1
|
Eladwy RA, Alsherbiny MA, Chang D, Fares M, Li CG, Bhuyan DJ. The postbiotic sodium butyrate synergizes the antiproliferative effects of dexamethasone against the AGS gastric adenocarcinoma cells. Front Nutr 2024; 11:1372982. [PMID: 38533461 PMCID: PMC10963608 DOI: 10.3389/fnut.2024.1372982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 02/26/2024] [Indexed: 03/28/2024] Open
Abstract
A growing body of literature underlines the fundamental role of gut microbiota in the occurrence, treatment, and prognosis of cancer. In particular, the activity of gut microbial metabolites (also known as postbiotics) against different cancer types has been recently reported in several studies. However, their in-depth molecular mechanisms of action and potential interactions with standard chemotherapeutic drugs remain to be fully understood. This research investigates the antiproliferative activities of postbiotics- short-chain fatty acid (SCFA) salts, specifically magnesium acetate (MgA), sodium propionate (NaP), and sodium butyrate (NaB), against the AGS gastric adenocarcinoma cells. Furthermore, the potential synergistic interactions between the most active SCFA salt-NaB and the standard drug dexamethasone (Dex) were explored using the combination index model. The molecular mechanisms of the synergy were investigated using reactive oxygen species (ROS), flow cytometry and biochemometric and liquid chromatography-mass spectrometry (LC-MS)-driven proteomics analyses. NaB exhibited the most significant inhibitory effect (p < 0.05) among the tested SCFA salts against the AGS gastric cancer cells. Additionally, Dex and NaB exhibited strong synergy at a 2:8 ratio (40 μg/mL Dex + 2,400 μg/mL NaB) with significantly greater inhibitory activity (p < 0.05) compared to the mono treatments against the AGS gastric cancer cells. MgA and NaP reduced ROS production, while NaB exhibited pro-oxidative properties. Dex displayed antioxidative effects, and the combination of Dex and NaB (2,8) demonstrated a unique pattern, potentially counteracting the pro-oxidative effects of NaB, highlighting an interaction. Dex and NaB individually and in combination (Dex:NaB 40:2400 μg/mL) induced significant changes in cell populations, suggesting a shift toward apoptosis (p < 0.0001). Analysis of dysregulated proteins in the AGS cells treated with the synergistic combination revealed notable downregulation of the oncogene TNS4, suggesting a potential mechanism for the observed antiproliferative effects. These findings propose the potential implementation of NaB as an adjuvant therapy with Dex. Further investigations into additional combination therapies, in-depth studies of the molecular mechanisms, and in vivo research will provide deeper insights into the use of these postbiotics in cancer, particularly in gastric malignancies.
Collapse
Affiliation(s)
- Radwa A Eladwy
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
- Department of Pharmacology, Faculty of Pharmacy, Egyptian Russian University, Badr City, Egypt
| | | | - Dennis Chang
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
| | - Mohamed Fares
- School of Pharmacy, The University of Sydney, Sydney, NSW, Australia
| | - Chun-Guang Li
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
| | - Deep Jyoti Bhuyan
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
- School of Science, Western Sydney University, Penrith, NSW, Australia
| |
Collapse
|
2
|
Duan H, Wang L, Huangfu M, Li H. The impact of microbiota-derived short-chain fatty acids on macrophage activities in disease: Mechanisms and therapeutic potentials. Biomed Pharmacother 2023; 165:115276. [PMID: 37542852 DOI: 10.1016/j.biopha.2023.115276] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/07/2023] Open
Abstract
Short-chain fatty acids (SCFAs) derived from the fermentation of carbohydrates by gut microbiota play a crucial role in regulating host physiology. Among them, acetate, propionate, and butyrate are key players in various biological processes. Recent research has revealed their significant functions in immune and inflammatory responses. For instance, butyrate reduces the development of interferon-gamma (IFN-γ) generating cells while promoting the development of regulatory T (Treg) cells. Propionate inhibits the initiation of a Th2 immune response by dendritic cells (DCs). Notably, SCFAs have an inhibitory impact on the polarization of M2 macrophages, emphasizing their immunomodulatory properties and potential for therapeutics. In animal models of asthma, both butyrate and propionate suppress the M2 polarization pathway, thus reducing allergic airway inflammation. Moreover, dysbiosis of gut microbiota leading to altered SCFA production has been implicated in prostate cancer progression. SCFAs trigger autophagy in cancer cells and promote M2 polarization in macrophages, accelerating tumor advancement. Manipulating microbiota- producing SCFAs holds promise for cancer treatment. Additionally, SCFAs enhance the expression of hypoxia-inducible factor 1 (HIF-1) by blocking histone deacetylase, resulting in increased production of antibacterial effectors and improved macrophage-mediated elimination of microorganisms. This highlights the antimicrobial potential of SCFAs and their role in host defense mechanisms. This comprehensive review provides an in-depth analysis of the latest research on the functional aspects and underlying mechanisms of SCFAs in relation to macrophage activities in a wide range of diseases, including infectious diseases and cancers. By elucidating the intricate interplay between SCFAs and macrophage functions, this review aims to contribute to the understanding of their therapeutic potential and pave the way for future interventions targeting SCFAs in disease management.
Collapse
Affiliation(s)
- Hongliang Duan
- Department of Thyroid Surgery, the Second Hospital of Jilin University, Changchun 130000, China
| | - LiJuan Wang
- Department of Endocrinology, the Second Hospital of Jilin University, Changchun 130000, China.
| | - Mingmei Huangfu
- Department of Thyroid Surgery, the Second Hospital of Jilin University, Changchun 130000, China
| | - Hanyang Li
- Department of Endocrinology, the Second Hospital of Jilin University, Changchun 130000, China
| |
Collapse
|
3
|
Jiminez V, Yusuf N. Bacterial Metabolites and Inflammatory Skin Diseases. Metabolites 2023; 13:952. [PMID: 37623895 PMCID: PMC10456496 DOI: 10.3390/metabo13080952] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 08/26/2023] Open
Abstract
The microbiome and gut-skin axis are popular areas of interest in recent years concerning inflammatory skin diseases. While many bacterial species have been associated with commensalism of both the skin and gastrointestinal tract in certain disease states, less is known about specific bacterial metabolites that regulate host pathways and contribute to inflammation. Some of these metabolites include short chain fatty acids, amine, and tryptophan derivatives, and more that when dysregulated, have deleterious effects on cutaneous disease burden. This review aims to summarize the knowledge of wealth surrounding bacterial metabolites of the skin and gut and their role in immune homeostasis in inflammatory skin diseases such as atopic dermatitis, psoriasis, and hidradenitis suppurativa.
Collapse
Affiliation(s)
- Victoria Jiminez
- Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Nabiha Yusuf
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
4
|
Yang J, Yang S, Liao Y, Deng Y, Jiao Y. Histone deacetylase inhibitor butyrate inhibits the cellular immunity and increases the serum immunity of pearl oyster Pinctada fucata martensii. FISH & SHELLFISH IMMUNOLOGY 2023; 133:108529. [PMID: 36632915 DOI: 10.1016/j.fsi.2023.108529] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 12/21/2022] [Accepted: 01/07/2023] [Indexed: 06/17/2023]
Abstract
Histone acetylation is a dynamic epigenetic modification and sensitive to the changes in extracellular environment. Butyrate, a histone deacetylase inhibitor, can inhibit the deacetylation process of histones. In this study, we found that the acetylation level of H3 was enhanced at 12 h after lipopolysaccharide (LPS) stimulation and increased at 6 h after combining treatment with LPS and butyrate in pearl oyster Pinctada fucata martensii. Transcriptome analysis indicated that butyrate counter-regulated 29.95%-36.35% of the genes repressed by LPS, and these genes were mainly enriched in the "cell proliferation" and "Notch signaling pathway". Meanwhile, butyrate inhibited the up-regulation of 31.54%-54.96% of the genes induced by LPS, and these genes were mainly enriched in "Notch signaling pathway", "cell proliferation", "NF-kappa B signaling pathway", "TNF signaling pathway", "apoptosis", "NOD-like receptor signaling pathway", "RIG-I-like receptor signaling pathway" and "cytosolic DNA-sensing pathway". Gene expression analysis showed that butyrate downregulated most of cell proliferation, immune-related genes effected by LPS. The activities of LAP, LYS, ACP, ALP, and GSH-Px were up-regulated at 6 h after combining treatment with LPS and butyrate, suggesting that butyrate could activate serum immune-related enzymes in pearl oyster. These results can improve our understanding of the function of histone deacetylase in the immune response of pearl oyster and provide references for an in-depth study of the functions of histone deacetylase in mollusks.
Collapse
Affiliation(s)
- Jingmiao Yang
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China
| | - Shuai Yang
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China
| | - Yongshan Liao
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China
| | - Yuewen Deng
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China; Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang, 524088, China; Guangdong Science and Innovation Center for Pearl Culture, Zhanjiang, 524088, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, 524088, China; Guangdong Provincial Laboratory of Marine Ecological Early Warning and Monitoring, Zhanjiang, 524088, China
| | - Yu Jiao
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China; Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang, 524088, China; Guangdong Science and Innovation Center for Pearl Culture, Zhanjiang, 524088, China.
| |
Collapse
|
5
|
Chen H, Zhao Q, Zhong Q, Duan C, Krutmann J, Wang J, Xia J. Skin Microbiome, Metabolome and Skin Phenome, from the Perspectives of Skin as an Ecosystem. PHENOMICS (CHAM, SWITZERLAND) 2022; 2:363-382. [PMID: 36939800 PMCID: PMC9712873 DOI: 10.1007/s43657-022-00073-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/06/2022] [Accepted: 08/11/2022] [Indexed: 11/07/2022]
Abstract
Skin is a complex ecosystem colonized by millions of microorganisms, including bacteria, fungi, and viruses. Skin microbiota is believed to exert critical functions in maintaining host skin health. Profiling the structure of skin microbial community is the first step to overview the ecosystem. However, the community composition is highly individualized and extremely complex. To explore the fundamental factors driving the complexity of the ecosystem, namely the selection pressures, we review the present studies on skin microbiome from the perspectives of ecology. This review summarizes the following: (1) the composition of substances/nutrients in the cutaneous ecological environment that are derived from the host and the environment, highlighting their proposed function on skin microbiota; (2) the features of dominant skin commensals to occupy ecological niches, through self-adaptation and microbe-microbe interactions; (3) how skin microbes, by their structures or bioactive molecules, reshape host skin phenotypes, including skin immunity, maintenance of skin physiology such as pH and hydration, ultraviolet (UV) protection, odor production, and wound healing. This review aims to re-examine the host-microbe interactions from the ecological perspectives and hopefully to give new inspiration to this field.
Collapse
Affiliation(s)
- Huizhen Chen
- grid.8547.e0000 0001 0125 2443Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Qi Zhao
- grid.27255.370000 0004 1761 1174Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012 China
- grid.435557.50000 0004 0518 6318IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, D-40225 Germany
| | - Qian Zhong
- grid.8547.e0000 0001 0125 2443Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Cheng Duan
- grid.8547.e0000 0001 0125 2443Greater Bay Area Institute of Precision Medicine (Guangzhou), School of Life Sciences, Fudan University, Guangzhou, 511458 China
| | - Jean Krutmann
- grid.435557.50000 0004 0518 6318IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, D-40225 Germany
| | - Jiucun Wang
- grid.8547.e0000 0001 0125 2443Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai, 200438 China
- grid.506261.60000 0001 0706 7839Research Unit of Dissecting the Population Genetics and Developing New Technologies for Treatment and Prevention of Skin Phenotypes and Dermatological Diseases (2019RU058), Chinese Academy of Medical Sciences, Shanghai, 200438 China
| | - Jingjing Xia
- grid.8547.e0000 0001 0125 2443Greater Bay Area Institute of Precision Medicine (Guangzhou), School of Life Sciences, Fudan University, Guangzhou, 511458 China
| |
Collapse
|
6
|
Proof-of-Principle Study Suggesting Potential Anti-Inflammatory Activity of Butyrate and Propionate in Periodontal Cells. Int J Mol Sci 2022; 23:ijms231911006. [PMID: 36232340 PMCID: PMC9570314 DOI: 10.3390/ijms231911006] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/14/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
Short-chain fatty acids (SCFAs) are potent immune modulators present in the gingival crevicular fluid. It is therefore likely that SCFAs exert a role in periodontal health and disease. To better understand how SCFAs can module inflammation, we screened acetic acid, propionic acid, and butyric acid for their potential ability to lower the inflammatory response of macrophages, gingival fibroblasts, and oral epithelial cells in vitro. To this end, RAW 264.7 and primary macrophages were exposed to LPSs from Porphyromonas gingivalis (P. gingivalis) with and without the SCFAs. Moreover, gingival fibroblasts and HSC2 oral epithelial cells were exposed to IL1β and TNFα with and without the SCFAs. We report here that butyrate was effective in reducing the lipopolysaccharide (LPS)-induced expression of IL6 and chemokine (C-X-C motif) ligand 2 (CXCL2) in the RAW 264.7 and primary macrophages. Butyrate also reduced the IL1β and TNFα-induced expression of IL8, chemokine (C-X-C motif) ligand 1 (CXCL1), and CXCL2 in gingival fibroblasts. Likewise, butyrate lowered the induced expression of CXCL1 and CXCL2, but not IL8, in HSC2 cells. Butyrate further caused a reduction of p65 nuclear translocation in RAW 264.7 macrophages, gingival fibroblasts, and HSC2 cells. Propionate and acetate partially lowered the inflammatory response in vitro but did not reach the level of significance. These findings suggest that not only macrophages, but also gingival fibroblasts and oral epithelial cells are susceptive to the anti-inflammatory activity of butyrate.
Collapse
|
7
|
Zhang M, Wang Y, Zhao X, Liu C, Wang B, Zhou J. Mechanistic basis and preliminary practice of butyric acid and butyrate sodium to mitigate gut inflammatory diseases: a comprehensive review. Nutr Res 2021; 95:1-18. [PMID: 34757305 DOI: 10.1016/j.nutres.2021.08.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/19/2021] [Accepted: 08/26/2021] [Indexed: 01/02/2023]
Abstract
A key event featured in the early stage of chronic gut inflammatory diseases is the disordered recruitment and excess accumulation of immune cells in the gut lamina propria. This process is followed by the over-secretion of pro-inflammatory factors and the prolonged overactive inflammatory responses. Growing evidence has suggested that gut inflammatory diseases may be mitigated by butyric acid (BA) or butyrate sodium (NaB). Laboratory studies show that BA and NaB can enhance gut innate immune function through G-protein-mediated signaling pathways while mitigating the overactive inflammatory responses by inhibiting histone deacetylase. The regulatory effects may occur in both epithelial enterocytes and the immune cells in the lamina propria. Prior to further clinical trials, comprehensive literature reviews and rigid examination concerning the underlying mechanism are necessary. To this end, we collected and reviewed 197 published reports regarding the mechanisms, bioactivities, and clinical effects of BA and NaB to modulate gut inflammatory diseases. Our review found insufficient evidence to guarantee the safety of clinical practice of BA and NaB, either by anal enema or oral administration of capsule or tablet. The safety of clinical use of BA and NaB should be further evaluated. Alternatively, dietary patterns rich in "fruits, vegetables and beans" may be an effective and safe approach to prevent gut inflammatory disease, which elevates gut microbiota-dependent production of BA. Our review provides a comprehensive reference to future clinical trials of BA and NaB to treat gut inflammatory diseases.
Collapse
Affiliation(s)
- Mingbao Zhang
- Department of Gastroenterology and Hepatology, Second Hospital of Shandong University, Shandong University, 250012 China
| | - Yanan Wang
- Department of Gastroenterology and Hepatology, Second Hospital of Shandong University, Shandong University, 250012 China
| | - Xianqi Zhao
- School of Public Health, Cheeloo College of Medicine, Shandong University, 250012 China
| | - Chang Liu
- School of Public Health, Cheeloo College of Medicine, Shandong University, 250012 China
| | - Baozhen Wang
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 250012 China.
| | - Jun Zhou
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 250012 China.
| |
Collapse
|
8
|
Lee JY, Lee DW, Jo BS, Park KS, Park YS, Chung CP, Park YJ. Engineered synthetic cell penetrating peptide with intracellular anti-inflammatory bioactivity: An in vitro and in vivo study. J Biomed Mater Res A 2021; 109:2001-2016. [PMID: 33818867 DOI: 10.1002/jbm.a.37192] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 12/29/2020] [Accepted: 03/24/2021] [Indexed: 12/26/2022]
Abstract
Various biomaterials have been used for bone and cartilage regeneration, and inflammation associated with biomaterial implantation is also increased. A 15-mer synthetic anti-inflammatory peptide (SAP15) was designed from human β-defensin 3 to penetrate cells and induce intracellular downregulation of inflammation. The downregulation of inflammation was achieved by the binding of SAP15 to intracellular histone deacetylase (HDAC5). SAP15-mediated inhibition of inflammation was examined in vitro and in vivo using murine macrophages, human articular chondrocytes, and a collagen-induced arthritis (CIA) rat model. Surface plasmon resonance and immunoprecipitation assays indicated that SAP15 binds to HDAC5. SAP15 inhibited the lipopolysaccharide (LPS)-induced phosphorylation of intracellular HDAC5 and NF-κB p65 in murine macrophages. SAP15 treatment increased aggrecan and type II collagen expression and decreased osteocalcin expression in LPS-induced chondrocytes. Subcutaneous injection of SAP15-loaded sodium hyaluronic acid (HA) solution significantly decreased hind paw swelling, joint inflammation, and serum cytokine levels in CIA rats compared with the effects of sodium HA solution alone. The SAP15-loaded HA group exhibited preservation of cartilage and bone structure in CIA rat joints. Moreover, a more robust anti-inflammatory effect of the SAP15 loaded HA was observed than that of etanercept (an anti-tumor necrosis factor-alpha [TNF-α] antibody)-loaded HA. These findings suggest that SAP15 has an anti-inflammatory effect that is not controlled by sodium HA and is mediated by inhibiting HDAC5, unlike the anti-inflammatory mechanism of etanercept. These results demonstrate that SAP15 is useful as an inflammatory regulator of biomaterials and can be developed as a therapeutic for the treatment of inflammation.
Collapse
Affiliation(s)
- Jue-Yeon Lee
- Research Institute, Nano Intelligent Biomedical Engineering Corporation (NIBEC), Seoul, Republic of Korea
| | - Dong Woo Lee
- Research Institute, Nano Intelligent Biomedical Engineering Corporation (NIBEC), Seoul, Republic of Korea
| | - Beom Soo Jo
- Research Institute, Nano Intelligent Biomedical Engineering Corporation (NIBEC), Seoul, Republic of Korea
| | - Kwang-Sook Park
- Dental Regenerative Biotechnology, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Yoon Shin Park
- Major in Microbiology, School of Biological Sciences, College of Natural Sciences, Chungbuk National University, Cheongju-si, Republic of Korea
| | - Chong Pyung Chung
- Research Institute, Nano Intelligent Biomedical Engineering Corporation (NIBEC), Seoul, Republic of Korea
| | - Yoon Jeong Park
- Research Institute, Nano Intelligent Biomedical Engineering Corporation (NIBEC), Seoul, Republic of Korea
- Dental Regenerative Biotechnology, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
9
|
Smith KA, Pugh JN, Duca FA, Close GL, Ormsbee MJ. Gastrointestinal pathophysiology during endurance exercise: endocrine, microbiome, and nutritional influences. Eur J Appl Physiol 2021; 121:2657-2674. [PMID: 34131799 DOI: 10.1007/s00421-021-04737-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 06/07/2021] [Indexed: 12/17/2022]
Abstract
Gastrointestinal symptoms are abundant among athletes engaging in endurance exercise, particularly when exercising in increased environmental temperatures, at higher intensities, or over extremely long distances. It is currently thought that prolonged ischemia, mechanical damage to the epithelial lining, and loss of epithelial barrier integrity are likely contributors of gastrointestinal (GI) distress during bouts of endurance exercise, but due to the many potential causes and sporadic nature of symptoms this phenomenon has proven difficult to study. In this review, we cover known factors that contribute to GI distress symptoms in athletes during exercise, while further attempting to identify novel avenues of future research to help elucidate mechanisms leading to symptomology. We explore the link between the intestinal microbiome, the integrity of the gut epithelia, and add detail on gut hormone and peptide secretion that could potentially contribute to GI distress symptoms in athletes. The influence of nutrition and dietary supplementation strategies are also detailed, where much research has opened up new ideas and potential mechanisms for understanding gut pathophysiology during exercise. The etiology of gastrointestinal symptoms during endurance exercise is multi-factorial with neuroendocrine, microbial, and nutritional factors likely contributing to specific, individualized symptoms. Recent work in previously unexplored areas of both microbiome and gut peptide secretion are pertinent areas for future work, and the numerous supplementation strategies explored to date have provided insight into physiological mechanisms that may be targetable to reduce the incidence and severity of gastrointestinal symptoms in athletes.
Collapse
Affiliation(s)
- Kyle A Smith
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ, USA
| | - Jamie N Pugh
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, L3 5UA, UK
| | - Frank A Duca
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA
| | - Graeme L Close
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, L3 5UA, UK
| | - Michael J Ormsbee
- Department of Nutrition and Integrative Physiology, Institute of Sports Sciences and Medicine, Florida State University, 1104 Spirit Way, Tallahassee, FL, 32306, USA. .,Discipline of Biokinetics, Exercise and Leisure Sciences, University of KwaZulu-Natal, Durban, 4041, South Africa.
| |
Collapse
|
10
|
Koçancı FG. Role of Fatty Acid Chemical Structures on Underlying Mechanisms of Neurodegenerative Diseases and Gut Microbiota. EUR J LIPID SCI TECH 2021. [DOI: 10.1002/ejlt.202000341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Fatma Gonca Koçancı
- Vocational High School of Health Services Department of Medical Laboratory Techniques Alanya Alaaddin Keykubat University Alanya/Antalya 07425 Turkey
| |
Collapse
|
11
|
Chen X, Xu J, Wang H, Luo J, Wang Z, Chen G, Jiang D, Cao R, Huang H, Luo D, Xiao X, Hu J. Profiling the differences of gut microbial structure between schizophrenia patients with and without violent behaviors based on 16S rRNA gene sequencing. Int J Legal Med 2020; 135:131-141. [PMID: 33067643 DOI: 10.1007/s00414-020-02439-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 09/30/2020] [Indexed: 02/07/2023]
Abstract
Understanding the violence behaviors in schizophrenia patients has always been the focus of forensic psychiatry. Although many studies show gut microbiota could regulate behavior, to our knowledge, no studies have profiled the gut microbiota structure in schizophrenia patients with violence. We profiled the characteristics of gut microbiota structure in 26 schizophrenia patients with violence (V.SCZ) by comparing with that of 16 schizophrenia patients without violence (NV.SCZ) under the control of confounders, and found the differences of gut microbiota structure between the two groups. Violence was assessed by the MacArthur Community Violence Instrument. Psychiatric symptoms were assessed by the Positive and Negative Syndrome Scale. The 16S rRNA gene sequencing was used to identify and relatively quantify gut microbial composition. Bioinformatics analysis was used to find differential gut microbial composition between the V.SCZ and NV.SCZ groups. Fifty-nine differential microbial taxonomic compositions were found between the two groups. Fifteen gut microbial compositions were the key microbial taxonomic compositions responsible for the differences between the V.SCZ and NV.SCZ groups, including five enriched microbial taxonomic compositions (p_Bacteroidetes, c_Bacteroidia, o_Bacteroidales, f_Prevotellaceae, s_Bacteroides_uniformis), and ten impoverished microbial taxonomic compositions (p_Actinobacteria, c_unidentified_Actinobacteria, o_Bifidobacteriales, f_ Enterococcaceae, f_Veillonellaceae, f_Bifidobacteriaceae, g_Enterococcus, g_Candidatus_Saccharimonas, g_Bifidobacterium, and s_Bifidobacterium_pseudocatenulatum). This study profiled the differences of gut microbiota between schizophrenia patients with violence and without violence. These results could enrich the etiological understanding of violence in schizophrenia and might be helpful to violence management in the future.
Collapse
Affiliation(s)
- Xiacan Chen
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Jiajun Xu
- Mental Health Center of West China Hospital, Sichuan University, Chengdu, China.
| | - Hongren Wang
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Jiaguo Luo
- Jinxin Mental Health Center, Chengdu, China
| | - Zheng Wang
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Gang Chen
- Jinxin Mental Health Center, Chengdu, China
| | - Dan Jiang
- Jinxin Mental Health Center, Chengdu, China
| | - Ruochen Cao
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Haolan Huang
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Dan Luo
- Mental Health Center of West China Hospital, Sichuan University, Chengdu, China
| | - Xiao Xiao
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University and the Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Junmei Hu
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China.
| |
Collapse
|
12
|
Ricciuto A, Sherman PM, Laxer RM. Gut microbiota in chronic inflammatory disorders: A focus on pediatric inflammatory bowel diseases and juvenile idiopathic arthritis. Clin Immunol 2020; 215:108415. [DOI: 10.1016/j.clim.2020.108415] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/06/2020] [Accepted: 04/06/2020] [Indexed: 12/16/2022]
|
13
|
Lee JE, Ha JS, Park HY, Lee E. Alteration of gut microbiota composition by short-term low-dose alcohol intake is restored by fermented rice liquor in mice. Food Res Int 2020; 128:108800. [DOI: 10.1016/j.foodres.2019.108800] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 10/31/2019] [Accepted: 11/01/2019] [Indexed: 02/07/2023]
|
14
|
Quraishi MN, Shaheen W, Oo YH, Iqbal TH. Immunological mechanisms underpinning faecal microbiota transplantation for the treatment of inflammatory bowel disease. Clin Exp Immunol 2019; 199:24-38. [PMID: 31777058 DOI: 10.1111/cei.13397] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2019] [Indexed: 12/14/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic gastrointestinal disease that results from a dysregulated immune response against specific environmental triggers in a genetically predisposed individual. Increasing evidence has indicated a causal role for changes in gut microbiota (dysbiosis) contributing to this immune-mediated intestinal inflammation. These mechanisms involve dysregulation of multiple facets of the host immune pathways that are potentially reversible. Faecal microbiota transplantation (FMT) is the transfer of processed stool from a healthy donor into an individual with an illness. FMT has shown promising results in both animal model experiments and clinical studies in IBD in the resolution of intestinal inflammation. The underlying mechanisms, however, are unclear. Insights from these studies have shown interactions between modulation of dysbiosis via changes in abundances of specific members of the gut microbial community and changes in host immunological pathways. Unravelling these causal relationships has promising potential for a translational therapy role to develop targeted microbial therapies and understand the mechanisms that underpin IBD aetiopathogenesis. In this review, we discuss current evidence for the contribution of gut microbiota in the disruption of intestinal immune homeostasis and immunoregulatory mechanisms that are associated with the resolution of inflammation through FMT in IBD.
Collapse
Affiliation(s)
- M N Quraishi
- Centre for Liver and Gastroenterology Research, NIHR Birmingham Biomedical Research Centre, University of Birmingham, Birmingham, UK.,Department of Gastroenterology, Queen Elizabeth Hospital, University Hospitals Birmingham, Birmingham, UK.,University of Birmingham Microbiome Treatment Centre, University of Birmingham, Birmingham, UK
| | - W Shaheen
- Centre for Liver and Gastroenterology Research, NIHR Birmingham Biomedical Research Centre, University of Birmingham, Birmingham, UK.,University of Birmingham Microbiome Treatment Centre, University of Birmingham, Birmingham, UK
| | - Y H Oo
- Centre for Liver and Gastroenterology Research, NIHR Birmingham Biomedical Research Centre, University of Birmingham, Birmingham, UK.,Department of Gastroenterology, Queen Elizabeth Hospital, University Hospitals Birmingham, Birmingham, UK.,Liver Transplant and Hepatobiliary Unit, Queen Elizabeth Hospital, University Hospitals Birmingham, Birmingham, UK
| | - T H Iqbal
- Centre for Liver and Gastroenterology Research, NIHR Birmingham Biomedical Research Centre, University of Birmingham, Birmingham, UK.,Department of Gastroenterology, Queen Elizabeth Hospital, University Hospitals Birmingham, Birmingham, UK.,University of Birmingham Microbiome Treatment Centre, University of Birmingham, Birmingham, UK
| |
Collapse
|
15
|
Jia J, Nie L, Liu Y. Butyrate alleviates inflammatory response and NF-κB activation in human degenerated intervertebral disc tissues. Int Immunopharmacol 2019; 78:106004. [PMID: 31780370 DOI: 10.1016/j.intimp.2019.106004] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 10/10/2019] [Accepted: 10/24/2019] [Indexed: 12/16/2022]
Abstract
Butyrate has multiple protective effects in inflammation-related intestinal diseases. Previous studies have found that butyrate could inhibit inflammation in rheumatoid arthritis. Inflammation is a pivotal inducement in the degeneration progress of the intervertebral disc. The anti-inflammatory treatment has an apparent curative effect in the symptomatic treatment of spine-related disease. Herein we investigated whether butyrate plays a protective role in degenerated intervertebral disc model. To mimic the lumbar disc local inflammatory environment, human primary nucleus pulposus cells were cultured with interleukin-1β (IL-1β, 10 ng/ml) to build a nucleus pulposus cell inflammation model. Butyrate was added to the cell culture medium to test the effect of butyrate on disc inflammation. Furthermore, a cultured nucleus pulposus tissue model was treated with butyrate (1 mM) to simulate the local treatment of intervertebral disc disease. Herein, we found that butyrate could downregulate the production of the inflammatory mediator caused by IL-1β stimulation in the cell culture model. Additionally, butyrate inhibits the secretion of pro-inflammatory cytokines or graded enzymes in disc tissues from lumbar disc herniation patients. Furthermore, the anti-inflammatory function of butyrate in lumbar disc degenerated model may be caused by inhibiting the activation of the nuclear factor kappa B (NF-κB) signal pathway. This study presents butyrate as a candidate therapeutic method to treat lumbar disc degenerative disease.
Collapse
Affiliation(s)
- Jialin Jia
- Department of Orthopaedics, Peking University Third Hospital, Beijing 100191, People's Republic of China; Beijing Key Laboratory of Spinal Diseases, 49 North Garden Rd, Haidian District, Beijing 100191, People's Republic of China; Department of Orthopaedics, Qilu Hospital of Shandong University, 107 Wen Hua Xi Road, Jinan, Shandong 250012, People's Republic of China
| | - Lin Nie
- Department of Orthopaedics, Qilu Hospital of Shandong University, 107 Wen Hua Xi Road, Jinan, Shandong 250012, People's Republic of China
| | - Yi Liu
- Department of Orthopaedics, The Second Hospital of Shandong University, 247 Beiyuan Street, Jinan, Shandong 250033, People's Republic of China.
| |
Collapse
|
16
|
Dynamic gut microbiome changes following regional intestinal lymphatic obstruction in primates. ACTA ACUST UNITED AC 2019; 26:253-261. [PMID: 31301989 DOI: 10.1016/j.pathophys.2019.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/24/2019] [Accepted: 06/26/2019] [Indexed: 12/15/2022]
Abstract
The pathogenesis of inflammatory bowel disease (IBD) has been linked with lymphostasis, but whether and how lymphatic obstruction might disturb the intestinal microbiome in the setting of Crohn's Disease (CD) is currently unknown. We employed a new model of CD in African Green monkeys, termed 'ATLAS' (African green monkey truncation of lymphatics with obstruction and sclerosis), to evaluate how gut lymphatic obstruction alters the intestinal microbiome at 7, 21 and 61 days. Remarkable changes in several microbial sub- groupings within the gut microbiome were observed at 7 days post-ATLAS compared to controls including increased abundance of Prevotellaceae and Bacteroidetes-Prevotella-Porphyromonas (BPP), which may contribute to disease activity in this model of gut injury. To the best of our knowledge, these findings represent the first report linking lymphatic structural/gut functional changes with alterations in the gut microbiome as they may relate to the pathophysiology of CD.
Collapse
|
17
|
Traisaeng S, Herr DR, Kao HJ, Chuang TH, Huang CM. A Derivative of Butyric Acid, the Fermentation Metabolite of Staphylococcus epidermidis, Inhibits the Growth of a Staphylococcus aureus Strain Isolated from Atopic Dermatitis Patients. Toxins (Basel) 2019; 11:toxins11060311. [PMID: 31159213 PMCID: PMC6628397 DOI: 10.3390/toxins11060311] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/24/2019] [Accepted: 05/24/2019] [Indexed: 12/20/2022] Open
Abstract
The microbiome is a rich source of metabolites for the development of novel drugs. Butyric acid, for example, is a short-chain fatty acid fermentation metabolite of the skin probiotic bacterium Staphylococcus epidermidis (S. epidermidis). Glycerol fermentation of S. epidermidis resulted in the production of butyric acid and effectively hindered the growth of a Staphylococcus aureus (S. aureus) strain isolated from skin lesions of patients with atopic dermatitis (AD) in vitro and in vivo. This approach, however, is unlikely to be therapeutically useful since butyric acid is malodorous and requires a high concentration in the mM range for growth suppression of AD S. aureus. A derivative of butyric acid, BA–NH–NH–BA, was synthesized by conjugation of two butyric acids to both ends of an –NH–O–NH– linker. BA–NH–NH–BA significantly lowered the concentration of butyric acid required to inhibit the growth of AD S. aureus. Like butyric acid, BA–NH–NH–BA functioned as a histone deacetylase (HDAC) inhibitor by inducing the acetylation of Histone H3 lysine 9 (AcH3K9) in human keratinocytes. Furthermore, BA–NH–NH–BA ameliorated AD S. aureus-induced production of pro-inflammatory interleukin (IL)-6 and remarkably reduced the colonization of AD S. aureus in mouse skin. These results describe a novel derivative of a skin microbiome fermentation metabolite that exhibits anti-inflammatory and S. aureus bactericidal activity.
Collapse
Affiliation(s)
- Supitchaya Traisaeng
- Department of Life Sciences, National Central University, Taoyuan 32001, Taiwan.
| | - Deron Raymond Herr
- Department of Pharmacology, National University of Singapore, Singapore 117600, Singapore.
| | - Hsin-Jou Kao
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan 32001, Taiwan.
| | - Tsung-Hsien Chuang
- Immunology Research Center, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan.
| | - Chun-Ming Huang
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan 32001, Taiwan.
- Department of Dermatology, University of California, San Diego 3525 John Hopkins Court, Rm276, San Diego, CA 92121, USA.
| |
Collapse
|
18
|
Khoo LW, Kow ASF, Maulidiani M, Ang MY, Chew WY, Lee MT, Tan CP, Shaari K, Tham CL, Abas F. 1 H-NMR metabolomics for evaluating the protective effect of Clinacanthus nutans (Burm. f) Lindau water extract against nitric oxide production in LPS-IFN-γ activated RAW 264.7 macrophages. PHYTOCHEMICAL ANALYSIS : PCA 2019; 30:46-61. [PMID: 30183131 DOI: 10.1002/pca.2789] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 06/12/2018] [Accepted: 07/07/2018] [Indexed: 06/08/2023]
Abstract
INTRODUCTION Clinacanthus nutans, a small shrub that is native to Southeast Asia, is commonly used in traditional herbal medicine and as a food source. Its anti-inflammation properties is influenced by the metabolites composition, which can be determined by different binary extraction solvent ratio and extraction methods used during plant post-harvesting stage. OBJECTIVE Evaluate the relationship between the chemical composition of C. nutans and its anti-inflammatory properties using nuclear magnetic resonance (NMR) metabolomics approach. METHODOLOGY The anti-inflammatory effect of C. nutans air-dried leaves extracted using five different binary extraction solvent ratio and two extraction methods was determined based on their nitric oxide (NO) inhibition effect in lipopolysaccharide-interferon-gamma (LPS-IFN-γ) activated RAW 264.7 macrophages. The relationship between extract bioactivity and metabolite profiles and quantifications were established using 1 H-NMR metabolomics and liquid chromatography-tandem mass spectrometry (LC-MS/MS). The possible metabolite biosynthesis pathway was constructed to further strengthen the findings. RESULTS Water and sonication prepared air-dried leaves possessed the highest NO inhibition activity (IC50 = 190.43 ± 12.26 μg/mL, P < 0.05). A total of 56 metabolites were tentatively identified using 1 H-NMR metabolomics. A partial least square (PLS) biplot suggested that sulphur containing glucoside, sulphur containing compounds, phytosterols, triterpenoids, flavones and some organic and amino acids were among the potential NO inhibitors. LC-MS/MS targeted quantification further supported sonicated water extract was among the extract that possessed the most abundant C-glycosyl flavones. CONCLUSION The present study may serve as a preliminary reference for the selection of optimum extract in further C. nutans in vivo anti-inflammatory study.
Collapse
Affiliation(s)
- Leng Wei Khoo
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Audrey Siew Foong Kow
- Department Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Maulidiani Maulidiani
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - May Yen Ang
- Analytical Instrument Division, Shimadzu Malaysia, Petaling Jaya, Selangor, Malaysia
| | - Won Yin Chew
- Analytical Instrument Division, Shimadzu Malaysia, Petaling Jaya, Selangor, Malaysia
| | - Ming Tatt Lee
- Faculty of Pharmaceutical Sciences, UCSI University Kuala Lumpur Campus, Cheras, Kuala Lumpur, Malaysia
| | - Chin Ping Tan
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Khozirah Shaari
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Chau Ling Tham
- Department Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Faridah Abas
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
19
|
Vitetta L, Vitetta G, Hall S. Immunological Tolerance and Function: Associations Between Intestinal Bacteria, Probiotics, Prebiotics, and Phages. Front Immunol 2018; 9:2240. [PMID: 30356736 PMCID: PMC6189397 DOI: 10.3389/fimmu.2018.02240] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 09/10/2018] [Indexed: 12/12/2022] Open
Abstract
Post-birth there is a bacterial assault on all mucosal surfaces. The intestinal microbiome is an important participant in health and disease. The pattern of composition and concentration of the intestinal microbiome varies greatly. Therefore, achieving immunological tolerance in the first 3-4 years of life is critical for maintaining health throughout a lifetime. Probiotic bacteria are organisms that afford beneficial health effects to the host and in certain instances may protect against the development of disease. The potential benefits of modifying the composition of the intestinal microbial cohort for therapeutic benefit is evident in the use in high risks groups such as premature infants, children receiving antibiotics, rotavirus infections in non-vaccinated children and traveler's diarrhea in adults. Probiotics and prebiotics are postulated to have immunomodulating capabilities by influencing the intestinal microbial cohort and dampening the activity of pathobiont intestinal microbes, such as Klebsiella pneumonia and Clostridia perfringens. Lactobacilli and Bifidobacteria are examples of probiotics found in the large intestine and so far, the benefits afforded to probiotics have varied in efficacy. Most likely the efficacy of probiotic bacteria has a multifactorial dependency, namely on a number of factors that include agents used, the dose, the pattern of dosing, and the characteristics of the host and the underlying luminal microbial environment and the activity of bacteriophages. Bacteriophages, are small viruses that infect and lyse intestinal bacteria. As such it can be posited that these viruses display an effective local protective control mechanism for the intestinal barrier against commensal pathobionts that indirectly may assist the host in controlling bacterial concentrations in the gut. A co-operative activity may be envisaged between the intestinal epithelia, mucosal immunity and the activity of bacteriophages to eliminate pathobiots, highlighting the potential role of bacteriophages in assisting with maintaining intestinal homeostasis. Hence bacteriophage local control of inflammation and immune responses may be an additional immunological defense mechanism that exploits bacteriophage-mucin glycoprotein interactions that controls bacterial diversity and abundance in the mucin layers of the gut. Moreover, and importantly the efficacy of probiotics may be dependent on the symbiotic incorporation of prebiotics, and the abundance and diversity of the intestinal microbiome encountered. The virome may be an important factor that determines the efficacy of some probiotic formulations.
Collapse
Affiliation(s)
- Luis Vitetta
- Discipline of Pharmacology, Faculty of Medicine and Health, School of Medicine, The University of Sydney, Camperdown, NSW, Australia
- Medlab Clinical Ltd., Sydney, NSW, Australia
| | | | - Sean Hall
- Medlab Clinical Ltd., Sydney, NSW, Australia
| |
Collapse
|
20
|
Abstract
The gut microbiota comprises a complex community of microorganism species that resides in our gastrointestinal ecosystem and whose alterations influence not only various gut disorders but also central nervous system disorders such as Alzheimer's disease (AD). AD, the most common form of dementia, is a neurodegenerative disorder associated with impaired cognition and cerebral accumulation of amyloid-β peptides (Aβ). Most notably, the microbiota-gut-brain axis is a bidirectional communication system that is not fully understood, but includes neural, immune, endocrine, and metabolic pathways. Studies in germ-free animals and in animals exposed to pathogenic microbial infections, antibiotics, probiotics, or fecal microbiota transplantation suggest a role for the gut microbiota in host cognition or AD-related pathogenesis. The increased permeability of the gut and blood-brain barrier induced by microbiota dysbiosis may mediate or affect AD pathogenesis and other neurodegenerative disorders, especially those associated with aging. In addition, bacteria populating the gut microbiota can secrete large amounts of amyloids and lipopolysaccharides, which might contribute to the modulation of signaling pathways and the production of proinflammatory cytokines associated with the pathogenesis of AD. Moreover, imbalances in the gut microbiota can induce inflammation that is associated with the pathogenesis of obesity, type 2 diabetes mellitus, and AD. The purpose of this review is to summarize and discuss the current findings that may elucidate the role of the gut microbiota in the development of AD. Understanding the underlying mechanisms may provide new insights into novel therapeutic strategies for AD.
Collapse
Affiliation(s)
- Chunmei Jiang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Guangning Li
- Department of Neurology, Huadu District People's Hospital, Southern Medical University, Guangzhou, China
| | - Pengru Huang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zhou Liu
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Bin Zhao
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
21
|
Gonçalves P, Araújo JR, Di Santo JP. A Cross-Talk Between Microbiota-Derived Short-Chain Fatty Acids and the Host Mucosal Immune System Regulates Intestinal Homeostasis and Inflammatory Bowel Disease. Inflamm Bowel Dis 2018; 24:558-572. [PMID: 29462379 DOI: 10.1093/ibd/izx029] [Citation(s) in RCA: 255] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Indexed: 12/22/2022]
Abstract
Gut microbiota has a fundamental role in the energy homeostasis of the host and is essential for proper "education" of the immune system. Intestinal microbial communities are able to ferment dietary fiber releasing short-chain fatty acids (SCFAs). The SCFAs, particularly butyrate (BT), regulate innate and adaptive immune cell generation, trafficing, and function. For example, BT has an anti-inflammatory effect by inhibiting the recruitment and proinflammatory activity of neutrophils, macrophages, dendritic cells, and effector T cells and by increasing the number and activity of regulatory T cells. Gut microbial dysbiosis, ie, a microbial community imbalance, has been suggested to play a role in the development of inflammatory bowel disease (IBD). The relationship between dysbiosis and IBD has been difficult to prove, especially in humans, and is probably complex and dynamic, rather than one of a simple cause and effect relationship. However, IBD patients have dysbiosis with reduced numbers of SCFAs-producing bacteria and reduced BT concentration that is linked to a marked increase in the number of proinflammatory immune cells in the gut mucosa of these patients. Thus, microbial dysbiosis and reduced BT concentration may be a factor in the emergence and severity of IBD. Understanding the relationship between microbial dysbiosis and reduced BT concentration to IBD may lead to novel therapeutic interventions.
Collapse
Affiliation(s)
- Pedro Gonçalves
- Innate Immunity Unit, Institut Pasteur, Paris, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U1223, Paris, France
| | - João Ricardo Araújo
- Molecular Microbial Pathogenesis Unit, Institut Pasteur, Paris, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U1202, Paris, France
| | - James P Di Santo
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1223, Paris, France
| |
Collapse
|
22
|
Resende CMM, Durso DF, Borges KBG, Pereira RM, Rodrigues GKD, Rodrigues KF, Silva JLP, Rodrigues EC, Franco GR, Alvarez-Leite JI. The polymorphism rs17782313 near MC4R gene is related with anthropometric changes in women submitted to bariatric surgery over 60 months. Clin Nutr 2017; 37:1286-1292. [PMID: 28579220 DOI: 10.1016/j.clnu.2017.05.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 04/20/2017] [Accepted: 05/15/2017] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Evaluate whether the polymorphism rs17782313 near MC4R gene influences long-term outcomes after bariatric surgery. METHODS The rs16782313 polymorphism was genotyped in 217 individuals undergoing bariatric surgery and analyzed in detail in 141 women. Data for comorbidities, BMI, excess weight loss (EWL), and body composition were obtained before and during 60 months after surgery. RESULTS The risk allele was found in 65 (47%) of the 141 women. Pre-surgical body weight and BMI were higher in carriers of the rs17782313 polymorphism (CC + CT group) than in non-carriers (TT group) (p = 0.039 and 0.047, respectively). The number of women who acquired surgical success (EWL > 50%), was lower in CC + CT group compared to TT group (p = 0.015). The minimum BMI seen during the 60 months of follow-up was higher in CC + CT group compared to TT group (p = 0.028). The number of women who presented BMI < 30 kg/m2 (no longer classified as obesity) after 24 months of surgery was inferior in CC + CT group (6 out 35 patients - 17%) than in TT group (19 out 49 patients - 37%, p = 0.043). Moreover, the number of patients maintaining BMI > 35 kg/m2 were higher carriers (18 out 35 patients - 51%) compare to non-carriers (16 out 49 patients - 32%, p = 0.045). CONCLUSION Women with extreme obesity carrying rs17782313 MC4R polymorphism present a higher pre-surgical BMI, are more unlikely to reach non-obesity BMI (<30 kg/m2) and tend to maintain a BMI > 35 kg/m2 that characterize treatment failure.
Collapse
Affiliation(s)
| | - Danielle Fernandes Durso
- Departamento de Bioquimica e Imunologia - ICB, Universidade Federal de Minas, Belo Horizonte, MG, Brazil
| | - Karina Braga Gomes Borges
- Departamento de Análises Clínicas de Toxicológicas - FAFAR, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Rafaela Messias Pereira
- Departamento de Bioquimica e Imunologia - ICB, Universidade Federal de Minas, Belo Horizonte, MG, Brazil
| | | | - Kathryna Fontana Rodrigues
- Departamento de Análises Clínicas de Toxicológicas - FAFAR, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - José Luiz Padilha Silva
- Departamento de Estatística, ICEX, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Gloria Regina Franco
- Departamento de Bioquimica e Imunologia - ICB, Universidade Federal de Minas, Belo Horizonte, MG, Brazil
| | | |
Collapse
|
23
|
Morris G, Berk M, Carvalho A, Caso JR, Sanz Y, Walder K, Maes M. The Role of the Microbial Metabolites Including Tryptophan Catabolites and Short Chain Fatty Acids in the Pathophysiology of Immune-Inflammatory and Neuroimmune Disease. Mol Neurobiol 2016; 54:4432-4451. [PMID: 27349436 DOI: 10.1007/s12035-016-0004-2] [Citation(s) in RCA: 177] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 06/14/2016] [Indexed: 12/19/2022]
Abstract
There is a growing awareness that gut commensal metabolites play a major role in host physiology and indeed the pathophysiology of several illnesses. The composition of the microbiota largely determines the levels of tryptophan in the systemic circulation and hence, indirectly, the levels of serotonin in the brain. Some microbiota synthesize neurotransmitters directly, e.g., gamma-amino butyric acid, while modulating the synthesis of neurotransmitters, such as dopamine and norepinephrine, and brain-derived neurotropic factor (BDNF). The composition of the microbiota determines the levels and nature of tryptophan catabolites (TRYCATs) which in turn has profound effects on aryl hydrocarbon receptors, thereby influencing epithelial barrier integrity and the presence of an inflammatory or tolerogenic environment in the intestine and beyond. The composition of the microbiota also determines the levels and ratios of short chain fatty acids (SCFAs) such as butyrate and propionate. Butyrate is a key energy source for colonocytes. Dysbiosis leading to reduced levels of SCFAs, notably butyrate, therefore may have adverse effects on epithelial barrier integrity, energy homeostasis, and the T helper 17/regulatory/T cell balance. Moreover, dysbiosis leading to reduced butyrate levels may increase bacterial translocation into the systemic circulation. As examples, we describe the role of microbial metabolites in the pathophysiology of diabetes type 2 and autism.
Collapse
Affiliation(s)
- Gerwyn Morris
- Tir Na Nog, Bryn Road seaside 87, Llanelli, SA152LW, Wales, UK
| | - Michael Berk
- IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Deakin University, P.O. Box 291, Geelong, VIC, 3220, Australia.,Orygen Youth Health Research Centre and the Centre of Youth Mental Health, The Florey Institute for Neuroscience and Mental Health and the Department of Psychiatry, University of Melbourne, Parkville, 3052, Australia
| | - Andre Carvalho
- Department of Clinical Medicine and Translational Psychiatry Research Group, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, 60430-040, Brazil
| | - Javier R Caso
- Department of Pharmacology, School of Medicine, University Complutense of Madrid, Avda. Complutense s/n, 28040, Madrid, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Avda. Complutense s/n, 28040, Madrid, Spain.,Instituto de Investigación Hospital 12 de Octubre (Imas12), Avda. Complutense s/n, 28040, Madrid, Spain
| | - Yolanda Sanz
- Microbial Ecology, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), Av. Agustin Escardino 7, 46980, Paterna, Valencia, Spain
| | - Ken Walder
- Centre for Molecular and Medical Research, School of Medicine, Deakin University, Geelong, Australia
| | - Michael Maes
- IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Deakin University, P.O. Box 291, Geelong, VIC, 3220, Australia. .,Health Sciences Postgraduate Program, Health Sciences Center, State University of Londrina, Londrina, Parana, Brazil.
| |
Collapse
|
24
|
Aguilar EC, Santos LCD, Leonel AJ, de Oliveira JS, Santos EA, Navia-Pelaez JM, da Silva JF, Mendes BP, Capettini LSA, Teixeira LG, Lemos VS, Alvarez-Leite JI. Oral butyrate reduces oxidative stress in atherosclerotic lesion sites by a mechanism involving NADPH oxidase down-regulation in endothelial cells. J Nutr Biochem 2016; 34:99-105. [PMID: 27261536 DOI: 10.1016/j.jnutbio.2016.05.002] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 04/22/2016] [Accepted: 05/03/2016] [Indexed: 12/31/2022]
Abstract
Butyrate is a 4-carbon fatty acid that has antiinflammatory and antioxidative properties. It has been demonstrated that butyrate is able to reduce atherosclerotic development in animal models by reducing inflammatory factors. However, the contribution of its antioxidative effects of butyrate on atherogenesis has not yet been studied. We investigated the influence of butyrate on oxidative status, reactive oxygen species (ROS) release and oxidative enzymes (NADPH oxidase and iNOS) in atherosclerotic lesions of ApoE(-/-) mice and in oxLDL-stimulated peritoneal macrophages and endothelial cells (EA.hy926). The lesion area in aorta was reduced while in the aortic valve, although lesion area was unaltered, superoxide production and protein nitrosylation were reduced in butyrate-supplemented mice. Peritoneal macrophages from the butyrate group presented a lower free radical release after zymosan stimulus. When endothelial cells were pretreated with butyrate before oxLDL stimulus, the CCL-2 and superoxide ion productions and NADPH oxidase subunit p22phox were reduced. In macrophage cultures, in addition to a reduction in ROS release, nitric oxide and iNOS expression were down-regulated. The data suggest that one mechanism related to the effect of butyrate on atherosclerotic development is the reduction of oxidative stress in the lesion site. The reduction of oxidative stress related to NADPH oxidase and iNOS expression levels associated to butyrate supplementation attenuates endothelium dysfunction and macrophage migration and activation in the lesion site.
Collapse
Affiliation(s)
- Edenil C Aguilar
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais; Departamento de Fisiologia, Universidade Federal de Minas Gerais
| | | | - Alda J Leonel
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais
| | | | | | | | | | | | | | | | - Virginia S Lemos
- Departamento de Fisiologia, Universidade Federal de Minas Gerais
| | | |
Collapse
|
25
|
Kim SJ, Park JS, Lee DW, Lee SM. Trichostatin A Protects Liver against Septic Injury through Inhibiting Toll-Like Receptor Signaling. Biomol Ther (Seoul) 2016; 24:387-94. [PMID: 27068262 PMCID: PMC4930282 DOI: 10.4062/biomolther.2015.176] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 11/26/2015] [Accepted: 12/02/2015] [Indexed: 12/04/2022] Open
Abstract
Sepsis, a serious clinical problem, is characterized by a systemic inflammatory response to infection and leads to organ failure. Toll-like receptor (TLR) signaling is intimately implicated in hyper-inflammatory responses and tissue injury during sepsis. Histone deacetylase (HDAC) inhibitors have been reported to exhibit anti-inflammatory properties. The aim of this study was to investigate the hepatoprotective mechanisms of trichostatin A (TSA), a HDAC inhibitor, associated with TLR signaling pathway during sepsis. The anti-inflammatory properties of TSA were assayed in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. Polymicrobial sepsis was induced in mice by cecal ligation and puncture (CLP), a clinically relevant model of sepsis. The mice were intraperitoneally received TSA (1, 2 or 5 mg/kg) 30 min before CLP. The serum and liver samples were collected 6 and 24-h after CLP. TSA inhibited the increased production of tumor necrosis factor (TNF)-α and interleukin (IL)-6 in LPS-stimulated RAW264.7 cells. TSA improved sepsis-induced mortality, attenuated liver injury and decreased serum TNF-α and IL-6 levels. CLP increased the levels of TLR4, TLR2 and myeloid differentiation primary response protein 88 (MyD88) protein expression and association of MyD88 with TLR4 and TLR2, which were attenuated by TSA. CLP increased nuclear translocation of nuclear factor kappa B and decreased cytosolic inhibitor of kappa B (IκB) protein expression, which were attenuated by TSA. Moreover, CLP decreased acetylation of IκB kinase (IKK) and increased association of IKK with IκB and TSA attenuated these alterations. Our findings suggest that TSA attenuates liver injury by inhibiting TLR-mediated inflammatory response during sepsis.
Collapse
Affiliation(s)
- So-Jin Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jin-Sook Park
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Do-Won Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sun-Mee Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
26
|
Dwivedi M, Kumar P, Laddha NC, Kemp EH. Induction of regulatory T cells: A role for probiotics and prebiotics to suppress autoimmunity. Autoimmun Rev 2016; 15:379-92. [PMID: 26774011 DOI: 10.1016/j.autrev.2016.01.002] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 01/03/2016] [Indexed: 02/07/2023]
Abstract
Regulatory T cells (Tregs) are comprised of a heterogeneous population of cells that play a vital role in suppressing inflammation and maintaining immune tolerance. Given the crucial role of Tregs in maintaining immune homeostasis, it is probably not surprising that many microbial species and their metabolites have the potential to induce Tregs. There is now great interest in the therapeutic potential of probiotics and prebiotics based strategies for a range of autoimmune disorders. This review will summarise recent findings concerning the role of probiotics and prebiotics in induction of Tregs to ameliorate the autoimmune conditions. In addition, the article is focused to explain the different mechanisms of Treg induction and function by these probiotics and prebiotics, based on the available studies till date. The article further proposes that induction of Tregs by probiotics and prebiotics could lead to the development of new therapeutic approach towards curbing the autoimmune response and as an alternative to detrimental immunosuppressive drugs.
Collapse
Affiliation(s)
- Mitesh Dwivedi
- C. G. Bhakta Institute of Biotechnology, Uka Tarsadia University, Tarsadi, Surat, Gujarat -394350, India
| | - Prasant Kumar
- C. G. Bhakta Institute of Biotechnology, Uka Tarsadia University, Tarsadi, Surat, Gujarat -394350, India
| | - Naresh C Laddha
- Department of Molecular Biology, Unipath Specialty Laboratory Ltd., Ahmedabad, Gujarat, India
| | - E Helen Kemp
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom.
| |
Collapse
|
27
|
Ma XH, Gao Q, Jia Z, Zhang ZW. Neuroprotective capabilities of TSA against cerebral ischemia/reperfusion injury via PI3K/Akt signaling pathway in rats. Int J Neurosci 2014; 125:140-6. [DOI: 10.3109/00207454.2014.912217] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
28
|
Jeong Y, Du R, Zhu X, Yin S, Wang J, Cui H, Cao W, Lowenstein CJ. Histone deacetylase isoforms regulate innate immune responses by deacetylating mitogen-activated protein kinase phosphatase-1. J Leukoc Biol 2013; 95:651-659. [DOI: 10.1189/jlb.1013565] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Abstract
AbstractThe MAPK pathway mediates TLR signaling during innate immune responses. We discovered previously that MKP-1 is acetylated, enhancing its interaction with its MAPK substrates and deactivating TLR signaling. As HDACs modulate inflammation by deacetylating histone and nonhistone proteins, we hypothesized that HDACs may regulate LPS-induced inflammation by deacetylating MKP-1. We found that mouse macrophages expressed a subset of HDAC isoforms (HDAC1, HDAC2, and HDAC3), which all interacted with MKP-1. Genetic silencing or pharmacologic inhibition of HDAC1, −2, and −3 increased MKP-1 acetylation in cells. Furthermore, knockdown or pharmacologic inhibition of HDAC1, −2, and −3 decreased LPS-induced phosphorylation of the MAPK member p38. Also, pharmacologic inhibition of HDAC did not decrease MAPK signaling in MKP-1 null cells. Finally, inhibition of HDAC1, −2, and −3 decreased LPS-induced expression of TNF-α, IL-1β, iNOS (NOS2), and nitrite synthesis. Taken together, our results show that HDAC1, −2, and −3 deacetylate MKP-1 and that this post-translational modification increases MAPK signaling and innate immune signaling. Thus, HDAC1, −2, and −3 isoforms are potential therapeutic targets in inflammatory diseases.
Collapse
Affiliation(s)
- Youngtae Jeong
- Stanford Cancer Center, Stanford University School of Medicine , Stanford, California, USA
| | - Ronghui Du
- Nanjing University Medical School, Jiangsu Key Lab of Molecular Medicine , Nanjing, China
| | - Xiaolei Zhu
- Nanjing University Medical School, Jiangsu Key Lab of Molecular Medicine , Nanjing, China
| | - Shasha Yin
- Nanjing University Medical School, Jiangsu Key Lab of Molecular Medicine , Nanjing, China
| | - Jian Wang
- Anesthesiology and Critical Care Medicine, The Johns Hopkins School of Medicine , Baltimore, Maryland, USA
| | - Hengmi Cui
- Nanjing University Medical School, Jiangsu Key Lab of Molecular Medicine , Nanjing, China
| | - Wangsen Cao
- Nanjing University Medical School, Jiangsu Key Lab of Molecular Medicine , Nanjing, China
| | - Charles J Lowenstein
- Department of Medicine, Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry , Rochester, New York, USA
| |
Collapse
|
29
|
Staphylococcus epidermidis in the human skin microbiome mediates fermentation to inhibit the growth of Propionibacterium acnes: implications of probiotics in acne vulgaris. Appl Microbiol Biotechnol 2013; 98:411-24. [PMID: 24265031 DOI: 10.1007/s00253-013-5394-8] [Citation(s) in RCA: 161] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 11/07/2013] [Accepted: 11/09/2013] [Indexed: 12/21/2022]
Abstract
Increasing evidence demonstrates that commensal microorganisms in the human skin microbiome help fight pathogens and maintain homeostasis of the microbiome. However, it is unclear how these microorganisms maintain biological balance when one of them overgrows. The overgrowth of Propionibacterium acnes (P. acnes), a commensal skin bacterium, has been associated with the progression of acne vulgaris. Our results demonstrate that skin microorganisms can mediate fermentation of glycerol, which is naturally produced in skin, to enhance their inhibitory effects on P. acnes growth. The skin microorganisms, most of which have been identified as Staphylococcus epidermidis (S. epidermidis), in the microbiome of human fingerprints can ferment glycerol and create inhibition zones to repel a colony of overgrown P. acnes. Succinic acid, one of four short-chain fatty acids (SCFAs) detected in fermented media by nuclear magnetic resonance (NMR) analysis, effectively inhibits the growth of P. acnes in vitro and in vivo. Both intralesional injection and topical application of succinic acid to P. acnes-induced lesions markedly suppress the P. acnes-induced inflammation in mice. We demonstrate for the first time that bacterial members in the skin microbiome can undergo fermentation to rein in the overgrowth of P. acnes. The concept of bacterial interference between P. acnes and S. epidermidis via fermentation can be applied to develop probiotics against acne vulgaris and other skin diseases. In addition, it will open up an entirely new area of study for the biological function of the skin microbiome in promoting human health.
Collapse
|
30
|
Fleiss B, Nilsson MKL, Blomgren K, Mallard C. Neuroprotection by the histone deacetylase inhibitor trichostatin A in a model of lipopolysaccharide-sensitised neonatal hypoxic-ischaemic brain injury. J Neuroinflammation 2012; 9:70. [PMID: 22512781 PMCID: PMC3420244 DOI: 10.1186/1742-2094-9-70] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 02/28/2012] [Indexed: 11/24/2022] Open
Abstract
Background Perinatal brain injury is complex and often associated with both inflammation and hypoxia-ischaemia (HI). In adult inflammatory brain injury models, therapies to increase acetylation are efficacious in reducing inflammation and cerebral injury. Our aim in the present study was to examine the neuropathological and functional effects of the histone deacetylase inhibitor (HDACi) trichostatin A (TSA) in a model of neonatal lipopolysaccharide (LPS)-sensitised HI. We hypothesised that, by decreasing inflammation, TSA would improve injury and behavioural outcome. Furthermore, TSA’s effects on oligodendrocyte development, which is acetylation-dependent, were investigated. Methods On postnatal day 8 (P8), male and female mice were exposed to LPS together with or without TSA. On P9 (14 hours after LPS), mice were exposed to HI (50 minutes at 10% O2). Neuropathology was assessed at 24 hours, 5 days and 27 days post-LPS/HI via immunohistochemistry and/or Western blot analysis for markers of grey matter (microtubule-associated protein 2), white matter (myelin basic protein) and cell death (activated caspase-3). Effects of TSA on LPS or LPS/HI-induced inflammation (cytokines and microglia number) were assessed by Luminex assay and immunohistochemistry. Expression of acetylation-dependent oligodendrocyte maturational corepressors was assessed with quantitative PCR 6 hours after LPS and at 24 hours and 27 days post-LPS/HI. Animal behaviour was monitored with the open-field and trace fear-conditioning paradigms at 25 days post-LPS/HI to identify functional implications of changes in neuropathology associated with TSA treatment. Results TSA induced increased Ac-H4 in females only after LPS exposure. Also only in females, TSA reduced grey matter and white matter injury at 5 days post-LPS/HI. Treatment altered animal behaviour in the open field and improved learning in the fear-conditioning test in females compared with LPS/HI-only females at 25 days post-HI. None of the inflammatory mechanisms assessed that are known to mediate neuroprotection by HDACi in adults correlated with improved outcome in TSA-treated neonatal females. Oligodendrocyte maturation was not different between the LPS-only and LPS + TSA-treated mice before or after exposure to HI. Conclusions Hyperacetylation with TSA is neuroprotective in the female neonatal mouse following LPS/HI and correlates with improved learning long-term. TSA appears to exert neuroprotection via mechanisms unique to the neonate. Deciphering the effects of age, sex and inflammatory sensitisation in the cerebral response to HDACi is key to furthering the potential of hyperacetylation as a viable neuroprotectant. TSA did not impair oligodendrocyte maturation, which increases the possible clinical relevance of this strategy.
Collapse
Affiliation(s)
- Bobbi Fleiss
- Perinatal Center, Department of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Box 432, Gothenburg, 405 30, Sweden.
| | | | | | | |
Collapse
|
31
|
Vinolo MAR, Rodrigues HG, Nachbar RT, Curi R. Regulation of inflammation by short chain fatty acids. Nutrients 2011; 3:858-76. [PMID: 22254083 PMCID: PMC3257741 DOI: 10.3390/nu3100858] [Citation(s) in RCA: 1033] [Impact Index Per Article: 79.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 09/21/2011] [Accepted: 10/08/2011] [Indexed: 12/13/2022] Open
Abstract
The short chain fatty acids (SCFAs) acetate (C(2)), propionate (C(3)) and butyrate (C(4)) are the main metabolic products of anaerobic bacteria fermentation in the intestine. In addition to their important role as fuel for intestinal epithelial cells, SCFAs modulate different processes in the gastrointestinal (GI) tract such as electrolyte and water absorption. These fatty acids have been recognized as potential mediators involved in the effects of gut microbiota on intestinal immune function. SCFAs act on leukocytes and endothelial cells through at least two mechanisms: activation of GPCRs (GPR41 and GPR43) and inhibiton of histone deacetylase (HDAC). SCFAs regulate several leukocyte functions including production of cytokines (TNF-α, IL-2, IL-6 and IL-10), eicosanoids and chemokines (e.g., MCP-1 and CINC-2). The ability of leukocytes to migrate to the foci of inflammation and to destroy microbial pathogens also seems to be affected by the SCFAs. In this review, the latest research that describes how SCFAs regulate the inflammatory process is presented. The effects of these fatty acids on isolated cells (leukocytes, endothelial and intestinal epithelial cells) and, particularly, on the recruitment and activation of leukocytes are discussed. Therapeutic application of these fatty acids for the treatment of inflammatory pathologies is also highlighted.
Collapse
Affiliation(s)
- Marco A R Vinolo
- Department of Physiology and Biophysics, Institute of Biomedical Sciences-ICB-I, Sao Paulo University, Brazil.
| | | | | | | |
Collapse
|
32
|
Hancock WW. Rationale for HDAC inhibitor therapy in autoimmunity and transplantation. Handb Exp Pharmacol 2011; 206:103-23. [PMID: 21879448 DOI: 10.1007/978-3-642-21631-2_6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
While there are currently more than 70 ongoing clinical trials of inhibitors of so-called classical HDACs (HDACi) as anticancer therapies, given their potency as antiproliferative and angiostatic agents, HDACi also have considerable therapeutic potential as anti-inflammatory and immunosuppressive drugs. The utility of HDACi as anti-inflammatory agents is dependent upon their proving safe and effective in experimental models. Current pan-HDACi compounds are not well suited to this role, given the broad distribution of target HDACs and their complex and multifaceted mechanisms of action. In contrast, the development of isoform-selective HDACi may provide important new tools for therapy in autoimmunity and transplantation. This chapter discusses which HDACs are worthwhile targets in inflammation and progress toward their therapeutic inhibition, including the use of HDAC subclass and isoform-selective HDACi to promote the functions of Foxp3+ T regulatory cells.
Collapse
Affiliation(s)
- Wayne W Hancock
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, 916B Abramson Research Center, Children's Hospital of Philadelphia and University of Pennsylvania School of Medicine, Philadelphia, PA 19104-4318, USA.
| |
Collapse
|
33
|
Meijer K, de Vos P, Priebe MG. Butyrate and other short-chain fatty acids as modulators of immunity: what relevance for health? Curr Opin Clin Nutr Metab Care 2010; 13:715-21. [PMID: 20823773 DOI: 10.1097/mco.0b013e32833eebe5] [Citation(s) in RCA: 313] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
PURPOSE OF REVIEW High-fiber diets have been shown to reduce plasma concentrations of inflammation markers. Increased production of fermentation-derived short-chain fatty acids (SCFAs) is one of the factors that could exert these positive effects. This review examines the effects of SCFAs on immune cells and discusses the relevance of their effects on systemic inflammation, as frequently seen in obesity. RECENT FINDINGS SCFAs have been shown to reduce chemotaxis and cell adhesion; this effect is dependent on type and concentration of SCFA. In spite of conflicting results, especially butyrate seems to have an anti-inflammatory effect, mediated by signaling pathways like nuclear factor-κB and inhibition of histone deacetylase. The discrepancies in the results could be explained by differences in cell types used and their proliferative and differentiation status. SUMMARY SCFAs show anti-inflammatory effects and seem to have the potency to prevent infiltration of immune cells from the bloodstream in, for example, the adipose tissue. In addition, their ability to inhibit the proliferation and activation of T cells and to prevent adhesion of antigen-presenting cells could be important as it recently has been shown that obesity-associated inflammation might be antigen-dependent. More studies with concentrations in micromolar range are needed to approach more physiological concentrations.
Collapse
Affiliation(s)
- Kees Meijer
- Center for Medical Biomics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | | |
Collapse
|
34
|
Ni YF, Wang J, Yan XL, Tian F, Zhao JB, Wang YJ, Jiang T. Histone deacetylase inhibitor, butyrate, attenuates lipopolysaccharide-induced acute lung injury in mice. Respir Res 2010; 11:33. [PMID: 20302656 PMCID: PMC2848144 DOI: 10.1186/1465-9921-11-33] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Accepted: 03/20/2010] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Histone deacetylase (HDAC) inhibitors, developed as promising anti-tumor drugs, exhibit their anti-inflammatory properties due to their effects on reduction of inflammatory cytokines. OBJECTIVE To investigate the protective effect of butyrate, a HDAC inhibitor, on lipopolysaccharide (LPS)-induced acute lung injury (ALI) in mice. METHODS ALI was induced in Balb/c mice by intratracheally instillation of LPS (1 mg/kg). Before 1 hour of LPS administration, the mice received butyrate (10 mg/kg) orally. The animals in each group were sacrificed at different time point after LPS administration. Pulmonary histological changes were evaluated by hematoxylin-eosin stain and lung wet/dry weight ratios were observed. Concentrations of interleukin (IL)-1beta and tumor necrosis factor (TNF)-alpha in bronchoalveolar lavage fluid (BALF) and concentrations of nitric oxide (NO) and myeloperoxidase (MPO) activity in lung tissue homogenates were measured by enzyme-linked immunosorbent assay (ELISA). Expression of nuclear factor (NF)-kappaB p65 in cytoplasm and nucleus was determined by Western blot analysis respectively. RESULTS Pretreatment with butyrate led to significant attenuation of LPS induced evident lung histopathological changes, alveolar hemorrhage, and neutrophils infiltration with evidence of reduced MPO activity. The lung wet/dry weight ratios, as an index of lung edema, were reduced by butyrate administration. Butyrate also repressed the production of TNF-alpha, IL-1beta and NO. Furthermore, the expression of NF-kappaB p65 in nucleus was markedly suppressed by butyrate pretreatment. CONCLUSIONS Butyrate had a protective effect on LPS-induced ALI, which may be related to its effect on suppression of inflammatory cytokines production and NF-kappaB activation.
Collapse
Affiliation(s)
- Yun-Feng Ni
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, PR China
| | - Jian Wang
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, PR China
| | - Xiao-Long Yan
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, PR China
| | - Feng Tian
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, PR China
| | - Jin-Bo Zhao
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, PR China
| | - Yun-Jie Wang
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, PR China
| | - Tao Jiang
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, PR China
| |
Collapse
|
35
|
Maa MC, Chang MY, Hsieh MY, Chen YJ, Yang CJ, Chen ZC, Li YK, Yen CK, Wu RR, Leu TH. Butyrate reduced lipopolysaccharide-mediated macrophage migration by suppression of Src enhancement and focal adhesion kinase activity. J Nutr Biochem 2010; 21:1186-92. [PMID: 20149623 DOI: 10.1016/j.jnutbio.2009.10.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Revised: 10/14/2009] [Accepted: 10/20/2009] [Indexed: 10/19/2022]
Abstract
Macrophage motility is vital in innate immunity. Lipopolysaccharide (LPS)-mediated macrophage migration requires the enhancement of Src expression and enzymatic activity, which can be regulated by inducible nitric oxide synthase (iNOS). As a major short-chain fatty acid with histone deacetylase (HDAC) inhibitor activity, butyrate exerts anti-inflammatory effect by regulating the expression of cytokines. However, the influence of butyrate on macrophage movement was vague. In this study, we observed that butyrate inhibited migration of both RAW264.7 and rat peritoneal macrophages elicited by LPS. Unlike its myeloid relatives (i.e. Lyn, Fgr and Hck) whose expression was almost unaltered in the presence or absence of butyrate in LPS-treated macrophages, LPS-mediated Src induction was greatly suppressed by butyrate and that could be attributable to reduced level of the src transcript. Similar phenomenon was also detected in LPS-treated macrophages exposed to another HDAC inhibitor, trichostatin A (TSA). Consistent with the indispensability of iNOS in promoting macrophage mobilization via Src up-regulation and the activation of both Src and FAK, we did observe concomitant decrement of iNOS, Src and the suppressed activity of Src and FAK in butyrate- or TSA-pretreated macrophages following LPS exposure. These results imply that by virtue of reduction of Src, butyrate could effectively hamper LPS-triggered macrophage locomotion.
Collapse
Affiliation(s)
- Ming-Chei Maa
- Institute of Molecular Systems Biomedicine, China Medical University, Taichung, Taiwan 40402, R.O.C.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Lu SC, Wu HW, Lin YJ, Chang SF. The essential role of Oct-2 in LPS-induced expression of iNOS in RAW 264.7 macrophages and its regulation by trichostatin A. Am J Physiol Cell Physiol 2009; 296:C1133-9. [DOI: 10.1152/ajpcell.00031.2009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This article reports on a study of the effect of trichostatin A (TSA), an inhibitor of histone deacetylase, on lipopolysaccharide (LPS)-induced expression of inducible nitric oxide synthase (iNOS) in RAW 264.7 macrophages and its underlying mechanisms. TSA pretreatment potently diminishes LPS-stimulated nitric oxide (NO) release and both mRNA and protein levels of iNOS in macrophages. The effects of TSA and LPS on transcription factors binding to two LPS-responsive elements within the iNOS promoter, one binding the NF-κB site and the other the octamer element, were investigated. Results show that TSA did not alter the LPS-activated NF-κB activity demonstrated by the nuclear translocation of p50 and p65 and by a NF-κB-driven reporter gene expression system. In addition, neither TSA nor LPS changed the expression of Oct-1, a ubiquitously expressed octamer binding protein. However, TSA suppressed the LPS-induced expression of Oct-2, another octamer binding protein, at both mRNA and protein levels. Chromatin immunoprecipitation assays revealed that binding of Oct-2 to the iNOS promoter was enhanced by LPS treatment; however, pretreatment with TSA resulted in loss of this binding. Moreover, forced expression of Oct-2 by transfection of pCG-Oct-2 plasmid restored the TSA-suppressed iNOS expression elevated by LPS stimulation, further indicating that Oct-2 activation is a crucial step for transcriptional activation of the iNOS gene in response to LPS stimulation in macrophages. This study demonstrates that TSA diminishes iNOS expression in LPS-treated macrophages by inhibiting Oct-2 expression and thus reducing the production of NO.
Collapse
|
37
|
Choi Y, Park SK, Kim HM, Kang JS, Yoon YD, Han SB, Han JW, Yang JS, Han G. Histone deacetylase inhibitor KBH-A42 inhibits cytokine production in RAW 264.7 macrophage cells and in vivo endotoxemia model. Exp Mol Med 2009; 40:574-81. [PMID: 18985016 DOI: 10.3858/emm.2008.40.5.574] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
In light of the anti-inflammatory properties of histone deacetylase (HDAC) inhibitors, such as suberoylanilide hydroxamic acid (SAHA) and trichostatin A (TSA), we examined a new HDAC inhibitor KBH-A42 for its anti-inflammatory activities. KBH-A42 showed noteworthy anti-inflammatory properties in vitro via suppression of the production of TNF-alpha, a proinflammatory cytokine, and nitric oxide (NO), a proinflammatory effector molecule, in LPS-stimulated RAW264.7 cells and peritoneal macrophages. It also inhibited TNF-alpha production in vivo as demonstrated in a LPS-induced mouse endotoxemia model. The levels of TNF-alpha, IL-1beta, IL-6 and iNOS mRNAs determined by RT-PCR propose that the inhibition of these pro-inflammatory mediators by KBH-A42 resulted from inhibiting expression of these genes. However, the EMSA study to see the effect of KBH-A42 on the binding of NF-kappaB, a transcription factor, to a specific DNA sequence showed that the binding of NF-kappaB to DNA was not changed regardless of increasing the concentration of KBH-A42 in the presence and absence of LPS stimulation. Interestingly, DNA binding of another transcription factor AP-1 dose-dependently increased by KBH-A42. KBH-A42 differentially regulated the phosphorylation of MAP kinases. While the phosphorylation of ERK1/2 and SAPK/JNK was not affected by KBH-A42, the phosphorylation of p38 decreased by KBH-A42. These results showed that KBH-A42 inhibits production of proinflammatory cytokines in macrophages by decreasing their mRNA levels, and p38 kinase is involved in the KBH-A42-mediated inhibition.
Collapse
Affiliation(s)
- Yongseok Choi
- School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Heo H, Yoo L, Shin KS, Kang SJ. Suppression of caspase-11 expression by histone deacetylase inhibitors. Biochem Biophys Res Commun 2008; 378:79-83. [PMID: 19013432 DOI: 10.1016/j.bbrc.2008.11.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Accepted: 11/04/2008] [Indexed: 10/21/2022]
Abstract
It has been well documented that histone deacetylase inhibitors suppress inflammatory gene expression. Therefore, we investigated whether histone deacetylase inhibitors modulate the expression of caspase-11 that is known as an inducible caspase regulating both inflammation and apoptosis. In the present study, we show that sodium butyrate and trichostatin A, two structurally unrelated inhibitors of histone deacetylase (HDAC), effectively suppressed the induction of caspase-11 in mouse embryonic fibroblasts stimulated with lipopolysaccharides. Sodium butyrate inhibited the activation of upstream signaling events for the caspase-11 induction such as activation of p38 mitogen-activated protein kinase and c-Jun N-terminal kinase, degradation of inhibitor of kappaB, and activation of nuclear factor-kappaB. These results suggest that the HDAC inhibitor suppressed cytosolic signaling events for the induction of caspase-11 by inhibiting the deacetylation of non-histone proteins.
Collapse
Affiliation(s)
- Hyejung Heo
- Department of Molecular Biology, Sejong University, 98 Gunja-dong, Gwangjin-gu, Seoul 143-747, Republic of Korea
| | | | | | | |
Collapse
|
39
|
Hofseth LJ. Nitric oxide as a target of complementary and alternative medicines to prevent and treat inflammation and cancer. Cancer Lett 2008; 268:10-30. [PMID: 18440130 PMCID: PMC2680023 DOI: 10.1016/j.canlet.2008.03.024] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2008] [Revised: 03/14/2008] [Accepted: 03/19/2008] [Indexed: 02/07/2023]
Abstract
Nitric oxide (NO) and associated reactive nitrogen species (RNS) are involved in many physiological functions. There has been an ongoing debate to whether RNS can inhibit or perpetuate chronic inflammation and associated carcinogenesis. Although the final outcome depends on the genetic make-up of its target, the surrounding microenvironment, the activity and localization of nitric oxide synthase (NOS) isoforms, and overall levels of NO/RNS, evidence is accumulating that in general, RNS drive inflammation and cancers associated with inflammation. To this end, many complementary and alternative medicines (CAMs) that work in chemoprevention associated with chronic inflammation, are inhibitors of excessive NO observed in inflammatory conditions. Here, we review recent literature outlining a role of NO/RNS in chronic inflammation and cancer, and point toward NO as one of several targets for the success of CAMs in treating chronic inflammation and cancer associated with this inflammation.
Collapse
Affiliation(s)
- Lorne J Hofseth
- Department of Pharmaceutical and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, 770 Sumter Street, Coker Life Sciences, Room 513C, Columbia, SC 29208, USA.
| |
Collapse
|
40
|
Abstract
Epigenetic modifications of chromatin, such as histone acetylation, are involved in repression of tumor antigens and multiple immune genes that are thought to facilitate tumor escape. The status of acetylation in a cell is determined by the balance of the activities of histone acetyltransferases and histone deacetylases. Inhibitors of histone deacetylase (HDACi) can enhance the expression of immunologically important molecules in tumor cells and HDACi treated tumor cells are able to induce immune responses in vitro and in vivo. Systemic HDACi are in clinical trails in cancer and also being used in several autoimmune disease models. To date, 18 HDACs have been reported in human cells and more than thirty HDACi identified, although only a few immune targets of these inhibitors have been identified. Here, we discuss the molecular pathways employed by HDACi and their potential role in inducing immune responses against tumors. We review data suggesting that selection of target specific HDACi and combinations with other agents and modalities, including those that activate stress pathways, may further enhance the efficacy of epigenetic therapies.
Collapse
|
41
|
Zhang LT, Yao YM, Lu JQ, Yan XJ, Yu Y, Sheng ZY. Sodium butyrate prevents lethality of severe sepsis in rats. Shock 2007; 27:672-7. [PMID: 17505308 DOI: 10.1097/shk.0b013e31802e3f4c] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
This study was performed to investigate a novel strategy to pharmacologically inhibit high-mobility group box 1 protein (HMGB1) expression with sodium butyrate, a short-chain fatty acid. Using a sepsis model induced by cecal ligation and puncture (CLP), 100 male Wistar rats were randomly divided into 4 groups as follows: control group (10 rats), sham operation group (10 rats), CLP group (further randomized into 2, 6, 12, 24, 48, and 72 h post-CLP subgroups, each 10 rats), and sodium butyrate treatment group (further randomized into 12 and 24 h post-CLP subgroups, each 10 rats). Animals of all groups were killed at designated time points, and blood and tissue samples from livers, lungs, kidneys, and small intestines were harvested to determine organ damage-related variables, and HMGB1 mRNA expression was assessed by the reverse-transcription-polymerase chain reaction. In addition, we observed the effect of treatment with sodium butyrate on survival rate in septic rats. The results showed that early treatment with sodium butyrate can markedly reduce serum alanine aminotransferase, creatinine levels at 12 h, and pulmonary myeloperoxidase activity at 24 h post-CLP, and significantly improve the 1- to 6-day survival rates in animals subjected to CLP (P < 0.05-0.01). These findings suggest that HMGB1 is excessively expressed and produced in sepsis. Sodium butyrate can markedly inhibit HMGB1 mRNA expression and may have protective effect on multiple organ damage in sepsis.
Collapse
Affiliation(s)
- Li-Tian Zhang
- Department of Microbiology and Immunology, Burns Institute, First Hospital Affiliated to the PLA General Hospital (formerly 304th Hospital), Beijing, PR China
| | | | | | | | | | | |
Collapse
|
42
|
Schwab M, Reynders V, Loitsch S, Steinhilber D, Stein J, Schröder O. Involvement of different nuclear hormone receptors in butyrate-mediated inhibition of inducible NF kappa B signalling. Mol Immunol 2007; 44:3625-32. [PMID: 17521736 DOI: 10.1016/j.molimm.2007.04.010] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2007] [Revised: 04/13/2007] [Accepted: 04/16/2007] [Indexed: 10/23/2022]
Abstract
BACKGROUND NF kappa B plays a major role in the control of immune responses and inflammation. Recently, butyrate has not only been demonstrated to suppress NF kappa B activation in colorectal cancer cells, but also to modulate the activity and expression of the Peroxisome-Proliferator-Activated-Receptor gamma (PPAR gamma) and the vitamin D receptor (VDR). Therefore, we investigated a putative involvement of both receptors in butyrate-mediated inhibition of inducible NF kappa B signalling. RESULTS Treatment of HT-29 cells with butyrate attenuated basal p50 as well as TNFalpha- and LPS-induced p50 and p65 NF kappa B dimer activity in the nucleus as measured by transcription factor assay. Cytosolic expression of I kappa B alpha protein was reduced by butyrate, and TNFalpha but not by LPS. Challenge of cells with the VDR antagonist ZK191732 up-regulated basal NF kappa B activity by decreasing I kappa B alpha simultaneously, while basal signalling was not influenced by the PPAR gamma inhibitor GW9662. Pre-treatment with ZK191732 reduced the inhibitory effect of butyrate on NF kappa B activation caused by TNFalpha whereas no activation was noted in transfected dominant-negative PPAR gamma mutant vector cells. Adversely, the inhibitory effect of butyrate on NF kappa B activity induced by LPS was almost reversed in dominant-negative PPAR gamma mutant cells while pre-incubation of ZK191732 did not affect butyrate-mediated attenuation of LPS-induced NF kappa B signalling. CONCLUSION These findings provide evidence for the involvement of the nuclear hormone receptors PPAR gamma and VDR in butyrate-mediated inhibition of inducible NF kappa B activation dependent on the stimulated signalling pathway. Moreover, VDR appears to play an inhibitory role in the regulation of basal NF kappa B signalling.
Collapse
Affiliation(s)
- Markus Schwab
- First Department of Medicine-ZAFES, Johann Wolfgang Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | | | | | | | | | | |
Collapse
|
43
|
Larsen L, Tonnesen M, Ronn SG, Størling J, Jørgensen S, Mascagni P, Dinarello CA, Billestrup N, Mandrup-Poulsen T. Inhibition of histone deacetylases prevents cytokine-induced toxicity in beta cells. Diabetologia 2007; 50:779-89. [PMID: 17265033 DOI: 10.1007/s00125-006-0562-3] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2006] [Accepted: 10/30/2006] [Indexed: 01/24/2023]
Abstract
AIMS/HYPOTHESIS The immune-mediated elimination of pancreatic beta cells in type 1 diabetes involves release of cytotoxic cytokines such as IL-1beta and IFNgamma, which induce beta cell death in vitro by mechanisms that are both dependent and independent of nitric oxide (NO). Nuclear factor kappa B (NFkappaB) is a critical signalling molecule in inflammation and is required for expression of the gene encoding inducible NO synthase (iNOS) and of pro-apoptotic genes. NFkappaB has recently been shown to associate with chromatin-modifying enzymes histone acetyltransferases and histone deacetylases (HDAC), and positive effects of HDAC inhibition have been obtained in several inflammatory diseases. Thus, the aim of this study was to investigate whether HDAC inhibition protects beta cells against cytokine-induced toxicity. MATERIALS AND METHODS The beta cell line, INS-1, or intact rat islets were precultured with HDAC inhibitors suberoylanilide hydroxamic acid or trichostatin A in the absence or presence of IL-1beta and IFNgamma. Effects on insulin secretion and NO formation were measured by ELISA and Griess reagent, respectively. iNOS levels and NFkappaB activity were measured by immunoblotting and by immunoblotting combined with electrophoretic mobility shift assay, respectively. Viability was analysed by 3-(4,5-dimethyldiazol-2-yl)-2,5-diphenyl-tetrazolium bromide and apoptosis by terminal deoxynucleotidyl transferase mediated dUTP nick end labeling (TUNEL) assay and histone-DNA complex ELISA. RESULTS HDAC inhibition reduced cytokine-mediated decrease in insulin secretion and increase in iNOS levels, NO formation and apoptosis. IL-1beta induced a bi-phasic phosphorylation of inhibitor protein kappa Balpha (IkappaBalpha) with the 2nd peak being sensitive to HDAC inhibition. No effect was seen on IkappaBalpha degradation and NFkappaB DNA binding. CONCLUSIONS/INTERPRETATION HDAC inhibition prevents cytokine-induced beta cell apoptosis and impaired beta cell function associated with a downregulation of NFkappaB transactivating activity.
Collapse
Affiliation(s)
- L Larsen
- Steno Diabetes Center, 2 Niels Steensens Vej, 2820, Gentofte, Denmark
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Park JS, Lee EJ, Lee JC, Kim WK, Kim HS. Anti-inflammatory effects of short chain fatty acids in IFN-gamma-stimulated RAW 264.7 murine macrophage cells: involvement of NF-kappaB and ERK signaling pathways. Int Immunopharmacol 2006; 7:70-7. [PMID: 17161819 DOI: 10.1016/j.intimp.2006.08.015] [Citation(s) in RCA: 201] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2006] [Revised: 08/26/2006] [Accepted: 08/29/2006] [Indexed: 10/24/2022]
Abstract
The overactivation of macrophages causes abnormal cell death and chronic inflammatory diseases. Therefore, the modulation of macrophage-mediated cytotoxicity is expected to become a new therapeutic strategy for various inflammatory diseases. In this study, three types of short chain fatty acids (sodium butyrate (NaB), sodium phenylbutyrate (NaPB), sodium phenylacetate (NaPA)) were found to have anti-inflammatory effects in IFN-gamma-stimulated RAW 264.7 cells. They inhibited the expression of iNOS, TNF-alpha, and IL-6 induced by IFN-gamma, while they enhanced the expression of the anti-inflammatory cytokine, IL-10. Their potency as anti-inflammatory agents was in the order of NaB>NaPB>NaPA. Further mechanistic studies revealed these three agents to repress the DNA binding and transcriptional activities of NF-kappaB, which is an important modulator of inflammation. In addition, these agents repressed the IFN-gamma-induced ERK1/2 phosphorylation without affecting the Jak/STAT activities. The potency of NF-kappaB and ERK inhibition was also in the order of NaB>NaPB>NaPA. The results suggest that the NF-kappaB and ERK signaling pathways are at least in part involved in the anti-inflammatory activities of these SCFAs. Considering that SCFAs are normally present in the body and have few side effects, they might be promising agents for the prevention and/or treatment of various inflammatory diseases.
Collapse
Affiliation(s)
- Jin-Sun Park
- Department of Neuroscience and Medical Research Institute, College of Medicine, Ewha Womans University, Mok-6-dong 911-1, Yangchun-Ku, Seoul 158-710, South Korea
| | | | | | | | | |
Collapse
|
45
|
Park JS, Woo MS, Kim SY, Kim WK, Kim HS. Repression of interferon-γ-induced inducible nitric oxide synthase (iNOS) gene expression in microglia by sodium butyrate is mediated through specific inhibition of ERK signaling pathways. J Neuroimmunol 2005; 168:56-64. [PMID: 16091294 DOI: 10.1016/j.jneuroim.2005.07.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2005] [Accepted: 07/08/2005] [Indexed: 11/26/2022]
Abstract
We have reported recently that sodium butyrate suppressed IFN-gamma, but not the LPS-mediated induction of nitric oxide and TNF-alpha in microglia via the specific inhibition of NF-kappaB. In order to further determine the upstream signaling mechanism involved in the IFN-gamma-specific down-regulation of iNOS by sodium butyrate in microglia, this study investigated the effect of sodium butyrate on the MAP kinase activities. Sodium butyrate significantly repressed the phosphorylation of ERK induced by IFN-gamma, but had little effect on that induced by LPS. This suggests that sodium butyrate suppresses the IFN-gamma-induced iNOS expression by inhibiting the ERK to NF-kappaB pathway. In addition, it was found that sodium butyrate suppressed the IFN-gamma-induced interferon regulatory factor 1 (IRF-1) expression via the inhibition of ERK. Therefore, the ERK signaling pathway appears to play a key role in the sodium butyrate-mediated down-regulation of iNOS in the IFN-gamma-stimulated microglia.
Collapse
Affiliation(s)
- Jin-Sun Park
- Department of Neuroscience, Ewha Institute of Neuroscience, Ewha Womans University School of Medicine, 70 Jongno 6-Ga, Jongno-Gu, Seoul 110-783, South Korea
| | | | | | | | | |
Collapse
|
46
|
Blanchard F, Chipoy C. Histone deacetylase inhibitors: new drugs for the treatment of inflammatory diseases? Drug Discov Today 2005; 10:197-204. [PMID: 15708534 DOI: 10.1016/s1359-6446(04)03309-4] [Citation(s) in RCA: 185] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Histone deacetylase (HDAC) inhibitors induce cell cycle arrest and differentiation in cancer cells and have been in Phase I-II clinical trials for the treatment of various solid or haematological malignancies. In recent years, HDAC inhibitors have emerged as potent contenders for anti-inflammatory drugs, offering new lines of therapeutic intervention for rheumatoid arthritis or lupus erythematosus. The molecular mode of action of HDAC inhibitors is still controversial but seems to rely on reduced inflammatory mediator production, such as nitric oxide or cytokines, which implies inhibition of the transcription factor NF-kappaB. These anti-inflammatory effects will hopefully lead us to appreciate the complex anti-tumour effects of HDAC inhibitors.
Collapse
Affiliation(s)
- Frédéric Blanchard
- Laboratory of Pathophysiology of Bone Resorption and Therapy of Primitive Bone Tumours, Université Nantes, EA 3822,1 rue Gaston Veil, 44035 Nantes cedex 1, France
| | | |
Collapse
|
47
|
Kim HS, Whang SY, Woo MS, Park JS, Kim WK, Han IO. Sodium butyrate suppresses interferon-gamma-, but not lipopolysaccharide-mediated induction of nitric oxide and tumor necrosis factor-alpha in microglia. J Neuroimmunol 2004; 151:85-93. [PMID: 15145607 DOI: 10.1016/j.jneuroim.2004.02.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2003] [Revised: 02/19/2004] [Accepted: 02/20/2004] [Indexed: 10/26/2022]
Abstract
In the present study, we demonstrate that sodium butyrate repressed IFN-gamma-induced expression of iNOS and TNF-alpha, but had little effect on LPS-induced expression in BV2 murine microglial cells. Sodium butyrate significantly inhibited NF-kappa B binding and NF-kappa B-mediated transcription induced by IFN-gamma, suggesting that the anti-inflammatory effect of sodium butyrate is mediated via specific inhibition of the NF-kappa B pathway. IFN-gamma is a major stimulator of innate and adaptive immune response. Thus, the specific down-regulation of IFN-gamma-induced microglial activation by sodium butyrate may provide potential therapeutic strategies for a variety of inflammatory diseases in the central nervous system.
Collapse
Affiliation(s)
- Hee-Sun Kim
- Department of Neuroscience, Ewha Institute of Neuroscience and Medical Research Center, College of Medicine, Ewha Woman's University, Seoul, South Korea.
| | | | | | | | | | | |
Collapse
|
48
|
Zapolska-Downar D, Siennicka A, Kaczmarczyk M, Kołodziej B, Naruszewicz M. Butyrate inhibits cytokine-induced VCAM-1 and ICAM-1 expression in cultured endothelial cells: the role of NF-κB and PPARα. J Nutr Biochem 2004; 15:220-8. [PMID: 15068815 DOI: 10.1016/j.jnutbio.2003.11.008] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2003] [Revised: 10/02/2003] [Accepted: 11/01/2003] [Indexed: 01/16/2023]
Abstract
Adhesion and migration of leukocytes into the surrounding tissues is a crucial step in inflammation, immunity, and atherogenesis. Expression of cell adhesion molecules by endothelial cells plays a leading role in this process. Butyrate, a natural short-chain fatty acid produced by bacterial fermentation of dietary fiber, has been attributed with anti-inflammatory activity in inflammatory bowel disease. Butyrate in vitro is active in colonocytes and several other cell types. We have studied the effect of butyrate on expression of endothelial leukocyte adhesion molecules by cytokine-stimulated human umbilical vein endothelial cells (HUVEC). Pretreatment of HUVEC with butyrate-inhibited tumor necrosis factor-alpha (TNFalpha)-induced expression of vascular cell adhesion molecule-1 (VCAM-1) and intracellular cell adhesion molecule-1 (ICAM-1) in a time and concentration-dependent manner. Butyrate at 10 mM/L inhibited interleukin-1 (IL-1)-stimulated VCAM-1 and ICAM-1 expression. The effect of butyrate on cytokine-stimulated VCAM-1 expression was more pronounced than in the case of ICAM-1. Butyrate decreased TNFalpha-induced expression of mRNA for VCAM-1 and ICAM-1. Suppressed expression of VCAM-1 and ICAM-1 was associated with reduced adherence of monocytes and lymphocytes to cytokine-stimulated HUVEC. Butyrate inhibited TNFalpha-induced activation of nuclear factor-kappaB (NF-kappaB) in HUVEC. Finally, butyrate enhanced peroxisome proliferator-activated receptor-alpha (PPARalpha) expression in HUVEC. These results demonstrate that butyrate may have anti-inflammatory properties not only in colonocytes but also in endothelial cells. The anti-inflammatory and (perhaps) antiatherogenic properties of butyrate may partly be attributed to an effect on activation of NF-kappaB and PPARalpha and to the associated expression of VCAM-1 and ICAM-1. The present findings support further investigations on the therapeutic benefits of butyrate in several pathological events involving leukocyte recruitment.
Collapse
Affiliation(s)
- Danuta Zapolska-Downar
- Department of Clinical Biochemistry and Laboratory Diagnostic, Pomeranian Academy of Medicine, ul. Powstańców Wlkp. 72, Szczecin, Poland
| | | | | | | | | |
Collapse
|
49
|
Huuskonen J, Suuronen T, Nuutinen T, Kyrylenko S, Salminen A. Regulation of microglial inflammatory response by sodium butyrate and short-chain fatty acids. Br J Pharmacol 2004; 141:874-80. [PMID: 14744800 PMCID: PMC1574260 DOI: 10.1038/sj.bjp.0705682] [Citation(s) in RCA: 185] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. Recent studies have shown that sodium butyrate and other short-chain fatty acids (SCFAs) can prevent inflammation in colon diseases. Our aim was to elucidate whether sodium butyrate and SCFAs regulate the inflammatory responses in different neural inflammation models in cell cultures. 2. Inflammatory responses to LPS-induced microglial activation were recorded by the secretion of nitric oxide (NO) and cytokines IL-6 and TNF-alpha and related to the changes in the DNA-binding activities of NF-kappaB complex. 3. We observed that sodium butyrate is strongly anti-inflammatory against LPS-induced responses in rat primary microglia as well as in hippocampal slice cultures and in neural cocultures of microglial cells, astrocytes and cerebellar granule neurons. 4. In murine N9 microglial cell line, instead, sodium butyrate and other SCFAs (propionate, valerate and caproate) enhanced the LPS-induced inflammatory response. 5. The pretreatment with butyrate before LPS exposure induced an equal or more enhanced response than simultaneous exposure with butyrate and LPS. This indicates that butyrate induces an adaptative response against microglial activation. 6. We also observed that butyrate treatment both in transformed N9 cells and in hippocampal slice cultures downregulates the NF-kappaB-binding capacity induced by LPS stimulation. 7. Our results show that butyrate is anti-inflammatory in primary, brain-derived microglial cells, as observed recently in colon diseases, but proinflammatory in transformed, proliferating N9 microglial cells, which may be related to the anticancer properties of butyrate observed in tumor cells.
Collapse
Affiliation(s)
- Jari Huuskonen
- Department of Neuroscience and Neurology, University of Kuopio, PO Box 1627, FIN-70211 Kuopio, Finland
| | - Tiina Suuronen
- Department of Neuroscience and Neurology, University of Kuopio, PO Box 1627, FIN-70211 Kuopio, Finland
| | - Tapio Nuutinen
- Department of Neuroscience and Neurology, University of Kuopio, PO Box 1627, FIN-70211 Kuopio, Finland
| | - Sergiy Kyrylenko
- Department of Neuroscience and Neurology, University of Kuopio, PO Box 1627, FIN-70211 Kuopio, Finland
| | - Antero Salminen
- Department of Neuroscience and Neurology, University of Kuopio, PO Box 1627, FIN-70211 Kuopio, Finland
- Department of Neurology, University Hospital of Kuopio, PO Box 1777, FIN-70211 Kuopio, Finland
- Author for correspondence:
| |
Collapse
|
50
|
Rahman MM, Kukita A, Kukita T, Shobuike T, Nakamura T, Kohashi O. Two histone deacetylase inhibitors, trichostatin A and sodium butyrate, suppress differentiation into osteoclasts but not into macrophages. Blood 2003; 101:3451-9. [PMID: 12511413 DOI: 10.1182/blood-2002-08-2622] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Histone deacetylase (HDAC) inhibitors are emerging as a new class of anticancer therapeutic agents and have been demonstrated to induce differentiation in some myeloid leukemia cell lines. In this study, we show that HDAC inhibitors have a novel action on osteoclast differentiation. The effect of 2 HDAC inhibitors, trichostatin A (TSA) and sodium butyrate (NaB), on osteoclastogenesis was investigated using rat and mouse bone marrow cultures and a murine macrophage cell line RAW264. Both TSA and NaB inhibited the formation of preosteoclast-like cells (POCs) and multinucleated osteoclast-like cells (MNCs) in rat bone marrow culture. By reverse transcription-polymerase chain reaction analysis, TSA reduced osteoclast-specific mRNA expression of cathepsin K and calcitonin receptor (CTR). In contrast, TSA and NaB did not affect the formation of bone marrow macrophages (BMMs) induced by macrophage colony-stimulating factor as examined by nonspecific esterase staining. Fluorescence-activated cell sorting analysis showed that TSA did not affect the surface expression of macrophage markers for CD11b and F4/80 of BMMs. TSA and NaB also inhibited osteoclast formation and osteoclast-specific mRNA expression in RAW264 cells stimulated with receptor activator of nuclear factor-kappa B (NF-kappa B) ligand (RANKL). Transient transfection assay revealed that TSA and NaB dose dependently reduced the sRANKL-stimulated or tumor necrosis factor alpha (TNF-alpha)-stimulated transactivation of NF-kappa B-dependent reporter genes. The treatment of RAW264 cells with TSA and NaB inhibited TNF-alpha-induced nuclear translocation of NF-kappa B and sRANKL-induced activation of p38 mitogen-activated protein kinase (MAPK) signals. These data suggest that both TSA and NaB exert their inhibitory effects by modulating osteoclast-specific signals and that HDAC activity regulates the process of osteoclastogenesis.
Collapse
Affiliation(s)
- Md Mizanur Rahman
- Department of Microbiology, Saga Medical School, Nabeshima, Saga, Japan
| | | | | | | | | | | |
Collapse
|