV-1 infection course of a cohort of treatment naive patients and also accurately predicts the results of the Short Pulse Anti-Retroviral Therapy at Seroconversion (SPARTAC) trial. Using this model we find that hybrid spreading is critical to seed and establish infection, and that cell-to-cell spread and increased CD4+ T cell activation are important for HIV-1 progression. Notably, the model predicts that cell-to-cell spread becomes increasingly effective as infection progresses and thus may present a considerable treatment barrier. Deriving predictions of various treatments' influence on HIV-1 progression highlights the importance of earlier intervention and suggests that treatments effectively targeting cell-to-cell HIV-1 spread can delay progression to AIDS. This study suggests that hybrid spreading is a fundamental feature of HIV infection, and provides the mathematical framework incorporating this feature with which to evaluate future therapeutic strategies.
Collapse
Affiliation(s)
- Changwang Zhang
- Department of Computer Science, University College London, London, United Kingdom
- Security Science Doctoral Research Training Centre, University College London, London, United Kingdom
- School of Computer Science, National University of Defense Technology, Changsha, China
| | - Shi Zhou
- Department of Computer Science, University College London, London, United Kingdom
| | - Elisabetta Groppelli
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Pierre Pellegrino
- Centre for Sexual Health & HIV Research, Mortimer Market Centre, London, United Kingdom
| | - Ian Williams
- Centre for Sexual Health & HIV Research, Mortimer Market Centre, London, United Kingdom
| | - Persephone Borrow
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Benjamin M. Chain
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Clare Jolly
- Division of Infection and Immunity, University College London, London, United Kingdom
| |
Collapse
|
12
|
Ma C, Dong X, Li R, Liu L. A computational study identifies HIV progression-related genes using mRMR and shortest path tracing. PLoS One 2013; 8:e78057. [PMID: 24244287 PMCID: PMC3823927 DOI: 10.1371/journal.pone.0078057] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 09/13/2013] [Indexed: 01/18/2023] Open
Abstract
Since statistical relationships between HIV load and CD4+ T cell loss have been demonstrated to be weak, searching for host factors contributing to the pathogenesis of HIV infection becomes a key point for both understanding the disease pathology and developing treatments. We applied Maximum Relevance Minimum Redundancy (mRMR) algorithm to a set of microarray data generated from the CD4+ T cells of viremic non-progressors (VNPs) and rapid progressors (RPs) to identify host factors associated with the different responses to HIV infection. Using mRMR algorithm, 147 gene had been identified. Furthermore, we constructed a weighted molecular interaction network with the existing protein-protein interaction data from STRING database and identified 1331 genes on the shortest-paths among the genes identified with mRMR. Functional analysis shows that the functions relating to apoptosis play important roles during the pathogenesis of HIV infection. These results bring new insights of understanding HIV progression.
Collapse
Affiliation(s)
- Chengcheng Ma
- Key Laboratory of Systems Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, P.R. China
- University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Xiao Dong
- Key Laboratory of Systems Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, P.R. China
- University of Chinese Academy of Sciences, Beijing, P.R. China
- Shanghai Center for Bioinformation Technology, Shanghai, P.R. China
| | - Rudong Li
- Key Laboratory of Systems Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, P.R. China
- University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Lei Liu
- Institutes for Biomedical Sciences, Fudan University, Shanghai, P.R. China
- * E-mail:
| |
Collapse
|
13
|
Abstract
There is a growing need for kidney and liver transplants in persons living with HIV. Fortunately, with the significant advances in antiretroviral therapy and management of opportunistic infections, HIV infection is no longer an absolute contraindication for solid organ transplantation. Data from several large prospective multi-center cohort studies have shown that solid organ transplantation in carefully selected HIV-infected individuals is safe. However, significant challenges have been identified including prevention of acute rejection, management of drug-drug interactions and treatment of recurrent viral hepatitis. This article reviews the selection criteria, outcomes, and special management considerations for HIV-infected patients undergoing liver or kidney transplantation.
Collapse
|
14
|
Miedema F, Hazenberg MD, Tesselaar K, van Baarle D, de Boer RJ, Borghans JAM. Immune activation and collateral damage in AIDS pathogenesis. Front Immunol 2013; 4:298. [PMID: 24133492 PMCID: PMC3783946 DOI: 10.3389/fimmu.2013.00298] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 09/09/2013] [Indexed: 12/17/2022] Open
Abstract
In the past decade, evidence has accumulated that human immunodeficiency virus (HIV)-induced chronic immune activation drives progression to AIDS. Studies among different monkey species have shown that the difference between pathological and non-pathological infection is determined by the response of the immune system to the virus, rather than its cytopathicity. Here we review the current understanding of the various mechanisms driving chronic immune activation in HIV infection, the cell types involved, its effects on HIV-specific immunity, and how persistent inflammation may cause AIDS and the wide spectrum of non-AIDS related pathology. We argue that therapeutic relief of inflammation may be beneficial to delay HIV-disease progression and to reduce non-AIDS related pathological side effects of HIV-induced chronic immune stimulation.
Collapse
Affiliation(s)
- Frank Miedema
- Department of Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Mette D. Hazenberg
- Department of Internal Medicine and Hematology, Academic Medical Center, Amsterdam, Netherlands
| | - Kiki Tesselaar
- Department of Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Debbie van Baarle
- Department of Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Rob J. de Boer
- Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, Netherlands
| | - José A. M. Borghans
- Department of Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
15
|
Viganò S, Bellutti Enders F, Miconnet I, Cellerai C, Savoye AL, Rozot V, Perreau M, Faouzi M, Ohmiti K, Cavassini M, Bart PA, Pantaleo G, Harari A. Rapid perturbation in viremia levels drives increases in functional avidity of HIV-specific CD8 T cells. PLoS Pathog 2013; 9:e1003423. [PMID: 23853580 PMCID: PMC3701695 DOI: 10.1371/journal.ppat.1003423] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 04/30/2013] [Indexed: 01/16/2023] Open
Abstract
The factors determining the functional avidity and its relationship with the broad heterogeneity of antiviral T cell responses remain partially understood. We investigated HIV-specific CD8 T cell responses in 85 patients with primary HIV infection (PHI) or chronic (progressive and non-progressive) infection. The functional avidity of HIV-specific CD8 T cells was not different between patients with progressive and non-progressive chronic infection. However, it was significantly lower in PHI patients at the time of diagnosis of acute infection and after control of virus replication following one year of successful antiretroviral therapy. High-avidity HIV-specific CD8 T cells expressed lower levels of CD27 and CD28 and were enriched in cells with an exhausted phenotype, i.e. co-expressing PD-1/2B4/CD160. Of note, a significant increase in the functional avidity of HIV-specific CD8 T cells occurred in early-treated PHI patients experiencing a virus rebound after spontaneous treatment interruption. This increase in functional avidity was associated with the accumulation of PD-1/2B4/CD160 positive cells, loss of polyfunctionality and increased TCR renewal. The increased TCR renewal may provide the mechanistic basis for the generation of high-avidity HIV-specific CD8 T cells. These results provide insights on the relationships between functional avidity, viremia, T-cell exhaustion and TCR renewal of antiviral CD8 T cell responses. CD8 T cells directed against virus are complex and functionally heterogeneous. One relevant component of CD8 T cells is their functional avidity which reflects their sensitivity to cognate antigens, i.e. how prone T cells are to respond when they encounter low doses of antigens. In patients with chronic and established HIV infection, we observed that the sensitivity of HIV-specific CD8 T cells was not different between patients with progressive or non-progressive disease. In contrast, the sensitivity of HIV-specific CD8 T cells was significantly lower in patients with early and recent HIV infection. Furthermore, CD8 T cells of high avidity were preferentially associated with a state of functional impairment known as exhaustion. Of interest, some patients treated with antiretroviral therapy during acute infection spontaneously interrupted their treatment and experienced a rebound of virus. In these patients, the avidity of HIV-specific CD8 T cells increased and this increase was associated to stronger cell exhaustion and greater renewal of the population of antiviral CD8 T cells, thus potentially providing the mechanistic basis for the generation of high-avidity CD8 T cells. Overall, our data suggest that rapid perturbation in viremia levels drove increases in the functional avidity of HIV-specific CD8 T cells.
Collapse
Affiliation(s)
- Selena Viganò
- Service of Immunology and Allergy, Department of Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Felicitas Bellutti Enders
- Service of Immunology and Allergy, Department of Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Isabelle Miconnet
- Service of Immunology and Allergy, Department of Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Cristina Cellerai
- Service of Immunology and Allergy, Department of Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Anne-Laure Savoye
- Service of Immunology and Allergy, Department of Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Virginie Rozot
- Service of Immunology and Allergy, Department of Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Matthieu Perreau
- Service of Immunology and Allergy, Department of Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Mohamed Faouzi
- The Center of Clinical Epidemiology, Institut de Médecine Sociale et Préventive, Lausanne University Hospital, Lausanne, Switzerland
| | - Khalid Ohmiti
- Service of Immunology and Allergy, Department of Medicine, Lausanne University Hospital, Lausanne, Switzerland
- The Center of Clinical Epidemiology, Institut de Médecine Sociale et Préventive, Lausanne University Hospital, Lausanne, Switzerland
| | - Matthias Cavassini
- Service of Infectious Diseases, Department of Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Pierre-Alexandre Bart
- Service of Immunology and Allergy, Department of Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Giuseppe Pantaleo
- Service of Immunology and Allergy, Department of Medicine, Lausanne University Hospital, Lausanne, Switzerland
- Swiss Vaccine Research Institute, Lausanne, Switzerland
| | - Alexandre Harari
- Service of Immunology and Allergy, Department of Medicine, Lausanne University Hospital, Lausanne, Switzerland
- Swiss Vaccine Research Institute, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
16
|
Abstract
Systemic chronic immune activation is considered today as the driving force of CD4(+) T-cell depletion and acquired immunodeficiency syndrome (AIDS). A residual chronic immune activation persists even in HIV-infected patients in which viral replication is successfully inhibited by anti-retroviral therapy, with the extent of this residual immune activation being associated with CD4(+) T-cell loss. Unfortunately, the causal link between chronic immune activation and CD4(+) T-cell loss has not been formally established. This article provides first a brief historical overview on how the perception of the causative role of immune activation has changed over the years and lists the different kinds of immune activation characteristic of human immunodeficiency virus (HIV) infection. The mechanisms proposed to explain the chronic immune activation are multiple and are enumerated here, as well as the mechanisms proposed on how chronic immune activation could lead to AIDS. In addition, we summarize the lessons learned from natural hosts that know how to 'show AIDS the door', and discuss how these studies informed the design of novel immune modulatory interventions that are currently being tested. Finally, we review the current approaches aimed at targeting chronic immune activation and evoke future perspectives.
Collapse
Affiliation(s)
- Mirko Paiardini
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, and Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30329, USA.
| | | |
Collapse
|
17
|
Kidney disease in children and adolescents with perinatal HIV-1 infection. J Int AIDS Soc 2013; 16:18596. [PMID: 23782479 PMCID: PMC3687339 DOI: 10.7448/ias.16.1.18596] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 04/14/2013] [Accepted: 04/16/2013] [Indexed: 12/20/2022] Open
Abstract
Introduction Involvement of the kidney in children and adolescents with perinatal (HIV-1) infection can occur at any stage during the child's life with diverse diagnoses, ranging from acute kidney injury, childhood urinary tract infections (UTIs), electrolyte imbalances and drug-induced nephrotoxicity, to diseases of the glomerulus. The latter include various immune-mediated chronic kidney diseases (CKD) and HIV-associated nephropathy (HIVAN). Discussion The introduction of highly active anti-retroviral therapy (HAART) has dramatically reduced the incidence of HIVAN, once the commonest form of CKD in children of African descent living with HIV, and also altered its prognosis from eventual progression to end-stage kidney disease to one that is compatible with long-term survival. The impact of HAART on the outcome of other forms of kidney diseases seen in this population has not been as impressive. Increasingly important is nephrotoxicity secondary to the prolonged use of anti-retroviral agents, and the occurrence of co-morbid kidney disease unrelated to HIV infection or its treatment. Improved understanding of the molecular pathogenesis and genetics of kidney diseases associated with HIV will result in better screening, prevention and treatment efforts, as HIV specialists and nephrologists coordinate clinical care of these patients. Both haemodialysis (HD) and peritoneal dialysis (PD) are effective as renal replacement therapy in HIV-infected patients with end-stage kidney disease, with PD being preferred in resource-limited settings. Kidney transplantation, once contraindicated in this population, has now become the most effective renal replacement therapy, provided rigorous criteria are met. Given the attendant morbidity and mortality in HIV-infected children and adolescents with kidney disease, routine screening for kidney disease is recommended where resources permit. Conclusions This review focuses on the pathogenesis and genetics, clinical presentation and management of kidney disease in children and adolescents with perinatal HIV-1 infection.
Collapse
|
18
|
Cossarizza A, Bertoncelli L, Nemes E, Lugli E, Pinti M, Nasi M, De Biasi S, Gibellini L, Montagna JP, Vecchia M, Manzini L, Meschiari M, Borghi V, Guaraldi G, Mussini C. T cell activation but not polyfunctionality after primary HIV infection predicts control of viral load and length of the time without therapy. PLoS One 2012; 7:e50728. [PMID: 23236388 PMCID: PMC3517542 DOI: 10.1371/journal.pone.0050728] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 10/24/2012] [Indexed: 11/18/2022] Open
Abstract
Objective Immune changes occurring after primary HIV infection (PHI) have a pivotal relevance. Our objective was to characterize the polyfunctionality of immune response triggered by PHI, and to characterize immune activation and regulatory T cells, correlating such features to disease progression. Patients and Methods We followed 11 patients experiencing PHI for 4 years. By polychromatic flow cytometry, we studied every month, for the first 6 months, T lymphocyte polyfunctionality after cell stimulation with peptides derived from HIV-1 gag and nef. Tregs were identified by flow cytometry, and T cell activation studied by CD38 and HLA-DR expression. Results An increase of anti-gag and anti-nef CD8+ specific T cells was observed 3 months after PHI; however, truly polyfunctional T cells, also able to produce IL-2, were never found. No gross changes in Tregs were present. T lymphocyte activation was maximal 1 and 2 months after PHI, and significantly decreased in the following period. The level of activation two months after PHI was strictly correlated to the plasma viral load 1 year after infection, and significantly influenced the length of period without therapy. Indeed, 80% of patients with less than the median value of activated CD8+ (15.5%) or CD4+ (0.9%) T cells remained free of therapy for >46 months, while all patients over the median value had to start treatment within 26 months. Conclusions T cell activation after PHI, more than T cell polyfunctionality or Tregs, is a predictive marker for the control of viral load and for the time required to start treatment.
Collapse
Affiliation(s)
- Andrea Cossarizza
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Functional avidity: a measure to predict the efficacy of effector T cells? Clin Dev Immunol 2012; 2012:153863. [PMID: 23227083 PMCID: PMC3511839 DOI: 10.1155/2012/153863] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 10/22/2012] [Indexed: 01/30/2023]
Abstract
The functional avidity is determined by exposing T-cell populations in vitro to different amounts of cognate antigen. T-cells with high functional avidity respond to low antigen doses. This in vitro measure is thought to correlate well with the in vivo effector capacity of T-cells. We here present the multifaceted factors determining and influencing the functional avidity of T-cells. We outline how changes in the functional avidity can occur over the course of an infection. This process, known as avidity maturation, can occur despite the fact that T-cells express a fixed TCR. Furthermore, examples are provided illustrating the importance of generating T-cell populations that exhibit a high functional avidity when responding to an infection or tumors. Furthermore, we discuss whether criteria based on which we evaluate an effective T-cell response to acute infections can also be applied to chronic infections such as HIV. Finally, we also focus on observations that high-avidity T-cells show higher signs of exhaustion and facilitate the emergence of virus escape variants. The review summarizes our current understanding of how this may occur as well as how T-cells of different functional avidity contribute to antiviral and anti-tumor immunity. Enhancing our knowledge in this field is relevant for tumor immunotherapy and vaccines design.
Collapse
|
20
|
Agarwal DK, Hota JK, Nag N, Mehta SN. Renal transplantation in HIV patients: A series of four cases. Indian J Nephrol 2012; 22:139-42. [PMID: 22787319 PMCID: PMC3391814 DOI: 10.4103/0971-4065.97139] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Human immunodeficiency virus (HIV) infection in a patient with end-stage renal disease was considered a contraindication for renal transplantation till now despite the advent of highly active antiretroviral therapy with the apprehension that immunosuppression would further jeopardize the already compromised immune status of the patients. Renal transplantation in HIV patients is rare in developing countries including ours. Here we report a series of four cases of renal transplantation in HIV patients.
Collapse
Affiliation(s)
- D K Agarwal
- Department of Nephrology, Indraprastha Apollo Hospitals, New Delhi, India
| | | | | | | |
Collapse
|
21
|
Renal transplantation between HIV-positive donors and recipients justified. S Afr Med J 2012; 102:497-8. [PMID: 22668948 DOI: 10.7196/samj.5754] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 02/22/2012] [Indexed: 11/08/2022] Open
Abstract
HIV infection was previously an absolute contraindication to renal transplantation. However, with the advent of highly active antiretroviral therapy (HAART), renal transplantation using HIV-negative donor kidneys has successfully been employed for HIV-infected patients with end-stage renal failure. In resource-limited countries, places on dialysis programmes are severely restricted; HIV-infected patients, like many others with co-morbidity, are often denied treatment. Kidneys (and other organs) from HIV-infected deceased donors are discarded. The transplantation of HIV-positive donor kidneys to HIV-infected recipients is now a viable alternative to chronic dialysis or transplantation of HIV-negative donor kidneys. This significantly increases the pool of donor kidneys to the advantage of HIV-positive and -negative patients. Arguments are presented that led to our initiation of renal transplantation from HIV-positive deceased donors to HIV-positive recipients at Groote Schuur Hospital, Cape Town.
Collapse
|
22
|
Hütter G, Zaia JA. Allogeneic haematopoietic stem cell transplantation in patients with human immunodeficiency virus: the experiences of more than 25 years. Clin Exp Immunol 2011; 163:284-95. [PMID: 21303358 DOI: 10.1111/j.1365-2249.2010.04312.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
For treatment of several malignancies, transplantation of allogeneic haematopoietic stem cells (HSCT) derived from bone marrow or peripheral blood has been used as a therapeutic procedure for decades. In the past, HSCT has been suggested as a treatment option for infection with the human immunodeficiency virus type 1 (HIV-1), but these attempts were mostly unsuccessful. Today, after the introduction of an active anti-retroviral therapy, the lifetime expectancy of HIV-infected patients has improved substantially, but nevertheless the incidence rate of malignancies in these patients has increased considerably. Therefore, it can be assumed that there will be a rising necessity for HIV-1-infected patients with malignancies for allogeneic HSCT. At the same time, there is increasing interest in treatment methods which might target the HIV-1 reservoir more effectively, and the question has been raised as to whether allogeneic HSCT could be linked to such strategies. In this paper the data of more than 25 years experience with allogeneic HSCT in patients with HIV-1 are reviewed and analysed.
Collapse
Affiliation(s)
- G Hütter
- Institute of Transfusion Medicine and Immunology, Heidelberg University, Mannheim, Germany.
| | | |
Collapse
|
23
|
Donia M, McCubrey JA, Bendtzen K, Nicoletti F. Potential use of rapamycin in HIV infection. Br J Clin Pharmacol 2011; 70:784-93. [PMID: 21175433 DOI: 10.1111/j.1365-2125.2010.03735.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The strong need for the development of alternative anti-HIV agents is primarily due to the emergence of strain-resistant viruses, the need for sustained adherence to complex treatment regimens and the toxicity of currently used antiviral drugs. This review analyzes proof of concept studies indicating that the immunomodulatory drug rapamycin (RAPA) possesses anti-HIV properties both in vitro and in vivo that qualifies it as a potential new anti-HIV drug. It represents a literature review of published studies that evaluated the in vitro and in vivo activity of RAPA in HIV. RAPA represses HIV-1 replication in vitro through different mechanisms including, but not limited, to down regulation of CCR5. In addition RAPA synergistically enhances the anti-HIV activity of entry inhibitors such as vicriviroc, aplaviroc and enfuvirtide in vitro. RAPA also inhibits HIV-1 infection in human peripheral blood leucocytes-SCID reconstituted mice. In addition, a prospective nonrandomized trial of HIV patient series receiving RAPA monotherapy after liver transplantation indicated significantly better control of HIV and hepatitis C virus (HCV) replication among patients taking RAPA monotherapy. Taken together, the evidence presented in this review suggests that RAPA may be a useful drug that should be evaluated for the prevention and treatment of HIV-1 infection.
Collapse
Affiliation(s)
- Marco Donia
- Department of Biomedical Sciences, University of Catania, Italy
| | | | | | | |
Collapse
|
24
|
Sugawara Y, Tamura S, Kokudo N. Liver transplantation in HCV/HIV positive patients. World J Gastrointest Surg 2011; 3:21-8. [PMID: 21394322 PMCID: PMC3052410 DOI: 10.4240/wjgs.v3.i2.21] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2010] [Revised: 01/15/2011] [Accepted: 01/21/2011] [Indexed: 02/06/2023] Open
Abstract
Since the introduction of highly active antiretroviral therapy (HAART) in 1996 for human immunodeficiency virus (HIV)-infected patients, the incidence of liver diseases secondary to co-infection with hepatitis C has increased. Although data on the outcome of liver transplantation in HIV-infected recipients is limited, the overall results to date seem to be comparable to that in non-HIV-infected recipients. Liver transplant centers are now accepting HIV-infected individuals as organ recipients. Post-transplantation HIV replication is controlled by HAART. Hepatitis C re-infection of the liver graft, however, remains an important problem because cirrhotic changes of the liver graft may be more rapid in HIV-infected recipients. Interactions between the HAART components and immunosuppressive drugs influence drug metabolism and therefore meticulous monitoring of drug blood level concentrations is required. The risk of opportunistic infection in HIV-positive transplant patients seems to be similar to that in HIV-negative transplant recipients.
Collapse
Affiliation(s)
- Yasuhiko Sugawara
- Yasuhiko Sugawara, Sumihito Tamura, Norihiro Kokudo, Artificial Organ and Transplantation Division, Department of Surgery, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | | | | |
Collapse
|
25
|
Ganesan A, Crum-Cianflone N, Higgins J, Qin J, Rehm C, Metcalf J, Brandt C, Vita J, Decker CF, Sklar P, Bavaro M, Tasker S, Follmann D, Maldarelli F. High dose atorvastatin decreases cellular markers of immune activation without affecting HIV-1 RNA levels: results of a double-blind randomized placebo controlled clinical trial. J Infect Dis 2011; 203:756-64. [PMID: 21325137 DOI: 10.1093/infdis/jiq115] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase inhibitors (statins) exhibit antiviral activity against human immunodeficiency virus type 1 (HIV-1) in vitro and may modulate the immune response to HIV infection. Studies evaluating the antiviral activity of statins have yielded conflicting results. METHODS We conducted a randomized, double-blind, placebo-controlled crossover trial to investigate the effect of atorvastatin on HIV-1 RNA (primary objective) and cellular markers of immune activation (secondary objective). HIV-infected individuals not receiving antiretroviral therapy were randomized to receive either 8 weeks of atorvastatin (80 mg) or placebo daily. After a 4-6 week washout phase, participants switched treatment assignments. The study had 80% power to detect a 0.3 log(10) decrease in HIV-1 RNA level. Expression of CD38 and HLA-DR on CD4(+) and CD8(+) T cells was used to measure immune activation. RESULTS Of 24 randomized participants, 22 completed the study. Although HIV-1 RNA level was unaffected by the intervention (-0.13 log(10) copies/mL; P = .85), atorvastatin use resulted in reductions in circulating proportions of CD4(+) HLA-DR(+) (-2.5%; P = .02), CD8(+) HLA-DR(+) (-5%; P = .006), and CD8(+) HLA-DR(+) CD38(+) T cells (-3%; P = .03). Reductions in immune activation did not correlate with declines in serum levels of low-density lipoprotein cholesterol. CONCLUSIONS Short-term use of atorvastatin was associated with modest but statistically significant reductions in the proportion of activated T lymphocytes.
Collapse
Affiliation(s)
- Anuradha Ganesan
- Division of Infectious Diseases, National Naval Medical Center, Uniformed Services University, Bethesda, Maryland, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Markowitz M, Vaida F, Hare CB, Boden D, Mohri H, Hecht FM, Kalayjian RC, Conrad A, Mildvan D, Aberg J, Hogan C, Kilby JM, Balfour HH, Schafer K, Richman D, Little S. The virologic and immunologic effects of cyclosporine as an adjunct to antiretroviral therapy in patients treated during acute and early HIV-1 infection. J Infect Dis 2010; 201:1298-302. [PMID: 20235838 DOI: 10.1086/651664] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Acute human immunodeficiency virus type 1 (HIV-1) infection is characterized by high levels of immune activation. Immunomodulation with cyclosporine combined with antiretroviral therapy (ART) in the setting of acute and early HIV-1 infection has been reported to result in enhanced immune reconstitution. Fifty-four individuals with acute and early infection were randomized to receive ART with 4 weeks of cyclosporine versus ART alone. In 48 subjects who completed the study, there were no significant differences between treatment arms in levels of proviral DNA or CD4(+) T cell counts. Adjunctive therapy with cyclosporine in this setting does not provide apparent virologic or immunologic benefit.
Collapse
Affiliation(s)
- Martin Markowitz
- Aaron Diamond AIDS Research Center, an affiliate of Rockefeller University, New York, New York, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Coiras M, López-Huertas MR, Pérez-Olmeda M, Alcamí J. Understanding HIV-1 latency provides clues for the eradication of long-term reservoirs. Nat Rev Microbiol 2009; 7:798-812. [PMID: 19834480 DOI: 10.1038/nrmicro2223] [Citation(s) in RCA: 216] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
HIV-1 can infect both activated and resting, non-dividing cells, following which the viral genome can be permanently integrated into a host cell chromosome. Latent HIV-1 reservoirs are established early during primary infection and constitute a major barrier to eradication, even in the presence of highly active antiretroviral therapy. This Review analyses the molecular mechanisms that are necessary for the establishment of HIV-1 latency and their relationships with different cellular and anatomical reservoirs, and discusses the current treatment strategies for targeting viral persistence in reservoirs, their main limitations and future perspectives.
Collapse
Affiliation(s)
- Mayte Coiras
- AIDS Immunopathology Unit, National Centre of Microbiology, Instituto de Salud Carlos III, 28220 Majadahonda, Madrid, Spain.
| | | | | | | |
Collapse
|
28
|
Huang X, Reynolds AD, Mosley RL, Gendelman HE. CD 4+ T cells in the pathobiology of neurodegenerative disorders. J Neuroimmunol 2009; 211:3-15. [PMID: 19439368 PMCID: PMC2696588 DOI: 10.1016/j.jneuroim.2009.04.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Accepted: 04/03/2009] [Indexed: 12/21/2022]
Abstract
CD4+ T cells orchestrate innate and adaptive immunity. In the central nervous system they modulate immune responses including cell trafficking and glial neuroregulatory functions through an array of soluble molecules cell-cell interactions affecting tissue homeostasis. During disease their roles evolve to an auto-aggressive or, alternatively, protective phenotype. How such a balance is struck in the setting of neurodegenerative disorders may reflect a dichotomy between regulatory T cell, anti-inflammatory and neuroprotective activities versus effector T cell inflammation and neurodegeneration. Interestingly, such roles may show commonalities amongst neurodegenerative diseases. Herein we focus on strategies to modulate such CD4+ T cell responses for therapeutic gain.
Collapse
Affiliation(s)
- Xiuyan Huang
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, 68198-5880, USA
| | | | | | | |
Collapse
|
29
|
Abstract
T-cell activation has long been considered a central mediator of HIV pathogenesis. High T-cell activation levels predict more rapid disease progression in untreated patients and decreased treatment-mediated CD4+ T-cell gains during antiretroviral therapy, independent of plasma HIV RNA levels, and may be the primary feature distinguishing pathogenic from nonpathogenic primate models of HIV infection. Studies in animal models and individuals with HIV infection continue to enhance our understanding of how T-cell activation causes immunodeficiency during HIV infection. The goal of these studies is to identify specific mechanisms that can be targeted by novel immune-based therapies for patients who have thus far been unable to recover normal immune function despite years of antiretroviral therapy. Although most immune-based therapies targeting T-cell activation have been unsuccessful to date, recent scientific developments have focused attention on specific pathways that may be exploited by future generations of immune-based therapies.
Collapse
Affiliation(s)
- Peter W Hunt
- Positive Health Program, San Francisco General Hospital, Building 80, Ward 84, 995 Potrero Avenue, San Francisco, CA 94110, USA.
| |
Collapse
|
30
|
Abstract
Combination antiretroviral therapy potently suppresses HIV replication, but does not eradicate the infection. Drug resistance and long-term toxicities limit its use. The recovery of general immune function is often not complete. Immune-based therapies have the potential to boost HIV-specific immunity and reduce the need for antiretroviral drugs, and to promote general immune competence in situations in which antiretroviral treatment alone is inadequate. Strategies to reduce the immunopathogenic consequences of HIV infection with immunomodulating therapies are conceivable. Ultimately, eradication of the infection will require methods to target the latent memory T-cell reservoir of virus.
Collapse
Affiliation(s)
- Jeffrey M Jacobson
- Beth Israel Medical Center, Albert Einstein College of Medicine, New York, New York 10003, USA.
| |
Collapse
|
31
|
Abstract
Primary HIV infection refers to the events surrounding acquisition of HIV infection. It is associated with a nonspecific clinical syndrome that occurs 2 to 4 weeks after exposure in 40% to 90% of individuals acquiring HIV. Patients identified before seroconversion often have very high plasma HIV RNA titers that, without treatment, gradually decrease to reach a set point. Treatment of primary HIV infection with highly active antiretroviral therapy does not prevent establishment of chronic infection. However, very early therapy could potentially decrease the viral set point, prevent viral diversification, preserve immune function, improve clinical outcomes, and decrease secondary transmission. These benefits have not yet been definitely demonstrated. Transmission of viral strains with decreased susceptibility to antiviral drugs has led to recommendations for resistance testing in primary infection before initiation of therapy. Immunomodulators and vaccines are also under study as adjuvant therapy for treatment of primary HIV infection.
Collapse
Affiliation(s)
- Joanne Stekler
- Department of Medicine, Harborview Medical Center, Seattle, WA 98104, USA.
| | | |
Collapse
|
32
|
Abstract
Primary human immunodeficiency virus type 1 (HIV-1) infection represents the initial stage of disease that immediately follows viral entry into the body. Primary infection is frequently accompanied by an acute retroviral syndrome with associated high levels of plasma HIV-1 RNA and the development of host immune responses. The identification of subjects during this period requires a high index of suspicion and an understanding of how to make the diagnosis, as standard HIV-1 antibody tests can initially be negative. Identifying these people provides a unique opportunity for early counseling to reduce further transmission, facilitates entry into care, and allows for further study of the immunopathogenesis of disease and the potential role of early antiretroviral therapy.
Collapse
Affiliation(s)
- Malini Soogoor
- Division of HIV Medicine, Los Angeles Biomedical Research Institute, Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | | |
Collapse
|
33
|
Fauci AS, Challberg MD. Host-based antipoxvirus therapeutic strategies: turning the tables. J Clin Invest 2005; 115:231-3. [PMID: 15690079 PMCID: PMC546432 DOI: 10.1172/jci24270] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The potential threat of the smallpox virus as a bioterror weapon has long been recognized, and the need for developing suitable countermeasures has become especially acute following the events of September 2001. Traditional antiviral agents interfere with viral proteins or functions. In a new study, Yang et al. focus instead on host cellular pathways used by the virus. A drug that interferes with the cellular ErbB-1 signal transduction pathway, activated by smallpox growth factor, sheds new light on how the virus replicates in the cell. Drugs that target the ErbB-signaling pathways represent a promising new class of antiviral agents.
Collapse
Affiliation(s)
- Anthony S Fauci
- National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland 20892-2520, USA.
| | | |
Collapse
|
34
|
Kaufmann DE, Lichterfeld M, Altfeld M, Addo MM, Johnston MN, Lee PK, Wagner BS, Kalife ET, Strick D, Rosenberg ES, Walker BD. Limited durability of viral control following treated acute HIV infection. PLoS Med 2004; 1:e36. [PMID: 15526059 PMCID: PMC524377 DOI: 10.1371/journal.pmed.0010036] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2004] [Accepted: 09/03/2004] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Early treatment of acute HIV infection with highly active antiretroviral therapy, followed by supervised treatment interruption (STI), has been associated with at least transient control of viremia. However, the durability of such control remains unclear. Here we present longitudinal follow-up of a single-arm, open-label study assessing the impact of STI in the setting of acute HIV-1 infection. METHODS AND FINDINGS Fourteen patients were treated during acute HIV-1 infection and subsequently subjected to an STI protocol that required retreatment if viral load exceeded 50,000 RNA copies/ml plasma or remained above 5,000 copies/ml for more than three consecutive weeks. Eleven of 14 (79%) patients were able to achieve viral loads of less than 5,000 RNA copies/ml for at least 90 d following one, two, or three interruptions of treatment. However, a gradual increase in viremia and decline in CD4+ T cell counts was observed in most individuals. By an intention-to-treat analysis, eight (57%), six (43%), and three (21%) of 14 patients achieved a maximal period of control of 180, 360, and 720 d, respectively, despite augmentation of HIV-specific CD4+ and CD8+ T cell responses. The magnitude of HIV-1-specific cellular immune responses before treatment interruption did not predict duration of viremia control. The small sample size and lack of concurrent untreated controls preclude assessment of possible clinical benefit despite failure to control viremia by study criteria. CONCLUSIONS These data indicate that despite initial control of viremia, durable viral control to less than 5,000 RNA copies/ml plasma in patients following treated acute HIV-1 infection occurs infrequently. Determination of whether early treatment leads to overall clinical benefit will require a larger and randomized clinical trial. These data may be relevant to current efforts to develop an HIV-1 vaccine designed to retard disease progression rather than prevent infection since they indicate that durable maintenance of low-level viremia may be difficult to achieve.
Collapse
Affiliation(s)
- Daniel E Kaufmann
- 1Partners AIDS Research Center, Infectious Disease UnitMassachusetts General Hospital and Division of AIDS, Harvard Medical School, Boston, MassachusettsUnited States of America
| | - Mathias Lichterfeld
- 1Partners AIDS Research Center, Infectious Disease UnitMassachusetts General Hospital and Division of AIDS, Harvard Medical School, Boston, MassachusettsUnited States of America
| | - Marcus Altfeld
- 1Partners AIDS Research Center, Infectious Disease UnitMassachusetts General Hospital and Division of AIDS, Harvard Medical School, Boston, MassachusettsUnited States of America
| | - Marylyn M Addo
- 1Partners AIDS Research Center, Infectious Disease UnitMassachusetts General Hospital and Division of AIDS, Harvard Medical School, Boston, MassachusettsUnited States of America
| | - Mary N Johnston
- 1Partners AIDS Research Center, Infectious Disease UnitMassachusetts General Hospital and Division of AIDS, Harvard Medical School, Boston, MassachusettsUnited States of America
| | - Paul K Lee
- 1Partners AIDS Research Center, Infectious Disease UnitMassachusetts General Hospital and Division of AIDS, Harvard Medical School, Boston, MassachusettsUnited States of America
| | - Bradford S Wagner
- 1Partners AIDS Research Center, Infectious Disease UnitMassachusetts General Hospital and Division of AIDS, Harvard Medical School, Boston, MassachusettsUnited States of America
| | - Elizabeth T Kalife
- 1Partners AIDS Research Center, Infectious Disease UnitMassachusetts General Hospital and Division of AIDS, Harvard Medical School, Boston, MassachusettsUnited States of America
| | - Daryld Strick
- 1Partners AIDS Research Center, Infectious Disease UnitMassachusetts General Hospital and Division of AIDS, Harvard Medical School, Boston, MassachusettsUnited States of America
| | - Eric S Rosenberg
- 1Partners AIDS Research Center, Infectious Disease UnitMassachusetts General Hospital and Division of AIDS, Harvard Medical School, Boston, MassachusettsUnited States of America
| | - Bruce D Walker
- 1Partners AIDS Research Center, Infectious Disease UnitMassachusetts General Hospital and Division of AIDS, Harvard Medical School, Boston, MassachusettsUnited States of America
- 2Howard Hughes Medical Institute, Massachusetts General Hospital and Division of AIDSHarvard Medical School, Boston, MassachusettsUnited States of America
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
35
|
Andrieu JM, Lu W. Long-term clinical, immunologic and virologic impact of glucocorticoids on the chronic phase of HIV infection. BMC Med 2004; 2:17. [PMID: 15128452 PMCID: PMC411065 DOI: 10.1186/1741-7015-2-17] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2003] [Accepted: 05/05/2004] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND To test the hypothesis of down-regulating the increased immune system activation/destruction process associated with chronic HIV infection, we focused our interest on prednisolone (PDN), because we had showed that, in vitro, PDN had a strong anti-apoptotic activity on activated T cells of HIV-infected patients and no effect on viral replication. We thus designed in 1992 a pilot study to evaluate the clinical, immunologic and virologic effects of PDN. The drug was given to a group of 44 patients with CD4 T cells over 200/microl. After one year, no patient had developed clinical AIDS and the mean CD4 T cell count of the group had increased from 441 +/- 21 cells/microl to 553 +/- 43 cells/microl. Moreover, markers of immune activation had dropped back to normal levels while the mean viral load of the group had remained unchanged. Here we explore the long-term clinical, immunologic, and virologic impact of prednisolone on the chronic phase of HIV infection. METHODS Retrospective study over 10 years starting between July 1992 and February 1993. A total of 44 patients with CD4 cells/microl ranging from 207 to 775 were treated with prednisolone, 0.5 mg/kg/d, over 6 months and 0.3 mg/kg/d thereafter. RESULTS No clinical AIDS developed under prednisolone; side effects of the drug were mild. CD4 cells which increased from 421 cells/microl at entry to 625 cells/microl at day 15, slowly decreased to reach 426 cells/microl after two years; T cell apoptosis and activation markers dropped within 15 days to normal levels and reincreased slowly thereafter. Serum viral loads remained stable. The percentage of patients maintaining CD4 cells over entry was 43.2% at two years, 11.4% at five years and 4.6% at 10 years. Initial viral load was highly predictive of the rate of CD4 decrease under prednisolone. CONCLUSIONS Prednisolone postponed CD4 cell decrease in a viral load dependent manner for a median of two years and for up to 10 years in a fraction of the patients with a low viral load. These findings might stimulate clinical trials as well as biological research on the role of antiapoptotic drugs in HIV infection.
Collapse
Affiliation(s)
- Jean-Marie Andrieu
- Institut de Recherche sur les Vaccins et l'Immunothérapie des cancers et du SIDA (IRVICS), Laboratoire d'Oncologie et Virologie Moléculaire, Centre Biomédical des Saints-Pères, Université René Descartes, 75270 Paris, Cedex 06, France
| | - Wei Lu
- Institut de Recherche sur les Vaccins et l'Immunothérapie des cancers et du SIDA (IRVICS), Laboratoire d'Oncologie et Virologie Moléculaire, Centre Biomédical des Saints-Pères, Université René Descartes, 75270 Paris, Cedex 06, France
| |
Collapse
|
36
|
Deeks SG, Walker BD. The immune response to AIDS virus infection: good, bad, or both? J Clin Invest 2004; 113:808-10. [PMID: 15067312 PMCID: PMC362127 DOI: 10.1172/jci21318] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
A potent antigen-specific T cell response to HIV infection can contribute to the control of viral replication and is therefore beneficial to the host. However, HIV-mediated increases in generalized T cell activation also appear to accelerate both viral replication and CD4+ T cell depletion. A new study in the JCI attempts to experimentally distinguish the beneficial versus harmful aspects of this immune response.
Collapse
Affiliation(s)
- Steven G Deeks
- Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | | |
Collapse
|
37
|
Heredia A, Amoroso A, Davis C, Le N, Reardon E, Dominique JK, Klingebiel E, Gallo RC, Redfield RR. Rapamycin causes down-regulation of CCR5 and accumulation of anti-HIV beta-chemokines: an approach to suppress R5 strains of HIV-1. Proc Natl Acad Sci U S A 2003; 100:10411-6. [PMID: 12915736 PMCID: PMC193575 DOI: 10.1073/pnas.1834278100] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Propagation of R5 strains of HIV-1 on CD4 lymphocytes and macrophages requires expression of the CCR5 coreceptor on the cell surface. Individuals lacking CCR5 (CCR5 Delta 32 homozygous genotype) are phenotypically normal and resistant to infection with HIV-1. CCR5 expression on lymphocytes depends on signaling through the IL-2 receptor. By FACS analysis we demonstrate that rapamycin (RAPA), a drug that disrupts IL-2 receptor signaling, reduces CCR5 surface expression on T cells at concentrations as low as 1 nM. In addition, lower concentrations of RAPA (0.01 nM) were sufficient to reduce CCR5 surface expression on maturing monocytes. PCR analysis on peripheral blood mononuclear cells (PBMCs) showed that RAPA interfered with CCR5 expression at the transcriptional level. Reduced expression of CCR5 on PBMCs cultured in the presence of RAPA was associated with increased extracellular levels of macrophage inflammatory protein (MIP)-1 alpha and MIP-1 beta. In infectivity assays, RAPA suppressed the replication of R5 strains of HIV-1 both in PBMC and macrophage cultures. In total PBMC cultures, RAPA-mediated inhibition of CCR5-using strains of HIV-1 occurred at 0.01 nM, a concentration of drug that is approximately 103 times lower than therapeutic through levels of drug in renal transplant recipients. In addition, RAPA enhanced the antiviral activity of the CCR5 antagonist TAK-779. These results suggest that low concentrations of RAPA may have a role in both the treatment and prevention of HIV-1 infection.
Collapse
Affiliation(s)
- A Heredia
- Institute of Human Virology, University of Maryland Biotechnology Institute, Baltimore, MD 21201, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Roy J, Paquette JS, Fortin JF, Tremblay MJ. The immunosuppressant rapamycin represses human immunodeficiency virus type 1 replication. Antimicrob Agents Chemother 2002; 46:3447-55. [PMID: 12384349 PMCID: PMC128699 DOI: 10.1128/aac.46.11.3447-3455.2002] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The immunosuppressive macrolide rapamycin is used in humans to prevent graft rejection. This drug acts by selectively repressing the translation of proteins that are encoded by an mRNA bearing a 5'-polypyrimidine tract (e.g., ribosomal proteins, elongation factors). The human immunodeficiency virus type 1 (HIV-1) carries a polypyrimidine motif that is located within the tat exon 2. Treatment of human T lymphoid cells with rapamycin resulted in a marked diminution of HIV-1 transcription when infection was performed with luciferase reporter T-tropic and macrophage-tropic viruses. Replication of fully infectious HIV-1 particles was abolished by rapamycin treatment. The rapamycin-mediated inhibitory effect on HIV-1 production was reversed by FK506. The anti-HIV-1 effect of rapamycin was also seen in primary human cells (i.e., peripheral blood lymphocytes) from different healthy donors. Rapamycin was shown to diminish basal HIV-1 long terminal repeat gene expression, and the observed effect of rapamycin on HIV-1 replication seems to be independent of the virus-specific transactivating Tat protein. A constitutive beta-actin promoter-based reporter gene vector was unaffected by rapamycin treatment. Kinetic virus infection studies and exposure to reporter viruses pseudotyped with heterologous envelope proteins (i.e., amphotropic murine leukemia virus and vesicular stomatitis virus G) suggested that rapamycin is primarily affecting the life cycle of HIV-1 at a transcriptional level. Northern blot analysis confirmed that this compound is selectively targeting HIV-1 mRNA synthesis.
Collapse
Affiliation(s)
- Jocelyn Roy
- Centre de Recherche en Infectiologie, Hôpital CHUL, Centre Hospitalier Universitaire de Québec, and Département de Biologie Médicale, Faculté de Médecine, Université Laval, Ste-Foy, Québec, Canada G1V 4G2
| | | | | | | |
Collapse
|