1
|
Essandoh K, Subramani A, Koripella S, Brody MJ. The Rab3 GTPase cycle modulates cardiomyocyte exocytosis and atrial natriuretic peptide release. Biophys J 2025:S0006-3495(25)00167-5. [PMID: 40119520 DOI: 10.1016/j.bpj.2025.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 02/19/2025] [Accepted: 03/17/2025] [Indexed: 03/24/2025] Open
Abstract
Natriuretic peptides are produced predominantly by atrial cardiomyocytes in response to cardiovascular stress and attenuate cardiac maladaptation by reducing blood pressure, blood volume, and cardiac workload primarily through activation of natriuretic peptide receptors in the kidney and vasculature. However, mechanisms underlying cardiomyocyte exocytosis and natriuretic peptide secretion remain poorly defined. Manipulation of Rab3a GTPase activity by Rab3gap1 was recently found to modulate atrial natriuretic peptide (ANP) release by cardiomyocytes. Here, we examined upstream signaling mechanisms and the role of the Rab3a GTPase cycle in exocytosis and ANP secretion by cardiomyocytes. Pharmacological inhibition of the heterotrimeric G protein subunit G⍺q suppressed ANP secretion at baseline and prevented GTP loading of Rab3a and ANP release in neonatal rat cardiomyocytes in response to phenylephrine (PE). Similar to agonist-induced activation of ANP secretion, genetic overexpression of a constitutively active, GTP-loaded Rab3a mutant (Q81L) in neonatal rat cardiomyocytes resulted in enhanced intracellular distribution of Rab3a at endomembranes peripheral to the Golgi and promotion of ANP release, indicating that enhancement of Rab3a activity is sufficient to elicit ANP secretion by cardiomyocytes. Collectively, these data indicate G⍺q signaling downstream of receptor activation and Rab3a-regulated secretory pathway activity and exocytosis facilitate ANP release by cardiomyocytes that could potentially be harnessed to antagonize hypertension and adverse cardiac remodeling in cardiovascular disease.
Collapse
Affiliation(s)
- Kobina Essandoh
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan
| | | | | | - Matthew J Brody
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan; Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
2
|
Veuthey T, Florman JT, Giunti S, Romussi S, De Rosa MJ, Alkema MJ, Rayes D. The neurohormone tyramine stimulates the secretion of an insulin-like peptide from the Caenorhabditis elegans intestine to modulate the systemic stress response. PLoS Biol 2025; 23:e3002997. [PMID: 39874242 PMCID: PMC11774402 DOI: 10.1371/journal.pbio.3002997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 12/20/2024] [Indexed: 01/30/2025] Open
Abstract
The DAF-2/insulin/insulin-like growth factor signaling (IIS) pathway plays an evolutionarily conserved role in regulating reproductive development, life span, and stress resistance. In Caenorhabditis elegans, DAF-2/IIS signaling is modulated by an extensive array of insulin-like peptides (ILPs) with diverse spatial and temporal expression patterns. However, the release dynamics and specific functions of these ILPs in adapting to different environmental conditions remain poorly understood. Here, we show that the ILP, insulin-3 (INS-3), plays a crucial role in modulating the response to various environmental stressors in C. elegans. ins-3 mutants display increased resistance to heat, oxidative stress, and starvation; however, this advantage is countered by slower reproductive development under favorable conditions. We find that ins-3 expression is downregulated in response to environmental stressors, whereas, the neurohormone tyramine, which is released during the acute flight response, increases ins-3 expression. We show that tyramine induces intestinal calcium (Ca2+) transients through the activation of the TYRA-3 receptor. Our data support a model in which tyramine negatively impacts environmental stress resistance by stimulating the release of INS-3 from the intestine via the activation of a TYRA-3-Gαq-IP3 pathway. The release of INS-3 systemically activates the DAF-2 pathway, resulting in the inhibition of cytoprotective mechanisms mediated by DAF-16/FOXO. These studies offer mechanistic insights into a brain-gut communication pathway that weighs adaptive strategies to respond to acute and long-term stressors.
Collapse
Affiliation(s)
- Tania Veuthey
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) CCT UNS-CONICET, Bahía Blanca, Argentina
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional Del Sur (UNS), Bahía Blanca, Argentina
| | - Jeremy T. Florman
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Sebastián Giunti
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) CCT UNS-CONICET, Bahía Blanca, Argentina
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional Del Sur (UNS), Bahía Blanca, Argentina
| | - Stefano Romussi
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) CCT UNS-CONICET, Bahía Blanca, Argentina
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional Del Sur (UNS), Bahía Blanca, Argentina
| | - María José De Rosa
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) CCT UNS-CONICET, Bahía Blanca, Argentina
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional Del Sur (UNS), Bahía Blanca, Argentina
| | - Mark J. Alkema
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Diego Rayes
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) CCT UNS-CONICET, Bahía Blanca, Argentina
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional Del Sur (UNS), Bahía Blanca, Argentina
| |
Collapse
|
3
|
Li A, Wang X, Li J, Li X, Wang J, Liu Y, Wang Z, Yang X, Gao J, Wu J, Sun T, Huo L, Yi Y, Shen J, Cai J, Yao Y. Critical role of G protein-coupled receptor 40 in B cell response and the pathogenesis of rheumatoid arthritis in mice and patients. Cell Rep 2024; 43:114858. [PMID: 39392754 DOI: 10.1016/j.celrep.2024.114858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 06/06/2024] [Accepted: 09/25/2024] [Indexed: 10/13/2024] Open
Abstract
Rheumatoid arthritis (RA) is marked by joint damage and inflammation, with B cells playing a key role by generating autoantibodies. This study shows that G protein-coupled receptor 40 (GPR40) deficiency in B cells leads to increased activation, proliferation, antibody production, germinal center formation, and class switch recombination. GPR40 regulates Plcγ2 phosphorylation and intracellular calcium flux downstream of the B cell receptor by binding to the Gαq protein. In GPR40-deficient mice, susceptibility to collagen-induced arthritis was higher. GPR40 agonists showed potential as therapeutic agents, and their reduced expression in patients with RA correlated with disease onset, suggesting GPR40 as a potential therapeutic target and diagnostic marker.
Collapse
Affiliation(s)
- Anqi Li
- School of Medicine & Nursing, Huzhou University, Huzhou, China
| | - Xiaoyi Wang
- First Affiliated Hospital, Huzhou University, Huzhou, China
| | - Jingwen Li
- School of Medicine & Nursing, Huzhou University, Huzhou, China
| | - Xiaoyu Li
- School of Medicine & Nursing, Huzhou University, Huzhou, China
| | - Jue Wang
- School of Medicine & Nursing, Huzhou University, Huzhou, China
| | - Yang Liu
- First Affiliated Hospital, Huzhou University, Huzhou, China
| | - Zhihong Wang
- Huzhou Central Hospital, The Affiliated Central Hospital of Huzhou University, Huzhou, China
| | - Xiaobing Yang
- Third Affiliated Hospital, Huzhou University, Huzhou, China
| | - Jiapeng Gao
- Institute of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Juanjie Wu
- First Affiliated Hospital, Huzhou University, Huzhou, China
| | - Tao Sun
- Huzhou Central Hospital, The Affiliated Central Hospital of Huzhou University, Huzhou, China
| | - Lixia Huo
- First Affiliated Hospital, Huzhou University, Huzhou, China
| | - Yanfeng Yi
- School of Life and Health Sciences, Huzhou College, Huzhou, China
| | - Jiantong Shen
- School of Medicine & Nursing, Huzhou University, Huzhou, China
| | - Jiexun Cai
- School of Medicine & Nursing, Huzhou University, Huzhou, China
| | - Yunliang Yao
- School of Medicine & Nursing, Huzhou University, Huzhou, China; First Affiliated Hospital, Huzhou University, Huzhou, China.
| |
Collapse
|
4
|
Cui Y, Auclair H, He R, Zhang Q. GPCR-mediated regulation of beige adipocyte formation: Implications for obesity and metabolic health. Gene 2024; 915:148421. [PMID: 38561165 DOI: 10.1016/j.gene.2024.148421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/10/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024]
Abstract
Obesity and its associated complications pose a significant burden on health. The non-shivering thermogenesis (NST) and metabolic capacity properties of brown adipose tissue (BAT), which are distinct from those of white adipose tissue (WAT), in combating obesity and its related metabolic diseases has been well documented. However, beige adipose tissue, the third and relatively novel type of adipose tissue, which emerges in extensive presence of WAT and shares similar favorable metabolic properties with BAT, has garnered considerable attention in recent years. In this review, we focused on the role of G protein-coupled receptors (GPCRs), the largest receptor family and the most successful class of drug targets in humans, in the induction of beige adipocytes. More importantly, we highlight researchers' clinical treatment attempts to ameliorate obesity and other related metabolic diseases through the formation and activation of beige adipose tissue. In summary, this review provides valuable insights into the formation of beige adipose tissue and the involvement of GPCRs, based on the latest advancements in scientific research.
Collapse
Affiliation(s)
- Yuanxu Cui
- Animal Zoology Department, Kunming Medical University, Kunming, China; Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, China
| | - Hugo Auclair
- Faculty of Medicine, François-Rabelais University, Tours, France
| | - Rong He
- Animal Zoology Department, Kunming Medical University, Kunming, China
| | - Qiang Zhang
- Animal Zoology Department, Kunming Medical University, Kunming, China.
| |
Collapse
|
5
|
Varney MJ, Benovic JL. The Role of G Protein-Coupled Receptors and Receptor Kinases in Pancreatic β-Cell Function and Diabetes. Pharmacol Rev 2024; 76:267-299. [PMID: 38351071 PMCID: PMC10877731 DOI: 10.1124/pharmrev.123.001015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/01/2023] [Accepted: 12/07/2023] [Indexed: 02/16/2024] Open
Abstract
Type 2 diabetes (T2D) mellitus has emerged as a major global health concern that has accelerated in recent years due to poor diet and lifestyle. Afflicted individuals have high blood glucose levels that stem from the inability of the pancreas to make enough insulin to meet demand. Although medication can help to maintain normal blood glucose levels in individuals with chronic disease, many of these medicines are outdated, have severe side effects, and often become less efficacious over time, necessitating the need for insulin therapy. G protein-coupled receptors (GPCRs) regulate many physiologic processes, including blood glucose levels. In pancreatic β cells, GPCRs regulate β-cell growth, apoptosis, and insulin secretion, which are all critical in maintaining sufficient β-cell mass and insulin output to ensure euglycemia. In recent years, new insights into the signaling of incretin receptors and other GPCRs have underscored the potential of these receptors as desirable targets in the treatment of diabetes. The signaling of these receptors is modulated by GPCR kinases (GRKs) that phosphorylate agonist-activated GPCRs, marking the receptor for arrestin binding and internalization. Interestingly, genome-wide association studies using diabetic patient cohorts link the GRKs and arrestins with T2D. Moreover, recent reports show that GRKs and arrestins expressed in the β cell serve a critical role in the regulation of β-cell function, including β-cell growth and insulin secretion in both GPCR-dependent and -independent pathways. In this review, we describe recent insights into GPCR signaling and the importance of GRK function in modulating β-cell physiology. SIGNIFICANCE STATEMENT: Pancreatic β cells contain a diverse array of G protein-coupled receptors (GPCRs) that have been shown to improve β-cell function and survival, yet only a handful have been successfully targeted in the treatment of diabetes. This review discusses recent advances in our understanding of β-cell GPCR pharmacology and regulation by GPCR kinases while also highlighting the necessity of investigating islet-enriched GPCRs that have largely been unexplored to unveil novel treatment strategies.
Collapse
Affiliation(s)
- Matthew J Varney
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Jeffrey L Benovic
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
6
|
Veuthey T, Giunti S, De Rosa MJ, Alkema M, Rayes D. The neurohormone tyramine stimulates the secretion of an Insulin-Like Peptide from the intestine to modulate the systemic stress response in C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.06.579207. [PMID: 38370834 PMCID: PMC10871264 DOI: 10.1101/2024.02.06.579207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
The DAF-2/insulin/insulin-like growth factor signaling (IIS) pathway plays an evolutionarily conserved role in regulating reproductive development, lifespan, and stress resistance. In C. elegans , DAF-2/IIS signaling is modulated by an extensive array of insulin-like peptides (ILPs) with diverse spatial and temporal expression patterns. However, the release dynamics and specific functions of these ILPs in adapting to different environmental conditions remain poorly understood. Here, we show that the ILP, INS-3, plays a crucial role in modulating the response to different types of stressors in C. elegans . ins-3 mutants display increased resistance to both heat and oxidative stress; however, under favorable conditions, this advantage is countered by slower reproductive development. ins-3 expression in both neurons and the intestine is downregulated in response to environmental stressors. Conversely, the neurohormone tyramine, which is released during the acute flight response, triggers an upregulation in ins-3 expression. Moreover, we found that tyramine negatively impacts environmental stress resistance by stimulating the release of INS-3 from the intestine. The subsequent release of INS-3 systemically activates the DAF-2 pathway, resulting in the inhibition of cytoprotective mechanisms mediated by DAF-16/FOXO and HSF-1. These studies offer mechanistic insights into the brain-gut communication pathway that weighs adaptive strategies to respond to acute and long-term stress scenarios.
Collapse
|
7
|
Lorza-Gil E, Kaiser G, Carlein C, Hoffmann MDA, König GM, Haug S, Prates Roma L, Rexen Ulven E, Ulven T, Kostenis E, Birkenfeld AL, Häring HU, Ullrich S, Gerst F. Glucose-stimulated insulin secretion depends on FFA1 and Gq in neonatal mouse islets. Diabetologia 2023; 66:1501-1515. [PMID: 37217659 PMCID: PMC10317898 DOI: 10.1007/s00125-023-05932-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/22/2023] [Indexed: 05/24/2023]
Abstract
AIMS/HYPOTHESIS After birth, the neonatal islets gradually acquire glucose-responsive insulin secretion, a process that is subjected to maternal imprinting. Although NEFA are major components of breastmilk and insulin secretagogues, their role for functional maturation of neonatal beta cells is still unclear. NEFA are the endogenous ligands of fatty acid receptor 1 (FFA1, encoded by Ffar1 in mice), a Gq-coupled receptor with stimulatory effect on insulin secretion. This study investigates the role of FFA1 in neonatal beta cell function and in the adaptation of offspring beta cells to parental high-fat feeding. METHODS Wild-type (WT) and Ffar1-/- mice were fed high-fat (HFD) or chow diet (CD) for 8 weeks before mating, and during gestation and lactation. Blood variables, pancreas weight and insulin content were assessed in 1-, 6-, 11- and 26-day old (P1-P26) offspring. Beta cell mass and proliferation were determined in P1-P26 pancreatic tissue sections. FFA1/Gq dependence of insulin secretion was evaluated in isolated islets and INS-1E cells using pharmacological inhibitors and siRNA strategy. Transcriptome analysis was conducted in isolated islets. RESULTS Blood glucose levels were higher in CD-fed Ffar1-/- P6-offspring compared with CD-fed WT P6-offspring. Accordingly, glucose-stimulated insulin secretion (GSIS) and its potentiation by palmitate were impaired in CD Ffar1-/- P6-islets. In CD WT P6-islets, insulin secretion was stimulated four- to fivefold by glucose and five- and sixfold over GSIS by palmitate and exendin-4, respectively. Although parental HFD increased blood glucose in WT P6-offspring, it did not change insulin secretion from WT P6-islets. In contrast, parental HFD abolished glucose responsiveness (i.e. GSIS) in Ffar1-/- P6-islets. Inhibition of Gq by FR900359 or YM-254890 in WT P6-islets mimicked the effect of Ffar1 deletion, i.e. suppression of GSIS and of palmitate-augmented GSIS. The blockage of Gi/o by pertussis toxin (PTX) enhanced (100-fold) GSIS in WT P6-islets and rendered Ffar1-/- P6-islets glucose responsive, suggesting constitutive activation of Gi/o. In WT P6-islets, FR900359 cancelled 90% of PTX-mediated stimulation, while in Ffar1-/- P6-islets it completely abolished PTX-elevated GSIS. The secretory defect of Ffar1-/- P6-islets did not originate from insufficient beta cells, since beta cell mass increased with the offspring's age irrespective of genotype and diet. In spite of that, in the breastfed offspring (i.e. P1-P11) beta cell proliferation and pancreatic insulin content had a genotype- and diet-driven dynamic. Under CD, the highest proliferation rate was reached by the Ffar1-/- P6 offspring (3.95% vs 1.88% in WT P6), whose islets also showed increased mRNA levels of genes (e.g. Fos, Egr1, Jun) typically high in immature beta cells. Although parental HFD increased beta cell proliferation in both WT (4.48%) and Ffar1-/- (5.19%) P11 offspring, only the WT offspring significantly increased their pancreatic insulin content upon parental HFD (5.18 µg under CD to 16.93 µg under HFD). CONCLUSIONS/INTERPRETATION FFA1 promotes glucose-responsive insulin secretion and functional maturation of newborn islets and is required for adaptive offspring insulin secretion in the face of metabolic challenge, such as parental HFD.
Collapse
Affiliation(s)
- Estela Lorza-Gil
- German Center for Diabetes Research (DZD e.V.), Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Zentrum München at the University of Tübingen (IDM), Tübingen, Germany
- Department of Internal Medicine, Endocrinology, Diabetology and Nephrology, University Hospital Tübingen, Tübingen, Germany
| | - Gabriele Kaiser
- German Center for Diabetes Research (DZD e.V.), Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Zentrum München at the University of Tübingen (IDM), Tübingen, Germany
- Department of Internal Medicine, Endocrinology, Diabetology and Nephrology, University Hospital Tübingen, Tübingen, Germany
| | - Christopher Carlein
- Department of Biophysics Faculty of Medicine, Saarland University, Homburg, Germany
| | - Markus D A Hoffmann
- Department of Biophysics Faculty of Medicine, Saarland University, Homburg, Germany
| | - Gabriele M König
- Institute of Pharmaceutical Biology, Bonn University, Bonn, Germany
| | - Sieglinde Haug
- Department of Internal Medicine, Endocrinology, Diabetology and Nephrology, University Hospital Tübingen, Tübingen, Germany
| | - Leticia Prates Roma
- Department of Biophysics Faculty of Medicine, Saarland University, Homburg, Germany
| | - Elisabeth Rexen Ulven
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Trond Ulven
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Evi Kostenis
- Institute of Pharmaceutical Biology, Bonn University, Bonn, Germany
| | - Andreas L Birkenfeld
- German Center for Diabetes Research (DZD e.V.), Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Zentrum München at the University of Tübingen (IDM), Tübingen, Germany
- Department of Internal Medicine, Endocrinology, Diabetology and Nephrology, University Hospital Tübingen, Tübingen, Germany
| | | | - Susanne Ullrich
- German Center for Diabetes Research (DZD e.V.), Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Zentrum München at the University of Tübingen (IDM), Tübingen, Germany
- Department of Internal Medicine, Endocrinology, Diabetology and Nephrology, University Hospital Tübingen, Tübingen, Germany
| | - Felicia Gerst
- German Center for Diabetes Research (DZD e.V.), Tübingen, Germany.
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Zentrum München at the University of Tübingen (IDM), Tübingen, Germany.
- Department of Internal Medicine, Endocrinology, Diabetology and Nephrology, University Hospital Tübingen, Tübingen, Germany.
| |
Collapse
|
8
|
Goodwin AT, John AE, Joseph C, Habgood A, Tatler AL, Susztak K, Palmer M, Offermanns S, Henderson NC, Jenkins RG. Stretch regulates alveologenesis and homeostasis via mesenchymal Gαq/11-mediated TGFβ2 activation. Development 2023; 150:dev201046. [PMID: 37102682 PMCID: PMC10259661 DOI: 10.1242/dev.201046] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 04/05/2023] [Indexed: 04/28/2023]
Abstract
Alveolar development and repair require tight spatiotemporal regulation of numerous signalling pathways that are influenced by chemical and mechanical stimuli. Mesenchymal cells play key roles in numerous developmental processes. Transforming growth factor-β (TGFβ) is essential for alveologenesis and lung repair, and the G protein α subunits Gαq and Gα11 (Gαq/11) transmit mechanical and chemical signals to activate TGFβ in epithelial cells. To understand the role of mesenchymal Gαq/11 in lung development, we generated constitutive (Pdgfrb-Cre+/-;Gnaqfl/fl;Gna11-/-) and inducible (Pdgfrb-Cre/ERT2+/-;Gnaqfl/fl;Gna11-/-) mesenchymal Gαq/11 deleted mice. Mice with constitutive Gαq/11 gene deletion exhibited abnormal alveolar development, with suppressed myofibroblast differentiation, altered mesenchymal cell synthetic function, and reduced lung TGFβ2 deposition, as well as kidney abnormalities. Tamoxifen-induced mesenchymal Gαq/11 gene deletion in adult mice resulted in emphysema associated with reduced TGFβ2 and elastin deposition. Cyclical mechanical stretch-induced TGFβ activation required Gαq/11 signalling and serine protease activity, but was independent of integrins, suggesting an isoform-specific role for TGFβ2 in this model. These data highlight a previously undescribed mechanism of cyclical stretch-induced Gαq/11-dependent TGFβ2 signalling in mesenchymal cells, which is imperative for normal alveologenesis and maintenance of lung homeostasis.
Collapse
Affiliation(s)
- Amanda T. Goodwin
- Centre for Respiratory Research, Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, NG7 2RD, UK
- Respiratory Medicine, Nottingham NIHR Biomedical Research Centre, Nottingham, NG7 2RD, UK
- Respiratory Medicine, Biodiscovery Institute, University Park, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Alison E. John
- Margaret Turner Warwick Centre for Fibrosing Lung Disease, National Heart and Lung Institute, Imperial College London, London, SW3 6LY, UK
| | - Chitra Joseph
- Centre for Respiratory Research, Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, NG7 2RD, UK
- Respiratory Medicine, Nottingham NIHR Biomedical Research Centre, Nottingham, NG7 2RD, UK
- Respiratory Medicine, Biodiscovery Institute, University Park, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Anthony Habgood
- Centre for Respiratory Research, Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, NG7 2RD, UK
- Respiratory Medicine, Nottingham NIHR Biomedical Research Centre, Nottingham, NG7 2RD, UK
- Respiratory Medicine, Biodiscovery Institute, University Park, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Amanda L. Tatler
- Centre for Respiratory Research, Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, NG7 2RD, UK
- Respiratory Medicine, Nottingham NIHR Biomedical Research Centre, Nottingham, NG7 2RD, UK
- Respiratory Medicine, Biodiscovery Institute, University Park, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Katalin Susztak
- Department of Medicine, Division of Nephrology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Matthew Palmer
- Department of Pathology, Division of Nephrology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-4238, USA
| | - Stefan Offermanns
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Neil C. Henderson
- Centre for Inflammation Research, University of Edinburgh, EH16 4TJ, UK
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - R. Gisli Jenkins
- Margaret Turner Warwick Centre for Fibrosing Lung Disease, National Heart and Lung Institute, Imperial College London, London, SW3 6LY, UK
| |
Collapse
|
9
|
Adipocyte-derived extracellular vesicles increase insulin secretion through transport of insulinotropic protein cargo. Nat Commun 2023; 14:709. [PMID: 36759608 PMCID: PMC9911726 DOI: 10.1038/s41467-023-36148-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 01/18/2023] [Indexed: 02/11/2023] Open
Abstract
Adipocyte-derived extracellular vesicles (AdEVs) are membranous nanoparticles that convey communication from adipose tissue to other organs. Here, to delineate their role as messengers with glucoregulatory nature, we paired fluorescence AdEV-tracing and SILAC-labeling with (phospho)proteomics, and revealed that AdEVs transfer functional insulinotropic protein cargo into pancreatic β-cells. Upon transfer, AdEV proteins were subjects for phosphorylation, augmented insulinotropic GPCR/cAMP/PKA signaling by increasing total protein abundances and phosphosite dynamics, and ultimately enhanced 1st-phase glucose-stimulated insulin secretion (GSIS) in murine islets. Notably, insulinotropic effects were restricted to AdEVs isolated from obese and insulin resistant, but not lean mice, which was consistent with differential protein loads and AdEV luminal morphologies. Likewise, in vivo pre-treatment with AdEVs from obese but not lean mice amplified insulin secretion and glucose tolerance in mice. This data suggests that secreted AdEVs can inform pancreatic β-cells about insulin resistance in adipose tissue in order to amplify GSIS in times of increased insulin demand.
Collapse
|
10
|
The Potential Role of R4 Regulators of G Protein Signaling (RGS) Proteins in Type 2 Diabetes Mellitus. Cells 2022; 11:cells11233897. [PMID: 36497154 PMCID: PMC9739376 DOI: 10.3390/cells11233897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/26/2022] [Accepted: 11/30/2022] [Indexed: 12/05/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a complex and heterogeneous disease that primarily results from impaired insulin secretion or insulin resistance (IR). G protein-coupled receptors (GPCRs) are proposed as therapeutic targets for T2DM. GPCRs transduce signals via the Gα protein, playing an integral role in insulin secretion and IR. The regulators of G protein signaling (RGS) family proteins can bind to Gα proteins and function as GTPase-activating proteins (GAP) to accelerate GTP hydrolysis, thereby terminating Gα protein signaling. Thus, RGS proteins determine the size and duration of cellular responses to GPCR stimulation. RGSs are becoming popular targeting sites for modulating the signaling of GPCRs and related diseases. The R4 subfamily is the largest RGS family. This review will summarize the research progress on the mechanisms of R4 RGS subfamily proteins in insulin secretion and insulin resistance and analyze their potential value in the treatment of T2DM.
Collapse
|
11
|
Todero JE, Koch-Laskowski K, Shi Q, Kanke M, Hung YH, Beck R, Styblo M, Sethupathy P. Candidate master microRNA regulator of arsenic-induced pancreatic beta cell impairment revealed by multi-omics analysis. Arch Toxicol 2022; 96:1685-1699. [PMID: 35314868 PMCID: PMC9095563 DOI: 10.1007/s00204-022-03263-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/17/2022] [Indexed: 02/05/2023]
Abstract
Arsenic is a pervasive environmental toxin that is listed as the top priority for investigation by the Agency for Toxic Substance and Disease Registry. While chronic exposure to arsenic is associated with type 2 diabetes (T2D), the underlying mechanisms are largely unknown. We have recently demonstrated that arsenic treatment of INS-1 832/13 pancreatic beta cells impairs glucose-stimulated insulin secretion (GSIS), a T2D hallmark. We have also shown that arsenic alters the microRNA profile of beta cells. MicroRNAs have a well-established post-transcriptional regulatory role in both normal beta cell function and T2D pathogenesis. We hypothesized that there are microRNA master regulators that shape beta cell gene expression in pathways pertinent to GSIS after exposure to arsenicals. To test this hypothesis, we first treated INS-1 832/13 beta cells with either inorganic arsenic (iAsIII) or monomethylarsenite (MAsIII) and confirmed GSIS impairment. We then performed multi-omic analysis using chromatin run-on sequencing, RNA-sequencing, and small RNA-sequencing to define profiles of transcription, gene expression, and microRNAs, respectively. Integrating across these data sets, we first showed that genes downregulated by iAsIII treatment are enriched in insulin secretion and T2D pathways, whereas genes downregulated by MAsIII treatment are enriched in cell cycle and critical beta cell maintenance factors. We also defined the genes that are subject primarily to post-transcriptional control in response to arsenicals and demonstrated that miR-29a is the top candidate master regulator of these genes. Our results highlight the importance of microRNAs in arsenical-induced beta cell dysfunction and reveal both shared and unique mechanisms between iAsIII and MAsIII.
Collapse
Affiliation(s)
- Jenna E Todero
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Kieran Koch-Laskowski
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Qing Shi
- Department of Nutrition, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Matt Kanke
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Yu-Han Hung
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Rowan Beck
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
- Department of Nutrition, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Miroslav Styblo
- Department of Nutrition, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Praveen Sethupathy
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
12
|
Ježek P, Holendová B, Jabůrek M, Dlasková A, Plecitá-Hlavatá L. Contribution of Mitochondria to Insulin Secretion by Various Secretagogues. Antioxid Redox Signal 2022; 36:920-952. [PMID: 34180254 PMCID: PMC9125579 DOI: 10.1089/ars.2021.0113] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Significance: Mitochondria determine glucose-stimulated insulin secretion (GSIS) in pancreatic β-cells by elevating ATP synthesis. As the metabolic and redox hub, mitochondria provide numerous links to the plasma membrane channels, insulin granule vesicles (IGVs), cell redox, NADH, NADPH, and Ca2+ homeostasis, all affecting insulin secretion. Recent Advances: Mitochondrial redox signaling was implicated in several modes of insulin secretion (branched-chain ketoacid [BCKA]-, fatty acid [FA]-stimulated). Mitochondrial Ca2+ influx was found to enhance GSIS, reflecting cytosolic Ca2+ oscillations induced by action potential spikes (intermittent opening of voltage-dependent Ca2+ and K+ channels) or the superimposed Ca2+ release from the endoplasmic reticulum (ER). The ATPase inhibitory factor 1 (IF1) was reported to tune the glucose sensitivity range for GSIS. Mitochondrial protein kinase A was implicated in preventing the IF1-mediated inhibition of the ATP synthase. Critical Issues: It is unknown how the redox signal spreads up to the plasma membrane and what its targets are, what the differences in metabolic, redox, NADH/NADPH, and Ca2+ signaling, and homeostasis are between the first and second GSIS phase, and whether mitochondria can replace ER in the amplification of IGV exocytosis. Future Directions: Metabolomics studies performed to distinguish between the mitochondrial matrix and cytosolic metabolites will elucidate further details. Identifying the targets of cell signaling into mitochondria and of mitochondrial retrograde metabolic and redox signals to the cell will uncover further molecular mechanisms for insulin secretion stimulated by glucose, BCKAs, and FAs, and the amplification of secretion by glucagon-like peptide (GLP-1) and metabotropic receptors. They will identify the distinction between the hub β-cells and their followers in intact and diabetic states. Antioxid. Redox Signal. 36, 920-952.
Collapse
Affiliation(s)
- Petr Ježek
- Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Blanka Holendová
- Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Martin Jabůrek
- Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Andrea Dlasková
- Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Lydie Plecitá-Hlavatá
- Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
13
|
Adipocyte Gq signaling is a regulator of glucose and lipid homeostasis in mice. Nat Commun 2022; 13:1652. [PMID: 35351896 PMCID: PMC8964770 DOI: 10.1038/s41467-022-29231-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 03/04/2022] [Indexed: 01/05/2023] Open
Abstract
AbstractObesity is the major driver of the global epidemic in type 2 diabetes (T2D). In individuals with obesity, impaired insulin action leads to increased lipolysis in adipocytes, resulting in elevated plasma free fatty acid (FFA) levels that promote peripheral insulin resistance, a hallmark of T2D. Here we show, by using a combined genetic/biochemical/pharmacologic approach, that increased adipocyte lipolysis can be prevented by selective activation of adipocyte Gq signaling in vitro and in vivo (in mice). Activation of this pathway by a Gq-coupled designer receptor or by an agonist acting on an endogenous adipocyte Gq-coupled receptor (CysLT2 receptor) greatly improved glucose and lipid homeostasis in obese mice or in mice with adipocyte insulin receptor deficiency. Our findings identify adipocyte Gq signaling as an essential regulator of whole-body glucose and lipid homeostasis and should inform the development of novel classes of GPCR-based antidiabetic drugs.
Collapse
|
14
|
Jones B. The therapeutic potential of GLP-1 receptor biased agonism. Br J Pharmacol 2022; 179:492-510. [PMID: 33880754 PMCID: PMC8820210 DOI: 10.1111/bph.15497] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 04/03/2021] [Accepted: 04/06/2021] [Indexed: 12/20/2022] Open
Abstract
Glucagon-like peptide-1 (GLP-1) receptor agonists are effective treatments for type 2 diabetes as they stimulate insulin release and promote weight loss through appetite suppression. Their main side effect is nausea. All approved GLP-1 agonists are full agonists across multiple signalling pathways. However, selective engagement with specific intracellular effectors, or biased agonism, has been touted as a means to improve GLP-1 agonists therapeutic efficacy. In this review, I critically examine how GLP-1 receptor-mediated intracellular signalling is linked to physiological responses and discuss the implications of recent studies investigating the metabolic effects of biased GLP-1 agonists. Overall, there is little conclusive evidence that beneficial and adverse effects of GLP-1 agonists are attributable to distinct, nonoverlapping signalling pathways. Instead, G protein-biased GLP-1 agonists appear to achieve enhanced anti-hyperglycaemic efficacy by avoiding GLP-1 receptor desensitisation and downregulation, partly via reduced β-arrestin recruitment. This effect seemingly applies more to insulin release than to appetite regulation and nausea, possible reasons for which are discussed. At present, most evidence derives from cellular and animal studies, and more human data are required to determine whether this approach represents a genuine therapeutic advance. LINKED ARTICLES: This article is part of a themed issue on GLP1 receptor ligands (BJP 75th Anniversary). To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.4/issuetoc.
Collapse
Affiliation(s)
- Ben Jones
- Section of Endocrinology and Investigative MedicineImperial College LondonLondonUK
| |
Collapse
|
15
|
Proteomic and Bioinformatic Analysis of Decellularized Pancreatic Extracellular Matrices. Molecules 2021; 26:molecules26216740. [PMID: 34771149 PMCID: PMC8588251 DOI: 10.3390/molecules26216740] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 11/04/2021] [Accepted: 11/06/2021] [Indexed: 01/15/2023] Open
Abstract
Tissue microenvironments are rich in signaling molecules. However, factors in the tissue matrix that can serve as tissue-specific cues for engineering pancreatic tissues have not been thoroughly identified. In this study, we performed a comprehensive proteomic analysis of porcine decellularized pancreatic extracellular matrix (dpECM). By profiling dpECM collected from subjects of different ages and genders, we showed that the detergent-free decellularization method developed in this study permits the preservation of approximately 62.4% more proteins than a detergent-based method. In addition, we demonstrated that dpECM prepared from young pigs contained approximately 68.5% more extracellular matrix proteins than those prepared from adult pigs. Furthermore, we categorized dpECM proteins by biological process, molecular function, and cellular component through gene ontology analysis. Our study results also suggested that the protein composition of dpECM is significantly different between male and female animals while a KEGG enrichment pathway analysis revealed that dpECM protein profiling varies significantly depending on age. This study provides the proteome of pancreatic decellularized ECM in different animal ages and genders, which will help identify the bioactive molecules that are pivotal in creating tissue-specific cues for engineering tissues in vitro.
Collapse
|
16
|
Pancreatic Islets Exhibit Dysregulated Adaptation of Insulin Secretion after Chronic Epinephrine Exposure. Curr Issues Mol Biol 2021; 43:240-250. [PMID: 34071501 PMCID: PMC8929152 DOI: 10.3390/cimb43010020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 01/11/2023] Open
Abstract
Chronic adrenergic stimulation is the dominant factor in impairment of the β-cell function. Sustained adrenergic exposure generates dysregulated insulin secretion in fetal sheep. Similar results have been shown in Min6 under the elevated epinephrine condition, but impairments after adrenergic removal are still unknown and a high rate of proliferation in Min6 has been ignored. Therefore, we incubated primary rats' islets with half maximal inhibitory concentrations of epinephrine for three days, then determined their insulin secretion responsiveness and related signals two days after removal of adrenaline via radioimmunoassay and qPCR. Insulin secretion was not different between the exposure group (1.07 ± 0.04 ng/islet/h) and control (1.23 ± 0.17 ng/islet/h), but total islet insulin content after treatment (5.46 ± 0.87 ng/islet/h) was higher than control (3.17 ± 0.22 ng/islet/h, p < 0.05), and the fractional insulin release was 36% (p < 0.05) lower after the treatment. Meanwhile, the mRNA expression of Gαs, Gαz and Gβ1-2 decreased by 42.8% 19.4% and 24.8%, respectively (p < 0.05). Uncoupling protein 2 (Ucp2), sulphonylurea receptor 1 (Sur1) and superoxide dismutase 2 (Sod2) were significantly reduced (38.5%, 23.8% and 53.8%, p < 0.05). Chronic adrenergic exposure could impair insulin responsiveness in primary pancreatic islets. Decreased G proteins and Sur1 expression affect the regulation of insulin secretion. In conclusion, the sustained under-expression of Ucp2 and Sod2 may further change the function of β-cell, which helps to understand the long-term adrenergic adaptation of pancreatic β-cell.
Collapse
|
17
|
Drzazga A, Kamińska D, Gliszczyńska A, Gendaszewska-Darmach E. Isoprenoid Derivatives of Lysophosphatidylcholines Enhance Insulin and GLP-1 Secretion through Lipid-Binding GPCRs. Int J Mol Sci 2021; 22:5748. [PMID: 34072220 PMCID: PMC8197866 DOI: 10.3390/ijms22115748] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 05/20/2021] [Accepted: 05/25/2021] [Indexed: 12/13/2022] Open
Abstract
Insulin plays a significant role in carbohydrate homeostasis as the blood glucose lowering hormone. Glucose-induced insulin secretion (GSIS) is augmented by glucagon-like peptide (GLP-1), a gastrointestinal peptide released in response to ingesting nutriments. The secretion of insulin and GLP-1 is mediated by the binding of nutrients to G protein-coupled receptors (GPCRs) expressed by pancreatic β-cells and enteroendocrine cells, respectively. Therefore, insulin secretagogues and incretin mimetics currently serve as antidiabetic treatments. This study demonstrates the potency of synthetic isoprenoid derivatives of lysophosphatidylcholines (LPCs) to stimulate GSIS and GLP-1 release. Murine insulinoma cell line (MIN6) and enteroendocrinal L cells (GLUTag) were incubated with LPCs bearing geranic acid (1-GA-LPC), citronellic acid (1-CA-LPC), 3,7-dimethyl-3-vinyloct-6-enoic acid (GERA-LPC), and (E)-3,7,11-trimethyl- 3-vinyldodeca-6,10-dienoic acid (1-FARA-LPC). Respective free terpene acids were also tested for comparison. Besides their insulin- and GLP-1-secreting capabilities, we also investigated the cytotoxicity of tested compounds, the ability to intracellular calcium ion mobilization, and targeted GPCRs involved in maintaining lipid and carbohydrate homeostasis. We observed the high cytotoxicity of 1-GERA-LPC and 1-FARA-LPC in contrast 1-CA-LPC and 1-GA-LPC. Moreover, 1-CA-LPC and 1-GA-LPC demonstrated the stimulatory effect on GSIS and 1-CA-LPC augmented GLP-1 secretion. Insulin and GLP-1 release appeared to be GPR40-, GPR55-, GPR119- and GPR120-dependent.
Collapse
Affiliation(s)
- Anna Drzazga
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 4/10, 90-924 Lodz, Poland; (A.D.); (D.K.)
| | - Daria Kamińska
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 4/10, 90-924 Lodz, Poland; (A.D.); (D.K.)
| | - Anna Gliszczyńska
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Edyta Gendaszewska-Darmach
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 4/10, 90-924 Lodz, Poland; (A.D.); (D.K.)
| |
Collapse
|
18
|
Ruz-Maldonado I, Atanes P, Huang GC, Liu B, Persaud SJ. Direct Stimulatory Effects of the CB 2 Ligand JTE 907 in Human and Mouse Islets. Cells 2021; 10:700. [PMID: 33809893 PMCID: PMC8004177 DOI: 10.3390/cells10030700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/13/2021] [Accepted: 03/19/2021] [Indexed: 11/20/2022] Open
Abstract
AIMS The endocannabinoid system is a complex cell-signaling network through which endogenous cannabinoid ligands regulate cell function by interaction with CB1 and CB2 cannabinoid receptors, and with the novel cannabinoid receptor GPR55. CB1, CB2, and GPR55 are expressed by islet β-cells where they modulate insulin secretion. We have previously shown that administration of the putative CB2 antagonist/inverse agonist JTE 907 to human islets did not affect the insulinotropic actions of CB2 agonists and it unexpectedly stimulated insulin secretion on its own. In this study, we evaluated whether the lack of antagonism could be related to the ability of JTE 907 to act as a GPR55 agonist. MATERIALS AND METHODS We used islets isolated from human donors and from Gpr55+/+ and Gpr55-/- mice and quantified the effects of incubation with 10 μM JTE 907 on dynamic insulin secretion, apoptosis, and β-cell proliferation by radioimmunoassay, luminescence caspase 3/7 activity, and immunofluorescence, respectively. We also measured islet IP1 and cAMP accumulation using fluorescence assays, and monitored [Ca2+]i elevations by Fura-2 single cell microfluorometry. RESULTS JTE 907 significantly stimulated insulin secretion from islets isolated from human donors and islets from Gpr55+/+ and Gpr55-/- mice. These stimulatory effects were accompanied by significant elevations of IP1 and [Ca2+]i, but there were no changes in cAMP generation. JTE 907 also significantly reduced cytokine-induced apoptosis in human and mouse islets and promoted human β-cell proliferation. CONCLUSION Our observations show for the first time that JTE 907 acts as a Gq-coupled agonist in islets to stimulate insulin secretion and maintain β-cell mass in a GPR55-independent fashion.
Collapse
Affiliation(s)
- Inmaculada Ruz-Maldonado
- Department of Diabetes, School of Life Course Sciences, King’s College London, Guy’s Campus, London SE1 1UL, UK; (P.A.); (G.C.H.); (B.L.)
| | | | | | | | - Shanta J Persaud
- Department of Diabetes, School of Life Course Sciences, King’s College London, Guy’s Campus, London SE1 1UL, UK; (P.A.); (G.C.H.); (B.L.)
| |
Collapse
|
19
|
Meister J, Wang L, Pydi SP, Wess J. Chemogenetic approaches to identify metabolically important GPCR signaling pathways: Therapeutic implications. J Neurochem 2021; 158:603-620. [PMID: 33540469 DOI: 10.1111/jnc.15314] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 01/21/2021] [Accepted: 01/29/2021] [Indexed: 12/16/2022]
Abstract
DREADDs (Designer Receptors Exclusively Activated by a Designer Drug) are designer G protein-coupled receptors (GPCRs) that are widely used in the neuroscience field to modulate neuronal activity. In this review, we will focus on DREADD studies carried out with genetically engineered mice aimed at elucidating signaling pathways important for maintaining proper glucose and energy homeostasis. The availability of muscarinic receptor-based DREADDs endowed with selectivity for one of the four major classes of heterotrimeric G proteins (Gs , Gi , Gq , and G12 ) has been instrumental in dissecting the physiological and pathophysiological roles of distinct G protein signaling pathways in metabolically important cell types. The novel insights gained from this work should inform the development of novel classes of drugs useful for the treatment of several metabolic disorders including type 2 diabetes and obesity.
Collapse
Affiliation(s)
- Jaroslawna Meister
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Lei Wang
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Sai P Pydi
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Jürgen Wess
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| |
Collapse
|
20
|
Hussain MA, Laimon-Thomson E, Mustafa SM, Deck A, Song B. Detour Ahead: Incretin Hormone Signaling Alters Its Intracellular Path as β-Cell Failure Progresses During Diabetes. Front Endocrinol (Lausanne) 2021; 12:665345. [PMID: 33935974 PMCID: PMC8082395 DOI: 10.3389/fendo.2021.665345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 03/16/2021] [Indexed: 12/12/2022] Open
Affiliation(s)
- Mehboob A. Hussain
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI, United States
- *Correspondence: Mehboob A. Hussain,
| | - Erinn Laimon-Thomson
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI, United States
| | - Syed M. Mustafa
- College of Literature, Science and Arts, University of Michigan, Ann Arbor, MI, United States
| | - Alexander Deck
- College of Literature, Science and Arts, University of Michigan, Ann Arbor, MI, United States
| | - Banya Song
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
21
|
Interactive associations of the INAFM2 rs67839313 variant and egg consumption with type 2 diabetes mellitus and fasting blood glucose in a Chinese population: A family-based study. Gene 2020; 770:145357. [PMID: 33333222 DOI: 10.1016/j.gene.2020.145357] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/23/2020] [Accepted: 12/01/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND INAFM2 rs67839313 was associated with type 2 diabetes (T2DM) in Japanese populations but not in other populations. We aimed to validate the association of rs67839313 with T2DM and explore interactive associations of INAFM2 rs67839313 and egg consumption with T2DM and fasting blood glucose (FBG) in a Chinese population. METHODS In total, 7175 participants (4202 T2DM cases) from 3980 families were included and categorized into two groups (<4 and ≥4 eggs/week) according to the median egg consumption. Multilevel logistic regression and linear regression models were performed to estimate the genetic associations of rs67839313 with T2DM and FBG, respectively. The crossproduct term between the variant and egg was included in the models for interaction analysis. RESULTS We found that rs67839313_T was associated with an increased risk of T2DM (1.22 [95% CI: 1.17-1.27], P < 0.001). Among individuals with the rs67839313_T genotype, those with egg consumption <4/week (1.37 [1.25-1.51]) had a higher T2DM risk than those with egg consumption ≥4/week (1.17 [1.11-1.23]). A significant interactive effect between rs67839313_T and egg consumption on T2DM risk was identified (P = 0.008). Moreover, among participants without T2DM, rs67839313_T was associated with FBG, with a 0.188 mmol/l increase and a 0.152 mmol/l decrease among those consuming <4 eggs/week and ≥4 eggs/week, respectively. The interaction between rs67839313_T and egg consumption was observed to be significantly associated with FBG (P = 0.003). CONCLUSIONS INAFM2 rs67839313_T was associated with increased T2DM risk and FBG levels in Chinese individuals, and consuming more eggs may eliminate the associated genetic risk. This finding has important implications for understanding the genetic pathogenesis of T2DM and for the precision nutrition management of T2DM.
Collapse
|
22
|
Exploring G Protein-Coupled Receptor Signaling in Primary Pancreatic Islets. Biol Proced Online 2020; 22:4. [PMID: 32082084 PMCID: PMC7023723 DOI: 10.1186/s12575-019-0116-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 12/29/2019] [Indexed: 12/14/2022] Open
Abstract
Background Targeting G protein-coupled receptors (GPCRs) in pancreatic cells is feasible to modulate glucose-induced insulin secretion. Because pancreatic islets consist of several cell types and GPCRs can couple to more than one G-protein family, results obtained in pancreatic cell lines do not always match the response in primary cells or intact islets. Therefore, we set out to establish a protocol to analyze second messenger activation in mouse pancreatic islets. Results Activation of Gq/11-coupled receptor expressed in primary β cells increased the second messenger IP1 in an accumulation assay. Applying a Gq/11 protein inhibitor completely abolished this signal. Activation of the V1 vasopressin and ghrelin receptors, predominantly expressed in the less abundant alpha and delta cells, was not sufficient to induce a significant IP1 increase in this assay. However, fura-2-based fluorescence imaging showed calcium signals upon application of arginine vasopressin or ghrelin within intact pancreatic islets. Using the here established protocol we were also able to determine changes in intracellular cAMP levels induced by receptors coupling to Gs and Gi/o proteins. Conclusions Detection of the second messengers IP1, cAMP, and calcium, can be used to reliably analyze GPCR activation in intact islets.
Collapse
|
23
|
Escala-Garcia M, Abraham J, Andrulis IL, Anton-Culver H, Arndt V, Ashworth A, Auer PL, Auvinen P, Beckmann MW, Beesley J, Behrens S, Benitez J, Bermisheva M, Blomqvist C, Blot W, Bogdanova NV, Bojesen SE, Bolla MK, Børresen-Dale AL, Brauch H, Brenner H, Brucker SY, Burwinkel B, Caldas C, Canzian F, Chang-Claude J, Chanock SJ, Chin SF, Clarke CL, Couch FJ, Cox A, Cross SS, Czene K, Daly MB, Dennis J, Devilee P, Dunn JA, Dunning AM, Dwek M, Earl HM, Eccles DM, Eliassen AH, Ellberg C, Evans DG, Fasching PA, Figueroa J, Flyger H, Gago-Dominguez M, Gapstur SM, García-Closas M, García-Sáenz JA, Gaudet MM, George A, Giles GG, Goldgar DE, González-Neira A, Grip M, Guénel P, Guo Q, Haiman CA, Håkansson N, Hamann U, Harrington PA, Hiller L, Hooning MJ, Hopper JL, Howell A, Huang CS, Huang G, Hunter DJ, Jakubowska A, John EM, Kaaks R, Kapoor PM, Keeman R, Kitahara CM, Koppert LB, Kraft P, Kristensen VN, Lambrechts D, Le Marchand L, Lejbkowicz F, Lindblom A, Lubiński J, Mannermaa A, Manoochehri M, Manoukian S, Margolin S, Martinez ME, Maurer T, Mavroudis D, Meindl A, Milne RL, Mulligan AM, Neuhausen SL, Nevanlinna H, Newman WG, Olshan AF, Olson JE, Olsson H, Orr N, Peterlongo P, Petridis C, Prentice RL, Presneau N, Punie K, Ramachandran D, Rennert G, Romero A, Sachchithananthan M, Saloustros E, Sawyer EJ, Schmutzler RK, Schwentner L, Scott C, Simard J, Sohn C, Southey MC, Swerdlow AJ, Tamimi RM, Tapper WJ, Teixeira MR, Terry MB, Thorne H, Tollenaar RAEM, Tomlinson I, Troester MA, Truong T, Turnbull C, Vachon CM, van der Kolk LE, Wang Q, Winqvist R, Wolk A, Yang XR, Ziogas A, Pharoah PDP, Hall P, Wessels LFA, Chenevix-Trench G, Bader GD, Dörk T, Easton DF, Canisius S, Schmidt MK. A network analysis to identify mediators of germline-driven differences in breast cancer prognosis. Nat Commun 2020; 11:312. [PMID: 31949161 PMCID: PMC6965101 DOI: 10.1038/s41467-019-14100-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 12/17/2019] [Indexed: 11/09/2022] Open
Abstract
Identifying the underlying genetic drivers of the heritability of breast cancer prognosis remains elusive. We adapt a network-based approach to handle underpowered complex datasets to provide new insights into the potential function of germline variants in breast cancer prognosis. This network-based analysis studies ~7.3 million variants in 84,457 breast cancer patients in relation to breast cancer survival and confirms the results on 12,381 independent patients. Aggregating the prognostic effects of genetic variants across multiple genes, we identify four gene modules associated with survival in estrogen receptor (ER)-negative and one in ER-positive disease. The modules show biological enrichment for cancer-related processes such as G-alpha signaling, circadian clock, angiogenesis, and Rho-GTPases in apoptosis.
Collapse
Affiliation(s)
- Maria Escala-Garcia
- Division of Molecular Pathology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Jean Abraham
- Department of Oncology, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
- Cambridge Experimental Cancer Medicine Centre, Cambridge, UK
- Cambridge Breast Unit and NIHR Cambridge Biomedical Research Centre, University of Cambridge NHS Foundation Hospitals, Cambridge, UK
| | - Irene L Andrulis
- Fred A. Litwin Center for Cancer Genetics, Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Hoda Anton-Culver
- Department of Epidemiology, Genetic Epidemiology Research Institute, University of California Irvine, Irvine, CA, USA
| | - Volker Arndt
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Alan Ashworth
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Paul L Auer
- Cancer Prevention Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Päivi Auvinen
- Cancer Center, Kuopio University Hospital, Kuopio, Finland
- Institute of Clinical Medicine, Oncology, University of Eastern Finland, Kuopio, Finland
- Translational Cancer Research Area, University of Eastern Finland, Kuopio, Finland
| | - Matthias W Beckmann
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center ER-EMN, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Jonathan Beesley
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Sabine Behrens
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Javier Benitez
- Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Biomedical Network on Rare Diseases (CIBERER), Madrid, Spain
| | - Marina Bermisheva
- Institute of Biochemistry and Genetics, Ufa Scientific Center of Russian Academy of Sciences, Ufa, Russia
| | - Carl Blomqvist
- Department of Oncology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
- Department of Oncology, Örebro University Hospital, Örebro, Sweden
| | - William Blot
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
- International Epidemiology Institute, Rockville, MD, USA
| | - Natalia V Bogdanova
- Department of Radiation Oncology, Hannover Medical School, Hannover, Germany
- Gynaecology Research Unit, Hannover Medical School, Hannover, Germany
- N.N. Alexandrov Research Institute of Oncology and Medical Radiology, Minsk, Belarus
| | - Stig E Bojesen
- Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Manjeet K Bolla
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
| | - Anne-Lise Børresen-Dale
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital-Radiumhospitalet, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Hiltrud Brauch
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany
- iFIT-Cluster of Excellence, University of Tuebingen, Tuebingen, Germany
- German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Sara Y Brucker
- Department of Gynecology and Obstetrics, University of Tübingen, Tübingen, Germany
| | - Barbara Burwinkel
- Molecular Epidemiology Group, C080, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Molecular Biology of Breast Cancer, University Womens Clinic Heidelberg, University of Heidelberg, Heidelberg, Germany
| | - Carlos Caldas
- Cancer Research UK Cambridge Institute, Department of Oncology, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
- Breast Cancer Programme, CRUK Cambridge Cancer Centre and NIHR Biomedical Research Centre, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Federico Canzian
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Cancer Epidemiology Group, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Suet-Feung Chin
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Christine L Clarke
- Westmead Institute for Medical Research, University of Sydney, Sydney, NSW, Australia
| | - Fergus J Couch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Angela Cox
- Department of Oncology and Metabolism, Sheffield Institute for Nucleic Acids (SInFoNiA), University of Sheffield, Sheffield, UK
| | - Simon S Cross
- Academic Unit of Pathology, Department of Neuroscience, University of Sheffield, Sheffield, UK
| | - Kamila Czene
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Mary B Daly
- Department of Clinical Genetics, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Joe Dennis
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
| | - Peter Devilee
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Janet A Dunn
- Warwick Clinical Trials Unit, University of Warwick, Coventry, UK
| | - Alison M Dunning
- Department of Oncology, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
| | - Miriam Dwek
- Department of Biomedical Sciences, Faculty of Science and Technology, University of Westminster, London, UK
| | - Helena M Earl
- Cambridge Breast Unit and NIHR Cambridge Biomedical Research Centre, University of Cambridge NHS Foundation Hospitals, Cambridge, UK
- Department of Oncology, University of Cambridge, Cambridge, UK
| | - Diana M Eccles
- Cancer Sciences Academic Unit, Faculty of Medicine, University of Southampton, Southampton, UK
| | - A Heather Eliassen
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Carolina Ellberg
- Department of Cancer Epidemiology, Clinical Sciences, Lund University, Lund, Sweden
| | - D Gareth Evans
- Division of Evolution and Genomic Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
- Genomic Medicine, St Mary's Hospital, Manchester Centre for Genomic Medicine, Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
- NIHR Manchester Biomedical Research Centre, Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, Manchester, UK
| | - Peter A Fasching
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center ER-EMN, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
- Division of Hematology and Oncology, Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
| | - Jonine Figueroa
- Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Usher Institute of Population Health Sciences and Informatics, The University of Edinburgh Medical School, Edinburgh, UK
- Cancer Research UK Edinburgh Centre, Edinburgh, UK
| | - Henrik Flyger
- Department of Breast Surgery, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
| | - Manuela Gago-Dominguez
- Genomic Medicine Group, Galician Foundation of Genomic Medicine, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago, SERGAS, Santiago de Compostela, Spain
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Susan M Gapstur
- Epidemiology Research Program, American Cancer Society, Atlanta, GA, USA
| | - Montserrat García-Closas
- Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK
| | - José A García-Sáenz
- Medical Oncology Department, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), Centro Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Mia M Gaudet
- Epidemiology Research Program, American Cancer Society, Atlanta, GA, USA
| | - Angela George
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Graham G Giles
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - David E Goldgar
- Department of Dermatology, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Anna González-Neira
- Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Mervi Grip
- Department of Surgery, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Pascal Guénel
- Cancer & Environment Group, Center for Research in Epidemiology and Population Health (CESP), University Paris-Saclay, INSERM, University Paris-Sud, Villejuif, France
| | - Qi Guo
- Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Christopher A Haiman
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Niclas Håkansson
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ute Hamann
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Patricia A Harrington
- Department of Oncology, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
| | - Louise Hiller
- Warwick Clinical Trials Unit, University of Warwick, Coventry, UK
| | - Maartje J Hooning
- Department of Medical Oncology, Family Cancer Clinic, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - John L Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Anthony Howell
- Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - Chiun-Sheng Huang
- Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Guanmengqian Huang
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - David J Hunter
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Program in Genetic Epidemiology and Statistical Genetics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Anna Jakubowska
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
- Independent Laboratory of Molecular Biology and Genetic Diagnostics, Pomeranian Medical University, Szczecin, Poland
| | - Esther M John
- Division of Oncology, Department of Medicine, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Rudolf Kaaks
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Pooja Middha Kapoor
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Medicine, University of Heidelberg, Heidelberg, Germany
| | - Renske Keeman
- Division of Molecular Pathology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Cari M Kitahara
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Linetta B Koppert
- Department of Surgical Oncology, Family Cancer Clinic, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Peter Kraft
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Program in Genetic Epidemiology and Statistical Genetics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Vessela N Kristensen
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital-Radiumhospitalet, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Diether Lambrechts
- VIB, VIB Center for Cancer Biology, Leuven, Belgium
- Laboratory for Translational Genetics, Department of Human Genetics, University of Leuven, Leuven, Belgium
| | - Loic Le Marchand
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Flavio Lejbkowicz
- Carmel Medical Center and Technion Faculty of Medicine, Clalit National Cancer Control Center, Haifa, Israel
| | - Annika Lindblom
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Jan Lubiński
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Arto Mannermaa
- Translational Cancer Research Area, University of Eastern Finland, Kuopio, Finland
- Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, Kuopio, Finland
- Department of Clinical Pathology, Imaging Center, Kuopio University Hospital, Kuopio, Finland
| | - Mehdi Manoochehri
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Siranoush Manoukian
- Unit of Medical Genetics, Department of Medical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano (INT), Milan, Italy
| | - Sara Margolin
- Department of Oncology, Sšdersjukhuset, Stockholm, Sweden
- Department of Clinical Science and Education, Sšdersjukhuset, Karolinska Institutet, Stockholm, Sweden
| | - Maria Elena Martinez
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
- Department of Family Medicine and Public Health, University of California San Diego, La Jolla, CA, USA
| | - Tabea Maurer
- Cancer Epidemiology Group, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dimitrios Mavroudis
- Department of Medical Oncology, University Hospital of Heraklion, Heraklion, Greece
| | - Alfons Meindl
- Department of Gynecology and Obstetrics, Ludwig Maximilian University of Munich, Munich, Germany
| | - Roger L Milne
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
| | - Anna Marie Mulligan
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Laboratory Medicine Program, University Health Network, Toronto, ON, Canada
| | - Susan L Neuhausen
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Heli Nevanlinna
- Department of Obstetrics and Gynecology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - William G Newman
- Division of Evolution and Genomic Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
- Genomic Medicine, St Mary's Hospital, Manchester Centre for Genomic Medicine, Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Andrew F Olshan
- Department of Epidemiology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Janet E Olson
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Håkan Olsson
- Department of Cancer Epidemiology, Clinical Sciences, Lund University, Lund, Sweden
| | - Nick Orr
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, Ireland, UK
| | - Paolo Peterlongo
- Genome Diagnostics Program, IFOM - the FIRC (Italian Foundation for Cancer Research) Institute of Molecular Oncology, Milan, Italy
| | - Christos Petridis
- Research Oncology, Guy's Hospital, King's College London, London, UK
| | - Ross L Prentice
- Cancer Prevention Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Nadege Presneau
- Department of Biomedical Sciences, Faculty of Science and Technology, University of Westminster, London, UK
| | - Kevin Punie
- Department of Oncology, Leuven Multidisciplinary Breast Center, Leuven Cancer Institute, University Hospitals Leuven, Leuven, Belgium
| | | | - Gad Rennert
- Carmel Medical Center and Technion Faculty of Medicine, Clalit National Cancer Control Center, Haifa, Israel
| | - Atocha Romero
- Medical Oncology Department, Hospital Universitario Puerta de Hierro, Madrid, Spain
| | | | | | - Elinor J Sawyer
- Research Oncology, Guy's Hospital, King's College London, London, UK
| | - Rita K Schmutzler
- Center for Hereditary Breast and Ovarian Cancer, University Hospital of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Lukas Schwentner
- Department of Gynaecology and Obstetrics, University Hospital Ulm, Ulm, Germany
| | - Christopher Scott
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Jacques Simard
- Genomics Center, Research Center, Centre Hospitalier Universitaire de Québec - Université Laval, Québec City, QC, Canada
| | - Christof Sohn
- National Center for Tumor Diseases, University of Heidelberg, Heidelberg, Germany
| | - Melissa C Southey
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
- Department of Clinical Pathology, The University of Melbourne, Melbourne, VIC, Australia
| | - Anthony J Swerdlow
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
- Division of Breast Cancer Research, The Institute of Cancer Research, London, UK
| | - Rulla M Tamimi
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Program in Genetic Epidemiology and Statistical Genetics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | - Manuel R Teixeira
- Department of Genetics, Portuguese Oncology Institute, Porto, Portugal
- Biomedical Sciences Institute (ICBAS), University of Porto, Porto, Portugal
| | - Mary Beth Terry
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Heather Thorne
- Peter MacCallum Cancer Center, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
| | - Rob A E M Tollenaar
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Ian Tomlinson
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
- Wellcome Trust Centre for Human Genetics and Oxford NIHR Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Melissa A Troester
- Department of Epidemiology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Thérèse Truong
- Cancer & Environment Group, Center for Research in Epidemiology and Population Health (CESP), University Paris-Saclay, INSERM, University Paris-Sud, Villejuif, France
| | - Clare Turnbull
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Celine M Vachon
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Lizet E van der Kolk
- Family Cancer Clinic, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Qin Wang
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
| | - Robert Winqvist
- Biocenter Oulu, Cancer and Translational Medicine Research Unit, Laboratory of Cancer Genetics and Tumor Biology, University of Oulu, Oulu, Finland
- Laboratory of Cancer Genetics and Tumor Biology, Northern Finland Laboratory Centre Oulu, Oulu, Finland
| | - Alicja Wolk
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Xiaohong R Yang
- Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Argyrios Ziogas
- Department of Epidemiology, Genetic Epidemiology Research Institute, University of California Irvine, Irvine, CA, USA
| | - Paul D P Pharoah
- Department of Oncology, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
| | - Per Hall
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Oncology, Sšdersjukhuset, Stockholm, Sweden
| | - Lodewyk F A Wessels
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
- Faculty of EEMCS, Delft University of Technology, Delft, The Netherlands
| | - Georgia Chenevix-Trench
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Gary D Bader
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Thilo Dörk
- Gynaecology Research Unit, Hannover Medical School, Hannover, Germany
| | - Douglas F Easton
- Department of Oncology, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
| | - Sander Canisius
- Division of Molecular Pathology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands.
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands.
| | - Marjanka K Schmidt
- Division of Molecular Pathology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands.
- Division of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands.
| |
Collapse
|
24
|
Gupta MK, Vasudevan NT. GPCRs and Insulin Receptor Signaling in Conversation: Novel Avenues for Drug Discovery. Curr Top Med Chem 2019; 19:1436-1444. [PMID: 31512997 DOI: 10.2174/1568026619666190712211642] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/17/2019] [Accepted: 01/24/2019] [Indexed: 01/02/2023]
Abstract
Type 2 diabetes is a major health issue worldwide with complex metabolic and endocrine abnormalities. Hyperglycemia, defects in insulin secretion and insulin resistance are classic features of type 2 diabetes. Insulin signaling regulates metabolic homeostasis by regulating glucose and lipid turnover in the liver, skeletal muscle and adipose tissue. Major treatment modalities for diabetes include the drugs from the class of sulfonyl urea, Insulin, GLP-1 agonists, SGLT2 inhibitors, DPP-IV inhibitors and Thiazolidinediones. Emerging antidiabetic therapeutics also include classes of drugs targeting GPCRs in the liver, adipose tissue and skeletal muscle. Interestingly, recent research highlights several shared intermediates between insulin and GPCR signaling cascades opening potential novel avenues for diabetic drug discovery.
Collapse
Affiliation(s)
- Manveen K Gupta
- Department of Molecular Cardiology, Cleveland Clinic, Cleveland, Ohio 44106, United States
| | | |
Collapse
|
25
|
Hwang HJ, Yang YR, Kim HY, Choi Y, Park KS, Lee H, Ma JS, Yamamoto M, Kim J, Chae YC, Choi JH, Cocco L, Berggren PO, Jang HJ, Suh PG. Phospholipase C‐β1 potentiates glucose‐stimulated insulin secretion. FASEB J 2019; 33:10668-10679. [DOI: 10.1096/fj.201802732rr] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Hyeon-Jeong Hwang
- School of Life SciencesUlsan National Institute of Science and TechnologyUlsanSouth Korea
| | - Yong Ryoul Yang
- Aging Research CenterKorea Research Institute of Bioscience and BiotechnologyDaejeonSouth Korea
| | - Hye Yun Kim
- School of Life SciencesUlsan National Institute of Science and TechnologyUlsanSouth Korea
| | - Yoonji Choi
- School of Life SciencesUlsan National Institute of Science and TechnologyUlsanSouth Korea
| | - Kyoung-Su Park
- School of Life SciencesUlsan National Institute of Science and TechnologyUlsanSouth Korea
| | - Ho Lee
- Cancer Experimental Resources BranchNational Cancer CenterGoyang-siSouth Korea
| | - Ji Su Ma
- Department of ImmunoparasitologyResearch Institute for Microbial DiseasesOsaka UniversitySuitaJapan
| | - Masahiro Yamamoto
- Department of ImmunoparasitologyResearch Institute for Microbial DiseasesOsaka UniversitySuitaJapan
| | - Jaeyoon Kim
- Department of Molecular Medicine and SurgeryThe Rolf Luft Research Center for Diabetes and EndocrinologyKarolinska InstitutetStockholmSweden
- Division of Integrative Biosciences and BiotechnologyPohang University of Science and TechnologyPohangSouth Korea
| | - Young Chan Chae
- School of Life SciencesUlsan National Institute of Science and TechnologyUlsanSouth Korea
| | - Jang Hyun Choi
- School of Life SciencesUlsan National Institute of Science and TechnologyUlsanSouth Korea
- Korea Mouse Phenotyping CenterUlsan National Institute of Science and TechnologyUlsanSouth Korea
| | - Lucio Cocco
- Department of Biomedical SciencesSignalling LaboratoryUniversity of BolognaBolognaItaly
| | - Per-Olof Berggren
- Department of Molecular Medicine and SurgeryThe Rolf Luft Research Center for Diabetes and EndocrinologyKarolinska InstitutetStockholmSweden
- Division of Integrative Biosciences and BiotechnologyPohang University of Science and TechnologyPohangSouth Korea
| | - Hyun-Jun Jang
- School of Life SciencesUlsan National Institute of Science and TechnologyUlsanSouth Korea
| | - Pann-Ghill Suh
- School of Life SciencesUlsan National Institute of Science and TechnologyUlsanSouth Korea
| |
Collapse
|
26
|
Rorsman P, Ashcroft FM. Pancreatic β-Cell Electrical Activity and Insulin Secretion: Of Mice and Men. Physiol Rev 2018; 98:117-214. [PMID: 29212789 PMCID: PMC5866358 DOI: 10.1152/physrev.00008.2017] [Citation(s) in RCA: 504] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 05/30/2017] [Accepted: 06/18/2017] [Indexed: 12/14/2022] Open
Abstract
The pancreatic β-cell plays a key role in glucose homeostasis by secreting insulin, the only hormone capable of lowering the blood glucose concentration. Impaired insulin secretion results in the chronic hyperglycemia that characterizes type 2 diabetes (T2DM), which currently afflicts >450 million people worldwide. The healthy β-cell acts as a glucose sensor matching its output to the circulating glucose concentration. It does so via metabolically induced changes in electrical activity, which culminate in an increase in the cytoplasmic Ca2+ concentration and initiation of Ca2+-dependent exocytosis of insulin-containing secretory granules. Here, we review recent advances in our understanding of the β-cell transcriptome, electrical activity, and insulin exocytosis. We highlight salient differences between mouse and human β-cells, provide models of how the different ion channels contribute to their electrical activity and insulin secretion, and conclude by discussing how these processes become perturbed in T2DM.
Collapse
Affiliation(s)
- Patrik Rorsman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, United Kingdom; Department of Neuroscience and Physiology, Metabolic Research Unit, Göteborg, Sweden; and Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Frances M Ashcroft
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, United Kingdom; Department of Neuroscience and Physiology, Metabolic Research Unit, Göteborg, Sweden; and Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
27
|
Nishimura A, Sunggip C, Oda S, Numaga-Tomita T, Tsuda M, Nishida M. Purinergic P2Y receptors: Molecular diversity and implications for treatment of cardiovascular diseases. Pharmacol Ther 2017. [DOI: 10.1016/j.pharmthera.2017.06.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
28
|
Toti KS, Jain S, Ciancetta A, Balasubramanian R, Chakraborty S, Surujdin R, Shi ZD, Jacobson KA. Pyrimidine Nucleotides Containing a (S)-Methanocarba Ring as P2Y 6 Receptor Agonists. MEDCHEMCOMM 2017; 8:1897-1908. [PMID: 29423136 DOI: 10.1039/c7md00397h] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Both agonists and antagonists of the UDP-activated P2Y6 receptor (P2Y6R) have been proposed for therapeutic use, in conditions such as cancer, inflammation, neurodegeneration and diabetes. Uracil nucleotides containing a South-bicyclo[3.1.0]hexane ((S)-methanocarba) ring system in place of the ribose ring were synthesized and shown to be potent P2Y6R agonists in a calcium mobilization assay. The (S)-methanocarba modification was compatible with either a 5-iodo or 4-methoxyimino group on the pyrimidine, but not with a α,β-methylene 5´-diphosphate. (S)-Methanocarba dinucleotide potency was compatible with a N4-methoxy modification on the proximal nucleoside that is assumed to bind at the P2Y6R similarly to UDP; (N)-methanocarba was preferred on the distal nucleoside moiety. This suggests that the distal dinucleotide P2Y6R binding site prefers a ribose-like group that can attain a (N) conformation, rather than (S). Dinucleotide binding was modeled by homology modeling, docking and molecular dynamics simulations, which suggested the same ribose conformational preferences found empirically.
Collapse
Affiliation(s)
- Kiran S Toti
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| | - Shanu Jain
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| | - Antonella Ciancetta
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| | - Ramachandran Balasubramanian
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| | - Saibal Chakraborty
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| | - Ryan Surujdin
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| | - Zhen-Dan Shi
- Imaging Probe Development Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, MD 20850 USA
| | - Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| |
Collapse
|
29
|
Regulator of G protein signaling 2 is a key regulator of pancreatic β-cell mass and function. Cell Death Dis 2017; 8:e2821. [PMID: 28542139 PMCID: PMC5520679 DOI: 10.1038/cddis.2016.216] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 06/02/2016] [Accepted: 06/07/2016] [Indexed: 12/29/2022]
Abstract
Pancreatic β-cell death and dysfunction contributes to the pathogenesis of both type 1 and type 2 diabetes. We aimed to examine whether the regulator of G protein signaling protein 2 (RGS2), a multifunctional inhibitor of G protein-coupled receptor (GPCR) signaling, impacts β-cell death and function. Metabolic phenotypes, β-cell secretory function, and glucose and insulin tolerance were measured in RGS2 knockout (RGS2−/−) mice and their wild-type (RGS2+/+) littermate controls. β-Cell death was evaluated in RGS2-knockdown and -overexpressing β cells and RGS2−/− islets by flow cytometry, western blot, ELISA, TUNEL staining, and apoptosis RT2 profiler PCR array analysis. β-Cell mass was evaluated in pancreases from RGS2−/− and RGS2+/+ mice at 1 day, 4 weeks, and 25 weeks of age. Our data show that RGS2−/− islets secreted more insulin than RGS2+/+ islets when challenged with glucose or exendin-4. RGS2-knockdown cells are susceptible to hypoxia induced cell death while RGS2-overexpressing cells are protected from cell death. Depletion of RGS2 in islets alters expression of apoptosis-related genes and RGS2−/− islets are prone to apoptosis compared with RGS2+/+ islets. Ultimately, excessive insulin secretion and increased β-cell apoptosis contributed to a 70% reduction in pancreatic β-cell mass in RGS2−/− mice compared with RGS2+/+ mice at 25 weeks of age. RGS2 has critical roles in maintaining pancreatic β-cell mass via modulating β-cell function and apoptosis. It may serve as a druggable target to help prevent pancreatic β-cell loss in the treatment of diabetes.
Collapse
|
30
|
Neuman JC, Fenske RJ, Kimple ME. Dietary polyunsaturated fatty acids and their metabolites: Implications for diabetes pathophysiology, prevention, and treatment. NUTRITION AND HEALTHY AGING 2017; 4:127-140. [PMID: 28447067 PMCID: PMC5391679 DOI: 10.3233/nha-160004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2023]
Affiliation(s)
- Joshua C. Neuman
- Interdisciplinary Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
- Research Service, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Rachel J. Fenske
- Interdisciplinary Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
- Research Service, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Michelle E. Kimple
- Interdisciplinary Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
- Department of Medicine, Division of Endocrinology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- Research Service, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| |
Collapse
|
31
|
Gao J, Bai T, Ren L, Ding Y, Zhong X, Wang H, Guo Y, Li J, Liu Y, Zhang Y. The PLC/PKC/Ras/MEK/Kv channel pathway is involved in uncarboxylated osteocalcin-regulated insulin secretion in rats. Peptides 2016; 86:72-79. [PMID: 27746193 DOI: 10.1016/j.peptides.2016.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 09/22/2016] [Accepted: 10/10/2016] [Indexed: 12/11/2022]
Abstract
Uncarboxylated osteocalcin, a bone matrix protein, has been proposed to regulate glucose metabolism by increasing insulin secretion, improving insulin sensitivity and stimulating β cell proliferation. Our previous study also indicated that uncarboxylated osteocalcin stimulates insulin secretion by inhibiting voltage-gated potassium (KV) channels. The goal of this study is to further investigate the underlying mechanisms for the regulation of Kv channels and insulin secretion by uncarboxylated osteocalcin. Insulin secretion and Kv channel currents were examined by radioimmunoassay and patch-clamp technique, respectively. Calcium imaging system was applied to measure intracellular Ca2+ concentration ([Ca2+]i). The protein levels were detected by western blot. The results showed that uncarboxylated osteocalcin potentiated insulin secretion, inhibited Kv channels and increased [Ca2+]i compared to control. These effects were suppressed by phospholipase-C (PLC)/protein kinase C (PKC)/Ras/MAPK-ERK kinase (MEK) signaling pathway, indicating that this signaling pathway plays an important role in uncarboxylated osteocalcin-regulated insulinotropic effect. In addition, the results also showed that adenylyl cyclase (AC) did not influence the effect of uncarboxylated osteocalcin on insulin secretion and Kv channels, suggesting that AC is not involved in uncarboxylated osteocalcin-stimulated insulin secretion. These findings provide new insight into the mechanism of uncarboxylated osteocalcin-regulated insulin secretion.
Collapse
Affiliation(s)
- Jingying Gao
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China; Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China; Department of Pediatrics, Shanxi Medical University, Taiyuan, China
| | - Tao Bai
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China; Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China; Department of Endocrinology, the First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, China
| | - Lele Ren
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Yaqin Ding
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Xiangqin Zhong
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Hui Wang
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Yangyan Guo
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Jie Li
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Yunfeng Liu
- Department of Endocrinology, the First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, China.
| | - Yi Zhang
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China; Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
32
|
Vivot K, Moullé VS, Zarrouki B, Tremblay C, Mancini AD, Maachi H, Ghislain J, Poitout V. The regulator of G-protein signaling RGS16 promotes insulin secretion and β-cell proliferation in rodent and human islets. Mol Metab 2016; 5:988-996. [PMID: 27689011 PMCID: PMC5034687 DOI: 10.1016/j.molmet.2016.08.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 08/12/2016] [Accepted: 08/16/2016] [Indexed: 01/04/2023] Open
Abstract
Objective G protein-coupled receptor (GPCR) signaling regulates insulin secretion and pancreatic β cell-proliferation. While much knowledge has been gained regarding how GPCRs are activated in β cells, less is known about the mechanisms controlling their deactivation. In many cell types, termination of GPCR signaling is controlled by the family of Regulators of G-protein Signaling (RGS). RGS proteins are expressed in most eukaryotic cells and ensure a timely return to the GPCR inactive state upon removal of the stimulus. The aims of this study were i) to determine if RGS16, the most highly enriched RGS protein in β cells, regulates insulin secretion and β-cell proliferation and, if so, ii) to elucidate the mechanisms underlying such effects. Methods Mouse and human islets were infected with recombinant adenoviruses expressing shRNA or cDNA sequences to knock-down or overexpress RGS16, respectively. 60 h post-infection, insulin secretion and cAMP levels were measured in static incubations in the presence of glucose and various secretagogues. β-cell proliferation was measured in infected islets after 72 h in the presence of 16.7 mM glucose ± somatostatin and various inhibitors. Results RGS16 mRNA levels are strongly up-regulated in islets of Langerhans under hyperglycemic conditions in vivo and ex vivo. RGS16 overexpression stimulated glucose-induced insulin secretion in isolated mouse and human islets while, conversely, insulin secretion was impaired following RGS16 knock-down. Insulin secretion was no longer affected by RGS16 knock-down when islets were pre-treated with pertussis toxin to inactivate Gαi/o proteins, or in the presence of a somatostatin receptor antagonist. RGS16 overexpression increased intracellular cAMP levels, and its effects were blocked by an adenylyl cyclase inhibitor. Finally, RGS16 overexpression prevented the inhibitory effect of somatostatin on insulin secretion and β-cell proliferation. Conclusions Our results identify RGS16 as a novel regulator of β-cell function that coordinately controls insulin secretion and proliferation by limiting the tonic inhibitory signal exerted by δ-cell-derived somatostatin in islets. RGS16 is up-regulated under hyperglycemic conditions in islets. RGS16 is a key regulator of insulin secretion and β-cell proliferation. RGS16 attenuates Gαi/o protein activity downstream of δ-cell derived SST.
Collapse
Affiliation(s)
- Kevin Vivot
- Montreal Diabetes Research Center, CRCHUM, Montréal, QC, H2X 0A9, Canada
| | - Valentine S Moullé
- Montreal Diabetes Research Center, CRCHUM, Montréal, QC, H2X 0A9, Canada
| | - Bader Zarrouki
- Montreal Diabetes Research Center, CRCHUM, Montréal, QC, H2X 0A9, Canada
| | - Caroline Tremblay
- Montreal Diabetes Research Center, CRCHUM, Montréal, QC, H2X 0A9, Canada
| | - Arturo D Mancini
- Montreal Diabetes Research Center, CRCHUM, Montréal, QC, H2X 0A9, Canada
| | - Hasna Maachi
- Montreal Diabetes Research Center, CRCHUM, Montréal, QC, H2X 0A9, Canada; Department of Pharmacology, Université de Montréal, Montréal, QC, H3T 1J4, Canada
| | - Julien Ghislain
- Montreal Diabetes Research Center, CRCHUM, Montréal, QC, H2X 0A9, Canada
| | - Vincent Poitout
- Montreal Diabetes Research Center, CRCHUM, Montréal, QC, H2X 0A9, Canada; Department of Pharmacology, Université de Montréal, Montréal, QC, H3T 1J4, Canada; Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC, H3T 1J4, Canada; Department of Medicine, Université de Montréal, Montréal, QC, H3T 1J4, Canada.
| |
Collapse
|
33
|
Pancreatic Beta Cell G-Protein Coupled Receptors and Second Messenger Interactions: A Systems Biology Computational Analysis. PLoS One 2016; 11:e0152869. [PMID: 27138453 PMCID: PMC4854486 DOI: 10.1371/journal.pone.0152869] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 03/21/2016] [Indexed: 12/17/2022] Open
Abstract
Insulin secretory in pancreatic beta-cells responses to nutrient stimuli and hormonal modulators include multiple messengers and signaling pathways with complex interdependencies. Here we present a computational model that incorporates recent data on glucose metabolism, plasma membrane potential, G-protein-coupled-receptors (GPCR), cytoplasmic and endoplasmic reticulum calcium dynamics, cAMP and phospholipase C pathways that regulate interactions between second messengers in pancreatic beta-cells. The values of key model parameters were inferred from published experimental data. The model gives a reasonable fit to important aspects of experimentally measured metabolic and second messenger concentrations and provides a framework for analyzing the role of metabolic, hormones and neurotransmitters changes on insulin secretion. Our analysis of the dynamic data provides support for the hypothesis that activation of Ca2+-dependent adenylyl cyclases play a critical role in modulating the effects of glucagon-like peptide 1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP) and catecholamines. The regulatory properties of adenylyl cyclase isoforms determine fluctuations in cytoplasmic cAMP concentration and reveal a synergistic action of glucose, GLP-1 and GIP on insulin secretion. On the other hand, the regulatory properties of phospholipase C isoforms determine the interaction of glucose, acetylcholine and free fatty acids (FFA) (that act through the FFA receptors) on insulin secretion. We found that a combination of GPCR agonists activating different messenger pathways can stimulate insulin secretion more effectively than a combination of GPCR agonists for a single pathway. This analysis also suggests that the activators of GLP-1, GIP and FFA receptors may have a relatively low risk of hypoglycemia in fasting conditions whereas an activator of muscarinic receptors can increase this risk. This computational analysis demonstrates that study of second messenger pathway interactions will improve understanding of critical regulatory sites, how different GPCRs interact and pharmacological targets for modulating insulin secretion in type 2 diabetes.
Collapse
|
34
|
Sakuma K, Yabuki C, Maruyama M, Abiru A, Komatsu H, Negoro N, Tsujihata Y, Takeuchi K, Habata Y, Mori M. Fasiglifam (TAK-875) has dual potentiating mechanisms via Gαq-GPR40/FFAR1 signaling branches on glucose-dependent insulin secretion. Pharmacol Res Perspect 2016; 4:e00237. [PMID: 27433346 PMCID: PMC4876146 DOI: 10.1002/prp2.237] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 03/30/2016] [Indexed: 01/25/2023] Open
Abstract
Fasiglifam (TAK‐875) is a free fatty acid receptor 1 (FFAR1)/G‐protein–coupled receptor 40 (GPR40) agonist that improves glycemic control in type 2 diabetes with minimum risk of hypoglycemia. Fasiglifam potentiates glucose‐stimulated insulin secretion (GSIS) from pancreatic β‐cells glucose dependently, although the precise mechanism underlying the glucose dependency still remains unknown. Here, we investigated key cross‐talk between the GSIS pathway and FFAR1 signaling, and Ca2+ dynamics using mouse insulinoma MIN6 cells. We demonstrated that the glucose‐dependent insulinotropic effect of fasiglifam required membrane depolarization and that fasiglifam induced a glucose‐dependent increase in intracellular Ca2+ level and amplification of Ca2+ oscillations. This differed from the sulfonylurea glimepiride that induced changes in Ca2+ dynamics glucose independently. Stimulation with cell‐permeable analogs of IP3 or diacylglycerol (DAG), downstream second messengers of Gαq‐FFAR1, augmented GSIS similar to fasiglifam, indicating their individual roles in the potentiation of GSIS pathway. Intriguingly, the IP3 analog triggered similar Ca2+ dynamics to fasiglifam, whereas the DAG analog had no effect. Despite the lack of an effect on Ca2+ dynamics, the DAG analog elicited synergistic effects on insulin secretion with Ca2+ influx evoked by an L‐type voltage‐dependent calcium channel opener that mimics glucose‐dependent Ca2+ dynamics. These results indicate that the Gαq signaling activated by fasiglifam enhances GSIS pathway via dual potentiating mechanisms in which IP3 amplifies glucose‐induced Ca2+ oscillations and DAG/protein kinase C (PKC) augments downstream secretory mechanisms independent of Ca2+ oscillations.
Collapse
Affiliation(s)
- Kensuke Sakuma
- Cardiovascular and Metabolic Drug Discovery Unit Pharmaceutical Research Division Takeda Pharmaceutical Company Limited Fujisawa Kanagawa Japan
| | - Chiori Yabuki
- Cardiovascular and Metabolic Drug Discovery Unit Pharmaceutical Research Division Takeda Pharmaceutical Company Limited Fujisawa Kanagawa Japan
| | - Minoru Maruyama
- Cardiovascular and Metabolic Drug Discovery Unit Pharmaceutical Research Division Takeda Pharmaceutical Company Limited Fujisawa Kanagawa Japan
| | - Akiko Abiru
- Cardiovascular and Metabolic Drug Discovery Unit Pharmaceutical Research Division Takeda Pharmaceutical Company Limited Fujisawa Kanagawa Japan
| | - Hidetoshi Komatsu
- Central Nervous System Drug Discovery Unit Pharmaceutical Research Division Takeda Pharmaceutical Company Limited Fujisawa Kanagawa Japan
| | - Nobuyuki Negoro
- Inflammation Drug Discovery Unit Pharmaceutical Research Division Takeda Pharmaceutical Company Limited Fujisawa Kanagawa Japan
| | - Yoshiyuki Tsujihata
- Cardiovascular and Metabolic Drug Discovery Unit Pharmaceutical Research Division Takeda Pharmaceutical Company Limited Fujisawa Kanagawa Japan
| | - Koji Takeuchi
- Cardiovascular and Metabolic Drug Discovery Unit Pharmaceutical Research Division Takeda Pharmaceutical Company Limited Fujisawa Kanagawa Japan
| | - Yugo Habata
- Cardiovascular and Metabolic Drug Discovery Unit Pharmaceutical Research Division Takeda Pharmaceutical Company Limited Fujisawa Kanagawa Japan
| | - Masaaki Mori
- Cardiovascular and Metabolic Drug Discovery Unit Pharmaceutical Research Division Takeda Pharmaceutical Company Limited Fujisawa Kanagawa Japan
| |
Collapse
|
35
|
Wang J, Carrillo JJ, Lin HV. GPR142 Agonists Stimulate Glucose-Dependent Insulin Secretion via Gq-Dependent Signaling. PLoS One 2016; 11:e0154452. [PMID: 27104960 PMCID: PMC4841597 DOI: 10.1371/journal.pone.0154452] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 04/13/2016] [Indexed: 12/30/2022] Open
Abstract
GPR142 is an islet-enriched G protein-coupled receptor that has been investigated as a novel therapeutic target for the treatment of type 2 diabetes by virtue of its insulin secretagogue activity. However, the signaling pathways downstream of GPR142 and whether its stimulation of insulin release is glucose-dependent remain poorly characterized. In this study, we show that both native and synthetic GPR142 agonists can activate Gq as well as Gi signaling when GPR142 is recombinantly expressed in HEK293 cells. However, in primary pancreatic islets, a native cellular system, the insulin secretagogue activity of GPR142 agonists only requires Gq activation. In addition, our results show that stimulation of insulin secretion by GPR142 in pancreatic islets is strictly glucose-dependent.
Collapse
Affiliation(s)
- Jingru Wang
- Lilly China Research and Development Center (LCRDC), Eli Lilly & Company, Shanghai, China
| | - Juan J. Carrillo
- Lilly Research Laboratories, Lilly Corporate Center (LCC), Eli Lilly & Company, Indianapolis, IN, United States of America
| | - Hua V. Lin
- Lilly China Research and Development Center (LCRDC), Eli Lilly & Company, Shanghai, China
- * E-mail:
| |
Collapse
|
36
|
Saini C, Petrenko V, Pulimeno P, Giovannoni L, Berney T, Hebrok M, Howald C, Dermitzakis ET, Dibner C. A functional circadian clock is required for proper insulin secretion by human pancreatic islet cells. Diabetes Obes Metab 2016; 18:355-65. [PMID: 26662378 DOI: 10.1111/dom.12616] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 10/08/2015] [Accepted: 12/01/2015] [Indexed: 01/20/2023]
Abstract
AIM To determine the impact of a functional human islet clock on insulin secretion and gene transcription. METHODS Efficient circadian clock disruption was achieved in human pancreatic islet cells by small interfering RNA-mediated knockdown of CLOCK. Human islet secretory function was assessed in the presence or absence of a functional circadian clock by stimulated insulin secretion assays, and by continuous around-the-clock monitoring of basal insulin secretion. Large-scale transcription analysis was accomplished by RNA sequencing, followed by quantitative RT-PCR analysis of selected targets. RESULTS Circadian clock disruption resulted in a significant decrease in both acute and chronic glucose-stimulated insulin secretion. Moreover, basal insulin secretion by human islet cells synchronized in vitro exhibited a circadian pattern, which was perturbed upon clock disruption. RNA sequencing analysis suggested alterations in 352 transcript levels upon circadian clock disruption. Among them, key regulators of the insulin secretion pathway (GNAQ, ATP1A1, ATP5G2, KCNJ11) and transcripts required for granule maturation and release (VAMP3, STX6, SLC30A8) were affected. CONCLUSIONS Using our newly developed experimental approach for efficient clock disruption in human pancreatic islet cells, we show for the first time that a functional β-cell clock is required for proper basal and stimulated insulin secretion. Moreover, clock disruption has a profound impact on the human islet transcriptome, in particular, on the genes involved in insulin secretion.
Collapse
MESH Headings
- CLOCK Proteins/antagonists & inhibitors
- CLOCK Proteins/genetics
- CLOCK Proteins/metabolism
- Cation Transport Proteins/antagonists & inhibitors
- Cation Transport Proteins/chemistry
- Cation Transport Proteins/genetics
- Cation Transport Proteins/metabolism
- Cells, Cultured
- Circadian Clocks/drug effects
- Colforsin/pharmacology
- GTP-Binding Protein alpha Subunits, Gq-G11/antagonists & inhibitors
- GTP-Binding Protein alpha Subunits, Gq-G11/chemistry
- GTP-Binding Protein alpha Subunits, Gq-G11/genetics
- GTP-Binding Protein alpha Subunits, Gq-G11/metabolism
- Gene Expression Profiling
- Gene Expression Regulation/drug effects
- Genes, Reporter/drug effects
- Humans
- Hyperglycemia/metabolism
- Insulin/metabolism
- Insulin Secretion
- Insulin-Secreting Cells/cytology
- Insulin-Secreting Cells/drug effects
- Insulin-Secreting Cells/metabolism
- Islets of Langerhans/cytology
- Islets of Langerhans/drug effects
- Islets of Langerhans/metabolism
- Potassium Channels, Inwardly Rectifying/antagonists & inhibitors
- Potassium Channels, Inwardly Rectifying/chemistry
- Potassium Channels, Inwardly Rectifying/genetics
- Potassium Channels, Inwardly Rectifying/metabolism
- Qa-SNARE Proteins/antagonists & inhibitors
- Qa-SNARE Proteins/chemistry
- Qa-SNARE Proteins/genetics
- Qa-SNARE Proteins/metabolism
- RNA Interference
- RNA, Small Interfering
- Sodium-Potassium-Exchanging ATPase/antagonists & inhibitors
- Sodium-Potassium-Exchanging ATPase/chemistry
- Sodium-Potassium-Exchanging ATPase/genetics
- Sodium-Potassium-Exchanging ATPase/metabolism
- Vesicle-Associated Membrane Protein 3/antagonists & inhibitors
- Vesicle-Associated Membrane Protein 3/chemistry
- Vesicle-Associated Membrane Protein 3/genetics
- Vesicle-Associated Membrane Protein 3/metabolism
- Zinc Transporter 8
Collapse
Affiliation(s)
- C Saini
- Endocrinology, Diabetes, Hypertension and Nutrition, Diabetes Centre, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Institute of Genetics and Genomics in Geneva (iGE3), Geneva, Switzerland
| | - V Petrenko
- Endocrinology, Diabetes, Hypertension and Nutrition, Diabetes Centre, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Institute of Genetics and Genomics in Geneva (iGE3), Geneva, Switzerland
| | - P Pulimeno
- Endocrinology, Diabetes, Hypertension and Nutrition, Diabetes Centre, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Diabetes Center, UCSF, San Francisco, CA, USA
| | - L Giovannoni
- Endocrinology, Diabetes, Hypertension and Nutrition, Diabetes Centre, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - T Berney
- Department of Surgery, Cell Isolation and Transplantation Centre, University Hospital of Geneva, Geneva, Switzerland
| | - M Hebrok
- Diabetes Center, UCSF, San Francisco, CA, USA
| | - C Howald
- Institute of Genetics and Genomics in Geneva (iGE3), Geneva, Switzerland
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
- Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - E T Dermitzakis
- Institute of Genetics and Genomics in Geneva (iGE3), Geneva, Switzerland
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
- Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - C Dibner
- Endocrinology, Diabetes, Hypertension and Nutrition, Diabetes Centre, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Institute of Genetics and Genomics in Geneva (iGE3), Geneva, Switzerland
| |
Collapse
|
37
|
McNelis JC, Lee YS, Mayoral R, van der Kant R, Johnson AMF, Wollam J, Olefsky JM. GPR43 Potentiates β-Cell Function in Obesity. Diabetes 2015; 64:3203-17. [PMID: 26023106 PMCID: PMC4542437 DOI: 10.2337/db14-1938] [Citation(s) in RCA: 161] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 05/14/2015] [Indexed: 12/25/2022]
Abstract
The intestinal microbiome can regulate host energy homeostasis and the development of metabolic disease. Here we identify GPR43, a receptor for bacterially produced short-chain fatty acids (SCFAs), as a modulator of microbiota-host interaction. β-Cell expression of GPR43 and serum levels of acetate, an endogenous SCFA, are increased with a high-fat diet (HFD). HFD-fed GPR43 knockout (KO) mice develop glucose intolerance due to a defect in insulin secretion. In vitro treatment of isolated murine islets, human islets, and Min6 cells with (S)-2-(4-chlorophenyl)-3,3-dimethyl-N-(5-phenylthiazol-2-yl)butanamide (PA), a specific agonist of GPR43, increased intracellular inositol triphosphate and Ca(2+) levels, and potentiated insulin secretion in a GPR43-, Gαq-, and phospholipase C-dependent manner. In addition, KO mice fed an HFD displayed reduced β-cell mass and expression of differentiation genes, and the treatment of Min6 cells with PA increased β-cell proliferation and gene expression. Together these findings identify GPR43 as a potential target for therapeutic intervention.
Collapse
Affiliation(s)
- Joanne C McNelis
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Yun Sok Lee
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Rafael Mayoral
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Rik van der Kant
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA
| | - Andrew M F Johnson
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Joshua Wollam
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Jerrold M Olefsky
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA
| |
Collapse
|
38
|
Godini A, Ghasemi A, Zahediasl S. The Possible Mechanisms of the Impaired Insulin Secretion in Hypothyroid Rats. PLoS One 2015; 10:e0131198. [PMID: 26132582 PMCID: PMC4488449 DOI: 10.1371/journal.pone.0131198] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 05/29/2015] [Indexed: 12/23/2022] Open
Abstract
Although the insulin secretion deficit in hypothyroid male rats has been documented, the underling mechanisms of the effect of hypothyroidism on insulin secretion are not clear. Isolated islets of the PTU-induced hypothyroid and control rats were exposed to glibenclamide, acetylcholine, and nifedipine in the presence of glucose concentrations of 2.8 or 8.3 and 16.7 mmol/L. Glucokinase and hexokinase specific activity, glucokinase content, and glucose transporter 2 protein expression were also determined in the isolated islets. Isolated islets from the hypothyroid rats showed a defect in insulin secretion in response to high glucose. In the presence of glibenclamide or acetylcholine, the isolated islets from the hypothyroid and control rats stimulated by glucose concentration of 16.7 mmol/L secreted similar amounts of insulin. In the presence of glucose concentrations of 8.3 mmol/L and 16.7 mmol/L, nifedipine was able to diminish insulin secretion from isolated islets of both groups, indicating that probably the defect may not arise from L type calcium channels or the steps beyond depolarization or the elements involved in the acetylcoline signaling pathway. Glucokinase content and hexokinase specific activity were also the same in the control and hypothyroid groups. On the other hand, glucokinase specific activity and glucose transporter 2 protein expression were significantly (p<0.001 and p<0.01 respectively) lower in the islets isolated from the hypothyroid rats (6.50 ± 0.46 mU/min/mg protein and 0.55 ± 0.09 arbitrary unit) compared to the controls (10.93 ± 0.83 mU/min/mg protein and 0.98 ± 0.07 arbitrary unit) respectively. In conclusion, the results of this study indicated that hypothyroidism reduced insulin secretion from isolated pancreatic islets, which confirms the finding of the previous studies; in addition, the insulin secretion deficit observed in hypothyroid rats may arise from the abnormalities in some parts of the glucose sensor apparatus of the pancreatic islets including glucokinase activity and glucose transporter 2 protein expression.
Collapse
Affiliation(s)
- Aliashraf Godini
- Department of Physiology and Neurophysiology Research Center, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- * E-mail:
| | - Saleh Zahediasl
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
39
|
Mancini AD, Poitout V. GPR40 agonists for the treatment of type 2 diabetes: life after 'TAKing' a hit. Diabetes Obes Metab 2015; 17:622-9. [PMID: 25604916 DOI: 10.1111/dom.12442] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 01/13/2015] [Accepted: 01/17/2015] [Indexed: 12/17/2022]
Abstract
The free fatty acid receptor GPR40 has been proposed as a potential target for type 2 diabetes (T2D) pharmacotherapy. This idea has been validated in both preclinical and clinical studies, in which activation of GPR40 was shown to improve glycaemic control by stimulating glucose-dependent insulin secretion; however, the recent termination of phase III clinical trials using the GPR40 agonist TAK-875 (fasiglifam) has raised important questions regarding the long-term safety and viability of targeting GPR40 and, more specifically, about our understanding of this receptor's basic biology. In the present review, we provide a summary of established and novel concepts related to GPR40's pharmacobiology and discuss the current status and future outlook for GPR40-based drug development for the treatment of T2D.
Collapse
Affiliation(s)
- A D Mancini
- Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
- Department of Medicine, Université de Montréal, Montréal, QC, Canada
| | - V Poitout
- Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
- Department of Medicine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
40
|
Loss of FFA2 and FFA3 increases insulin secretion and improves glucose tolerance in type 2 diabetes. Nat Med 2015; 21:173-7. [PMID: 25581519 DOI: 10.1038/nm.3779] [Citation(s) in RCA: 260] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 11/25/2014] [Indexed: 12/14/2022]
Abstract
Type 2 diabetes is a major health problem worldwide, and one of its key features is the inability of elevated glucose to stimulate the release of sufficient amounts of insulin from pancreatic beta cells to maintain normal blood glucose levels. New therapeutic strategies to improve beta cell function are therefore believed to be beneficial. Here we demonstrate that the short-chain fatty acid receptors FFA2 (encoded by FFAR2) and FFA3 (encoded by FFAR3) are expressed in mouse and human pancreatic beta cells and mediate an inhibition of insulin secretion by coupling to Gi-type G proteins. We also provide evidence that mice with dietary-induced obesity and type 2 diabetes, as compared to non-obese control mice, have increased local formation by pancreatic islets of acetate, an endogenous agonist of FFA2 and FFA3, as well as increased systemic levels. This elevation may contribute to the insufficient capacity of beta cells to respond to hyperglycemia in obese states. Indeed, we found that genetic deletion of both receptors, either on the whole-body level or specifically in pancreatic beta cells, leads to greater insulin secretion and a profound improvement of glucose tolerance when mice are on a high-fat diet compared to controls. On the other hand, deletion of Ffar2 and Ffar3 in intestinal cells did not alter glucose tolerance in diabetic animals, suggesting these receptors act in a cell-autonomous manner in beta cells to regulate insulin secretion. In summary, under diabetic conditions elevated acetate acts on FFA2 and FFA3 to inhibit proper glucose-stimulated insulin secretion, and we expect antagonists of FFA2 and FFA3 to improve insulin secretion in type 2 diabetes.
Collapse
|
41
|
Hernández-Bedolla MA, Carretero-Ortega J, Valadez-Sánchez M, Vázquez-Prado J, Reyes-Cruz G. Chemotactic and proangiogenic role of calcium sensing receptor is linked to secretion of multiple cytokines and growth factors in breast cancer MDA-MB-231 cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:166-82. [DOI: 10.1016/j.bbamcr.2014.10.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 10/11/2014] [Accepted: 10/15/2014] [Indexed: 12/18/2022]
|
42
|
Balasubramanian R, Robaye B, Boeynaems JM, Jacobson KA. Enhancement of glucose uptake in mouse skeletal muscle cells and adipocytes by P2Y6 receptor agonists. PLoS One 2014; 9:e116203. [PMID: 25549240 PMCID: PMC4280206 DOI: 10.1371/journal.pone.0116203] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 12/03/2014] [Indexed: 01/04/2023] Open
Abstract
Glucose uptake by peripheral tissues such as skeletal muscles and adipocytes is important in the maintenance of glucose homeostasis. We previously demonstrated that P2Y6 receptor (P2Y6R) agonists protect pancreatic islet cells from apoptosis and stimulate glucose-dependent insulin release. Here, we investigated the effects of P2Y6R activation on glucose uptake in insulin target tissues. An agonist of the P2Y6R, P1-(5′-uridine)-P3-(5′-N4-methoxycytidine)-triphosphate (MRS2957), significantly increased the uptake of [3H]2-deoxyglucose in mouse C2C12 myotubes and 3T3-L1 adipocytes, and this stimulation was significantly decreased by a selective P2Y6R antagonist N,N″-1,4-butanediyl-bis[N′-(3-isothiocyanatophenyl)thiourea] (MRS2578). Pre-incubation with Compound C (an inhibitor of 5′-AMP-activated protein kinase, AMPK), or AMPK siRNA abolished the stimulatory effect of MRS2957 on glucose uptake. Also, MRS2957 (60 min incubation) increased recruitment of the facilitated glucose transporter-4 (GLUT4) to the cell membrane, which was blocked by MRS2578. Treatment of C2C12 myotubes with MRS2957 induced significant phosphorylation of AMPK, which increase GLUT4 expression through histone deacetylase (HDAC)5 signaling. Glucose uptake in primary mouse adipocytes from wild-type mice was stimulated upon P2Y6R activation by either MRS2957 or native agonist UDP, and the P2Y6R effect was antagonized by MRS2578. However, in adipocytes from P2Y6R-knockout mice P2Y6R agonists had no effect on glucose uptake, and there was no change in the glucose uptake by insulin. Our results indicate that the P2Y6R promotes glucose metabolism in peripheral tissues, which may be mediated through AMPK signaling.
Collapse
Affiliation(s)
- Ramachandran Balasubramanian
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Bernard Robaye
- Institute of Interdisciplinary Research, IRIBHM, Université Libre de Bruxelles, Gosselies, Belgium
| | | | - Kenneth A. Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
43
|
Jacobson KA, Gao ZG, Paoletta S, Kiselev E, Chakraborty S, Jayasekara PS, Balasubramanian R, Tosh DK. John Daly Lecture: Structure-guided Drug Design for Adenosine and P2Y Receptors. Comput Struct Biotechnol J 2014; 13:286-98. [PMID: 25973142 PMCID: PMC4423517 DOI: 10.1016/j.csbj.2014.10.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 10/08/2014] [Accepted: 10/13/2014] [Indexed: 02/02/2023] Open
Abstract
We establish structure activity relationships of extracellular nucleosides and nucleotides at G protein-coupled receptors (GPCRs), e.g. adenosine receptors (ARs) and P2Y receptors (P2YRs), respectively. We synthesize selective agents for use as pharmacological probes and potential therapeutic agents (e.g. A3AR agonists for neuropathic pain). Detailed structural information derived from the X-ray crystallographic structures within these families enables the design of novel ligands, guides modification of known agonists and antagonists, and helps predict polypharmacology. Structures were recently reported for the P2Y12 receptor (P2Y12R), an anti-thrombotic target. Comparison of agonist-bound and antagonist-bound P2Y12R indicates unprecedented structural plasticity in the outer portions of the transmembrane (TM) domains and the extracellular loops. Nonphosphate-containing ligands of the P2YRs, such as the selective P2Y14R antagonist PPTN, are desired for bioavailability and increased stability. Also, A2AAR structures are effectively applied to homology modeling of closely related A1AR and A3AR, which are not yet crystallized. Conformational constraint of normally flexible ribose with bicyclic analogues increased the ligand selectivity. Comparison of rigid A3AR agonist congeners allows the exploration of interaction of specific regions of the nucleoside analogues with the target and off-target GPCRs, such as biogenic amine receptors. Molecular modeling predicts plasticity of the A3AR at TM2 to accommodate highly rigidified ligands. Novel fluorescent derivatives of high affinity GPCR ligands are useful tool compounds for characterization of receptors and their oligomeric assemblies. Fluorescent probes are useful for characterization of GPCRs in living cells by flow cytometry and other methods. Thus, 3D knowledge of receptor binding and activation facilitates drug discovery.
Collapse
Affiliation(s)
- Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| | - Zhan-Guo Gao
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| | - Silvia Paoletta
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| | - Evgeny Kiselev
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| | - Saibal Chakraborty
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| | - P Suresh Jayasekara
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| | - Ramachandran Balasubramanian
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| | - Dilip K Tosh
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| |
Collapse
|
44
|
Rorsman P, Ramracheya R, Rorsman NJG, Zhang Q. ATP-regulated potassium channels and voltage-gated calcium channels in pancreatic alpha and beta cells: similar functions but reciprocal effects on secretion. Diabetologia 2014; 57:1749-61. [PMID: 24906950 DOI: 10.1007/s00125-014-3279-8] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 04/25/2014] [Indexed: 12/13/2022]
Abstract
Closure of ATP-regulated K(+) channels (K(ATP) channels) plays a central role in glucose-stimulated insulin secretion in beta cells. K(ATP) channels are also highly expressed in glucagon-producing alpha cells, where their function remains unresolved. Under hypoglycaemic conditions, K(ATP) channels are open in alpha cells but their activity is low and only ~1% of that in beta cells. Like beta cells, alpha cells respond to hyperglycaemia with K(ATP) channel closure, membrane depolarisation and stimulation of action potential firing. Yet, hyperglycaemia reciprocally regulates glucagon (inhibition) and insulin secretion (stimulation). Here we discuss how this conundrum can be resolved and how reduced K(ATP) channel activity, via membrane depolarisation, paradoxically reduces alpha cell Ca(2+) entry and glucagon exocytosis. Finally, we consider whether the glucagon secretory defects associated with diabetes can be attributed to impaired K(ATP) channel regulation and discuss the potential for remedial pharmacological intervention using sulfonylureas.
Collapse
Affiliation(s)
- Patrik Rorsman
- Radcliffe Department of Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, OX3 7LJ, UK,
| | | | | | | |
Collapse
|
45
|
Meister J, Le Duc D, Ricken A, Burkhardt R, Thiery J, Pfannkuche H, Polte T, Grosse J, Schöneberg T, Schulz A. The G protein-coupled receptor P2Y14 influences insulin release and smooth muscle function in mice. J Biol Chem 2014; 289:23353-66. [PMID: 24993824 DOI: 10.1074/jbc.m114.580803] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
UDP sugars were identified as extracellular signaling molecules, assigning a new function to these compounds in addition to their well defined role in intracellular substrate metabolism and storage. Previously regarded as an orphan receptor, the G protein-coupled receptor P2Y14 (GPR105) was found to bind extracellular UDP and UDP sugars. Little is known about the physiological functions of this G protein-coupled receptor. To study its physiological role, we used a gene-deficient mouse strain expressing the bacterial LacZ reporter gene to monitor the physiological expression pattern of P2Y14. We found that P2Y14 is mainly expressed in pancreas and salivary glands and in subpopulations of smooth muscle cells of the gastrointestinal tract, blood vessels, lung, and uterus. Among other phenotypical differences, knock-out mice showed a significantly impaired glucose tolerance following oral and intraperitoneal glucose application. An unchanged insulin tolerance suggested altered pancreatic islet function. Transcriptome analysis of pancreatic islets showed that P2Y14 deficiency significantly changed expression of components involved in insulin secretion. Insulin secretion tests revealed a reduced insulin release from P2Y14-deficient islets, highlighting P2Y14 as a new modulator of proper insulin secretion.
Collapse
Affiliation(s)
- Jaroslawna Meister
- From the Institute of Biochemistry, Integrated Research and Treatment Center for Adiposity Diseases
| | | | | | - Ralph Burkhardt
- Institute of Laboratory Medicine, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany
| | - Joachim Thiery
- Institute of Laboratory Medicine, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany
| | - Helga Pfannkuche
- the Institute of Veterinary Physiology, Faculty of Veterinary Medicine, University of Leipzig, 04109 Leipzig, Germany
| | - Tobias Polte
- the Department of Environmental Immunology, UFZ-Helmholtz Centre for Environmental Research Leipzig-Halle, 04318 Leipzig, Germany, the Department of Dermatology, Venerology and Allergology, Leipzig University Medical Center, 04109 Leipzig, Germany, and
| | | | | | - Angela Schulz
- From the Institute of Biochemistry, Integrated Research and Treatment Center for Adiposity Diseases
| |
Collapse
|
46
|
Kimple ME, Neuman JC, Linnemann AK, Casey PJ. Inhibitory G proteins and their receptors: emerging therapeutic targets for obesity and diabetes. Exp Mol Med 2014; 46:e102. [PMID: 24946790 PMCID: PMC4081554 DOI: 10.1038/emm.2014.40] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 02/10/2014] [Accepted: 02/17/2014] [Indexed: 12/21/2022] Open
Abstract
The worldwide prevalence of obesity is steadily increasing, nearly doubling between 1980 and 2008. Obesity is often associated with insulin resistance, a major risk factor for type 2 diabetes mellitus (T2DM): a costly chronic disease and serious public health problem. The underlying cause of T2DM is a failure of the beta cells of the pancreas to continue to produce enough insulin to counteract insulin resistance. Most current T2DM therapeutics do not prevent continued loss of insulin secretion capacity, and those that do have the potential to preserve beta cell mass and function are not effective in all patients. Therefore, developing new methods for preventing and treating obesity and T2DM is very timely and of great significance. There is now considerable literature demonstrating a link between inhibitory guanine nucleotide-binding protein (G protein) and G protein-coupled receptor (GPCR) signaling in insulin-responsive tissues and the pathogenesis of obesity and T2DM. These studies are suggesting new and emerging therapeutic targets for these conditions. In this review, we will discuss inhibitory G proteins and GPCRs that have primary actions in the beta cell and other peripheral sites as therapeutic targets for obesity and T2DM, improving satiety, insulin resistance and/or beta cell biology.
Collapse
Affiliation(s)
- Michelle E Kimple
- Department of Medicine-Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, WI, USA
| | - Joshua C Neuman
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Amelia K Linnemann
- Department of Medicine-Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, WI, USA
| | - Patrick J Casey
- Duke University Medical Center Department of Pharmacology and Cancer Biology, Durham, NC, USA
| |
Collapse
|
47
|
Muscarinic acetylcholine receptors: novel opportunities for drug development. Nat Rev Drug Discov 2014; 13:549-60. [PMID: 24903776 DOI: 10.1038/nrd4295] [Citation(s) in RCA: 314] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The muscarinic acetylcholine receptors are a subfamily of G protein-coupled receptors that regulate numerous fundamental functions of the central and peripheral nervous system. The past few years have witnessed unprecedented new insights into muscarinic receptor physiology, pharmacology and structure. These advances include the first structural views of muscarinic receptors in both inactive and active conformations, as well as a better understanding of the molecular underpinnings of muscarinic receptor regulation by allosteric modulators. These recent findings should facilitate the development of new muscarinic receptor subtype-selective ligands that could prove to be useful for the treatment of many severe pathophysiological conditions.
Collapse
|
48
|
Thiel G, Müller I, Rössler OG. Expression, signaling and function of Egr transcription factors in pancreatic β-cells and insulin-responsive tissues. Mol Cell Endocrinol 2014; 388:10-9. [PMID: 24631481 DOI: 10.1016/j.mce.2014.03.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 02/26/2014] [Accepted: 03/03/2014] [Indexed: 12/15/2022]
Abstract
Egr-1 and the related zinc finger transcription factors Egr-2, Egr-3, and Egr-4 are stimulated by many extracellular signaling molecules and represent a convergence point for intracellular signaling cascades. Egr-1 expression is induced in insulinoma cells and pancreatic β-cells following stimulation with either glucose, or pregnenolone sulfate. Moreover, stimulation of Gαq and Gαs-coupled receptors enhances EGR-1 gene transcription. Functional studies revealed that Egr transcription factors control insulin biosynthesis via regulation of Pdx-1 expression. Glucose homeostasis and pancreatic islet size are regulated by Egr transcription factors, indicating that these proteins control central physiological parameters regulated by pancreatic β-cells. In addition, Egr-1 is an integral part of the insulin receptor signaling cascade in insulin-responsive tissues and influences insulin resistance.
Collapse
Affiliation(s)
- Gerald Thiel
- Department of Medical Biochemistry and Molecular Biology, University of Saarland Medical Center, D-66421 Homburg, Germany.
| | - Isabelle Müller
- Department of Medical Biochemistry and Molecular Biology, University of Saarland Medical Center, D-66421 Homburg, Germany
| | - Oliver G Rössler
- Department of Medical Biochemistry and Molecular Biology, University of Saarland Medical Center, D-66421 Homburg, Germany
| |
Collapse
|
49
|
Guerra ML, Wauson EM, McGlynn K, Cobb MH. Muscarinic control of MIN6 pancreatic β cells is enhanced by impaired amino acid signaling. J Biol Chem 2014; 289:14370-9. [PMID: 24695728 DOI: 10.1074/jbc.m114.565069] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have shown recently that the class C G protein-coupled receptor T1R1/T1R3 taste receptor complex is an early amino acid sensor in MIN6 pancreatic β cells. Amino acids are unable to activate ERK1/2 in β cells in which T1R3 has been depleted. The muscarinic receptor agonist carbachol activated ERK1/2 better in T1R3-depleted cells than in control cells. Ligands that activate certain G protein-coupled receptors in pancreatic β cells potentiate glucose-stimulated insulin secretion. Among these is the M3 muscarinic acetylcholine receptor, the major muscarinic receptor in β cells. We found that expression of M3 receptors increased in T1R3-depleted MIN6 cells and that calcium responses were altered. To determine whether these changes were related to impaired amino acid signaling, we compared responses in cells exposed to reduced amino acid concentrations. M3 receptor expression was increased, and some, but not all, changes in calcium signaling were mimicked. These findings suggest that M3 acetylcholine receptors are increased in β cells as a mechanism to compensate for amino acid deficiency.
Collapse
Affiliation(s)
- Marcy L Guerra
- From the Department of Pharmacology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390-9041
| | - Eric M Wauson
- From the Department of Pharmacology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390-9041
| | - Kathleen McGlynn
- From the Department of Pharmacology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390-9041
| | - Melanie H Cobb
- From the Department of Pharmacology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390-9041
| |
Collapse
|
50
|
Young SH, Rey O, Sinnett-Smith J, Rozengurt E. Intracellular Ca2+ oscillations generated via the Ca2+-sensing receptor are mediated by negative feedback by PKCα at Thr888. Am J Physiol Cell Physiol 2013; 306:C298-306. [PMID: 24336654 DOI: 10.1152/ajpcell.00194.2013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
To clarify the mechanism(s) underlying intracellular Ca(2+) concentration ([Ca(2+)]i) oscillations induced by an elevation in extracellular Ca(2+) concentration ([Ca(2+)]e) via the extracellular Ca(2+)-sensing receptor (CaR), we analyzed the pattern of [Ca(2+)]i response in multiple (2,303) individual HEK-293 cells transfected with the human CaR. An increase in the [Ca(2+)]e from 1.5 to 3 mM produced oscillatory fluctuations in [Ca(2+)]i in 70% of the cell population. To determine the role of PKC in the generation of [Ca(2+)]i oscillations, cells were exposed to increasing concentrations (0.5-5 μM) of the preferential PKC inhibitor Ro-31-8220 before stimulation by extracellular Ca(2+). Ro-31-8220 at 3-5 μM completely eliminated the [Ca(2+)]e-evoked [Ca(2+)]i oscillations and transformed the pattern to a peak and sustained plateau response. Treatment with other broad PKC inhibitors, including GFI or Gö6983, produced an identical response. Similarly, treatment with Ro-31-8220 or GFI eliminated [Ca(2+)]e-evoked [Ca(2+)]i oscillations in colon-derived SW-480 cells expressing the CaR. Treatment with inhibitors targeting classic PKCs, including Gö6976 and Ro-32-0432 as well as small interfering RNA-mediated knockdown of PKCα, strikingly reduced the proportion of cell displaying [Ca(2+)]e-evoked [Ca(2+)]i oscillations. Furthermore, none of the cells analyzed expressing a CaR mutant in which the major PKC phosphorylation site Thr(888) was converted to alanine (CaRT888A) showed [Ca(2+)]i oscillations after CaR activation. Our results show that [Ca(2+)]i oscillations induced by activation of the CaR in response to an increase in extracellular Ca(2+) or exposure to the calcimimetic R-568 result from negative feedback involving PKCα-mediated phosphorylation of the CaR at Thr(888).
Collapse
Affiliation(s)
- Steven H Young
- Division of Digestive Diseases, Department of Medicine, Center for Ulcer Research and Education: Digestive Diseases Research Center David Geffen School of Medicine and Molecular Biology Institute, University of California, Los Angeles, California; and
| | | | | | | |
Collapse
|