1
|
Zhang T, Cui Y, Jiang S, Jiang L, Song L, Huang L, Li Y, Yao J, Li M. Shared genetic correlations between kidney diseases and sepsis. Front Endocrinol (Lausanne) 2024; 15:1396041. [PMID: 39086896 PMCID: PMC11288879 DOI: 10.3389/fendo.2024.1396041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/02/2024] [Indexed: 08/02/2024] Open
Abstract
Background Clinical studies have indicated a comorbidity between sepsis and kidney diseases. Individuals with specific mutations that predispose them to kidney conditions are also at an elevated risk for developing sepsis, and vice versa. This suggests a potential shared genetic etiology that has not been fully elucidated. Methods Summary statistics data on exposure and outcomes were obtained from genome-wide association meta-analysis studies. We utilized these data to assess genetic correlations, employing a pleiotropy analysis method under the composite null hypothesis to identify pleiotropic loci. After mapping the loci to their corresponding genes, we conducted pathway analysis using Generalized Gene-Set Analysis of GWAS Data (MAGMA). Additionally, we utilized MAGMA gene-test and eQTL information (whole blood tissue) for further determination of gene involvement. Further investigation involved stratified LD score regression, using diverse immune cell data, to study the enrichment of SNP heritability in kidney-related diseases and sepsis. Furthermore, we employed Mendelian Randomization (MR) analysis to investigate the causality between kidney diseases and sepsis. Results In our genetic correlation analysis, we identified significant correlations among BUN, creatinine, UACR, serum urate, kidney stones, and sepsis. The PLACO analysis method identified 24 pleiotropic loci, pinpointing a total of 28 nearby genes. MAGMA gene-set enrichment analysis revealed a total of 50 pathways, and tissue-specific analysis indicated significant enrichment of five pairs of pleiotropic results in kidney tissue. MAGMA gene test and eQTL information (whole blood tissue) identified 33 and 76 pleiotropic genes, respectively. Notably, genes PPP2R3A for BUN, VAMP8 for UACR, DOCK7 for creatinine, and HIBADH for kidney stones were identified as shared risk genes by all three methods. In a series of immune cell-type-specific enrichment analyses of pleiotropy, we identified a total of 37 immune cells. However, MR analysis did not reveal any causal relationships among them. Conclusions This study lays the groundwork for shared etiological factors between kidney and sepsis. The confirmed pleiotropic loci, shared pathogenic genes, and enriched pathways and immune cells have enhanced our understanding of the multifaceted relationships among these diseases. This provides insights for early disease intervention and effective treatment, paving the way for further research in this field.
Collapse
Affiliation(s)
- Tianlong Zhang
- Department of Critical Care Medicine, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Ying Cui
- Department of Critical Care Medicine, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Siyi Jiang
- Department of Critical Care Medicine, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Lu Jiang
- Department of Critical Care Medicine, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Lijun Song
- Department of Critical Care Medicine, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Lei Huang
- Department of Critical Care Medicine, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Yong Li
- Department of Critical Care Medicine, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Jiali Yao
- Department of Critical Care Medicine, Jinhua Hospital Affiliated to Zhejiang University, Jinhua, Zhejiang, China
| | - Min Li
- Department of Critical Care Medicine, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| |
Collapse
|
2
|
Liu Q, Gu X, Liu X, Gu Y, Zhang H, Yang J, Huang Z. Long-chain fatty acids - The turning point between 'mild' and 'severe' acute pancreatitis. Heliyon 2024; 10:e31296. [PMID: 38828311 PMCID: PMC11140623 DOI: 10.1016/j.heliyon.2024.e31296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 05/14/2024] [Accepted: 05/14/2024] [Indexed: 06/05/2024] Open
Abstract
Acute pancreatitis (AP) is an inflammatory disease characterized by localized pancreatic injury and a systemic inflammatory response. Fatty acids (FAs), produced during the breakdown of triglycerides (TGs) in blood and peripancreatic fat, escalate local pancreatic inflammation to a systemic level by damaging pancreatic acinar cells (PACs) and triggering M1 macrophage polarization. This paper provides a comprehensive analysis of lipases' roles in the onset and progression of AP, as well as the effects of long-chain fatty acids (LCFAs) on the function of pancreatic acinar cells (PACs). Abnormalities in the function of PACs include Ca2+ overload, premature trypsinogen activation, protein kinase C (PKC) expression, endoplasmic reticulum (ER) stress, and mitochondrial and autophagic dysfunction. The study highlights the contribution of long-chain saturated fatty acids (LC-SFAs), especially palmitic acid (PA), to M1 macrophage polarization through the activation of the NLRP3 inflammasome and the NF-κB pathway. Furthermore, we investigated lipid lowering therapy for AP. This review establishes a theoretical foundation for pro-inflammatory mechanisms associated with FAs in AP and facilitating drug development.
Collapse
Affiliation(s)
- Qiang Liu
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou 310058, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou 310058, China
- Hangzhou Hospital & Institute of Digestive Diseases, Hangzhou, Zhejiang 310006, China
| | - Xinyi Gu
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310003, China
| | - Xiaodie Liu
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310003, China
| | - Ye Gu
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou 310058, China
| | - Hongchen Zhang
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou 310058, China
| | - Jianfeng Yang
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou 310058, China
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310003, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou 310058, China
- Hangzhou Hospital & Institute of Digestive Diseases, Hangzhou, Zhejiang 310006, China
| | - Zhicheng Huang
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou 310058, China
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310003, China
| |
Collapse
|
3
|
Chen Y, Liu J, Kang S, Wei D, Fan Y, Xiang M, Liu X. A palisade-shaped membrane reservoir is required for rapid ring cell inflation in Drechslerella dactyloides. Nat Commun 2023; 14:7376. [PMID: 37968349 PMCID: PMC10651832 DOI: 10.1038/s41467-023-43235-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 11/03/2023] [Indexed: 11/17/2023] Open
Abstract
Fusion of individual vesicles carrying membrane-building materials with the plasma membrane (PM) enables gradual cell expansion and shape change. Constricting ring (CR) cells of carnivorous fungi triple in size within 0.1-1 s to capture passing nematodes. Here, we investigated how a carnivorous fungus, Drechslerella dactyloides, executes rapid and irreversible PM expansion during CR inflation. During CR maturation, vesicles carrying membrane-building materials accumulate and fuse, forming a structure named the Palisade-shaped Membrane-building Structure (PMS) around the rumen side of ring cells. After CR inflation, the PMS disappears, with partially inflated cells displaying wavy PM and fully inflated cells exhibiting smooth PM, suggesting that the PMS serves as the reservoir for membrane-building materials to enable rapid and extensive PM expansion. The DdSnc1, a v-SNARE protein, accumulates at the inner side of ring cells and is necessary for PMS formation and CR inflation. This study elucidates the unique cellular mechanisms underpinning rapid CR inflation.
Collapse
Affiliation(s)
- Yue Chen
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, Frontiers Science Center for Cell Responses, College of Life Science, Nankai University, Tianjin, 300071, China
| | - Jia Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, Frontiers Science Center for Cell Responses, College of Life Science, Nankai University, Tianjin, 300071, China
| | - Seogchan Kang
- Department of Plant Pathology & Environmental Microbiology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Dongsheng Wei
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, Frontiers Science Center for Cell Responses, College of Life Science, Nankai University, Tianjin, 300071, China
| | - Yani Fan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Meichun Xiang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xingzhong Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, Frontiers Science Center for Cell Responses, College of Life Science, Nankai University, Tianjin, 300071, China.
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
4
|
Suzuki A, Iwaya C, Ogata K, Yoshioka H, Shim J, Tanida I, Komatsu M, Tada N, Iwata J. Impaired GATE16-mediated exocytosis in exocrine tissues causes Sjögren's syndrome-like exocrinopathy. Cell Mol Life Sci 2022; 79:307. [PMID: 35593968 PMCID: PMC11071900 DOI: 10.1007/s00018-022-04334-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 11/03/2022]
Abstract
Sjögren's syndrome (SjS) is a chronic autoimmune disease characterized by immune cell infiltration of the exocrine glands, mainly the salivary and lacrimal glands. Despite recent advances in the clinical and mechanistic characterization of the disease, its etiology remains largely unknown. Here, we report that mice with a deficiency for either Atg7 or Atg3, which are enzymes involved in the ubiquitin modification pathway, in the salivary glands exhibit a SjS-like phenotype, characterized by immune cell infiltration with autoantibody detection, acinar cell death, and dry mouth. Prior to the onset of the SjS-like phenotype in these null mice, we detected an accumulation of secretory vesicles in the acinar cells of the salivary glands and found that GATE16, an uncharacterized autophagy-related molecule activated by ATG7 (E1-like enzyme) and ATG3 (E2-like enzyme), was highly expressed in these cells. Notably, GATE16 was activated by isoproterenol, an exocytosis inducer, and localized on the secretory vesicles in the acinar cells of the salivary glands. Failure to activate GATE16 was correlated with exocytosis defects in the acinar cells of the salivary glands in Atg7 and Atg3 cKO mice. Taken together, our results show that GATE16 activation regulated by the autophagic machinery is crucial for exocytosis and that defects in this pathway cause SjS.
Collapse
Affiliation(s)
- Akiko Suzuki
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, 77054, USA
- Center for Craniofacial Research, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, 77054, USA
| | - Chihiro Iwaya
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, 77054, USA
- Center for Craniofacial Research, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, 77054, USA
| | - Kenichi Ogata
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, 77054, USA
- Center for Craniofacial Research, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, 77054, USA
| | - Hiroki Yoshioka
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, 77054, USA
- Center for Craniofacial Research, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, 77054, USA
| | - Junbo Shim
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, 77054, USA
- Center for Craniofacial Research, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, 77054, USA
| | - Isei Tanida
- Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Tokyo, 113-8431, Japan
| | - Masaaki Komatsu
- Department of Organ and Cell Physiology, Juntendo University Graduate School of Medicine, Tokyo, 113-8431, Japan
| | - Norihiro Tada
- Division of Genome Research, Research Institute for Diseases of Old Ages, Juntendo University School of Medicine, Tokyo, 113-8431, Japan
| | - Junichi Iwata
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, 77054, USA.
- Center for Craniofacial Research, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, 77054, USA.
- Pediatric Research Center, School of Medicine, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, 77030, USA.
| |
Collapse
|
5
|
Errachid A, Nohawica M, Wyganowska-Swiatkowska M. A comprehensive review of the influence of Epigallocatechin gallate on Sjögren's syndrome associated molecular regulators of exocytosis (Review). Biomed Rep 2021; 15:95. [PMID: 34631050 PMCID: PMC8493546 DOI: 10.3892/br.2021.1471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 06/25/2021] [Indexed: 12/03/2022] Open
Abstract
Sjögren's syndrome (SS) is an autoimmune disorder that affects the salivary glands, leading to reduced secretory functions and oral and ocular dryness. The salivary glands are composed of acinar cells that are responsible for the secretion and production of secretory granules, which contain salivary components, such as amylase, mucins and immunoglobulins. This secretion process involves secretory vesicle trafficking, docking, priming and membrane fusion. A failure during any of the steps in exocytosis in the salivary glands results in the altered secretion of saliva. Soluble N-ethylmaleimide-sensitive-factor attachment protein receptors, actin, tight junctions and aquaporin 5 all serve an important role in the trafficking regulation of secretory vesicles in the secretion of saliva via exocytosis. Alterations in the expression and distribution of these selected proteins leads to salivary gland dysfunction, including SS. Several studies have demonstrated that green tea polyphenols, most notably Epigallocatechin gallate (EGCG), possess both anti-inflammatory and anti-apoptotic properties in normal human cells. Molecular, cellular and animal studies have indicated that EGCG can provide protective effects against autoimmune and inflammatory reactions in salivary glands in diseases such as SS. The aim of the present article is to provide a comprehensive and up-to-date review on the possible therapeutic interactions between EGCG and the selected molecular mechanisms associated with SS.
Collapse
Affiliation(s)
- Abdelmounaim Errachid
- Department of Dental Surgery and Periodontology, Poznan University of Medicinal Sciences, 60-812 Poznań, Greater Poland, Poland.,Earth and Life Institute, University Catholique of Louvain, B-1348 Louvain-la-Neuve, Ottignies-Louvain-la-Neuve, Belgium
| | - Michal Nohawica
- Department of Dental Surgery and Periodontology, Poznan University of Medicinal Sciences, 60-812 Poznań, Greater Poland, Poland
| | - Marzena Wyganowska-Swiatkowska
- Department of Dental Surgery and Periodontology, Poznan University of Medicinal Sciences, 60-812 Poznań, Greater Poland, Poland
| |
Collapse
|
6
|
Cyge B, Voronina V, Hoque M, Kim EN, Hall J, Bailey-Lundberg JM, Pazour GJ, Crawford HC, Moon RT, Li FQ, Takemaru KI. Loss of the ciliary protein Chibby1 in mice leads to exocrine pancreatic degeneration and pancreatitis. Sci Rep 2021; 11:17220. [PMID: 34446743 PMCID: PMC8390639 DOI: 10.1038/s41598-021-96597-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 08/12/2021] [Indexed: 12/12/2022] Open
Abstract
Primary cilia protrude from the apical surface of many cell types and act as a sensory organelle that regulates diverse biological processes ranging from chemo- and mechanosensation to signaling. Ciliary dysfunction is associated with a wide array of genetic disorders, known as ciliopathies. Polycystic lesions are commonly found in the kidney, liver, and pancreas of ciliopathy patients and mouse models. However, the pathogenesis of the pancreatic phenotype remains poorly understood. Chibby1 (Cby1), a small conserved coiled-coil protein, localizes to the ciliary base and plays a crucial role in ciliogenesis. Here, we report that Cby1-knockout (KO) mice develop severe exocrine pancreatic atrophy with dilated ducts during early postnatal development. A significant reduction in the number and length of cilia was observed in Cby1-KO pancreta. In the adult Cby1-KO pancreas, inflammatory cell infiltration and fibrosis were noticeable. Intriguingly, Cby1-KO acinar cells showed an accumulation of zymogen granules (ZGs) with altered polarity. Moreover, isolated acini from Cby1-KO pancreas exhibited defective ZG secretion in vitro. Collectively, our results suggest that, upon loss of Cby1, concomitant with ciliary defects, acinar cells accumulate ZGs due to defective exocytosis, leading to cell death and progressive exocrine pancreatic degeneration after birth.
Collapse
Affiliation(s)
- Benjamin Cyge
- Graduate Program in Molecular and Cellular Pharmacology, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Vera Voronina
- Department of Pharmacology, Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine and Howard Hughes Medical Institute, Seattle, WA, 98195, USA
| | - Mohammed Hoque
- Graduate Program in Molecular and Cellular Biology, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Eunice N Kim
- Graduate Program in Molecular and Cellular Biology, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Jason Hall
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Jennifer M Bailey-Lundberg
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Gregory J Pazour
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Howard C Crawford
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, 32224, USA
- Henry Ford Health System, Detroit, MI, 48202, USA
| | - Randall T Moon
- Department of Pharmacology, Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine and Howard Hughes Medical Institute, Seattle, WA, 98195, USA
| | - Feng-Qian Li
- Graduate Program in Molecular and Cellular Pharmacology, Stony Brook University, Stony Brook, NY, 11794, USA
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, 11974, USA
| | - Ken-Ichi Takemaru
- Graduate Program in Molecular and Cellular Pharmacology, Stony Brook University, Stony Brook, NY, 11794, USA.
- Graduate Program in Molecular and Cellular Biology, Stony Brook University, Stony Brook, NY, 11794, USA.
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, 11974, USA.
- Department of Pharmacological Sciences, Stony Brook University, BST 7-182, 101 Nicolls Rd., Stony Brook, NY, 11794-8651, USA.
| |
Collapse
|
7
|
Williams JA, Groblewski GE, Gorelick FS, Mayerle J, Apte M, Gukovskaya A. American Pancreatic Association Frank Brooks Symposium: Fifty Years of Pancreatic Cell Biology. Pancreas 2021; 49:604-611. [PMID: 32433396 PMCID: PMC7249997 DOI: 10.1097/mpa.0000000000001543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Affiliation(s)
- John A. Williams
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI
- Department of Internal Medicine (Gastroenterology), University of Michigan, Ann Arbor, MI
| | - Guy E. Groblewski
- Department of Nutritional Sciences, University of Wisconsin, Madison, WI
| | - Fred S. Gorelick
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT
| | - Julia Mayerle
- Department of Medicine II, Liver Centre Munich, University Hospital, LMU Munich, Germany
| | - Minoti Apte
- Pancreatic Research Group, South Western Sydney Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
| | - Anna Gukovskaya
- Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles, and, VA Greater Los Angeles Healthcare System, Los Angeles, CA
| |
Collapse
|
8
|
Fusconi M, Candelori F, Weiss L, Riccio A, Priori R, Businaro R, Mastromanno L, Musy I, de Vincentiis M, Greco A. Qualitative mucin disorders in patients with primary Sjögren's syndrome: a literature review. Med Oral Patol Oral Cir Bucal 2021; 26:e71-e77. [PMID: 33247578 PMCID: PMC7806352 DOI: 10.4317/medoral.23996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 11/09/2020] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND It is a common opinion that Primary Sjögren Syndrome (pSS) damages the exocrine glands and determines the reduction of secreted saliva, some studies show that there are qualitative anomalies of the mucins produced in saliva, including MUC7, MUC5B, MUC1. The purpose of this study is to trace all the information useful to establish whether there is a qualitative or quantitative defect of the mucins in the pSS. MATERIAL AND METHODS We reviewed the literature by looking for publications relevant to the topic in electronic databases. Sixteen articles met the search criteria. The studies were divided into two categories, those that studied the rheological characteristics of the saliva and those that studied the structural and / or metabolism modifications of the muciparous cells in the salivary glands. RESULTS in Patients with pSS, xerostomia and the reduction of salivary spinnbarkeit are only partially related to the reduction of the unstimulated salivary flow. In pSS, pathological alterations of mucins' chemical-physical properties prevail as a cause of the clinical characteristics. Moreover, in pSS there are structural and metabolism changes in salivary glands' muciparous cells. CONCLUSIONS There is much evidence that supports the presence of qualitative alterations in the saliva's rheological properties in Patients with pSS, and these are the main cause, more than the reduction of the unstimulated salivary flow, of the disease clinical characteristics - dry mouth and complications in the oral cavity. Therefore we propose to add to the classification criteria of pSS also a qualitative test of salivary glycoproteins.
Collapse
|
9
|
Wang Y, Zhang M, Zhou F. Biological functions and clinical applications of exosomal long non-coding RNAs in cancer. J Cell Mol Med 2020; 24:11656-11666. [PMID: 32924276 PMCID: PMC7578871 DOI: 10.1111/jcmm.15873] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 12/15/2022] Open
Abstract
Exosomes are extracellular vesicles secreted by donor cells, and one of the important roles of exosomes is intercellular communication. Exosomes contain proteins, lipids, DNA and RNA. The components exert their functions by modulating the cellular processes of recipient cells. Exosomal long non‐coding RNAs (lncRNAs) are important components and play multiple roles in tumorigenesis and tumour development. In this review, we summarize the biological functions and clinical applications of exosomal lncRNAs in cancer. Exosomal lncRNAs regulate cell proliferation, metastasis, drug resistance and angiogenesis in human cancers. Since exosomal lncRNAs are associated with clinicopathological characteristics of cancer, these might be potentially useful biomarkers for diagnosis and prognosis of cancer. Exosomal lncRNAs participate in multiple processes of cancer progression, which makes them promising therapeutic targets for cancer treatment.
Collapse
Affiliation(s)
- Yali Wang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Mengdi Zhang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Fangfang Zhou
- Institutes of Biology and Medical Science, Soochow University, Suzhou, China
| |
Collapse
|
10
|
Guo J, Liu X, Zhang T, Lin X, Hong Y, Yu J, Wu Q, Zhang F, Wu Q, Shang J, Lv X, Ou J, Zhou J, Pang R, Tang B, Liang S. Hepatocyte TMEM16A Deletion Retards NAFLD Progression by Ameliorating Hepatic Glucose Metabolic Disorder. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1903657. [PMID: 32440483 PMCID: PMC7237841 DOI: 10.1002/advs.201903657] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/22/2020] [Accepted: 02/27/2020] [Indexed: 06/11/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most prevalent form of chronic liver disease, and the mechanisms underpinning its pathogenesis have not been completely established. Transmembrane member 16A (TMEM16A), a component of the Ca2+-activated chloride channel (CaCC), has recently been implicated in metabolic events. Herein, TMEM16A is shown to be responsible for CaCC activation in hepatocytes and is increased in liver tissues of mice and patients with NAFLD. Hepatocyte-specific ablation of TMEM16A in mice ameliorates high-fat diet-induced obesity, hepatic glucose metabolic disorder, steatosis, insulin resistance, and inflammation. In contrast, hepatocyte-specific TMEM16A transgenic mice exhibit the opposite phenotype. Mechanistically, hepatocyte TMEM16A interacts with vesicle-associated membrane protein 3 (VAMP3) to induce its degradation, suppressing the formation of the VAMP3/syntaxin 4 and VAMP3/synaptosome-associated protein 23 complexes. This leads to the impairment of hepatic glucose transporter 2 (GLUT2) translocation and glucose uptake. Notably, VAMP3 overexpression restrains the functions of hepatocyte TMEM16A in blocking GLUT2 translocation and promoting lipid deposition, insulin resistance, and inflammation. In contrast, VAMP3 knockdown reverses the beneficial effects of TMEM16A downregulation. This study demonstrates a role for TMEM16A in NAFLD and suggests that inhibition of hepatic TMEM16A or disruption of TMEM16A/VAMP3 interaction may provide a new potential therapeutic strategy for NAFLD.
Collapse
Affiliation(s)
- Jia‐Wei Guo
- Department of PharmacologyCardiac and Cerebral Vascular Research CenterZhongshan School of MedicineSun Yat‐Sen UniversityGuangzhou510080China
| | - Xiu Liu
- Department of PharmacologyCardiac and Cerebral Vascular Research CenterZhongshan School of MedicineSun Yat‐Sen UniversityGuangzhou510080China
| | - Ting‐Ting Zhang
- Department of PharmacologyCardiac and Cerebral Vascular Research CenterZhongshan School of MedicineSun Yat‐Sen UniversityGuangzhou510080China
| | - Xiao‐Chun Lin
- Department of PharmacologyCardiac and Cerebral Vascular Research CenterZhongshan School of MedicineSun Yat‐Sen UniversityGuangzhou510080China
| | - Yu Hong
- Department of PharmacologyCardiac and Cerebral Vascular Research CenterZhongshan School of MedicineSun Yat‐Sen UniversityGuangzhou510080China
| | - Jie Yu
- Department of Gastrointestinal SurgeryThe First Affiliated HospitalSun Yat‐Sen UniversityGuangzhou510080China
| | - Qin‐Yan Wu
- Department of GastroenterologyThe First People's Hospital of FoshanFoshan528000China
| | - Fei‐Ran Zhang
- Department of PharmacologyCardiac and Cerebral Vascular Research CenterZhongshan School of MedicineSun Yat‐Sen UniversityGuangzhou510080China
| | - Qian‐Qian Wu
- Key Laboratory of Metabolic Cardiovascular Diseases Research of National Health CommissionNingxia Medical UniversityYinchuan750004China
| | - Jin‐Yan Shang
- Department of PharmacologyCardiac and Cerebral Vascular Research CenterZhongshan School of MedicineSun Yat‐Sen UniversityGuangzhou510080China
| | - Xiao‐Fei Lv
- Department of PharmacologyCardiac and Cerebral Vascular Research CenterZhongshan School of MedicineSun Yat‐Sen UniversityGuangzhou510080China
| | - Jing‐Song Ou
- Division of Cardiac SurgeryThe Key Laboratory of Assisted CirculationMinistry of HealthThe First Affiliated HospitalSun Yat‐Sen UniversityGuangzhou510080China
- National‐Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular DiseasesThe First Affiliated HospitalSun Yat‐Sen UniversityGuangzhou510080China
| | - Jia‐Guo Zhou
- Department of PharmacologyCardiac and Cerebral Vascular Research CenterZhongshan School of MedicineSun Yat‐Sen UniversityGuangzhou510080China
- Program of Kidney and Cardiovascular DiseaseThe Fifth Affiliated HospitalSun Yat‐Sen UniversityGuangzhou510080China
- Department of CardiologySun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
- Guangdong Province Key Laboratory of Brain Function and DiseaseZhongshan School of MedicineSun Yat‐Sen UniversityGuangzhou510080China
| | - Rui‐Ping Pang
- Guangdong Province Key Laboratory of Brain Function and DiseaseZhongshan School of MedicineSun Yat‐Sen UniversityGuangzhou510080China
- Department of PhysiologyPain Research CenterZhongshan School of MedicineSun Yat‐Sen UniversityGuangzhou510080China
| | - Bao‐Dong Tang
- Department of GastroenterologyThe First Affiliated HospitalSun Yat‐Sen UniversityGuangzhou510080China
| | - Si‐Jia Liang
- Department of PharmacologyCardiac and Cerebral Vascular Research CenterZhongshan School of MedicineSun Yat‐Sen UniversityGuangzhou510080China
| |
Collapse
|
11
|
Rasineni K, Srinivasan MP, Balamurugan AN, Kaphalia BS, Wang S, Ding WX, Pandol SJ, Lugea A, Simon L, Molina PE, Gao P, Casey CA, Osna NA, Kharbanda KK. Recent Advances in Understanding the Complexity of Alcohol-Induced Pancreatic Dysfunction and Pancreatitis Development. Biomolecules 2020; 10:biom10050669. [PMID: 32349207 PMCID: PMC7277520 DOI: 10.3390/biom10050669] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/13/2020] [Accepted: 04/15/2020] [Indexed: 02/05/2023] Open
Abstract
Chronic excessive alcohol use is a well-recognized risk factor for pancreatic dysfunction and pancreatitis development. Evidence from in vivo and in vitro studies indicates that the detrimental effects of alcohol on the pancreas are from the direct toxic effects of metabolites and byproducts of ethanol metabolism such as reactive oxygen species. Pancreatic dysfunction and pancreatitis development are now increasingly thought to be multifactorial conditions, where alcohol, genetics, lifestyle, and infectious agents may determine the initiation and course of the disease. In this review, we first highlight the role of nonoxidative ethanol metabolism in the generation and accumulation of fatty acid ethyl esters (FAEEs) that cause multi-organellar dysfunction in the pancreas which ultimately leads to pancreatitis development. Further, we discuss how alcohol-mediated altered autophagy leads to the development of pancreatitis. We also provide insights into how alcohol interactions with other co-morbidities such as smoking or viral infections may negatively affect exocrine and endocrine pancreatic function. Finally, we present potential strategies to ameliorate organellar dysfunction which could attenuate pancreatic dysfunction and pancreatitis severity.
Collapse
Affiliation(s)
- Karuna Rasineni
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA; (C.A.C.); (N.A.O.); (K.K.K.)
- Research Service, Veterans’ Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
- Correspondence: ; Tel.: +1-402-995-3548; Fax: +1-402-995-4600
| | - Mukund P. Srinivasan
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX 77555-0419, USA; (M.P.S.); (B.S.K.)
| | - Appakalai N. Balamurugan
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children’s Hospital Medical Center, Department of Surgery, University of Cincinnati, Cincinnati, OH 45229, USA;
| | - Bhupendra S. Kaphalia
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX 77555-0419, USA; (M.P.S.); (B.S.K.)
| | - Shaogui Wang
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, MO 66160, USA; (S.W.); (W.-X.D.)
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, MO 66160, USA; (S.W.); (W.-X.D.)
| | - Stephen J. Pandol
- Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (S.J.P.); (A.L.)
| | - Aurelia Lugea
- Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (S.J.P.); (A.L.)
| | - Liz Simon
- Department of Physiology, Louisiana State University Health Sciences Center-New Orleans, New Orleans, LA 70112, USA; (L.S.); (P.E.M.)
| | - Patricia E. Molina
- Department of Physiology, Louisiana State University Health Sciences Center-New Orleans, New Orleans, LA 70112, USA; (L.S.); (P.E.M.)
| | - Peter Gao
- Program Director, Division of Metabolism and Health Effects, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892-6902, USA;
| | - Carol A. Casey
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA; (C.A.C.); (N.A.O.); (K.K.K.)
- Research Service, Veterans’ Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Natalia A. Osna
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA; (C.A.C.); (N.A.O.); (K.K.K.)
- Research Service, Veterans’ Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
| | - Kusum K. Kharbanda
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA; (C.A.C.); (N.A.O.); (K.K.K.)
- Research Service, Veterans’ Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| |
Collapse
|
12
|
Liang T, Qin T, Kang F, Kang Y, Xie L, Zhu D, Dolai S, Greitzer-Antes D, Baker RK, Feng D, Tuduri E, Ostenson CG, Kieffer TJ, Banks K, Pessin JE, Gaisano HY. SNAP23 depletion enables more SNAP25/calcium channel excitosome formation to increase insulin exocytosis in type 2 diabetes. JCI Insight 2020; 5:129694. [PMID: 32051343 PMCID: PMC7098801 DOI: 10.1172/jci.insight.129694] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 01/15/2020] [Indexed: 01/05/2023] Open
Abstract
SNAP23 is the ubiquitous SNAP25 isoform that mediates secretion in non-neuronal cells, similar to SNAP25 in neurons. However, some secretory cells like pancreatic islet β cells contain an abundance of both SNAP25 and SNAP23, where SNAP23 is believed to play a redundant role to SNAP25. We show that SNAP23, when depleted in mouse β cells in vivo and human β cells (normal and type 2 diabetes [T2D] patients) in vitro, paradoxically increased biphasic glucose-stimulated insulin secretion corresponding to increased exocytosis of predocked and newcomer insulin granules. Such effects on T2D Goto-Kakizaki rats improved glucose homeostasis that was superior to conventional treatment with sulfonylurea glybenclamide. SNAP23, although fusion competent in slower secretory cells, in the context of β cells acts as a weak partial fusion agonist or inhibitory SNARE. Here, SNAP23 depletion promotes SNAP25 to bind calcium channels more quickly and longer where granule fusion occurs to increase exocytosis efficiency. β Cell SNAP23 antagonism is a strategy to treat diabetes.
Collapse
Affiliation(s)
- Tao Liang
- Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Tairan Qin
- Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Fei Kang
- Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Youhou Kang
- Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Li Xie
- Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Dan Zhu
- Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Subhankar Dolai
- Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Dafna Greitzer-Antes
- Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Robert K. Baker
- Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Daorong Feng
- Michael F. Price Center for Genetic and Translational Medicine, Department of Medicine and Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Eva Tuduri
- Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Claes-Goran Ostenson
- Department of Molecular Medicine and,Department of Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Timothy J. Kieffer
- Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kate Banks
- Division of Comparative Medicine, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Jeffrey E. Pessin
- Michael F. Price Center for Genetic and Translational Medicine, Department of Medicine and Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Herbert Y. Gaisano
- Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
13
|
Critical Role of TFEB-Mediated Lysosomal Biogenesis in Alcohol-Induced Pancreatitis in Mice and Humans. Cell Mol Gastroenterol Hepatol 2020; 10:59-81. [PMID: 31987928 PMCID: PMC7210479 DOI: 10.1016/j.jcmgh.2020.01.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 01/16/2020] [Accepted: 01/17/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Alcohol abuse is the major cause of experimental and human pancreatitis but the molecular mechanisms remain largely unknown. We investigated the role of transcription factor EB (TFEB), a master regulator of lysosomal biogenesis, in the pathogenesis of alcoholic pancreatitis. METHODS Using a chronic plus acute alcohol binge (referred to as Gao-binge) mouse model, we analyzed pancreas injury, autophagic flux, zymogen granule removal, TFEB nuclear translocation and lysosomal biogenesis in GFP-LC3 transgenic mice, acinar cell-specific Atg5 knockout (KO) and TFEB KO mice as well as their matched wild type mice. RESULTS We found that Gao-binge alcohol induced typical features of pancreatitis in mice with increased serum amylase and lipase activities, pancreatic edema, infiltration of inflammatory cells, accumulation of zymogen granules (ZGs) and expression of inflammatory cytokines. While Gao-binge alcohol increased the number of autophagosomes, it also concurrently inhibited TFEB nuclear translocation and TFEB-mediated lysosomal biogenesis resulting in insufficient autophagy. Acinar cell-specific Atg5 KO and acinar cell-specific TFEB KO mice developed severe inflammatory and fibrotic pancreatitis in both Gao-binge alcohol and control diet-fed mice. In contrast, TFEB overexpression inhibited alcohol-induced pancreatic edema, accumulation of zymogen granules and serum amylase and lipase activities. In line with our findings in mice, decreased LAMP1 and TFEB nuclear staining were also observed in human alcoholic pancreatitis tissues. CONCLUSIONS our results indicate that TFEB plays a critical role in maintaining pancreatic acinar cell homeostasis. Impairment of TFEB-mediated lysosomal biogenesis by alcohol may lead to insufficient autophagy and promote alcohol-induced pancreatitis.
Collapse
|
14
|
Das J. SNARE Complex-Associated Proteins and Alcohol. Alcohol Clin Exp Res 2019; 44:7-18. [PMID: 31724225 DOI: 10.1111/acer.14238] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 11/07/2019] [Indexed: 12/23/2022]
Abstract
Alcohol addiction causes major health problems throughout the world, causing numerous deaths and incurring a huge economic burden to society. To develop an intervention for alcohol addiction, it is necessary to identify molecular target(s) of alcohol and associated molecular mechanisms of alcohol action. The functions of many central and peripheral synapses are impacted by low concentrations of ethanol (EtOH). While the postsynaptic targets and mechanisms are studied extensively, there are limited studies on the presynaptic targets and mechanisms. This article is an endeavor in this direction, focusing on the effect of EtOH on the presynaptic proteins associated with the neurotransmitter release machinery. Studies on the effects of EtOH at the levels of gene, protein, and behavior are highlighted in this article.
Collapse
Affiliation(s)
- Joydip Das
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas
| |
Collapse
|
15
|
Yang L, Peng X, Li Y, Zhang X, Ma Y, Wu C, Fan Q, Wei S, Li H, Liu J. Long non-coding RNA HOTAIR promotes exosome secretion by regulating RAB35 and SNAP23 in hepatocellular carcinoma. Mol Cancer 2019; 18:78. [PMID: 30943982 PMCID: PMC6446409 DOI: 10.1186/s12943-019-0990-6] [Citation(s) in RCA: 180] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 02/26/2019] [Indexed: 12/14/2022] Open
Abstract
Background Emerging evidence indicates that tumor cells release a large amount of exosomes loaded with cargos during tumorigenesis. Exosome secretion is a multi-step process regulated by certain related molecules. Long non-coding RNAs (lncRNAs) play an important role in hepatocellular carcinoma (HCC) progression. However, the role of lncRNA HOTAIR in regulating exosome secretion in HCC cells remains unclear. Methods We analyzed the relationship between HOTAIR expression and exosome secretion-related genes using gene set enrichment analysis (GSEA). Nanoparticle tracking analysis was performed to validate the effect of HOTAIR on exosome secretion. The transport of multivesicular bodies (MVBs) after overexpression of HOTAIR was detected by transmission electron microscopy and confocal microscopy analysis of cluster determinant 63 (CD63) with synaptosome associated protein 23 (SNAP23). The mechanism of HOTAIR’s regulation of Ras-related protein Rab-35 (RAB35), vesicle associated membrane protein 3 (VAMP3), and SNAP23 was assessed using confocal co-localization analysis, phosphorylation assays, and rescue experiments. Results We found an enrichment of exosome secretion-related genes in the HOTAIR high expression group. HOTAIR promoted the release of exosomes by inducing MVB transport to the plasma membrane. HOTAIR regulated RAB35 expression and localization, which controlled the docking process. Moreover, HOTAIR facilitated the final step of fusion by influencing VAMP3 and SNAP23 colocalization. In addition, we validated that HOTAIR induced the phosphorylation of SNAP23 via mammalian target of rapamycin (mTOR) signaling. Conclusion Our study demonstrated a novel function of lncRNA HOTAIR in promoting exosome secretion from HCC cells and provided a new understanding of lncRNAs in tumor cell biology. Electronic supplementary material The online version of this article (10.1186/s12943-019-0990-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Liang Yang
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Xueqiang Peng
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Yan Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Xiaodong Zhang
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Yingbo Ma
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Chunli Wu
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Qing Fan
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Shibo Wei
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Hangyu Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China.
| | - Jingang Liu
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China.
| |
Collapse
|
16
|
Suzuki A, Iwata J. Molecular Regulatory Mechanism of Exocytosis in the Salivary Glands. Int J Mol Sci 2018; 19:E3208. [PMID: 30336591 PMCID: PMC6214078 DOI: 10.3390/ijms19103208] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 10/10/2018] [Accepted: 10/11/2018] [Indexed: 12/12/2022] Open
Abstract
Every day, salivary glands produce about 0.5 to 1.5 L of saliva, which contains salivary proteins that are essential for oral health. The contents of saliva, 0.3% proteins (1.5 to 4.5 g) in fluid, help prevent oral infections, provide lubrication, aid digestion, and maintain oral health. Acinar cells in the lobular salivary glands secrete prepackaged secretory granules that contain salivary components such as amylase, mucins, and immunoglobulins. Despite the important physiological functions of salivary proteins, we know very little about the regulatory mechanisms of their secretion via exocytosis, which is a process essential for the secretion of functional proteins, not only in salivary glands, but also in other secretory organs, including lacrimal and mammary glands, the pancreas, and prostate. In this review, we discuss recent findings that elucidate exocytosis by exocrine glands, especially focusing on the salivary glands, in physiological and pathological conditions.
Collapse
Affiliation(s)
- Akiko Suzuki
- Department of Diagnostic & Biomedical Sciences, The University of Texas Health Science Center at Houston School of Dentistry, Houston, TX 77054, USA.
- Center for Craniofacial Research, The University of Texas Health Science Center at Houston School of Dentistry, Houston, TX 77054, USA.
| | - Junichi Iwata
- Department of Diagnostic & Biomedical Sciences, The University of Texas Health Science Center at Houston School of Dentistry, Houston, TX 77054, USA.
- Center for Craniofacial Research, The University of Texas Health Science Center at Houston School of Dentistry, Houston, TX 77054, USA.
- Program of Biochemistry and Cell Biology, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA.
| |
Collapse
|
17
|
Chvanov M, De Faveri F, Moore D, Sherwood MW, Awais M, Voronina S, Sutton R, Criddle DN, Haynes L, Tepikin AV. Intracellular rupture, exocytosis and actin interaction of endocytic vacuoles in pancreatic acinar cells: initiating events in acute pancreatitis. J Physiol 2018; 596:2547-2564. [PMID: 29717784 PMCID: PMC6023832 DOI: 10.1113/jp275879] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 04/20/2018] [Indexed: 12/18/2022] Open
Abstract
Key points Giant trypsin‐containing endocytic vacuoles are formed in pancreatic acinar cells stimulated with inducers of acute pancreatitis. F‐actin envelops endocytic vacuoles and regulates their properties. Endocytic vacuoles can rupture and release their content into the cytosol of acinar cells. Endocytic vacuoles can fuse with the plasma membrane of acinar cells and exocytose their content.
Abstract Intrapancreatic activation of trypsinogen is an early event in and hallmark of the development of acute pancreatitis. Endocytic vacuoles, which form by disconnection and transport of large post‐exocytic structures, are the only resolvable sites of the trypsin activity in live pancreatic acinar cells. In the present study, we characterized the dynamics of endocytic vacuole formation induced by physiological and pathophysiological stimuli and visualized a prominent actin coat that completely or partially surrounded endocytic vacuoles. An inducer of acute pancreatitis taurolithocholic acid 3‐sulphate and supramaximal concentrations of cholecystokinin triggered the formation of giant (more than 2.5 μm in diameter) endocytic vacuoles. We discovered and characterized the intracellular rupture of endocytic vacuoles and the fusion of endocytic vacuoles with basal and apical regions of the plasma membrane. Experiments with specific protease inhibitors suggest that the rupture of endocytic vacuoles is probably not induced by trypsin or cathepsin B. Perivacuolar filamentous actin (observed on the surface of ∼30% of endocytic vacuoles) may play a stabilizing role by preventing rupture of the vacuoles and fusion of the vacuoles with the plasma membrane. The rupture and fusion of endocytic vacuoles allow trypsin to escape the confinement of a membrane‐limited organelle, gain access to intracellular and extracellular targets, and initiate autodigestion of the pancreas, comprising a crucial pathophysiological event. Giant trypsin‐containing endocytic vacuoles are formed in pancreatic acinar cells stimulated with inducers of acute pancreatitis. F‐actin envelops endocytic vacuoles and regulates their properties. Endocytic vacuoles can rupture and release their content into the cytosol of acinar cells. Endocytic vacuoles can fuse with the plasma membrane of acinar cells and exocytose their content.
Collapse
Affiliation(s)
- Michael Chvanov
- Department of Cellular and Molecular Physiology and NIHR Liverpool Pancreas Biomedical Research Unit, University of Liverpool, Liverpool, UK
| | - Francesca De Faveri
- Department of Cellular and Molecular Physiology and NIHR Liverpool Pancreas Biomedical Research Unit, University of Liverpool, Liverpool, UK
| | - Danielle Moore
- Department of Cellular and Molecular Physiology and NIHR Liverpool Pancreas Biomedical Research Unit, University of Liverpool, Liverpool, UK
| | - Mark W Sherwood
- Department of Cellular and Molecular Physiology and NIHR Liverpool Pancreas Biomedical Research Unit, University of Liverpool, Liverpool, UK
| | - Muhammad Awais
- Department of Cellular and Molecular Physiology and NIHR Liverpool Pancreas Biomedical Research Unit, University of Liverpool, Liverpool, UK
| | - Svetlana Voronina
- Department of Cellular and Molecular Physiology and NIHR Liverpool Pancreas Biomedical Research Unit, University of Liverpool, Liverpool, UK
| | - Robert Sutton
- Department of Cellular and Molecular Physiology and NIHR Liverpool Pancreas Biomedical Research Unit, University of Liverpool, Liverpool, UK
| | - David N Criddle
- Department of Cellular and Molecular Physiology and NIHR Liverpool Pancreas Biomedical Research Unit, University of Liverpool, Liverpool, UK
| | - Lee Haynes
- Department of Cellular and Molecular Physiology and NIHR Liverpool Pancreas Biomedical Research Unit, University of Liverpool, Liverpool, UK
| | - Alexei V Tepikin
- Department of Cellular and Molecular Physiology and NIHR Liverpool Pancreas Biomedical Research Unit, University of Liverpool, Liverpool, UK
| |
Collapse
|
18
|
Dolai S, Liang T, Orabi AI, Holmyard D, Xie L, Greitzer-Antes D, Kang Y, Xie H, Javed TA, Lam PP, Rubin DC, Thorn P, Gaisano HY. Pancreatitis-Induced Depletion of Syntaxin 2 Promotes Autophagy and Increases Basolateral Exocytosis. Gastroenterology 2018; 154:1805-1821.e5. [PMID: 29360461 PMCID: PMC6461447 DOI: 10.1053/j.gastro.2018.01.025] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 12/13/2017] [Accepted: 01/08/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Pancreatic acinar cells are polarized epithelial cells that store enzymes required for digestion as inactive zymogens, tightly packed at the cell apex. Stimulation of acinar cells causes the zymogen granules to fuse with the apical membrane, and the cells undergo exocytosis to release proteases into the intestinal lumen. Autophagy maintains homeostasis of pancreatic acini. Syntaxin 2 (STX2), an abundant soluble N-ethyl maleimide sensitive factor attachment protein receptor in pancreatic acini, has been reported to mediate apical exocytosis. Using human pancreatic tissues and STX2-knockout (KO) mice, we investigated the functions of STX2 in zymogen granule-mediated exocytosis and autophagy. METHODS We obtained pancreatic tissues from 5 patients undergoing surgery for pancreatic cancer and prepared 80-μm slices; tissues were exposed to supramaximal cholecystokinin octapeptide (CCK-8) or ethanol and a low concentration of CCK-8 and analyzed by immunoblot and immunofluorescence analyses. STX2-KO mice and syntaxin 2+/+ C57BL6 mice (controls) were given intraperitoneal injections of supramaximal caerulein (a CCK-8 analogue) or fed ethanol and then given a low dose of caerulein to induce acute pancreatitis, or saline (controls); pancreata were isolated and analyzed by histology and immunohistochemistry. Acini were isolated from mice, incubated with CCK-8, and analyzed by immunofluorescence microscopy or used in immunoprecipitation experiments. Exocytosis was quantified using live-cell exocytosis and Ca2+ imaging analyses and based on formation of exocytotic soluble N-ethyl maleimide sensitive factor attachment protein receptor complexes. Dysregulations in autophagy were identified using markers, electron and immunofluorescence microscopy, and protease activation assays. RESULTS Human pancreatic tissues and dispersed pancreatic acini from control mice exposed to CCK-8 or ethanol plus CCK-8 were depleted of STX2. STX2-KO developed more severe pancreatitis after administration of supramaximal caerulein or a 6-week ethanol diet compared with control. Acini from STX2-KO mice had increased apical exocytosis after exposure to CCK-8, as well as increased basolateral exocytosis, which led to ectopic release of proteases. These increases in apical and basolateral exocytosis required increased formation of fusogenic soluble N-ethyl maleimide sensitive factor attachment protein receptor complexes, mediated by STX3 and STX4. STX2 bound ATG16L1 and prevented it from binding clathrin. Deletion of STX2 from acini increased binding of AT16L1 to clathrin, increasing formation of pre-autophagosomes and inducing autophagy. Induction of autophagy promoted the CCK-8-induced increase in autolysosome formation and the activation of trypsinogen. CONCLUSIONS In studies of human pancreatic tissues and pancreata from STX2-KO and control mice, we found STX2 to block STX3- and STX4-mediated fusion of zymogen granules with the plasma membrane and exocytosis and prevent binding of ATG16L1 to clathrin, which contributes to induction of autophagy. Exposure of pancreatic tissues to CCK-8 or ethanol depletes acinar cells of STX2, increasing basolateral exocytosis and promoting autophagy induction, leading to activation of trypsinogen.
Collapse
Affiliation(s)
- Subhankar Dolai
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada.
| | - Tao Liang
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Abrahim I Orabi
- Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Douglas Holmyard
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
| | - Li Xie
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | - Youhou Kang
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Huanli Xie
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Tanveer A Javed
- Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Patrick P Lam
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Deborah C Rubin
- Division of Gastroenterology, Departments of Medicine, and Developmental Biology, Washington University School of Medicine, St Louis, Missouri
| | - Peter Thorn
- University of Sydney, Sydney, New South Wales, Australia
| | - Herbert Y Gaisano
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada; Department of Physiology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
19
|
Molecular architecture of mouse and human pancreatic zymogen granules: protein components and their copy numbers. BIOPHYSICS REPORTS 2018; 4:94-103. [PMID: 29756009 PMCID: PMC5937866 DOI: 10.1007/s41048-018-0055-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 10/17/2017] [Indexed: 01/15/2023] Open
Abstract
A molecular model of pancreatic zymogen granule (ZG) is critical for understanding its functions. We have extensively characterized the composition and membrane topology of rat ZG proteins. In this study, we report the development of targeted proteomics approaches to quantify representative mouse and human ZG proteins using LC-SRM and heavy isotope-labeled synthetic peptides. The absolute quantities of mouse Rab3D and VAMP8 were determined as 1242 ± 218 and 2039 ± 151 (mean ± SEM) copies per ZG. The size distribution and the averaged diameter of ZGs 750 ± 23 nm (mean ± SEM) were determined by atomic force microscopy. The absolute quantification of Rab3D was then validated using semi-quantitative Western blotting with purified GST-Rab3D proteins as an internal standard. To extend our proteomics analysis to human pancreas, ZGs were purified using human acini obtained from pancreatic islet transplantation center. One hundred and eighty human ZG proteins were identified for the first time including both the membrane and the content proteins. Furthermore, the copy number per ZG of human Rab3D and VAMP8 were determined to be 1182 ± 45 and 485 ± 15 (mean ± SEM). The comprehensive proteomic analyses of mouse and human pancreatic ZGs have the potential to identify species-specific ZG proteins. The determination of protein copy numbers on pancreatic ZGs represents a significant advance towards building a quantitative molecular model of a prototypical secretory vesicle using targeted proteomics approaches. The identification of human ZG proteins lays a foundation for subsequent studies of altered ZG compositions and secretion in pancreatic diseases.
Collapse
|
20
|
Dolai S, Liang T, Orabi AI, Xie L, Holmyard D, Javed TA, Fernandez NA, Xie H, Cattral MS, Thurmond DC, Thorn P, Gaisano HY. Depletion of the membrane-fusion regulator Munc18c attenuates caerulein hyperstimulation-induced pancreatitis. J Biol Chem 2017; 293:2510-2522. [PMID: 29284677 DOI: 10.1074/jbc.ra117.000792] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 12/21/2017] [Indexed: 12/26/2022] Open
Abstract
Epithelial pancreatic acinar cells perform crucial functions in food digestion, and acinar cell homeostasis required for secretion of digestive enzymes relies on SNARE-mediated exocytosis. The ubiquitously expressed Sec1/Munc18 protein mammalian uncoordinated-18c (Munc18c) regulates membrane fusion by activating syntaxin-4 (STX-4) to bind cognate SNARE proteins to form a SNARE complex that mediates exocytosis in many cell types. However, in the acinar cell, Munc18c's functions in exocytosis and homeostasis remain inconclusive. Here, we found that pancreatic acini from Munc18c-depleted mice (Munc18c+/-) and human pancreas (lenti-Munc18c-shRNA-treated) exhibit normal apical exocytosis of zymogen granules (ZGs) in response to physiologic stimulation with the intestinal hormone cholecystokinin (CCK-8). However, when stimulated with supraphysiologic CCK-8 levels to mimic pancreatitis, Munc18c-depleted (Munc18c+/-) mouse acini exhibited a reduction in pathological basolateral exocytosis of ZGs resulting from a decrease in fusogenic STX-4 SNARE complexes. This reduced basolateral exocytosis in part explained the less severe pancreatitis observed in Munc18c+/- mice after hyperstimulation with the CCK-8 analog caerulein. Likely as a result of this secretory blockade, Munc18c-depleted acini unexpectedly activated a component of the endoplasmic reticulum (ER) stress response that contributed to autophagy induction, resulting in downstream accumulation of autophagic vacuoles and autolysosomes. We conclude that Munc18c's role in mediating ectopic basolateral membrane fusion of ZGs contributes to the initiation of CCK-induced pancreatic injury, and that blockade of this secretory process could increase autophagy induction.
Collapse
Affiliation(s)
- Subhankar Dolai
- From the Departments of Medicine and .,Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Tao Liang
- From the Departments of Medicine and.,Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Abrahim I Orabi
- Division of Pediatric Gastroenterology, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania 15224
| | - Li Xie
- From the Departments of Medicine and.,Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Douglas Holmyard
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | - Tanveer A Javed
- Division of Pediatric Gastroenterology, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania 15224
| | | | | | - Mark S Cattral
- Toronto General Hospital Research Institute, University Health Network, University of Toronto, Toronto, Ontario M5G 2N2, Canada
| | - Debbie C Thurmond
- Beckman Research Institute of the City of Hope, Duarte, California 91010, and
| | - Peter Thorn
- School of Biomedical Sciences,University of Sydney, Sydney, New South Wales 2050, Australia
| | - Herbert Y Gaisano
- From the Departments of Medicine and .,Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
21
|
Liang T, Dolai S, Xie L, Winter E, Orabi AI, Karimian N, Cosen-Binker LI, Huang YC, Thorn P, Cattral MS, Gaisano HY. Ex vivo human pancreatic slice preparations offer a valuable model for studying pancreatic exocrine biology. J Biol Chem 2017; 292:5957-5969. [PMID: 28242761 DOI: 10.1074/jbc.m117.777433] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 02/17/2017] [Indexed: 12/13/2022] Open
Abstract
A genuine understanding of human exocrine pancreas biology and pathobiology has been hampered by a lack of suitable preparations and reliance on rodent models employing dispersed acini preparations. We have developed an organotypic slice preparation of the normal portions of human pancreas obtained from cancer resections. The preparation was assessed for physiologic and pathologic responses to the cholinergic agonist carbachol (Cch) and cholecystokinin (CCK-8), including 1) amylase secretion, 2) exocytosis, 3) intracellular Ca2+ responses, 4) cytoplasmic autophagic vacuole formation, and 5) protease activation. Cch and CCK-8 both dose-dependently stimulated secretory responses from human pancreas slices similar to those previously observed in dispersed rodent acini. Confocal microscopy imaging showed that these responses were accounted for by efficient apical exocytosis at physiologic doses of both agonists and by apical blockade and redirection of exocytosis to the basolateral plasma membrane at supramaximal doses. The secretory responses and exocytotic events evoked by CCK-8 were mediated by CCK-A and not CCK-B receptors. Physiologic agonist doses evoked oscillatory Ca2+ increases across the acini. Supraphysiologic doses induced formation of cytoplasmic autophagic vacuoles and activation of proteases (trypsin, chymotrypsin). Maximal atropine pretreatment that completely blocked all the Cch-evoked responses did not affect any of the CCK-8-evoked responses, indicating that rather than acting on the nerves within the pancreas slice, CCK cellular actions directly affected human acinar cells. Human pancreas slices represent excellent preparations to examine pancreatic cell biology and pathobiology and could help screen for potential treatments for human pancreatitis.
Collapse
Affiliation(s)
- Tao Liang
- From the Department of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Subhankar Dolai
- From the Department of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Li Xie
- From the Department of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Erin Winter
- Toronto General Hospital Research Institute, University Health Network, University of Toronto, Toronto M5G 2N2, Ontario, Canada
| | - Abrahim I Orabi
- Children's Hospital of Pittsburgh of UPMC, Rangos Research Center, Pittsburgh, Pennsylvania 15224, and
| | - Negar Karimian
- From the Department of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Laura I Cosen-Binker
- From the Department of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Ya-Chi Huang
- From the Department of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Peter Thorn
- Charles Perkins Centre, University of Sydney, Camperdown, Sydney, New South Wales, 2050, Australia
| | - Mark S Cattral
- Toronto General Hospital Research Institute, University Health Network, University of Toronto, Toronto M5G 2N2, Ontario, Canada
| | - Herbert Y Gaisano
- From the Department of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada,
| |
Collapse
|
22
|
Messenger SW, Jones EK, Holthaus CL, Thomas DDH, Cooley MM, Byrne JA, Mareninova OA, Gukovskaya AS, Groblewski GE. Acute acinar pancreatitis blocks vesicle-associated membrane protein 8 (VAMP8)-dependent secretion, resulting in intracellular trypsin accumulation. J Biol Chem 2017; 292:7828-7839. [PMID: 28242757 DOI: 10.1074/jbc.m117.781815] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Indexed: 11/06/2022] Open
Abstract
Zymogen secretory granules in pancreatic acinar cells express two vesicle-associated membrane proteins (VAMP), VAMP2 and -8, each controlling 50% of stimulated secretion. Analysis of secretion kinetics identified a first phase (0-2 min) mediated by VAMP2 and second (2-10 min) and third phases (10-30 min) mediated by VAMP8. Induction of acinar pancreatitis by supramaximal cholecystokinin (CCK-8) stimulation inhibits VAMP8-mediated mid- and late-phase but not VAMP2-mediated early-phase secretion. Elevation of cAMP during supramaximal CCK-8 mitigates third-phase secretory inhibition and acinar damage caused by the accumulation of prematurely activated trypsin. VAMP8-/- acini are resistant to secretory inhibition by supramaximal CCK-8, and despite a 4.5-fold increase in total cellular trypsinogen levels, are fully protected from intracellular trypsin accumulation and acinar damage. VAMP8-mediated secretion is dependent on expression of the early endosomal proteins Rab5, D52, and EEA1. Supramaximal CCK-8 (60 min) caused a 60% reduction in the expression of D52 followed by Rab5 and EEA1 in isolated acini and in in vivo The loss of D52 occurred as a consequence of its entry into autophagic vacuoles and was blocked by lysosomal cathepsin B and L inhibition. Accordingly, adenoviral overexpression of Rab5 or D52 enhanced secretion in response to supramaximal CCK-8 and prevented accumulation of activated trypsin. These data support that acute inhibition of VAMP8-mediated secretion during pancreatitis triggers intracellular trypsin accumulation and loss of the early endosomal compartment. Maintaining anterograde endosomal trafficking during pancreatitis maintains VAMP8-dependent secretion, thereby preventing accumulation of activated trypsin.
Collapse
Affiliation(s)
- Scott W Messenger
- From the Department of Nutritional Sciences, University of Wisconsin, Madison, Wisconsin 53706
| | - Elaina K Jones
- From the Department of Nutritional Sciences, University of Wisconsin, Madison, Wisconsin 53706
| | - Conner L Holthaus
- From the Department of Nutritional Sciences, University of Wisconsin, Madison, Wisconsin 53706
| | - Diana D H Thomas
- From the Department of Nutritional Sciences, University of Wisconsin, Madison, Wisconsin 53706
| | - Michelle M Cooley
- From the Department of Nutritional Sciences, University of Wisconsin, Madison, Wisconsin 53706
| | - Jennifer A Byrne
- Molecular Oncology Laboratory, Children's Cancer Research Unit, The Children's Hospital at Westmead, New South Wales 2145, Australia, and
| | - Olga A Mareninova
- Department of Veterans Affairs Greater Los Angeles Healthcare System and UCLA, Los Angeles, California 90073
| | - Anna S Gukovskaya
- Department of Veterans Affairs Greater Los Angeles Healthcare System and UCLA, Los Angeles, California 90073
| | - Guy E Groblewski
- From the Department of Nutritional Sciences, University of Wisconsin, Madison, Wisconsin 53706,
| |
Collapse
|
23
|
Wei Y, Wang D, Jin F, Bian Z, Li L, Liang H, Li M, Shi L, Pan C, Zhu D, Chen X, Hu G, Liu Y, Zhang CY, Zen K. Pyruvate kinase type M2 promotes tumour cell exosome release via phosphorylating synaptosome-associated protein 23. Nat Commun 2017; 8:14041. [PMID: 28067230 PMCID: PMC5228053 DOI: 10.1038/ncomms14041] [Citation(s) in RCA: 204] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 11/23/2016] [Indexed: 12/29/2022] Open
Abstract
Tumour cells secrete exosomes that are involved in the remodelling of the tumour-stromal environment and promoting malignancy. The mechanisms governing tumour exosome release, however, remain incompletely understood. Here we show that tumour cell exosomes secretion is controlled by pyruvate kinase type M2 (PKM2), which is upregulated and phosphorylated in tumours. During exosome secretion, phosphorylated PKM2 serves as a protein kinase to phosphorylate synaptosome-associated protein 23 (SNAP-23), which in turn enables the formation of the SNARE complex to allow exosomes release. Direct phosphorylation assay and mass spectrometry confirm that PKM2 phosphorylates SNAP-23 at Ser95. Ectopic expression of non-phosphorylated SNAP-23 mutant (Ser95→Ala95) significantly reduces PKM2-mediated exosomes release whereas expression of selective phosphomimetic SNAP-23 mutants (Ser95→Glu95 but not Ser20→Glu20) rescues the impaired exosomes release induced by PKM2 knockdown. Our findings reveal a non-metabolic function of PKM2, an enzyme associated with tumour cell reliance on aerobic glycolysis, in promoting tumour cell exosome release.
Collapse
Affiliation(s)
- Yao Wei
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210093, China
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Dong Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Fangfang Jin
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Zhen Bian
- Center for Immunology, Inflammation and Infectious Diseases & Department of Biology, Georgia State University, Atlanta, Georgia 30302, USA
| | - Limin Li
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Hongwei Liang
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Mingzhen Li
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Lei Shi
- Center for Immunology, Inflammation and Infectious Diseases & Department of Biology, Georgia State University, Atlanta, Georgia 30302, USA
| | - Chaoyun Pan
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Dihan Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Xi Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Gang Hu
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Yuan Liu
- Center for Immunology, Inflammation and Infectious Diseases & Department of Biology, Georgia State University, Atlanta, Georgia 30302, USA
| | - Chen-Yu Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Ke Zen
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210093, China
- Center for Immunology, Inflammation and Infectious Diseases & Department of Biology, Georgia State University, Atlanta, Georgia 30302, USA
| |
Collapse
|
24
|
Kunii M, Ohara-Imaizumi M, Takahashi N, Kobayashi M, Kawakami R, Kondoh Y, Shimizu T, Simizu S, Lin B, Nunomura K, Aoyagi K, Ohno M, Ohmuraya M, Sato T, Yoshimura SI, Sato K, Harada R, Kim YJ, Osada H, Nemoto T, Kasai H, Kitamura T, Nagamatsu S, Harada A. Opposing roles for SNAP23 in secretion in exocrine and endocrine pancreatic cells. J Cell Biol 2016; 215:121-138. [PMID: 27697926 PMCID: PMC5057288 DOI: 10.1083/jcb.201604030] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 08/26/2016] [Indexed: 12/17/2022] Open
Abstract
Kunii et al. reveal that the SNARE protein SNAP23 plays distinct roles in the secretion of amylase in exocrine cells and of insulin in endocrine cells the pancreas and show that MF286, a novel inhibitor of SNAP23, may be a new drug candidate for diabetes. The membrane fusion of secretory granules with plasma membranes is crucial for the exocytosis of hormones and enzymes. Secretion disorders can cause various diseases such as diabetes or pancreatitis. Synaptosomal-associated protein 23 (SNAP23), a soluble N-ethyl-maleimide sensitive fusion protein attachment protein receptor (SNARE) molecule, is essential for secretory granule fusion in several cell lines. However, the in vivo functions of SNAP23 in endocrine and exocrine tissues remain unclear. In this study, we show opposing roles for SNAP23 in secretion in pancreatic exocrine and endocrine cells. The loss of SNAP23 in the exocrine and endocrine pancreas resulted in decreased and increased fusion of granules to the plasma membrane after stimulation, respectively. Furthermore, we identified a low molecular weight compound, MF286, that binds specifically to SNAP23 and promotes insulin secretion in mice. Our results demonstrate opposing roles for SNAP23 in the secretion mechanisms of the endocrine and exocrine pancreas and reveal that the SNAP23-binding compound MF286 may be a promising drug for diabetes treatment.
Collapse
Affiliation(s)
- Masataka Kunii
- Laboratory of Molecular Traffic, Department of Molecular and Cellular Biology, Institute for Molecular and Cellular Regulation, Gunma University, Gunma 371-8512, Japan Department of Cell Biology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Mica Ohara-Imaizumi
- Department of Biochemistry, Kyorin University School of Medicine, Tokyo 181-8611, Japan
| | - Noriko Takahashi
- Laboratory of Structural Physiology, Graduate School of Medicine, Center for Disease Biology and Integrative Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Masaki Kobayashi
- Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, Gunma 371-8512, Japan
| | - Ryosuke Kawakami
- Laboratory of Molecular and Cellular Biophysics, Research Institute for Electronic Science, Hokkaido University, Hokkaido 001-0020, Japan
| | - Yasumitsu Kondoh
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, Saitama 351-0198, Japan
| | - Takeshi Shimizu
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, Saitama 351-0198, Japan
| | - Siro Simizu
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, Kanagawa 223-8522, Japan
| | - Bangzhong Lin
- Drug Discovery Team, Office for University-Industry Collaboration Planning and Promotion, Osaka University, Osaka 565-0871, Japan
| | - Kazuto Nunomura
- Drug Discovery Team, Office for University-Industry Collaboration Planning and Promotion, Osaka University, Osaka 565-0871, Japan
| | - Kyota Aoyagi
- Department of Biochemistry, Kyorin University School of Medicine, Tokyo 181-8611, Japan
| | - Mitsuyo Ohno
- Laboratory of Structural Physiology, Graduate School of Medicine, Center for Disease Biology and Integrative Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Masaki Ohmuraya
- Institute of Resource Development and Analysis, Kumamoto University, Kumamoto 860-0811, Japan
| | - Takashi Sato
- Laboratory of Molecular Traffic, Department of Molecular and Cellular Biology, Institute for Molecular and Cellular Regulation, Gunma University, Gunma 371-8512, Japan
| | - Shin-Ichiro Yoshimura
- Department of Cell Biology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Ken Sato
- Laboratory of Molecular Traffic, Department of Molecular and Cellular Biology, Institute for Molecular and Cellular Regulation, Gunma University, Gunma 371-8512, Japan
| | - Reiko Harada
- Department of Cell Biology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan Department of Judo Therapy, Takarazuka University of Medical and Health Care, Hyogo 666-0152, Japan
| | - Yoon-Jeong Kim
- Drug Discovery Team, Office for University-Industry Collaboration Planning and Promotion, Osaka University, Osaka 565-0871, Japan
| | - Hiroyuki Osada
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, Saitama 351-0198, Japan
| | - Tomomi Nemoto
- Laboratory of Molecular and Cellular Biophysics, Research Institute for Electronic Science, Hokkaido University, Hokkaido 001-0020, Japan
| | - Haruo Kasai
- Laboratory of Structural Physiology, Graduate School of Medicine, Center for Disease Biology and Integrative Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Tadahiro Kitamura
- Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, Gunma 371-8512, Japan
| | - Shinya Nagamatsu
- Department of Biochemistry, Kyorin University School of Medicine, Tokyo 181-8611, Japan
| | - Akihiro Harada
- Laboratory of Molecular Traffic, Department of Molecular and Cellular Biology, Institute for Molecular and Cellular Regulation, Gunma University, Gunma 371-8512, Japan Department of Cell Biology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
25
|
Noel P, Patel K, Durgampudi C, Trivedi RN, de Oliveira C, Crowell MD, Pannala R, Lee K, Brand R, Chennat J, Slivka A, Papachristou GI, Khalid A, Whitcomb DC, DeLany JP, Cline RA, Acharya C, Jaligama D, Murad FM, Yadav D, Navina S, Singh VP. Peripancreatic fat necrosis worsens acute pancreatitis independent of pancreatic necrosis via unsaturated fatty acids increased in human pancreatic necrosis collections. Gut 2016; 65:100-11. [PMID: 25500204 PMCID: PMC4869971 DOI: 10.1136/gutjnl-2014-308043] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 11/17/2014] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIMS Peripancreatic fat necrosis occurs frequently in necrotising pancreatitis. Distinguishing markers from mediators of severe acute pancreatitis (SAP) is important since targeting mediators may improve outcomes. We evaluated potential agents in human pancreatic necrotic collections (NCs), pseudocysts (PCs) and pancreatic cystic neoplasms and used pancreatic acini, peripheral blood mononuclear cells (PBMC) and an acute pancreatitis (AP) model to determine SAP mediators. METHODS We measured acinar and PBMC injury induced by agents increased in NCs and PCs. Outcomes of caerulein pancreatitis were studied in lean rats coadministered interleukin (IL)-1β and keratinocyte chemoattractant/growth-regulated oncogene, triolein alone or with the lipase inhibitor orlistat. RESULTS NCs had higher fatty acids, IL-8 and IL-1β versus other fluids. Lipolysis of unsaturated triglyceride and resulting unsaturated fatty acids (UFA) oleic and linoleic acids induced necro-apoptosis at less than half the concentration in NCs but other agents did not do so at more than two times these concentrations. Cytokine coadministration resulted in higher pancreatic and lung inflammation than caerulein alone, but only triolein coadministration caused peripancreatic fat stranding, higher cytokines, UFAs, multisystem organ failure (MSOF) and mortality in 97% animals, which were prevented by orlistat. CONCLUSIONS UFAs, IL-1β and IL-8 are elevated in NCs. However, UFAs generated via peripancreatic fat lipolysis causes worse inflammation and MSOF, converting mild AP to SAP.
Collapse
Affiliation(s)
- Pawan Noel
- Departments of Medicine, Mayo Clinic, Scottsdale, Arizona, USA
| | - Krutika Patel
- Departments of Medicine, Mayo Clinic, Scottsdale, Arizona, USA
| | - Chandra Durgampudi
- Departments of Medicine, University of Pittsburgh Medical Center, Pasavant, Pennsylvania, USA
| | - Ram N Trivedi
- Departments of Medicine, Mayo Clinic, Scottsdale, Arizona, USA
| | | | | | - Rahul Pannala
- Departments of Medicine, Mayo Clinic, Scottsdale, Arizona, USA
| | - Kenneth Lee
- Departments of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Randall Brand
- Departments of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jennifer Chennat
- Departments of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Adam Slivka
- Departments of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | - Asif Khalid
- Departments of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - David C Whitcomb
- Departments of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - James P DeLany
- Departments of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Rachel A Cline
- Departments of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Chathur Acharya
- Departments of Medicine, University of Pittsburgh Medical Center, Pasavant, Pennsylvania, USA
| | - Deepthi Jaligama
- Departments of Medicine, University of Pittsburgh Medical Center, Pasavant, Pennsylvania, USA
| | - Faris M Murad
- Departments of Medicine, Washington University, Saint Louis, Missouri, USA
| | - Dhiraj Yadav
- Departments of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Sarah Navina
- Departments of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Vijay P Singh
- Departments of Medicine, Mayo Clinic, Scottsdale, Arizona, USA
| |
Collapse
|
26
|
Zhu D, Xie L, Karimian N, Liang T, Kang Y, Huang YC, Gaisano HY. Munc18c mediates exocytosis of pre-docked and newcomer insulin granules underlying biphasic glucose stimulated insulin secretion in human pancreatic beta-cells. Mol Metab 2015; 4:418-26. [PMID: 25973389 PMCID: PMC4421095 DOI: 10.1016/j.molmet.2015.02.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 02/05/2015] [Accepted: 02/09/2015] [Indexed: 01/10/2023] Open
Abstract
Objective Pancreatic beta-cells express three Munc18 isoforms. Much is known about the roles of Munc18a (pre-docked secretory granules-SGs) and Munc18b (newcomer SGs and SG–SG fusion) in insulin exocytosis. Although shown to influence glucose-stimulated insulin secretion (GSIS) in rodents the precise role of Munc18c in insulin SG exocytosis has not been elucidated. We here examined the role of Munc18c in human pancreatic beta-cells. Methods Munc18c-shRNA/RFP lenti-virus (versus control virus) was used to knock down the expression level of Munc18c in human islets or single beta-cells. Insulin secretion and granule exocytosis were measured by performing islets perifusion, single-cell patch clamp capacitance measurements and total internal reflection fluorescence microscopy (TIRFM). Results Munc18c is most abundant in the cytosol of human beta-cells. Endogenous function of Munc18c was assessed by knocking down (KD) its islet expression by 70% employing lenti-shRNA virus. Munc18c-KD caused reduction in cognate syntaxin-4 islet expression but not in other exocytotic proteins, resulting in the reduction in GSIS in first- (by 42%) and second phases (by 35%). Single cell analyses of RFP-tagged Munc18c-KD beta-cells by patch clamp capacitance measurements showed inhibition in both readily-releasable pool (by 52%) and mobilization from the reserve pool (by 57%). TIRFM to assess single SG behavior showed that Munc18c-KD inhibition of first phase GSIS was attributed to reduction in exocytosis of pre-docked and newcomer SGs, and second phase inhibition attributed entirely to reduction in newcomer SG fusion (SGs that undergo minimal residence or docking time at the plasma membrane before fusion). Conclusion Munc18c is involved in the distinct molecular machineries that affect exocytosis of both predocked and newcomer SG pools that underlie Munc18c's role in first and second phases of GSIS, respectively.
Collapse
Key Words
- Ad, adenovirus
- CmPatch, clamp capacitance measurements
- EGFP, enhanced green fluorescent protein
- Exocytosis
- GLP-1, glucagon-like peptide-1
- GSIS, glucose-stimulated insulin secretion
- Human islets
- KD, knock down
- Munc18c
- NPY, neuropeptide Y
- Newcomer insulin granules
- PM, plasma membrane
- RRP, readily releasable pool
- SG, secretory insulin-containing granule
- SM, Sec1/Munc18-like protein
- SNAP25/23, synaptosomal-associated protein of 25/23 kD
- SNARE, soluble N-ethylmaleimide-sensitive factor attachment protein receptor
- Syn, syntaxin
- T2DM, type 2 diabetes mellitus
- TIRFM, total internal reflection fluorescence microscopy
- VAMPs, Vesicle Associated Membrane Proteins
- t-, target-
- v-, vesicle-
Collapse
Affiliation(s)
- Dan Zhu
- Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Li Xie
- Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Negar Karimian
- Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Tao Liang
- Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Youhou Kang
- Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Ya-Chi Huang
- Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Herbert Y Gaisano
- Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
27
|
Patel K, Trivedi RN, Durgampudi C, Noel P, Cline RA, DeLany JP, Navina S, Singh VP. Lipolysis of visceral adipocyte triglyceride by pancreatic lipases converts mild acute pancreatitis to severe pancreatitis independent of necrosis and inflammation. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:808-19. [PMID: 25579844 DOI: 10.1016/j.ajpath.2014.11.019] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 11/13/2014] [Accepted: 11/20/2014] [Indexed: 02/06/2023]
Abstract
Visceral fat necrosis has been associated with severe acute pancreatitis (SAP) for over 100 years; however, its pathogenesis and role in SAP outcomes are poorly understood. Based on recent work suggesting that pancreatic fat lipolysis plays an important role in SAP, we evaluated the role of pancreatic lipases in SAP-associated visceral fat necrosis, the inflammatory response, local injury, and outcomes of acute pancreatitis (AP). For this, cerulein pancreatitis was induced in lean and obese mice, alone or with the lipase inhibitor orlistat and parameters of AP induction (serum amylase and lipase), fat necrosis, pancreatic necrosis, and multisystem organ failure, and inflammatory response were assessed. Pancreatic lipases were measured in fat necrosis and were overexpressed in 3T3-L1 cells. We noted obesity to convert mild cerulein AP to SAP with greater cytokines, unsaturated fatty acids (UFAs), and multisystem organ failure, and 100% mortality without affecting AP induction or pancreatic necrosis. Increased pancreatic lipase amounts and activity were noted in the extensive visceral fat necrosis of dying obese mice. Lipase inhibition reduced fat necrosis, UFAs, organ failure, and mortality but not the parameters of AP induction. Pancreatic lipase expression increased lipolysis in 3T3-L1 cells. We conclude that UFAs generated via lipolysis of visceral fat by pancreatic lipases convert mild AP to SAP independent of pancreatic necrosis and the inflammatory response.
Collapse
Affiliation(s)
- Krutika Patel
- Department of Medicine, University of Pittsburgh Medical Center and the University of Pittsburgh, Pittsburgh, Pennsylvania; Mayo Clinic, Scottsdale, Arizona
| | - Ram N Trivedi
- Department of Medicine, University of Pittsburgh Medical Center and the University of Pittsburgh, Pittsburgh, Pennsylvania; Mayo Clinic, Scottsdale, Arizona
| | - Chandra Durgampudi
- Department of Medicine, University of Pittsburgh Medical Center and the University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Pawan Noel
- Department of Medicine, University of Pittsburgh Medical Center and the University of Pittsburgh, Pittsburgh, Pennsylvania; Mayo Clinic, Scottsdale, Arizona
| | - Rachel A Cline
- Department of Medicine, University of Pittsburgh Medical Center and the University of Pittsburgh, Pittsburgh, Pennsylvania
| | - James P DeLany
- Department of Medicine, University of Pittsburgh Medical Center and the University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Sarah Navina
- Department of Pathology, University of Pittsburgh Medical Center and the University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Vijay P Singh
- Department of Medicine, University of Pittsburgh Medical Center and the University of Pittsburgh, Pittsburgh, Pennsylvania; Mayo Clinic, Scottsdale, Arizona.
| |
Collapse
|
28
|
Durgampudi C, Noel P, Patel K, Cline R, Trivedi RN, DeLany JP, Yadav D, Papachristou GI, Lee K, Acharya C, Jaligama D, Navina S, Murad F, Singh VP. Acute lipotoxicity regulates severity of biliary acute pancreatitis without affecting its initiation. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:1773-84. [PMID: 24854864 DOI: 10.1016/j.ajpath.2014.02.015] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 02/07/2014] [Accepted: 02/27/2014] [Indexed: 02/07/2023]
Abstract
Obese patients have worse outcomes during acute pancreatitis (AP). Previous animal models of AP have found worse outcomes in obese rodents who may have a baseline proinflammatory state. Our aim was to study the role of acute lipolytic generation of fatty acids on local severity and systemic complications of AP. Human postpancreatitis necrotic collections were analyzed for unsaturated fatty acids (UFAs) and saturated fatty acids. A model of biliary AP was designed to replicate the human variables by intraductal injection of the triglyceride glyceryl trilinoleate alone or with the chemically distinct lipase inhibitors orlistat or cetilistat. Parameters of AP etiology and outcomes of local and systemic severity were measured. Patients with postpancreatitis necrotic collections were obese, and 13 of 15 had biliary AP. Postpancreatitis necrotic collections were enriched in UFAs. Intraductal glyceryl trilinoleate with or without the lipase inhibitors resulted in oil red O-positive areas, resembling intrapancreatic fat. Both lipase inhibitors reduced the glyceryl trilinoleate-induced increase in serum lipase, UFAs, pancreatic necrosis, serum inflammatory markers, systemic injury, and mortality but not serum alanine aminotransferase, bilirubin, or amylase. We conclude that UFAs are enriched in human necrotic collections and acute UFA generation via lipolysis worsens pancreatic necrosis, systemic inflammation, and injury associated with severe AP. Inhibition of lipolysis reduces UFA generation and improves these outcomes of AP without interfering with its induction.
Collapse
Affiliation(s)
- Chandra Durgampudi
- Department of Medicine, University of Pittsburgh Medical Center Pasavant, Pittsburgh, Pennsylvania
| | - Pawan Noel
- Department of Medicine, Mayo Clinic, Scottsdale, Arizona
| | - Krutika Patel
- Department of Medicine, Mayo Clinic, Scottsdale, Arizona
| | - Rachel Cline
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Ram N Trivedi
- Department of Medicine, Mayo Clinic, Scottsdale, Arizona
| | - James P DeLany
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Dhiraj Yadav
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Kenneth Lee
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Chathur Acharya
- Department of Medicine, University of Pittsburgh Medical Center Pasavant, Pittsburgh, Pennsylvania
| | - Deepthi Jaligama
- Department of Medicine, University of Pittsburgh Medical Center Pasavant, Pittsburgh, Pennsylvania
| | - Sarah Navina
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Faris Murad
- Department of Medicine, Washington University, St. Louis, Missouri
| | - Vijay P Singh
- Department of Medicine, Mayo Clinic, Scottsdale, Arizona.
| |
Collapse
|
29
|
Sadler JBA, Bryant NJ, Gould GW. Characterization of VAMP isoforms in 3T3-L1 adipocytes: implications for GLUT4 trafficking. Mol Biol Cell 2014; 26:530-6. [PMID: 25501368 PMCID: PMC4310743 DOI: 10.1091/mbc.e14-09-1368] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The levels of expression, distribution, and association of all of the VAMPs expressed in 3T3-L1 adipocytes are characterized. This is the first systematic analysis of all members of this protein family for any cell type. The fusion of GLUT4-containing vesicles with the plasma membrane of adipocytes is a key facet of insulin action. This process is mediated by the formation of functional soluble N-ethylmaleimide–sensitive factor attachment protein receptor (SNARE) complexes between the plasma membrane t-SNARE complex and the vesicle v-SNARE or VAMP. The t-SNARE complex consists of Syntaxin4 and SNAP23, and whereas many studies identify VAMP2 as the v-SNARE, others suggest that either VAMP3 or VAMP8 may also fulfil this role. Here we characterized the levels of expression, distribution, and association of all the VAMPs expressed in 3T3-L1 adipocytes to provide the first systematic analysis of all members of this protein family for any cell type. Despite our finding that all VAMP isoforms form SDS-resistant SNARE complexes with Syntaxin4/SNAP23 in vitro, a combination of levels of expression (which vary by >30-fold), subcellular distribution, and coimmunoprecipitation analyses lead us to propose that VAMP2 is the major v-SNARE involved in GLUT4 trafficking to the surface of 3T3-L1 adipocytes.
Collapse
Affiliation(s)
- Jessica B A Sadler
- Henry Wellcome Laboratory of Cell Biology, Institute for Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Nia J Bryant
- Department of Biology, University of York, Heslington YO10 5DD, United Kingdom
| | - Gwyn W Gould
- Henry Wellcome Laboratory of Cell Biology, Institute for Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| |
Collapse
|
30
|
Messenger SW, Falkowski MA, Thomas DDH, Jones EK, Hong W, Gaisano HY, Giasano HY, Boulis NM, Groblewski GE. Vesicle associated membrane protein 8 (VAMP8)-mediated zymogen granule exocytosis is dependent on endosomal trafficking via the constitutive-like secretory pathway. J Biol Chem 2014; 289:28040-53. [PMID: 25138214 DOI: 10.1074/jbc.m114.593913] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Acinar cell zymogen granules (ZG) express 2 isoforms of the vesicle-associated membrane protein family (VAMP2 and -8) thought to regulate exocytosis. Expression of tetanus toxin to cleave VAMP2 in VAMP8 knock-out (-/-) acini confirmed that VAMP2 and -8 are the primary VAMPs for regulated exocytosis, each contributing ∼50% of the response. Analysis of VAMP8(-/-) acini indicated that although stimulated secretion was significantly reduced, a compensatory increase in constitutive secretion maintained total secretion equivalent to wild type (WT). Using a perifusion system to follow secretion over time revealed VAMP2 mediates an early rapid phase peaking and falling within 2-3 min, whereas VAMP8 controls a second prolonged phase that peaks at 4 min and slowly declines over 20 min to support the protracted secretory response. VAMP8(-/-) acini show increased expression of the endosomal proteins Ti-VAMP7 (2-fold) and Rab11a (4-fold) and their redistribution from endosomes to ZGs. Expression of GDP-trapped Rab11a-S25N inhibited secretion exclusively from the VAMP8 but not the VAMP2 pathway. VAMP8(-/-) acini also showed a >90% decrease in the early endosomal proteins Rab5/D52/EEA1, which control anterograde trafficking in the constitutive-like secretory pathway. In WT acini, short term (14-16 h) culture also results in a >90% decrease in Rab5/D52/EEA1 and a complete loss of the VAMP8 pathway, whereas VAMP2-secretion remains intact. Remarkably, rescue of Rab5/D52/EEA1 expression restored the VAMP8 pathway. Expressed D52 shows extensive colocalization with Rab11a and VAMP8 and partially copurifies with ZG fractions. These results indicate that robust trafficking within the constitutive-like secretory pathway is required for VAMP8- but not VAMP2-mediated ZG exocytosis.
Collapse
Affiliation(s)
- Scott W Messenger
- From the Department of Nutritional Sciences, University of Wisconsin, Madison, Wisconsin 53706
| | - Michelle A Falkowski
- From the Department of Nutritional Sciences, University of Wisconsin, Madison, Wisconsin 53706
| | - Diana D H Thomas
- From the Department of Nutritional Sciences, University of Wisconsin, Madison, Wisconsin 53706
| | - Elaina K Jones
- From the Department of Nutritional Sciences, University of Wisconsin, Madison, Wisconsin 53706
| | - Wanjin Hong
- Institute of Molecular and Cellular Biology, National University of Singapore, Singapore 138673
| | | | - Herbert Y Giasano
- Departments of Medicine and Physiology, University of Toronto, Ontario M5S 1A8, Canada, and
| | - Nicholas M Boulis
- Department of Neurosurgery, Georgia Institute of Technology, Atlanta, Georgia 30322
| | - Guy E Groblewski
- From the Department of Nutritional Sciences, University of Wisconsin, Madison, Wisconsin 53706,
| |
Collapse
|
31
|
Clemens DL, Wells MA, Schneider KJ, Singh S. Molecular mechanisms of alcohol associated pancreatitis. World J Gastrointest Pathophysiol 2014; 5:147-157. [PMID: 25133017 PMCID: PMC4133514 DOI: 10.4291/wjgp.v5.i3.147] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 04/26/2014] [Accepted: 06/11/2014] [Indexed: 02/06/2023] Open
Abstract
Alcohol abuse is commonly associated with the development of both acute and chronic pancreatitis. Despite this close association, the fact that only a small percentage of human beings who abuse alcohol develop pancreatitis indicates that alcohol abuse alone is not sufficient to initiate clinical pancreatitis. This contention is further supported by the fact that administration of ethanol to experimental animals does not cause pancreatitis. Because of these findings, it is widely believed that ethanol sensitizes the pancreas to injury and additional factors trigger the development of overt pancreatitis. How ethanol sensitizes the pancreas to pancreatitis is not entirely known. Numerous studies have demonstrated that ethanol and its metabolites have a number of deleterious effects on acinar cells. Important acinar cells properties that are affected by ethanol include: calcium signaling, secretion of zymogens, autophagy, cellular regeneration, the unfolded protein response, and mitochondrial membrane integrity. In addition to the actions of ethanol on acinar cells, it is apparent that ethanol also affects pancreatic stellate cells. Pancreatic stellate cells have a critical role in normal tissue repair and the pathologic fibrotic response. Given that ethanol and its metabolites affect so many pancreatic functions, and that all of these effects occur simultaneously, it is likely that none of these effects is “THE” effect. Instead, it is most likely that the cumulative effect of ethanol on the pancreas predisposes the organ to pancreatitis. The focus of this article is to highlight some of the important mechanisms by which ethanol alters pancreatic functions and may predispose the pancreas to disease.
Collapse
|
32
|
Autophagy in alcohol-induced multiorgan injury: mechanisms and potential therapeutic targets. BIOMED RESEARCH INTERNATIONAL 2014; 2014:498491. [PMID: 25140315 PMCID: PMC4124834 DOI: 10.1155/2014/498491] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 06/29/2014] [Indexed: 12/21/2022]
Abstract
Autophagy is a genetically programmed, evolutionarily conserved intracellular degradation pathway involved in the trafficking of long-lived proteins and cellular organelles to the lysosome for degradation to maintain cellular homeostasis. Alcohol consumption leads to injury in various tissues and organs including liver, pancreas, heart, brain, and muscle. Emerging evidence suggests that autophagy is involved in alcohol-induced tissue injury. Autophagy serves as a cellular protective mechanism against alcohol-induced tissue injury in most tissues but could be detrimental in heart and muscle. This review summarizes current knowledge about the role of autophagy in alcohol-induced injury in different tissues/organs and its potential molecular mechanisms as well as possible therapeutic targets based on modulation of autophagy.
Collapse
|
33
|
Jacob TG, Raghav R, Kumar A, Garg PK, Roy TS. Duration of injury correlates with necrosis in caerulein-induced experimental acute pancreatitis: implications for pathophysiology. Int J Exp Pathol 2014; 95:199-208. [PMID: 24761825 DOI: 10.1111/iep.12081] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 03/03/2014] [Indexed: 12/17/2022] Open
Abstract
Pancreatic acinar cell necrosis is indicative of severe pancreatitis and the degree of necrosis is an index of its outcome. We studied whether the dose and duration of injury correlates with severity, particularly in terms of necrosis, in caerulein-induced acute pancreatitis (AP) in Swiss albino mice. In addition to control group 1 (G1), groups 2 and 3 received four injections of caerulein every hour but were sacrificed at five hours (G2) and nine hours (G3) respectively, and group 4 received eight injections and was sacrificed at nine hours (G4). The severity of pancreatitis was assessed histopathologically and biochemically. The histopathological scores of pancreatitis in groups 3 and 4 were significantly higher than in groups 1 and 2 (4 vs. 1, 4 vs. 2, 3 vs. 1, 3 vs. 2; P < 0.05). TUNEL-positive apoptotic cells were significantly higher in groups 2 and 3 compared with groups 1 and 4 (P < 0.05). Necrosis was significantly more in group 4 than other groups (37.49% (4.68) vs. 19.97% (1.60) in G2; 20.36% (1.56) in G3; P = 0.006 for G 2 vs. 4 and P = 0.019 for G 3 vs. 4). Electron microscopy revealed numerous autophagosomes in groups 2 and 3 and mitochondrial damage and necrosis in group 4. The pancreatic and pulmonary myeloperoxidase activity in group 4 was significantly higher than that in the other groups (P < 0.01). Hence, severity of pancreatitis is a function of the dose of injurious agent, while inflammation is both dose and duration dependent, which may also explain the wide spectrum of severity of AP seen in clinical practice.
Collapse
Affiliation(s)
- Tony G Jacob
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | | | | | | | | |
Collapse
|
34
|
Truchet S, Chat S, Ollivier-Bousquet M. Milk secretion: The role of SNARE proteins. J Mammary Gland Biol Neoplasia 2014; 19:119-30. [PMID: 24264376 DOI: 10.1007/s10911-013-9311-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 11/13/2013] [Indexed: 12/21/2022] Open
Abstract
During lactation, polarized mammary epithelial secretory cells (MESCs) secrete huge quantities of the nutrient molecules that make up milk, i.e. proteins, fat globules and soluble components such as lactose and minerals. Some of these nutrients are only produced by the MESCs themselves, while others are to a great extent transferred from the blood. MESCs can thus be seen as a crossroads for both the uptake and the secretion with cross-talks between intracellular compartments that enable spatial and temporal coordination of the secretion of the milk constituents. Although the physiology of lactation is well understood, the molecular mechanisms underlying the secretion of milk components remain incompletely characterized. Major milk proteins, namely caseins, are secreted by exocytosis, while the milk fat globules are released by budding, being enwrapped by the apical plasma membrane. Prolactin, which stimulates the transcription of casein genes, also induces the production of arachidonic acid, leading to accelerated casein transport and/or secretion. Because of their ability to form complexes that bridge two membranes and promote their fusion, SNARE (Soluble N-ethylmaleimide-Sensitive Factor Attachment Protein Receptor) proteins are involved in almost all intracellular trafficking steps and exocytosis. As SNAREs can bind arachidonic acid, they could be the effectors of the secretagogue effect of prolactin in MESCs. Indeed, some SNAREs have been observed between secretory vesicles and lipid droplets suggesting that these proteins could not only orchestrate the intracellular trafficking of milk components but also act as key regulators for both the coupling and coordination of milk product secretion in response to hormones.
Collapse
Affiliation(s)
- Sandrine Truchet
- INRA, UR1196 Génomique et Physiologie de la Lactation, 78352, Jouy-en-Josas Cedex, France,
| | | | | |
Collapse
|
35
|
Acharya C, Cline RA, Jaligama D, Noel P, Delany JP, Bae K, Furlan A, Baty CJ, Karlsson JM, Rosario BL, Patel K, Mishra V, Durgampudi C, Yadav D, Navina S, Singh VP. Fibrosis reduces severity of acute-on-chronic pancreatitis in humans. Gastroenterology 2013; 145:466-75. [PMID: 23684709 PMCID: PMC3964816 DOI: 10.1053/j.gastro.2013.05.012] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2012] [Revised: 04/15/2013] [Accepted: 05/06/2013] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Acute pancreatitis (AP) and chronic pancreatitis (CP) share etiologies, but AP can be more severe and is associated with a higher rate of mortality. We investigated features of CP that protect against severe disease. The amount of intrapancreatic fat (IPF) is increased in obese patients and fibrosis is increased in patients with CP, so we studied whether fibrosis or fat regulate severity of AP attacks in patients with CP. METHODS We reviewed records from the University of Pittsburgh Medical Center/Presbyterian Hospital Autopsy Database (1998-2008) for patients with a diagnosis of AP (n = 23), CP (n = 35), or both (AP-on-CP; n = 15). Pancreatic histology samples from these patients and 50 randomly selected controls (no pancreatic disease) were analyzed, and IPF data were correlated with computed tomography data. An adipocyte and acinar cell Transwell coculture system, with or without collagen type I, was used to study the effects of fibrosis on acinar-adipocyte interactions. We studied the effects of nonesterified fatty acids (NEFAs) and adipokines on acinar cells in culture. RESULTS Levels of IPF were significantly higher in nonobese patients with CP than in nonobese controls. In patients with CP or AP-on-CP, areas of IPF were surrounded by significantly more fibrosis than in controls or patients with AP. Fat necrosis-associated peri-fat acinar necrosis (PFAN, indicated by NEFA spillage) contributed to most of the necrosis observed in samples from patients with AP; however, findings of peri-fat acinar necrosis and total necrosis were significantly lower in samples from patients with CP or AP-on-CP. Fibrosis appeared to wall off the fat necrosis and limit peri-fat acinar necrosis, reducing acinar necrosis. In vitro, collagen I limited the lipolytic flux between acinar cells and adipocytes and prevented increases in adipokines in the acinar compartment. This was associated with reduced acinar cell necrosis. However, NEFAs, but not adipokines, caused acinar cell necrosis. CONCLUSIONS Based on analysis of pancreatic samples from patients with CP, AP, or AP-on-CP and in vitro studies, fibrosis reduces the severity of acute exacerbations of CP by reducing lipolytic flux between adipocytes and acinar cells.
Collapse
Affiliation(s)
- Chathur Acharya
- Department of Medicine University of Pittsburgh Medical Center
Passavant
| | - Rachel A. Cline
- Department of Medicine, University of Pittsburgh, 200 Lothrop
Street, Pittsburgh, PA 15206
| | - Deepthi Jaligama
- Department of Medicine University of Pittsburgh Medical Center
Passavant
| | - Pawan Noel
- Department of Medicine, University of Pittsburgh, 200 Lothrop
Street, Pittsburgh, PA 15206
| | - James P. Delany
- Department of Medicine, University of Pittsburgh, 200 Lothrop
Street, Pittsburgh, PA 15206
| | - Kyongtae Bae
- Department of Radiology, University of Pittsburgh, 200 Lothrop
Street, Pittsburgh, PA 15206
| | - Alessandro Furlan
- Department of Radiology, University of Pittsburgh, 200 Lothrop
Street, Pittsburgh, PA 15206
| | - Catherine J. Baty
- Department of Cell Biology & Physiology, University of
Pittsburgh, 200 Lothrop Street, Pittsburgh, PA 15206
| | - Jenny M. Karlsson
- Department of Cell Biology & Physiology, University of
Pittsburgh, 200 Lothrop Street, Pittsburgh, PA 15206
| | - Bedda L Rosario
- Department of Epidemology, University of Pittsburgh, 200 Lothrop
Street, Pittsburgh, PA 15206
| | - Krutika Patel
- Department of Medicine, University of Pittsburgh, 200 Lothrop
Street, Pittsburgh, PA 15206
| | - Vivek Mishra
- Department of Medicine, University of Pittsburgh, 200 Lothrop
Street, Pittsburgh, PA 15206
| | - Chandra Durgampudi
- Department of Medicine University of Pittsburgh Medical Center
Passavant
| | - Dhiraj Yadav
- Department of Medicine, University of Pittsburgh, 200 Lothrop
Street, Pittsburgh, PA 15206
| | - Sarah Navina
- Department of Pathology, University of Pittsburgh, 200 Lothrop
Street, Pittsburgh, PA 15206
| | - Vijay P. Singh
- Department of Medicine, University of Pittsburgh, 200 Lothrop
Street, Pittsburgh, PA 15206
| |
Collapse
|
36
|
Lam PP, Ohno M, Dolai S, He Y, Qin T, Liang T, Zhu D, Kang Y, Liu Y, Kauppi M, Xie L, Wan WC, Bin NR, Sugita S, Olkkonen VM, Takahashi N, Kasai H, Gaisano HY. Munc18b is a major mediator of insulin exocytosis in rat pancreatic β-cells. Diabetes 2013; 62:2416-28. [PMID: 23423569 PMCID: PMC3712044 DOI: 10.2337/db12-1380] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Sec1/Munc18 proteins facilitate the formation of trans-SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) complexes that mediate fusion of secretory granule (SG) with plasma membrane (PM). The capacity of pancreatic β-cells to exocytose insulin becomes compromised in diabetes. β-Cells express three Munc18 isoforms of which the role of Munc18b is unknown. We found that Munc18b depletion in rat islets disabled SNARE complex formation formed by syntaxin (Syn)-2 and Syn-3. Two-photon imaging analysis revealed in Munc18b-depleted β-cells a 40% reduction in primary exocytosis (SG-PM fusion) and abrogation of almost all sequential SG-SG fusion, together accounting for a 50% reduction in glucose-stimulated insulin secretion (GSIS). In contrast, gain-of-function expression of Munc18b wild-type and, more so, dominant-positive K314L/R315L mutant promoted the assembly of cognate SNARE complexes, which caused potentiation of biphasic GSIS. We found that this was attributed to a more than threefold enhancement of both primary exocytosis and sequential SG-SG fusion, including long-chain fusion (6-8 SGs) not normally (2-3 SG fusion) observed. Thus, Munc18b-mediated exocytosis may be deployed to increase secretory efficiency of SGs in deeper cytosolic layers of β-cells as well as additional primary exocytosis, which may open new avenues of therapy development for diabetes.
Collapse
Affiliation(s)
- Patrick P.L. Lam
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Mitsuyo Ohno
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, University of Tokyo, Tokyo, Japan
| | - Subhankar Dolai
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Yu He
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Tairan Qin
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Tao Liang
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Dan Zhu
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Youhou Kang
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Yunfeng Liu
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Maria Kauppi
- National Institute for Health and Welfare, Biomedicum, Helsinki, Finland
| | - Li Xie
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Wilson C.Y. Wan
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Na-Rhum Bin
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Division of Fundamental Neurobiology, University Health Network, Toronto, Ontario, Canada
| | - Shuzo Sugita
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Division of Fundamental Neurobiology, University Health Network, Toronto, Ontario, Canada
| | - Vesa M. Olkkonen
- Minerva Foundation Institute for Medical Research, Biomedicum, Helsinki, Finland
| | - Noriko Takahashi
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, University of Tokyo, Tokyo, Japan
| | - Haruo Kasai
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, University of Tokyo, Tokyo, Japan
- Corresponding authors: Haruo Kasai, , and Herbert Y. Gaisano,
| | - Herbert Y. Gaisano
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Corresponding authors: Haruo Kasai, , and Herbert Y. Gaisano,
| |
Collapse
|
37
|
Zhu D, Koo E, Kwan E, Kang Y, Park S, Xie H, Sugita S, Gaisano HY. Syntaxin-3 regulates newcomer insulin granule exocytosis and compound fusion in pancreatic beta cells. Diabetologia 2013; 56:359-69. [PMID: 23132338 DOI: 10.1007/s00125-012-2757-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 10/01/2012] [Indexed: 12/23/2022]
Abstract
AIMS/HYPOTHESIS The molecular basis of the exocytosis of secretory insulin-containing granules (SGs) during biphasic glucose-stimulated insulin secretion (GSIS) from pancreatic beta cells remains unclear. Syntaxin (SYN)-1A and SYN-4 have been shown to mediate insulin exocytosis. The insulin-secretory function of SYN-3, which is particularly abundant in SGs, is unclear. METHODS Mouse pancreatic islets and INS-1 cells were treated with adenovirus carrying Syn-3 (also known as Stx3) or small interfering RNA targeting Syn-3 in order to examine insulin secretion by radioimmunoassay. The localisation and distribution of insulin granules were examined by confocal and electron microscopy. Dynamic single-granule fusion events were assessed using total internal reflection fluorescence microscopy (TIRFM). RESULTS Depletion of endogenous SYN-3 inhibited insulin release. TIRFM showed no change in the number or fusion competence of previously docked SGs but, instead, a marked reduction in the recruitment of newcomer SGs and their subsequent exocytotic fusion during biphasic GSIS. Conversely, overexpression of Syn-3 enhanced both phases of GSIS, owing to the increase in newcomer SGs and, remarkably, to increased SG-SG fusion, which was confirmed by electron microscopy. CONCLUSIONS/INTERPRETATION In insulin secretion, SYN-3 plays a role in the mediation of newcomer SG exocytosis and SG-SG fusion that contributes to biphasic GSIS.
Collapse
Affiliation(s)
- D Zhu
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Haanes KA, Schwab A, Novak I. The P2X7 receptor supports both life and death in fibrogenic pancreatic stellate cells. PLoS One 2012; 7:e51164. [PMID: 23284663 PMCID: PMC3524122 DOI: 10.1371/journal.pone.0051164] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 10/30/2012] [Indexed: 12/29/2022] Open
Abstract
The pancreatic stellate cells (PSCs) have complex roles in pancreas, including tissue repair and fibrosis. PSCs surround ATP releasing exocrine cells, but little is known about purinergic receptors and their function in PSCs. Our aim was to resolve whether PSCs express the multifunctional P2X7 receptor and elucidate how it regulates PSC viability. The number of PSCs isolated from wild type (WT) mice was 50% higher than those from the Pfizer P2X7 receptor knock out (KO) mice. The P2X7 receptor protein and mRNA of all known isoforms were expressed in WT PSCs, while KO PSCs only expressed truncated versions of the receptor. In culture, the proliferation rate of the KO PSCs was significantly lower. Inclusion of apyrase reduced the proliferation rate in both WT and KO PSCs, indicating importance of endogenous ATP. Exogenous ATP had a two-sided effect. Proliferation of both WT and KO cells was stimulated with ATP in a concentration-dependent manner with a maximum effect at 100 µM. At high ATP concentration (5 mM), WT PSCs, but not the KO PSCs died. The intracellular Ca2+ signals and proliferation rate induced by micromolar ATP concentrations were inhibited by the allosteric P2X7 receptor inhibitor az10606120. The P2X7 receptor-pore inhibitor A438079 partially prevented cell death induced by millimolar ATP concentrations. This study shows that ATP and P2X7 receptors are important regulators of PSC proliferation and death, and therefore might be potential targets for treatments of pancreatic fibrosis and cancer.
Collapse
Affiliation(s)
| | - Albrecht Schwab
- Institut für Physiologie II, Universität Münster, Münster, Germany
| | - Ivana Novak
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
- * E-mail:
| |
Collapse
|
39
|
Orabi AI, Luo Y, Ahmad MU, Shah AU, Mannan Z, Wang D, Sarwar S, Muili KA, Shugrue C, Kolodecik TR, Singh VP, Lowe ME, Thrower E, Chen J, Husain SZ. IP3 receptor type 2 deficiency is associated with a secretory defect in the pancreatic acinar cell and an accumulation of zymogen granules. PLoS One 2012. [PMID: 23185258 PMCID: PMC3504040 DOI: 10.1371/journal.pone.0048465] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Acute pancreatitis is a painful, life-threatening disorder of the pancreas whose etiology is often multi-factorial. It is of great importance to understand the interplay between factors that predispose patients to develop the disease. One such factor is an excessive elevation in pancreatic acinar cell Ca2+. These aberrant Ca2+ elevations are triggered by release of Ca2+ from apical Ca2+ pools that are gated by the inositol 1,4,5-trisphosphate receptor (IP3R) types 2 and 3. In this study, we examined the role of IP3R type 2 (IP3R2) using mice deficient in this Ca2+ release channel (IP3R2−/−). Using live acinar cell Ca2+ imaging we found that loss of IP3R2 reduced the amplitude of the apical Ca2+ signal and caused a delay in its initiation. This was associated with a reduction in carbachol-stimulated amylase release and an accumulation of zymogen granules (ZGs). Specifically, there was a 2-fold increase in the number of ZGs (P<0.05) and an expansion of the ZG pool area within the cell. There was also a 1.6- and 2.6-fold increase in cellular amylase and trypsinogen, respectively. However, the mice did not have evidence of pancreatic injury at baseline, other than an elevated serum amylase level. Further, pancreatitis outcomes using a mild caerulein hyperstimulation model were similar between IP3R2−/− and wild type mice. In summary, IP3R2 modulates apical acinar cell Ca2+ signals and pancreatic enzyme secretion. IP3R-deficient acinar cells accumulate ZGs, but the mice do not succumb to pancreatic damage or worse pancreatitis outcomes.
Collapse
Affiliation(s)
- Abrahim I. Orabi
- Department of Pediatrics, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
| | - Yuhuan Luo
- Department of Pediatrics, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
| | - Mahwish U. Ahmad
- Department of Pediatrics, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
| | - Ahsan U. Shah
- Department of Pediatrics, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
| | - Zahir Mannan
- Department of Pediatrics, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
| | - Dong Wang
- Department of Pediatrics, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
| | - Sheharyar Sarwar
- Department of Pediatrics, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
| | - Kamaldeen A. Muili
- Department of Pediatrics, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
| | - Christine Shugrue
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Thomas R. Kolodecik
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Vijay P. Singh
- Department of Internal Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
| | - Mark E. Lowe
- Department of Pediatrics, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
| | - Edwin Thrower
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Ju Chen
- Department of Molecular Pathology, University of California San Diego, San Diego, California, United States of America
| | - Sohail Z. Husain
- Department of Pediatrics, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
40
|
Thorn P, Gaisano H. Molecular control of compound Exocytosis: A key role for VAMP8. Commun Integr Biol 2012; 5:61-3. [PMID: 22482012 DOI: 10.4161/cib.18058] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Exocytosis is the process of fusion of a membrane-bound vesicle with the cell membrane and subsequent release of the vesicle content to the outside. It is now widely accepted that SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) proteins are key components in the molecular machinery of exocytosis. SNARE proteins on the vesicle membrane selectively form complexes with specific SNAREs on the cell membrane. In a variant of exocytosis, called compound exocytosis, secretory vesicles still fuse with the cell membrane but vesicle-to-vesicle fusion enhances secretory output. Two types of compound exocytosis occur, either vesicles fuse with each other and then fuse with the cell membrane, or a vesicle fuses with the cell membrane and then becomes a target for further vesicles to fuse with it. It is expected that SNAREs are important for vesicle-to-vesicle fusion but the mechanism(s) that control these processes is unknown. In our recent paper (Behrendorff et al. 2011) we provide evidence that VAMP8 (a Q-SNARE) is essential in regulating compound exocytosis. Here we discuss the implications of our findings with reference to a new model for the control of vesicle-to-vesicle fusion.
Collapse
|
41
|
Fang XF, Cui ZJ. The anti-botulism triterpenoid toosendanin elicits calcium increase and exocytosis in rat sensory neurons. Cell Mol Neurobiol 2011; 31:1151-62. [PMID: 21656151 DOI: 10.1007/s10571-011-9716-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Accepted: 05/20/2011] [Indexed: 02/07/2023]
Abstract
Toosendanin, a triterpenoid from Melia toosendan Sieb et Zucc, has been found before to be an effective anti-botulism agent, with a bi-phasic effect at both motor nerve endings and central synapse: an initial facilitation followed by prolonged depression. Initial facilitation may be due to activation of voltage-dependent calcium channels plus inhibition of potassium channels, but the depression is not fully understood. Toosendanin has no effect on intracellular calcium or secretion in the non-excitable pancreatic acinar cells, ruling out general toosendanin inhibition of exocytosis. In this study, toosendanin effects on sensory neurons isolated from rat nodose ganglia were investigated. It was found that toosendanin stimulated increases in cytosolic calcium and neuronal exocytosis dose dependently. Experiments with membrane potential indicator bis-(1,3-dibutylbarbituric acid)trimethine oxonol found that toosendanin hyperpolarized capsaicin-insensitive but depolarized capsaicin-sensitive neurons; high potassium-induced calcium increase was much smaller in hyperpolarizing neurons than in depolarizing neurons, whereas no difference was found for potassium-induced depolarization in these two types of neurons. In neurons showing spontaneous calcium oscillations, toosendanin increased the oscillatory amplitude but not frequency. Toosendanin-induced calcium increase was decreased in calcium-free buffer, by nifedipine, and by transient receptor potential vanilloid 1 (TRPV1) antagonist capsazepine. Simultaneous measurements of cytosolic and endoplasmic reticulum (ER) calcium showed an increase in cytosolic but a decrease in ER calcium, indicating that toosendanin triggered ER calcium release. These data together indicate that toosendanin modulates sensory neurons, but had opposite effects on membrane potential depending on the presence or absence of capsaicin receptor/TRPV 1 channel.
Collapse
Affiliation(s)
- Xiao Feng Fang
- Institute of Cell Biology, Beijing Normal University, Beijing 100875, China
| | | |
Collapse
|
42
|
Behrendorff N, Dolai S, Hong W, Gaisano HY, Thorn P. Vesicle-associated membrane protein 8 (VAMP8) is a SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) selectively required for sequential granule-to-granule fusion. J Biol Chem 2011; 286:29627-34. [PMID: 21733851 DOI: 10.1074/jbc.m111.265199] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Compound exocytosis is found in many cell types and is the major form of regulated secretion in acinar and mast cells. Its key characteristic is the homotypic fusion of secretory granules. These then secrete their combined output through a single fusion pore to the outside. The control of compound exocytosis remains poorly understood. Although soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) such as syntaxin 2, SNAP23 (synaptosome-associated protein of 23 kDa), and SNAP25 have been suggested to play a role, none has been proven. Vesicle-associated membrane protein 8 (VAMP8) is a SNARE first associated with endocytic processes but more recently has been suggested as an R-SNARE in regulated exocytosis. Secretion in acinar cells is reduced when VAMP8 function is inhibited and is less in VAMP8 knock-out mice. Based on electron microscopy experiments, it was suggested that VAMP8 may be involved in compound exocytosis. Here we have tested the hypothesis that VAMP8 controls homotypic granule-to-granule fusion during sequential compound exocytosis. We use a new assay to distinguish primary fusion events (fusion with the cell membrane) from secondary fusion events (granule-granule fusion). Our data show the pancreatic acinar cells from VAMP8 knock-out animals have a specific reduction in secondary granule fusion but that primary granule fusion is unaffected. Furthermore, immunoprecipitation experiments show syntaxin 2 association with VAMP2, whereas syntaxin 3 associates with VAMP8. Taken together our data indicate that granule-to-granule fusion is regulated by VAMP8 containing SNARE complexes distinct from those that regulate primary granule fusion.
Collapse
|
43
|
Pandol SJ, Gorelick FS, Gerloff A, Lugea A. Alcohol abuse, endoplasmic reticulum stress and pancreatitis. Dig Dis 2011; 28:776-82. [PMID: 21525762 PMCID: PMC3211518 DOI: 10.1159/000327212] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Alcohol abuse is a common cause of both acute and chronic pancreatitis. There is a wide spectrum of pancreatic manifestations in heavy drinkers from no apparent disease in most individuals to acute inflammatory and necrotizing pancreatitis in a minority of individuals with some progressing to chronic pancreatitis characterized by replacement of the gland by fibrosis and chronic inflammation. Both smoking and African-American ethnicity are associated with increased risk of alcoholic pancreatitis. In this review we describe how our recent studies demonstrate that ethanol feeding in rodents causes oxidative stress in the endoplasmic reticulum (ER) of the digestive enzyme synthesizing acinar cell of the exocrine pancreas. This ER stress is attenuated by a robust unfolded protein response (UPR) involving X-box binding protein-1 (XBP1) in the acinar cell. When the UPR activation is prevented by genetic reduction in XBP1, ethanol feeding causes significant pathological responses in the pancreas. These results suggest that the reason most individuals who drink alcohol heavily do not get significant pancreatic disease is because the pancreas mounts an adaptive UPR to attenuate the ER stress that ethanol causes. We hypothesize that disease in the pancreas results when the UPR is insufficiently robust to alleviate the ER stress caused by alcohol abuse.
Collapse
Affiliation(s)
- Stephen J Pandol
- Southern California Research Center for Alcoholic Liver Pancreatic Diseases and Cirrhosis, UCLA Center for Excellence in Pancreatic Diseases, University of California, and VA Greater Los Angeles Health Care System, Los Angeles, Calif., USA.
| | | | | | | |
Collapse
|
44
|
Calmodulin protects against alcohol-induced pancreatic trypsinogen activation elicited via Ca2+ release through IP3 receptors. Proc Natl Acad Sci U S A 2011; 108:5873-8. [PMID: 21436055 DOI: 10.1073/pnas.1016534108] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Alcohol abuse is a major global health problem, but there is still much uncertainty about the mechanisms of action. So far, the effects of ethanol on ion channels in the plasma membrane have received the most attention. We have now investigated actions on intracellular calcium channels in pancreatic acinar cells. Our aim was to discover the mechanism by which alcohol influences calcium homeostasis and thereby understand how alcohol can trigger premature intracellular trypsinogen activation, which is the initiating step for alcohol-induced pancreatitis. We used intact or two-photon permeabilized acinar cells isolated from wild-type mice or mice in which inositol trisphosphate receptors of type 2 or types 2 and 3 were knocked out. In permeabilized pancreatic acinar cells even a relatively low ethanol concentration elicited calcium release from intracellular stores and intracellular trypsinogen activation. The calcium sensor calmodulin (at a normal intracellular concentration) markedly reduced ethanol-induced calcium release and trypsinogen activation in permeabilized cells, effects prevented by the calmodulin inhibitor peptide. A calmodulin activator virtually abolished the modest ethanol effects in intact cells. Both ethanol-elicited calcium liberation and trypsinogen activation were significantly reduced in cells from type 2 inositol trisphosphate receptor knockout mice. More profound reductions were seen in cells from double inositol trisphosphate receptor (types 2 and 3) knockout mice. The inositol trisphosphate receptors, required for normal pancreatic stimulus-secretion coupling, are also responsible for the toxic ethanol action. Calmodulin protects by reducing calcium release sensitivity.
Collapse
|
45
|
Orabi AI, Shah AU, Muili K, Luo Y, Mahmood SM, Ahmad A, Reed A, Husain SZ. Ethanol enhances carbachol-induced protease activation and accelerates Ca2+ waves in isolated rat pancreatic acini. J Biol Chem 2011; 286:14090-7. [PMID: 21372126 DOI: 10.1074/jbc.m110.196832] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Alcohol abuse is a leading cause of pancreatitis, accounting for 30% of acute cases and 70-90% of chronic cases, yet the mechanisms leading to alcohol-associated pancreatic injury are unclear. An early and critical feature of pancreatitis is the aberrant signaling of Ca(2+) within the pancreatic acinar cell. An important conductor of this Ca(2+) is the basolaterally localized, intracellular Ca(2+) channel ryanodine receptor (RYR). In this study, we examined the effect of ethanol on mediating both pathologic intra-acinar protease activation, a precursor to pancreatitis, as well as RYR Ca(2+) signals. We hypothesized that ethanol sensitizes the acinar cell to protease activation by modulating RYR Ca(2+). Acinar cells were freshly isolated from rat, pretreated with ethanol, and stimulated with the muscarinic agonist carbachol (1 μM). Ethanol caused a doubling in the carbachol-induced activation of the proteases trypsin and chymotrypsin (p < 0.02). The RYR inhibitor dantrolene abrogated the enhancement of trypsin and chymotrypsin activity by ethanol (p < 0.005 for both proteases). Further, ethanol accelerated the speed of the apical to basolateral Ca(2+) wave from 9 to 18 μm/s (p < 0.0005; n = 18-22 cells/group); an increase in Ca(2+) wave speed was also observed with a change from physiologic concentrations of carbachol (1 μM) to a supraphysiologic concentration (1 mM) that leads to protease activation. Dantrolene abrogated the ethanol-induced acceleration of wave speed (p < 0.05; n = 10-16 cells/group). Our results suggest that the enhancement of pathologic protease activation by ethanol is dependent on the RYR and that a novel mechanism for this enhancement may involve RYR-mediated acceleration of Ca(2+) waves.
Collapse
Affiliation(s)
- Abrahim I Orabi
- Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Pandol SJ, Lugea A, Mareninova OA, Smoot D, Gorelick FS, Gukovskaya AS, Gukovsky I. Investigating the pathobiology of alcoholic pancreatitis. Alcohol Clin Exp Res 2011; 35:830-7. [PMID: 21284675 DOI: 10.1111/j.1530-0277.2010.01408.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Alcohol abuse is one of the most common causes of pancreatitis. The risk of developing alcohol-induced pancreatitis is related to the amount and duration of drinking. However, only a small portion of heavy drinkers develop disease, indicating that other factors (genetic, environmental, or dietary) contribute to disease initiation. Epidemiologic studies suggest roles for cigarette smoking and dietary factors in the development of alcoholic pancreatitis. The mechanisms underlying alcoholic pancreatitis are starting to be understood. Studies from animal models reveal that alcohol sensitizes the pancreas to key pathobiologic processes that are involved in pancreatitis. Current studies are focussed on the mechanisms responsible for the sensitizing effect of alcohol; recent findings reveal disordering of key cellular organelles including endoplasmic reticulum, mitochondria, and lysosomes. As our understanding of alcohol's effects continue to advance to the level of molecular mechanisms, insights into potential therapeutic strategies will emerge providing opportunities for clinical benefit.
Collapse
Affiliation(s)
- Stephen J Pandol
- Pancreatic Research Group, Department of Veterans Affairs Greater Los Angeles, University of California Los Angeles, 90073, USA.
| | | | | | | | | | | | | |
Collapse
|
47
|
Falkowski MA, Thomas DDH, Groblewski GE. Complexin 2 modulates vesicle-associated membrane protein (VAMP) 2-regulated zymogen granule exocytosis in pancreatic acini. J Biol Chem 2010; 285:35558-66. [PMID: 20829354 DOI: 10.1074/jbc.m110.146597] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Complexins are soluble proteins that regulate the activity of soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complexes necessary for vesicle fusion. Neuronal specific complexin 1 has inhibitory and stimulatory effects on exocytosis by clamping trans-SNARE complexes in a prefusion state and promoting conformational changes to facilitate membrane fusion following cell stimulation. Complexins are unable to bind to monomeric SNARE proteins but bind with high affinity to ternary SNARE complexes and with lower affinity to target SNARE complexes. Far less is understood about complexin function outside the nervous system. Pancreatic acini express the complexin 2 isoform by RT-PCR and immunoblotting. Immunofluorescence microscopy revealed complexin 2 localized along the apical plasma membrane consistent with a role in secretion. Accordingly, complexin 2 was found to interact with vesicle-associated membrane protein (VAMP) 2, syntaxins 3 and 4, but not with VAMP 8 or syntaxin 2. Introduction of recombinant complexin 2 into permeabilized acini inhibited Ca(2+)-stimulated secretion in a concentration-dependent manner with a maximal inhibition of nearly 50%. Mutations of the central α-helical domain reduced complexin 2 SNARE binding and concurrently abolished its inhibitory activity. Surprisingly, mutation of arginine 59 to histidine within the central α-helical domain did not alter SNARE binding and moreover, augmented Ca(2+)-stimulated secretion by 130% of control. Consistent with biochemical studies, complexin 2 colocalized with VAMP 2 along the apical plasma membrane following cholecystokinin-8 stimulation. These data demonstrate a functional role for complexin 2 outside the nervous system and indicate that it participates in the Ca(2+)-sensitive regulatory pathway for zymogen granule exocytosis.
Collapse
Affiliation(s)
- Michelle A Falkowski
- Department of Nutritional Sciences, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
48
|
Lugea A, Gong J, Nguyen J, Nieto J, French SW, Pandol SJ. Cholinergic mediation of alcohol-induced experimental pancreatitis. Alcohol Clin Exp Res 2010; 34:1768-81. [PMID: 20626730 DOI: 10.1111/j.1530-0277.2010.01264.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVES The mechanisms initiating pancreatitis in patients with chronic alcohol abuse are poorly understood. Although alcohol feeding has been previously suggested to alter cholinergic pathways, the effects of these cholinergic alterations in promoting pancreatitis have not been characterized. For this study, we determined the role of the cholinergic system in ethanol-induced sensitizing effects on cerulein pancreatitis. METHODS Rats were pair-fed control and ethanol-containing Lieber-DeCarli diets for 6 weeks followed by parenteral administration of 4 hourly intraperitoneal injections of the cholecystokinin analog, cerulein at 0.5 μg/kg. This dose of cerulein was selected because it caused pancreatic injury in ethanol-fed but not in control-fed rats. Pancreatitis was preceded by treatment with the muscarinic receptor antagonist atropine or by bilateral subdiaphragmatic vagotomy. Measurement of pancreatic pathology included serum lipase activity, pancreatic trypsin, and caspase-3 activities, and markers of pancreatic necrosis, apoptosis, and autophagy. In addition, we measured the effects of ethanol feeding on pancreatic acetylcholinesterase activity and pancreatic levels of the muscarinic acetylcholine receptors m1 and m3. Finally, we examined the synergistic effects of ethanol and carbachol on inducing acinar cell damage. RESULTS We found that atropine blocked almost completely pancreatic pathology caused by cerulein administration in ethanol-fed rats, while vagotomy was less effective. Ethanol feeding did not alter expression levels of cholinergic muscarinic receptors in the pancreas but significantly decreased pancreatic acetylcholinesterase activity, suggesting that acetylcholine levels and cholinergic input within the pancreas can be higher in ethanol-fed rats. We further found that ethanol treatment of pancreatic acinar cells augmented pancreatic injury responses caused by the cholinergic agonist, carbachol. CONCLUSION These results demonstrate key roles for the cholinergic system in the mechanisms of alcoholic pancreatitis.
Collapse
Affiliation(s)
- Aurelia Lugea
- USC-UCLA Research Center for Alcoholic Liver and Pancreatic Diseases, Veterans Affairs Greater Los Angeles Healthcare System and University of California, Los Angeles, California 90073, USA.
| | | | | | | | | | | |
Collapse
|
49
|
A role for VAMP8/endobrevin in surface deployment of the water channel aquaporin 2. Mol Cell Biol 2010; 30:333-43. [PMID: 19841070 DOI: 10.1128/mcb.00814-09] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Vesicle-associated-membrane protein 8 (VAMP8) is highly expressed in the kidney, but the exact physiological and molecular functions executed by this v-SNARE protein in nephrons remain elusive. Here, we show that the depletion of VAMP8 in mice resulted in hydronephrosis. Furthermore, the level of the vasopressin-responsive water channel aquaporin 2 (AQP2) was increased by three- to fivefold in VAMP8-null mice. Forskolin and [desamino-Cys(1), D-Arg(8)]-vasopressin (DDAVP)-induced AQP2 exocytosis was impaired in VAMP8-null collecting duct cells. VAMP8 was revealed to colocalize with AQP2 on intracellular vesicles and to interact with the plasma membrane t-SNARE proteins syntaxin4 and syntaxin3, suggesting that VAMP8 mediates the regulated fusion of AQP2-positive vesicles with the plasma membrane.
Collapse
|
50
|
Fletcher PL, Fletcher MD, Weninger K, Anderson TE, Martin BM. Vesicle-associated membrane protein (VAMP) cleavage by a new metalloprotease from the Brazilian scorpion Tityus serrulatus. J Biol Chem 2009; 285:7405-16. [PMID: 20026600 DOI: 10.1074/jbc.m109.028365] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We present evidence that venom from the Brazilian scorpion Tityus serrulatus and a purified fraction selectively cleave essential SNARE proteins within exocrine pancreatic tissue. Western blotting for vesicle-associated membrane protein type v-SNARE proteins (or synaptobrevins) reveals characteristic alterations to venom-treated excised pancreatic lobules in vitro. Immunocytochemistry by electron microscopy confirms both the SNARE identity as VAMP2 and the proteolysis of VAMP2 as a marked decrease in secondary antibody-conjugated colloidal gold particles that are predominantly associated with mature zymogen granules. Studies with recombinant SNARE proteins were used to determine the specific cleavage site in VAMP2 and the susceptibility of VAMP8 (endobrevin). The VAMP2 cleavage site is between the transmembrane anchor and the SNARE motif that assembles into the ternary SNARE complex. Inclusion of divalent chelating agents (EDTA) with fraction nu, an otherwise active purified component from venom, eliminates SNARE proteolysis, suggesting the active protein is a metalloprotease. The unique cleavages of VAMP2 and VAMP8 may be linked to pancreatitis that develops following scorpion envenomation as both of these v-SNARE proteins are associated with zymogen granule membranes in pancreatic acinar cells. We have isolated antarease, a metalloprotease from fraction nu that cleaves VAMP2, and report its amino acid sequence.
Collapse
Affiliation(s)
- Paul L Fletcher
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina 27834, USA
| | | | | | | | | |
Collapse
|