1
|
Khan S, Upadhyay S, Hassan MI. Novel prospects in targeting neurodegenerative disorders via autophagy. Eur J Pharmacol 2024; 984:177060. [PMID: 39426466 DOI: 10.1016/j.ejphar.2024.177060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/12/2024] [Accepted: 10/17/2024] [Indexed: 10/21/2024]
Abstract
Protein aggregation occurs as a consequence of dysfunction in the normal cellular proteostasis, which leads to the accumulation of toxic fibrillar aggregates of certain proteins in the cell. Enhancing the activity of proteolytic pathways may serve as a way of clearing these aggregates in a cell, and consequently, autophagy has surfaced as a promising target for the treatment of neurodegenerative disorders. Several strategies involving small molecule compounds that stimulate autophagic pathway of cell have been discovered. However, despite many compounds having demonstrated favorable outcomes in experimental disease models, the translation of these findings into clinical benefits for patient's remains limited. Consequently, alternative strategies are actively being explored to effectively target neurodegeneration via autophagy modulation. Recently, newer approaches such as modulation of expression of autophagic genes have emerged as novel and interesting areas of research in this field, which hold promising potential in neuroprotection. Similarly, as discussed for the first time in this review, the use of autophagy-inducing nanoparticles by utilizing their physicochemical properties to stimulate the autophagic process, rather than relying on their role as drug carriers, offers a completely fresh avenue for targeting neurodegeneration without the risk of drug-associated adverse effects. This review provides fresh perspectives on developing autophagy-targeted therapies for neurodegenerative disorders. Additionally, it discusses the challenges and impediments of implementing these strategies to alleviate the pathogenesis of neurodegenerative disorders in clinical settings and highlights the prospects and directions of future research in this context.
Collapse
Affiliation(s)
- Shumayila Khan
- International Health Division, Indian Council of Medical Research, Ansari Nagar, New Delhi, 110029, India
| | - Saurabh Upadhyay
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India.
| |
Collapse
|
2
|
Mohseni M, Behzad G, Farhadi A, Behroozi J, Mohseni H, Valipour B. MicroRNAs regulating autophagy: opportunities in treating neurodegenerative diseases. Front Neurosci 2024; 18:1397106. [PMID: 39582602 PMCID: PMC11582054 DOI: 10.3389/fnins.2024.1397106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 10/15/2024] [Indexed: 11/26/2024] Open
Abstract
Neurodegenerative diseases (NDs) are increasingly prevalent in our aging population, imposing significant social and economic burdens. Currently, most ND patients receive only symptomatic treatment due to limited understanding of their underlying causes. Consequently, there is a pressing need for comprehensive research into the pathological mechanisms of NDs by both researchers and clinicians. Autophagy, a cellular mechanism responsible for maintaining cellular equilibrium by removing dysfunctional organelles and misfolded proteins, plays a vital role in cell health and is implicated in various diseases. MicroRNAs (miRNAs) exert influence on autophagy and hold promise for treating these diseases. These small oligonucleotides bind to the 3'-untranslated region (UTR) of target mRNAs, leading to mRNA silencing, degradation, or translation blockade. This review explores recent findings on the regulation of autophagy and autophagy-related genes by different miRNAs in various pathological conditions, including neurodegeneration and inflammation-related diseases. The recognition of miRNAs as key regulators of autophagy in human diseases has spurred investigations into pharmacological compounds and traditional medicines targeting these miRNAs in disease models. This has catalyzed a new wave of therapeutic interventions aimed at modulating autophagy.
Collapse
Affiliation(s)
- Mahdi Mohseni
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghazal Behzad
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Arezoo Farhadi
- Department of Genetics and Molecular Medicine, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Javad Behroozi
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hamraz Mohseni
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Behnaz Valipour
- Department of Basic Sciences and Health, Sarab Faculty of Medical Sciences, Sarab, Iran
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
3
|
Depierre P, Ginet V, Truttmann AC, Puyal J. Neuronal autosis is Na +/K +-ATPase alpha 3-dependent and involved in hypoxic-ischemic neuronal death. Cell Death Dis 2024; 15:363. [PMID: 38796484 PMCID: PMC11127954 DOI: 10.1038/s41419-024-06750-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/28/2024]
Abstract
Macroautophagy (hereafter called autophagy) is an essential physiological process of degradation of organelles and long-lived proteins. The discovery of autosis, a Na+/K+-ATPase (ATP1)-dependent type of autophagic cell death with specific morphological and biochemical features, has strongly contributed to the acceptance of a pro-death role of autophagy. However, the occurrence and relevance of autosis in neurons has never been clearly investigated, whereas we previously provided evidence that autophagy mechanisms could be involved in neuronal death in different in vitro and in vivo rodent models of hypoxia-ischemia (HI) and that morphological features of autosis were observed in dying neurons following rat perinatal cerebral HI. In the present study, we demonstrated that neuronal autosis could occur in primary cortical neurons using two different stimulations enhancing autophagy flux and neuronal death: a neurotoxic concentration of Tat-BECN1 (an autophagy-inducing peptide) and a hypoxic/excitotoxic stimulus (mimicking neuronal death induced by cerebral HI). Both stimulations induce autophagic neuronal death (dependent on canonical autophagic genes and independent on apoptotic, necroptotic or ferroptotic pathways) with all morphological and biochemical (ATP1a-dependent) features of autosis. However, we demonstrated that autosis is not dependent on the ubiquitous subunit ATP1a1 in neurons, as in dividing cell types, but on the neuronal specific ATP1a3 subunit. We also provided evidence that, in different in vitro and in vivo models where autosis is induced, ATP1a3-BECN1 interaction is increased and prevented by cardiac glycosides treatment. Interestingly, an increase in ATP1a3-BECN1 interaction is also detected in dying neurons in the autoptic brains of human newborns with severe hypoxic-ischemic encephalopathy (HIE). Altogether, these results suggest that ATP1a3-BECN1-dependent autosis could play an important role in neuronal death in HI conditions, paving the way for the development of new neuroprotective strategies in hypoxic-ischemic conditions including in severe case of human HIE.
Collapse
Affiliation(s)
- Pauline Depierre
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Vanessa Ginet
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
- Clinic of Neonatology, Department of Women, Mother and Child, University Hospital Center of Vaud, Lausanne, Switzerland
| | - Anita C Truttmann
- Clinic of Neonatology, Department of Women, Mother and Child, University Hospital Center of Vaud, Lausanne, Switzerland
| | - Julien Puyal
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland.
- CURML, University Center of Legal Medicine, Lausanne University Hospital, Lausanne, Switzerland.
| |
Collapse
|
4
|
Zhang L, Han Y, Wu X, Chen B, Liu S, Huang J, Kong L, Wang G, Ye Z. Research progress on the mechanism of curcumin in cerebral ischemia/reperfusion injury: a narrative review. Apoptosis 2023; 28:1285-1303. [PMID: 37358747 DOI: 10.1007/s10495-023-01869-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2023] [Indexed: 06/27/2023]
Abstract
Cerebral ischemia/reperfusion (I/R) injury can result in different levels of cerebral impairment, and in severe cases, death. Curcumin, an essential bioactive component of turmeric, has a rich history as a traditional medicine for various ailments in numerous countries. Experimental and clinical research has established that curcumin offers a protective effect against cerebral I/R injury. Curcumin exerts its protective effects by acting on specific mechanisms such as antioxidant, anti-inflammatory, inhibition of ferroptosis and pyroptosis, protection of mitochondrial function and structure, reduction of excessive autophagy, and improvement of endoplasmic reticulum (ER) stress, which ultimately help to preserve the blood-brain barrier (BBB) and reducing apoptosis. There is currently a shortage of drugs undergoing clinical trials for the treatment of cerebral I/R injury, highlighting the pressing need for research and development of novel treatments to address this injury. The primary objective of this study is to establish a theoretical basis for future clinical applications of curcumin by delineating the mechanisms and protective effects of curcumin against cerebral I/R injury. Adapted with permission from [1].
Collapse
Affiliation(s)
- Liyuan Zhang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
- JinFeng Laboratory, Chongqing, 401329, China
| | - Yibo Han
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Xuelan Wu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Baoyu Chen
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Shuaiyuan Liu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Junyang Huang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Lingwen Kong
- Department of Cardiothoracic Surgery, Central Hospital of Chongqing University, Chongqing Emergency Medical Center, Chongqing, 400014, People's Republic of China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
- JinFeng Laboratory, Chongqing, 401329, China
| | - Zhiyi Ye
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China.
- JinFeng Laboratory, Chongqing, 401329, China.
| |
Collapse
|
5
|
Wang H, Liu Y, Guo Z, Cui M, Pang P, Yang J, Wu C. Enhancement of oligodendrocyte autophagy alleviates white matter injury and cognitive impairment induced by chronic cerebral hypoperfusion in rats. Acta Pharm Sin B 2023; 13:2107-2123. [DOI: 10.1016/j.apsb.2023.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/23/2022] [Accepted: 02/28/2023] [Indexed: 03/18/2023] Open
|
6
|
Deng Y, Duan R, Ding W, Gu Q, Liu M, Zhou J, Sun J, Zhu J. Astrocyte-derived exosomal nicotinamide phosphoribosyltransferase (Nampt) ameliorates ischemic stroke injury by targeting AMPK/mTOR signaling to induce autophagy. Cell Death Dis 2022; 13:1057. [PMID: 36539418 PMCID: PMC9767935 DOI: 10.1038/s41419-022-05454-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/11/2022] [Accepted: 11/18/2022] [Indexed: 12/24/2022]
Abstract
Acute ischemic stroke (AIS) is a global cerebrovascular disease with high disability and mortality, which has no effective therapy. Studies have demonstrated that astrocyte-derived exosomes (ADEXs) provided neuroprotection in experimental stroke models. Nevertheless, the role of exosomes derived from oxygen-glucose-deprivation/reoxygenation-stimulated astrocytes (OGD/R-stimulated astrocytes; OGD/R-ADEXs) in AIS remains largely unknown. Here, we found that OGD/R-ADEXs significantly reduced OGD/R-induced neuronal death and promoted neuronal autophagy. These effects were reversed when astrocytes were pretreated with GW4869, an exosome secretion inhibitor, or when hepatocyte growth factor-regulated tyrosine kinase substrate (Hrs) was knocked down. Neuroprotection was also observed during treatment with OGD/R-ADEXs in vivo. Further studies showed that Nampt, played a vital effect in the regulation of autophagy, was significantly increased in OGD/R-ADEXs. Knockdown of Nampt in astrocytes abolished the above-mentioned effects of OGD/R-ADEXs. Mechanistically, Nampt increased autophagy and decreased cell death by modulating AMPK/mTOR signaling, which recognized as a key signaling pathway of autophagy after AIS. Collectively, these results showed that Nampt released by OGD/R-ADEXs ameliorated acute ischemic stroke during neuronal injury by targeting AMPK/mTOR signaling to induce autophagy. Our study revealed a new key factor in the secretion of exosomes by OGD/R astrocytes, which regulated autophagy and induced neuroprotection in a mouse stroke model.
Collapse
Affiliation(s)
- Yang Deng
- grid.89957.3a0000 0000 9255 8984Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, 210006 Nanjing, China ,grid.254147.10000 0000 9776 7793School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, 211198 Nanjing, China
| | - Rui Duan
- grid.89957.3a0000 0000 9255 8984Department of Neurology, Nanjing First Hospital, Nanjing Medical University, 210006 Nanjing, China
| | - Wangli Ding
- grid.89957.3a0000 0000 9255 8984Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, 210006 Nanjing, China ,grid.254147.10000 0000 9776 7793School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, 211198 Nanjing, China
| | - Qiuchen Gu
- grid.89957.3a0000 0000 9255 8984Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, 210006 Nanjing, China ,grid.254147.10000 0000 9776 7793School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, 211198 Nanjing, China
| | - Manman Liu
- grid.89957.3a0000 0000 9255 8984Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, 210006 Nanjing, China ,grid.254147.10000 0000 9776 7793School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, 211198 Nanjing, China
| | - Junshan Zhou
- grid.89957.3a0000 0000 9255 8984Department of Neurology, Nanjing First Hospital, Nanjing Medical University, 210006 Nanjing, China
| | - Jianguo Sun
- grid.254147.10000 0000 9776 7793Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009 Nanjing, China
| | - Junrong Zhu
- grid.89957.3a0000 0000 9255 8984Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, 210006 Nanjing, China ,grid.254147.10000 0000 9776 7793School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, 211198 Nanjing, China
| |
Collapse
|
7
|
Galyan SM, Ewald CY, Jalencas X, Masrani S, Meral S, Mestres J. Fragment-based virtual screening identifies a first-in-class preclinical drug candidate for Huntington's disease. Sci Rep 2022; 12:19642. [PMID: 36385140 PMCID: PMC9668931 DOI: 10.1038/s41598-022-21900-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 10/05/2022] [Indexed: 11/17/2022] Open
Abstract
Currently, there are no therapies available to modify the disease progression of Huntington's disease (HD). Recent clinical trial failures of antisense oligonucleotide candidates in HD have demonstrated the need for new therapeutic approaches. Here, we developed a novel in-silico fragment scanning approach across the surface of mutant huntingtin (mHTT) polyQ and predicted four hit compounds. Two rounds of compound analoging using a strategy of testing structurally similar compounds in an affinity assay rapidly identified GLYN122. In vitro, GLYN122 directly binds and reduces mHTT and induces autophagy in neurons. In vivo, our results confirm that GLYN122 can reduce mHTT in the cortex and striatum of the R/2 mouse model of Huntington's disease and subsequently improve motor symptoms. Thus, the in-vivo pharmacology profile of GLYN122 is a potential new preclinical candidate for the treatment of HD.
Collapse
Affiliation(s)
| | - Collin Y. Ewald
- grid.5801.c0000 0001 2156 2780Laboratory of Extracellular Matrix Regeneration, Department of Health Sciences and Technology, Institute of Translational Medicine, ETH Zürich, 8603 Schwerzenbach, Switzerland
| | - Xavier Jalencas
- grid.5841.80000 0004 1937 0247Chemotargets SL, Parc Científic de Barcelona, 08028 Barcelona, Catalonia Spain ,IMIM Hospital del Mar Medical Research Institute, Parc de Recerca Biomèdica de Barcelona (PRBB), 08003 Barcelona, Catalonia Spain
| | - Shyam Masrani
- Medicxi Ventures, 25 Great Pulteney St, London, W1F 9NH UK
| | - Selin Meral
- Biomedical Center Munich of the University of Munich, Großhaderner Str. 9, 82152 Planegg, Germany
| | - Jordi Mestres
- grid.5841.80000 0004 1937 0247Chemotargets SL, Parc Científic de Barcelona, 08028 Barcelona, Catalonia Spain ,IMIM Hospital del Mar Medical Research Institute, Parc de Recerca Biomèdica de Barcelona (PRBB), 08003 Barcelona, Catalonia Spain
| |
Collapse
|
8
|
Zhang Y, Yang M, Yuan Q, He Q, Ping H, Yang J, Zhang Y, Fu X, Liu J. Piperine ameliorates ischemic stroke-induced brain injury in rats by regulating the PI3K/AKT/mTOR pathway. JOURNAL OF ETHNOPHARMACOLOGY 2022; 295:115309. [PMID: 35597410 DOI: 10.1016/j.jep.2022.115309] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/10/2022] [Accepted: 04/16/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Piperine (PIP), a main active component isolated from Piper nigrum L., exerts neuroprotective effects in a rat model of ischemic stroke (IS). However, studies on the effects of PIP on neuroprotection and autophagy after IS are limited. AIM OF THE STUDY This study aimed to prove the protective effects of PIP against brain IS and elucidate its underlying mechanisms. MATERIALS AND METHODS Specific pathogen-free male Sprague-Dawley rats were selected to establish a permanent middle cerebral artery occlusion model. The experiment was randomly divided into six groups: sham group, model group, PIP intervention group (10, 20, and 30 mg/kg group), and nimodipine group (Nimo group, 12 mg/kg). Neurological function score, postural reflex score, body swing score, balance beam test, and grip strength test were used to detect behavioral changes of rats. The area of cerebral infarction was detected by TTC staining, and the number and morphological changes of neurons were observed by Nissl and HE staining. In addition, the ultrastructure of hippocampal dentate gyrus neurons was observed using a transmission electron microscope. Western blot was used to detect the expression of PI3K/AKT/mTOR signaling pathway proteins and autophagy-related proteins, namely, Beclin1 and LC3, in the hippocampus and cortex. Cell experiments established an in vitro model of oxygen-glucose deprivation (OGD) with the HT22 cell line to verify the mechanism. The experiment was divided into five groups: control group, OGD group, OGD + PIP 20 μg/mL group, OGD + PIP 30 μg/mL group, and OGD + PIP 40 μg/mL group. CCK-8 was used to measure cell activity, and Western blot was used to measure the expression of PI3K/AKT/mTOR signaling pathway proteins and autophagy-related proteins (Beclin1 and LC3). RESULTS Compared with the model group, the neurological function scores, body swing scores, and postural reflex scores of rats in the 10, 20, and 30 mg/kg PIP intervention groups and Nimo groups decreased, whereas the balance beam score and grip test scores increased (all p < 0.05). After 10, 20, and 30 mg/kg PIP and Nimo intervention, the cerebral infarction area of pMCAO rats was reduced (p < 0.01), and Nissl and HE staining results showed that the number of neurons survived in the 30 mg/kg PIP and Nimo intervention groups increased. Cell morphology and structure were significantly improved (p < 0.05). Most of the hippocampal dentate gyrus neurons and their organelles gradually returned to normal in the 30 mg/kg PIP and Nimo intervention groups, with less neuronal damage. The expression levels of p-mTOR, p-AKT, and p-PI3K in the hippocampus and cortex of the 30 mg/kg PIP and Nimo intervention groups decreased, whereas the expression level of PI3K increased (all p < 0.05). In addition, the expression level of autophagy-related proteins, namely, Beclin1 and LC3-II, in the 30 mg/kg PIP and Nimo intervention groups decreased (all p < 0.05). Results of CCK-8 showed that after 1 h of OGD, the 30 and 40 μg/mL PIP intervention groups had higher cell viability than the OGD group (p < 0.01). Western blot results showed that compared with the OGD group, the expression level of p-mTOR, p-AKT, and p-PI3K in the 30 and 40 μg/mL PIP intervention groups decreased, and the expression level of PI3K increased (all p < 0.05). Moreover, the expression level of autophagy-related proteins, namely, Beclin1 and LC3-II, in the 30 and 40 μg/mL PIP intervention groups decreased (all p < 0.05). CONCLUSIONS This study shows that PIP is a potential compound with neuroprotective effects. PIP can inhibit the PI3K/AKT/mTOR pathway and autophagy. Its inhibition of autophagy is possibly related to modulating the PI3K/AKT/mTOR pathway. These findings provide new insights into the use of PIP for the treatment of IS and its underlying mechanism.
Collapse
Affiliation(s)
- Yiwei Zhang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China
| | - Miao Yang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China
| | - Qianqian Yuan
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China
| | - Qianxiong He
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China
| | - Honglu Ping
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, 750004, China
| | - Jianrong Yang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China
| | - Yiqiang Zhang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China
| | - Xueyan Fu
- School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China.
| | - Juan Liu
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China.
| |
Collapse
|
9
|
Modulation of autophagy by melatonin via sirtuins in stroke: From mechanisms to therapies. Life Sci 2022; 307:120870. [PMID: 35948118 DOI: 10.1016/j.lfs.2022.120870] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/26/2022] [Accepted: 08/04/2022] [Indexed: 11/20/2022]
Abstract
Sirtuins perform an important effect on the neural cell fate following stroke. Several mechanisms that have been correlated with stroke are oxidative stress, apoptosis, necrosis and autophagy. Autophagy is usually regarded as unitary of the neural cell survival mechanisms. Recently, the importance of the sirtuins effect on autophagy by antioxidant agents for stroke treatment mentioned in various studies. One of these agents is melatonin. Melatonin can modulate autophagy by changing on sirtuin pathways. Melatonin and its metabolites adjust various sirtuins pathways related to apoptosis, proliferation, metastases, autophagy and inflammation in case of stroke. In this review, we will discuss about the modulation of autophagy by melatonin via sirtuins in stroke.
Collapse
|
10
|
Hu Y, Wang SX, Wu FY, Wu KJ, Shi RP, Qin LH, Lu CF, Wang SQ, Wang FF, Zhou S. Effects and Mechanism of Ganoderma lucidum Polysaccharides in the Treatment of Diabetic Nephropathy in Streptozotocin-Induced Diabetic Rats. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4314415. [PMID: 35299891 PMCID: PMC8923773 DOI: 10.1155/2022/4314415] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/07/2022] [Indexed: 12/18/2022]
Abstract
Ganoderma lucidum polysaccharides (GLP) have renal protection effect but there was no study on the diabetic nephropathy. This study was designed to investigate its effect and mechanism using a diabetic rat model induced by streptozotocin (50 mg/kg, i.p.). The diabetic rats were treated with GLP (300 mg/kg/day) for 10 weeks. The blood glucose, glycated hemoglobin, body weight, and the levels of blood creatinine, urea nitrogen, and urine protein were assessed. And renal pathologies were assessed by the tissue sections stained with hematoxylin-eosin, Masson's trichome, and periodic acid-Schiff. The expression of phosphorylated phosphoinositide 3 kinase (p-PI3K), phosphorylated protein kinase B (p-Akt), and phosphorylated mammalian target of rapamycin (p-mTOR), the autophagy proteins beclin-1, LC3-II, LC3-I, and P62; the apoptosis-related proteins caspase-3 and caspase-9; and the inflammation markers IL-6, IL-1β, and TNF-ɑ were assessed. Results showed that GLP alleviated the impairment of renal function by reducing urinary protein excretion and the blood creatinine level and ameliorated diabetic nephropathy. The expression of p-PI3K, p-Akt, and p-mTOR in the diabetic kidney were significantly reduced in the GLP treatment group compared to the without treatment group. GLP treatment activated the autophagy indicators of beclin-1 and the ratio of LC3-II/LC3-I but reduced p62 and also inhibited the expression of caspase-3, caspase-9 and IL-6, IL-1β, and TNF-ɑ. In conclusion, the effect of GLP amelioration diabetic nephropathy may be via the PI3k/Akt/mTOR signaling pathway by inhibition of the apoptosis and inflammation and activation of the autophagy process.
Collapse
Affiliation(s)
- Yu Hu
- Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang, China 154002
- School of Medicine, The First Affiliated Hospital of Jiamusi University, Jiamusi 154003, China
| | - Shu-Xiang Wang
- Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang, China 154002
| | - Fu-Yu Wu
- School of Medicine, The First Affiliated Hospital of Jiamusi University, Jiamusi 154003, China
| | - Ke-Jia Wu
- School of Medicine, The First Affiliated Hospital of Jiamusi University, Jiamusi 154003, China
| | - Rui-Ping Shi
- School of Medicine, The First Affiliated Hospital of Jiamusi University, Jiamusi 154003, China
| | - Li-Hong Qin
- School of Medicine, The First Affiliated Hospital of Jiamusi University, Jiamusi 154003, China
| | - Chun-Feng Lu
- School of Medicine, Huzhou University, Huzhou Central Hospital, Huzhou 313000, China
| | - Shu-Qiu Wang
- Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang, China 154002
| | - Fang-Fang Wang
- Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang, China 154002
| | - Shaobo Zhou
- School of Life Sciences, Institute of Biomedical and Environmental Science and Technology, University of Bedfordshire, Luton, UK LU1 3JU
| |
Collapse
|
11
|
Nisa FY, Rahman MA, Hossen MA, Khan MF, Khan MAN, Majid M, Sultana F, Haque MA. Role of neurotoxicants in the pathogenesis of Alzheimer's disease: a mechanistic insight. Ann Med 2021; 53:1476-1501. [PMID: 34433343 PMCID: PMC8405119 DOI: 10.1080/07853890.2021.1966088] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/04/2021] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease (AD) is the most conspicuous chronic neurodegenerative syndrome, which has become a significant challenge for the global healthcare system. Multiple studies have corroborated a clear association of neurotoxicants with AD pathogenicity, such as Amyloid beta (Aβ) proteins and neurofibrillary tangles (NFTs), signalling pathway modifications, cellular stress, cognitive dysfunctions, neuronal apoptosis, neuroinflammation, epigenetic modification, and so on. This review, therefore, aimed to address several essential mechanisms and signalling cascades, including Wnt (wingless and int.) signalling pathway, autophagy, mammalian target of rapamycin (mTOR), protein kinase C (PKC) signalling cascades, cellular redox status, energy metabolism, glutamatergic neurotransmissions, immune cell stimulations (e.g. microglia, astrocytes) as well as an amyloid precursor protein (APP), presenilin-1 (PSEN1), presenilin-2 (PSEN2) and other AD-related gene expressions that have been pretentious and modulated by the various neurotoxicants. This review concluded that neurotoxicants play a momentous role in developing AD through modulating various signalling cascades. Nevertheless, comprehension of this risk agent-induced neurotoxicity is far too little. More in-depth epidemiological and systematic investigations are needed to understand the potential mechanisms better to address these neurotoxicants and improve approaches to their risk exposure that aid in AD pathogenesis.Key messagesInevitable cascade mechanisms of how Alzheimer's Disease-related (AD-related) gene expressions are modulated by neurotoxicants have been discussed.Involvement of the neurotoxicants-induced pathways caused an extended risk of AD is explicited.Integration of cell culture, animals and population-based analysis on the clinical severity of AD is addressed.
Collapse
Affiliation(s)
- Fatema Yasmin Nisa
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Chittagong, Chittagong, Bangladesh
| | - Md. Atiar Rahman
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Chittagong, Chittagong, Bangladesh
| | - Md. Amjad Hossen
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, Bangladesh
| | - Mohammad Forhad Khan
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, Bangladesh
| | - Md. Asif Nadim Khan
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Chittagong, Chittagong, Bangladesh
| | - Mumtahina Majid
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Chittagong, Chittagong, Bangladesh
| | - Farjana Sultana
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Chittagong, Chittagong, Bangladesh
| | - Md. Areeful Haque
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, Bangladesh
- Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
12
|
Davis SE, Roth JR, Aljabi Q, Hakim AR, Savell KE, Day JJ, Arrant AE. Delivering progranulin to neuronal lysosomes protects against excitotoxicity. J Biol Chem 2021; 297:100993. [PMID: 34298019 PMCID: PMC8379502 DOI: 10.1016/j.jbc.2021.100993] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/08/2021] [Accepted: 07/19/2021] [Indexed: 01/18/2023] Open
Abstract
Loss-of-function mutations in progranulin (GRN) are a major genetic cause of frontotemporal dementia (FTD), possibly due to loss of progranulin's neurotrophic and anti-inflammatory effects. Progranulin promotes neuronal growth and protects against excitotoxicity and other forms of injury. It is unclear if these neurotrophic effects are mediated through cellular signaling or through promotion of lysosomal function. Progranulin is a secreted proprotein that may activate neurotrophic signaling through cell-surface receptors. However, progranulin is efficiently trafficked to lysosomes and is necessary for maintaining lysosomal function. To determine which of these mechanisms mediates progranulin's protection against excitotoxicity, we generated lentiviral vectors expressing progranulin (PGRN) or lysosome-targeted progranulin (L-PGRN). L-PGRN was generated by fusing the LAMP-1 transmembrane and cytosolic domains to the C-terminus of progranulin. L-PGRN exhibited no detectable secretion, but was delivered to lysosomes and processed into granulins. PGRN and L-PGRN protected against NMDA excitotoxicity in rat primary cortical neurons, but L-PGRN had more consistent protective effects than PGRN. L-PGRN's protective effects were likely mediated through the autophagy-lysosomal pathway. In control neurons, an excitotoxic dose of NMDA stimulated autophagy, and inhibiting autophagy with 3-methyladenine reduced excitotoxic cell death. L-PGRN blunted the autophagic response to NMDA and occluded the protective effect of 3-methyladenine. This was not due to a general impairment of autophagy, as L-PGRN increased basal autophagy and did not alter autophagy after nutrient starvation. These data show that progranulin's protection against excitotoxicity does not require extracellular progranulin, but is mediated through lysosomes, providing a mechanistic link between progranulin's lysosomal and neurotrophic effects.
Collapse
Affiliation(s)
- Skylar E Davis
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, Alabama, USA; Alzheimer's Disease Center, Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jonathan R Roth
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, Alabama, USA; Alzheimer's Disease Center, Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Qays Aljabi
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, Alabama, USA; Alzheimer's Disease Center, Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Ahmad R Hakim
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, Alabama, USA; Alzheimer's Disease Center, Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Katherine E Savell
- Alzheimer's Disease Center, Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, Alabama, USA; Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jeremy J Day
- Alzheimer's Disease Center, Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, Alabama, USA; Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Andrew E Arrant
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, Alabama, USA; Alzheimer's Disease Center, Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, Alabama, USA.
| |
Collapse
|
13
|
Ma C, Zhang W, Wang W, Shen J, Cai K, Liu M, Cao M. SKP-SCs transplantation alleviates 6-OHDA-induced dopaminergic neuronal injury by modulating autophagy. Cell Death Dis 2021; 12:674. [PMID: 34226513 PMCID: PMC8257782 DOI: 10.1038/s41419-021-03967-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 06/15/2021] [Accepted: 06/18/2021] [Indexed: 02/06/2023]
Abstract
Parkinson's disease is a common neurodegenerative disease. Cell transplantation is a promising therapeutic option for improving the survival and function of dopaminergic neurons, but the mechanisms underlying the interaction between the transplanted cells and the recipient neurons remain to be studied. In this study, we investigated the effects of skin precursor cell-derived Schwann cells (SKP-SCs) directly cocultured with 6-OHDA-injured dopaminergic neurons in vitro and of SKP-SCs transplanted into the brains of 6-OHDA-induced PD mice in vivo. In vitro and in vivo studies revealed that SKP-SCs could reduce the damage to dopaminergic neurons by enhancing self-autophagy and modulating neuronal autophagy. Thus, the present study provides the first evidence that cell transplantation mitigates 6-OHDA-induced damage to dopaminergic neurons by enhancing self-autophagy, suggesting that earlier transplantation of Schwann cells might help alleviate the loss of dopaminergic neurons.
Collapse
Affiliation(s)
- Chengxiao Ma
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, China
| | - Wen Zhang
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, China
| | - Wengcong Wang
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, China
| | - Jiabing Shen
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, China
| | - Kefu Cai
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, China
| | - Mei Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.
| | - Maohong Cao
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, China.
| |
Collapse
|
14
|
Rana T, Behl T, Sehgal A, Mehta V, Singh S, Bhatia S, Al-Harrasi A, Bungau S. Exploring the Role of Autophagy Dysfunction in Neurodegenerative Disorders. Mol Neurobiol 2021; 58:4886-4905. [PMID: 34212304 DOI: 10.1007/s12035-021-02472-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/21/2021] [Indexed: 12/12/2022]
Abstract
Autophagy is a catabolic pathway by which misfolded proteins or damaged organelles are engulfed by autophagosomes and then transported to lysosomes for degradation. Recently, a great improvement has been done to explain the molecular mechanisms and roles of autophagy in several important cellular metabolic processes. Besides being a vital clearance pathway or a cell survival pathway in response to different stresses, autophagy dysfunction, either upregulated or down-regulated, has been suggested to be linked with numerous neurodegenerative disorders like Alzheimer's disease, Parkinson's disease, Huntington's disease, and Amyotrophic lateral sclerosis. Impairment at different stages of autophagy results in the formation of large protein aggregates and damaged organelles, which leads to the onset and progression of different neurodegenerative disorders. This article elucidates the recent progress about the role of autophagy in neurodegenerative disorders and explains how autophagy dysfunction is linked with the pathogenesis of such disorders as well as the novel potential autophagy-associated therapies for treating them.
Collapse
Affiliation(s)
- Tarapati Rana
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
- Government Pharmacy College, Seraj, Mandi, Himachal Pradesh, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Vineet Mehta
- Government College of Pharmacy, Rohru, Distt. Shimla, Himachal Pradesh, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Saurabh Bhatia
- Amity Institute of Pharmacy, Amity University, Haryana, India
- Natural & Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
15
|
Tuo QZ, Zhang ST, Lei P. Mechanisms of neuronal cell death in ischemic stroke and their therapeutic implications. Med Res Rev 2021; 42:259-305. [PMID: 33957000 DOI: 10.1002/med.21817] [Citation(s) in RCA: 348] [Impact Index Per Article: 87.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 03/31/2021] [Accepted: 04/23/2021] [Indexed: 02/05/2023]
Abstract
Ischemic stroke caused by arterial occlusion is the most common type of stroke, which is among the most frequent causes of disability and death worldwide. Current treatment approaches involve achieving rapid reperfusion either pharmacologically or surgically, both of which are time-sensitive; moreover, blood flow recanalization often causes ischemia/reperfusion injury. However, even though neuroprotective intervention is urgently needed in the event of stroke, the exact mechanisms of neuronal death during ischemic stroke are still unclear, and consequently, the capacity for drug development has remained limited. Multiple cell death pathways are implicated in the pathogenesis of ischemic stroke. Here, we have reviewed these potential neuronal death pathways, including intrinsic and extrinsic apoptosis, necroptosis, autophagy, ferroptosis, parthanatos, phagoptosis, and pyroptosis. We have also reviewed the latest results of pharmacological studies on ischemic stroke and summarized emerging drug targets with a focus on clinical trials. These observations may help to further understand the pathological events in ischemic stroke and bridge the gap between basic and translational research to reveal novel neuroprotective interventions.
Collapse
Affiliation(s)
- Qing-Zhang Tuo
- Department of Geriatrics and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Shu-Ting Zhang
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Peng Lei
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| |
Collapse
|
16
|
Huang R, Zhang C, Wang X, Hu H. PPARγ in Ischemia-Reperfusion Injury: Overview of the Biology and Therapy. Front Pharmacol 2021; 12:600618. [PMID: 33995008 PMCID: PMC8117354 DOI: 10.3389/fphar.2021.600618] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 03/11/2021] [Indexed: 12/12/2022] Open
Abstract
Ischemia-reperfusion injury (IRI) is a complex pathophysiological process that is often characterized as a blood circulation disorder caused due to various factors (such as traumatic shock, surgery, organ transplantation, burn, and thrombus). Severe metabolic dysregulation and tissue structure destruction are observed upon restoration of blood flow to the ischemic tissue. Theoretically, IRI can occur in various tissues and organs, including the kidney, liver, myocardium, and brain, among others. The advances made in research regarding restoring tissue perfusion in ischemic areas have been inadequate with regard to decreasing the mortality and infarct size associated with IRI. Hence, the clinical treatment of patients with severe IRI remains a thorny issue. Peroxisome proliferator-activated receptor γ (PPARγ) is a member of a superfamily of nuclear transcription factors activated by agonists and is a promising therapeutic target for ameliorating IRI. Therefore, this review focuses on the role of PPARγ in IRI. The protective effects of PPARγ, such as attenuating oxidative stress, inhibiting inflammatory responses, and antagonizing apoptosis, are described, envisaging certain therapeutic perspectives.
Collapse
Affiliation(s)
- Ruizhen Huang
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chiyu Zhang
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xing Wang
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Honglin Hu
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
17
|
Chung Y, Kim Y, Yun N, Oh YJ. Dysregulated autophagy is linked to BAX oligomerization and subsequent cytochrome c release in 6-hydroxydopmaine-treated neuronal cells. Biochem Biophys Res Commun 2021; 548:20-26. [PMID: 33631669 DOI: 10.1016/j.bbrc.2021.02.045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 02/10/2021] [Indexed: 12/26/2022]
Abstract
Autophagy and apoptosis are essential physiological pathways that are required to maintain cellular homeostasis. Therefore, it is suggested that dysregulation in both pathways is linked to several disease states. Moreover, the crosstalk between autophagy and apoptosis plays an important role in pathophysiological processes associated with several neurodegenerative disorders. We have previously reported that 6-hydroxydopamine (6-OHDA)-triggered reactive oxygen species (ROS) induces dysregulated autophagy, and that a dysregulated autophagic flux contributes to caspase-dependent neuronal apoptosis. Based on our previous findings, we specifically aimed to elucidate the molecular mechanisms underlying the potential role of dysregulated autophagy in apoptotic neurodegeneration. The disuccinimidyl suberate (DSS) cross-linking assay and immunological analyses indicated that exposure of several types of cells to 6-OHDA resulted in BAX activation and subsequent oligomerization. Pharmacological inhibition and genetic perturbation of autophagy prevented 6-OHDA-induced BAX oligomerization and subsequent release of mitochondrial cytochrome c into the cytosol and caspase activation. These events were independent of expression levels of XIAP. Taken together, our results suggest that BAX oligomerization comprises a critical step by which 6-OHDA-induced dysregulated autophagy mediates neuronal apoptosis.
Collapse
Affiliation(s)
- Yuhyun Chung
- Department of Systems Biology, Yonsei University College of Life Science and Biotechnology, 50 Yonsei-ro Seodaemun-gu, Seoul, 03722, South Korea
| | - Yoonkyung Kim
- Department of Systems Biology, Yonsei University College of Life Science and Biotechnology, 50 Yonsei-ro Seodaemun-gu, Seoul, 03722, South Korea
| | - Nuri Yun
- Department of Systems Biology, Yonsei University College of Life Science and Biotechnology, 50 Yonsei-ro Seodaemun-gu, Seoul, 03722, South Korea.
| | - Young J Oh
- Department of Systems Biology, Yonsei University College of Life Science and Biotechnology, 50 Yonsei-ro Seodaemun-gu, Seoul, 03722, South Korea.
| |
Collapse
|
18
|
Haque MN, Hannan MA, Dash R, Choi SM, Moon IS. The potential LXRβ agonist stigmasterol protects against hypoxia/reoxygenation injury by modulating mitophagy in primary hippocampal neurons. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 81:153415. [PMID: 33285471 DOI: 10.1016/j.phymed.2020.153415] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 10/29/2020] [Accepted: 11/04/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Neuronal excitotoxicity induces a plethora of downstream signaling pathways, resulting in the calcium overload-induced excitotoxic cell death, a well-known phenomenon in cerebrovascular and neurodegenerative disorders. The naturally occurring phytosterol, stigmasterol (ST) is known for its potential role in cholesterol homeostasis and neuronal development. However, the ability of ST to protect against the induced excitotoxicity in hippocampal neurons has not been investigated yet. PURPOSE The present study aimed to investigate whether ST could protect against hypoxia/reoxygenation (H/R)-induced excitotoxicity in hippocampal neurons. METHODS After H/R, neurons were initially subjected to trypan blue exclusion assay for the assessment of cell viability. Live staining using fluorescence dyes namely JC-1 (5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolyl-carbocyanine iodide), DCFDA (2',7'-dichlorofluorescein diacetate) and FM1-43 (N-(3-triethylammoniumpropyl)-4-(4-(dibutylamino)styryl) were used to measure MMP, ROS and synaptic vesicle pool size. Immunostaining was performed to analyze the expression levels of vesicular glutamate transporter 1 (VGLUT1), N-methyl-D-acetate receptor subunit 2B (GluN2B), LC3BII, p62, and PTEN induced protein kinase 1 (PINK1) in neuron after H/R. Western blotting was carried out to measure the protein expression of GluN2B. The molecular dynamics simulation was employed to elucidate the LXRβ agonistic conformation of ST. RESULT Pre-incubation of neuronal cultures with ST (20 μM) protected against excitotoxicity, and attenuated reactive oxygen species (ROS) generation, double-stranded DNA break, and mitochondrial membrane potential (MMP) loss. ST treatment also resulted in the downregulation of the expressions of VGLUT1 and GluN2B and the reduction of the size of recyclable synaptic vesicle (SV) pool. Like LXRβ agonist GW3695, ST suppressed the expression of GluN2B. Furthermore, ST induced mitophagy through upregulating the expressions of LC3BII, p62, and PINK1. The molecular simulation study showed that ST interacted with the ligand binding domain of liver X receptor β (LXRβ), a known binding receptor of ST, through multiple hydrogen bonding. CONCLUSION Collectively, these findings revealed that ST exhibited a promising neuroprotective effect by regulating both pre- and post-synaptic events following H/R, particularly, attenuation of GluN2B-mediated excitotoxicity and oxidative stress, and induction of mitophagy, and suggested that ST might be a therapeutic promise against ischemic stroke and its associated neurological disorders.
Collapse
Affiliation(s)
- Md Nazmul Haque
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea; Department of Fisheries Biology and Genetics, Patuakhali Science and Technology University, Patuakhali 8602, Bangladesh
| | - Md Abdul Hannan
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea; Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Raju Dash
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea
| | - Sung Min Choi
- Department of Pediatrics, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea
| | - Il Soo Moon
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea.
| |
Collapse
|
19
|
Kuang Y, Zheng X, Zhang L, Ai X, Venkataramani V, Kilic E, Hermann DM, Majid A, Bähr M, Doeppner TR. Adipose-derived mesenchymal stem cells reduce autophagy in stroke mice by extracellular vesicle transfer of miR-25. J Extracell Vesicles 2020; 10:e12024. [PMID: 33304476 PMCID: PMC7710129 DOI: 10.1002/jev2.12024] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 09/25/2020] [Accepted: 10/12/2020] [Indexed: 12/16/2022] Open
Abstract
Grafted mesenchymal stem cells (MSCs) yield neuroprotection in preclinical stroke models by secreting extracellular vesicles (EVs). The neuroprotective cargo of EVs, however, has not yet been identified. To investigate such cargo and its underlying mechanism, primary neurons were exposed to oxygen-glucose-deprivation (OGD) and cocultured with adipose-derived MSCs (ADMSCs) or ADMSC-secreted EVs. Under such conditions, both ADMSCs and ADMSC-secreted EVs significantly reduced neuronal death. Screening for signalling cascades being involved in the interaction between ADMSCs and neurons revealed a decreased autophagic flux as well as a declined p53-BNIP3 activity in neurons receiving either treatment paradigm. However, the aforementioned effects were reversed when ADMSCs were pretreated with the inhibitor of exosomal secretion GW4869 or when Hrs was knocked down. In light of miR-25-3p being the most highly expressed miRNA in ADMSC-EVs interacting with the p53 pathway, further in vitro work focused on this pathway. Indeed, a miR-25-3p oligonucleotide mimic reduced cell death, whereas the anti-oligonucleotide increased autophagic flux and cell death by modulating p53-BNIP3 signalling in primary neurons exposed to OGD. Likewise, native ADMSC-EVs but not EVs obtained from ADMSCs pretreated with the anti-miR-25-3p oligonucleotide (ADMSC-EVsanti-miR-25-3p) confirmed the aforementioned in vitro observations in C57BL/6 mice exposed to cerebral ischemia. The infarct size was reduced, and neurological recovery was increased in mice treated with native ADMSC-EVs when compared to ADMSC-EVsanti-miR-25-3p. ADMSCs induce neuroprotection by improved autophagic flux through secreted EVs containing miR-25-3p. Hence, our work uncovers a novel key factor in naturally secreted ADMSC-EVs for the regulation of autophagy and induction of neuroprotection in a preclinical stroke model.
Collapse
Affiliation(s)
- Yaoyun Kuang
- University Medical Center GoettingenDepartment of NeurologyGoettingenGermany
| | - Xuan Zheng
- University Medical Center GoettingenDepartment of NeurologyGoettingenGermany
| | - Lin Zhang
- University Medical Center GoettingenDepartment of NeurologyGoettingenGermany
| | - Xiaoyu Ai
- University Medical Center GoettingenDepartment of NeurologyGoettingenGermany
| | - Vivek Venkataramani
- University Medical Center GoettingenInstitute for PathologyGoettingenGermany
| | - Ertugrul Kilic
- Istanbul Medipol UniversityRegenerative and Restorative Medical Research CenterIstanbulTurkey
| | - Dirk M. Hermann
- Department of NeurologyUniversity Hospital EssenUniversity of Duisburg‐EssenEssenGermany
| | - Arshad Majid
- Sheffield Institute for Translational NeuroscienceUniversity of SheffieldSheffieldUK
| | - Mathias Bähr
- University Medical Center GoettingenDepartment of NeurologyGoettingenGermany
| | - Thorsten R. Doeppner
- University Medical Center GoettingenDepartment of NeurologyGoettingenGermany
- Istanbul Medipol UniversityRegenerative and Restorative Medical Research CenterIstanbulTurkey
| |
Collapse
|
20
|
Activate or Inhibit? Implications of Autophagy Modulation as a Therapeutic Strategy for Alzheimer's Disease. Int J Mol Sci 2020; 21:ijms21186739. [PMID: 32937909 PMCID: PMC7554997 DOI: 10.3390/ijms21186739] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/01/2020] [Accepted: 09/04/2020] [Indexed: 12/19/2022] Open
Abstract
Neurodegenerative diseases result in a range of conditions depending on the type of proteinopathy, genes affected or the location of the degeneration in the brain. Proteinopathies such as senile plaques and neurofibrillary tangles in the brain are prominent features of Alzheimer’s disease (AD). Autophagy is a highly regulated mechanism of eliminating dysfunctional organelles and proteins, and plays an important role in removing these pathogenic intracellular protein aggregates, not only in AD, but also in other neurodegenerative diseases. Activating autophagy is gaining interest as a potential therapeutic strategy for chronic diseases featuring protein aggregation and misfolding, including AD. Although autophagy activation is a promising intervention, over-activation of autophagy in neurodegenerative diseases that display impaired lysosomal clearance may accelerate pathology, suggesting that the success of any autophagy-based intervention is dependent on lysosomal clearance being functional. Additionally, the effects of autophagy activation may vary significantly depending on the physiological state of the cell, especially during proteotoxic stress and ageing. Growing evidence seems to favour a strategy of enhancing the efficacy of autophagy by preventing or reversing the impairments of the specific processes that are disrupted. Therefore, it is essential to understand the underlying causes of the autophagy defect in different neurodegenerative diseases to explore possible therapeutic approaches. This review will focus on the role of autophagy during stress and ageing, consequences that are linked to its activation and caveats in modulating this pathway as a treatment.
Collapse
|
21
|
Fakih W, Mroueh A, Salah H, Eid AH, Obeid M, Kobeissy F, Darwish H, El-Yazbi AF. Dysfunctional cerebrovascular tone contributes to cognitive impairment in a non-obese rat model of prediabetic challenge: Role of suppression of autophagy and modulation by anti-diabetic drugs. Biochem Pharmacol 2020; 178:114041. [DOI: 10.1016/j.bcp.2020.114041] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 05/14/2020] [Indexed: 12/16/2022]
|
22
|
Li C, Li J, Xu G, Sun H. Influence of Chronic Ethanol Consumption on Apoptosis and Autophagy Following Transient Focal Cerebral Ischemia in Male Mice. Sci Rep 2020; 10:6164. [PMID: 32273547 PMCID: PMC7145844 DOI: 10.1038/s41598-020-63213-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 03/24/2020] [Indexed: 12/18/2022] Open
Abstract
Stroke remains one of the leading causes of permanent disability and death worldwide. Apoptosis and autophagy are two key elements involved in ischemic brain damage. Ethanol is a commonly used and abused chemical substance that affects the prognosis of ischemic stroke. We determined the influence of chronic ethanol consumption on apoptosis and autophagy following transient focal cerebral ischemia. Male C57BL/6 J mice were randomly divided into three groups and gavage fed with 0.7 and 2.8 g/kg/day ethanol or volume-matched water daily for 8 weeks. DNA fragmentation, TUNEL-positive neurons, cleaved caspase-3-positive neurons, translocation of mitochondrial cytochrome C and apoptosis inducing factor (AIF), LC3B-positive neurons, and expression of LC3B, Beclin-1 and Bcl-2 in peri-infarct cortex were evaluated at 24 hours of reperfusion after a 90-minute unilateral middle cerebral artery occlusion (MCAO). Cerebral ischemia/reperfusion (I/R) injury was significantly improved in the 0.7 g/kg/d ethanol group but worsened in the 2.8 g/kg/d ethanol group. DNA fragmentation was significantly increased at 24 hours of reperfusion in all groups. However, the magnitude of the increase was significantly less in the 0.7 g/kg/d ethanol group. In addition, both cleaved caspase-3-positive neurons and TUNEL-positive neurons were significantly less in 0.7 g/kg/d ethanol group. Furthermore, translocation of mitochondrial cytochrome C and AIF was significantly alleviated in the 0.7 g/kg/d ethanol group. On the other hand, baseline expression of LC3B was significantly reduced in the 2.8 g/kg/d ethanol group. Post-ischemic expression of LC3B and LC3B-positive neurons were significantly attenuated in both 0.7 and 2.8 g/kg/d ethanol groups. Moreover, although post-ischemic expression of Beclin-1 was not altered in the ethanol groups, post-ischemic expression of Bcl-2 was significantly greater in both 0.7 and 2.8 g/kg/d ethanol groups. Our findings suggest that light ethanol consumption may protect against cerebral I/R injury by suppressing post-ischemic apoptosis, whereas heavy ethanol consumption may exacerbate cerebral I/R injury by suppressing autophagy.
Collapse
Affiliation(s)
- Chun Li
- Department of Cellular Biology & Anatomy, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Jiyu Li
- Department of Cellular Biology & Anatomy, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Guodong Xu
- Department of Cellular Biology & Anatomy, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Hong Sun
- Department of Cellular Biology & Anatomy, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA.
| |
Collapse
|
23
|
Mitoma H, Buffo A, Gelfo F, Guell X, Fucà E, Kakei S, Lee J, Manto M, Petrosini L, Shaikh AG, Schmahmann JD. Consensus Paper. Cerebellar Reserve: From Cerebellar Physiology to Cerebellar Disorders. CEREBELLUM (LONDON, ENGLAND) 2020; 19:131-153. [PMID: 31879843 PMCID: PMC6978437 DOI: 10.1007/s12311-019-01091-9] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cerebellar reserve refers to the capacity of the cerebellum to compensate for tissue damage or loss of function resulting from many different etiologies. When the inciting event produces acute focal damage (e.g., stroke, trauma), impaired cerebellar function may be compensated for by other cerebellar areas or by extracerebellar structures (i.e., structural cerebellar reserve). In contrast, when pathological changes compromise cerebellar neuronal integrity gradually leading to cell death (e.g., metabolic and immune-mediated cerebellar ataxias, neurodegenerative ataxias), it is possible that the affected area itself can compensate for the slowly evolving cerebellar lesion (i.e., functional cerebellar reserve). Here, we examine cerebellar reserve from the perspective of the three cornerstones of clinical ataxiology: control of ocular movements, coordination of voluntary axial and appendicular movements, and cognitive functions. Current evidence indicates that cerebellar reserve is potentiated by environmental enrichment through the mechanisms of autophagy and synaptogenesis, suggesting that cerebellar reserve is not rigid or fixed, but exhibits plasticity potentiated by experience. These conclusions have therapeutic implications. During the period when cerebellar reserve is preserved, treatments should be directed at stopping disease progression and/or limiting the pathological process. Simultaneously, cerebellar reserve may be potentiated using multiple approaches. Potentiation of cerebellar reserve may lead to compensation and restoration of function in the setting of cerebellar diseases, and also in disorders primarily of the cerebral hemispheres by enhancing cerebellar mechanisms of action. It therefore appears that cerebellar reserve, and the underlying plasticity of cerebellar microcircuitry that enables it, may be of critical neurobiological importance to a wide range of neurological/neuropsychiatric conditions.
Collapse
Affiliation(s)
- H Mitoma
- Medical Education Promotion Center, Tokyo Medical University, Tokyo, Japan.
| | - A Buffo
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, 10126, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, 10043, Orbassano, Italy
| | - F Gelfo
- Department of Human Sciences, Guglielmo Marconi University, 00193, Rome, Italy
- IRCCS Fondazione Santa Lucia, 00179, Rome, Italy
| | - X Guell
- Department of Neurology, Massachusetts General Hospital, Ataxia Unit, Cognitive Behavioral Neurology Unit, Laboratory for Neuroanatomy and Cerebellar Neurobiology, Harvard Medical School, Boston, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, USA
| | - E Fucà
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, 10126, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, 10043, Orbassano, Italy
- Child and Adolescent Neuropsychiatry Unit, Bambino Gesù Children's Hospital, 00165, Rome, Italy
| | - S Kakei
- Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - J Lee
- Komatsu University, Komatsu, Japan
| | - M Manto
- Unité des Ataxies Cérébelleuses, Service de Neurologie, CHU-Charleroi, 6000, Charleroi, Belgium
- Service des Neurosciences, University of Mons, 7000, Mons, Belgium
| | - L Petrosini
- IRCCS Fondazione Santa Lucia, 00179, Rome, Italy
| | - A G Shaikh
- Louis Stokes Cleveland VA Medical Center, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - J D Schmahmann
- Department of Neurology, Massachusetts General Hospital, Ataxia Unit, Cognitive Behavioral Neurology Unit, Laboratory for Neuroanatomy and Cerebellar Neurobiology, Harvard Medical School, Boston, USA
| |
Collapse
|
24
|
Brown RA, Voit A, Srikanth MP, Thayer JA, Kingsbury TJ, Jacobson MA, Lipinski MM, Feldman RA, Awad O. mTOR hyperactivity mediates lysosomal dysfunction in Gaucher's disease iPSC-neuronal cells. Dis Model Mech 2019; 12:dmm038596. [PMID: 31519738 PMCID: PMC6826018 DOI: 10.1242/dmm.038596] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 09/06/2019] [Indexed: 12/20/2022] Open
Abstract
Bi-allelic GBA1 mutations cause Gaucher's disease (GD), the most common lysosomal storage disorder. Neuronopathic manifestations in GD include neurodegeneration, which can be severe and rapidly progressive. GBA1 mutations are also the most frequent genetic risk factors for Parkinson's disease. Dysfunction of the autophagy-lysosomal pathway represents a key pathogenic event in GBA1-associated neurodegeneration. Using an induced pluripotent stem cell (iPSC) model of GD, we previously demonstrated that lysosomal alterations in GD neurons are linked to dysfunction of the transcription factor EB (TFEB). TFEB controls the coordinated expression of autophagy and lysosomal genes and is negatively regulated by the mammalian target of rapamycin complex 1 (mTORC1). To further investigate the mechanism of autophagy-lysosomal pathway dysfunction in neuronopathic GD, we examined mTORC1 kinase activity in GD iPSC neuronal progenitors and differentiated neurons. We found that mTORC1 is hyperactive in GD cells as evidenced by increased phosphorylation of its downstream protein substrates. We also found that pharmacological inhibition of glucosylceramide synthase enzyme reversed mTORC1 hyperactivation, suggesting that increased mTORC1 activity is mediated by the abnormal accumulation of glycosphingolipids in the mutant cells. Treatment with the mTOR inhibitor Torin1 upregulated lysosomal biogenesis and enhanced autophagic clearance in GD neurons, confirming that lysosomal dysfunction is mediated by mTOR hyperactivation. Further analysis demonstrated that increased TFEB phosphorylation by mTORC1 results in decreased TFEB stability in GD cells. Our study uncovers a new mechanism contributing to autophagy-lysosomal pathway dysfunction in GD, and identifies the mTOR complex as a potential therapeutic target for treatment of GBA1-associated neurodegeneration.
Collapse
Affiliation(s)
- Robert A Brown
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Antanina Voit
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Manasa P Srikanth
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Julia A Thayer
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Tami J Kingsbury
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- University of Maryland Center for Stem Cell Biology and Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Marlene A Jacobson
- Moulder Center for Drug Discovery Research, Temple University School of Pharmacy, Philadelphia, PA 19140, USA
| | - Marta M Lipinski
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Ricardo A Feldman
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Ola Awad
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
25
|
Wu C, Yan X, Liao Y, Liao L, Huang S, Zuo Q, Zhou L, Gao L, Wang Y, Lin J, Li S, Wang K, Ge X, Song H, Yang R, Lu F. Increased perihematomal neuron autophagy and plasma thrombin-antithrombin levels in patients with intracerebral hemorrhage: An observational study. Medicine (Baltimore) 2019; 98:e17130. [PMID: 31574813 PMCID: PMC6775380 DOI: 10.1097/md.0000000000017130] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Animal studies have demonstrated that autophagy was involved in neuronal damage after intracerebral hemorrhage (ICH). Several studies showed thrombin-antithrombin (TAT) plasma levels were elevated in patients with ICH. In this study, we aimed to evaluate if autophagy occurred in patients with ICH; and the relationship between the severity of brain injury and plasma TAT levels.A novel tissue harvesting device was used during hematoma removal surgery to collect loose fragments of tissue surrounding the affected brain area in 27 ICH patients with hematoma volumes of >30 mL in the basal ganglia. Control tissues were obtained from patients who underwent surgery for arteriovenous malformation (n = 25). Transmission electron microscopy (TEM) and immunohistochemistry for autophagy-related proteins were used to evaluate the ultrastructural and morphologic cellular characteristics; and the extent of autophagy in the recovered tissue specimens. Stroke severity was assessed by using the Glasgow Coma Scale (GCS) and the National Institutes of Health Stroke Scale (NIHSS). An enzyme-linked immunosorbent assay (ELISA) was used to measure plasma TAT levels.Transmission electron microscopy showed autophagosomes and autolysosomes exist in neurons surrounding the hematoma, but not in the control tissues. The number of cells containing autophagic vacuoles correlated with the severity of brain injury. Immunohistochemistry showed strong LC3, beclin 1, and cathepsin D staining in ICH tissue specimens. Plasma TAT levels correlated positively with autophagic cells and ICH severity (P < .01).Autophagy was induced in perihematomal neurons after ICH. Autophagy and plasma TAT levels correlated positively with severity of brain injury. These results suggest that autophagy and increased plasma TAT levels may contribute to the secondary damage in ICH patients.
Collapse
Affiliation(s)
- Chenghan Wu
- Department of Neurology, Second Affiliated Clinical College of Fujian University of Traditional Chinese Medicine
| | - Xiaohua Yan
- Department of Neurosurgery and TCM, Fujian Provincial Hospital
| | - Yuansheng Liao
- Department of Neurology, Second Affiliated Clinical College of Fujian University of Traditional Chinese Medicine
| | - Lianming Liao
- Central Laboratory, Union Hospital of Fujian Medical University
| | - Shengyue Huang
- Department of Neurosurgery and TCM, Fujian Provincial Hospital
| | - Quanting Zuo
- Department of Neurology, Second Affiliated Clinical College of Fujian University of Traditional Chinese Medicine
| | - Linying Zhou
- Laboratory of Electron Microscopy, Department of Pathology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Lili Gao
- Department of Neurology, Second Affiliated Clinical College of Fujian University of Traditional Chinese Medicine
| | - Yinzhou Wang
- Department of Neurosurgery and TCM, Fujian Provincial Hospital
| | - Jushan Lin
- Department of Neurology, Second Affiliated Clinical College of Fujian University of Traditional Chinese Medicine
| | - Shiju Li
- Department of Neurology, Second Affiliated Clinical College of Fujian University of Traditional Chinese Medicine
| | - Kaiyu Wang
- Department of Neurosurgery and TCM, Fujian Provincial Hospital
| | - Xiuming Ge
- Department of Neurology, Second Affiliated Clinical College of Fujian University of Traditional Chinese Medicine
| | - Hailong Song
- Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, MO
| | - Ruiling Yang
- Department of Neurology, Second Affiliated Clinical College of Fujian University of Traditional Chinese Medicine
| | - Feng Lu
- Fujian University of Traditional Chinese Medicine, Fuzhou, China
| |
Collapse
|
26
|
Wang X, Liu Z, Fan F, Hou Y, Yang H, Meng X, Zhang Y, Ren F. Microfluidic chip and its application in autophagy detection. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.05.043] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
27
|
Li P, Yang S, Hu D, Wei D, Lu J, Zheng H, Nie S, Liu G, Yang H. Enterovirus 71 VP1 promotes mouse Schwann cell autophagy via ER stress‑mediated PMP22 upregulation. Int J Mol Med 2019; 44:759-767. [PMID: 31173167 DOI: 10.3892/ijmm.2019.4218] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 05/28/2019] [Indexed: 12/09/2022] Open
Abstract
Enterovirus 71 (EV71) accounts for the majority of hand, foot and mouth disease‑related deaths due to fatal neurological complications. EV71 structural viral protein 1 (VP1) promotes viral replication by inducing autophagy in neuron cells, but the effect of VP1 on myelin cells is unclear. The present study aimed to investigate the role and mechanism of VP1 in autophagy of mouse Schwann cells. An EV71 VP1‑expressing vector (pEGFP‑C3‑VP1) was generated and transfected into mouse Schwann cells. Transmission electron microscopy and western blot analysis for microtubule‑associated protein 1 light chain 3 α (LC3) II (an autophagy marker) were used to assess autophagy. Reverse transcription‑quantitative PCR and immunofluorescence were performed to determine the expression of peripheral myelin protein 22 (PMP22). Small interfering RNA against PMP22 was used to investigate the role of PMP22 in mouse Schwann cell autophagy. Salubrinal [a selective endoplasmic reticulum (ER) stress inhibitor] was used to determine whether PMP22 expression was affected by ER stress. The present results indicated that VP1 promoted mouse Schwann cell autophagy. Overexpression of VP1 upregulated PMP22. PMP22 deficiency downregulated LC3II and thus inhibited autophagy. Furthermore, PMP22 expression was significantly suppressed by salubrinal. In conclusion, VP1 promoted mouse Schwann cell autophagy through upregulation of ER stress‑mediated PMP22 expression. Therefore, the VP1/ER stress/PMP22 autophagy axis may be a potential therapeutic target for EV71 infection‑induced fatal neuronal damage.
Collapse
Affiliation(s)
- Peiqing Li
- Department of Pediatric Emergency, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510623, P.R. China
| | - Sida Yang
- Department of Pediatric Neurology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510623, P.R. China
| | - Dandan Hu
- Department of Pediatric Neurology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510623, P.R. China
| | - Dan Wei
- Paediatric Intensive Care Unit, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jing Lu
- Guangdong Provincial Institution of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong 511430, P.R. China
| | - Huanying Zheng
- Guangdong Provincial Institution of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong 511430, P.R. China
| | - Shushan Nie
- Department of Pediatric Emergency, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510623, P.R. China
| | - Guangming Liu
- Department of Pediatric Emergency, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510623, P.R. China
| | - Haomei Yang
- Department of Pediatric Emergency, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510623, P.R. China
| |
Collapse
|
28
|
Bar-Yosef T, Damri O, Agam G. Dual Role of Autophagy in Diseases of the Central Nervous System. Front Cell Neurosci 2019; 13:196. [PMID: 31191249 PMCID: PMC6548059 DOI: 10.3389/fncel.2019.00196] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 04/18/2019] [Indexed: 12/14/2022] Open
Abstract
Autophagy is a vital lysosomal degradation and recycling pathway in the eukaryotic cell, responsible for maintaining an intricate balance between cell survival and cell death, necessary for neuronal survival and function. This dual role played by autophagy raises the question whether this process is a protective or a destructive pathway, the contributor of neuronal cell death or a failed attempt to repair aberrant processes? Deregulated autophagy at different steps of the pathway, whether excessive or downregulated, has been proposed to be associated with neurodegenerative disorders such as Alzheimer's-, Huntington's-, and Parkinson's-disease, known for their intracellular accumulation of protein aggregates. Recent observations of impaired autophagy also appeared in psychiatric disorders such as schizophrenia and bipolar disorder suggesting an additional contribution to the pathophysiology of mental illness. Here we review the current understanding of autophagy's role in various neuropsychiatric disorders and, hitherto, the prevailing new potential autophagy-related therapeutic strategies for their treatment.
Collapse
Affiliation(s)
- Tamara Bar-Yosef
- Department of Clinical Biochemistry and Pharmacology and Psychiatry Research Unit, Faculty of Health Sciences, Ben-Gurion University of the Negev and Mental Health Center, Beersheba, Israel
| | - Odeya Damri
- Department of Clinical Biochemistry and Pharmacology and Psychiatry Research Unit, Faculty of Health Sciences, Ben-Gurion University of the Negev and Mental Health Center, Beersheba, Israel
| | - Galila Agam
- Department of Clinical Biochemistry and Pharmacology and Psychiatry Research Unit, Faculty of Health Sciences, Ben-Gurion University of the Negev and Mental Health Center, Beersheba, Israel
| |
Collapse
|
29
|
Huang YG, Tao W, Yang SB, Wang JF, Mei ZG, Feng ZT. Autophagy: novel insights into therapeutic target of electroacupuncture against cerebral ischemia/ reperfusion injury. Neural Regen Res 2019; 14:954-961. [PMID: 30761999 PMCID: PMC6404501 DOI: 10.4103/1673-5374.250569] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Electroacupuncture is known as an effective adjuvant therapy in ischemic cerebrovascular disease. However, its underlying mechanisms remain unclear. Studies suggest that autophagy, which is essential for cell survival and cell death, is involved in cerebral ischemia reperfusion injury and might be modulate by electroacupuncture therapy in key ways. This paper aims to provide novel insights into a therapeutic target of electroacupuncture against cerebral ischemia/reperfusion injury from the perspective of autophagy. Here we review recent studies on electroacupuncture regulation of autophagy-related markers such as UNC-51-like kinase-1 complex, Beclin1, microtubule-associated protein-1 light chain 3, p62, and autophagosomes for treating cerebral ischemia/reperfusion injury. The results of these studies show that electroacupuncture may affect the initiation of autophagy, vesicle nucleation, expansion and maturation of autophagosomes, as well as fusion and degradation of autophagolysosomes. Moreover, studies indicate that electroacupuncture probably modulates autophagy by activating the mammalian target of the rapamycin signaling pathway. This review thus indicates that autophagy is a therapeutic target of electroacupuncture treatment against ischemic cerebrovascular diseases.
Collapse
Affiliation(s)
- Ya-Guang Huang
- Medical College of China Three Gorges University, Yichang, Hubei Province, China
| | - Wei Tao
- Medical College of China Three Gorges University, Yichang, Hubei Province, China
| | - Song-Bai Yang
- Yichang Hospital of Traditional Chinese Medicine, Clinical Medical College of Traditional Chinese Medicine, China Three Gorges University, Yichang, Hubei Province, China
| | - Jin-Feng Wang
- Medical College of China Three Gorges University, Yichang, Hubei Province, China
| | - Zhi-Gang Mei
- Medical College of China Three Gorges University; Yichang Hospital of Traditional Chinese Medicine, Clinical Medical College of Traditional Chinese Medicine, China Three Gorges University, Yichang, Hubei Province, China
| | - Zhi-Tao Feng
- Medical College of China Three Gorges University, Yichang, Hubei Province, China
| |
Collapse
|
30
|
Chung Y, Lee J, Jung S, Lee Y, Cho JW, Oh YJ. Dysregulated autophagy contributes to caspase-dependent neuronal apoptosis. Cell Death Dis 2018; 9:1189. [PMID: 30538224 PMCID: PMC6289995 DOI: 10.1038/s41419-018-1229-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 10/29/2018] [Accepted: 11/20/2018] [Indexed: 02/08/2023]
Abstract
Autophagy is a regulated, intracellular degradation process that delivers unnecessary or dysfunctional cargo to the lysosome. Autophagy has been viewed as an adaptive survival response to various stresses, whereas in other cases, it promotes cell death. Therefore, both deficient and excessive autophagy may lead to cell death. In this study, we specifically attempted to explore whether and how dysregulated autophagy contributes to caspase-dependent neuronal cell death induced by the neurotoxin 6-hydroxydopamine (6-OHDA). Ultrastructural and biochemical analyses indicated that MN9D neuronal cells and primary cultures of cortical neurons challenged with 6-OHDA displayed typical features of autophagy. Cotreatment with chloroquine and monitoring autophagic flux by a tandem mRFP-EGFP-tagged LC3 probe indicated that the autophagic phenomena were primarily caused by dysregulated autophagic flux. Consequently, cotreatment with an antioxidant but not with a pan-caspase inhibitor significantly blocked 6-OHDA-stimulated dysregulated autophagy. These results indicated that 6-OHDA-induced generation of reactive oxygen species (ROS) played a critical role in triggering neuronal death by causing dysregulated autophagy and subsequent caspase-dependent apoptosis. The results of the MTT reduction, caspase-3 activation, and TUNEL assays indicated that pharmacological inhibition of autophagy using 3-methyladenine or deletion of the autophagy-related gene Atg5 significantly inhibited 6-OHDA-induced cell death. Taken together, our results suggest that abnormal induction of autophagic flux promotes apoptotic neuronal cell death, and that the treatments limiting dysregulated autophagy may have a strong neuroprotective potential.
Collapse
Affiliation(s)
- Yuhyun Chung
- Department of Systems Biology, Yonsei University College of Life Science and Biotechnology, Seoul, 120-749, South Korea
| | - Juhyung Lee
- Department of Systems Biology, Yonsei University College of Life Science and Biotechnology, Seoul, 120-749, South Korea
| | - Shinae Jung
- Department of Systems Biology, Yonsei University College of Life Science and Biotechnology, Seoul, 120-749, South Korea
| | - Yangsin Lee
- Glycosylation Network Research Center, Yonsei University, Seoul, 120-749, South Korea
| | - Jin Won Cho
- Department of Systems Biology, Yonsei University College of Life Science and Biotechnology, Seoul, 120-749, South Korea.,Glycosylation Network Research Center, Yonsei University, Seoul, 120-749, South Korea.,Interdisciplinary Program of Integrated OMICS for Biomedical Science, Yonsei University, Seoul, 120-749, South Korea
| | - Young J Oh
- Department of Systems Biology, Yonsei University College of Life Science and Biotechnology, Seoul, 120-749, South Korea.
| |
Collapse
|
31
|
Sevoflurane Postconditioning Inhibits Autophagy Through Activation of the Extracellular Signal-Regulated Kinase Cascade, Alleviating Hypoxic-Ischemic Brain Injury in Neonatal Rats. Neurochem Res 2018; 44:347-356. [PMID: 30460641 DOI: 10.1007/s11064-018-2682-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 11/08/2018] [Accepted: 11/13/2018] [Indexed: 01/04/2023]
Abstract
Hypoxic-ischemic brain injury (HIBI) in neonates is one of the major contributors of newborn death and cognitive impairment. Numerous animal studies have demonstrated that autophagy is substantially increased in HIBI and that sevoflurane postconditioning (SPC) can attenuate HIBI. However, if SPC-induced neuroprotection inhibits autophagy in HIBI remains unknown. To investigate if cerebral protection induced by SPC is related to decreased autophagy in the setting of HIBI. Postnatal rats at day 7 (P7) were randomly assigned to 7 different groups: Sham, HIBI, SPC-HIBI, HIBI + rapamycin, SPC-HIBI + rapamycin, HIBI + p-extracellular signal-regulated kinase (p-ERK) inhibitor, and SPC-HIBI + p-ERK inhibitor. To induce HIBI, neonatal rats underwent left common carotid artery ligation, followed by 2 h of hypoxia (8% O2). Rats in the SPC groups were treated with 1 minimum alveolar concentration ([MAC], 2.4%) SPC for 30 min after HIBI induction. Markers of autophagy and expression of ERK cascade components were measured in the rat brains after 24 h. Spatial learning and memory function were examined 29-34 days after administration of an autophagy agonist or a p-ERK inhibitor. The expression of microtubule-associated proteins 1A/1B, light chain 3B II (LC3-II) and tuberous sclerosis complex 2 (TSC2) were decreased in the SPC-HIBI group compared to the HIBI group. Expression of the p62 sequestosome 1 (P62/SQSTM1) protein, p-ERK/ERK, phospho-mammalian target of rapamycin (p-mTOR) and phospho-p70S6 were increased in SPC-HIBI group. Rats within the SPC-HIBI groups that also received the p-ERK inhibitor or autophagy inhibitor demonstrated reduced cross platform times and increased escape latency. Approximately 30 min of 2.4% SPC treatment in the P7 rat HIBI model attenuated excessive autophagy in the brain by elevating the ERK cascade. This finding provides additional insight into HIBI and identifies new targets for therapeutic approaches to treat HIBI.
Collapse
|
32
|
Descloux C, Ginet V, Rummel C, Truttmann AC, Puyal J. Enhanced autophagy contributes to excitotoxic lesions in a rat model of preterm brain injury. Cell Death Dis 2018; 9:853. [PMID: 30154458 PMCID: PMC6113308 DOI: 10.1038/s41419-018-0916-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 06/16/2018] [Accepted: 07/19/2018] [Indexed: 01/01/2023]
Abstract
Cystic periventricular leukomalacia is commonly diagnosed in premature infants, resulting from severe hypoxic-ischemic white matter injury, and also involving some grey matter damage. Very few is known concerning the cell death pathways involved in these types of premature cerebral lesions. Excitotoxicity is a predominant mechanism of hypoxic-ischemic injury in the developing brain. Concomitantly, it has been recently shown that autophagy could be enhanced in excitotoxic conditions switching this physiological intracellular degradation system to a deleterious process. We here investigated the role of autophagy in a validated rodent model of preterm excitotoxic brain damage mimicking in some aspects cystic periventricular leukomalacia. An excitotoxic lesion affecting periventricular white and grey matter was induced by injecting ibotenate, a glutamate analogue, in the subcortical white matter (subcingulum area) of five-day old rat pups. Ibotenate enhanced autophagy in rat brain dying neurons at 24 h as shown by increased presence of autophagosomes (increased LC3-II and LC3-positive dots) and enhanced autophagic degradation (SQSTM1 reduction and increased number and size of lysosomes (LAMP1- and CATHEPSIN B-positive vesicles)). Co-injection of the pharmacological autophagy inhibitor 3-methyladenine prevented not only autophagy induction but also CASPASE-3 activation and calpain-dependent cleavage of SPECTRIN 24 h after the insult, thus providing a strong reduction of the long term brain injury (16 days after ibotenate injection) including lateral ventricle dilatation, decreases in cerebral tissue volume and in subcortical white matter thickness. The autophagy-dependent neuroprotective effect of 3-methyladenine was confirmed in primary cortical neuronal cultures using not only pharmacological but also genetic autophagy inhibition of the ibotenate-induced autophagy. Strategies inhibiting autophagy could then represent a promising neuroprotective approach in the context of severe preterm brain injuries.
Collapse
Affiliation(s)
- Céline Descloux
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland.,Clinic of Neonatology, Department of Women, Mother and Child, University Hospital Center and University of Lausanne, Lausanne, Switzerland
| | - Vanessa Ginet
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Coralie Rummel
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Anita C Truttmann
- Clinic of Neonatology, Department of Women, Mother and Child, University Hospital Center and University of Lausanne, Lausanne, Switzerland.
| | - Julien Puyal
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
33
|
Pellacani C, Costa LG. Role of autophagy in environmental neurotoxicity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 235:791-805. [PMID: 29353798 DOI: 10.1016/j.envpol.2017.12.102] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 12/08/2017] [Accepted: 12/25/2017] [Indexed: 06/07/2023]
Abstract
Human exposure to neurotoxic pollutants (e.g. metals, pesticides and other chemicals) is recognized as a key risk factor in the pathogenesis of neurodegenerative disorders. Emerging evidence indicates that an alteration in autophagic pathways may be correlated with the onset of the neurotoxicity resulting from chronic exposure to these pollutants. In fact, autophagy is a natural process that permits to preserving cell homeostasis, through the seizure and degradation of the cytosolic damaged elements. However, when an excessive level of intracellular damage is reached, the autophagic process may also induce cell death. A correct modulation of specific stages of autophagy is important to maintain the correct balance in the organism. In this review, we highlight the critical role that autophagy plays in neurotoxicity induced by the most common classes of environmental contaminants. The understanding of this mechanism may be helpful to discover a potential therapeutic strategy to reduce side effects induced by these compounds.
Collapse
Affiliation(s)
- C Pellacani
- Dept. of Medicine and Surgery, University of Parma, Parma, Italy.
| | - L G Costa
- Dept. of Medicine and Surgery, University of Parma, Parma, Italy; Dept. of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|
34
|
Fricker M, Tolkovsky AM, Borutaite V, Coleman M, Brown GC. Neuronal Cell Death. Physiol Rev 2018; 98:813-880. [PMID: 29488822 PMCID: PMC5966715 DOI: 10.1152/physrev.00011.2017] [Citation(s) in RCA: 746] [Impact Index Per Article: 106.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/23/2017] [Accepted: 07/10/2017] [Indexed: 02/07/2023] Open
Abstract
Neuronal cell death occurs extensively during development and pathology, where it is especially important because of the limited capacity of adult neurons to proliferate or be replaced. The concept of cell death used to be simple as there were just two or three types, so we just had to work out which type was involved in our particular pathology and then block it. However, we now know that there are at least a dozen ways for neurons to die, that blocking a particular mechanism of cell death may not prevent the cell from dying, and that non-neuronal cells also contribute to neuronal death. We review here the mechanisms of neuronal death by intrinsic and extrinsic apoptosis, oncosis, necroptosis, parthanatos, ferroptosis, sarmoptosis, autophagic cell death, autosis, autolysis, paraptosis, pyroptosis, phagoptosis, and mitochondrial permeability transition. We next explore the mechanisms of neuronal death during development, and those induced by axotomy, aberrant cell-cycle reentry, glutamate (excitoxicity and oxytosis), loss of connected neurons, aggregated proteins and the unfolded protein response, oxidants, inflammation, and microglia. We then reassess which forms of cell death occur in stroke and Alzheimer's disease, two of the most important pathologies involving neuronal cell death. We also discuss why it has been so difficult to pinpoint the type of neuronal death involved, if and why the mechanism of neuronal death matters, the molecular overlap and interplay between death subroutines, and the therapeutic implications of these multiple overlapping forms of neuronal death.
Collapse
Affiliation(s)
- Michael Fricker
- Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales , Australia ; Department of Clinical Neurosciences, University of Cambridge , Cambridge , United Kingdom ; Neuroscience Institute, Lithuanian University of Health Sciences , Kaunas , Lithuania ; and Department of Biochemistry, University of Cambridge , Cambridge , United Kingdom
| | - Aviva M Tolkovsky
- Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales , Australia ; Department of Clinical Neurosciences, University of Cambridge , Cambridge , United Kingdom ; Neuroscience Institute, Lithuanian University of Health Sciences , Kaunas , Lithuania ; and Department of Biochemistry, University of Cambridge , Cambridge , United Kingdom
| | - Vilmante Borutaite
- Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales , Australia ; Department of Clinical Neurosciences, University of Cambridge , Cambridge , United Kingdom ; Neuroscience Institute, Lithuanian University of Health Sciences , Kaunas , Lithuania ; and Department of Biochemistry, University of Cambridge , Cambridge , United Kingdom
| | - Michael Coleman
- Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales , Australia ; Department of Clinical Neurosciences, University of Cambridge , Cambridge , United Kingdom ; Neuroscience Institute, Lithuanian University of Health Sciences , Kaunas , Lithuania ; and Department of Biochemistry, University of Cambridge , Cambridge , United Kingdom
| | - Guy C Brown
- Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales , Australia ; Department of Clinical Neurosciences, University of Cambridge , Cambridge , United Kingdom ; Neuroscience Institute, Lithuanian University of Health Sciences , Kaunas , Lithuania ; and Department of Biochemistry, University of Cambridge , Cambridge , United Kingdom
| |
Collapse
|
35
|
Ren G, Zhou Y, Liang G, Yang B, Yang M, King A, Wei H. General Anesthetics Regulate Autophagy via Modulating the Inositol 1,4,5-Trisphosphate Receptor: Implications for Dual Effects of Cytoprotection and Cytotoxicity. Sci Rep 2017; 7:12378. [PMID: 28959036 PMCID: PMC5620053 DOI: 10.1038/s41598-017-11607-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 08/23/2017] [Indexed: 02/07/2023] Open
Abstract
General anesthetics are both neuroprotective and neurotoxic with unclear mechanisms. General anesthetics may control cell survival via their effects on autophagy by activation of type 1 inositol triphosphate receptor (InsP3R-1). DT40 or SH-SY5Y cells with only or over 99% expression of InsP3R-1 were treated with isoflurane or propofol. Cell viability was determined by MTT reduction or LDH release assays. Apoptosis was determined by measuring Caspase-3 or by TUNEL assay. Autophagy activity was determined by measuring LC3 II and P62. We evaluated mitochondrial integrity using MitoTracker Green and cytosolic ATP levels. Fura2-AM was used to measure the concentrations of cytosolic calcium ([Ca2+]c). Propofol significantly increased peak and integrated calcium response (P < 0.001) in cells with InsP3R-1 but not in cells with triple knockout of InsP3R. Both propofol and isoflurane increased autophagy induction (P < 0.05) in an mTOR- and InsP3R- activity dependent manner. Short exposure to propofol adequately activated InsP3-1 to provide sufficient autophagy for cytoprotection, while prolonged exposure to propofol induced cell apoptosis via impairment of autophagy flux through over activation of InsP3-1. Propofol damaged mitochondria and decreased cytosolic ATP. The effects of general anesthetics on apoptosis and autophagy are closely integrated; both are caused by differential activation of the type 1 InsP3R.
Collapse
Affiliation(s)
- Gongyi Ren
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yachun Zhou
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Ge Liang
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Bin Yang
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Meirong Yang
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Alexander King
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Huafeng Wei
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
36
|
Assessment of Autophagy in Neurons and Brain Tissue. Cells 2017; 6:cells6030025. [PMID: 28832529 PMCID: PMC5617971 DOI: 10.3390/cells6030025] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 08/01/2017] [Accepted: 08/21/2017] [Indexed: 12/31/2022] Open
Abstract
Autophagy is a complex process that controls the transport of cytoplasmic components into lysosomes for degradation. This highly conserved proteolytic system involves dynamic and complex processes, using similar molecular elements and machinery from yeast to humans. Moreover, autophagic dysfunction may contribute to a broad spectrum of mammalian diseases. Indeed, in adult tissues, where the capacity for regeneration or cell division is low or absent (e.g., in the mammalian brain), the accumulation of proteins/peptides that would otherwise be recycled or destroyed may have pathological implications. Indeed, such changes are hallmarks of pathologies, like Alzheimer’s, Prion or Parkinson’s disease, known as proteinopathies. However, it is still unclear whether such dysfunction is a cause or an effect in these conditions. One advantage when analysing autophagy in the mammalian brain is that almost all the markers described in different cell lineages and systems appear to be present in the brain, and even in neurons. By contrast, the mixture of cell types present in the brain and the differentiation stage of such neurons, when compared with neurons in culture, make translating basic research to the clinic less straightforward. Thus, the purpose of this review is to describe and discuss the methods available to monitor autophagy in neurons and in the mammalian brain, a process that is not yet fully understood, focusing primarily on mammalian macroautophagy. We will describe some general features of neuronal autophagy that point to our focus on neuropathologies in which macroautophagy may be altered. Indeed, we centre this review around the hypothesis that enhanced autophagy may be able to provide therapeutic benefits in some brain pathologies, like Alzheimer’s disease, considering this pathology as one of the most prevalent proteinopathies.
Collapse
|
37
|
Li SP, Zhu JH, Zhao FY, Zheng Z, Mu DZ, Qu Y. [Expression rhythm of autophagic gene in neurons of neonatal rats with hypoxia/ischemia and its regulatory mechanism]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2017; 19:938-944. [PMID: 28774372 PMCID: PMC7390055 DOI: 10.7499/j.issn.1008-8830.2017.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 06/27/2017] [Indexed: 06/07/2023]
Abstract
OBJECTIVE To investigate the expression of autophagic gene and circadian gene in the neurons of neonatal rats after hypoxic-ischemic brain damage and the mechanism of nerve injury induced by hypoxia/ischemia. METHODS Twelve Sprague-Dawley (SD) rats were randomly divided into hypoxic-ischemic (HI) group and sham-operation group, with 6 rats in each group. Ligation of the right common carotid artery and hypoxic treatment were performed to establish a model of hypoxic-ischemic brain damage. Western blot was used to measure the expression of the circadian protein Clock in the cortex and hippocampus. The neurons of the rats were cultured in vitro and randomly divided into oxygen glucose deprivation (OGD) group and control group. The neurons in the OGD group were treated with DMEM medium without glucose or serum to simulate ischemic state, and hypoxic treatment was performed to establish an in vitro model of hypoxic-ischemic brain damage. Western blot was used to measure the expression of autophagy-related proteins Beclin1 and LC3 and Clock protein at different time points. The changes in the expression of Beclin1 and LC3 were measured after the expression of Clock protein in neurons was inhibited by small interfering RNA technique. RESULTS The expression of autophagy-related proteins Beclin1 and LC3Ⅱ in neurons cultured in vitro displayed a rhythmic fluctuation; after OGD treatment, the expression of Beclin1 and LC3Ⅱ gradually increased over the time of treatment and no longer had a rhythmic fluctuation. Compared with the sham-operation group, the HI group had a significant reduction in the expression of Clock protein in the cortex and hippocampus (P<0.05). After OGD treatment, the neurons cultured in vitro had a significant reduction in the expression of Clock protein (P<0.05). Compared with the negative control group, the Clock gene inhibition group had significant reductions in the expression of Beclin1 and LC3Ⅱ (P<0.05). CONCLUSIONS Hypoxia/ischemia induces the disorder in the expression rhythm of autophagy-related proteins Beclin1 and LC3, and the mechanism may be associated with the fact that the circadian protein Clock participates in the regulation of the expression of Beclin1 and LC3.
Collapse
Affiliation(s)
- Shi-Ping Li
- Department of Pediatrics, Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second Hospital, Sichuan University, Chengdu 610041, China.
| | | | | | | | | | | |
Collapse
|
38
|
Fucà E, Guglielmotto M, Boda E, Rossi F, Leto K, Buffo A. Preventive motor training but not progenitor grafting ameliorates cerebellar ataxia and deregulated autophagy in tambaleante mice. Neurobiol Dis 2017; 102:49-59. [PMID: 28237314 DOI: 10.1016/j.nbd.2017.02.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 01/20/2017] [Accepted: 02/20/2017] [Indexed: 01/14/2023] Open
Abstract
Treatment options for degenerative cerebellar ataxias are currently very limited. A large fraction of such disorders is represented by hereditary cerebellar ataxias, whose familiar transmission facilitates an early diagnosis and may possibly allow to start preventive treatments before the onset of the neurodegeneration and appearance of first symptoms. In spite of the heterogeneous aetiology, histological alterations of ataxias often include the primary degeneration of the cerebellar cortex caused by Purkinje cells (PCs) loss. Thus, approaches aimed at replacing or preserving PCs could represent promising ways of disease management. In the present study, we compared the efficacy of two different preventive strategies, namely cell replacement and motor training. We used tambaleante (tbl) mice as a model for progressive ataxia caused by selective loss of PCs and evaluated the effectiveness of the preventive transplantation of healthy PCs into early postnatal tbl cerebella, in terms of PC replacement and functional preservation. On the other hand, we investigated the effects of motor training on PC survival, cerebellar circuitry and their behavioral correlates. Our results demonstrate that, despite a good survival rate and integration of grafted PCs, the adopted grafting protocol could not alleviate the ataxic symptoms in tbl mice. Conversely, preventive motor training increases PCs survival with a moderate positive impact on the motor phenotype.
Collapse
Affiliation(s)
- Elisa Fucà
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, Italy; Neuroscience Institute Cavalieri Ottolenghi, Regione Gonzole, 10043 Orbassano, Turin, Italy.
| | - Michela Guglielmotto
- Neuroscience Institute Cavalieri Ottolenghi, Regione Gonzole, 10043 Orbassano, Turin, Italy
| | - Enrica Boda
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, Italy; Neuroscience Institute Cavalieri Ottolenghi, Regione Gonzole, 10043 Orbassano, Turin, Italy
| | - Ferdinando Rossi
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, Italy
| | - Ketty Leto
- Neuroscience Institute Cavalieri Ottolenghi, Regione Gonzole, 10043 Orbassano, Turin, Italy
| | - Annalisa Buffo
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, Italy; Neuroscience Institute Cavalieri Ottolenghi, Regione Gonzole, 10043 Orbassano, Turin, Italy.
| |
Collapse
|
39
|
Xu LX, Tang XJ, Yang YY, Li M, Jin MF, Miao P, Ding X, Wang Y, Li YH, Sun B, Feng X. Neuroprotective effects of autophagy inhibition on hippocampal glutamate receptor subunits after hypoxia-ischemia-induced brain damage in newborn rats. Neural Regen Res 2017; 12:417-424. [PMID: 28469656 PMCID: PMC5399719 DOI: 10.4103/1673-5374.202945] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Autophagy has been suggested to participate in the pathology of hypoxic-ischemic brain damage (HIBD). However, its regulatory role in HIBD remains unclear and was thus examined here using a rat model. To induce HIBD, the left common carotid artery was ligated in neonatal rats, and the rats were subjected to hypoxia for 2 hours. Some of these rats were intraperitoneally pretreated with the autophagy inhibitor 3-methyladenine (10 mM in 10 μL) or the autophagy stimulator rapamycin (1 g/kg) 1 hour before artery ligation. Our findings demonstrated that hypoxia-ischemia-induced hippocampal injury in neonatal rats was accompanied by increased expression levels of the autophagy-related proteins light chain 3 and Beclin-1 as well as of the AMPA receptor subunit GluR1, but by reduced expression of GluR2. Pretreatment with the autophagy inhibitor 3-methyladenine blocked hypoxia-ischemia-induced hippocampal injury, whereas pretreatment with the autophagy stimulator rapamycin significantly augmented hippocampal injury. Additionally, 3-methyladenine pretreatment blocked the hypoxia-ischemia-induced upregulation of GluR1 and downregulation of GluR2 in the hippocampus. By contrast, rapamycin further elevated hippocampal GluR1 levels and exacerbated decreased GluR2 expression levels in neonates with HIBD. Our results indicate that autophagy inhibition favors the prevention of HIBD in neonatal rats, at least in part, through normalizing GluR1 and GluR2 expression.
Collapse
Affiliation(s)
- Li-Xiao Xu
- Institute of Pediatric Research, Affiliated Children's Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Xiao-Juan Tang
- Department of Neonatology, Affiliated Children's Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Yuan-Yuan Yang
- Department of Neonatology, Affiliated Children's Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Mei Li
- Institute of Pediatric Research, Affiliated Children's Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Mei-Fang Jin
- Institute of Pediatric Research, Affiliated Children's Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Po Miao
- Department of Neonatology, Affiliated Children's Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Xin Ding
- Department of Neonatology, Affiliated Children's Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Ying Wang
- Department of Neonatology, Affiliated Children's Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Yan-Hong Li
- Department of Neonatology, Affiliated Children's Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Bin Sun
- Department of Neonatology, Affiliated Children's Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Xing Feng
- Department of Neonatology, Affiliated Children's Hospital of Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
40
|
Vicente Miranda H, Gomes MA, Branco-Santos J, Breda C, Lázaro DF, Lopes LV, Herrera F, Giorgini F, Outeiro TF. Glycation potentiates neurodegeneration in models of Huntington's disease. Sci Rep 2016; 6:36798. [PMID: 27857176 PMCID: PMC5114697 DOI: 10.1038/srep36798] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 10/21/2016] [Indexed: 11/19/2022] Open
Abstract
Protein glycation is an age-dependent posttranslational modification associated with several neurodegenerative disorders, including Alzheimer’s and Parkinson’s diseases. By modifying amino-groups, glycation interferes with folding of proteins, increasing their aggregation potential. Here, we studied the effect of pharmacological and genetic manipulation of glycation on huntingtin (HTT), the causative protein in Huntington’s disease (HD). We observed that glycation increased the aggregation of mutant HTT exon 1 fragments associated with HD (HTT72Q and HTT103Q) in yeast and mammalian cell models. We found that glycation impairs HTT clearance thereby promoting its intracellular accumulation and aggregation. Interestingly, under these conditions autophagy increased and the levels of mutant HTT released to the culture medium decreased. Furthermore, increased glycation enhanced HTT toxicity in human cells and neurodegeneration in fruit flies, impairing eclosion and decreasing life span. Overall, our study provides evidence that glycation modulates HTT exon-1 aggregation and toxicity, and suggests it may constitute a novel target for therapeutic intervention in HD.
Collapse
Affiliation(s)
- Hugo Vicente Miranda
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056, Lisboa, Portugal.,Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Marcos António Gomes
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Joana Branco-Santos
- Department of Genetics, University of Leicester, Leicester LE1 7RH, United Kingdom.,Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Estação Agronomica Nacional, Av. da República, Oeiras 2780-157, Portugal
| | - Carlo Breda
- Department of Genetics, University of Leicester, Leicester LE1 7RH, United Kingdom
| | - Diana F Lázaro
- Department of Neurodegeneration and Restorative Research, Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), University Medical Center Göttingen, Waldweg 33, 37073 Göttingen, Germany
| | - Luísa Vaqueiro Lopes
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Federico Herrera
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Estação Agronomica Nacional, Av. da República, Oeiras 2780-157, Portugal
| | - Flaviano Giorgini
- Department of Genetics, University of Leicester, Leicester LE1 7RH, United Kingdom
| | - Tiago Fleming Outeiro
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056, Lisboa, Portugal.,Department of Neurodegeneration and Restorative Research, Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), University Medical Center Göttingen, Waldweg 33, 37073 Göttingen, Germany.,Max Planck Institute for Experimental Medicine, Göttingen, Germany
| |
Collapse
|
41
|
Probucol inhibits neural cell apoptosis via inhibition of mTOR signaling pathway after spinal cord injury. Neuroscience 2016; 329:193-200. [PMID: 27223630 DOI: 10.1016/j.neuroscience.2016.05.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 05/09/2016] [Accepted: 05/09/2016] [Indexed: 02/07/2023]
Abstract
Autophagy plays an essential role in neurodevelopment, axonal guidance, neuropathic pain remission, and neuronal survival. Inhibiting the mammalian target of rapamycin (mTOR) signaling pathway can induce the occurrence of autophagy. In this study, we initially detected the effect of probucol on autophagy after spinal cord injury (SCI) by intraperitoneally injecting spinal cord-injured rats with probucol for 7days. The levels of Beclin1 and LC3B were evidently enhanced at 7days post-operation. However, the increase in the phosphorylated AMP-activated protein kinase (AMPK) protein and the decrease in ribosomal protein S6 kinase p70 subtype (p70S6K) phosphorylation level simultaneously occurred after SCI. Moreover, the expression levels of apoptosis-related proteins of Caspase-3, Caspase-9, and Bax were significantly reduced. Immunofluorescence results indicated that the expression of Caspase-3 protein was evidently decreased and that of Beclin-1 protein was increased by probucol. Nissl staining and Basso, Beattie, and Bresnahan scores showed that the quantity and function of motor neurons were visibly preserved by probucol after SCI. This study showed that probucol inhibited the mTOR signaling pathway to induce autophagy, reduce neural cell apoptosis and promote recovery of neurological function after SCI.
Collapse
|
42
|
Yerbury JJ, Ooi L, Dillin A, Saunders DN, Hatters DM, Beart PM, Cashman NR, Wilson MR, Ecroyd H. Walking the tightrope: proteostasis and neurodegenerative disease. J Neurochem 2016; 137:489-505. [DOI: 10.1111/jnc.13575] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 02/03/2016] [Accepted: 02/04/2016] [Indexed: 02/06/2023]
Affiliation(s)
- Justin J. Yerbury
- Proteostasis and Disease Research Centre; School of Biological Sciences; Faculty of Science, Medicine and Health; University of Wollongong; Wollongong New South Wales Australia
- Illawarra Health and Medical Research Institute; Wollongong; New South Wales Australia
| | - Lezanne Ooi
- Proteostasis and Disease Research Centre; School of Biological Sciences; Faculty of Science, Medicine and Health; University of Wollongong; Wollongong New South Wales Australia
- Illawarra Health and Medical Research Institute; Wollongong; New South Wales Australia
| | - Andrew Dillin
- Department of Molecular and Cell Biology; Li Ka Shing Center for Biomedical and Health Sciences; The University of California; California USA
- Howard Hughes Medical Institute; The University of California; Berkeley California USA
| | - Darren N. Saunders
- School of Medical Sciences; Faculty of Medicine; University of New South Wales; Randwick New South Wales Australia
- The Kinghorn Cancer Centre; Garvan Institute of Medical Research; Darlinghurst New South Wales Australia
| | - Danny M. Hatters
- Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute; University of Melbourne; Parkville Victoria Australia
| | - Philip M. Beart
- Florey Institute of Neuroscience and Mental Health; University of Melbourne; Parkville Victoria Australia
| | - Neil R. Cashman
- Department of Medicine (Neurology); University of British Columbia and Vancouver Coastal Health Research Institute; Brain Research Centre; University of British Columbia; Vancouver British Columbia Canada
| | - Mark R. Wilson
- Proteostasis and Disease Research Centre; School of Biological Sciences; Faculty of Science, Medicine and Health; University of Wollongong; Wollongong New South Wales Australia
- Illawarra Health and Medical Research Institute; Wollongong; New South Wales Australia
| | - Heath Ecroyd
- Proteostasis and Disease Research Centre; School of Biological Sciences; Faculty of Science, Medicine and Health; University of Wollongong; Wollongong New South Wales Australia
- Illawarra Health and Medical Research Institute; Wollongong; New South Wales Australia
| |
Collapse
|
43
|
Srivastava A, Kumar V, Pandey A, Jahan S, Kumar D, Rajpurohit CS, Singh S, Khanna VK, Pant AB. Adoptive Autophagy Activation: a Much-Needed Remedy Against Chemical Induced Neurotoxicity/Developmental Neurotoxicity. Mol Neurobiol 2016; 54:1797-1807. [PMID: 26887381 DOI: 10.1007/s12035-016-9778-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 02/03/2016] [Indexed: 01/14/2023]
Abstract
The profound significance of autophagy as a cell survival mechanism under conditions of metabolic stress is a well-proven fact. Nearly a decade-long research in this area has led scientists to unearth various roles played by autophagy other than just being an auto cell death mechanism. It is implicated as a vital cell survival pathway for clearance of all the aberrant cellular materials in case of cellular injury, metastasis, disease states, cellular stress, neurodegeneration and so on. In this review, we emphasise the critical role of autophagy in the environmental stressors-induced neurotoxicity and its therapeutic implications for the same. We also attempt to shed some light on the possible protective role of autophagy in developmental neurotoxicity (DNT) which is a rapidly growing health issue of the human population at large and hence a point of rising concern amongst researchers. The intimate association between DNT and neurodegenerative disorders strongly indicates towards adopting autophagy activation as a much-needed remedy for DNT.
Collapse
Affiliation(s)
- A Srivastava
- System Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), MG Marg, Lucknow, Uttar Pradesh, 226001, India
- BBD College of Dental Sciences, BBD University, Faizabad Road, Lucknow, Uttar Pradesh, 227015, India
| | - V Kumar
- System Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), MG Marg, Lucknow, Uttar Pradesh, 226001, India
| | - A Pandey
- System Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), MG Marg, Lucknow, Uttar Pradesh, 226001, India
| | - S Jahan
- System Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), MG Marg, Lucknow, Uttar Pradesh, 226001, India
- Academy of Scientific & Innovative Research, CSIR-IITR Campus, Lucknow, India
| | - D Kumar
- System Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), MG Marg, Lucknow, Uttar Pradesh, 226001, India
- Academy of Scientific & Innovative Research, CSIR-IITR Campus, Lucknow, India
| | - C S Rajpurohit
- System Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), MG Marg, Lucknow, Uttar Pradesh, 226001, India
- Academy of Scientific & Innovative Research, CSIR-IITR Campus, Lucknow, India
| | - S Singh
- System Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), MG Marg, Lucknow, Uttar Pradesh, 226001, India
- Academy of Scientific & Innovative Research, CSIR-IITR Campus, Lucknow, India
| | - V K Khanna
- System Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), MG Marg, Lucknow, Uttar Pradesh, 226001, India
- Academy of Scientific & Innovative Research, CSIR-IITR Campus, Lucknow, India
| | - A B Pant
- System Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), MG Marg, Lucknow, Uttar Pradesh, 226001, India.
- Academy of Scientific & Innovative Research, CSIR-IITR Campus, Lucknow, India.
| |
Collapse
|
44
|
Li Y, Sun W, Han S, Li J, Ding S, Wang W, Yin Y. IGF-1-Involved Negative Feedback of NR2B NMDA Subunits Protects Cultured Hippocampal Neurons Against NMDA-Induced Excitotoxicity. Mol Neurobiol 2016; 54:684-696. [DOI: 10.1007/s12035-015-9647-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 12/16/2015] [Indexed: 11/28/2022]
|
45
|
Abstract
Excessive ethanol exposure is detrimental to the brain. The developing brain is particularly vulnerable to ethanol such that prenatal ethanol exposure causes fetal alcohol spectrum disorders (FASD). Neuronal loss in the brain is the most devastating consequence and is associated with mental retardation and other behavioral deficits observed in FASD. Since alcohol consumption during pregnancy has not declined, it is imperative to elucidate the underlying mechanisms and develop effective therapeutic strategies. One cellular mechanism that acts as a protective response for the central nervous system (CNS) is autophagy. Autophagy regulates lysosomal turnover of organelles and proteins within cells, and is involved in cell differentiation, survival, metabolism, and immunity. We have recently shown that ethanol activates autophagy in the developing brain. The autophagic preconditioning alleviates ethanol-induced neuron apoptosis, whereas inhibition of autophagy potentiates ethanol-stimulated reactive oxygen species (ROS) and exacerbates ethanol-induced neuroapoptosis. The expression of genes encoding proteins required for autophagy in the CNS is developmentally regulated; their levels are much lower during an ethanol-sensitive period than during an ethanol-resistant period. Ethanol may stimulate autophagy through multiple mechanisms; these include induction of oxidative stress and endoplasmic reticulum stress, modulation of MTOR and AMPK signaling, alterations in BCL2 family proteins, and disruption of intracellular calcium (Ca2+) homeostasis. This review discusses the most recent evidence regarding the involvement of autophagy in ethanol-mediated neurotoxicity as well as the potential therapeutic approach of targeting autophagic pathways.
Collapse
Key Words
- AD, Alzheimer disease
- ALS, autophagy-lysosome system
- AMPK, adenosine 5′-monophosphate-activated protein kinase;
- ATG, autophagy-related
- CNS, central nervous system
- ER, endoplasmic reticulum
- FASD, fetal alcohol spectrum disorders
- FOXO3, forkhead box O3
- GSK3B, glycogen synthase kinase 3 β
- HD, Huntington disease, HNSCs, hippocampal neural stem cells
- LC3, microtubule-associated protein 1 light chain 3
- MTOR, mechanistic target of rapamycin (serine/threonine kinase)
- MTORC1, MTOR complex 1
- NFE2L2, nuclear factor, erythroid 2-like 2
- NOX, NADPH oxidase
- PD, Parkinson disease
- PI3K, class I phosphoinositide 3-kinase
- ROS, reactive oxygen species
- SQSTM1/p62, sequestosome 1
- TSC1/2, tuberous sclerosis 1/ 2
- UPR, unfolded protein response
- alcohol
- alcoholism
- development
- fetal alcohol spectrum disorders
- neurodegeneration
- oxidative stress
- protein degradation
Collapse
Affiliation(s)
- Jia Luo
- a Department of Pharmacology and Nutritional Sciences ; University of Kentucky College of Medicine ; Lexington , KY USA
| |
Collapse
|
46
|
Awad O, Sarkar C, Panicker LM, Miller D, Zeng X, Sgambato JA, Lipinski MM, Feldman RA. Altered TFEB-mediated lysosomal biogenesis in Gaucher disease iPSC-derived neuronal cells. Hum Mol Genet 2015. [PMID: 26220978 DOI: 10.1093/hmg/ddv297] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Gaucher disease (GD) is caused by mutations in the GBA1 gene, which encodes the lysosomal enzyme glucocerebrosidase (GCase). The severe forms of GD are associated with neurodegeneration with either rapid (Type 2) or slow progression (Type 3). Although the neurodegenerative process in GD has been linked to lysosomal dysfunction, the mechanisms involved are largely unknown. To identify the lysosomal alterations in GD neurons and uncover the mechanisms involved, we used induced pluripotent stem cells (iPSCs) derived from patients with GD. In GD iPSC-derived neuronal cells (iPSC-NCs), GBA1 mutations caused widespread lysosomal depletion, and a block in autophagic flux due to defective lysosomal clearance of autophagosomes. Autophagy induction by rapamycin treatment in GD iPSC-NCs led to cell death. Further analysis showed that in GD iPSC-NCs, expression of the transcription factor EB (TFEB), the master regulator of lysosomal genes, and lysosomal gene expression, were significantly downregulated. There was also reduced stability of the TFEB protein and altered lysosomal protein biosynthesis. Treatment of mutant iPSC-NCs with recombinant GCase (rGCase) reverted the lysosomal depletion and autophagy block. The effect of rGCase on restoring lysosomal numbers in mutant cells was enhanced in the presence of overexpressed TFEB, but TFEB overexpression alone did not reverse the lysosomal depletion phenotype. Our results suggest that GBA1 mutations interfere with TFEB-mediated lysosomal biogenesis, and that the action of GCase in maintaining a functioning pool of lysosomes is exerted in part through TFEB. The lysosomal alterations described here are likely to be a major determinant in GBA1-associated neurodegeneration.
Collapse
Affiliation(s)
- Ola Awad
- Department of Microbiology and Immunology
| | | | | | | | - Xianmin Zeng
- Buck Institute for Age Research, Novato, CA, USA
| | | | - Marta M Lipinski
- Department of Anesthesiology, Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA and
| | | |
Collapse
|
47
|
Descloux C, Ginet V, Clarke PGH, Puyal J, Truttmann AC. Neuronal death after perinatal cerebral hypoxia-ischemia: Focus on autophagy-mediated cell death. Int J Dev Neurosci 2015. [PMID: 26225751 DOI: 10.1016/j.ijdevneu.2015.06.008] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Neonatal hypoxic-ischemic encephalopathy is a critical cerebral event occurring around birth with high mortality and neurological morbidity associated with long-term invalidating sequelae. In view of the great clinical importance of this condition and the lack of very efficacious neuroprotective strategies, it is urgent to better understand the different cell death mechanisms involved with the ultimate aim of developing new therapeutic approaches. The morphological features of three different cell death types can be observed in models of perinatal cerebral hypoxia-ischemia: necrotic, apoptotic and autophagic cell death. They may be combined in the same dying neuron. In the present review, we discuss the different cell death mechanisms involved in neonatal cerebral hypoxia-ischemia with a special focus on how autophagy may be involved in neuronal death, based: (1) on experimental models of perinatal hypoxia-ischemia and stroke, and (2) on the brains of human neonates who suffered from neonatal hypoxia-ischemia.
Collapse
Affiliation(s)
- C Descloux
- Department of Fundamental Neurosciences (DNF), University of Lausanne, Rue du Bugnon 9, 1005 Lausanne, Switzerland; Clinic of Neonatology, Department of Pediatrics and Pediatric Surgery, University Hospital Center and University of Lausanne, 1011 Lausanne, Vaud, Switzerland
| | - V Ginet
- Department of Fundamental Neurosciences (DNF), University of Lausanne, Rue du Bugnon 9, 1005 Lausanne, Switzerland
| | - P G H Clarke
- Department of Fundamental Neurosciences (DNF), University of Lausanne, Rue du Bugnon 9, 1005 Lausanne, Switzerland
| | - J Puyal
- Department of Fundamental Neurosciences (DNF), University of Lausanne, Rue du Bugnon 9, 1005 Lausanne, Switzerland; Clinic of Neonatology, Department of Pediatrics and Pediatric Surgery, University Hospital Center and University of Lausanne, 1011 Lausanne, Vaud, Switzerland
| | - A C Truttmann
- Department of Fundamental Neurosciences (DNF), University of Lausanne, Rue du Bugnon 9, 1005 Lausanne, Switzerland; Clinic of Neonatology, Department of Pediatrics and Pediatric Surgery, University Hospital Center and University of Lausanne, 1011 Lausanne, Vaud, Switzerland.
| |
Collapse
|
48
|
Yu J, Bao C, Dong Y, Liu X. Activation of autophagy in rat brain cells following focal cerebral ischemia reperfusion through enhanced expression of Atg1/pULK and LC3. Mol Med Rep 2015; 12:3339-3344. [PMID: 26018745 PMCID: PMC4526088 DOI: 10.3892/mmr.2015.3850] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 04/30/2015] [Indexed: 11/06/2022] Open
Abstract
The present study aimed to investigate the activation of Atg1/pULK, and LC3 in the cerebral cortex following focal cerebral ischemia reperfusion (CIR) injury, thereby examining its effect on autophagy in brain cells. Rat CIR models were established using the technique of middle cerebral artery occlusion. The neurological function score, TTC staining and the water content of brain tissue were used to evaluate the CIR model. Levels of autophagy in the brain cells were examined at different time‑points following CIR damage using electron microscopy. Immunohistochemistry and western blot analysis were also used for the qualitative and quantitative detection of levels of Atg1/pULK and LC3 in the cerebral cortex. Autophagy was observed in the early stage of CIR, and the expression of Atg1/pULK and LC3 were observed 1 h following CIR in the rats and reached peak expression levels after12 h, which following which the they gradually decreased. These results suggested Atg1/pULK and LC3 are key in the regulation of autophagy following CIR in the rat brain.
Collapse
Affiliation(s)
- Jingwei Yu
- Department of Histology and Embryology, Liaoning Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Cuifen Bao
- Key Laboratory of Molecular Cell Biology and New Drug Development, Liaoning Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Yanru Dong
- Department of Histology and Embryology, Liaoning Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Xia Liu
- Department of Histology and Embryology, Liaoning Medical University, Jinzhou, Liaoning 121001, P.R. China
| |
Collapse
|
49
|
Lin WJ, Kuang HY. Oxidative stress induces autophagy in response to multiple noxious stimuli in retinal ganglion cells. Autophagy 2015; 10:1692-701. [PMID: 25207555 PMCID: PMC4198355 DOI: 10.4161/auto.36076] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Retinal ganglion cells (RGCs) are the only afferent neurons that can transmit visual information to the brain. The death of RGCs occurs in the early stages of glaucoma, diabetic retinopathy, and many other retinal diseases. Autophagy is a highly conserved lysosomal pathway, which is crucial for maintaining cellular homeostasis and cell survival under stressful conditions. Research has established that autophagy exists in RGCs after increasing intraocular pressure (IOP), retinal ischemia, optic nerve transection (ONT), axotomy, or optic nerve crush. However, the mechanism responsible for defining how autophagy is induced in RGCs has not been elucidated. Accumulating data has pointed to an essential role of reactive oxygen species (ROS) in the activation of autophagy. RGCs have long axons with comparatively high densities of mitochondria. This makes them more sensitive to energy deficiency and vulnerable to oxidative stress. In this review, we explore the role of oxidative stress in the activation of autophagy in RGCs, and discuss the possible mechanisms that are involved in this process. We aim to provide a more theoretical basis of oxidative stress-induced autophagy, and provide innovative targets for therapeutic intervention in retinopathy.
Collapse
|
50
|
Ginet V, Pittet MP, Rummel C, Osterheld MC, Meuli R, Clarke PGH, Puyal J, Truttmann AC. Dying neurons in thalamus of asphyxiated term newborns and rats are autophagic. Ann Neurol 2014; 76:695-711. [PMID: 25146903 DOI: 10.1002/ana.24257] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 08/19/2014] [Accepted: 08/19/2014] [Indexed: 01/06/2023]
Abstract
OBJECTIVE Neonatal hypoxic-ischemic encephalopathy (HIE) still carries a high burden by its mortality and long-term neurological morbidity in survivors. Apart from hypothermia, there is no acknowledged therapy for HIE, reflecting the lack of mechanistic understanding of its pathophysiology. (Macro)autophagy, a physiological intracellular process of lysosomal degradation, has been proposed to be excessively activated in excitotoxic conditions such as HIE. The present study examines whether neuronal autophagy in the thalamus of asphyxiated human newborns or P7 rats is enhanced and related to neuronal death processes. METHODS Neuronal autophagy and cell death were evaluated in the thalamus (frequently injured in severe HIE) of both human newborns who died after severe HIE (n = 5) and P7 hypoxic-ischemic rats (Rice-Vannuci model). Autophagic (LC3, p62), lysosomal (LAMP1, cathepsins), and cell death (TUNEL, caspase-3) markers were studied by immunohistochemistry in human and rat brain sections, and by additional methods in rats (immunoblotting, histochemistry, and electron microscopy). RESULTS Following severe perinatal asphyxia in both humans and rats, thalamic neurons displayed up to 10-fold (p < 0.001) higher numbers of autophagosomes and lysosomes, implying an enhanced autophagic flux. The highly autophagic neurons presented strong features of apoptosis. These findings were confirmed and elucidated in more detail in rats. INTERPRETATION These results show for the first time that autophagy is enhanced in severe HIE in dying thalamic neurons of human newborns, as in rats. Experimental neuroprotective strategies targeting autophagy could thus be a promising lead to follow for the development of future therapeutic approaches.
Collapse
Affiliation(s)
- Vanessa Ginet
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|