1
|
Bhatt IS, Garay JAR, Bhagavan SG, Ingalls V, Dias R, Torkamani A. A genome-wide association study reveals a polygenic architecture of speech-in-noise deficits in individuals with self-reported normal hearing. Sci Rep 2024; 14:13089. [PMID: 38849415 PMCID: PMC11161523 DOI: 10.1038/s41598-024-63972-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 06/04/2024] [Indexed: 06/09/2024] Open
Abstract
Speech-in-noise (SIN) perception is a primary complaint of individuals with audiometric hearing loss. SIN performance varies drastically, even among individuals with normal hearing. The present genome-wide association study (GWAS) investigated the genetic basis of SIN deficits in individuals with self-reported normal hearing in quiet situations. GWAS was performed on 279,911 individuals from the UB Biobank cohort, with 58,847 reporting SIN deficits despite reporting normal hearing in quiet. GWAS identified 996 single nucleotide polymorphisms (SNPs), achieving significance (p < 5*10-8) across four genomic loci. 720 SNPs across 21 loci achieved suggestive significance (p < 10-6). GWAS signals were enriched in brain tissues, such as the anterior cingulate cortex, dorsolateral prefrontal cortex, entorhinal cortex, frontal cortex, hippocampus, and inferior temporal cortex. Cochlear cell types revealed no significant association with SIN deficits. SIN deficits were associated with various health traits, including neuropsychiatric, sensory, cognitive, metabolic, cardiovascular, and inflammatory conditions. A replication analysis was conducted on 242 healthy young adults. Self-reported speech perception, hearing thresholds (0.25-16 kHz), and distortion product otoacoustic emissions (1-16 kHz) were utilized for the replication analysis. 73 SNPs were replicated with a self-reported speech perception measure. 211 SNPs were replicated with at least one and 66 with at least two audiological measures. 12 SNPs near or within MAPT, GRM3, and HLA-DQA1 were replicated for all audiological measures. The present study highlighted a polygenic architecture underlying SIN deficits in individuals with self-reported normal hearing.
Collapse
Affiliation(s)
- Ishan Sunilkumar Bhatt
- Department of Communication Sciences and Disorders, University of Iowa, 250 Hawkins Dr, Iowa City, IA, 52242, USA.
| | - Juan Antonio Raygoza Garay
- Department of Communication Sciences and Disorders, University of Iowa, 250 Hawkins Dr, Iowa City, IA, 52242, USA
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, 52242, USA
| | - Srividya Grama Bhagavan
- Department of Communication Sciences and Disorders, University of Iowa, 250 Hawkins Dr, Iowa City, IA, 52242, USA
| | - Valerie Ingalls
- Department of Communication Sciences and Disorders, University of Iowa, 250 Hawkins Dr, Iowa City, IA, 52242, USA
| | - Raquel Dias
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, 32608, USA
| | - Ali Torkamani
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, CA, 92037, USA
| |
Collapse
|
2
|
Hoglund BK, Carfagno V, Olive MF, Leyrer-Jackson JM. Metabotropic glutamate receptors and cognition: From underlying plasticity and neuroprotection to cognitive disorders and therapeutic targets. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 168:367-413. [PMID: 36868635 DOI: 10.1016/bs.irn.2022.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Metabotropic glutamate (mGlu) receptors are G protein-coupled receptors that play pivotal roles in mediating the activity of neurons and other cell types within the brain, communication between cell types, synaptic plasticity, and gene expression. As such, these receptors play an important role in a number of cognitive processes. In this chapter, we discuss the role of mGlu receptors in various forms of cognition and their underlying physiology, with an emphasis on cognitive dysfunction. Specifically, we highlight evidence that links mGlu physiology to cognitive dysfunction across brain disorders including Parkinson's disease, Alzheimer's disease, Fragile X syndrome, post-traumatic stress disorder, and schizophrenia. We also provide recent evidence demonstrating that mGlu receptors may elicit neuroprotective effects in particular disease states. Lastly, we discuss how mGlu receptors can be targeted utilizing positive and negative allosteric modulators as well as subtype specific agonists and antagonist to restore cognitive function across these disorders.
Collapse
Affiliation(s)
- Brandon K Hoglund
- Department of Medical Education, School of Medicine, Creighton University, Phoenix, AZ, United States
| | - Vincent Carfagno
- School of Medicine, Midwestern University, Glendale, AZ, United States
| | - M Foster Olive
- Department of Psychology, Arizona State University, Tempe, AZ, United States
| | - Jonna M Leyrer-Jackson
- Department of Medical Education, School of Medicine, Creighton University, Phoenix, AZ, United States.
| |
Collapse
|
3
|
The role of thalamic group II mGlu receptors in health and disease. Neuronal Signal 2022; 6:NS20210058. [PMID: 36561092 PMCID: PMC9760452 DOI: 10.1042/ns20210058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 12/25/2022] Open
Abstract
The thalamus plays a pivotal role in the integration and processing of sensory, motor, and cognitive information. It is therefore important to understand how the thalamus operates in states of both health and disease. In the present review, we discuss the function of the Group II metabotropic glutamate (mGlu) receptors within thalamic circuitry, and how they may represent therapeutic targets in treating disease states associated with thalamic dysfunction.
Collapse
|
4
|
Arnsten AFT, Woo E, Yang S, Wang M, Datta D. Unusual Molecular Regulation of Dorsolateral Prefrontal Cortex Layer III Synapses Increases Vulnerability to Genetic and Environmental Insults in Schizophrenia. Biol Psychiatry 2022; 92:480-490. [PMID: 35305820 PMCID: PMC9372235 DOI: 10.1016/j.biopsych.2022.02.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/03/2022] [Accepted: 02/06/2022] [Indexed: 02/06/2023]
Abstract
Schizophrenia is associated with reduced numbers of spines and dendrites from layer III of the dorsolateral prefrontal cortex (dlPFC), the layer that houses the recurrent excitatory microcircuits that subserve working memory and abstract thought. Why are these synapses so vulnerable, while synapses in deeper or more superficial layers are little affected? This review describes the special molecular properties that govern layer III neurotransmission and neuromodulation in the primate dlPFC and how they may render these circuits particularly vulnerable to genetic and environmental insults. These properties include a reliance on NMDA receptor rather than AMPA receptor neurotransmission; cAMP (cyclic adenosine monophosphate) magnification of calcium signaling near the glutamatergic synapse of dendritic spines; and potassium channels opened by cAMP/PKA (protein kinase A) signaling that dynamically alter network strength, with built-in mechanisms to take dlPFC "offline" during stress. A variety of genetic and/or environmental insults can lead to the same phenotype of weakened layer III connectivity, in which mechanisms that normally strengthen connectivity are impaired and those that normally weaken connectivity are intensified. Inflammatory mechanisms, such as increased kynurenic acid and glutamate carboxypeptidase II expression, are especially detrimental to layer III dlPFC neurotransmission and modulation, mimicking genetic insults. The combination of genetic and inflammatory insults may cross the threshold into pathology.
Collapse
Affiliation(s)
- Amy F T Arnsten
- Department of Neuroscience, Yale Medical School, New Haven, Connecticut.
| | - Elizabeth Woo
- Department of Neuroscience, Yale Medical School, New Haven, Connecticut
| | - Shengtao Yang
- Department of Neuroscience, Yale Medical School, New Haven, Connecticut
| | - Min Wang
- Department of Neuroscience, Yale Medical School, New Haven, Connecticut
| | - Dibyadeep Datta
- Department of Neuroscience, Yale Medical School, New Haven, Connecticut
| |
Collapse
|
5
|
Woo E, Datta D, Arnsten AFT. Glutamate Metabotropic Receptor Type 3 (mGlu3) Localization in the Rat Prelimbic Medial Prefrontal Cortex. Front Neuroanat 2022; 16:849937. [PMID: 35444520 PMCID: PMC9013768 DOI: 10.3389/fnana.2022.849937] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 02/18/2022] [Indexed: 11/13/2022] Open
Abstract
Metabotropic glutamate receptors type 3 (mGlu3, encoded by GRM3) are increasingly related to cognitive functioning, including the working memory operations of the prefrontal cortex (PFC). In rhesus monkeys, mGlu3 are most commonly expressed on glia (36%), but are also very prominent on layer III dendritic spines (23%) in the dorsolateral PFC (dlPFC) where they enhance working memory-related neuronal firing. In contrast, mGlu2 are predominately presynaptic in layer III of macaque dlPFC, indicating a pre- vs. post-synaptic dissociation by receptor subtype. The current study examined the cellular and subcellular localizations of mGlu3 in the rat prelimbic medial PFC (PL mPFC), a region needed for spatial working memory performance in rodents. Multiple label immunofluorescence demonstrated mGlu3 expression in neurons and astrocytes, with rare labeling in microglia. Immunoelectron microscopy of layers III and V found that the predominant location for mGlu3 was on axons (layer III: 35.9%; layer V: 44.1%), with labeling especially prominent within the intervaricose segments distant from axon terminals. mGlu3 were also found on glia (likely astrocytes), throughout the glial membrane (layer III: 28.2%; layer V: 29.5%). Importantly, mGlu3 could be seen on dendritic spines, especially in layer III (layer III: 15.6%; layer V: 8.2%), with minor labeling on dendrites. These data show that there are some similarities between mGlu3 expression in rat PL mPFC and macaque dlPFC, but the spine expression enriches and differentiates in the more recently evolved primate dlPFC.
Collapse
|
6
|
Wolf DH, Zheng D, Kohler C, Turetsky BI, Ruparel K, Satterthwaite TD, Elliott MA, March ME, Cross AJ, Smith MA, Zukin SR, Gur RC, Gur RE. Effect of mGluR2 positive allosteric modulation on frontostriatal working memory activation in schizophrenia. Mol Psychiatry 2022; 27:1226-1232. [PMID: 34667261 PMCID: PMC9018886 DOI: 10.1038/s41380-021-01320-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 09/09/2021] [Accepted: 09/24/2021] [Indexed: 02/07/2023]
Abstract
Negative symptoms and cognitive deficits contribute strongly to disability in schizophrenia, and are resistant to existing medications. Recent drug development has targeted enhanced NMDA function by increasing mGluR2/3 signaling. However, the clinical utility of such agents remains uncertain, and markers of brain circuit function are critical for clarifying mechanisms and understanding individual differences in efficacy. We conducted a double-blind, placebo-controlled, randomized cross-over (14 day washout) pilot study evaluating adjunctive use of the mGluR2 positive allosteric modulator AZD8529 (80 mg daily for 3 days), in chronic stable patients with schizophrenia (n = 26 analyzed). We focused on 3 T fMRI response in frontostriatal regions during an n-back working memory task, testing the hypothesis that AZD8529 produces fMRI changes that correlate with improvement in negative symptoms and cognition. We found that AZD8529 did not produce significant group-average effects on symptoms or cognitive accuracy. However, AZD8529 did increase n-back fMRI activation in striatum (p < 0.0001) and anterior cingulate/paracingulate (p = 0.002). Greater drug-versus-placebo effects on caudate activation significantly correlated with greater reductions in PANSS negative symptom scores (r = -0.42, p = 0.031), and exploratory correlations suggested broader effects across multiple symptom domains and regions of interest. These findings demonstrate that fMRI responses to mGluR2 positive modulation relate to individual differences in symptom reduction, and could be pursued for future biomarker development. Negative clinical results at the group level should not lead to premature termination of investigation of this mechanism, which may benefit an important subset of individuals with schizophrenia. Imaging biomarkers may reveal therapeutic mechanisms, and help guide treatment toward specific populations.
Collapse
Affiliation(s)
- Daniel H. Wolf
- Department of Psychiatry, University of Pennsylvania, Philadelphia PA 19104
| | - David Zheng
- Department of Psychiatry, University of Pennsylvania, Philadelphia PA 19104
| | - Christian Kohler
- Department of Psychiatry, University of Pennsylvania, Philadelphia PA 19104
| | - Bruce I. Turetsky
- Department of Psychiatry, University of Pennsylvania, Philadelphia PA 19104
| | - Kosha Ruparel
- Department of Psychiatry, University of Pennsylvania, Philadelphia PA 19104
| | | | - Mark A. Elliott
- Department of Radiology, University of Pennsylvania, Philadelphia PA 19104
| | - Mary E. March
- Department of Psychiatry, University of Pennsylvania, Philadelphia PA 19104
| | - Alan J. Cross
- AstraZeneca Pharmaceuticals LP, Wilmington DE, 19850.,Present affiliations: Psy Therapeutics, Thornton PA 19373
| | - Mark A. Smith
- AstraZeneca Pharmaceuticals LP, Wilmington DE, 19850.,Vistagen Therapeutics, South San Francisco CA 94080;,Medical College of Georgia, Augusta, GA 30912
| | - Stephen R. Zukin
- AstraZeneca Pharmaceuticals LP, Wilmington DE, 19850.,PRA Health Sciences, Blue Bell PA 19422
| | - Ruben C. Gur
- Department of Psychiatry, University of Pennsylvania, Philadelphia PA 19104.,Department of Radiology, University of Pennsylvania, Philadelphia PA 19104
| | - Raquel E. Gur
- Department of Psychiatry, University of Pennsylvania, Philadelphia PA 19104.,Department of Radiology, University of Pennsylvania, Philadelphia PA 19104
| |
Collapse
|
7
|
Morland C, Nordengen K. N-Acetyl-Aspartyl-Glutamate in Brain Health and Disease. Int J Mol Sci 2022; 23:ijms23031268. [PMID: 35163193 PMCID: PMC8836185 DOI: 10.3390/ijms23031268] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 02/04/2023] Open
Abstract
N-acetyl-aspartyl-glutamate (NAAG) is the most abundant dipeptide in the brain, where it acts as a neuromodulator of glutamatergic synapses by activating presynaptic metabotropic glutamate receptor 3 (mGluR3). Recent data suggest that NAAG is selectively localized to postsynaptic dendrites in glutamatergic synapses and that it works as a retrograde neurotransmitter. NAAG is released in response to glutamate and provides the postsynaptic neuron with a feedback mechanisms to inhibit excessive glutamate signaling. A key regulator of synaptically available NAAG is rapid degradation by the extracellular enzyme glutamate carboxypeptidase II (GCPII). Increasing endogenous NAAG—for instance by inhibiting GCPII—is a promising treatment option for many brain disorders where glutamatergic excitotoxicity plays a role. The main effect of NAAG occurs through increased mGluR3 activation and thereby reduced glutamate release. In the present review, we summarize the transmitter role of NAAG and discuss the involvement of NAAG in normal brain physiology. We further present the suggested roles of NAAG in various neurological and psychiatric diseases and discuss the therapeutic potential of strategies aiming to enhance NAAG levels.
Collapse
Affiliation(s)
- Cecilie Morland
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, The Faculty of Mathematics and Natural Sciences, University of Oslo, 1068 Oslo, Norway
- Correspondence: (C.M.); (K.N.); Tel.: +47-22844937; (C.M.); +47-23073580 (K.N.)
| | - Kaja Nordengen
- Department of Neurology, Oslo University Hospital, 0424 Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0318 Oslo, Norway
- Correspondence: (C.M.); (K.N.); Tel.: +47-22844937; (C.M.); +47-23073580 (K.N.)
| |
Collapse
|
8
|
Yang S, Datta D, Elizabeth Woo, Duque A, Morozov YM, Arellano J, Slusher BS, Wang M, Arnsten AFT. Inhibition of glutamate-carboxypeptidase-II in dorsolateral prefrontal cortex: potential therapeutic target for neuroinflammatory cognitive disorders. Mol Psychiatry 2022; 27:4252-4263. [PMID: 35732693 PMCID: PMC9718677 DOI: 10.1038/s41380-022-01656-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 05/27/2022] [Indexed: 02/07/2023]
Abstract
Glutamate carboxypeptidase-II (GCPII) expression in brain is increased by inflammation, e.g. by COVID19 infection, where it reduces NAAG stimulation of metabotropic glutamate receptor type 3 (mGluR3). GCPII-mGluR3 signaling is increasingly linked to higher cognition, as genetic alterations that weaken mGluR3 or increase GCPII signaling are associated with impaired cognition in humans. Recent evidence from macaque dorsolateral prefrontal cortex (dlPFC) shows that mGluR3 are expressed on dendritic spines, where they regulate cAMP-PKA opening of potassium (K+) channels to enhance neuronal firing during working memory. However, little is known about GCPII expression and function in the primate dlPFC, despite its relevance to inflammatory disorders. The present study used multiple label immunofluorescence and immunoelectron microscopy to localize GCPII in aging macaque dlPFC, and examined the effects of GCPII inhibition on dlPFC neuronal physiology and working memory function. GCPII was observed in astrocytes as expected, but also on neurons, including extensive expression in dendritic spines. Recordings in dlPFC from aged monkeys performing a working memory task found that iontophoresis of the GCPII inhibitors 2-MPPA or 2-PMPA markedly increased working memory-related neuronal firing and spatial tuning, enhancing neural representations. These beneficial effects were reversed by an mGluR2/3 antagonist, or by a cAMP-PKA activator, consistent with mGluR3 inhibition of cAMP-PKA-K+ channel signaling. Systemic administration of the brain penetrant inhibitor, 2-MPPA, significantly improved working memory performance without apparent side effects, with largest effects in the oldest monkeys. Taken together, these data endorse GCPII inhibition as a potential strategy for treating cognitive disorders associated with aging and/or neuroinflammation.
Collapse
Affiliation(s)
- Shengtao Yang
- grid.47100.320000000419368710Department Neuroscience, Yale University School of Medicine, New Haven, CT USA
| | - Dibyadeep Datta
- grid.47100.320000000419368710Department Neuroscience, Yale University School of Medicine, New Haven, CT USA ,grid.47100.320000000419368710Department Psychiatry, Yale University School of Medicine, New Haven, CT USA
| | - Elizabeth Woo
- grid.47100.320000000419368710Department Neuroscience, Yale University School of Medicine, New Haven, CT USA
| | - Alvaro Duque
- grid.47100.320000000419368710Department Neuroscience, Yale University School of Medicine, New Haven, CT USA
| | - Yury M. Morozov
- grid.47100.320000000419368710Department Neuroscience, Yale University School of Medicine, New Haven, CT USA
| | - Jon Arellano
- grid.47100.320000000419368710Department Neuroscience, Yale University School of Medicine, New Haven, CT USA
| | - Barbara S. Slusher
- grid.21107.350000 0001 2171 9311Department Neurology and Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, MD USA
| | - Min Wang
- grid.47100.320000000419368710Department Neuroscience, Yale University School of Medicine, New Haven, CT USA
| | - Amy F. T. Arnsten
- grid.47100.320000000419368710Department Neuroscience, Yale University School of Medicine, New Haven, CT USA
| |
Collapse
|
9
|
Datta D, Leslie SN, Woo E, Amancharla N, Elmansy A, Lepe M, Mecca AP, Slusher BS, Nairn AC, Arnsten AFT. Glutamate Carboxypeptidase II in Aging Rat Prefrontal Cortex Impairs Working Memory Performance. Front Aging Neurosci 2021; 13:760270. [PMID: 34867287 PMCID: PMC8634091 DOI: 10.3389/fnagi.2021.760270] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/28/2021] [Indexed: 11/29/2022] Open
Abstract
Glutamate carboxypeptidase II (GCPII) expression in brain is increased by inflammation, and reduces NAAG (N-acetyl aspartyl glutamate) stimulation of mGluR3 signaling. Genetic insults in this signaling cascade are increasingly linked to cognitive disorders in humans, where increased GCPII and or decreased NAAG-mGluR3 are associated with impaired prefrontal cortical (PFC) activation and cognitive impairment. As aging is associated with increased inflammation and PFC cognitive deficits, the current study examined GCPII and mGluR3 expression in the aging rat medial PFC, and tested whether GCPII inhibition with 2-(3-mercaptopropyl) pentanedioic acid (2-MPPA) would improve working memory performance. We found that GCPII protein was expressed on astrocytes and some microglia as expected from previous studies, but was also prominently expressed on neurons, and showed increased levels with advancing age. Systemic administration of the GCPII inhibitor, 2-MPPA, improved working memory performance in young and aged rats, and also improved performance after local infusion into the medial PFC. As GCPII inhibitors are well-tolerated, they may provide an important new direction for treatment of cognitive disorders associated with aging and/or inflammation.
Collapse
Affiliation(s)
- Dibyadeep Datta
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, United States
| | - Shannon N Leslie
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Elizabeth Woo
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, United States
| | - Nishita Amancharla
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, United States
| | - Ayah Elmansy
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, United States
| | - Miguel Lepe
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, United States
| | - Adam P Mecca
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Barbara S Slusher
- Department of Neurology and Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Angus C Nairn
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Amy F T Arnsten
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
10
|
Arnsten AFT, Datta D, Wang M. The genie in the bottle-magnified calcium signaling in dorsolateral prefrontal cortex. Mol Psychiatry 2021; 26:3684-3700. [PMID: 33319854 PMCID: PMC8203737 DOI: 10.1038/s41380-020-00973-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/20/2020] [Accepted: 11/26/2020] [Indexed: 02/07/2023]
Abstract
Neurons in the association cortices are particularly vulnerable in cognitive disorders such as schizophrenia and Alzheimer's disease, while those in primary visual cortex remain relatively resilient. This review proposes that the special molecular mechanisms needed for higher cognitive operations confer vulnerability to dysfunction, atrophy, and neurodegeneration when regulation is lost due to genetic and/or environmental insults. Accumulating data suggest that higher cortical circuits rely on magnified levels of calcium (from NMDAR, calcium channels, and/or internal release from the smooth endoplasmic reticulum) near the postsynaptic density to promote the persistent firing needed to maintain, manipulate, and store information without "bottom-up" sensory stimulation. For example, dendritic spines in the primate dorsolateral prefrontal cortex (dlPFC) express the molecular machinery for feedforward, cAMP-PKA-calcium signaling. PKA can drive internal calcium release and promote calcium flow through NMDAR and calcium channels, while in turn, calcium activates adenylyl cyclases to produce more cAMP-PKA signaling. Excessive levels of cAMP-calcium signaling can have a number of detrimental effects: for example, opening nearby K+ channels to weaken synaptic efficacy and reduce neuronal firing, and over a longer timeframe, driving calcium overload of mitochondria to induce inflammation and dendritic atrophy. Thus, calcium-cAMP signaling must be tightly regulated, e.g., by agents that catabolize cAMP or inhibit its production (PDE4, mGluR3), and by proteins that bind calcium in the cytosol (calbindin). Many genetic or inflammatory insults early in life weaken the regulation of calcium-cAMP signaling and are associated with increased risk of schizophrenia (e.g., GRM3). Age-related loss of regulatory proteins which result in elevated calcium-cAMP signaling over a long lifespan can additionally drive tau phosphorylation, amyloid pathology, and neurodegeneration, especially when protective calcium binding proteins are lost from the cytosol. Thus, the "genie" we need for our remarkable cognitive abilities may make us vulnerable to cognitive disorders when we lose essential regulation.
Collapse
Affiliation(s)
- Amy F T Arnsten
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, 06510, USA.
| | - Dibyadeep Datta
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Min Wang
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, 06510, USA
| |
Collapse
|
11
|
Berto S, Fontenot MR, Seger S, Ayhan F, Caglayan E, Kulkarni A, Douglas C, Tamminga CA, Lega BC, Konopka G. Gene-expression correlates of the oscillatory signatures supporting human episodic memory encoding. Nat Neurosci 2021; 24:554-564. [PMID: 33686299 PMCID: PMC8016736 DOI: 10.1038/s41593-021-00803-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 01/19/2021] [Indexed: 12/13/2022]
Abstract
In humans, brain oscillations support critical features of memory formation. However, understanding the molecular mechanisms underlying this activity remains a major challenge. Here, we measured memory-sensitive oscillations using intracranial electroencephalography recordings from the temporal cortex of patients performing an episodic memory task. When these patients subsequently underwent resection, we employed transcriptomics on the temporal cortex to link gene expression with brain oscillations and identified genes correlated with oscillatory signatures of memory formation across six frequency bands. A co-expression analysis isolated oscillatory signature-specific modules associated with neuropsychiatric disorders and ion channel activity, with highly correlated genes exhibiting strong connectivity within these modules. Using single-nucleus transcriptomics, we further revealed that these modules are enriched for specific classes of both excitatory and inhibitory neurons, and immunohistochemistry confirmed expression of highly correlated genes. This unprecedented dataset of patient-specific brain oscillations coupled to genomics unlocks new insights into the genetic mechanisms that support memory encoding.
Collapse
Affiliation(s)
- Stefano Berto
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, USA
| | - Miles R Fontenot
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, USA
| | - Sarah Seger
- Department of Neurosurgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Fatma Ayhan
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, USA
| | - Emre Caglayan
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, USA
| | | | - Connor Douglas
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, USA
| | - Carol A Tamminga
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX, USA
| | - Bradley C Lega
- Department of Neurosurgery, UT Southwestern Medical Center, Dallas, TX, USA.
| | - Genevieve Konopka
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
12
|
Tiwari P, Fanibunda SE, Kapri D, Vasaya S, Pati S, Vaidya VA. GPCR signaling: role in mediating the effects of early adversity in psychiatric disorders. FEBS J 2021; 288:2602-2621. [DOI: 10.1111/febs.15738] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/11/2021] [Accepted: 01/27/2021] [Indexed: 12/14/2022]
Affiliation(s)
- Praachi Tiwari
- Department of Biological Sciences Tata Institute of Fundamental Research Mumbai India
| | - Sashaina E. Fanibunda
- Department of Biological Sciences Tata Institute of Fundamental Research Mumbai India
- Medical Research Centre Kasturba Health Society Mumbai India
| | - Darshana Kapri
- Department of Biological Sciences Tata Institute of Fundamental Research Mumbai India
| | - Shweta Vasaya
- Department of Biological Sciences Tata Institute of Fundamental Research Mumbai India
| | - Sthitapranjya Pati
- Department of Biological Sciences Tata Institute of Fundamental Research Mumbai India
| | - Vidita A. Vaidya
- Department of Biological Sciences Tata Institute of Fundamental Research Mumbai India
| |
Collapse
|
13
|
Zink CF, Barker PB, Sawa A, Weinberger DR, Wang M, Quillian H, Ulrich WS, Chen Q, Jaffe AE, Kleinman JE, Hyde TM, Prettyman GE, Giegerich M, Carta K, van Ginkel M, Bigos KL. Association of Missense Mutation in FOLH1 With Decreased NAAG Levels and Impaired Working Memory Circuitry and Cognition. Am J Psychiatry 2020; 177:1129-1139. [PMID: 33256444 DOI: 10.1176/appi.ajp.2020.19111152] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Altering the metabotropic glutamate receptor 3 (mGluR3) by pharmacology or genetics is associated with differences in learning and memory in animals and humans. GRM3 (the gene coding for mGluR3) is also genome-wide associated with risk for schizophrenia. The neurotransmitter N-acetyl-aspartyl-glutamate (NAAG) is the selective endogenous agonist of mGluR3, and increasing NAAG may improve cognition. Glutamate carboxypeptidase II (GCPII), coded by the gene folate hydrolase 1 (FOLH1), regulates the amount of NAAG in the synapse. The goal of this study was to determine the relationship between FOLH1, NAAG levels, measures of human cognition, and neural activity associated with cognition. METHODS The effects of genetic variation in FOLH1 on mRNA expression in human brain and NAAG levels using 7-T magnetic resonance spectroscopy (MRS) were measured. NAAG levels and FOLH1 genetic variation were correlated with measures of cognition in subjects with psychosis and unaffected subjects. Additionally, FOLH1 genetic variation was correlated with neural activity during working memory, as measured by functional MRI (fMRI). RESULTS A missense mutation in FOLH1 (rs202676 G allele) was associated with increased FOLH1 mRNA in the dorsolateral prefrontal cortex of brains from unaffected subjects and schizophrenia patients. This FOLH1 variant was associated with decreased NAAG levels in unaffected subjects and patients with psychosis. NAAG levels were positively correlated with visual memory performance. Carriers of the FOLH1 variant associated with lower NAAG levels had lower IQ scores. Carriers of this FOLH1 variant had less efficient cortical activity during working memory. CONCLUSIONS These data show that higher NAAG levels are associated with better cognition, suggesting that increasing NAAG levels through FOLH1/GCPII inhibition may improve cognition. Additionally, NAAG levels measured by MRS and cortical efficiency during working memory measured by fMRI have the potential to be neuroimaging biomarkers for future clinical trials.
Collapse
Affiliation(s)
- Caroline F Zink
- Baltimore Research and Education Foundation, Baltimore (Zink); Lieber Institute for Brain Development, Baltimore (Zink, Weinberger, Quillian, Ulrich, Chen, Jaffe, Kleinman, Hyde, Prettyman, Giegerich, Carta, van Ginkel, Bigos); Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore (Zink, Sawa, Weinberger, Jaffe, Kleinman, Hyde, Bigos); Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins School of Medicine, Baltimore (Barker, Wang); Department of Oncology, Johns Hopkins School of Medicine, Baltimore (Barker); Kennedy Krieger Institute, Baltimore (Barker); Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore (Sawa, Jaffe); Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore (Sawa, Weinberger); McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore (Sawa, Weinberger, Jaffe); Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore (Sawa); Department of Neurology, Johns Hopkins School of Medicine, Baltimore (Weinberger, Hyde); Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore (Jaffe); Center for Computational Biology, Johns Hopkins University, Baltimore (Jaffe); Department of Neuroscience, University of Pennsylvania, Philadelphia (Prettyman); Eating Disorders Center for Treatment and Research, University of California San Diego (Giegerich); Department of Medicine, Division of Clinical Pharmacology, Johns Hopkins School of Medicine, Baltimore (Carta, van Ginkel, Bigos); and Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore (Bigos)
| | - Peter B Barker
- Baltimore Research and Education Foundation, Baltimore (Zink); Lieber Institute for Brain Development, Baltimore (Zink, Weinberger, Quillian, Ulrich, Chen, Jaffe, Kleinman, Hyde, Prettyman, Giegerich, Carta, van Ginkel, Bigos); Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore (Zink, Sawa, Weinberger, Jaffe, Kleinman, Hyde, Bigos); Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins School of Medicine, Baltimore (Barker, Wang); Department of Oncology, Johns Hopkins School of Medicine, Baltimore (Barker); Kennedy Krieger Institute, Baltimore (Barker); Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore (Sawa, Jaffe); Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore (Sawa, Weinberger); McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore (Sawa, Weinberger, Jaffe); Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore (Sawa); Department of Neurology, Johns Hopkins School of Medicine, Baltimore (Weinberger, Hyde); Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore (Jaffe); Center for Computational Biology, Johns Hopkins University, Baltimore (Jaffe); Department of Neuroscience, University of Pennsylvania, Philadelphia (Prettyman); Eating Disorders Center for Treatment and Research, University of California San Diego (Giegerich); Department of Medicine, Division of Clinical Pharmacology, Johns Hopkins School of Medicine, Baltimore (Carta, van Ginkel, Bigos); and Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore (Bigos)
| | - Akira Sawa
- Baltimore Research and Education Foundation, Baltimore (Zink); Lieber Institute for Brain Development, Baltimore (Zink, Weinberger, Quillian, Ulrich, Chen, Jaffe, Kleinman, Hyde, Prettyman, Giegerich, Carta, van Ginkel, Bigos); Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore (Zink, Sawa, Weinberger, Jaffe, Kleinman, Hyde, Bigos); Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins School of Medicine, Baltimore (Barker, Wang); Department of Oncology, Johns Hopkins School of Medicine, Baltimore (Barker); Kennedy Krieger Institute, Baltimore (Barker); Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore (Sawa, Jaffe); Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore (Sawa, Weinberger); McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore (Sawa, Weinberger, Jaffe); Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore (Sawa); Department of Neurology, Johns Hopkins School of Medicine, Baltimore (Weinberger, Hyde); Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore (Jaffe); Center for Computational Biology, Johns Hopkins University, Baltimore (Jaffe); Department of Neuroscience, University of Pennsylvania, Philadelphia (Prettyman); Eating Disorders Center for Treatment and Research, University of California San Diego (Giegerich); Department of Medicine, Division of Clinical Pharmacology, Johns Hopkins School of Medicine, Baltimore (Carta, van Ginkel, Bigos); and Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore (Bigos)
| | - Daniel R Weinberger
- Baltimore Research and Education Foundation, Baltimore (Zink); Lieber Institute for Brain Development, Baltimore (Zink, Weinberger, Quillian, Ulrich, Chen, Jaffe, Kleinman, Hyde, Prettyman, Giegerich, Carta, van Ginkel, Bigos); Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore (Zink, Sawa, Weinberger, Jaffe, Kleinman, Hyde, Bigos); Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins School of Medicine, Baltimore (Barker, Wang); Department of Oncology, Johns Hopkins School of Medicine, Baltimore (Barker); Kennedy Krieger Institute, Baltimore (Barker); Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore (Sawa, Jaffe); Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore (Sawa, Weinberger); McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore (Sawa, Weinberger, Jaffe); Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore (Sawa); Department of Neurology, Johns Hopkins School of Medicine, Baltimore (Weinberger, Hyde); Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore (Jaffe); Center for Computational Biology, Johns Hopkins University, Baltimore (Jaffe); Department of Neuroscience, University of Pennsylvania, Philadelphia (Prettyman); Eating Disorders Center for Treatment and Research, University of California San Diego (Giegerich); Department of Medicine, Division of Clinical Pharmacology, Johns Hopkins School of Medicine, Baltimore (Carta, van Ginkel, Bigos); and Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore (Bigos)
| | - Min Wang
- Baltimore Research and Education Foundation, Baltimore (Zink); Lieber Institute for Brain Development, Baltimore (Zink, Weinberger, Quillian, Ulrich, Chen, Jaffe, Kleinman, Hyde, Prettyman, Giegerich, Carta, van Ginkel, Bigos); Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore (Zink, Sawa, Weinberger, Jaffe, Kleinman, Hyde, Bigos); Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins School of Medicine, Baltimore (Barker, Wang); Department of Oncology, Johns Hopkins School of Medicine, Baltimore (Barker); Kennedy Krieger Institute, Baltimore (Barker); Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore (Sawa, Jaffe); Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore (Sawa, Weinberger); McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore (Sawa, Weinberger, Jaffe); Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore (Sawa); Department of Neurology, Johns Hopkins School of Medicine, Baltimore (Weinberger, Hyde); Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore (Jaffe); Center for Computational Biology, Johns Hopkins University, Baltimore (Jaffe); Department of Neuroscience, University of Pennsylvania, Philadelphia (Prettyman); Eating Disorders Center for Treatment and Research, University of California San Diego (Giegerich); Department of Medicine, Division of Clinical Pharmacology, Johns Hopkins School of Medicine, Baltimore (Carta, van Ginkel, Bigos); and Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore (Bigos)
| | - Henry Quillian
- Baltimore Research and Education Foundation, Baltimore (Zink); Lieber Institute for Brain Development, Baltimore (Zink, Weinberger, Quillian, Ulrich, Chen, Jaffe, Kleinman, Hyde, Prettyman, Giegerich, Carta, van Ginkel, Bigos); Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore (Zink, Sawa, Weinberger, Jaffe, Kleinman, Hyde, Bigos); Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins School of Medicine, Baltimore (Barker, Wang); Department of Oncology, Johns Hopkins School of Medicine, Baltimore (Barker); Kennedy Krieger Institute, Baltimore (Barker); Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore (Sawa, Jaffe); Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore (Sawa, Weinberger); McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore (Sawa, Weinberger, Jaffe); Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore (Sawa); Department of Neurology, Johns Hopkins School of Medicine, Baltimore (Weinberger, Hyde); Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore (Jaffe); Center for Computational Biology, Johns Hopkins University, Baltimore (Jaffe); Department of Neuroscience, University of Pennsylvania, Philadelphia (Prettyman); Eating Disorders Center for Treatment and Research, University of California San Diego (Giegerich); Department of Medicine, Division of Clinical Pharmacology, Johns Hopkins School of Medicine, Baltimore (Carta, van Ginkel, Bigos); and Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore (Bigos)
| | - William S Ulrich
- Baltimore Research and Education Foundation, Baltimore (Zink); Lieber Institute for Brain Development, Baltimore (Zink, Weinberger, Quillian, Ulrich, Chen, Jaffe, Kleinman, Hyde, Prettyman, Giegerich, Carta, van Ginkel, Bigos); Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore (Zink, Sawa, Weinberger, Jaffe, Kleinman, Hyde, Bigos); Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins School of Medicine, Baltimore (Barker, Wang); Department of Oncology, Johns Hopkins School of Medicine, Baltimore (Barker); Kennedy Krieger Institute, Baltimore (Barker); Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore (Sawa, Jaffe); Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore (Sawa, Weinberger); McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore (Sawa, Weinberger, Jaffe); Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore (Sawa); Department of Neurology, Johns Hopkins School of Medicine, Baltimore (Weinberger, Hyde); Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore (Jaffe); Center for Computational Biology, Johns Hopkins University, Baltimore (Jaffe); Department of Neuroscience, University of Pennsylvania, Philadelphia (Prettyman); Eating Disorders Center for Treatment and Research, University of California San Diego (Giegerich); Department of Medicine, Division of Clinical Pharmacology, Johns Hopkins School of Medicine, Baltimore (Carta, van Ginkel, Bigos); and Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore (Bigos)
| | - Qiang Chen
- Baltimore Research and Education Foundation, Baltimore (Zink); Lieber Institute for Brain Development, Baltimore (Zink, Weinberger, Quillian, Ulrich, Chen, Jaffe, Kleinman, Hyde, Prettyman, Giegerich, Carta, van Ginkel, Bigos); Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore (Zink, Sawa, Weinberger, Jaffe, Kleinman, Hyde, Bigos); Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins School of Medicine, Baltimore (Barker, Wang); Department of Oncology, Johns Hopkins School of Medicine, Baltimore (Barker); Kennedy Krieger Institute, Baltimore (Barker); Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore (Sawa, Jaffe); Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore (Sawa, Weinberger); McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore (Sawa, Weinberger, Jaffe); Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore (Sawa); Department of Neurology, Johns Hopkins School of Medicine, Baltimore (Weinberger, Hyde); Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore (Jaffe); Center for Computational Biology, Johns Hopkins University, Baltimore (Jaffe); Department of Neuroscience, University of Pennsylvania, Philadelphia (Prettyman); Eating Disorders Center for Treatment and Research, University of California San Diego (Giegerich); Department of Medicine, Division of Clinical Pharmacology, Johns Hopkins School of Medicine, Baltimore (Carta, van Ginkel, Bigos); and Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore (Bigos)
| | - Andrew E Jaffe
- Baltimore Research and Education Foundation, Baltimore (Zink); Lieber Institute for Brain Development, Baltimore (Zink, Weinberger, Quillian, Ulrich, Chen, Jaffe, Kleinman, Hyde, Prettyman, Giegerich, Carta, van Ginkel, Bigos); Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore (Zink, Sawa, Weinberger, Jaffe, Kleinman, Hyde, Bigos); Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins School of Medicine, Baltimore (Barker, Wang); Department of Oncology, Johns Hopkins School of Medicine, Baltimore (Barker); Kennedy Krieger Institute, Baltimore (Barker); Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore (Sawa, Jaffe); Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore (Sawa, Weinberger); McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore (Sawa, Weinberger, Jaffe); Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore (Sawa); Department of Neurology, Johns Hopkins School of Medicine, Baltimore (Weinberger, Hyde); Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore (Jaffe); Center for Computational Biology, Johns Hopkins University, Baltimore (Jaffe); Department of Neuroscience, University of Pennsylvania, Philadelphia (Prettyman); Eating Disorders Center for Treatment and Research, University of California San Diego (Giegerich); Department of Medicine, Division of Clinical Pharmacology, Johns Hopkins School of Medicine, Baltimore (Carta, van Ginkel, Bigos); and Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore (Bigos)
| | - Joel E Kleinman
- Baltimore Research and Education Foundation, Baltimore (Zink); Lieber Institute for Brain Development, Baltimore (Zink, Weinberger, Quillian, Ulrich, Chen, Jaffe, Kleinman, Hyde, Prettyman, Giegerich, Carta, van Ginkel, Bigos); Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore (Zink, Sawa, Weinberger, Jaffe, Kleinman, Hyde, Bigos); Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins School of Medicine, Baltimore (Barker, Wang); Department of Oncology, Johns Hopkins School of Medicine, Baltimore (Barker); Kennedy Krieger Institute, Baltimore (Barker); Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore (Sawa, Jaffe); Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore (Sawa, Weinberger); McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore (Sawa, Weinberger, Jaffe); Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore (Sawa); Department of Neurology, Johns Hopkins School of Medicine, Baltimore (Weinberger, Hyde); Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore (Jaffe); Center for Computational Biology, Johns Hopkins University, Baltimore (Jaffe); Department of Neuroscience, University of Pennsylvania, Philadelphia (Prettyman); Eating Disorders Center for Treatment and Research, University of California San Diego (Giegerich); Department of Medicine, Division of Clinical Pharmacology, Johns Hopkins School of Medicine, Baltimore (Carta, van Ginkel, Bigos); and Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore (Bigos)
| | - Thomas M Hyde
- Baltimore Research and Education Foundation, Baltimore (Zink); Lieber Institute for Brain Development, Baltimore (Zink, Weinberger, Quillian, Ulrich, Chen, Jaffe, Kleinman, Hyde, Prettyman, Giegerich, Carta, van Ginkel, Bigos); Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore (Zink, Sawa, Weinberger, Jaffe, Kleinman, Hyde, Bigos); Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins School of Medicine, Baltimore (Barker, Wang); Department of Oncology, Johns Hopkins School of Medicine, Baltimore (Barker); Kennedy Krieger Institute, Baltimore (Barker); Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore (Sawa, Jaffe); Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore (Sawa, Weinberger); McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore (Sawa, Weinberger, Jaffe); Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore (Sawa); Department of Neurology, Johns Hopkins School of Medicine, Baltimore (Weinberger, Hyde); Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore (Jaffe); Center for Computational Biology, Johns Hopkins University, Baltimore (Jaffe); Department of Neuroscience, University of Pennsylvania, Philadelphia (Prettyman); Eating Disorders Center for Treatment and Research, University of California San Diego (Giegerich); Department of Medicine, Division of Clinical Pharmacology, Johns Hopkins School of Medicine, Baltimore (Carta, van Ginkel, Bigos); and Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore (Bigos)
| | - Greer E Prettyman
- Baltimore Research and Education Foundation, Baltimore (Zink); Lieber Institute for Brain Development, Baltimore (Zink, Weinberger, Quillian, Ulrich, Chen, Jaffe, Kleinman, Hyde, Prettyman, Giegerich, Carta, van Ginkel, Bigos); Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore (Zink, Sawa, Weinberger, Jaffe, Kleinman, Hyde, Bigos); Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins School of Medicine, Baltimore (Barker, Wang); Department of Oncology, Johns Hopkins School of Medicine, Baltimore (Barker); Kennedy Krieger Institute, Baltimore (Barker); Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore (Sawa, Jaffe); Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore (Sawa, Weinberger); McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore (Sawa, Weinberger, Jaffe); Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore (Sawa); Department of Neurology, Johns Hopkins School of Medicine, Baltimore (Weinberger, Hyde); Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore (Jaffe); Center for Computational Biology, Johns Hopkins University, Baltimore (Jaffe); Department of Neuroscience, University of Pennsylvania, Philadelphia (Prettyman); Eating Disorders Center for Treatment and Research, University of California San Diego (Giegerich); Department of Medicine, Division of Clinical Pharmacology, Johns Hopkins School of Medicine, Baltimore (Carta, van Ginkel, Bigos); and Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore (Bigos)
| | - Mellissa Giegerich
- Baltimore Research and Education Foundation, Baltimore (Zink); Lieber Institute for Brain Development, Baltimore (Zink, Weinberger, Quillian, Ulrich, Chen, Jaffe, Kleinman, Hyde, Prettyman, Giegerich, Carta, van Ginkel, Bigos); Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore (Zink, Sawa, Weinberger, Jaffe, Kleinman, Hyde, Bigos); Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins School of Medicine, Baltimore (Barker, Wang); Department of Oncology, Johns Hopkins School of Medicine, Baltimore (Barker); Kennedy Krieger Institute, Baltimore (Barker); Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore (Sawa, Jaffe); Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore (Sawa, Weinberger); McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore (Sawa, Weinberger, Jaffe); Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore (Sawa); Department of Neurology, Johns Hopkins School of Medicine, Baltimore (Weinberger, Hyde); Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore (Jaffe); Center for Computational Biology, Johns Hopkins University, Baltimore (Jaffe); Department of Neuroscience, University of Pennsylvania, Philadelphia (Prettyman); Eating Disorders Center for Treatment and Research, University of California San Diego (Giegerich); Department of Medicine, Division of Clinical Pharmacology, Johns Hopkins School of Medicine, Baltimore (Carta, van Ginkel, Bigos); and Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore (Bigos)
| | - Kayla Carta
- Baltimore Research and Education Foundation, Baltimore (Zink); Lieber Institute for Brain Development, Baltimore (Zink, Weinberger, Quillian, Ulrich, Chen, Jaffe, Kleinman, Hyde, Prettyman, Giegerich, Carta, van Ginkel, Bigos); Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore (Zink, Sawa, Weinberger, Jaffe, Kleinman, Hyde, Bigos); Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins School of Medicine, Baltimore (Barker, Wang); Department of Oncology, Johns Hopkins School of Medicine, Baltimore (Barker); Kennedy Krieger Institute, Baltimore (Barker); Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore (Sawa, Jaffe); Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore (Sawa, Weinberger); McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore (Sawa, Weinberger, Jaffe); Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore (Sawa); Department of Neurology, Johns Hopkins School of Medicine, Baltimore (Weinberger, Hyde); Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore (Jaffe); Center for Computational Biology, Johns Hopkins University, Baltimore (Jaffe); Department of Neuroscience, University of Pennsylvania, Philadelphia (Prettyman); Eating Disorders Center for Treatment and Research, University of California San Diego (Giegerich); Department of Medicine, Division of Clinical Pharmacology, Johns Hopkins School of Medicine, Baltimore (Carta, van Ginkel, Bigos); and Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore (Bigos)
| | - Marcus van Ginkel
- Baltimore Research and Education Foundation, Baltimore (Zink); Lieber Institute for Brain Development, Baltimore (Zink, Weinberger, Quillian, Ulrich, Chen, Jaffe, Kleinman, Hyde, Prettyman, Giegerich, Carta, van Ginkel, Bigos); Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore (Zink, Sawa, Weinberger, Jaffe, Kleinman, Hyde, Bigos); Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins School of Medicine, Baltimore (Barker, Wang); Department of Oncology, Johns Hopkins School of Medicine, Baltimore (Barker); Kennedy Krieger Institute, Baltimore (Barker); Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore (Sawa, Jaffe); Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore (Sawa, Weinberger); McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore (Sawa, Weinberger, Jaffe); Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore (Sawa); Department of Neurology, Johns Hopkins School of Medicine, Baltimore (Weinberger, Hyde); Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore (Jaffe); Center for Computational Biology, Johns Hopkins University, Baltimore (Jaffe); Department of Neuroscience, University of Pennsylvania, Philadelphia (Prettyman); Eating Disorders Center for Treatment and Research, University of California San Diego (Giegerich); Department of Medicine, Division of Clinical Pharmacology, Johns Hopkins School of Medicine, Baltimore (Carta, van Ginkel, Bigos); and Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore (Bigos)
| | - Kristin L Bigos
- Baltimore Research and Education Foundation, Baltimore (Zink); Lieber Institute for Brain Development, Baltimore (Zink, Weinberger, Quillian, Ulrich, Chen, Jaffe, Kleinman, Hyde, Prettyman, Giegerich, Carta, van Ginkel, Bigos); Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore (Zink, Sawa, Weinberger, Jaffe, Kleinman, Hyde, Bigos); Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins School of Medicine, Baltimore (Barker, Wang); Department of Oncology, Johns Hopkins School of Medicine, Baltimore (Barker); Kennedy Krieger Institute, Baltimore (Barker); Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore (Sawa, Jaffe); Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore (Sawa, Weinberger); McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore (Sawa, Weinberger, Jaffe); Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore (Sawa); Department of Neurology, Johns Hopkins School of Medicine, Baltimore (Weinberger, Hyde); Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore (Jaffe); Center for Computational Biology, Johns Hopkins University, Baltimore (Jaffe); Department of Neuroscience, University of Pennsylvania, Philadelphia (Prettyman); Eating Disorders Center for Treatment and Research, University of California San Diego (Giegerich); Department of Medicine, Division of Clinical Pharmacology, Johns Hopkins School of Medicine, Baltimore (Carta, van Ginkel, Bigos); and Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore (Bigos)
| |
Collapse
|
14
|
Cieślik P, Wierońska JM. Regulation of Glutamatergic Activity via Bidirectional Activation of Two Select Receptors as a Novel Approach in Antipsychotic Drug Discovery. Int J Mol Sci 2020; 21:ijms21228811. [PMID: 33233865 PMCID: PMC7699963 DOI: 10.3390/ijms21228811] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/10/2020] [Accepted: 11/16/2020] [Indexed: 12/14/2022] Open
Abstract
Schizophrenia is a mental disorder that affects approximately 1-2% of the population and develops in early adulthood. The disease is characterized by positive, negative, and cognitive symptoms. A large percentage of patients with schizophrenia have a treatment-resistant disease, and the risk of developing adverse effects is high. Many researchers have attempted to introduce new antipsychotic drugs to the clinic, but most of these treatments failed, and the diversity of schizophrenic symptoms is one of the causes of disappointing results. The present review summarizes the results of our latest papers, showing that the simultaneous activation of two receptors with sub-effective doses of their ligands induces similar effects as the highest dose of each compound alone. The treatments were focused on inhibiting the increased glutamate release responsible for schizophrenia arousal, without interacting with dopamine (D2) receptors. Ligands activating metabotropic receptors for glutamate, GABAB or muscarinic receptors were used, and the compounds were administered in several different combinations. Some combinations reversed all schizophrenia-related deficits in animal models, but others were active only in select models of schizophrenia symptoms (i.e., cognitive or negative symptoms).
Collapse
|
15
|
Li Q, Jin R, Zhang S, Sun X, Wu J. Group II metabotropic glutamate receptor agonist promotes retinal ganglion cell survival by reducing neuronal excitotoxicity in a rat chronic ocular hypertension model. Neuropharmacology 2020; 170:108016. [PMID: 32101763 DOI: 10.1016/j.neuropharm.2020.108016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/24/2020] [Accepted: 02/21/2020] [Indexed: 02/06/2023]
Abstract
Glaucoma, the second leading cause of irreversible blindness worldwide, is characterized by the selective death of retinal ganglion cells (RGCs). The group II metabotropic glutamate receptor (mGluR II) activation has been linked to RGC survival, however, the mechanism by which it promotes neuronal survival remains poorly defined. In the present work, we show that extracellular application of LY341495, an mGluR II antagonist could increase the RGC firing frequency, suggesting that activation of mGluR II by endogenously released glutamate could modulate RGC excitability. LY354740, an mGluR II agonist, significantly decreased RGC excitability and the reduced presynaptic excitatory inputs and post-synaptic Ca2+-permeable currents mediated the LY354740-induced effects. By using a well-characterized in vivo male Sprague-Dawley rat glaucoma model, we further demonstrate that in the early stage of experimental glaucoma, the expression of mGluR II dimer-formed protein was significantly reduced, and pre-activation of mGluR II by intravitreal injection of LY354740 before establishment of the glaucoma model could effectively reduce excitatory inputs, thereby reversing hyperexcitability induced by elevated intraocular pressure. Furthermore, LY354740 could increase the expression level of brain-derived neurotrophic factor in the glaucomatous retinas, further protecting RGCs. Our study indicates that the abnormal expression of mGluR II may accelerate RGC apoptosis in glaucoma, and demonstrates that mGluR II agonist LY354740 can be used as a novel method to counter RGC apoptosis in glaucoma.
Collapse
Affiliation(s)
- Qian Li
- Eye Institute, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, 200031, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, 200031, China; NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, 200031, China; Department of Ophthalmology and Vision Science, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Ruiri Jin
- Department of Gastroenterology, Songjiang Central Hospital, Shanghai, 201600, China
| | - Shenghai Zhang
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, 200031, China; NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, 200031, China
| | - Xinghuai Sun
- Eye Institute, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, 200031, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, 200031, China; NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, 200031, China; Department of Ophthalmology and Vision Science, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China.
| | - Jihong Wu
- Eye Institute, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, 200031, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, 200031, China; NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, 200031, China; Department of Ophthalmology and Vision Science, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China.
| |
Collapse
|
16
|
Parkin GM, Gibbons A, Udawela M, Dean B. Excitatory amino acid transporter (EAAT)1 and EAAT2 mRNA levels are altered in the prefrontal cortex of subjects with schizophrenia. J Psychiatr Res 2020; 123:151-158. [PMID: 32065951 DOI: 10.1016/j.jpsychires.2020.02.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 12/21/2022]
Abstract
Excitatory amino acid transporter (EAAT)1 and EAAT2 mediate glutamatergic neurotransmission and prevent excitotoxicity through binding and transportation of glutamate into glia. These EAATs may be regulated by metabotropic glutamate receptor 5 (mGluR5), which is also expressed by glia. Whilst we have data from an Affymetrix™ Human Exon 1.0 ST Array showing higher levels of EAAT1 mRNA (+36%) in Brodmann's are (BA)9 of subjects with schizophrenia, there is evidence that EAAT1 and EAAT2, as well as mGluR5 levels, are altered in the cortex of subjects with the disorder. Hence, we measured mRNA levels of these genes in other cortical regions in subjects with that disorder. EAAT1, EAAT2 and mGluR5 mRNA were measured, in triplicate, using Quantitative PCR in BA10 and BA46 from subjects with schizophrenia (n = 20) and age and sex matched controls (n = 18). Levels of mRNA were normalised to the geometric mean of two reference genes, transcription factor B1, mitochondrial (TFB1M) and S-phase kinase-associated protein 1A (SKP1A), for which mRNA did not vary between diagnostic groups in either region. Normalised levels of EAAT1 and EAAT2 mRNA were significantly higher in BA10 (EAAT1: U = 58, p = 0.0002; EAAT2 U = 70, p = 0.0009), but not BA46 (EAAT1: U = 122, p = 0.09; EAAT2: U = 136, p = 0.21), from subjects with schizophrenia compared to controls. mGluR5 levels in BA10 (U = 173, p=0.85) and BA46 (U = 178, p = 0.96) did not vary by cohort. Our data suggests that region-specific increases in cortical EAAT1 and EAAT2 mRNA are involved in schizophrenia pathophysiology and that disrupted glutamate uptake in schizophrenia may be of particular significance in BA10.
Collapse
Affiliation(s)
- Georgia M Parkin
- The Molecular Psychiatry Laboratory, The Florey Institute for Neuroscience and Mental Health, Parkville, Victoria, Australia; The Cooperative Research Centre for Mental Health, Parkville, Victoria, Australia.
| | - Andrew Gibbons
- The Molecular Psychiatry Laboratory, The Florey Institute for Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Madhara Udawela
- The Molecular Psychiatry Laboratory, The Florey Institute for Neuroscience and Mental Health, Parkville, Victoria, Australia; The Cooperative Research Centre for Mental Health, Parkville, Victoria, Australia
| | - Brian Dean
- The Molecular Psychiatry Laboratory, The Florey Institute for Neuroscience and Mental Health, Parkville, Victoria, Australia; The Cooperative Research Centre for Mental Health, Parkville, Victoria, Australia; The Centre for Mental Health, The Faculty of Health, Arts and Design, Swinburne University, Hawthorne, Victoria, Australia
| |
Collapse
|
17
|
Gregory JM, McDade K, Livesey MR, Croy I, Marion de Proce S, Aitman T, Chandran S, Smith C. Spatial transcriptomics identifies spatially dysregulated expression of GRM3 and USP47 in amyotrophic lateral sclerosis. Neuropathol Appl Neurobiol 2020; 46:441-457. [PMID: 31925813 DOI: 10.1111/nan.12597] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 12/21/2019] [Indexed: 02/02/2023]
Abstract
AIMS The mechanisms underlying the selective degeneration of motor neurones in amyotrophic lateral sclerosis (ALS) are poorly understood. The aim of this study was to implement spatially resolved RNA sequencing in human post mortem cortical tissue from an ALS patient harbouring the C9orf72 hexanucleotide repeat expansion to identify dysregulated transcripts that may account for differential vulnerabilities of distinct (i) cell types and (ii) brain regions in the pathogenesis of ALS. METHODS Using spatial transcriptomics (ST) we analysed the transcriptome of post mortem brain tissue, with spatial resolution down to 100 μm. Validation of these findings was then performed using BaseScope, an adapted, in situ hybridization technique with single-transcript single-cell-resolution, providing extensive regional and cell-type specific confirmation of these dysregulated transcripts. The validation cohort was then extended to include multiple post mortem brain regions and spinal cord tissue from an extended cohort of C9orf72, sporadic ALS (sALS) and SOD1 ALS cases. RESULTS We identified sixteen dysregulated transcripts of proteins that have roles within six disease-related pathways. Furthermore, these complementary molecular pathology techniques converged to identify two spatially dysregulated transcripts, GRM3 and USP47, that are commonly dysregulated across sALS, SOD1 and C9orf72 cases alike. CONCLUSIONS This study presents the first description of ST in human post mortem cortical tissue from an ALS patient harbouring the C9orf72 hexanucleotide repeat expansion. These data taken together highlight the importance of preserving spatial resolution, facilitating the identification of genes whose dysregulation may in part underlie regional susceptibilities to ALS, crucially highlighting potential therapeutic and diagnostic targets.
Collapse
Affiliation(s)
- J M Gregory
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK.,Edinburgh Pathology, University of Edinburgh, Edinburgh, UK.,Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK
| | - K McDade
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK.,Edinburgh Pathology, University of Edinburgh, Edinburgh, UK.,Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK
| | - M R Livesey
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK.,Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - I Croy
- Edinburgh Pathology, University of Edinburgh, Edinburgh, UK.,Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - S Marion de Proce
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - T Aitman
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK.,Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - S Chandran
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK.,Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK.,Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - C Smith
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK.,Edinburgh Pathology, University of Edinburgh, Edinburgh, UK.,Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
18
|
Neale JH, Yamamoto T. N-acetylaspartylglutamate (NAAG) and glutamate carboxypeptidase II: An abundant peptide neurotransmitter-enzyme system with multiple clinical applications. Prog Neurobiol 2019; 184:101722. [PMID: 31730793 DOI: 10.1016/j.pneurobio.2019.101722] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 09/24/2019] [Accepted: 11/11/2019] [Indexed: 12/13/2022]
Abstract
N-Acetylaspartylglutamate (NAAG) is the third most prevalent neurotransmitter in the mammalian nervous system, yet its therapeutic potential is only now being fully recognized. Drugs that inhibit the inactivation of NAAG by glutamate carboxypeptidase II (GCPII) increase its extracellular concentration and its activation of its receptor, mGluR3. These drugs warrant attention, as they are effective in animal models of several clinical disorders including stroke, traumatic brain injury and schizophrenia. In inflammatory and neuropathic pain studies, GCPII inhibitors moderated both the primary and secondary pain responses when given systemically, locally or in brain regions associated with the pain perception pathway. The finding that GCPII inhibition also moderated the motor and cognitive effects of ethanol intoxication led to the discovery of their procognitive efficacy in long-term memory tests in control mice and in short-term memory in a mouse model of Alzheimer's disease. NAAG and GCPII inhibitors respectively reduce cocaine self-administration and the rewarding effects of a synthetic stimulant. Most recently, GCPII inhibition also has been reported to be efficacious in a model of inflammatory bowel disease. GCPII was first discovered as a protein expressed by and released from metastatic prostate cells where it is known as prostate specific membrane antigen (PSMA). GCPII inhibitors with high affinity for this protein have been developed as prostate imaging and radiochemical therapies for prostate cancer. Taken together, these data militate in favor of the development and application of GCPII inhibitors in more advanced preclinical research as a prelude to clinical trials.
Collapse
Affiliation(s)
- Joseph H Neale
- Department of Biology, Georgetown University, 37(th) and O Sts., NW, Washington, DC, 20057, USA.
| | - Tatsuo Yamamoto
- Dept. of Anesthesiology, Kumamoto University., Kumamoto, Japan
| |
Collapse
|
19
|
Wood PL. Targeted lipidomics and metabolomics evaluations of cortical neuronal stress in schizophrenia. Schizophr Res 2019; 212:107-112. [PMID: 31434624 DOI: 10.1016/j.schres.2019.08.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/02/2019] [Accepted: 08/03/2019] [Indexed: 01/01/2023]
Abstract
BACKGROUND Cortical neuronal dysfunction has been proposed to underlie the psychopathology and cognitive dysfunction of schizophrenia. Previously we have reported altered sphingolipid and N-acylphosphatidylserine (NAPS) metabolism in the frontal cortex in schizophrenia. We continue to expand these investigations to define the biochemical basis for these critical neuropathologies. METHODS We undertook a targeted high resolution mass spectrometric analysis to validate our previous reports of elevated sphingolipids and NAPS in the frontal cortex of a new cohort of schizophrenia subjects. Furthermore we expanded these analyses to include ceramides, N-acylphosphatidylethanolamines (NAPE), and N-acylethanolamines (NAE). In the same tissue samples we examined N-acetylaspartylglutamate (NAAG), a modulator of excitatory amino acid transmission, hypothesized to be involved in the pathology of schizophrenia. RESULTS We repeated our observations of elevated sulfatides in the frontal cortex in schizophrenia. An in-depth analysis of other sphingolipids revealed decrements in ceramide levels and increased levels of lactosylceramides. NAPS also were found to be augmented in schizophrenia as we previously reported. In addition, levels of NAPES, established biomarkers of neuronal stress, were elevated while their metabolites, NAEs were decreased. With regard to excitatory amino acid neurotransmission, NAAG levels were decreased by 50% while the metabolic precursor, N-acetylaspartate was unaltered. CONCLUSIONS Our data support the concept of cortical neuronal dysfunction in schizophrenia as indicated by altered metabolism of structural sphingolipids and NAAG, a modulator of excitatory amino acid neurotransmission.
Collapse
Affiliation(s)
- Paul L Wood
- Metabolomics Unit, College of Veterinary Medicine, Lincoln Memorial University, 6965 Cumberland Gap Pkwy., Harrogate, TN 37752, United States of America.
| |
Collapse
|
20
|
Jin LE, Wang M, Galvin VC, Lightbourne TC, Conn PJ, Arnsten AFT, Paspalas CD. mGluR2 versus mGluR3 Metabotropic Glutamate Receptors in Primate Dorsolateral Prefrontal Cortex: Postsynaptic mGluR3 Strengthen Working Memory Networks. Cereb Cortex 2019; 28:974-987. [PMID: 28108498 DOI: 10.1093/cercor/bhx005] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Indexed: 01/06/2023] Open
Abstract
The newly evolved circuits in layer III of primate dorsolateral prefrontal cortex (dlPFC) generate the neural representations that subserve working memory. These circuits are weakened by increased cAMP-K+ channel signaling, and are a focus of pathology in schizophrenia, aging, and Alzheimer's disease. Cognitive deficits in these disorders are increasingly associated with insults to mGluR3 metabotropic glutamate receptors, while reductions in mGluR2 appear protective. This has been perplexing, as mGluR3 has been considered glial receptors, and mGluR2 and mGluR3 have been thought to have similar functions, reducing glutamate transmission. We have discovered that, in addition to their astrocytic expression, mGluR3 is concentrated postsynaptically in spine synapses of layer III dlPFC, positioned to strengthen connectivity by inhibiting postsynaptic cAMP-K+ channel actions. In contrast, mGluR2 is principally presynaptic as expected, with only a minor postsynaptic component. Functionally, increase in the endogenous mGluR3 agonist, N-acetylaspartylglutamate, markedly enhanced dlPFC Delay cell firing during a working memory task via inhibition of cAMP signaling, while the mGluR2 positive allosteric modulator, BINA, produced an inverted-U dose-response on dlPFC Delay cell firing and working memory performance. These data illuminate why insults to mGluR3 would erode cognitive abilities, and support mGluR3 as a novel therapeutic target for higher cognitive disorders.
Collapse
Affiliation(s)
- Lu E Jin
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Min Wang
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Veronica C Galvin
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Taber C Lightbourne
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Peter Jeffrey Conn
- Department of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt UniversityMedical Center, Nashville, TN 37232-0697, USA
| | - Amy F T Arnsten
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | | |
Collapse
|
21
|
Lucatch AM, Lowe DJE, Clark RC, Kozak K, George TP. Neurobiological Determinants of Tobacco Smoking in Schizophrenia. Front Psychiatry 2018; 9:672. [PMID: 30574101 PMCID: PMC6291492 DOI: 10.3389/fpsyt.2018.00672] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 11/21/2018] [Indexed: 12/22/2022] Open
Abstract
Purpose of review: To provide an overview of the underlying neurobiology of tobacco smoking in schizophrenia, and implications for treatment of this comorbidity. Recent findings: Explanations for heavy tobacco smoking in schizophrenia include pro-cognitive effects of nicotine, and remediation of the underlying pathophysiology of schizophrenia. Nicotine may ameliorate neurochemical deficits through nicotine acetylcholine receptors (nAChRs) located on the dopamine, glutamate, and GABA neurons. Neurophysiological indices including electroencephalography, electromyography, and smooth pursuit eye movement (SPEM) paradigms may be biomarkers for underlying neuronal imbalances that contribute to the specific risk of tobacco smoking initiation, maintenance, and difficulty quitting within schizophrenia. Moreover, several social factors including socioeconomic factors and permissive smoking culture in mental health facilities, may contribute to the smoking behaviors (initiation, maintenance, and inability to quit smoking) within this disorder. Summary: Tobacco smoking may alleviate specific symptoms associated with schizophrenia. Understanding the neurobiological underpinnings and psychosocial determinants of this comorbidity may better explain these potential beneficial effects, while also providing important insights into effective treatments for smoking cessation.
Collapse
Affiliation(s)
- Aliya M. Lucatch
- Addictions Division, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Darby J. E. Lowe
- Addictions Division, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Rachel C. Clark
- Addictions Division, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Karolina Kozak
- Addictions Division, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Tony P. George
- Addictions Division, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
- Division and Brain and Therapeutics, Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
22
|
Datta D, Arnsten AF. Unique Molecular Regulation of Higher-Order Prefrontal Cortical Circuits: Insights into the Neurobiology of Schizophrenia. ACS Chem Neurosci 2018; 9:2127-2145. [PMID: 29470055 DOI: 10.1021/acschemneuro.7b00505] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Schizophrenia is associated with core deficits in cognitive abilities and impaired functioning of the newly evolved prefrontal association cortex (PFC). In particular, neuropathological studies of schizophrenia have found selective atrophy of the pyramidal cell microcircuits in deep layer III of the dorsolateral PFC (dlPFC) and compensatory weakening of related GABAergic interneurons. Studies in monkeys have shown that recurrent excitation in these layer III microcircuits generates the precisely patterned, persistent firing needed for working memory and abstract thought. Importantly, excitatory synapses on layer III spines are uniquely regulated at the molecular level in ways that may render them particularly vulnerable to genetic and/or environmental insults. Glutamate actions are remarkably dependent on cholinergic stimulation, and there are inherent mechanisms to rapidly weaken connectivity, e.g. during stress. In particular, feedforward cyclic adenosine monophosphate (cAMP)-calcium signaling rapidly weakens network connectivity and neuronal firing by opening nearby potassium channels. Many mechanisms that regulate this process are altered in schizophrenia and/or associated with genetic insults. Current data suggest that there are "dual hits" to layer III dlPFC circuits: initial insults to connectivity during the perinatal period due to genetic errors and/or inflammatory insults that predispose the cortex to atrophy, followed by a second wave of cortical loss during adolescence, e.g. driven by stress, at the descent into illness. The unique molecular regulation of layer III circuits may provide a nexus where inflammation disinhibits the neuronal response to stress. Understanding these mechanisms may help to illuminate dlPFC susceptibility in schizophrenia and provide insights for novel therapeutic targets.
Collapse
Affiliation(s)
- Dibyadeep Datta
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06510, United States
| | - Amy F.T. Arnsten
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06510, United States
| |
Collapse
|
23
|
Age-Related Declines in Prefrontal Cortical Expression of Metabotropic Glutamate Receptors that Support Working Memory. eNeuro 2018; 5:eN-NWR-0164-18. [PMID: 29971246 PMCID: PMC6026020 DOI: 10.1523/eneuro.0164-18.2018] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/07/2018] [Accepted: 06/07/2018] [Indexed: 11/21/2022] Open
Abstract
Glutamate signaling is essential for the persistent neural activity in prefrontal cortex (PFC) that enables working memory. Metabotropic glutamate receptors (mGluRs) are a diverse class of proteins that modulate excitatory neurotransmission via both presynaptic regulation of extracellular glutamate levels and postsynaptic modulation of ion channels on dendritic spines. This receptor class is of significant therapeutic interest for treatment of cognitive disorders associated with glutamate dysregulation. Working memory impairment and cortical hypoexcitability are both associated with advanced aging. Whether aging modifies PFC mGluR expression, and the extent to which any such alterations are regionally or subtype specific, however, is unknown. Moreover, it is unclear whether specific mGluRs in PFC are critical for working memory, and thus, whether altered mGluR expression in aging or disease is sufficient to play a causative role in working memory decline. Experiments in the current study first evaluated the effects of age on medial PFC (mPFC) mGluR expression using biochemical and molecular approaches in rats. Of the eight mGluRs examined, only mGluR5, mGluR3, and mGluR4 were significantly reduced in the aged PFC. The reductions in mGluR3 and mGluR5 (but not mGluR4) were observed in both mRNA and protein and were selectively localized to the prelimbic (PrL), but not infralimbic (IL), subregion of mPFC. Finally, pharmacological blockade of mGluR5 or mGluR2/3 using selective antagonists directed to PrL significantly impaired working memory without influencing non-mnemonic aspects of task performance. Together, these data implicate attenuated expression of PFC mGluR5 and mGluR3 in the impaired working memory associated with advanced ages.
Collapse
|
24
|
Jin LE, Wang M, Yang ST, Yang Y, Galvin VC, Lightbourne TC, Ottenheimer D, Zhong Q, Stein J, Raja A, Paspalas CD, Arnsten AFT. mGluR2/3 mechanisms in primate dorsolateral prefrontal cortex: evidence for both presynaptic and postsynaptic actions. Mol Psychiatry 2017; 22:1615-1625. [PMID: 27502475 PMCID: PMC5298940 DOI: 10.1038/mp.2016.129] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 05/04/2016] [Accepted: 06/15/2016] [Indexed: 01/12/2023]
Abstract
Cognitive deficits in psychiatric and age-related disorders generally involve dysfunction of the dorsolateral prefrontal cortex (dlPFC), but there are few treatments for these debilitating symptoms. Group II metabotropic glutamate receptors (mGluR2/3), which couple to Gi/Go, have been a focus of therapeutics based on rodent research, where mGluR2/3 have been shown to reduce axonal glutamate release and increase glial glutamate uptake. However, this strategy has had mixed results in patients, and understanding mGluR2/3 mechanisms in primates will help guide therapeutic interventions. The current study examined mGluR2/3 localization and actions in the primate dlPFC layer III circuits underlying working memory, where the persistent firing of 'Delay cells' is mediated by N-methyl-d-aspartate receptors and weakened by cAMP-PKA-potassium channel signaling in dendritic spines. Immunoelectron microscopy identified postsynaptic mGluR2/3 in the spines, in addition to the traditional presynaptic and astrocytic locations. In vivo iontophoretic application of the mGluR2/3 agonists (2R, 4R)-APDC or LY379268 onto dlPFC Delay cells produced an inverted-U effect on working memory representation, with enhanced neuronal firing following low doses of mGluR2/3 agonists. The enhancing effects were reversed by an mGluR2/3 antagonist or by activating cAMP signaling, consistent with mGluR2/3 inhibiting postsynaptic cAMP signaling in spines. Systemic administration of these agonists to monkeys performing a working memory task also produced an inverted-U dose-response, where low doses improved performance but higher doses, similar to clinical trials, had mixed effects. Our data suggest that low doses of mGluR2/3 stimulation may have therapeutic effects through unexpected postsynaptic actions in dlPFC, strengthening synaptic connections and improving cognitive function.
Collapse
Affiliation(s)
- L E Jin
- Department of Neuroscience, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - M Wang
- Department of Neuroscience, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - S-T Yang
- Department of Neuroscience, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Y Yang
- Department of Neuroscience, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - V C Galvin
- Department of Neuroscience, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - T C Lightbourne
- Department of Neuroscience, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - D Ottenheimer
- Department of Neuroscience, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Q Zhong
- Department of Neuroscience, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - J Stein
- Department of Neuroscience, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - A Raja
- Department of Neuroscience, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - C D Paspalas
- Department of Neuroscience, Yale School of Medicine, Yale University, New Haven, CT, USA,Department of Neuroscience, Yale School of Medicine, Yale University, 333 Cedar Street, New Haven, CT 06520, USA. E-mail: or
| | - A F T Arnsten
- Department of Neuroscience, Yale School of Medicine, Yale University, New Haven, CT, USA,Department of Neuroscience, Yale School of Medicine, Yale University, 333 Cedar Street, New Haven, CT 06520, USA. E-mail: or
| |
Collapse
|
25
|
|
26
|
|
27
|
García-Bea A, Walker MA, Hyde TM, Kleinman JE, Harrison PJ, Lane TA. Metabotropic glutamate receptor 3 (mGlu3; mGluR3; GRM3) in schizophrenia: Antibody characterisation and a semi-quantitative western blot study. Schizophr Res 2016; 177:18-27. [PMID: 27130562 PMCID: PMC5145804 DOI: 10.1016/j.schres.2016.04.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 04/06/2016] [Accepted: 04/11/2016] [Indexed: 01/08/2023]
Abstract
BACKGROUND Metabotropic glutamate receptor 3 (mGlu3, mGluR3), encoded by GRM3, is a risk gene for schizophrenia and a therapeutic target. It is unclear whether expression of the receptor is altered in the disorder or related to GRM3 risk genotype. Antibodies used to date to assess mGlu3 in schizophrenia have not been well validated. OBJECTIVE To characterise six commercially available anti-mGlu3 antibodies for use in human brain, and then conduct a semi-quantitative study of mGlu3 immunoreactivity in schizophrenia. METHODS Antibodies tested using Grm3-/- and Grm2-/-/3-/- mice and transfected HEK293T/17 cells. Western blotting on membrane protein isolated from superior temporal cortex of 70 patients with schizophrenia and 87 healthy comparison subjects, genotyped for GRM3 SNP rs10234440. RESULTS One (out of six) anti-mGlu3 antibodies was fully validated, a C-terminal antibody which detected monomeric (~100kDa) and dimeric (~200kDa) mGlu3. A second, N-terminal, antibody detected the 200kDa band but also produced non-specific bands. Using the C-terminal antibody for western blotting in human brain, mGlu3 immunoreactivity was found to decline with age, and was affected by pH and post mortem interval. There were no differences in monomeric or dimeric mGlu3 immunoreactivity in schizophrenia or in relation to GRM3 genotype. The antibody was not suitable for immunohistochemistry. INTERPRETATION These data highlight the value of knockout mouse tissue for antibody validation, and the need for careful antibody characterisation. The schizophrenia data show that involvement of GRM3 in the disorder and its genetic risk architecture is not reflected in total membrane mGlu3 immunoreactivity in superior temporal cortex.
Collapse
Affiliation(s)
| | - Mary A Walker
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Thomas M Hyde
- Lieber Institute for Brain Development, Baltimore, USA; Department of Neurology, Johns Hopkins School of Medicine, Baltimore, USA; Department of Psychiatry & Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, USA
| | | | - Paul J Harrison
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom; Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, United Kingdom
| | - Tracy A Lane
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
28
|
Schmitt A, Rujescu D, Gawlik M, Hasan A, Hashimoto K, Iceta S, Jarema M, Kambeitz J, Kasper S, Keeser D, Kornhuber J, Koutsouleris N, Lanzenberger R, Malchow B, Saoud M, Spies M, Stöber G, Thibaut F, Riederer P, Falkai P. Consensus paper of the WFSBP Task Force on Biological Markers: Criteria for biomarkers and endophenotypes of schizophrenia part II: Cognition, neuroimaging and genetics. World J Biol Psychiatry 2016; 17:406-28. [PMID: 27311987 DOI: 10.1080/15622975.2016.1183043] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
OBJECTIVES Schizophrenia is a group of severe psychiatric disorders with high heritability but only low odds ratios of risk genes. Despite progress in the identification of pathophysiological processes, valid biomarkers of the disease are still lacking. METHODS This comprehensive review summarises recent efforts to identify genetic underpinnings, clinical and cognitive endophenotypes and symptom dimensions of schizophrenia and presents findings from neuroimaging studies with structural, functional and spectroscopy magnetic resonance imaging and positron emission tomography. The potential of findings to be biomarkers of schizophrenia is discussed. RESULTS Recent findings have not resulted in clear biomarkers for schizophrenia. However, we identified several biomarkers that are potential candidates for future research. Among them, copy number variations and links between genetic polymorphisms derived from genome-wide analysis studies, clinical or cognitive phenotypes, multimodal neuroimaging findings including positron emission tomography and magnetic resonance imaging, and the application of multivariate pattern analyses are promising. CONCLUSIONS Future studies should address the effects of treatment and stage of the disease more precisely and apply combinations of biomarker candidates. Although biomarkers for schizophrenia await validation, knowledge on candidate genomic and neuroimaging biomarkers is growing rapidly and research on this topic has the potential to identify psychiatric endophenotypes and in the future increase insight on individual treatment response in schizophrenia.
Collapse
Affiliation(s)
- Andrea Schmitt
- a Department of Psychiatry and Psychotherapy , LMU Munich , Germany ;,b Laboratory of Neuroscience (LIM27), Institute of Psychiatry , University of Sao Paulo , Sao Paulo , Brazil
| | - Dan Rujescu
- c Department of Psychiatry, Psychotherapy and Psychosomatics , University of Halle , Germany
| | - Micha Gawlik
- d Department of Psychiatry, Psychotherapy and Psychosomatics , University of Würzburg , Germany
| | - Alkomiet Hasan
- a Department of Psychiatry and Psychotherapy , LMU Munich , Germany
| | - Kenji Hashimoto
- e Division of Clinical Neuroscience , Chiba University Center for Forensic Mental Health , Chiba , Japan
| | - Sylvain Iceta
- f INSERM, U1028; CNRS, UMR5292; Lyon Neuroscience Research Center, PsyR2 Team , Lyon , F-69000 , France ; Hospices Civils De Lyon, France
| | - Marek Jarema
- g Department of Psychiatry , Institute of Psychiatry and Neurology , Warsaw , Poland
| | - Joseph Kambeitz
- a Department of Psychiatry and Psychotherapy , LMU Munich , Germany
| | - Siegfried Kasper
- h Department of Psychiatry and Psychotherapy , Medical University of Vienna , Austria
| | - Daniel Keeser
- a Department of Psychiatry and Psychotherapy , LMU Munich , Germany
| | - Johannes Kornhuber
- i Department of Psychiatry and Psychotherapy , Friedrich-Alexander-University Erlangen-Nuremberg , Erlangen , Germany
| | | | - Rupert Lanzenberger
- h Department of Psychiatry and Psychotherapy , Medical University of Vienna , Austria
| | - Berend Malchow
- a Department of Psychiatry and Psychotherapy , LMU Munich , Germany
| | - Mohamed Saoud
- f INSERM, U1028; CNRS, UMR5292; Lyon Neuroscience Research Center, PsyR2 Team , Lyon , F-69000 , France ; Hospices Civils De Lyon, France
| | - Marie Spies
- h Department of Psychiatry and Psychotherapy , Medical University of Vienna , Austria
| | - Gerald Stöber
- d Department of Psychiatry, Psychotherapy and Psychosomatics , University of Würzburg , Germany
| | - Florence Thibaut
- j Department of Psychiatry , University Hospital Cochin (Site Tarnier), University of Paris-Descartes, INSERM U 894 Centre Psychiatry and Neurosciences , Paris , France
| | - Peter Riederer
- k Center of Psychic Health; Clinic and Policlinic for Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Wuerzburg , Germany
| | - Peter Falkai
- a Department of Psychiatry and Psychotherapy , LMU Munich , Germany
| | | |
Collapse
|
29
|
Muguruza C, Meana JJ, Callado LF. Group II Metabotropic Glutamate Receptors as Targets for Novel Antipsychotic Drugs. Front Pharmacol 2016; 7:130. [PMID: 27242534 PMCID: PMC4873505 DOI: 10.3389/fphar.2016.00130] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/05/2016] [Indexed: 11/13/2022] Open
Abstract
Schizophrenia is a chronic psychiatric disorder which substantially impairs patients' quality of life. Despite the extensive research in this field, the pathophysiology and etiology of schizophrenia remain unknown. Different neurotransmitter systems and functional networks have been found to be affected in the brain of patients with schizophrenia. In this context, postmortem brain studies as well as genetic assays have suggested alterations in Group II metabotropic glutamate receptors (mGluRs) in schizophrenia. Despite many years of drug research, several needs in the treatment of schizophrenia have not been addressed sufficiently. In fact, only 5-10% of patients with schizophrenia successfully achieve a full recovery after treatment. In recent years mGluRs have turned up as novel targets for the design of new antipsychotic medications for schizophrenia. Concretely, Group II mGluRs are of particular interest due to their regulatory role in neurotransmission modulating glutamatergic activity in brain synapses. Preclinical studies have demonstrated that orthosteric Group II mGluR agonists exhibit antipsychotic-like properties in animal models of schizophrenia. However, when these compounds have been tested in human clinical studies with schizophrenic patients results have been inconclusive. Nevertheless, it has been recently suggested that this apparent lack of efficacy in schizophrenic patients may be related to previous exposure to atypical antipsychotics. Moreover, the role of the functional heterocomplex formed by 5-HT2A and mGlu2 receptors in the clinical response to Group II mGluR agonists is currently under study.
Collapse
Affiliation(s)
- Carolina Muguruza
- Department of Pharmacology, University of the Basque Country, UPV/EHULeioa, Spain
- Centro de Investigación Biomédica en Red de Salud MentalMadrid, Spain
| | - J. Javier Meana
- Department of Pharmacology, University of the Basque Country, UPV/EHULeioa, Spain
- Centro de Investigación Biomédica en Red de Salud MentalMadrid, Spain
| | - Luis F. Callado
- Department of Pharmacology, University of the Basque Country, UPV/EHULeioa, Spain
- Centro de Investigación Biomédica en Red de Salud MentalMadrid, Spain
| |
Collapse
|
30
|
Shukla AA, Jha M, Birchfield T, Mukherjee S, Gleason K, Abdisalaam S, Asaithamby A, Adams-Huet B, Tamminga CA, Ghose S. COMT val158met polymorphism and molecular alterations in the human dorsolateral prefrontal cortex: Differences in controls and in schizophrenia. Schizophr Res 2016; 173:94-100. [PMID: 27021555 PMCID: PMC4836991 DOI: 10.1016/j.schres.2016.03.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 03/14/2016] [Accepted: 03/16/2016] [Indexed: 12/13/2022]
Abstract
The single nucleotide val158met polymorphism in catechol o-methyltransferase (COMT) influences prefrontal cortex function. Working memory, dependent on the dorsolateral prefrontal cortex (DLPFC), has been repeatedly shown to be influenced by this COMT polymorphism. The high activity COMT val isoform is associated with lower synaptic dopamine levels. Altered synaptic dopamine levels are expected to lead to molecular adaptations within the synapse and within DLPFC neural circuitry. In this human post mortem study using high quality DLPFC tissue, we first examined the influence of the COMT val158met polymorphism on markers of dopamine neurotransmission, N-methyl-d-aspartate (NMDA) receptor subunits and glutamatic acid decarboxylase 67 (GAD67), all known to be critical to DLPFC circuitry and function. Next, we compared target gene expression profiles in a cohort of control and schizophrenia cases, each characterized by COMT genotype. We find that the COMT val allele in control subjects is associated with significant upregulation of GluN2A and GAD67 mRNA levels compared to met carriers. Comparisons between control and schizophrenia groups reveal that GluN2A, GAD67 and DRD2 are differentially regulated between diagnostic groups in a genotype specific manner. Chronic antipsychotic treatment in rodents did not explain these differences. These data demonstrate an association between COMTval158met genotype and gene expression profile in the DLPFC of controls, possibly adaptations to maintain DLPFC function. In schizophrenia val homozygotes, these adaptations are not seen and could reflect pathophysiologic mechanisms related to the known poorer performance of these subjects on DLPFC-dependent tasks.
Collapse
Affiliation(s)
- Abhay A. Shukla
- Department of Psychiatry, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390
| | - Manish Jha
- Department of Psychiatry, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390
| | - Thomas Birchfield
- Department of Psychiatry, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390
| | - Shibani Mukherjee
- Department of Psychiatry, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390
| | - Kelly Gleason
- Department of Psychiatry, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390
| | - Salim Abdisalaam
- Department of Radiation Oncology/Division of Molecular Radiation Biology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390
| | - Aroumougame Asaithamby
- Department of Radiation Oncology/Division of Molecular Radiation Biology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390
| | - Beverley Adams-Huet
- Department of Clinical Sciences, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390
| | - Carol A. Tamminga
- Department of Psychiatry, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390
| | - Subroto Ghose
- Department of Psychiatry, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, United States.
| |
Collapse
|
31
|
Engel M, Snikeris P, Matosin N, Newell KA, Huang XF, Frank E. mGluR2/3 agonist LY379268 rescues NMDA and GABAA receptor level deficits induced in a two-hit mouse model of schizophrenia. Psychopharmacology (Berl) 2016; 233:1349-59. [PMID: 26861891 DOI: 10.1007/s00213-016-4230-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 01/29/2016] [Indexed: 10/22/2022]
Abstract
RATIONALE An imbalance of excitatory and inhibitory neurotransmission underlies the glutamate hypothesis of schizophrenia. Agonists of group II metabotropic glutamate receptors, mGluR2/3, have been proposed as novel therapeutic agents to correct this imbalance. However, the influence of mGluR2/3 activity on excitatory and inhibitory neurotransmitter receptors has not been explored. OBJECTIVES We aimed to investigate the ability of a novel mGluR2/3 agonist, LY379268, to modulate the availability of the excitatory N-methyl-D-aspartate receptor (NMDA-R) and the inhibitory gamma-aminobutyrate-A receptor (GABAA-R), in a two-hit mouse model of schizophrenia. METHODS Wild type (WT) and heterozygous neuregulin 1 transmembrane domain mutant mice (NRG1 HET) were treated daily with phencyclidine (10 mg/kg ip) or saline for 14 days. After a 14-day washout, an acute dose of the mGluR2/3 agonist LY379268 (3 mg/kg), olanzapine (antipsychotic drug comparison, 1.5 mg/kg), or saline was administered. NMDA-R and GABAA-R binding densities were examined by receptor autoradiography in several schizophrenia-relevant brain regions. RESULTS In both WT and NRG1 HET mice, phencyclidine treatment significantly reduced NMDA-R and GABAA-R binding density in the prefrontal cortex, hippocampus, and nucleus accumbens. Acute treatment with LY379268 restored NMDA-R and GABAA-R levels in the two-hit mouse model comparable to olanzapine. CONCLUSIONS We demonstrate that the mGluR2/3 agonist LY379268 restores excitatory and inhibitory deficits with similar efficiency as olanzapine in our two-hit schizophrenia mouse model. This study significantly contributes to our understanding of the mechanisms underlying the therapeutic effects of LY379268 and supports the use of agents aimed at mGluR2/3.
Collapse
Affiliation(s)
- Martin Engel
- Schizophrenia Research Institute, Sydney, Australia. .,Faculty of Science Medicine and Health, University of Wollongong, Wollongong, Australia. .,Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, Australia. .,School of Biological Sciences, University of Wollongong, Wollongong, Australia.
| | - Peta Snikeris
- Schizophrenia Research Institute, Sydney, Australia.,Faculty of Science Medicine and Health, University of Wollongong, Wollongong, Australia.,Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, Australia
| | - Natalie Matosin
- Schizophrenia Research Institute, Sydney, Australia.,Faculty of Science Medicine and Health, University of Wollongong, Wollongong, Australia.,Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, Australia
| | - Kelly Anne Newell
- Schizophrenia Research Institute, Sydney, Australia.,Faculty of Science Medicine and Health, University of Wollongong, Wollongong, Australia.,Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, Australia
| | - Xu-Feng Huang
- Schizophrenia Research Institute, Sydney, Australia.,Faculty of Science Medicine and Health, University of Wollongong, Wollongong, Australia.,Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, Australia
| | - Elisabeth Frank
- Schizophrenia Research Institute, Sydney, Australia.,Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, Australia
| |
Collapse
|
32
|
Kinoshita A, Takizawa R, Koike S, Satomura Y, Kawasaki S, Kawakubo Y, Marumo K, Tochigi M, Sasaki T, Nishimura Y, Kasai K. Effect of metabotropic glutamate receptor-3 variants on prefrontal brain activity in schizophrenia: An imaging genetics study using multi-channel near-infrared spectroscopy. Prog Neuropsychopharmacol Biol Psychiatry 2015; 62:14-21. [PMID: 25914064 DOI: 10.1016/j.pnpbp.2015.04.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 04/16/2015] [Accepted: 04/16/2015] [Indexed: 12/31/2022]
Abstract
BACKGROUND The glutamatergic system is essential for learning and memory through its crucial role in neural development and synaptic plasticity. Genes associated with the glutamatergic system, including metabotropic glutamate receptor (mGluR or GRM) genes, have been implicated in the pathophysiology of schizophrenia. Few studies, however, have investigated a relationship between polymorphism of glutamate-related genes and cortical function in vivo in patients with schizophrenia. We thus explored an association between genetic variations in GRM3 and brain activation driven by a cognitive task in the prefrontal cortex in patients with schizophrenia. MATERIALS AND METHODS Thirty-one outpatients with schizophrenia and 48 healthy controls participated in this study. We measured four candidate single nucleotide polymorphisms (rs274622, rs2299225, rs1468412, and rs6465084) of GRM3, and activity in the prefrontal and temporal cortices during a category version of a verbal fluency task, using a 52-channel near-infrared spectroscopy instrument. RESULTS AND DISCUSSION The rs274622 C carriers with schizophrenia were associated with significantly smaller prefrontal activation than patients with TT genotype. This between-genotype difference tended to be confined to the patient group. GRM3 polymorphisms are associated with prefrontal activation during cognitive task in schizophrenia.
Collapse
Affiliation(s)
- Akihide Kinoshita
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Ryu Takizawa
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan; MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King's College London, London SE5 8AF, UK
| | - Shinsuke Koike
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan; Office for Mental Health Support, Division for Counseling and Support, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yoshihiro Satomura
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Shingo Kawasaki
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan; Application Development Office, Hitachi Medical Corporation, Kashiwa City, Chiba 277-0804, Japan
| | - Yuki Kawakubo
- Department of Child Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Kohei Marumo
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Mamoru Tochigi
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan; Department of Psychiatry, Teikyo University School of Medicine, Itabashi-ku, Tokyo 173-8605, Japan
| | - Tsukasa Sasaki
- Department of Physical and Health Education, Graduate School of Education, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yukika Nishimura
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Kiyoto Kasai
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan.
| |
Collapse
|
33
|
In the grey zone between epilepsy and schizophrenia: alterations in group II metabotropic glutamate receptors. Acta Neurol Belg 2015; 115:221-32. [PMID: 25539775 DOI: 10.1007/s13760-014-0407-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 12/05/2014] [Indexed: 01/09/2023]
Abstract
Glutamate is the major excitatory neurotransmitter in the brain. The glutamate system plays an important role in the formation of synapses during brain development and synaptic plasticity. Dysfunctions in glutamate regulation may lead to hyperexcitatory neuronal networks and neurotoxicity. Glutamate excess is possibly of great importance in the pathophysiology of several neurological and psychiatric disorders such as epilepsy and schizophrenia. Interestingly, cross talk between these disorders has been well documented: psychiatric comorbidities are frequent in epilepsy and temporal lobe epilepsy is one of the highest risk factors for developing psychosis. Therefore, dysfunctions in glutamatergic neurotransmission might constitute a common pathological mechanism. A major negative feedback system is regulated by the presynaptic group II metabotropic glutamate (mGlu) receptors including mGlu2/3 receptors. These receptors are predominantly localised extrasynaptically in basal ganglia and limbic structures. Hence, mGlu2/3 receptors are an interesting target for the treatment of disorders like epilepsy and schizophrenia. A dysfunction in the glutamate system may be associated with alterations in mGlu2/3 receptor expression. In this review, we describe the localization of mGlu2/3 receptors in the healthy brain of mice, rats and humans. Secondly, changes in mGlu2/3 receptor density of the brain regions affected in epilepsy and schizophrenia are summarised. Increased mGlu2/3 receptor density might represent a compensatory mechanism of the brain to regulate elevated glutamate levels, while reduced mGlu2/3 receptor density in some brain regions may further contribute to the aberrant hyperexcitability. Further research considering the mGlu2/3 receptor can contribute significantly to the understanding of the etiological and therapeutic role of group II mGlu receptor in epilepsy, epilepsy with psychosis and schizophrenia.
Collapse
|
34
|
Ellaithy A, Younkin J, González-Maeso J, Logothetis DE. Positive allosteric modulators of metabotropic glutamate 2 receptors in schizophrenia treatment. Trends Neurosci 2015; 38:506-16. [PMID: 26148747 PMCID: PMC4530036 DOI: 10.1016/j.tins.2015.06.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 06/07/2015] [Accepted: 06/11/2015] [Indexed: 12/22/2022]
Abstract
The past two decades have witnessed a rise in the 'NMDA receptor hypofunction' hypothesis for schizophrenia, a devastating disorder that affects around 1% of the population worldwide. A variety of presynaptic, postsynaptic, and regulatory proteins involved in glutamatergic signaling have thus been proposed as potential therapeutic targets. This review focuses on positive allosteric modulation of metabotropic glutamate 2 receptors (mGlu2Rs) and discusses how recent preclinical epigenetic data may provide a molecular explanation for the discrepant results of clinical studies, further stimulating the field to exploit the promise of mGlu2R as a target for schizophrenia treatment.
Collapse
Affiliation(s)
- Amr Ellaithy
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Jason Younkin
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Javier González-Maeso
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; Departments of Psychiatry and Neurology, and The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Diomedes E Logothetis
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA.
| |
Collapse
|
35
|
Li ML, Hu XQ, Li F, Gao WJ. Perspectives on the mGluR2/3 agonists as a therapeutic target for schizophrenia: Still promising or a dead end? Prog Neuropsychopharmacol Biol Psychiatry 2015; 60:66-76. [PMID: 25724760 PMCID: PMC4426221 DOI: 10.1016/j.pnpbp.2015.02.012] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 02/16/2015] [Accepted: 02/17/2015] [Indexed: 01/08/2023]
Abstract
Group II metabotropic glutamate receptor (mGluR2/3) agonists once showed promise as non-dopaminergic antipsychotic drugs because of their efficacy in alleviating symptoms of schizophrenia (SZ) in both animal models and human patients. However, the recent failure of Phase III clinical trials dealt a huge blow to the scientific community and the aftershock of the setback in mGluR2/3 research can be felt everywhere from grant support and laboratory studies to paper publication. An immediate question raised is whether mGluR2/3 is still a promising therapeutic target for schizophrenia. Answering this question is not easy, but apparently a new strategy is needed. This article provides a focused review of literature on the study of mGluR2/3 agonists, especially on mGluR2/3 agonists' mechanism of action and efficacy in both normal conditions and animal models of SZ, as well as clinical studies in human patients with the disease. We argue that the cellular and molecular actions of mGluR2/3 agonists, the distinct roles between mGluR2 and mGluR3, as well as their effects on different stages of the disease and different subpopulations of patients, remain incompletely studied. Until the mechanisms associated with mGluR2/3 are clearly elucidated and all treatment options are tested, it would be a great mistake to terminate the study of mGluR2/3 as a therapeutic target for schizophrenia. This review will thus shed light on the comprehensive features of the translational potential mGluR2/3 agonists as well as the need for further research into the more selective activation of mGluR2.
Collapse
Affiliation(s)
- Meng-Lin Li
- Drexel University College of Medicine, Philadelphia, PA, USA,Department of Rehabilitation, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xi-Quan Hu
- Department of Rehabilitation, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Feng Li
- Department of Neurobiology and Anatomy, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Wen-Jun Gao
- Drexel University College of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
36
|
McClay JL, Vunck SA, Batman AM, Crowley JJ, Vann RE, Beardsley PM, van den Oord EJ. Neurochemical Metabolomics Reveals Disruption to Sphingolipid Metabolism Following Chronic Haloperidol Administration. J Neuroimmune Pharmacol 2015; 10:425-34. [PMID: 25850894 DOI: 10.1007/s11481-015-9605-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 03/17/2015] [Indexed: 10/23/2022]
Abstract
Haloperidol is an effective antipsychotic drug for treatment of schizophrenia, but prolonged use can lead to debilitating side effects. To better understand the effects of long-term administration, we measured global metabolic changes in mouse brain following 3 mg/kg/day haloperidol for 28 days. These conditions lead to movement-related side effects in mice akin to those observed in patients after prolonged use. Brain tissue was collected following microwave tissue fixation to arrest metabolism and extracted metabolites were assessed using both liquid and gas chromatography mass spectrometry (MS). Over 300 unique compounds were identified across MS platforms. Haloperidol was found to be present in all test samples and not in controls, indicating experimental validity. Twenty-one compounds differed significantly between test and control groups at the p < 0.05 level. Top compounds were robust to analytical method, also being identified via partial least squares discriminant analysis. Four compounds (sphinganine, N-acetylornithine, leucine and adenosine diphosphate) survived correction for multiple testing in a non-parametric analysis using false discovery rate threshold < 0.1. Pathway analysis of nominally significant compounds (p < 0.05) revealed significant findings for sphingolipid metabolism (p = 0.015) and protein biosynthesis (p = 0.024). Altered sphingolipid metabolism is suggestive of disruptions to myelin. This interpretation is supported by our observation of elevated N-acetyl-aspartyl-glutamate in the haloperidol-treated mice (p = 0.004), a marker previously associated with demyelination. This study further demonstrates the utility of murine neurochemical metabolomics as a method to advance understanding of CNS drug effects.
Collapse
Affiliation(s)
- Joseph L McClay
- Center for Biomarker Research and Personalized Medicine, Virginia Commonwealth University, McGuire Hall, 1112 East Clay Street, Richmond, VA, 23298, USA,
| | | | | | | | | | | | | |
Collapse
|
37
|
Farinha A, Lavreysen H, Peeters L, Russo B, Masure S, Trabanco AA, Cid J, Tresadern G. Molecular determinants of positive allosteric modulation of the human metabotropic glutamate receptor 2. Br J Pharmacol 2015; 172:2383-96. [PMID: 25571949 DOI: 10.1111/bph.13065] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 12/20/2014] [Accepted: 12/23/2014] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND AND PURPOSE The activation of the metabotropic glutamate receptor 2 (mGlu2 ) reduces glutamatergic transmission in brain regions where excess excitatory signalling is implicated in disorders such as anxiety and schizophrenia. Positive allosteric modulators (PAMs) can provide a fine-tuned potentiation of these receptors' function and are being investigated as a novel therapeutic approach. An extensive set of mutant human mGlu2 receptors were used to investigate the molecular determinants that are important for positive allosteric modulation at this receptor. EXPERIMENTAL APPROACH Site-directed mutagenesis, binding and functional assays were employed to identify amino acids important for the activity of nine PAMs. The data from the radioligand binding and mutagenesis studies were used with computational docking to predict a binding mode at an mGlu2 receptor model based on the recent structure of the mGlu1 receptor. KEY RESULTS New amino acids in TM3 (R635, L639, F643), TM5 (L732) and TM6 (W773, F776) were identified for the first time as playing an important role in the activity of mGlu2 PAMs. CONCLUSIONS AND IMPLICATIONS This extensive study furthers our understanding of positive allosteric modulation of the mGlu2 receptor and can contribute to improved future design of mGlu2 PAMs.
Collapse
Affiliation(s)
- A Farinha
- Neuroscience Discovery, Janssen Research and Development, Division of Janssen Pharmaceutica, Beerse, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Copeland CS, Neale SA, Salt TE. Neuronal activity patterns in the mediodorsal thalamus and related cognitive circuits are modulated by metabotropic glutamate receptors. Neuropharmacology 2015; 92:16-24. [PMID: 25576798 PMCID: PMC4362770 DOI: 10.1016/j.neuropharm.2014.12.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 12/02/2014] [Accepted: 12/26/2014] [Indexed: 01/03/2023]
Abstract
The mediodorsal thalamus (MD) likely plays an important role in cognition as it receives abundant afferent connections from the amygdala and prefrontal cortex (PFC). Indeed, disturbed activity within the MD is thought to precipitate cognitive deficits associated with schizophrenia. As compounds acting at the Group II metabotropic glutamate (mGlu) receptors (subtypes mGlu2/mGlu3) have efficacy in animal models of schizophrenia, we investigated whether a Group II agonist and an mGlu2 positive allosteric modulator (PAM) could modulate MD activity. Extracellular single-unit recordings were made in vivo from MD neurones in anaesthetised rats. Responses were elicited by electrical stimulation of the PFC and/or amygdala, with Group II compounds locally applied as required. The Group II agonist reduced inhibition evoked in the MD: an effect manifested as an increase in short-latency responses, and a decrease in long-latency burst-firing. This disinhibitory action of the Group II receptors in the MD represents a mechanism of potential therapeutic importance as increased inhibition in the MD has been associated with cognitive deficit-onset. Furthermore, as co-application of the mGlu2 PAM did not potentiate the Group II agonist effects in the MD, we suggest that the Group II disinhibitory effect is majority-mediated via mGlu3. This heterogeneity in Group II receptor thalamic physiology bears consequence, as compounds active exclusively at the mGlu2 subtype are unlikely to perturb maladapted MD firing patterns associated with cognitive deficits, with activity at mGlu3 receptors possibly more appropriate. Indeed, polymorphisms in the mGlu3, but not the mGlu2, gene have been detected in patients with schizophrenia. There is heterogeneity in Group II receptor physiology across thalamic nuclei. This differential distribution may facilitate multimodal thalamic nuclei functions. Group II receptor activation reduced burst firing via reducing thalamic inhibition. Increased thalamic inhibition precipitates impairments in cognitive function. Activating the Group II receptors may therefore enhance cognitive function.
Collapse
Affiliation(s)
- C S Copeland
- Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK.
| | - S A Neale
- Neurexpert Ltd, Kemp House, City Road, London, EC1V 2NX, UK.
| | - T E Salt
- Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK.
| |
Collapse
|
39
|
Pharmacogenetic associations of the type-3 metabotropic glutamate receptor (GRM3) gene with working memory and clinical symptom response to antipsychotics in first-episode schizophrenia. Psychopharmacology (Berl) 2015; 232:145-54. [PMID: 25096017 PMCID: PMC4282597 DOI: 10.1007/s00213-014-3649-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 05/29/2014] [Indexed: 10/24/2022]
Abstract
RATIONALE Type-3 metabotropic glutamate receptor gene (GRM3) single nucleotide polymorphisms (SNPs) have been associated with cognitive performance and prefrontal cortex brain activity in chronically treated schizophrenia patients. Whether these SNPs are associated with cognitive and symptom response to antipsychotic therapy has not been extensively evaluated. OBJECTIVES The aim of the study was to examine pharmacogenetic relationships between GRM3 and selected variants in relevant dopamine genes with changes in spatial working memory and clinical symptoms after treatment. METHODS Sixty-one untreated first-episode schizophrenia patients were assessed before and after 6 weeks of antipsychotic pharmacotherapy, primarily consisting of risperidone. Patients' level of cognitive performance on a spatial working memory task was assessed with a translational oculomotor paradigm. Changes after treatment in cognitive and clinical measures were examined in relationship to genetic polymorphisms in the GRM3, COMT, and DRD2/ANKK1 gene regions. RESULTS Spatial working memory performance worsened after antipsychotic treatment. This worsening was associated with GRM3 rs1468412, with the genetic subgroup of patients known to have altered glutamate activity having greater adverse changes in working memory performance after antipsychotic treatment. Negative symptom improvement was associated with GRM3 rs6465084. There were no pharmacogenetic associations between DRD2/ANKK1 and COMT with working memory changes or symptom response to treatment. CONCLUSIONS These findings suggest important pharmacogenetic relationships between GRM3 variants and changes in cognition and symptom response with exposure to antipsychotics. This information may be useful in identifying patients susceptible to adverse cognitive outcomes associated with antipsychotic treatment and suggest that glutamatergic mechanisms contribute to such effects.
Collapse
|
40
|
Hu W, MacDonald ML, Elswick DE, Sweet RA. The glutamate hypothesis of schizophrenia: evidence from human brain tissue studies. Ann N Y Acad Sci 2014; 1338:38-57. [PMID: 25315318 DOI: 10.1111/nyas.12547] [Citation(s) in RCA: 182] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A number of studies have indicated that antagonists of the N-methyl-d-aspartate subtypes of glutamate receptors can cause schizophrenia-like symptoms in healthy individuals and exacerbate symptoms in individuals with schizophrenia. These findings have led to the glutamate hypothesis of schizophrenia. Here we review the evidence for this hypothesis in postmortem studies of brain tissue from individuals affected by schizophrenia, summarizing studies of glutamate neuron morphology, of expression of glutamate receptors and transporters, and of the synthesizing and metabolizing enzymes for glutamate and its co-agonists. We found consistent evidence of morphological alterations of dendrites of glutamatergic neurons in the cerebral cortex of subjects with schizophrenia and of reduced levels of the axon bouton marker synaptophysin. There were no consistent alterations of mRNA expression of glutamate receptors, although there has been limited study of the corresponding proteins. Studies of the glutamate metabolic pathway have been limited, although there is some evidence that excitatory amino acid transporter-2, glutamine synthetase, and glutaminase have altered expression in schizophrenia. Future studies would benefit from additional direct examination of glutamatergic proteins. Further advances, such as selective testing of synaptic microdomains, cortical layers, and neuronal subtypes, may also be required to elucidate the nature of glutamate signaling impairments in schizophrenia.
Collapse
Affiliation(s)
- Wei Hu
- Department of Behavioral Medicine and Psychiatry, West Virginia University Health Sciences Center, Morgantown, West Virginia
| | | | | | | |
Collapse
|
41
|
Association of variants in DRD2 and GRM3 with motor and cognitive function in first-episode psychosis. Eur Arch Psychiatry Clin Neurosci 2014; 264:345-55. [PMID: 24682224 PMCID: PMC4290665 DOI: 10.1007/s00406-013-0464-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Accepted: 10/16/2013] [Indexed: 12/16/2022]
Abstract
Similar smooth pursuit eye tracking dysfunctions are present across psychotic disorders. They include pursuit initiation and maintenance deficits that implicate different functional brain systems. This candidate gene study examined psychosis-related genotypes regulating dopamine and glutamate neurotransmission in relation to these pursuit deficits. One hundred and thirty-eight untreated first-episode patients with a psychotic disorder were genotyped for four markers in DRD2 and four markers in GRM3. The magnitude of eye movement abnormality in patients was defined in relation to performance of matched healthy controls (N = 130). Eighty three patients were followed after 6 weeks of antipsychotic treatment. At baseline, patients with a -141C deletion in DRD2 rs1799732 had slower initiation eye velocity and longer pursuit latency than CC insertion carriers. Further, GRM3 rs274622_CC carriers had poorer pursuit maintenance than T-carriers. Antipsychotic treatment resulted in prolonged pursuit latency in DRD2 rs1799732_CC insertion carriers and a decline in pursuit maintenance in GRM3 rs6465084_GG carriers. The present study demonstrates for the first time that neurophysiological measures of motor and neurocognitive deficits in patients with psychotic disorders have different associations with genes regulating dopamine and glutamate systems, respectively. Alterations in striatal D2 receptor activity through the -141C Ins/Del polymorphism could contribute to pursuit initiation deficits in psychotic disorders. Alterations in GRM3 coding for the mGluR3 protein may impair pursuit maintenance by compromising higher perceptual and cognitive processes that depend on optimal glutamate signaling in corticocortical circuits. DRD2 and GRM3 genotypes also selectively modulated the severity of adverse motor and neurocognitive changes resulting from antipsychotic treatment.
Collapse
|
42
|
Iasevoli F, Tomasetti C, Buonaguro EF, de Bartolomeis A. The glutamatergic aspects of schizophrenia molecular pathophysiology: role of the postsynaptic density, and implications for treatment. Curr Neuropharmacol 2014; 12:219-38. [PMID: 24851087 PMCID: PMC4023453 DOI: 10.2174/1570159x12666140324183406] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 02/14/2014] [Accepted: 03/14/2014] [Indexed: 01/23/2023] Open
Abstract
Schizophrenia is one of the most debilitating psychiatric diseases with a lifetime prevalence of approximately
1%. Although the specific molecular underpinnings of schizophrenia are still unknown, evidence has long linked its
pathophysiology to postsynaptic abnormalities.
The postsynaptic density (PSD) is among the molecular structures suggested to be potentially involved in schizophrenia.
More specifically, the PSD is an electron-dense thickening of glutamatergic synapses, including ionotropic and
metabotropic glutamate receptors, cytoskeletal and scaffolding proteins, and adhesion and signaling molecules. Being
implicated in the postsynaptic signaling of multiple neurotransmitter systems, mostly dopamine and glutamate, the PSD
constitutes an ideal candidate for studying dopamine-glutamate disturbances in schizophrenia. Recent evidence suggests
that some PSD proteins, such as PSD-95, Shank, and Homer are implicated in severe behavioral disorders, including
schizophrenia. These findings, further corroborated by genetic and animal studies of schizophrenia, offer new insights for
the development of pharmacological strategies able to overcome the limitations in terms of efficacy and side effects of
current schizophrenia treatment. Indeed, PSD proteins are now being considered as potential molecular targets against this
devastating illness.
The current paper reviews the most recent hypotheses on the molecular mechanisms underlying schizophrenia
pathophysiology. First, we review glutamatergic dysfunctions in schizophrenia and we provide an update on postsynaptic
molecules involvement in schizophrenia pathophysiology by addressing both human and animal studies. Finally, the
possibility that PSD proteins may represent potential targets for new molecular interventions in psychosis will be
discussed.
Collapse
Affiliation(s)
- Felice Iasevoli
- Department of Neuroscience, Reproductive and Odontostomatological Sciences - University "Federico II", Naples, Italy
| | - Carmine Tomasetti
- Department of Neuroscience, Reproductive and Odontostomatological Sciences - University "Federico II", Naples, Italy
| | - Elisabetta F Buonaguro
- Department of Neuroscience, Reproductive and Odontostomatological Sciences - University "Federico II", Naples, Italy
| | - Andrea de Bartolomeis
- Department of Neuroscience, Reproductive and Odontostomatological Sciences - University "Federico II", Naples, Italy
| |
Collapse
|
43
|
Rubio MD, Drummond JB, Meador-Woodruff JH. Glutamate receptor abnormalities in schizophrenia: implications for innovative treatments. Biomol Ther (Seoul) 2014; 20:1-18. [PMID: 24116269 PMCID: PMC3792192 DOI: 10.4062/biomolther.2012.20.1.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 11/25/2011] [Indexed: 01/18/2023] Open
Abstract
Schizophrenia is a devastating psychiatric illness that afflicts 1% of the population worldwide, resulting in substantial impact to patients, their families, and health care delivery systems. For many years, schizophrenia has been felt to be associated with dysregulated dopaminergic neurotransmission as a key feature of the pathophysiology of the illness. Although numerous studies point to dopaminergic abnormalities in schizophrenia, dopamine dysfunction cannot completely account for all of the symptoms seen in schizophrenia, and dopamine-based treatments are often inadequate and can be associated with serious side effects. More recently, converging lines of evidence have suggested that there are abnormalities of glutamate transmission in schizophrenia. Glutamatergic neurotransmission involves numerous molecules that facilitate glutamate release, receptor activation, glutamate reuptake, and other synaptic activities. Evidence for glutamatergic abnormalities in schizophrenia primarily has implicated the NMDA and AMPA subtypes of the glutamate receptor. The expression of these receptors and other molecules associated with glutamate neurotransmission has been systematically studied in the brain in schizophrenia. These studies have generally revealed region- and molecule-specific changes in glutamate receptor transcript and protein expression in this illness. Given that glutamatergic neurotransmission has been implicated in the pathophysiology of schizophrenia, recent drug development efforts have targeted the glutamate system. Much effort to date has focused on modulation of the NMDA receptor, although more recently other glutamate receptors and transporters have been the targets of drug development. These efforts have been promising thus far, and ongoing efforts to develop additional drugs that modulate glutamatergic neurotransmission are underway that may hold the potential for novel classes of more effective treatments for this serious psychiatric illness.
Collapse
Affiliation(s)
- Maria D Rubio
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294-0021, USA
| | | | | |
Collapse
|
44
|
Uehara T, Sumiyoshi T, Rujescu D, Genius J, Matsuoka T, Takasaki I, Itoh H, Kurachi M. Neonatal exposure to MK-801 reduces mRNA expression of mGlu3 receptors in the medial prefrontal cortex of adolescent rats. Synapse 2014; 68:202-8. [PMID: 24549941 DOI: 10.1002/syn.21734] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 01/09/2014] [Indexed: 11/09/2022]
Abstract
Schizophrenia is considered as a "neurodegenerative" and "neurodevelopmental" disorder, the pathophysiology of which may include hypofunction of the N-methyl-D-aspartate receptor (NMDA-R) or subsequent pathways. Accordingly, administration of NMDA-R antagonists to rodents during the perinatal period may emulate some core pathophysiological aspects of schizophrenia. The effect of 4-day (postnatal day; PD 7-10) administration of MK-801, a selective NMDA-R antagonist, on gene expression in the medial prefrontal cortex (mPFC), hippocampus, and amygdala was evaluated using quantitative polymerase chain reaction methods. Specifically, we sought to determine whether genes related to Glu transmissions, for example those encoding for NMDA-Rs, metabotropic Glu receptors (mGluRs), or Glu transporters, were altered by neonatal treatment with MK-801. Model rats showed downregulation of the mGluR3 subtype in the mPFC around puberty, especially at PD 35 in response to MK-801 or during ontogenesis without pharmacological manipulations. Genes encoding for other mGluRs subtypes, that is NMDA-Rs and Glu transporters, were not affected by the neonatal insult. These results suggest that NMDA-R antagonism in the early course of development modulates the expression of mGluR3 in mPFC around puberty. Thus, mGluR3 may serve as a potential target to prevent the onset and progression of schizophrenia.
Collapse
Affiliation(s)
- Takashi Uehara
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
One of the oldest models of schizophrenia is based on the effects of serotonergic hallucinogens such as mescaline, psilocybin, and (+)-lysergic acid diethylamide (LSD), which act through the serotonin 5-HT(2A) receptor. These compounds produce a 'model psychosis' in normal individuals that resembles at least some of the positive symptoms of schizophrenia. Based on these similarities, and because evidence has emerged that the serotonergic system plays a role in the pathogenesis of schizophrenia in some patients, animal models relevant to schizophrenia have been developed based on hallucinogen effects. Here we review the behavioural effects of hallucinogens in four of those models, the receptor and neurochemical mechanisms for the effects and their translational relevance. Despite the difficulty of modelling hallucinogen effects in nonverbal species, animal models of schizophrenia based on hallucinogens have yielded important insights into the linkage between 5-HT and schizophrenia and have helped to identify receptor targets and interactions that could be exploited in the development of new therapeutic agents.
Collapse
|
46
|
GABA transporter-1 deficiency confers schizophrenia-like behavioral phenotypes. PLoS One 2013; 8:e69883. [PMID: 23922840 PMCID: PMC3726734 DOI: 10.1371/journal.pone.0069883] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 06/12/2013] [Indexed: 11/19/2022] Open
Abstract
The mechanism underlying the pathogenesis of schizophrenia remains poorly understood. The hyper-dopamine and hypo-NMDA receptor hypotheses have been the most enduring ideas. Recently, emerging evidence implicates alterations of the major inhibitory system, GABAergic neurotransmission in the schizophrenic patients. However, the pathophysiological role of GABAergic system in schizophrenia still remains dubious. In this study, we took advantage of GABA transporter 1 (GAT1) knockout (KO) mouse, a unique animal model with elevated ambient GABA, to study the schizophrenia-related behavioral abnormalities. We found that GAT1 KO mice displayed multiple behavioral abnormalities related to schizophrenic positive, negative and cognitive symptoms. Moreover, GAT1 deficiency did not change the striatal dopamine levels, but significantly enhanced the tonic GABA currents in prefrontal cortex. The GABA(A) receptor antagonist picrotoxin could effectively ameliorate several behavioral defects of GAT1 KO mice. These results identified a novel function of GAT1, and indicated that the elevated ambient GABA contributed critically to the pathogenesis of schizophrenia. Furthermore, several commonly used antipsychotic drugs were effective in treating the locomotor hyperactivity in GAT1 KO mice, suggesting the utility of GAT1 KO mice as an alternative animal model for studying schizophrenia pathogenesis and developing new antipsychotic drugs.
Collapse
|
47
|
Delille HK, Mezler M, Marek GJ. The two faces of the pharmacological interaction of mGlu2 and 5-HT₂A - relevance of receptor heterocomplexes and interaction through functional brain pathways. Neuropharmacology 2013; 70:296-305. [PMID: 23466331 DOI: 10.1016/j.neuropharm.2013.02.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 02/01/2013] [Accepted: 02/04/2013] [Indexed: 11/28/2022]
Abstract
Important functional interactions between the metabotropic glutamate 2 (mGlu2) and 5-hydroxytryptamine2A (5-HT₂A) neurotransmitter receptors have been established based on electrophysiological, biochemical and behavioral evidence. Over the last several years, dimerization between 5-HT₂A and mGlu2 receptors has been proposed to account for the functional cross-talk between these two receptors in the prefrontal cortex. The pros and cons for the existence of a heteromeric complex between 5-HT₂A and mGlu2 receptors will be reviewed here. First, the fundamental criteria needing to establish evidence for heteromeric complexes will be reviewed. Then, the in vitro evidence for and against heteromeric complexes between 5-HT₂A and mGlu2 receptors will be discussed in regard to physical and functional interactions. Finally, the data with native in situ mGlu2 and 5-HT₂A receptors will be discussed with respect to whether heteromeric complexes or a simple functional interaction between two distinct GPCRs based on brain network activity is the more simple explanation for a range of in vivo data.
Collapse
Affiliation(s)
- Hannah K Delille
- Abbott Diagnostics Division, Max-Planck-Ring 2, 65205 Wiesbaden, Germany
| | | | | |
Collapse
|
48
|
Trabanco AA, Cid JM. mGluR2 positive allosteric modulators: a patent review (2009 - present). Expert Opin Ther Pat 2013; 23:629-47. [PMID: 23452205 DOI: 10.1517/13543776.2013.777043] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION The mGlu2 receptor, which belongs to the group II subfamily of metabotropic glutamate receptors (mGlu) along with the mGlu3 receptor, has proven to be of particular importance in neuropharmacology. Preferentially expressed on presynaptic nerve terminals, the mGlu2 receptor negatively modulates glutamate and GABA release and is widely distributed in the brain. High levels of mGlu2 receptors are seen in brain areas such as prefrontal cortex, hippocampus and amygdala where glutamate hyperfunction may be implicated in disorders and diseases such as anxiety and schizophrenia. Given the promise offered by mGlu2/3 receptor activation, there is increased interest in identifying small molecules which activate the receptor. A preferred approach is via positive allosteric modulators (PAMs) which bind at an alternative site to agonists. AREAS COVERED This review covers the patent applications which were published between April 2009 and December 2012 on PAMs of the mGlu2, and it is a continuation of an earlier review published in this journal. EXPERT OPINION Advances in medicinal chemistry and pharmacology have set the stage in the field of mGlu2 receptor PAMs. Compounds currently advancing in clinical trials will soon establish the therapeutic potential of this allosteric approach.
Collapse
Affiliation(s)
- Andrés A Trabanco
- Janssen Research and Development, Neuroscience Medicinal Chemistry Department, Toledo, Spain.
| | | |
Collapse
|
49
|
Jessen F, Fingerhut N, Sprinkart AM, Kühn KU, Petrovsky N, Maier W, Schild HH, Block W, Wagner M, Träber F. N-acetylaspartylglutamate (NAAG) and N-acetylaspartate (NAA) in patients with schizophrenia. Schizophr Bull 2013; 39:197-205. [PMID: 21914645 PMCID: PMC3523904 DOI: 10.1093/schbul/sbr127] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
UNLABELLED BACKGROUND : Imbalance of glutamatergic neurotransmission has been proposed as a key mechanism underlying symptoms of schizophrenia. The neuropetide N-acetylaspartylglutamate (NAAG) modulates glutamate release. NAAG provides a component of the proton magnetic resonance spectrum (1H-MRS) in humans. The signal of NAAG, however, largely overlaps with its precursor and degrading product N-acetylaspartate (NAA) that by itself does not act in glutamatergic neurotransmission. METHODS We quantified NAAG and NAA separately from the 1H-MRS signal in 20 patients with schizophrenia and 20 healthy comparison subjects on a 3.0 Tesla MR scanner. The 1H-MRS voxels were positioned in the anterior cingulate cortex (ACC) and in the left frontal lobe. Psychopathological symptoms and cognitive performance were assessed. RESULTS In the ACC, the ratio NAAG/NAA was increased (P = .041) and NAAG was increased at a trend level (P = .066) in patients, while NAA was reduced (P = .030). NAA correlated with attention performance in patients (r = .64, P = .005) in the ACC. There was no group difference of NAAG, NAA, or NAAG/NAA in the frontal lobe but an inverse correlation of NAAG with negatives symptoms (Positive and Negative Symptoms Scale [PANSS] negative, r = -.58, P = .018) and with the total symptom score (PANSS total, r = -.50, P = .049). In addition, there was a positive correlation of frontal lobe NAAG (r = .53, P = .035) and NAAG/NAA (r = .54, P = .030) with episodic memory in patients. CONCLUSIONS In this study, we present the first in vivo evidence for altered NAAG concentration in patients with schizophrenia.
Collapse
Affiliation(s)
- Frank Jessen
- Department of Psychiatry and Psychotherapy, University of Bonn, Germany.
| | | | | | - Kai-Uwe Kühn
- Department of Psychiatry and Psychotherapy, University of Saarland, Homburg, Germany
| | - Nadine Petrovsky
- Department of Psychiatry and Psychotherapy, University of Bonn, Germany
| | - Wolfgang Maier
- Department of Psychiatry and Psychotherapy, University of Bonn, Germany,German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Hans-H Schild
- Department of Radiology, University of Bonn, Germany
| | | | - Michael Wagner
- Department of Psychiatry and Psychotherapy, University of Bonn, Germany
| | - Frank Träber
- Department of Radiology, University of Bonn, Germany
| |
Collapse
|
50
|
Serotonin-glutamate and serotonin-dopamine reciprocal interactions as putative molecular targets for novel antipsychotic treatments: from receptor heterodimers to postsynaptic scaffolding and effector proteins. Psychopharmacology (Berl) 2013. [PMID: 23179966 DOI: 10.1007/s00213-012-2921-8] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The physical and functional interactions between serotonin-glutamate and serotonin-dopamine signaling have been suggested to be involved in psychosis pathophysiology and are supposed to be relevant for antipsychotic treatment. Type II metabotropic glutamate receptors (mGluRs) and serotonin 5-HT(2A) receptors have been reported to form heterodimers that modulate G-protein-mediated intracellular signaling differentially compared to mGluR2 and 5-HT(2A) homomers. Additionally, direct evidence has been provided that D(2) and 5-HT(2A) receptors form physical heterocomplexes which exert a functional cross-talk, as demonstrated by studies on hallucinogen-induced signaling. Moving from receptors to postsynaptic density (PSD) scenario, the scaffolding protein PSD-95 is known to interact with N-methyl-D-aspartate (NMDA), D(2) and 5-HT(2) receptors, regulating their activation state. Homer1a, the inducible member of the Homer family of PSD proteins that is implicated in glutamatergic signal transduction, is induced in striatum by antipsychotics with high dopamine receptor affinity and in the cortex by antipsychotics with mixed serotonergic/dopaminergic profile. Signaling molecules, such as Akt and glycogen-synthase-kinase-3 (GSK-3), could be involved in the mechanism of action of antipsychotics, targeting dopamine, serotonin, and glutamate neurotransmission. Altogether, these proteins stand at the crossroad of glutamate-dopamine-serotonin signaling pathways and may be considered as valuable molecular targets for current and new antipsychotics. The aim of this review is to provide a critical appraisal on serotonin-glutamate and serotonin-dopamine interplay to support the idea that next generation schizophrenia pharmacotherapy should not exclusively rely on receptor targeting strategies.
Collapse
|