1
|
Gao P, Zhou J, Sun L, Liu D. Neutrophil Extracellular Traps in Oral Diseases. Oral Dis 2024. [PMID: 39530338 DOI: 10.1111/odi.15197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 09/30/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
OBJECTIVE To summarize the current knowledge of the neutrophil extracellular traps (NETs) and its critical role in various oral diseases. METHODS We reviewed the recent research on NETs through PubMed and Web of Science. An analysis of recent research results was summarized from three aspects: NETs induction and formation, functions of NETs, and NETs in oral diseases. RESULTS The relationship between neutrophils and NETs is critical to the body's defense against microbial invasion. NETs can effectively combat pathogens with an anti-inflammatory effect and meanwhile it can contribute to inflammation. Moreover, it can synergize with other immune cells to respond to stimuli, such as pathogens, host-derived mediators, and drugs. It was revealed that NETs play different roles to influence various oral diseases like periodontitis, endodontic infection, oral mucosal diseases, maxillofacial tumors, and many other oral diseases. CONCLUSION The balance between the protective and potentially harmful effects of NETs is a key factor in determining the outcome of infections and inflammatory responses. The role of NETs in oral diseases needs to be further studied to enable better understanding of its role in the different oral diseases.
Collapse
Affiliation(s)
- Pengfei Gao
- Department of Periodontology, Suzhou Stomatological Hospital, Suzhou, Jiangsu, China
| | - Jun Zhou
- Department of Conservative Dentistry, Division of Biomaterials and Engineering, Showa University School of Dentistry, Tokyo, Japan
| | - Lu Sun
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| | - Dayong Liu
- Tianjin Medical University School of Stomatology, Tianjin Medical University, Tianjin, China
| |
Collapse
|
2
|
Shahbaz M, Al-Maleki AR, Cheah CW, Aziz J, Bartold PM, Vaithilingam RD. Connecting the dots: NETosis and the periodontitis-rheumatoid arthritis nexus. Int J Rheum Dis 2024; 27:e15415. [PMID: 39526323 DOI: 10.1111/1756-185x.15415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/27/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Periodontitis (PD) is characterized by the host's inflammatory responses to microbial dental biofilm dysbiosis, potentially resulting in tooth loss if left untreated. Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease leading to synovial inflammation and destruction of joint cartilage and bone. The suggested association between PD and RA is based on the potential of chronic inflammation present in periodontitis, which could induce alterations in proteins through post-translational modifications, leading to the formation of citrullinated and carbamylated protein antigens. Antibodies directed against these antigens can serve as biomarkers for the underlying immunological processes in RA. Recent studies have also focused on bacterial proteolytic enzymes released from PD-associated bacteria, such as Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans, which are also sources of these antibodies. Chronic inflammation in PD causes increased levels of inflammatory cytokines (interferon-α, interleukins-6 and 8, tumor necrosis factor-α) and neutrophil extracellular traps (NETs). The oral microbiota in PD is also associated with the release of NETs (a process known as NETosis). Elevated NET levels are a source of citrullinated and carbamylated proteins which highlights their role in an individual's risk of developing RA (pre-RA individuals) and the progression of chronic RA. This narrative review describes periodontitis and the dysbiotic subgingival microbiota and its role in NETosis as risk factors for inducing early RA and the prospects of identifying pre-RA individuals and seronegative RA patients with these risk factors.
Collapse
Affiliation(s)
- Maliha Shahbaz
- Department of Restorative Dentistry, Faculty of Dentistry, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Anis Rageh Al-Maleki
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Chia Wei Cheah
- Department of Restorative Dentistry, Faculty of Dentistry, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Jazli Aziz
- Department of Oral and Craniofacial Sciences, Faculty of Dentistry, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Peter Mark Bartold
- Department of Periodontology, University of Adelaide, Adelaide, South Australia, Australia
| | - Rathna Devi Vaithilingam
- Department of Restorative Dentistry, Faculty of Dentistry, Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
3
|
Walther KA, Gröger S, Vogler JAH, Wöstmann B, Meyle J. Inflammation indices in association with periodontitis and cancer. Periodontol 2000 2024. [PMID: 39317462 DOI: 10.1111/prd.12612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/18/2024] [Accepted: 08/20/2024] [Indexed: 09/26/2024]
Abstract
Inflammation is a complex physiological process that plays a pivotal role in many if not all pathological conditions, including infectious as well as inflammatory diseases, like periodontitis and autoimmune disorders. Inflammatory response to periodontal biofilms and tissue destruction in periodontitis is associated with the release of inflammatory mediators. Chronic inflammation can promote the development of cancer. Persistence of inflammatory mediators plays a crucial role in this process. Quantification and monitoring of the severity of inflammation in relation to cancer is essential. Periodontitis is mainly quantified based on the severity and extent of attachment loss and/or pocket probing depth, in addition with bleeding on probing. In recent years, studies started to investigate inflammation indices in association with periodontal diseases. To date, only few reviews have been published focusing on the relationship between blood cell count, inflammation indices, and periodontitis. This review presents a comprehensive overview of different systemic inflammation indices, their methods of measurement, and the clinical applications in relation to periodontitis and cancer. This review outlines the physiological basis of inflammation and the underlying cellular and molecular mechanisms of the parameters described. Key inflammation indices are commonly utilized in periodontology such as the neutrophil to lymphocyte ratio. Inflammation indices like the platelet to lymphocyte ratio, platelet distribution width, plateletcrit, red blood cell distribution width, lymphocyte to monocyte ratio, delta neutrophil index, and the systemic immune inflammation index are also used in hospital settings and will be discussed. The clinical roles and limitations, relationship to systemic diseases as well as their association to periodontitis and treatment response are described.
Collapse
Affiliation(s)
- Kay-Arne Walther
- Department of Periodontology, Dental Clinic, Justus Liebig University of Giessen, Giessen, Germany
- Department of Prosthodontics, Dental Clinic, Justus Liebig University of Giessen, Giessen, Germany
| | - Sabine Gröger
- Department of Periodontology, Dental Clinic, Justus Liebig University of Giessen, Giessen, Germany
- Department of Orthodontics, Dental Clinic, Justus Liebig University of Giessen, Giessen, Germany
| | | | - Bernd Wöstmann
- Department of Periodontology, Dental Clinic, Justus Liebig University of Giessen, Giessen, Germany
- Department of Prosthodontics, Dental Clinic, Justus Liebig University of Giessen, Giessen, Germany
| | - Jörg Meyle
- Department of Periodontology, Dental Clinic, Justus Liebig University of Giessen, Giessen, Germany
- Department of Periodontology, Dental Clinic, University of Bern, Bern, Switzerland
| |
Collapse
|
4
|
Boșca AB, Dinte E, Mihu CM, Pârvu AE, Melincovici CS, Șovrea AS, Mărginean M, Constantin AM, Băbțan AM, Muntean A, Ilea A. Local Drug Delivery Systems as Novel Approach for Controlling NETosis in Periodontitis. Pharmaceutics 2024; 16:1175. [PMID: 39339210 PMCID: PMC11435281 DOI: 10.3390/pharmaceutics16091175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
Periodontitis is a chronic inflammation caused by periodontopathogenic bacteria in the dental biofilm, and also involves the inflammatory-immune response of the host. Polymorphonuclear neutrophils (PMNs) play essential roles in bacterial clearance by multiple mechanisms, including the formation of neutrophil extracellular traps (NETs) that retain and destroy pathogens. During PD progression, the interaction between PMNs, NETs, and bacteria leads to an exaggerated immune response and a prolonged inflammatory state. As a lesion matures, PMNs accumulate in the periodontal tissues and die via NETosis, ultimately resulting in tissue injury. A better understanding of the role of NETs, the associated molecules, and the pathogenic pathways of NET formation in periodontitis, could provide markers of NETosis as reliable diagnostic and prognostic tools. Moreover, an assessment of NET biomarker levels in biofluids, particularly in saliva or gingival crevicular fluid, could be useful for monitoring periodontitis progression and treatment efficacy. Preventing excessive NET accumulation in periodontal tissues, by both controlling NETs' formation and their appropriate removal, could be a key for further development of more efficient therapeutic approaches. In periodontal therapy, local drug delivery (LDD) systems are more targeted, enhancing the bioavailability of active pharmacological agents in the periodontal pocket and surrounding tissues for prolonged time to ensure an optimal therapeutic outcome.
Collapse
Affiliation(s)
- Adina Bianca Boșca
- Department of Histology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.B.B.)
| | - Elena Dinte
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Carmen Mihaela Mihu
- Department of Histology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.B.B.)
| | - Alina Elena Pârvu
- Department of Pathophysiology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Carmen Stanca Melincovici
- Department of Histology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.B.B.)
| | - Alina Simona Șovrea
- Department of Histology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.B.B.)
| | - Mariana Mărginean
- Department of Histology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.B.B.)
| | - Anne-Marie Constantin
- Department of Histology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.B.B.)
| | - Anida-Maria Băbțan
- Department of Oral Rehabilitation, Faculty of Dentistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania (A.I.)
| | - Alexandrina Muntean
- Department of Paediatric Dentistry, Faculty of Dentistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Aranka Ilea
- Department of Oral Rehabilitation, Faculty of Dentistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania (A.I.)
| |
Collapse
|
5
|
Qiu W, Guo R, Yu H, Chen X, Chen Z, Ding D, Zhong J, Yang Y, Fang F. Single-cell atlas of human gingiva unveils a NETs-related neutrophil subpopulation regulating periodontal immunity. J Adv Res 2024:S2090-1232(24)00312-6. [PMID: 39084404 DOI: 10.1016/j.jare.2024.07.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/27/2024] [Accepted: 07/28/2024] [Indexed: 08/02/2024] Open
Abstract
INTRODUCTION Exaggerated neutrophil recruitment and activation are the major features of pathological alterations in periodontitis, in which neutrophil extracellular traps (NETs) are considered to be responsible for inflammatory periodontal lesions. Despite the critical role of NETs in the development and progression of periodontitis, their specific functions and mechanisms remain unclear. OBJECTIVES To demonstrate the important functions and specific mechanisms of NETs involved in periodontal immunopathology. METHODS We performed single-cell RNA sequencing on gingival tissues from both healthy individuals and patients diagnosed with periodontitis. High-dimensional weighted gene co-expression network analysis and pseudotime analysis were then applied to characterize the heterogeneity of neutrophils. Animal models of periodontitis were treated with NETs inhibitors to investigate the effects of NETs in severe periodontitis. Additionally, we established a periodontitis prediction model based on NETs-related genes using six types of machine learning methods. Cell-cell communication analysis was used to identify ligand-receptor pairs among the major cell groups within the immune microenvironment. RESULTS We constructed a single-cell atlas of the periodontal microenvironment and obtained nine major cell populations. We further identified a NETs-related subgroup (NrNeu) in neutrophils. An in vivo inhibition experiment confirmed the involvement of NETs in gingival inflammatory infiltration and alveolar bone absorption in severe periodontitis. We further screened three key NETs-related genes (PTGS2, MME and SLC2A3) and verified that they have the potential to predict periodontitis. Moreover, our findings revealed that gingival fibroblasts had the most interactions with NrNeu and that they might facilitate the production of NETs through the MIF-CD74/CXCR4 axis in periodontitis. CONCLUSION This study highlights the pathogenic role of NETs in periodontal immunity and elucidates the specific regulatory relationship by which gingival fibroblasts activate NETs, which provides new insights into the clinical diagnosis and treatment of periodontitis.
Collapse
Affiliation(s)
- Wei Qiu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Ruiming Guo
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Hongwen Yu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xiaoxin Chen
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zehao Chen
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Dian Ding
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jindou Zhong
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yumeng Yang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Fuchun Fang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
6
|
Chen K, Li S, Xie Z, Liu Y, Li Y, Mai J, Lai C, Wu Q, Zhong S. Association between oxidative balance score, systemic inflammatory response index, and cardiovascular disease risk: a cross-sectional analysis based on NHANES 2007-2018 data. Front Nutr 2024; 11:1374992. [PMID: 38899319 PMCID: PMC11186475 DOI: 10.3389/fnut.2024.1374992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Background There is limited research on the relationship between Systemic Oxidative Stress (SOS) status and inflammatory indices. Adding onto existing literature, this study aimed to examine the association between dietary Oxidative Balance Score (OBS) and lifestyle OBS (which make up the overall OBS), and Cardiovascular Disease (CVD) prevalence at different Systemic Immune Inflammation Index (SII) and Systemic Inflammatory Response Index (SIRI) levels. Methods This study involved 9,451 subjects selected from the National Health and Nutrition Examination Survey (NHANES) 2007-2018. The OBS comprised 20 dietary and lifestyle factors. Statistical methods included Weighted Linear Regression Analysis (WLRA), Logistic Regression Analysis (LRA), Sensitivity Analysis (SA), and Restricted Cubic Spline (RCS) analysis. Results The multivariate WLRA revealed that OBS was significantly negatively correlated with both SII (β = -5.36, p < 0.001) and SIRI (β = -0.013, p < 0.001) levels. In SA, removing any single OBS component had no significant effect on the WLRA results of SII and SIRI. Further subgroup analyses revealed that OBS was more impactful in lowering SII in women than in men. Additionally, OBS was more significantly negatively correlated with SII and SIRI in the low-age group than in the high-age group. Moreover, RCS analysis confirmed this linear relationship. Compared to dietary OBS, lifestyle OBS exerted a more significant effect on Coronary Artery Disease (CAD) (OR: 0.794, p = 0.002), hypertension (OR: 0.738, p < 0.001), Congestive Heart Failure (CHF) (OR: 0.736, p = 0.005), Myocardial Infarction (MI) (OR: 0.785, p = 0.002), and stroke (OR: 0.807, p = 0.029) prevalence. Furthermore, SIRI exhibited a significant interaction in the relationship between overall OBS, dietary OBS, and CHF (P for interaction < 0.001). On the other hand, SII had a significant interaction in the relationship between overall OBS, dietary OBS, and MI (P for interaction < 0.05). Conclusion OBS, including lifestyle and dietary OBS, were significantly negatively associated with SII and SIRI. Higher lifestyle OBS was associated with reduced risks of CAD, hypertension, CHF, MI, and stroke.
Collapse
Affiliation(s)
- Kai Chen
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
- Department of Pharmacy, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Senlin Li
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
- Department of Pharmacy, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Zhipeng Xie
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
- Department of Pharmacy, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Yingjian Liu
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
- Department of Pharmacy, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Yangchen Li
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
- Department of Pharmacy, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Jinxia Mai
- Department of Pharmacy, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Chengyang Lai
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
- Department of Pharmacy, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Qili Wu
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
- Department of Pharmacy, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Shilong Zhong
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
- Department of Pharmacy, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| |
Collapse
|
7
|
Al-Bakri SMR, Magan-Fernandez A, Galindo-Moreno P, O'Valle F, Martin-Morales N, Padial-Molina M, Mesa F. Detection and comparison of neutrophil extracellular traps in tissue samples of peri-implantitis, periodontitis, and healthy patients: A pilot study. Clin Implant Dent Relat Res 2024; 26:631-641. [PMID: 38556724 DOI: 10.1111/cid.13325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 02/07/2024] [Accepted: 03/18/2024] [Indexed: 04/02/2024]
Abstract
OBJECTIVE The aim of this study was to detect and compare the tissular expression of neutrophil extracellular traps (NETs) in peri-implant and periodontal samples of patients with peri-implantitis, periodontitis, and controls. MATERIALS AND METHODS An observational study was performed on patients with peri-implantitis, periodontitis, and controls. Peri-implant and/or periodontal clinical examinations were performed on each participant. Tissue samples were collected during tooth/implant extraction for clinical reasons. Electron microscopy analysis, Picro-Sirius red staining, immunohistochemical (CD15), and immunofluorescence (citrullinated H3 and myeloperoxidase) techniques were performed to detect NET-related structures and the degree of connective tissue destruction, between the study groups. RESULTS Sixty-four patients were included in the study: 28 peri-implantitis, 26 periodontitis, and 10 controls, with a total of 51 implants, 26 periodontal teeth, and 10 control teeth. Neutrophil release of nuclear content was observed in transmission electron microscopy. Immunohistochemical analysis showed a greater CD15 expression in both peri-implantitis and periodontitis compared to controls (p < 0.001), and peri-implantitis presented lower levels of connective tissue and collagen compared to both periodontitis (p = 0.044; p < 0.001) and controls (p < 0.001). Immunofluorescence showed greater citH3 expression in peri-implantitis than the one found in both periodontitis (p = 0.003) and controls (p = 0.048). CONCLUSIONS A greater presence and involvement of neutrophils, as well as a greater connective tissue destruction were observed in cases of peri-implantitis. A higher expression of NET-related markers was found in mucosal samples of peri-implantitis compared to periodontitis and controls.
Collapse
Affiliation(s)
- Sarmad Muayad Rasheed Al-Bakri
- Department of Periodontics, School of Dentistry, University of Granada, Granada, Spain
- PhD Program in Clinical Medicine and Public Health, University of Granada, Granada, Spain
| | | | - Pablo Galindo-Moreno
- Department of Oral Surgery and Implant Dentistry, School of Dentistry, University of Granada, Granada, Spain
- ibs.GRANADA - Instituto de Investigación Biosanitaria, Granada, Spain
| | - Francisco O'Valle
- ibs.GRANADA - Instituto de Investigación Biosanitaria, Granada, Spain
- Department of Pathology, School of Medicine and IBIMER, University of Granada, Granada, Spain
| | - Natividad Martin-Morales
- Department of Oral Surgery and Implant Dentistry, School of Dentistry, University of Granada, Granada, Spain
- ibs.GRANADA - Instituto de Investigación Biosanitaria, Granada, Spain
- Department of Pathology, School of Medicine and IBIMER, University of Granada, Granada, Spain
- PhD Program in Biomedicine, University of Granada, Granada, Spain
| | - Miguel Padial-Molina
- Department of Oral Surgery and Implant Dentistry, School of Dentistry, University of Granada, Granada, Spain
- ibs.GRANADA - Instituto de Investigación Biosanitaria, Granada, Spain
| | - Francisco Mesa
- Department of Periodontics, School of Dentistry, University of Granada, Granada, Spain
| |
Collapse
|
8
|
Kim TS, Moutsopoulos NM. Neutrophils and neutrophil extracellular traps in oral health and disease. Exp Mol Med 2024; 56:1055-1065. [PMID: 38689085 PMCID: PMC11148164 DOI: 10.1038/s12276-024-01219-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/20/2024] [Accepted: 02/20/2024] [Indexed: 05/02/2024] Open
Abstract
Neutrophils perform essential functions in antimicrobial defense and tissue maintenance at mucosal barriers. However, a dysregulated neutrophil response and, in particular, the excessive release of neutrophil extracellular traps (NETs) are implicated in the pathology of various diseases. In this review, we provide an overview of the basic concepts related to neutrophil functions, including NET formation, and discuss the mechanisms associated with NET activation and function in the context of the prevalent oral disease periodontitis.
Collapse
Affiliation(s)
- Tae Sung Kim
- Oral Immunity and Infection Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Niki M Moutsopoulos
- Oral Immunity and Infection Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
9
|
Liu J, Meng H, Mao Y, Zhong L, Pan W, Chen Q. IL-36 Regulates Neutrophil Chemotaxis and Bone Loss at the Oral Barrier. J Dent Res 2024; 103:442-451. [PMID: 38414292 DOI: 10.1177/00220345231225413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024] Open
Abstract
Tissue-specific mechanisms regulate neutrophil immunity at the oral barrier, which plays a key role in periodontitis. Although it has been proposed that fibroblasts emit a powerful neutrophil chemotactic signal, how this chemotactic signal is driven has not been clear. The objective of this study was to investigate the site-specific regulatory mechanisms by which fibroblasts drive powerful neutrophil chemotactic signals within the oral barrier, with particular emphasis on the role of the IL-36 family. The present study found that IL-36γ, agonist of IL-36R, could promote neutrophil chemotaxis via fibroblast. Single-cell RNA sequencing data disclosed that IL36G is primarily expressed in human and mouse gingival epithelial cells and mouse neutrophils. Notably, there was a substantial increase in IL-36γ levels during periodontitis. In vitro experiments demonstrated that IL-36γ specifically activates gingival fibroblasts, leading to chemotaxis of neutrophils. In vivo experiments revealed that IL-36Ra inhibited the infiltration of neutrophils and bone resorption, while IL-36γ promoted their progression in the ligature-induced periodontitis mouse model. In summary, these data elucidate the function of the site-enriched IL-36γ in regulating neutrophil immunity and bone resorption at the oral barrier. These findings provide new insights into the tissue-specific pathophysiology of periodontitis and offer a promising avenue for prevention and treatment through targeted intervention of the IL-36 family.
Collapse
Affiliation(s)
- J Liu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center of Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - H Meng
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center of Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Y Mao
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center of Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - L Zhong
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center of Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - W Pan
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center of Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Q Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center of Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| |
Collapse
|
10
|
Oliveira SR, de Arruda JAA, Schneider AH, Bemquerer LM, de Souza RMS, Barbim P, de Mattos-Pereira GH, Calderaro DC, Machado CC, Alves SF, Moreira PR, de Oliveira RDR, Louzada-Júnior P, Abreu LG, Cunha FQ, Silva TA. Neutrophil extracellular traps in rheumatoid arthritis and periodontitis: Contribution of PADI4 gene polymorphisms. J Clin Periodontol 2024; 51:452-463. [PMID: 38115803 DOI: 10.1111/jcpe.13921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/26/2023] [Accepted: 12/03/2023] [Indexed: 12/21/2023]
Abstract
AIM We sought to investigate the release of neutrophil extracellular traps (NETs) in neutrophils from individuals with rheumatoid arthritis (RA) and controls and compare the presence of NETs in gingival tissues according to periodontal status. Also, the association between single nucleotide polymorphisms (SNPs) of the peptidyl arginine deaminase type 4 (PADI4) gene and the GTG haplotype with RA, periodontitis and NETs was evaluated in vitro. MATERIALS AND METHODS Peripheral neutrophils were isolated by density gradient, and NET concentration was determined by the PicoGreen method. Immunofluorescence was studied to identify NETs by co-localization of myeloperoxidase (MPO)-citrullinated histone H3 (H3Cit). Genotyping for SNPs (PADI4_89; PADI4_90; PADI4_92; and PADI4_104) was performed in 87 individuals with RA and 111 controls. RESULTS The release of NETs in vitro was significantly higher in individuals with RA and periodontitis and when stimulated with Porphyromonas gingivalis. Gingival tissues from subjects with RA and periodontitis revealed increased numbers of MPO-H3Cit-positive cells. Individuals with the GTG haplotype showed a higher release of NETs in vitro and worse periodontal parameters. CONCLUSIONS The release of NETs by circulating neutrophils is associated with RA and periodontitis and is influenced by the presence of the GTG haplotype.
Collapse
Affiliation(s)
- Sicília Rezende Oliveira
- Department of Oral Surgery, Pathology and Clinical Dentistry, School of Dentistry, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - José Alcides Almeida de Arruda
- Department of Oral Surgery, Pathology and Clinical Dentistry, School of Dentistry, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ayda Henriques Schneider
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Larissa Marques Bemquerer
- Department of Oral Surgery, Pathology and Clinical Dentistry, School of Dentistry, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Rayssa Maria Soalheiro de Souza
- Department of Oral Surgery, Pathology and Clinical Dentistry, School of Dentistry, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Paula Barbim
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Gustavo Henrique de Mattos-Pereira
- Department of Oral Surgery, Pathology and Clinical Dentistry, School of Dentistry, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Débora Cerqueira Calderaro
- Department of Locomotor Apparatus, Faculty of Medicine, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Caio Cavalcante Machado
- Division of Clinical Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Sandra Fukada Alves
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Paula Rocha Moreira
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Paulo Louzada-Júnior
- Division of Clinical Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Lucas Guimarães Abreu
- Department of Child and Adolescent Oral Health, School of Dentistry, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Fernando Queiroz Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Tarcília Aparecida Silva
- Department of Oral Surgery, Pathology and Clinical Dentistry, School of Dentistry, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
11
|
Abdalla HB, Puhl L, Rivas CA, Wu YC, Rojas P, Trindade-da-Silva CA, Hammock BD, Maddipati KR, Soares MQS, Clemente-Napimoga JT, Kantarci A, Napimoga MH, Van Dyke TE. Modulating the sEH/EETs Axis Restrains Specialized Proresolving Mediator Impairment and Regulates T Cell Imbalance in Experimental Periodontitis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:433-445. [PMID: 38117781 PMCID: PMC10866374 DOI: 10.4049/jimmunol.2300650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/26/2023] [Indexed: 12/22/2023]
Abstract
Epoxyeicosatrienoic acids (EETs) and other epoxy fatty acids are short-acting lipids involved in resolution of inflammation. Their short half-life, due to its metabolism by soluble epoxide hydrolase (sEH), limits their effects. Specialized proresolving mediators (SPMs) are endogenous regulatory lipids insufficiently synthesized in uncontrolled and chronic inflammation. Using an experimental periodontitis model, we pharmacologically inhibited sEH, examining its impact on T cell activation and systemic SPM production. In humans, we analyzed sEH in the gingival tissue of periodontitis patients. Mice were treated with sEH inhibitor (sEHi) and/or EETs before ligature placement and treated for 14 d. Bone parameters were assessed by microcomputed tomography and methylene blue staining. Blood plasma metabololipidomics were carried out to quantify SPM levels. We also determined T cell activation by reverse transcription-quantitative PCR and flow cytometry in cervical lymph nodes. Human gingival samples were collected to analyze sEH using ELISA and electrophoresis. Data reveal that pharmacological sEHi abrogated bone resorption and preserved bone architecture. Metabololipidomics revealed that sEHi enhances lipoxin A4, lipoxin B4, resolvin E2, and resolvin D6. An increased percentage of regulatory T cells over Th17 was noted in sEHi-treated mice. Lastly, inflamed human gingival tissues presented higher levels and expression of sEH than did healthy gingivae, being positively correlated with periodontitis severity. Our findings indicate that sEHi preserves bone architecture and stimulates SPM production, associated with regulatory actions on T cells favoring resolution of inflammation. Because sEH is enhanced in human gingivae from patients with periodontitis and connected with disease severity, inhibition may prove to be an attractive target for managing osteolytic inflammatory diseases.
Collapse
Affiliation(s)
- Henrique B. Abdalla
- Department of Applied Oral Sciences, The Forsyth Institute, Cambridge, MA, USA
- Faculdade São Leopoldo Mandic, Campinas, SP, Brazil
| | - Luciano Puhl
- Faculdade São Leopoldo Mandic, Campinas, SP, Brazil
| | - Carla Alvarez Rivas
- Department of Applied Oral Sciences, The Forsyth Institute, Cambridge, MA, USA
- Harvard School of Dental Medicine, Boston, MA, USA
| | - Yu-Chiao Wu
- Department of Applied Oral Sciences, The Forsyth Institute, Cambridge, MA, USA
- Harvard School of Dental Medicine, Boston, MA, USA
| | - Paola Rojas
- Department of Applied Oral Sciences, The Forsyth Institute, Cambridge, MA, USA
| | | | - Bruce D. Hammock
- Department of Entomology and UCD Comprehensive Cancer Center, University of California, Davis, CA, USA
| | | | | | | | - Alpdogan Kantarci
- Department of Applied Oral Sciences, The Forsyth Institute, Cambridge, MA, USA
| | | | - Thomas E. Van Dyke
- Department of Applied Oral Sciences, The Forsyth Institute, Cambridge, MA, USA
- Department of Oral Medicine, Infection, and Immunity, Faculty of Medicine, Harvard University, Boston, MA, USA
| |
Collapse
|
12
|
Kovalčíková AG, Novák B, Roshko O, Kovaľová E, Pastorek M, Vlková B, Celec P. Extracellular DNA and Markers of Neutrophil Extracellular Traps in Saliva from Patients with Periodontitis-A Case-Control Study. J Clin Med 2024; 13:468. [PMID: 38256602 PMCID: PMC10816443 DOI: 10.3390/jcm13020468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/30/2023] [Accepted: 01/06/2024] [Indexed: 01/24/2024] Open
Abstract
Periodontitis is a chronic inflammatory disease. We have previously shown that salivary DNA is higher in patients with periodontitis. Neutrophil extracellular traps (NETs) are involved in the pathogenesis of chronic inflammatory diseases. The objective of this case-control study was to compare patients with periodontitis and healthy controls regarding the salivary concentrations of extracellular DNA and NET components. Unstimulated saliva samples were collected from 49 patients with periodontitis and 71 controls before an oral examination. Salivary extracellular DNA was isolated and quantified fluorometrically and using PCR. NET-associated markers were assessed using ELISA. We have found significantly higher concentrations of salivary extracellular DNA in samples from periodontitis patients (five-times higher for supernatant and three times for pellet). Our results show that patients also have three-times-higher salivary nucleosomes and NET-associated enzymes-myeloperoxidase and neutrophil elastase (both two-times higher). Neutrophil elastase and salivary DNA in the pellet correlated positively with the pocket depth/clinical attachment level in periodontitis patients (r = 0.31-weak correlation; p = 0.03 and r = 0.41-moderate correlation, p = 0.004). Correlations between salivary extracellular DNA and NET enzymes were positive and significant. Based on our results, the higher salivary extracellular DNA in periodontitis seems to be related to components of NETs, albeit with weak to moderate correlations indicating that NETs are produced in periodontitis and can play a role in its pathogenesis similarly to other inflammatory diseases. Further studies should prove this assumption with potential diagnostic and therapeutic consequences.
Collapse
Affiliation(s)
- Alexandra Gaál Kovalčíková
- Department of Pediatrics, National Institute of Children’s Diseases and Faculty of Medicine, Comenius University in Bratislava, 83340 Bratislava, Slovakia;
| | - Bohuslav Novák
- Department of Stomatology and Maxillofacial Surgery, Faculty of Medicine, Comenius University, 81250 Bratislava, Slovakia;
| | - Oksana Roshko
- Department of Dental Hygiene, Faculty of Health Care, Prešov University, 08001 Prešov, Slovakia; (O.R.); (E.K.)
| | - Eva Kovaľová
- Department of Dental Hygiene, Faculty of Health Care, Prešov University, 08001 Prešov, Slovakia; (O.R.); (E.K.)
| | - Michal Pastorek
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, 81108 Bratislava, Slovakia; (M.P.); (B.V.)
| | - Barbora Vlková
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, 81108 Bratislava, Slovakia; (M.P.); (B.V.)
| | - Peter Celec
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, 81108 Bratislava, Slovakia; (M.P.); (B.V.)
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, 81108 Bratislava, Slovakia
| |
Collapse
|
13
|
Diehl D, Friedmann A, Bachmann HS. Prenyltransferase gene expression reveals an essential role of prenylation for the inflammatory response in human gingival fibroblasts. J Periodontol 2023; 94:1450-1460. [PMID: 37432945 DOI: 10.1002/jper.23-0220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/08/2023] [Indexed: 07/13/2023]
Abstract
BACKGROUND Prenyltrasferases (PTases) are a class of enzymes known to be responsible for promoting posttranslational modification at the carboxyl terminus of proteins containing a so-called CaaX-motif. The process is responsible for proper membrane localization and the appropriate function of several intracellular signaling proteins. Current research demonstrating the pathomechanistic importance of prenylation in inflammatory illnesses emphasizes the requirement to ascertain the differential expression of PT genes under inflammatory settings, particularly in periodontal disease. METHODS Telomerase-immortalized human gingival fibroblasts (HGF-hTert) were cultured and treated with either inhibitors of prenylation (PTI) lonafarnib, tipifarnib, zoledronic acid, or atorvastatin at concentrations of 10 μM in combination with or without 10 μg Porphyromonas gingivalis lipopolysaccharide (LPS) for 24 h. Prenyltransferase genes FNTB, FNTA, PGGT1B, RABGGTA, RABGGTB, and PTAR1 as well as inflammatory marker genes MMP1 and IL1B were detected using quantitative real-time polymerase chain reaction (RT-qPCR). Immunoblot and protein immunoassay were used to confirm the results on the protein level. RESULTS RT-qPCR experiments revealed significant upregulation of IL1B, MMP1, FNTA, and PGGT1B upon LPS treatment. PTase inhibitors caused significant downregulation of the inflammatory cytokine expression. Interestingly, FNTB expression was significantly upregulated in response to any PTase inhibitor in combination with LPS, but not upon LPS treatment only, indicating a vital role of protein farnesyltransferase in the proinflammatory signaling cascade. CONCLUSIONS In this study, distinct PTase gene expression patterns in pro-inflammatory signaling were discovered. Moreover, PTase inhibiting drugs ameliorated inflammatory mediator expression by a significant margin, indicating that prenylation is a major pre-requisite for innate immunity in periodontal cells.
Collapse
Affiliation(s)
- Daniel Diehl
- Institute of Pharmacology and Toxicology, Center for Biomedical Education and Research (ZBAF), Faculty of Health, Witten/Herdecke University, Witten, Germany
- Department of Periodontology, Center for Biomedical Education and Research (ZBAF), Faculty of Health, Witten/Herdecke University, Witten, Germany
| | - Anton Friedmann
- Department of Periodontology, Center for Biomedical Education and Research (ZBAF), Faculty of Health, Witten/Herdecke University, Witten, Germany
| | - Hagen S Bachmann
- Institute of Pharmacology and Toxicology, Center for Biomedical Education and Research (ZBAF), Faculty of Health, Witten/Herdecke University, Witten, Germany
| |
Collapse
|
14
|
Kobayashi T, Bartold PM. Periodontitis and periodontopathic bacteria as risk factors for rheumatoid arthritis: A review of the last 10 years. JAPANESE DENTAL SCIENCE REVIEW 2023; 59:263-272. [PMID: 37674898 PMCID: PMC10477376 DOI: 10.1016/j.jdsr.2023.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/31/2023] [Accepted: 08/09/2023] [Indexed: 09/08/2023] Open
Abstract
Rheumatoid arthritis (RA) is characterized by chronic inflammatory destruction of joint tissue and is caused by an abnormal autoimmune response triggered by interactions between genetics, environmental factors, and epigenetic and posttranslational modifications. RA has been suggested to be interrelated with periodontitis, a serious form or stage of chronic inflammatory periodontal disease associated with periodontopathic bacterial infections, genetic predisposition, environmental factors, and epigenetic influences. Over the last decade, a number of animal and clinical studies have been conducted to assess whether or not periodontitis and associated periodontopathic bacteria constitute risk factors for RA. The present review introduces recent accumulating evidence to support the associations of periodontitis and periodontopathic bacteria with the risk of RA or the outcome of RA pharmacological treatment with disease-modifying antirheumatic drugs. In addition, the results from intervention studies have suggested an improvement in RA clinical parameters after nonsurgical periodontal treatment. Furthermore, the potential causal mechanisms underlying the link between periodontitis and periodontopathic bacteria and RA are summarized.
Collapse
Affiliation(s)
- Tetsuo Kobayashi
- General Dentistry and Clinical Education Unit, Faculty of Dentistry & Medical and Dental Hospital, Niigata University, 2-5274 Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan
- Division of Periodontology, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan
| | - Peter Mark Bartold
- Adelaide Dental School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| |
Collapse
|
15
|
Isola G, Polizzi A, Mascitti M, Santonocito S, Ronsivalle V, Cicciù M, Pesce P. Impact of periodontitis on circulating cell-free DNA levels as a measure of cardiovascular disease. Clin Oral Investig 2023; 27:6855-6863. [PMID: 37814162 PMCID: PMC10630221 DOI: 10.1007/s00784-023-05300-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/27/2023] [Indexed: 10/11/2023]
Abstract
OBJECTIVES The present study aims to assess the serum circulating cell-free (cfDNA) concentrations in patients with periodontitis and cardiovascular disease (CVD) and to evaluate the impact of periodontitis on circulating cfDNA levels and the confounding factors that might mediated the possible relationship. MATERIALS AND METHODS Healthy controls (n=30) and patients with CVD (n=31), periodontitis (n=31), and periodontitis + CVD (n=30) were enrolled in the present study. All subjects underwent regular periodontal examination and blood sampling and cfDNA evaluation. The analysis of the plasma cfDNA concentrations was performed using a dsDNA Assay Kit. RESULTS In comparison with healthy controls and CVD patients, periodontitis and periodontitis+CVD exhibited significantly higher expression of circulating cfDNA (p<0.05). There was a positive correlation among plasma cfDNA and clinical attachment loss (CAL) (p=0.019), high sensitivity C-reactive protein (hs-CRP) (p=0.027), and periodontal inflamed surface area (PISA) (p=0.003). Furthermore, the multivariate regression analysis evidenced that PISA (p<0.001), hs-CRP (p=0.014), and full-mouth bleeding score (FMBS) (p=0.004) were significant predictors of circulating cfDNA concentrations. CONCLUSIONS The results of the study highlighted that the periodontitis and periodontitis + CVD group showed higher circulating cfDNA expression in comparison with healthy controls and CVD patients. Moreover, the extent of periodontitis was correlated with the increased cfDNA levels and represented a significant predictor of the increased circulating cfDNA concentrations. CLINICAL RELEVANCE Unbalanced circulating cfDNA concentrations have been indicated to represent a possible risk of CVD and endothelial dysfunction. Periodontitis and periodontitis + CVD patients showed higher circulating cfDNA expression; moreover, the extent of periodontitis significantly predicted higher circulating cfDNA concentrations, suggesting the potential increased risk of developing CVD in periodontitis patients.
Collapse
Affiliation(s)
- Gaetano Isola
- Department of General Surgery and Surgical-Medical Specialties, Unit of Periodontology, School of Dentistry, University of Catania, Via S. Sofia 78, 95123, Catania, Italy.
| | - Alessandro Polizzi
- Department of General Surgery and Surgical-Medical Specialties, Unit of Periodontology, School of Dentistry, University of Catania, Via S. Sofia 78, 95123, Catania, Italy
| | - Marco Mascitti
- Department of Clinical Specialistic and Dental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Simona Santonocito
- Department of General Surgery and Surgical-Medical Specialties, Unit of Periodontology, School of Dentistry, University of Catania, Via S. Sofia 78, 95123, Catania, Italy
| | - Vincenzo Ronsivalle
- Department of General Surgery and Surgical-Medical Specialties, Unit of Periodontology, School of Dentistry, University of Catania, Via S. Sofia 78, 95123, Catania, Italy
| | - Marco Cicciù
- Department of General Surgery and Surgical-Medical Specialties, Unit of Periodontology, School of Dentistry, University of Catania, Via S. Sofia 78, 95123, Catania, Italy
| | - Paolo Pesce
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
| |
Collapse
|
16
|
Maisha JA, El-Gabalawy HS, O’Neil LJ. Modifiable risk factors linked to the development of rheumatoid arthritis: evidence, immunological mechanisms and prevention. Front Immunol 2023; 14:1221125. [PMID: 37767100 PMCID: PMC10520718 DOI: 10.3389/fimmu.2023.1221125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
Rheumatoid Arthritis (RA) is a common autoimmune disease that targets the synovial joints leading to arthritis. Although the etiology of RA remains largely unknown, it is clear that numerous modifiable risk factors confer increased risk to developing RA. Of these risk factors, cigarette smoking, nutrition, obesity, occupational exposures and periodontal disease all incrementally increase RA risk. However, the precise immunological mechanisms by which these risk factors lead to RA are not well understood. Basic and translational studies have provided key insights into the relationship between inflammation, antibody production and the influence in other key cellular events such as T cell polarization in RA risk. Improving our general understanding of the mechanisms which lead to RA will help identify targets for prevention trials, which are underway in at-risk populations. Herein, we review the modifiable risk factors that are linked to RA development and describe immune mechanisms that may be involved. We highlight the few studies that have sought to understand if modification of these risk factors reduces RA risk. Finally, we speculate that modification of risk factors may be an appealing avenue for prevention for some at-risk individuals, specifically those who prefer lifestyle interventions due to safety and economic reasons.
Collapse
Affiliation(s)
| | | | - Liam J. O’Neil
- Manitoba Centre for Proteomics and Systems Biology, Department of Internal Medicine, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
17
|
Kim TS, Silva LM, Theofilou VI, Greenwell-Wild T, Li L, Williams DW, Ikeuchi T, Brenchley L, Bugge TH, Diaz PI, Kaplan MJ, Carmona-Rivera C, Moutsopoulos NM. Neutrophil extracellular traps and extracellular histones potentiate IL-17 inflammation in periodontitis. J Exp Med 2023; 220:e20221751. [PMID: 37261457 PMCID: PMC10236943 DOI: 10.1084/jem.20221751] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 04/07/2023] [Accepted: 05/12/2023] [Indexed: 06/02/2023] Open
Abstract
Neutrophil infiltration is a hallmark of periodontitis, a prevalent oral inflammatory condition in which Th17-driven mucosal inflammation leads to destruction of tooth-supporting bone. Herein, we document that neutrophil extracellular traps (NETs) are early triggers of pathogenic inflammation in periodontitis. In an established animal model, we demonstrate that neutrophils infiltrate the gingival oral mucosa at early time points after disease induction and expel NETs to trigger mucosal inflammation and bone destruction in vivo. Investigating mechanisms by which NETs drive inflammatory bone loss, we find that extracellular histones, a major component of NETs, trigger upregulation of IL-17/Th17 responses, and bone destruction. Importantly, human findings corroborate our experimental work. We document significantly increased levels of NET complexes and extracellular histones bearing classic NET-associated posttranslational modifications, in blood and local lesions of severe periodontitis patients, in the absence of confounding disease. Our findings suggest a feed-forward loop in which NETs trigger IL-17 immunity to promote immunopathology in a prevalent human inflammatory disease.
Collapse
Affiliation(s)
- Tae Sung Kim
- Oral Immunity and Infection Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Lakmali M. Silva
- Oral Immunity and Infection Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
- Proteases and Tissue Remodeling Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Vasileios Ionas Theofilou
- Oral Immunity and Infection Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD, USA
| | - Teresa Greenwell-Wild
- Oral Immunity and Infection Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Lu Li
- Department of Oral Biology, State University of New York at Buffalo, University at Buffalo, Buffalo, NY, USA
| | - Drake Winslow Williams
- Oral Immunity and Infection Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Tomoko Ikeuchi
- Oral Immunity and Infection Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Laurie Brenchley
- Oral Immunity and Infection Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | | | - Thomas H. Bugge
- Proteases and Tissue Remodeling Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Patricia I. Diaz
- Department of Oral Biology, State University of New York at Buffalo, University at Buffalo, Buffalo, NY, USA
| | - Mariana J. Kaplan
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Carmelo Carmona-Rivera
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Niki M. Moutsopoulos
- Oral Immunity and Infection Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
18
|
Kobayashi T, Ito S, Murasawa A, Ishikawa H, Tabeta K. The serum immunoglobulin G titres against Porphyromonas gingivalis as a predictor of clinical response to 1-year treatment with biological disease-modifying antirheumatic drugs in rheumatoid arthritis patients: A retrospective cohort study. Mod Rheumatol 2023; 33:918-927. [PMID: 35962564 DOI: 10.1093/mr/roac093] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/25/2022] [Accepted: 08/05/2022] [Indexed: 11/14/2022]
Abstract
OBJECTIVES The aim is to evaluate the relevance of serum immunoglobulin G (IgG) titres against periodontopathic bacteria to predict the clinical response to 1-year treatment with biological disease-modifying antirheumatic drugs (bDMARDs) in rheumatoid arthritis (RA) patients. METHODS Data were collected from 50 RA patients who had received conventional synthetic DMARDs, corticosteroids, or non-steroidal anti-inflammatory drugs before (baseline) and after 1-year treatment with bDMARDs in a retrospective cohort study. Changes in rheumatologic conditions were compared between the two groups for low and high baseline IgG titres against Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans according to their median measurements. RESULTS Twenty-five patients with low anti-P. gingivalis IgG titres showed significantly greater decreases in changes in the Clinical Disease Activity Index and swollen joint count than 25 patients with high anti-P. gingivalis IgG titres (p = .04 for both). Bivariate and multivariate analyses revealed a significantly positive association of baseline anti-P. gingivalis IgG titres with Clinical Disease Activity Index changes (p = .02 and p = .002). However, post-treatment rheumatologic conditions were comparable between 25 patients each in the low and high baseline anti-A. actinomycetemcomitans IgG titre groups. CONCLUSIONS Baseline serum anti-P. gingivalis IgG titres are predictive of the clinical response to 1-year treatment with bDMARDs in RA patients.
Collapse
Affiliation(s)
- Tetsuo Kobayashi
- General Dentistry and Clinical Education Unit, Faculty of Dentistry & Medical and Dental Hospital, Niigata University, Niigata, Japan
- Division of Periodontology, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Satoshi Ito
- Department of Rheumatology, Niigata Rheumatic Center, Shibata, Japan
| | - Akira Murasawa
- Department of Rheumatology, Niigata Rheumatic Center, Shibata, Japan
| | - Hajime Ishikawa
- Department of Rheumatology, Niigata Rheumatic Center, Shibata, Japan
| | - Koichi Tabeta
- Division of Periodontology, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
19
|
Witt M, Cherri M, Ferraro M, Yapto C, Vogel K, Schmidt L, Haag R, Danker K, Dommisch H. Anti-inflammatory IL-8 Regulation via an Advanced Drug Delivery System at the Oral Mucosa. ACS APPLIED BIO MATERIALS 2023. [PMID: 37216981 DOI: 10.1021/acsabm.3c00024] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Oral inflammatory diseases are highly prevalent in the worldwide population. Topical treatment of inflammation is challenging due to dilution effects of saliva and crevicular fluid. Thus, there is a great medical need to develop smart anti-inflammatory drug delivery systems for mucosa treatment. We compared two promising anti-inflammatory dendritic poly(glycerol-caprolactone) sulfate (dPGS-PCL) polymers for their applicability to the oral mucosa. Using an ex vivo porcine tissue model, cell monolayers, and full-thickness 3D oral mucosal organoids, the polymers were evaluated for muco-adhesion, penetration, and anti-inflammatory properties. The biodegradable dPGS-PCL97 polymers adhered to and penetrated the masticatory mucosa within seconds. No effects on metabolic activity and cell proliferation were found. dPGS-PCL97 revealed a significant downregulation of pro-inflammatory cytokines with a clear preference for IL-8 in cell monolayers and mucosal organoids. Thus, dPGS-PCL97 exhibits excellent properties for topical anti-inflammatory therapy, suggesting new therapeutic avenues in the treatment of oral inflammatory diseases.
Collapse
Affiliation(s)
- Maren Witt
- Department of Periodontology, Oral Medicine and Oral Surgery, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Berlin 14197 , Germany
| | - Mariam Cherri
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, Berlin 14195, Germany
| | - Magda Ferraro
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, Berlin 14195, Germany
| | - Cynthia Yapto
- Institute of Biochemistry, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Berlin 10117, Germany
| | - Katrin Vogel
- Department of Periodontology, Oral Medicine and Oral Surgery, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Berlin 14197 , Germany
| | - Lena Schmidt
- Institute of Biochemistry, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Berlin 10117, Germany
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, Berlin 14195, Germany
| | - Kerstin Danker
- Institute of Biochemistry, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Berlin 10117, Germany
| | - Henrik Dommisch
- Department of Periodontology, Oral Medicine and Oral Surgery, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Berlin 14197 , Germany
| |
Collapse
|
20
|
Liu J, Wang X, Zheng M, Luan Q. Oxidative stress in human gingival fibroblasts from periodontitis versus healthy counterparts. Oral Dis 2023; 29:1214-1225. [PMID: 34905275 DOI: 10.1111/odi.14103] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 10/06/2021] [Accepted: 12/08/2021] [Indexed: 01/21/2023]
Abstract
OBJECTIVE Elevated p53 promotes oxidative stress and production of pro-inflammatory cytokines in liposaccharide (LPS)-treated healthy human gingival fibroblasts (HGFs). This study compared oxidative stress, production of inflammatory cytokines, and p53 expression in HGFs from patients with chronic periodontitis (CP) and healthy subjects in vitro upon LPS from Porphyromonas gingivalis challenge. METHODS Human gingival fibroblasts were isolated from 6 biopsies-3 from healthy donors and 3 from diseased area in CP (Grade B, Stage III). HGFs were cultured with or without 1 μg/ml 24 h LPS. Oxidative stress was assessed by analyzing the level of reactive oxygen species (ROS). Mitochondrial membrane potential and respiration were determined by immunofluorescence and respirometry, respectively. Tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-1β were determined by enzyme-linked immunosorbent assay. P53 expression was monitored by Western blot and immunofluorescence. RESULTS Human gingival fibroblasts from CP exhibited increased levels of mitochondrial p53, enhanced ROS production, decreased mitochondrial membrane potential, increased mitochondrial oxygen consumption, and increased secretion of TNF-α, IL-6, and IL-1β, as compared to HGFs from healthy donors. Moreover, LPS exacerbated these changes. CONCLUSION Human gingival fibroblasts from CP exhibited stronger basal and LPS-inducible oxidative stress and inflammatory response as compared to HGFs from healthy subjects by increased p53 in mitochondria.
Collapse
Affiliation(s)
- Jia Liu
- Department of Periodontology, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Xiaoxuan Wang
- Department of Periodontology, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Ming Zheng
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China
| | - Qingxian Luan
- Department of Periodontology, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, China
| |
Collapse
|
21
|
Maimaiti Z, Li Z, Xu C, Fu J, Hao LB, Chen JY, Chai W. Host Immune Regulation in Implant-Associated Infection (IAI): What Does the Current Evidence Provide Us to Prevent or Treat IAI? Bioengineering (Basel) 2023; 10:bioengineering10030356. [PMID: 36978747 PMCID: PMC10044746 DOI: 10.3390/bioengineering10030356] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/25/2023] [Accepted: 03/03/2023] [Indexed: 03/17/2023] Open
Abstract
The number of orthopedic implants for bone fixation and joint arthroplasty has been steadily increasing over the past few years. However, implant-associated infection (IAI), a major complication in orthopedic surgery, impacts the quality of life and causes a substantial economic burden on patients and societies. While research and study on IAI have received increasing attention in recent years, the failure rate of IAI has still not decreased significantly. This is related to microbial biofilms and their inherent antibiotic resistance, as well as the various mechanisms by which bacteria evade host immunity, resulting in difficulties in diagnosing and treating IAIs. Hence, a better understanding of the complex interactions between biofilms, implants, and host immunity is necessary to develop new strategies for preventing and controlling these infections. This review first discusses the challenges in diagnosing and treating IAI, followed by an extensive review of the direct effects of orthopedic implants, host immune function, pathogenic bacteria, and biofilms. Finally, several promising preventive or therapeutic alternatives are presented, with the hope of mitigating or eliminating the threat of antibiotic resistance and refractory biofilms in IAI.
Collapse
Affiliation(s)
- Zulipikaer Maimaiti
- Department of Orthopaedics, The Fourth Medical Centre, Chinese PLA General Hospital, Beijing 100048, China
- Department of Orthopaedics, The First Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
| | - Zhuo Li
- Department of Orthopaedics, The First Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Chi Xu
- Department of Orthopaedics, The Fourth Medical Centre, Chinese PLA General Hospital, Beijing 100048, China
- Department of Orthopaedics, The First Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
| | - Jun Fu
- Department of Orthopaedics, The Fourth Medical Centre, Chinese PLA General Hospital, Beijing 100048, China
- Department of Orthopaedics, The First Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
| | - Li-Bo Hao
- Department of Orthopaedics, The Fourth Medical Centre, Chinese PLA General Hospital, Beijing 100048, China
- Department of Orthopaedics, The First Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
| | - Ji-Ying Chen
- Department of Orthopaedics, The Fourth Medical Centre, Chinese PLA General Hospital, Beijing 100048, China
- Department of Orthopaedics, The First Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
- Correspondence: (J.-Y.C.); (W.C.)
| | - Wei Chai
- Department of Orthopaedics, The Fourth Medical Centre, Chinese PLA General Hospital, Beijing 100048, China
- Department of Orthopaedics, The First Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
- Correspondence: (J.-Y.C.); (W.C.)
| |
Collapse
|
22
|
Adrover JM, McDowell SAC, He XY, Quail DF, Egeblad M. NETworking with cancer: The bidirectional interplay between cancer and neutrophil extracellular traps. Cancer Cell 2023; 41:505-526. [PMID: 36827980 DOI: 10.1016/j.ccell.2023.02.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/09/2023] [Accepted: 02/01/2023] [Indexed: 02/25/2023]
Abstract
Neutrophils are major effectors and regulators of the immune system. They play critical roles not only in the eradication of pathogens but also in cancer initiation and progression. Conversely, the presence of cancer affects neutrophil activity, maturation, and lifespan. By promoting or repressing key neutrophil functions, cancer cells co-opt neutrophil biology to their advantage. This co-opting includes hijacking one of neutrophils' most striking pathogen defense mechanisms: the formation of neutrophil extracellular traps (NETs). NETs are web-like filamentous extracellular structures of DNA, histones, and cytotoxic granule-derived proteins. Here, we discuss the bidirectional interplay by which cancer stimulates NET formation, and NETs in turn support disease progression. We review how vascular dysfunction and thrombosis caused by neutrophils and NETs underlie an elevated risk of death from cardiovascular events in cancer patients. Finally, we propose therapeutic strategies that may be effective in targeting NETs in the clinical setting.
Collapse
Affiliation(s)
- Jose M Adrover
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Sheri A C McDowell
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada; Department of Physiology, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Xue-Yan He
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Daniela F Quail
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada; Department of Physiology, Faculty of Medicine, McGill University, Montreal, QC, Canada.
| | - Mikala Egeblad
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
| |
Collapse
|
23
|
Duran-Pinedo AE, Solbiati J, Teles F, Frias-Lopez J. Subgingival host-microbiome metatranscriptomic changes following scaling and root planing in grade II/III periodontitis. J Clin Periodontol 2023; 50:316-330. [PMID: 36281629 DOI: 10.1111/jcpe.13737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 10/14/2022] [Accepted: 10/19/2022] [Indexed: 11/28/2022]
Abstract
AIM To assess the effects of scaling and root planing (SRP) on the dynamics of gene expression by the host and the microbiome in subgingival plaque samples. MATERIALS AND METHODS Fourteen periodontitis patients were closely monitored in the absence of periodontal treatment for 12 months. During this period, comprehensive periodontal examination and subgingival biofilm sample collection were performed bi-monthly. After 12 months, clinical attachment level (CAL) data were compiled and analysed using linear mixed models (LMM) fitted to longitudinal CAL measurements for each tooth site. LMM classified the sites as stable (S), progressing (P), or fluctuating (F). After the 12-month visit, subjects received SRP, and at 15 months they received comprehensive examination and supportive periodontal therapy. Those procedures were repeated at the 18-month visit, when patients were also sampled. Each patient contributed with one S, one P, and one F site collected at the 12- and 18-month visits. Samples were analysed using Dual RNA-Sequencing to capture host and bacterial transcriptomes simultaneously. RESULTS Microbiome and host response behaviour were specific to the site's progression classification (i.e., S, P, or F). Microbial profiles of pre- and post-treatment samples exhibited specific microbiome changes, with progressing sites showing the most significant changes. Among them, Porphyromonas gingivalis was reduced after treatment, while Fusobacterium nucleatum showed an increase in proportion. Transcriptome analysis of the host response showed that interleukin (IL)-17, TNF signalling pathways, and neutrophil extracellular trap formation were the primary immune response activities impacted by periodontal treatment. CONCLUSIONS SRP resulted in a significant "rewiring" of host and microbial activities in the progressing sites, while restructuring of the microbiome was minor in stable and fluctuating sites.
Collapse
Affiliation(s)
- Ana E Duran-Pinedo
- Department of Oral Biology, University of Florida, College of Dentistry, Gainesville, Florida, USA
| | - Jose Solbiati
- Department of Oral Biology, University of Florida, College of Dentistry, Gainesville, Florida, USA
| | - Flavia Teles
- Department of Basic and Translational Sciences, School of Dental Medicine Center for Innovation & Precision Dentistry, School of Dental Medicine & School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jorge Frias-Lopez
- Department of Oral Biology, University of Florida, College of Dentistry, Gainesville, Florida, USA
| |
Collapse
|
24
|
Uriarte SM, Hajishengallis G. Neutrophils in the periodontium: Interactions with pathogens and roles in tissue homeostasis and inflammation. Immunol Rev 2023; 314:93-110. [PMID: 36271881 PMCID: PMC10049968 DOI: 10.1111/imr.13152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Neutrophils are of key importance in periodontal health and disease. In their absence or when they are functionally defective, as occurs in certain congenital disorders, affected individuals develop severe forms of periodontitis in early age. These observations imply that the presence of immune-competent neutrophils is essential to homeostasis. However, the presence of supernumerary or hyper-responsive neutrophils, either because of systemic priming or innate immune training, leads to imbalanced host-microbe interactions in the periodontium that culminate in dysbiosis and inflammatory tissue breakdown. These disease-provoking imbalanced interactions are further exacerbated by periodontal pathogens capable of subverting neutrophil responses to their microbial community's benefit and the host's detriment. This review attempts a synthesis of these findings for an integrated view of the neutrophils' ambivalent role in periodontal disease and, moreover, discusses how some of these concepts underpin the development of novel therapeutic approaches to treat periodontal disease.
Collapse
Affiliation(s)
- Silvia M. Uriarte
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, USA
| | - George Hajishengallis
- Department of Basic and Translational Sciences, Laboratory of Innate Immunity and Inflammation, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
25
|
Huang H, Yang R, Shi B. The potential role of cfDNA-related innate immune responses in postoperative bone loss after alveolar bone grafting. Front Immunol 2023; 13:1068186. [PMID: 36685503 PMCID: PMC9845276 DOI: 10.3389/fimmu.2022.1068186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/25/2022] [Indexed: 01/05/2023] Open
Abstract
The purpose of treating alveolar bone cleft is to restore a normal maxilla structure. Multiple factors have been identified that can affect the success of alveolar bone grafting. However, with consistent treatment modifications, the surgical outcomes have been improved, but alveolar bone loss still exists. Thus, a new aspect should be found to solve this problem. As alveolar bone belongs to the periodontal tissues, the mechanism of the alveolar bone loss after bone grafting in patients with alveolar bone cleft may be similar to the development of alveolar bone loss in periodontitis. Cell-free DNA (cfDNA) has been demonstrated as a key promoter of alveolar bone loss during periodontal inflammation. We hypothesized that cfDNA-related innate immune responses could be a major inducement for postoperative bone loss after alveolar bone grafting. In this perspective, we preliminarily proved the potential association between cfDNA, TLR9 pathway, and alveolar bone grafting operation, and it might verify that surgical trauma could accumulate cfDNA, which can further activate cellular TLR9 signaling.
Collapse
Affiliation(s)
- Hanyao Huang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Renjie Yang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Eastern Clinic, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Bing Shi
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China,*Correspondence: Bing Shi,
| |
Collapse
|
26
|
Kawai R, Sugisaki R, Miyamoto Y, Yano F, Sasa K, Minami E, Maki K, Kamijo R. Cathepsin K degrades osteoprotegerin to promote osteoclastogenesis in vitro. In Vitro Cell Dev Biol Anim 2023; 59:10-18. [PMID: 36689044 DOI: 10.1007/s11626-023-00747-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/03/2023] [Indexed: 01/24/2023]
Abstract
Osteoblasts produce the receptor activator of nuclear factor-kappa B ligand (RANKL) and osteoprotegerin, the inducer and the suppressor of osteoclast differentiation and activation. We previously proposed that the degradation of osteoprotegerin by lysine-specific gingipain of Porphyromonas gingivalis and neutrophil elastase is one of the mechanisms of bone resorption associated with infection and inflammation. In the present study, we found that cathepsin K (CTSK) also degraded osteoprotegerin in an acidic milieu and the buffer with a pH of 7.4. The 37 k fragment of osteoprotegerin produced by the reaction with CTSK was further degraded into low molecular weight fragments, including a 13 k fragment, depending on the reaction time. The N-terminal amino acid sequence of the 37 k fragment matched that of the intact osteoprotegerin, indicating that CTSK preferentially hydrolyzes the death domain-like region of osteoprotegerin, not its RANKL-binding region. The 13 k fragment of osteoprotegerin was the C-terminal 13 k portion within the RANKL-binding region of the 37 k fragment. Finally, CTSK restored RANKL-dependent osteoclast differentiation that was suppressed by the addition of osteoprotegerin. Collectively, CTSK is a possible positive regulator of osteoclastogenesis.
Collapse
Affiliation(s)
- Ryota Kawai
- Department of Biochemistry, Showa University School of Dentistry, Tokyo, Japan.,Department of Orthodontics, Showa University School of Dentistry, Tokyo, Japan
| | - Risa Sugisaki
- Department of Biochemistry, Showa University School of Dentistry, Tokyo, Japan.,Department of Oral and Maxillofacial Surgery, Tokyo Medical University, Tokyo, Japan
| | - Yoichi Miyamoto
- Department of Biochemistry, Showa University School of Dentistry, Tokyo, Japan. .,Division of Physiology and Biochemistry, Faculty of Arts and Sciences at Fujiyoshida, Showa University, Fujiyoshida, Japan.
| | - Fumiko Yano
- Department of Biochemistry, Showa University School of Dentistry, Tokyo, Japan
| | - Kiyohito Sasa
- Department of Biochemistry, Showa University School of Dentistry, Tokyo, Japan
| | - Erika Minami
- Department of Biochemistry, Showa University School of Dentistry, Tokyo, Japan.,Department of Orthodontics, Showa University School of Dentistry, Tokyo, Japan
| | - Koutaro Maki
- Department of Orthodontics, Showa University School of Dentistry, Tokyo, Japan
| | - Ryutaro Kamijo
- Department of Biochemistry, Showa University School of Dentistry, Tokyo, Japan
| |
Collapse
|
27
|
Qu H. The association between oxidative balance score and periodontitis in adults: a population-based study. Front Nutr 2023; 10:1138488. [PMID: 37187879 PMCID: PMC10178495 DOI: 10.3389/fnut.2023.1138488] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
Introduction The pathogenesis between oxidative stress and periodontitis was correlated. The Oxidative Balance Score (OBS) is a systematic tool to assess the effects of diet and lifestyle in relation to oxidative stress. However, the association between OBS and periodontitis has not been reported previously. Methods Sixteen dietary factors and four lifestyle factors were selected to score the OBS. Multivariate logistic regression and sensitivity analysis were used to investigate the relationship between OBS and periodontitis based on data from the National Health and Nutrition Examination Survey (NHANES) 1999-2018. Subgroup analysis and interaction tests were used to investigate whether this association was stable across populations. Results This study included 3,706 participants. There was a negative linear association between OBS and periodontitis in all participants [0.89 (0.80, 0.97)], and after converting OBS to a quartile variable, participants with OBS in the highest quartile had a 29% lower risk of periodontitis than those with OBS in the lowest quartile [0.71 (0.42, 0.98)]. This negative association differed with respect to age and diabetes. Conclusion There is a negative association between OBS and periodontitis in US adults. Our results suggest that OBS may be used as a biomarker for measuring periodontitis.
Collapse
|
28
|
Chen Y, Hu H, Tan S, Dong Q, Fan X, Wang Y, Zhang H, He J. The role of neutrophil extracellular traps in cancer progression, metastasis and therapy. Exp Hematol Oncol 2022; 11:99. [PMCID: PMC9667637 DOI: 10.1186/s40164-022-00345-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/15/2022] [Indexed: 11/17/2022] Open
Abstract
AbstractNeutrophil extracellular traps (NETs) released by activated neutrophils typically consist of DNA-histone complexes and granule proteins. NETs were originally identified as a host defense system against foreign pathogens and are strongly associated with autoimmune diseases. However, a novel and predominant role of NETs in cancer is emerging. Increasing evidence has confirmed that many stimuli can facilitate NET formation in an NADPH oxidase (NOX)-dependent/NOX-independent manner. In cancer, NETs have been linked to cancer progression, metastasis, and cancer-associated thrombosis. In this review, we aimed to summarize the current available knowledge regarding NET formation and focused on the role of NETs in cancer biological behaviors. The potential target for cancer therapy will be further discussed.
Collapse
|
29
|
du Teil Espina M, Fu Y, van der Horst D, Hirschfeld C, López-Álvarez M, Mulder LM, Gscheider C, Haider Rubio A, Huitema M, Becher D, Heeringa P, van Dijl JM. Coating and Corruption of Human Neutrophils by Bacterial Outer Membrane Vesicles. Microbiol Spectr 2022; 10:e0075322. [PMID: 36000865 PMCID: PMC9602476 DOI: 10.1128/spectrum.00753-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 08/07/2022] [Indexed: 12/30/2022] Open
Abstract
Porphyromonas gingivalis is a keystone oral pathogen that successfully manipulates the human innate immune defenses, resulting in a chronic proinflammatory state of periodontal tissues and beyond. Here, we demonstrate that secreted outer membrane vesicles (OMVs) are deployed by P. gingivalis to selectively coat and activate human neutrophils, thereby provoking degranulation without neutrophil killing. Secreted granule components with antibacterial activity, especially LL-37 and myeloperoxidase (MPO), are subsequently degraded by potent OMV-bound proteases known as gingipains, thereby ensuring bacterial survival. In contrast to neutrophils, the P. gingivalis OMVs are efficiently internalized by macrophages and epithelial cells. Importantly, we show that neutrophil coating is a conserved feature displayed by OMVs of at least one other oral pathogen, namely, Aggregatibacter actinomycetemcomitans. We conclude that P. gingivalis deploys its OMVs for a neutrophil-deceptive strategy to create a favorable inflammatory niche and escape killing. IMPORTANCE Severe periodontitis is a dysbiotic inflammatory disease that affects about 15% of the adult population, making it one of the most prevalent diseases worldwide. Importantly, periodontitis has been associated with the development of nonoral diseases, such as rheumatoid arthritis, pancreatic cancer, and Alzheimer's disease. Periodontal pathogens implicated in periodontitis can survive in the oral cavity only by avoiding the insults of neutrophils while at the same time promoting an inflamed environment where they successfully thrive. Our present findings show that outer membrane vesicles secreted by the keystone pathogen Porphyromonas gingivalis provide an effective delivery tool of virulence factors that protect the bacterium from being killed while simultaneously activating human neutrophils.
Collapse
Affiliation(s)
- Marines du Teil Espina
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Yanyan Fu
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Demi van der Horst
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Claudia Hirschfeld
- Institute for Microbiology, Ernst-Moritz-Arndt-University Greifswald, Greifswald, Germany
| | - Marina López-Álvarez
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Lianne M. Mulder
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Costanza Gscheider
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Anna Haider Rubio
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Minke Huitema
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Dörte Becher
- Institute for Microbiology, Ernst-Moritz-Arndt-University Greifswald, Greifswald, Germany
| | - Peter Heeringa
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jan Maarten van Dijl
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
30
|
Nanoparticulate cell-free DNA scavenger for treating inflammatory bone loss in periodontitis. Nat Commun 2022; 13:5925. [PMID: 36207325 PMCID: PMC9546917 DOI: 10.1038/s41467-022-33492-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 09/20/2022] [Indexed: 11/12/2022] Open
Abstract
Periodontitis is a common type of inflammatory bone loss and a risk factor for systemic diseases. The pathogenesis of periodontitis involves inflammatory dysregulation, which represents a target for new therapeutic strategies to treat periodontitis. After establishing the correlation of cell-free DNA (cfDNA) level with periodontitis in patient samples, we test the hypothesis that the cfDNA-scavenging approach will benefit periodontitis treatment. We create a nanoparticulate cfDNA scavenger specific for periodontitis by coating selenium-doped hydroxyapatite nanoparticles (SeHANs) with cationic polyamidoamine dendrimers (PAMAM-G3), namely G3@SeHANs, and compare the activities of G3@SeHANs with those of soluble PAMAM-G3 polymer. Both G3@SeHANs and PAMAM-G3 inhibit periodontitis-related proinflammation in vitro by scavenging cfDNA and alleviate inflammatory bone loss in a mouse model of ligature-induced periodontitis. G3@SeHANs also regulate the mononuclear phagocyte system in a periodontitis environment, promoting the M2 over the M1 macrophage phenotype. G3@SeHANs show greater therapeutic effects than PAMAM-G3 in reducing proinflammation and alveolar bone loss in vivo. Our findings demonstrate the importance of cfDNA in periodontitis and the potential for using hydroxyapatite-based nanoparticulate cfDNA scavengers to ameliorate periodontitis. Periodontitis is a common type of inflammatory bone loss, and cell-free DNA (cfDNA) can be a major source that enhances the periodontal tissue destruction. Here, the authors show that a cfDNA-scavenging approach is able to ameliorate periodontitis by using nanoparticulate cfDNA scavenger.
Collapse
|
31
|
Ikeuchi T, Moutsopoulos NM. Osteoimmunology in periodontitis; a paradigm for Th17/IL-17 inflammatory bone loss. Bone 2022; 163:116500. [PMID: 35870792 PMCID: PMC10448972 DOI: 10.1016/j.bone.2022.116500] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/15/2022] [Accepted: 07/15/2022] [Indexed: 11/02/2022]
Abstract
Periodontitis is a prevalent human disease of inflammation-induced bone destruction. Through studies in patient lesions of rare and common forms of periodontitis and animal model experimentation, Th17/IL-17 related immune pathways have emerged as mediators of disease pathology. In this focused review, we examine mechanisms of induction, amplification and pathogenicity of Th17 cells in periodontitis.
Collapse
Affiliation(s)
- Tomoko Ikeuchi
- Oral Immunity and Infection Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, 9000 Rockville Pike, 30 convent Dr, Bldg30, Room 327, Bethesda, MD 20892, United States of America.
| | - Niki M Moutsopoulos
- Oral Immunity and Infection Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, 9000 Rockville Pike, 30 convent Dr, Bldg30, Room 327, Bethesda, MD 20892, United States of America.
| |
Collapse
|
32
|
Krutyhołowa A, Strzelec K, Dziedzic A, Bereta GP, Łazarz-Bartyzel K, Potempa J, Gawron K. Host and bacterial factors linking periodontitis and rheumatoid arthritis. Front Immunol 2022; 13:980805. [PMID: 36091038 PMCID: PMC9453162 DOI: 10.3389/fimmu.2022.980805] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 07/27/2022] [Indexed: 02/05/2023] Open
Abstract
Observations from numerous clinical, epidemiological and serological studies link periodontitis with severity and progression of rheumatoid arthritis. The strong association is observed despite totally different aetiology of these two diseases, periodontitis being driven by dysbiotic microbial flora on the tooth surface below the gum line, while rheumatoid arthritis being the autoimmune disease powered by anti-citrullinated protein antibodies (ACPAs). Here we discuss genetic and environmental risk factors underlying development of both diseases with special emphasis on bacteria implicated in pathogenicity of periodontitis. Individual periodontal pathogens and their virulence factors are argued as potentially contributing to putative causative link between periodontal infection and initiation of a chain of events leading to breakdown of immunotolerance and development of ACPAs. In this respect peptidylarginine deiminase, an enzyme unique among prokaryotes for Porphyromonas gingivalis, is elaborated as a potential mechanistic link between this major periodontal pathogen and initiation of rheumatoid arthritis development.
Collapse
Affiliation(s)
- Anna Krutyhołowa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Karolina Strzelec
- Department of Molecular Biology and Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Agata Dziedzic
- Department of Molecular Biology and Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Grzegorz P. Bereta
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Katarzyna Łazarz-Bartyzel
- Department of Periodontology and Oral Medicine, Faculty of Medicine, Medical College, Jagiellonian University, Krakow, Poland
| | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland,Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, United States,*Correspondence: Katarzyna Gawron, ; Jan Potempa,
| | - Katarzyna Gawron
- Department of Molecular Biology and Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland,*Correspondence: Katarzyna Gawron, ; Jan Potempa,
| |
Collapse
|
33
|
Zhang S, Jin H, Da J, Zhang K, Liu L, Guo Y, Zhang W, Geng Y, Liu X, Zhang J, Jiang L, Yuan H, Wang J, Zhan Y, Li Y, Zhang B. Role of ferroptosis-related genes in periodontitis based on integrated bioinformatics analysis. PLoS One 2022; 17:e0271202. [PMID: 35901060 PMCID: PMC9333299 DOI: 10.1371/journal.pone.0271202] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 06/26/2022] [Indexed: 12/11/2022] Open
Abstract
Background Cell survival or death is one of the key scientific issues of inflammatory response. To regulate cell death during the occurrence and development of periodontitis, various forms of programmed cell death, such as pyroptosis, ferroptosis, necroptosis, and apoptosis, have been proposed. It has been found that ferroptosis characterized by iron-dependent lipid peroxidation is involved in cancer, degenerative brain diseases and inflammatory diseases. Furthermore, NCOA4 is considered one of ferroptosis-related genes (FRGs) contributing to butyrate-induced cell death in the periodontitis. This research aims to analyze the expression of FRGs in periodontitis tissues and to explore the relationship between ferroptosis and periodontitis. Method Genes associated with periodontitis were retrieved from two Gene Expression Omnibus datasets. Then, we normalized microarray data and removed the batch effect using the R software. We used R to convert the mRNA expression data and collected the expression of FRGs. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), transcription factor (TF) and protein-protein interaction (PPI) network analyses were used. In addition, we constructed a receiver operating characteristic curve and obtained relative mRNA expression verified by quantitative reverse-transcription polymerase chain reaction (PCR). Results Eight and 10 FRGs related to periodontitis were upregulated and downregulated, respectively. GO analysis showed that FRGs were enriched in the regulation of glutathione biosynthetic, glutamate homeostasis, and endoplasmic reticulum-nucleus signaling pathway. The top TFs included CEBPB, JUND, ATF2. Based on the PPI network analysis, FRGs were mainly linked to the negative regulation of IRE1-mediated unfolded protein response, regulation of type IIa hypersensitivity, and regulation of apoptotic cell clearance. The expression levels of NCOA4, SLC1A5 and HSPB1 using PCR were significantly different between normal gingival samples and periodontitis samples. Furthermore, the diagnostic value of FRGs for periodontitis were “Good”. Conclusions We found significant associations between FRGs and periodontitis. The present study not only provides a new possible pathomechanism for the occurrence of periodontitis but also offers a new direction for the diagnosis and treatment of periodontitis.
Collapse
Affiliation(s)
- Shujian Zhang
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Han Jin
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Junlong Da
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Kai Zhang
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lixue Liu
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yuyao Guo
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wenxuan Zhang
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yawei Geng
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xinpeng Liu
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiahui Zhang
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lili Jiang
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Haoze Yuan
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jianqun Wang
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yuanbo Zhan
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Periodontology and Oral Mucosa, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ying Li
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Heilongjiang Academy of Medical Sciences, Harbin, China
- * E-mail: (YL); (BZ)
| | - Bin Zhang
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Heilongjiang Academy of Medical Sciences, Harbin, China
- * E-mail: (YL); (BZ)
| |
Collapse
|
34
|
Dionigi C, Larsson L, Difloe-Geisert JC, Zitzmann NU, Berglundh T. Cellular expression of epigenetic markers and oxidative stress in periodontitis lesions of smokers and non-smokers. J Periodontal Res 2022; 57:952-959. [PMID: 35766184 PMCID: PMC9542336 DOI: 10.1111/jre.13030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/30/2022] [Accepted: 06/07/2022] [Indexed: 12/02/2022]
Abstract
Objective To evaluate differences in the cellular expression of epigenetic markers and oxidative stress in periodontitis lesions between current smokers and non‐smokers. Background Tobacco smoking is recognized as one of the major risk factors for periodontitis. However, the mechanisms by which smoking affects the progression of the disease remain to be determined. Methods Twenty‐five current smokers and 21 non‐smokers with generalized severe periodontitis were included. From each patient, one soft tissue biopsy from a periodontitis site was harvested and prepared for histological analysis. The infiltrated connective tissue (ICT) was selected as the region of interest to assess the cellular expression of epigenetic markers and reactive oxygen/nitrogen species (RONS) by immunohistochemistry. Results Although the ICT of smokers and non‐smokers did not differ in size or in the expression of markers for DNA damage or oxidative stress, current smokers presented with significantly lower area proportions and densities of cells positive for the epigenetic markers DNMT1 and AcH3. In addition, periodontitis lesions in current smokers presented with a diminished antimicrobial activity, as indicated by significantly lower densities and area proportions of NOX2‐ and iNOS‐positive cells. Conclusions Components of the host response and epigenetic mechanisms in periodontitis lesions in smokers are downregulated as opposed to lesions of non‐smokers.
Collapse
Affiliation(s)
- Carlotta Dionigi
- Department of Periodontology, Institute of Odontology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lena Larsson
- Department of Periodontology, Institute of Odontology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Julia C Difloe-Geisert
- Department of Periodontology, Endodontology and Cariology, University Center for Dental Medicine, University of Basel, Basel, Switzerland
| | - Nicola U Zitzmann
- Department of Reconstructive Dentistry, University Center for Dental Medicine, University of Basel, Basel, Switzerland
| | - Tord Berglundh
- Department of Periodontology, Institute of Odontology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
35
|
Chen JL, Tong Y, Zhu Q, Gao LQ, Sun Y. Neutrophil extracellular traps induced by Porphyromonas gingivalis lipopolysaccharide modulate inflammatory responses via a Ca2+-dependent pathway. Arch Oral Biol 2022; 141:105467. [DOI: 10.1016/j.archoralbio.2022.105467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 12/27/2022]
|
36
|
Abstract
The coronavirus disease 2019 caused by severe acute respiratory syndrome coronavirus 2 is usually a mild condition; however, in some cases it can result in severe sickness and even death. Thus, understanding the reasons behind these grave outcomes is of great importance. Coronavirus disease 2019 and periodontitis share some intriguing characteristics. They can both lead to systemic inflammation and alterations of coagulation pathways, and both share confounding factors, such as diabetes, hypertension, and obesity. Accordingly, a possible association between these conditions has been hypothesized in the literature. The objective of this review was to evaluate the scientific evidence linking these diseases and the possible underlying mechanisms. Evidence has shown that coronavirus disease 2019 presents oral manifestations and can even affect periodontal tissues. Moreover, some studies have shown a possible association between coronavirus disease 2019 severity and the presence of periodontitis. Current evidence suggests that this association could be explained through the direct role of periodontal bacteria in aggravating lung infections, as well as through the indirect effect of periodontitis in inducing systemic inflammation and priming of the immune system to an exacerbated reaction to severe acute respiratory syndrome coronavirus 2 infection. Future research is needed to confirm these observations and explore the possible role that periodontal care might play in the coronavirus disease 2019 pandemic.
Collapse
Affiliation(s)
- Faleh Tamimi
- College of Dental MedicineQU HealthQatar UniversityDohaQatar
| | - Shiraz Altigani
- College of Dental MedicineQU HealthQatar UniversityDohaQatar
| | - Mariano Sanz
- Faculty of DentistryUniversidad Complutese De MadridMadridSpain
| |
Collapse
|
37
|
Zhu X, Huang H, Zhao L. PAMPs and DAMPs as the Bridge Between Periodontitis and Atherosclerosis: The Potential Therapeutic Targets. Front Cell Dev Biol 2022; 10:856118. [PMID: 35281098 PMCID: PMC8915442 DOI: 10.3389/fcell.2022.856118] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 02/11/2022] [Indexed: 12/31/2022] Open
Abstract
Atherosclerosis is a chronic artery disease characterized by plaque formation and vascular inflammation, eventually leading to myocardial infarction and stroke. Innate immunity plays an irreplaceable role in the vascular inflammatory response triggered by chronic infection. Periodontitis is a common chronic disorder that involves oral microbe-related inflammatory bone loss and local destruction of the periodontal ligament and is a risk factor for atherosclerosis. Periodontal pathogens contain numerous pathogen-associated molecular patterns (PAMPs) such as lipopolysaccharide, CpG DNA, and Peptidoglycan, that initiate the inflammatory response of the innate immunity depending on the recognition of pattern-recognition receptors (PRRs) of host cells. The immune-inflammatory response and destruction of the periodontal tissue will produce a large number of damage-associated molecular patterns (DAMPs) such as neutrophil extracellular traps (NETs), high mobility group box 1 (HMGB1), alarmins (S100 protein), and which can further affect the progression of atherosclerosis. Molecular patterns have recently become the therapeutic targets for inflammatory disease, including blocking the interaction between molecular patterns and PRRs and controlling the related signal transduction pathway. This review summarized the research progress of some representative PAMPs and DAMPs as the molecular pathological mechanism bridging periodontitis and atherosclerosis. We also discussed possible ways to prevent serious cardiovascular events in patients with periodontitis and atherosclerosis by targeting molecular patterns.
Collapse
Affiliation(s)
- Xuanzhi Zhu
- State Key Laboratory of Oral Diseases, Department of Periodontics, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hanyao Huang
- State Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Hanyao Huang, ; Lei Zhao,
| | - Lei Zhao
- State Key Laboratory of Oral Diseases, Department of Periodontics, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Hanyao Huang, ; Lei Zhao,
| |
Collapse
|
38
|
Chamardani TM, Amiritavassoli S. Inhibition of NETosis for treatment purposes: friend or foe? Mol Cell Biochem 2022; 477:673-688. [PMID: 34993747 PMCID: PMC8736330 DOI: 10.1007/s11010-021-04315-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 11/25/2021] [Indexed: 12/29/2022]
Abstract
Active neutrophils participate in innate and adaptive immune responses through various mechanisms, one of the most important of which is the formation and release of neutrophil extracellular traps (NETs). The NETs are composed of network-like structures made of histone proteins, DNA and other released antibacterial proteins by activated neutrophils, and evidence suggests that in addition to the innate defense against infections, NETosis plays an important role in the pathogenesis of several other non-infectious pathological states, such as autoimmune diseases and even cancer. Therefore, targeting NET has become one of the important therapeutic approaches and has been considered by researchers. NET inhibitors or other molecules involved in the NET formation, such as the protein arginine deiminase 4 (PAD4) enzyme, an arginine-to-citrulline converter, participate in chromatin condensation and NET formation, is the basis of this therapeutic approach. The important point is whether complete inhibition of NETosis can be helpful because by inhibiting this mechanism, the activity of neutrophils is suppressed. In this review, the biology of NETosis and its role in the pathogenesis of some important diseases have been summarized, and the consequences of treatment based on inhibition of NET formation have been discussed.
Collapse
|
39
|
Silva LM, Doyle AD, Greenwell-Wild T, Dutzan N, Tran CL, Abusleme L, Juang LJ, Leung J, Chun EM, Lum AG, Agler CS, Zuazo CE, Sibree M, Jani P, Kram V, Martin D, Moss K, Lionakis MS, Castellino FJ, Kastrup CJ, Flick MJ, Divaris K, Bugge TH, Moutsopoulos NM. Fibrin is a critical regulator of neutrophil effector function at the oral mucosal barrier. Science 2021; 374:eabl5450. [PMID: 34941394 DOI: 10.1126/science.abl5450] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Tissue-specific cues are critical for homeostasis at mucosal barriers. Here, we report that the clotting factor fibrin is a critical regulator of neutrophil function at the oral mucosal barrier. We demonstrate that commensal microbiota trigger extravascular fibrin deposition in the oral mucosa. Fibrin engages neutrophils through the αMβ2 integrin receptor and activates effector functions, including the production of reactive oxygen species and neutrophil extracellular trap formation. These immune-protective neutrophil functions become tissue damaging in the context of impaired plasmin-mediated fibrinolysis in mice and humans. Concordantly, genetic polymorphisms in PLG, encoding plasminogen, are associated with common forms of periodontal disease. Thus, fibrin is a critical regulator of neutrophil effector function, and fibrin-neutrophil engagement may be a pathogenic instigator for a prevalent mucosal disease.
Collapse
Affiliation(s)
- Lakmali M Silva
- Proteases and Tissue Remodeling Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
- Oral Immunity and Inflammation Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Andrew D Doyle
- NIDCR Imaging Core, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Teresa Greenwell-Wild
- Oral Immunity and Inflammation Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Nicolas Dutzan
- Oral Immunity and Inflammation Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
- Department of Conservative Dentistry, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Collin L Tran
- Proteases and Tissue Remodeling Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Loreto Abusleme
- Oral Immunity and Inflammation Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
- Department of Pathology and Oral Medicine, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Lih Jiin Juang
- Michael Smith Laboratories and Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada
| | - Jerry Leung
- Michael Smith Laboratories and Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada
| | - Elizabeth M Chun
- Proteases and Tissue Remodeling Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Andrew G Lum
- Oral Immunity and Inflammation Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Cary S Agler
- Division of Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina, Chapel Hill, NC, USA
| | - Carlos E Zuazo
- Oral Immunity and Inflammation Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Megan Sibree
- Proteases and Tissue Remodeling Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Priyam Jani
- Molecular Biology of Bones and Teeth Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Vardit Kram
- Molecular Biology of Bones and Teeth Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Daniel Martin
- NIDCR Genomics and Computational Biology Core, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Kevin Moss
- Division of Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina, Chapel Hill, NC, USA
| | - Michail S Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Francis J Castellino
- WM Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN, USA
| | - Christian J Kastrup
- Michael Smith Laboratories and Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada
- Blood Research Institute, Versiti, Milwaukee, WI, USA
- Departments of Surgery, Biochemistry, Biomedical Engineering, and Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Matthew J Flick
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Kimon Divaris
- Division of Pediatric and Public Health, Adams School of Dentistry, University of North Carolina, Chapel Hill, NC, USA
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Thomas H Bugge
- Proteases and Tissue Remodeling Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Niki M Moutsopoulos
- Oral Immunity and Inflammation Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
40
|
Cai W, Marouf N, Said KN, Tamimi F. Nature of the Interplay Between Periodontal Diseases and COVID-19. FRONTIERS IN DENTAL MEDICINE 2021. [DOI: 10.3389/fdmed.2021.735126] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) is mostly a mild condition, however, in some patients, it could progress into a severe and even fatal disease. Recent studies have shown that COVID-19 infection and severity could be associated with the presence of periodontitis, one of the most prevalent chronic diseases. This association could be explained by the fact that periodontitis and COVID-19 share some common risk factors that included chronic diseases, such as diabetes and hypertension as well as conditions such as age, sex, and genetic variants. Another possible explanation could be the systemic inflammation and the aspiration of periodontopathogens seen in patients with periodontitis, which could have a synergism with the virus or compromise the reaction of the body against COVID-19. This narrative review explores the nature of these associations, the evidence behind them, and their implications.
Collapse
|
41
|
Yu YH, Cheung WS, Steffensen B, Miller DR. Number of teeth is associated with all-cause and disease-specific mortality. BMC Oral Health 2021; 21:568. [PMID: 34749715 PMCID: PMC8574051 DOI: 10.1186/s12903-021-01934-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 10/25/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Tooth loss has been shown to correlate with multiple systemic comorbidities. However, the associations between the number of remaining natural teeth (NoT) and all-cause mortality have not been explored extensively. We aimed to investigate whether having fewer NoT imposes a higher risk in mortality. We tested such hypotheses using three groups of NoT (20-28,10-19, and 0-9), edentulism and without functional dentition (NoT < 19). METHODS The National Health and Nutrition Examination Survey in the United States (NHANES) (1999-2014) conducted dental examinations and provided linkage of mortality data. NHANES participants aged 20 years and older, without missing information of dental examination, age, gender, race, education, income, body-mass-index, smoking, physical activities, and existing systemic conditions [hypertension, total cardiovascular disease, diabetes, and stroke (N = 33,071; death = 3978), or with femoral neck bone mineral density measurement (N = 13,131; death = 1091)] were analyzed. Cox proportional hazard survival analyses were used to investigate risks of all-cause, heart disease, diabetes and cancer mortality associated with NoT in 3 groups, edentulism, or without functional dentition. RESULTS Participants having fewer number of teeth had higher all-cause and disease-specific mortality. In fully-adjusted models, participants with NoT0-9 had the highest hazard ratio (HR) for all-cause mortality [HR(95%CI) = 1.46(1.25-1.71); p < .001], mortality from heart diseases [HR(95%CI) = 1.92(1.33-2.77); p < .001], from diabetes [HR(95%CI) = 1.67(1.05-2.66); p = 0.03], or cancer-related mortality [HR(95%CI) = 1.80(1.34-2.43); p < .001]. Risks for all-cause mortality were also higher among the edentulous [HR(95%CI) = 1.35(1.17-1.57); p < .001] or those without functional dentition [HR(95%CI) = 1.34(1.17-1.55); p < .001]. CONCLUSIONS Having fewer NoT were associated with higher risks for all-cause mortality. More research is needed to explore possible biological implications and validate our findings.
Collapse
Affiliation(s)
- Yau-Hua Yu
- Department of Periodontology, Tufts University School of Dental Medicine, One Kneeland Street, Boston, MA, 02111, USA.
| | - Wai S Cheung
- Department of Periodontology, Tufts University School of Dental Medicine, One Kneeland Street, Boston, MA, 02111, USA
| | - Bjorn Steffensen
- Department of Periodontology, Tufts University School of Dental Medicine, One Kneeland Street, Boston, MA, 02111, USA
| | - Donald R Miller
- Center for Healthcare Organization and Implementation Research, Edith Nourse Rogers Memorial Veterans Hospital, VA Bedford Health Care System, Bedford, MA, USA
- School of Public Health, Department of Health Law, Policy and Management, Boston University, Boston, MA, USA
| |
Collapse
|
42
|
Bando K, Kuroishi T, Tada H, Oizumi T, Tanaka Y, Takahashi T, Mizoguchi I, Sugawara S, Endo Y. Nitrogen-containing bisphosphonates and lipopolysaccharide mutually augment inflammation via adenosine triphosphate (ATP)-mediated and interleukin 1β (IL-1β)-mediated production of neutrophil extracellular traps (NETs). J Bone Miner Res 2021; 36:1866-1878. [PMID: 34075628 DOI: 10.1002/jbmr.4384] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 05/24/2021] [Accepted: 05/28/2021] [Indexed: 12/25/2022]
Abstract
Among the bisphosphonates (BPs), nitrogen-containing BPs (N-BPs) have much stronger anti-bone-resorptive actions than non-N-BPs. However, N-BPs have various side effects such as acute influenza-like reactions after their initial administration and osteonecrosis of the jawbones after repeated administration. The mechanisms underlying such effects remain unclear. To overcome these problems, it is important to profile the inflammatory nature of N-BPs. Here, we analyzed the inflammatory reactions induced in mouse ear pinnae by the N-BPs alendronate (Ale) and zoledronate (Zol). We found the following: (i) Ale and Zol each induced two phases of inflammation (early weak and late strong ear swelling); (ii) both phases were augmented by lipopolysaccharides (LPSs; cell-surface constituent of gram-negative bacteria, including oral bacteria), but prevented by inhibitors of the phosphate transporters of solute carrier 20/34 (SLC20/SLC34); (iii) macrophages and neutrophils were involved in both phases of Ale+LPS-induced ear-swelling; (iv) Ale increased or tended to increase various cytokines, and LPS augmented these effects, especially that on interleukin 1β (IL-1β); (v) adenosine triphosphate (ATP) was involved in both phases, and Ale alone or Ale+LPS increased ATP in ear pinnae; (vi) the augmented late-phase swelling induced by Ale+LPS depended on both IL-1 and neutrophil extracellular traps (NETs; neutrophil-derived net-like complexes); (vii) neutrophils, together with macrophages and dendritic cells, also functioned as IL-1β-producing cells, and upon stimulation with IL-1β, neutrophils produced NETs; (viii) stimulation of the purinergic 2X7 (P2X7) receptors by ATP induced IL-1β in ear pinnae; (ix) NET formation by Ale+LPS was confirmed in gingiva, too. These results suggest that (i) N-BPs induce both early-phase and late-phase inflammation via ATP-production and P2X7 receptor stimulation; (ii) N-BPs and LPS induce mutually augmenting responses both early and late phases via ATP-mediated IL-1β production by neutrophils, macrophages, and/or dendritic cells; and (iii) NET production by IL-1β-stimulated neutrophils may mediate the late phase, leading to prolonged inflammation. These results are discussed in relation to the side effects seen in patients treated with N-BPs. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Kanan Bando
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, Sendai, Japan
| | - Toshinobu Kuroishi
- Division of Oral Immunology, Graduate School of Dentistry, Tohoku University, Sendai, Japan
| | - Hiroyuki Tada
- Division of Oral Immunology, Graduate School of Dentistry, Tohoku University, Sendai, Japan
| | - Takefumi Oizumi
- Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Tohoku University, Sendai, Japan.,Department of Dentistry and Oral Surgery, National Hospital Organization Sendai Medical Center, Sendai, Japan
| | - Yukinori Tanaka
- Department of Dento-oral Anesthesiology, Graduate School of Dentistry, Tohoku University, Sendai, Japan
| | - Tetsu Takahashi
- Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Tohoku University, Sendai, Japan
| | - Itaru Mizoguchi
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, Sendai, Japan
| | - Shunji Sugawara
- Division of Oral Immunology, Graduate School of Dentistry, Tohoku University, Sendai, Japan
| | - Yasuo Endo
- Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Tohoku University, Sendai, Japan
| |
Collapse
|
43
|
Shao BZ, Yao Y, Li JP, Chai NL, Linghu EQ. The Role of Neutrophil Extracellular Traps in Cancer. Front Oncol 2021; 11:714357. [PMID: 34476216 PMCID: PMC8406742 DOI: 10.3389/fonc.2021.714357] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 07/22/2021] [Indexed: 12/14/2022] Open
Abstract
Neutrophils are vital components of innate and adaptive immunity. It is widely acknowledged that in various pathological conditions, neutrophils are activated and release condensed DNA strands, triggering the formation of neutrophil extracellular traps (NETs). NETs have been shown to be effective in fighting against microbial infections and modulating the pathogenesis and progression of diseases, including malignant tumors. This review describes the current knowledge on the biological characteristics of NETs. Additionally, the mechanisms of NETs in cancer are discussed, including the involvement of signaling pathways and the crosstalk between other cancer-related mechanisms, including inflammasomes and autophagy. Finally, based on previous and current studies, the roles of NET formation and the potential therapeutic targets and strategies related to NETs in several well-studied types of cancers, including breast, lung, colorectal, pancreatic, blood, neurological, and cutaneous cancers, are separately reviewed and discussed.
Collapse
Affiliation(s)
| | | | | | - Ning-Li Chai
- Department of Gastroenterology, General Hospital of the Chinese People’s Liberation Army, Beijing, China
| | - En-Qiang Linghu
- Department of Gastroenterology, General Hospital of the Chinese People’s Liberation Army, Beijing, China
| |
Collapse
|
44
|
Sugawara S, Ishikawa T, Sato S, Kihara H, Taira M, Sasaki M, Kondo H. Uptake of Nanotitania by Gingival Epithelial Cells Promotes Inflammatory Response and Is Accelerated by Porphyromonas gingivalis Lipopolysaccharide: An In Vitro Study. Int J Mol Sci 2021; 22:ijms22158084. [PMID: 34360848 PMCID: PMC8348964 DOI: 10.3390/ijms22158084] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 12/28/2022] Open
Abstract
Titanium is often used in the medical field and in dental implants due to its biocompatibility, but it has a high rate of leading to peri-implantitis, which progresses faster than periodontitis. Therefore, in the present study, the expression of cytokines from gingival epithelial cells by nanotitania was investigated, which is derived from titanium in the oral cavity, and the additional effect of Porphyromonasgingivalis (periodontopathic bacteria) lipopolysaccharide (PgLPS) was investigated. Ca9-22 cells were used as a gingival epithelial cell model and were cultured with nanotitania alone or with PgLPS. Cytokine expression was examined by reverse transcription-quantitative polymerase chain reaction and enzyme-linked immunosorbent assay. In addition, cellular uptake of nanotitania was observed in scanning electron microscopy images. The expression of interleukin (IL)-6 and IL-8 significantly increased in Ca9-22 cells by nanotitania treatment alone, and the expression was further increased by the presence of PgLPS. Nanotitania was observed to phagocytose Ca9-22 cells in a dose- and time-dependent manner. Furthermore, when the expression of IL-11, related to bone resorption, was investigated, a significant increase was confirmed by stimulation with nanotitania alone. Therefore, nanotitania could be associated with the onset and exacerbation of peri-implantitis, and the presence of periodontal pathogens may worsen the condition. Further clinical reports are needed to confirm these preliminary results.
Collapse
Affiliation(s)
- Shiho Sugawara
- Department of Prosthodontics and Oral Implantology, School of Dentistry, Iwate Medical University, 1-3-27 Chuo-dori, Morioka 020-8505, Iwate, Japan; (S.S.); (H.K.); (H.K.)
| | - Taichi Ishikawa
- Division of Molecular Microbiology, Department of Microbiology, Iwate Medical University, 1-1-1 Idai-dori, Morioka 028-3694, Iwate, Japan;
- Correspondence: ; Fax: +81-19-908-8011
| | - Shu Sato
- Division of Dental Anesthesiology, Department of Reconstructive Oral and Maxillofacial Surgery, School of Dentistry, Iwate Medical University, 1-3-27 Chuo-dori, Morioka 020-8505, Iwate, Japan;
| | - Hidemichi Kihara
- Department of Prosthodontics and Oral Implantology, School of Dentistry, Iwate Medical University, 1-3-27 Chuo-dori, Morioka 020-8505, Iwate, Japan; (S.S.); (H.K.); (H.K.)
| | - Masayuki Taira
- Department of Biomedical Engineering, Iwate Medical University, 1-1-1 Idai-dori, Morioka 028-3694, Iwate, Japan;
| | - Minoru Sasaki
- Division of Molecular Microbiology, Department of Microbiology, Iwate Medical University, 1-1-1 Idai-dori, Morioka 028-3694, Iwate, Japan;
| | - Hisatomo Kondo
- Department of Prosthodontics and Oral Implantology, School of Dentistry, Iwate Medical University, 1-3-27 Chuo-dori, Morioka 020-8505, Iwate, Japan; (S.S.); (H.K.); (H.K.)
| |
Collapse
|
45
|
Routier A, Blaizot A, Agossa K, Dubar M. What do we know about the mechanisms of action of probiotics on factors involved in the pathogenesis of periodontitis? A scoping review of in vitro studies. Arch Oral Biol 2021; 129:105196. [PMID: 34153538 DOI: 10.1016/j.archoralbio.2021.105196] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 06/03/2021] [Accepted: 06/07/2021] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Probiotics are increasingly used in oral prevention and treatment conditions, but little is known about their abilities. The aim of this review is to clarify, summarize and disseminate current knowledge about the mode of action of in vitro probiotics on factors involved in the pathogenesis of periodontitis. METHOD 2495 articles were identified in three databases (Medline, Web of Science, SpringerLink) and 26 studies included in this scoping review. RESULTS Twenty-three probiotic species were identified, the majority of which were Lactobacilli or Bifidobacteria. Lactobacillus rhamnosus (30.8 %) and Lactobacillus reuteri (42.3 %) were found to be the two predominantly studied probiotic species and three main mechanisms of action of probiotics could be classified as: (i) modulation of the immuno-inflammatory response, (ii) direct actions of probiotics on periodontopathogens by adhesion or nutritive competitions and/or the secretion of antimicrobial molecules and (iii) indirect actions through environmental modifications. A combination of several probiotic strains seems to be beneficial via synergistic action amplifying the functions of each strain used. However, heterogeneity of the methodologies and probiotic species included in studies leads us to consider the following avenues for future research: (i) implementation of standardized periodontal models as close as possible to in vivo periodontal conditions to identify the functions of each strain for appropriate medication, (ii) updating data about interactions within oral biofilms to identify new candidates and to predict then analyze their behavior within these biofilms. CONCLUSION Probiotics may have their place in the response to inter-individual variability in periodontitis, provided that the choice of the probiotic strain or combination of them will be personalized and optimal for each patient.
Collapse
Affiliation(s)
- Arthur Routier
- School of Dentistry, Lille University Hospital, Lille, France.
| | - Alessandra Blaizot
- Department of Public Health, Faculty of Dental Surgery, Lille University Hospital, Lille, France.
| | - Kevimy Agossa
- Department of Periodontology, Faculty of Dental Surgery, Lille University Hospital, Lille, France; University of Lille, Inserm, Lille University Hospital, U1008, F-59000 Lille, France.
| | - Marie Dubar
- Department of Periodontology, Faculty of Dental Surgery, Lille University Hospital, Lille, France; University of Lille, Inserm, Lille University Hospital, UMR-S 1172, F-59000 Lille, France.
| |
Collapse
|
46
|
Significance of Mast Cell Formed Extracellular Traps in Microbial Defense. Clin Rev Allergy Immunol 2021; 62:160-179. [PMID: 34024033 PMCID: PMC8140557 DOI: 10.1007/s12016-021-08861-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2021] [Indexed: 02/07/2023]
Abstract
Mast cells (MCs) are critically involved in microbial defense by releasing antimicrobial peptides (such as cathelicidin LL-37 and defensins) and phagocytosis of microbes. In past years, it has become evident that in addition MCs may eliminate invading pathogens by ejection of web-like structures of DNA strands embedded with proteins known together as extracellular traps (ETs). Upon stimulation of resting MCs with various microorganisms, their products (including superantigens and toxins), or synthetic chemicals, MCs become activated and enter into a multistage process that includes disintegration of the nuclear membrane, release of chromatin into the cytoplasm, adhesion of cytoplasmic granules on the emerging DNA web, and ejection of the complex into the extracellular space. This so-called ETosis is often associated with cell death of the producing MC, and the type of stimulus potentially determines the ratio of surviving vs. killed MCs. Comparison of different microorganisms with specific elimination characteristics such as S pyogenes (eliminated by MCs only through extracellular mechanisms), S aureus (removed by phagocytosis), fungi, and parasites has revealed important aspects of MC extracellular trap (MCET) biology. Molecular studies identified that the formation of MCET depends on NADPH oxidase-generated reactive oxygen species (ROS). In this review, we summarize the present state-of-the-art on the biological relevance of MCETosis, and its underlying molecular and cellular mechanisms. We also provide an overview over the techniques used to study the structure and function of MCETs, including electron microscopy and fluorescence microscopy using specific monoclonal antibodies (mAbs) to detect MCET-associated proteins such as tryptase and histones, and cell-impermeant DNA dyes for labeling of extracellular DNA. Comparing the type and biofunction of further MCET decorating proteins with ETs produced by other immune cells may help provide a better insight into MCET biology in the pathogenesis of autoimmune and inflammatory disorders as well as microbial defense.
Collapse
|
47
|
Yamamoto M, Aizawa R. Maintaining a protective state for human periodontal tissue. Periodontol 2000 2021; 86:142-156. [PMID: 33690927 DOI: 10.1111/prd.12367] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Periodontitis, caused by infection with periodontal pathogens, is primarily characterized by inflammatory bone resorption and destruction of connective tissue. Simply describing periodontitis as a specific bacterial infection cannot completely explain the various periodontal tissue destruction patterns observed. Periodontal tissue damage is thought to be caused by various factors. In recent years, research goals for periodontal pathogens have shifted from searching for specific pathogens to investigating mechanisms that damage periodontal tissues. Bacteria interact directly with the host in several ways, influencing expression and activity of molecules that evade host defenses, and destroying local tissues and inhibiting their repair. The host's innate and acquired immune systems are important defense mechanisms that protect periodontal tissues from attack and invasion of periodontal pathogens, thus preventing infection. Innate and acquired immunity have evolved to confront the microbial challenge, forming a seamless defense network in periodontal tissues. In the innate immune response, host cells quickly detect, via specialized receptors, macromolecules and nucleic acids present on bacterial cell walls, and this triggers a protective, inflammatory response. The work of this subsystem of host immunity is performed mainly by phagocytes, beta-defensin, and the complement system. In addition, the first line of defense in oral innate immunity is the junctional epithelium, which acts as a physical barrier to the entry of oral bacteria and other nonself substances. In the presence of a normal flora, junctional epithelial cells differentiate actively and proliferate apically, with concomitant increase in chemotactic factor expression recruiting neutrophils. These immune cells play an important role in maintaining homeostasis and the protective state in periodontal tissue because they eliminate unwanted bacteria over time. Previous studies indicate a mechanism for attracting immune cells to periodontal tissue with the purpose of maintaining a protective state; although this mechanism can function without bacteria, it is enhanced by the normal flora. A better understanding of the relationship between the protective state and its disruption in periodontal disease could lead to the development of new treatment strategies for periodontal disease.
Collapse
Affiliation(s)
- Matsuo Yamamoto
- Department of Periodontology, School of Dentistry, Showa University, Tokyo, Japan
| | - Ryo Aizawa
- Department of Periodontology, School of Dentistry, Showa University, Tokyo, Japan
| |
Collapse
|
48
|
Jakubovics NS, Goodman SD, Mashburn-Warren L, Stafford GP, Cieplik F. The dental plaque biofilm matrix. Periodontol 2000 2021; 86:32-56. [PMID: 33690911 PMCID: PMC9413593 DOI: 10.1111/prd.12361] [Citation(s) in RCA: 149] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
| | - Steven D Goodman
- Center for Microbial Pathogenesis, The Abigail Wexner Research Institute at Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Lauren Mashburn-Warren
- Center for Microbial Pathogenesis, The Abigail Wexner Research Institute at Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Graham P Stafford
- Integrated Biosciences, School of Clinical Dentistry, University of Sheffield, Sheffield, UK
| | - Fabian Cieplik
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
49
|
Kassab A, Ayed Y, Elsayed SA, Alqadi SF, Abdelgawad N, Mrag M, Ben Amor F. Glycated hemoglobin influence on periodontal status, pathogens and salivary interleukins in type II diabetic Tunisian subjects with chronic periodontitis. J Dent Sci 2021; 16:614-620. [PMID: 33854710 PMCID: PMC8025187 DOI: 10.1016/j.jds.2020.09.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 09/27/2020] [Indexed: 11/01/2022] Open
Abstract
BACKGROUND/PURPOSE Studies have shown that there is a possible correlation between the amount of glycated hemoglobin and the periodontal status. The goal of this study was to investigate the relationship between glycated hemoglobin (HbA1c) and the prevalence of gingival pathogens and circulating interleukin levels in type II diabetic Tunisian subjects. MATERIAL AND METHODS The research included four groups; 30 healthy subjects (H group), 30 non-diabetic subjects suffering from chronic periodontitis (CP group). Type-II diabetic patients were divided according to HbA1c level into 30 adequately-controlled type-II diabetes subjects (HbA1c ≤ 7 percent (ATIID&CP group)) and 30 inadequately-controlled type-II diabetes subjects and HbA1c > 7 percent (ITIID&CP group). Clinical periodontal condition parameters and assessment of salivary interleukin IL-1beta, IL-6 and IL-10 were assessed. Quantitative Polymerase Chain Reaction used for detection of Subgingival biofilm of periodontal pathogens. RESULTS Clinical parameters analyzed were positively associated with HbA1c levels (p < 0.05). A. Actinomycetemcomitans were found in 80 percent of ITIID&CP, 65 percent of CP and almost absent in H group. Porphyromonas gingivalis was present in 100 percent of CP, 85 percent of ITIID&CP, 50 percent of ATIID&CP and 3 percent of H group. T. Denticola had an equivalent occurrence. While Tannerella forsythia was scarce in ITIID&CP groups, but abundant in the H group. ITIID&CP had the highest IL-6 and IL-1beta/IL-10 ratios. CONCLUSION HBA1c levels affect periodontal status, pathogens and salivary interleukins in Type-II diabetic Tunisians with chronic periodontitis, compared with stable and chronic periodontitis groups and can interact with periodontal infections and increase the inflammatory state.
Collapse
Affiliation(s)
- Asma Kassab
- Research Laboratory of Oral Health and Bucco-Facial Rehabilitation, Faculty of Dental Medicine, University of Monastir, Monastir, Tunisia
| | - Yosra Ayed
- Department of Oral Basic Science, Taibah University, Dental College & Hospital, Al-Madinah Al-Munawwrah, Saudi Arabia
- Laboratory for Research on Biologically Compatible Compounds, Faculty of Dental Medicine, University of Monastir, Monastir, Tunisia
| | - Shadia A. Elsayed
- Département of Oral and Maxillofacial Surgery, Faculty of Dental Medicine for Girls, Al Azhar University, Cairo, Egypt
- Département of Oral and Maxillofacial Surgery, College of Dentistry, Taibah University, Al-Madinah Al-Munawwrah, Saudi Arabia
| | - Soha Fuad Alqadi
- Department of Orthodontics and Pediatric, Dental College & Hospital, Taibah University, Al-Madinah Al-Munawwrah, Saudi Arabia
| | - Nora Abdelgawad
- Department of Oral Medicine, Periodontology, Diagnosis and Radiology, Faculty of Dental Medicine for Girls, Al Azhar University, Cairo, Egypt
| | - Marwa Mrag
- Research Laboratory of Oral Health and Bucco-Facial Rehabilitation, Faculty of Dental Medicine, University of Monastir, Monastir, Tunisia
| | - Faten Ben Amor
- Research Laboratory of Oral Health and Bucco-Facial Rehabilitation, Faculty of Dental Medicine, University of Monastir, Monastir, Tunisia
| |
Collapse
|
50
|
Kaneko C, Kobayashi T, Ito S, Sugita N, Murasawa A, Ishikawa H, Tabeta K. Association among periodontitis severity, anti-agalactosyl immunoglobulin G titer, and the disease activity of rheumatoid arthritis. J Periodontal Res 2021; 56:702-709. [PMID: 33641208 DOI: 10.1111/jre.12867] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/30/2021] [Accepted: 02/07/2021] [Indexed: 12/25/2022]
Abstract
OBJECTIVE The aim of the present study was to evaluate the association between the periodontal and serological parameters and the disease activity of rheumatoid arthritis (RA) and between the anti-agalactosyl immunoglobulin G (IgG) titer and periodontitis severity. The objective was also to assess the effect of supragingival scaling on the serological parameters in patients with RA. BACKGROUND The periodontal and serological parameters in relation to the autoimmune inflammatory response have been linked to RA disease activity. However, the association of the anti-agalactosyl IgG titer with RA disease activity and periodontitis severity has not been elucidated. METHODS The periodontal, rheumatologic, and serological data were collected from 127 patients with RA in a retrospective cohort study. Of the 127 patients, 21 had been randomly assigned to receive oral hygiene instruction and supragingival scaling. The anti-agalactosyl IgG titer was determined by an electrochemiluminescence immunoassay. RESULTS The patients with a moderate to high RA disease activity showed significantly higher levels of probing depth (PD), clinical attachment level, anti-cyclic citrullinated peptide IgG, and anti-agalactosyl IgG titer and greater mean percentages of severe periodontitis than those with a low RA disease activity (p < .05 for all). Both univariate and multivariate analyses revealed a significantly positive correlation between the PD and RA disease activity (p = .009 and p = .001), between the anti-agalactosyl IgG titer and RA disease activity (p = .002 and p < .001), and between the anti-agalactosyl IgG titer and PD (p < .001 for both). Supragingival scaling significantly decreased the anti-agalactosyl IgG titer (p = 0.03). CONCLUSION The PD and anti-agalactosyl IgG titer are positively interrelated, both of which are correlated positively with RA disease activity and influenced by supragingival scaling in patients with RA.
Collapse
Affiliation(s)
- Chihiro Kaneko
- Division of Periodontology, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Tetsuo Kobayashi
- Division of Periodontology, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,General Dentistry and Clinical Education Unit, Faculty of Dentistry & Medical and Dental Hospital, Niigata University, Niigata, Japan
| | - Satoshi Ito
- Department of Rheumatology, Niigata Rheumatic Center, Shibata, Japan
| | - Noriko Sugita
- Division of Periodontology, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Akira Murasawa
- Department of Rheumatology, Niigata Rheumatic Center, Shibata, Japan
| | - Hajime Ishikawa
- Department of Rheumatology, Niigata Rheumatic Center, Shibata, Japan
| | - Koichi Tabeta
- Division of Periodontology, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|