1
|
Sun R, Wang YF, Yang X. Knockdown of IFIT3 ameliorates multiple sclerosis via selectively regulating M1 polarization of microglia in an experimental autoimmune encephalomyelitis model. Int Immunopharmacol 2024; 128:111501. [PMID: 38232539 DOI: 10.1016/j.intimp.2024.111501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/19/2024]
Abstract
The key to the treatment of multiple sclerosis (MS) is to promote the transition from inflammation-induced demyelination to remyelination. Polarization of microglia towards M1 or M2 phenotype is critical in this transition. Interferon induced protein with tetratricopeptide repeats 3 (IFIT3) is involved in inflammatory reaction and up-regulated in M1-polarized macrophages. However, its effect on microglia during MS has not been reported. In this paper, we demonstrated the important role of IFIT3 in selectively regulating microglia polarization. The expression of IFIT3 was increased when microglia were polarized towards M1, but did not change under M2 polarization. The knockdown of IFIT3 selectively inhibited M1 polarization, while M2 polarization was not affected by IFIT3 silencing. Furthermore, the activation of signal transducer and activator of transcription 1 (STAT1) and nuclear factor kappa-B (NF-ĸB) signaling in M1 polarized microglia was suppressed by downregulating IFIT3. In experimental autoimmune encephalitis (EAE) mice, an animal model of MS, IFIT3 expression was upregulated. The disease progression, inflammatory infiltration and demyelination in the EAE mice were alleviated by silencing IFIT3. The inhibitory effects of IFIT3 knockdown on M1 polarization and STAT1 and NF-ĸB pathways were also confirmed in the spinal cord of EAE mice. In summary, our findings suggest that IFIT3 selectively intensified microglia polarization towards the pro-inflammatory M1 phenotype, and may contribute to the progression of MS.
Collapse
Affiliation(s)
- Ran Sun
- Department of Neurology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Shenyang 110004, China
| | - Yan-Fang Wang
- Department of Orthopedics, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Shenyang 110004, China
| | - Xue Yang
- Department of Neurology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Shenyang 110004, China.
| |
Collapse
|
2
|
Ivan DC, Berve KC, Walthert S, Monaco G, Borst K, Bouillet E, Ferreira F, Lee H, Steudler J, Buch T, Prinz M, Engelhardt B, Locatelli G. Insulin-like growth factor-1 receptor controls the function of CNS-resident macrophages and their contribution to neuroinflammation. Acta Neuropathol Commun 2023; 11:35. [PMID: 36890580 PMCID: PMC9993619 DOI: 10.1186/s40478-023-01535-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 02/20/2023] [Indexed: 03/10/2023] Open
Abstract
Signaling by insulin-like growth factor-1 (IGF-1) is essential for the development of the central nervous system (CNS) and regulates neuronal survival and myelination in the adult CNS. In neuroinflammatory conditions including multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis (EAE), IGF-1 can regulate cellular survival and activation in a context-dependent and cell-specific manner. Notwithstanding its importance, the functional outcome of IGF-1 signaling in microglia/macrophages, which maintain CNS homeostasis and regulate neuroinflammation, remains undefined. As a result, contradictory reports on the disease-ameliorating efficacy of IGF-1 are difficult to interpret, together precluding its potential use as a therapeutic agent. To fill this gap, we here investigated the role of IGF-1 signaling in CNS-resident microglia and border associated macrophages (BAMs) by conditional genetic deletion of the receptor Igf1r in these cell types. Using a series of techniques including histology, bulk RNA sequencing, flow cytometry and intravital imaging, we show that absence of IGF-1R significantly impacted the morphology of both BAMs and microglia. RNA analysis revealed minor changes in microglia. In BAMs however, we detected an upregulation of functional pathways associated with cellular activation and a decreased expression of adhesion molecules. Notably, genetic deletion of Igf1r from CNS-resident macrophages led to a significant weight gain in mice, suggesting that absence of IGF-1R from CNS-resident myeloid cells indirectly impacts the somatotropic axis. Lastly, we observed a more severe EAE disease course upon Igf1r genetic ablation, thus highlighting an important immunomodulatory role of this signaling pathway in BAMs/microglia. Taken together, our work shows that IGF-1R signaling in CNS-resident macrophages regulates the morphology and transcriptome of these cells while significantly decreasing the severity of autoimmune CNS inflammation.
Collapse
Affiliation(s)
- Daniela C Ivan
- Theodor Kocher Institute, University of Bern, Freiestrasse 1, CH-3012, Bern, Switzerland
| | - Kristina Carolin Berve
- Theodor Kocher Institute, University of Bern, Freiestrasse 1, CH-3012, Bern, Switzerland
| | - Sabrina Walthert
- Theodor Kocher Institute, University of Bern, Freiestrasse 1, CH-3012, Bern, Switzerland
| | - Gianni Monaco
- Institute of Neuropathology, University of Freiburg, Freiburg, Germany
| | - Katharina Borst
- Institute of Neuropathology, University of Freiburg, Freiburg, Germany
| | - Elisa Bouillet
- Theodor Kocher Institute, University of Bern, Freiestrasse 1, CH-3012, Bern, Switzerland
| | - Filipa Ferreira
- Institute of Laboratory Animal Science, University of Zurich, Zurich, Switzerland
| | - Henry Lee
- Theodor Kocher Institute, University of Bern, Freiestrasse 1, CH-3012, Bern, Switzerland
| | - Jasmin Steudler
- Theodor Kocher Institute, University of Bern, Freiestrasse 1, CH-3012, Bern, Switzerland
| | - Thorsten Buch
- Institute of Laboratory Animal Science, University of Zurich, Zurich, Switzerland
| | - Marco Prinz
- Institute of Neuropathology, University of Freiburg, Freiburg, Germany.,Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Britta Engelhardt
- Theodor Kocher Institute, University of Bern, Freiestrasse 1, CH-3012, Bern, Switzerland
| | - Giuseppe Locatelli
- Theodor Kocher Institute, University of Bern, Freiestrasse 1, CH-3012, Bern, Switzerland.
| |
Collapse
|
3
|
Locatelli G, Marques-Ferreira F, Katsoulas A, Kalaitzaki V, Krueger M, Ingold-Heppner B, Walthert S, Sankowski R, Prazeres da Costa O, Dolga A, Huber M, Gold M, Culmsee C, Waisman A, Bechmann I, Milchevskaya V, Prinz M, Tresch A, Becher B, Buch T. IGF1R expression by adult oligodendrocytes is not required in the steady-state but supports neuroinflammation. Glia 2023; 71:616-632. [PMID: 36394300 DOI: 10.1002/glia.24299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 10/21/2022] [Accepted: 10/26/2022] [Indexed: 11/18/2022]
Abstract
In the central nervous system (CNS), insulin-like growth factor 1 (IGF-1) regulates myelination by oligodendrocyte (ODC) precursor cells and shows anti-apoptotic properties in neuronal cells in different in vitro and in vivo systems. Previous work also suggests that IGF-1 protects ODCs from cell death and enhances remyelination in models of toxin-induced and autoimmune demyelination. However, since evidence remains controversial, the therapeutic potential of IGF-1 in demyelinating CNS conditions is unclear. To finally shed light on the function of IGF1-signaling for ODCs, we deleted insulin-like growth factor 1 receptor (IGF1R) specifically in mature ODCs of the mouse. We found that ODC survival and myelin status were unaffected by the absence of IGF1R until 15 months of age, indicating that IGF-1 signaling does not play a major role in post-mitotic ODCs during homeostasis. Notably, the absence of IGF1R did neither affect ODC survival nor myelin status upon cuprizone intoxication or induction of experimental autoimmune encephalomyelitis (EAE), models for toxic and autoimmune demyelination, respectively. Surprisingly, however, the absence of IGF1R from ODCs protected against clinical neuroinflammation in the EAE model. Together, our data indicate that IGF-1 signaling is not required for the function and survival of mature ODCs in steady-state and disease.
Collapse
Affiliation(s)
- Giuseppe Locatelli
- Institute of Experimental Immunology, University of Zurich, Zurich.,Theodor Kocher Institute, University Bern, Bern, Switzerland
| | | | - Antonis Katsoulas
- Institute of Laboratory Animal Science, University of Zurich, Zurich
| | | | - Martin Krueger
- Institute of Anatomy, University of Leipzig, Leipzig, Germany
| | - Barbara Ingold-Heppner
- Institute of Pathology, Campus Mitte, Charité -Universitätsmedizin Berlin, Berlin, Germany
| | | | - Roman Sankowski
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Olivia Prazeres da Costa
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, Munich, Germany
| | - Amalia Dolga
- Institute for Pharmacology and Clinical Pharmacy, Philipps-Universität Marburg, Marburg, Germany.,Groningen Research Institute of Pharmacy, Department of Molecular Pharmacology, Faculty of Science and Engineering, University of Groningen, Groningen, The Netherlands
| | - Magdalena Huber
- Institute for Medical Microbiology and Hospital Hygiene, Philipps University of Marburg, Marburg, Germany
| | - Maike Gold
- Department of Neurology, Philipps University of Marburg, Marburg, Germany
| | - Carsten Culmsee
- Institute for Pharmacology and Clinical Pharmacy, Philipps-Universität Marburg, Marburg, Germany
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Ingo Bechmann
- Institute of Anatomy, University of Leipzig, Leipzig, Germany
| | - Vladislava Milchevskaya
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Institute of Medical Statistics and Computational Biology, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Marco Prinz
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Achim Tresch
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Institute of Medical Statistics and Computational Biology, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, Zurich
| | - Thorsten Buch
- Institute of Experimental Immunology, University of Zurich, Zurich.,Institute of Laboratory Animal Science, University of Zurich, Zurich.,Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, Munich, Germany
| |
Collapse
|
4
|
McCombe PA, Greer JM. Effects of biological sex and pregnancy in experimental autoimmune encephalomyelitis: It's complicated. Front Immunol 2022; 13:1059833. [PMID: 36518769 PMCID: PMC9742606 DOI: 10.3389/fimmu.2022.1059833] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 11/03/2022] [Indexed: 11/29/2022] Open
Abstract
Experimental autoimmune encephalomyelitis (EAE) can be induced in many animal strains by inoculation with central nervous system antigens and adjuvant or by the passive transfer of lymphocytes reactive with these antigens and is widely used as an animal model for multiple sclerosis (MS). There are reports that female sex and pregnancy affect EAE. Here we review the effects of biological sex and the effects of pregnancy on the clinical features (including disease susceptibility) and pathophysiology of EAE. We also review reports of the possible mechanisms underlying these differences. These include sex-related differences in the immune system and in the central nervous system, the effects of hormones and the sex chromosomes and molecules unique to pregnancy. We also review sex differences in the response to factors that can modify the course of EAE. Our conclusion is that the effects of biological sex in EAE vary amongst animal models and should not be widely extrapolated. In EAE, it is therefore essential that studies looking at the effects of biological sex or pregnancy give full information about the model that is used (i.e. animal strain, sex, the inducing antigen, timing of EAE induction in relation to pregnancy, etc.). In addition, it would be preferable if more than one EAE model were used, to show if any observed effects are generalizable. This is clearly a field that requires further work. However, understanding of the mechanisms of sex differences could lead to greater understanding of EAE, and suggest possible therapies for MS.
Collapse
Affiliation(s)
| | - Judith M. Greer
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
5
|
Shokouhi Targhi H, Mehrbod P, Fotouhi F, Amininasab M. In vitro anti-influenza assessment of anionic compounds ascorbate, acetate and citrate. Virol J 2022; 19:88. [PMID: 35606770 PMCID: PMC9125540 DOI: 10.1186/s12985-022-01823-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/11/2022] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Influenza A virus (IAV) infection remains a serious public health threat. Due to drug resistance and side effects of the conventional antiviral drugs, repurposing the available natural compounds with high tolerability and fewer side effects has attracted researchers' attention. The aim of this study was to screen in vitro anti-influenza activity of three anionic compounds ascorbate, acetate, and citrate. METHODS The non-cytotoxic concentration of the compounds was determined by MTT assay and examined for the activity against IAV in simultaneous, pre-, and post-penetration combination treatments over 1 h incubation on Madin-Darby Canine Kidney (MDCK) cell line. The virus titer and viral load were determined using hemagglutination assay (HA) and qPCR, respectively. Few pro-inflammatory and anti-inflammatory cytokines were evaluated at RNA and protein levels by qPCR and ELISA, respectively. RESULTS The non-cytotoxic concentrations of the ascorbate (200 mg/ml), acetate and citrate (both 3 mg/ml) reduced the viral titer by 6.5, 4.5, and 1.5 logs in the simultaneous combination treatment. The M protein gene copy number decreased significantly in simultaneous treatment (P < 0.01). The expression of cytokines was also affected by the treatment of these compounds. CONCLUSIONS These anionic compounds could affect the influenza virus load, thereby reducing pro-inflammatory cytokines and increasing anti-inflammatory cytokines levels.
Collapse
Affiliation(s)
- Hadiseh Shokouhi Targhi
- Department of Cell and Molecular Biology, Kish International Campus, University of Tehran, Kish Island, Iran
- Influenza and Respiratory Viruses Department, Pasteur Institute of Iran, Tehran, Iran
| | - Parvaneh Mehrbod
- Influenza and Respiratory Viruses Department, Pasteur Institute of Iran, Tehran, Iran
| | - Fatemeh Fotouhi
- Influenza and Respiratory Viruses Department, Pasteur Institute of Iran, Tehran, Iran
| | - Mehriar Amininasab
- Department of Cell and Molecular Biology, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
6
|
Scalabrino G. Newly Identified Deficiencies in the Multiple Sclerosis Central Nervous System and Their Impact on the Remyelination Failure. Biomedicines 2022; 10:biomedicines10040815. [PMID: 35453565 PMCID: PMC9026986 DOI: 10.3390/biomedicines10040815] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 12/14/2022] Open
Abstract
The pathogenesis of multiple sclerosis (MS) remains enigmatic and controversial. Myelin sheaths in the central nervous system (CNS) insulate axons and allow saltatory nerve conduction. MS brings about the destruction of myelin sheaths and the myelin-producing oligodendrocytes (ODCs). The conundrum of remyelination failure is, therefore, crucial in MS. In this review, the roles of epidermal growth factor (EGF), normal prions, and cobalamin in CNS myelinogenesis are briefly summarized. Thereafter, some findings of other authors and ourselves on MS and MS-like models are recapitulated, because they have shown that: (a) EGF is significantly decreased in the CNS of living or deceased MS patients; (b) its repeated administration to mice in various MS-models prevents demyelination and inflammatory reaction; (c) as was the case for EGF, normal prion levels are decreased in the MS CNS, with a strong correspondence between liquid and tissue levels; and (d) MS cobalamin levels are increased in the cerebrospinal fluid, but decreased in the spinal cord. In fact, no remyelination can occur in MS if these molecules (essential for any form of CNS myelination) are lacking. Lastly, other non-immunological MS abnormalities are reviewed. Together, these results have led to a critical reassessment of MS pathogenesis, partly because EGF has little or no role in immunology.
Collapse
Affiliation(s)
- Giuseppe Scalabrino
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| |
Collapse
|
7
|
Chopra N, Menounos S, Choi JP, Hansbro PM, Diwan AD, Das A. Blood-Spinal Cord Barrier: Its Role in Spinal Disorders and Emerging Therapeutic Strategies. NEUROSCI 2022; 3:1-27. [PMID: 39484675 PMCID: PMC11523733 DOI: 10.3390/neurosci3010001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 12/14/2021] [Indexed: 11/03/2024] Open
Abstract
The blood-spinal cord barrier (BSCB) has been long thought of as a functional equivalent to the blood-brain barrier (BBB), restricting blood flow into the spinal cord. The spinal cord is supported by various disc tissues that provide agility and has different local immune responses compared to the brain. Though physiologically, structural components of the BSCB and BBB share many similarities, the clinical landscape significantly differs. Thus, it is crucial to understand the composition of BSCB and also to establish the cause-effect relationship with aberrations and spinal cord dysfunctions. Here, we provide a descriptive analysis of the anatomy, current techniques to assess the impairment of BSCB, associated risk factors and impact of spinal disorders such as spinal cord injury (SCI), amyotrophic lateral sclerosis (ALS), peripheral nerve injury (PNI), ischemia reperfusion injury (IRI), degenerative cervical myelopathy (DCM), multiple sclerosis (MS), spinal cavernous malformations (SCM) and cancer on BSCB dysfunction. Along with diagnostic and mechanistic analyses, we also provide an up-to-date account of available therapeutic options for BSCB repair. We emphasize the need to address BSCB as an individual entity and direct future research towards it.
Collapse
Affiliation(s)
- Neha Chopra
- Spine Labs, St. George & Sutherland Clinical School, University of New South Wales, Kogarah, NSW 2217, Australia; (N.C.); (S.M.); (A.D.D.)
- Spine Service, St. George Hospital, Kogarah, NSW 2217, Australia
| | - Spiro Menounos
- Spine Labs, St. George & Sutherland Clinical School, University of New South Wales, Kogarah, NSW 2217, Australia; (N.C.); (S.M.); (A.D.D.)
| | - Jaesung P Choi
- Centre for Inflammation, Faculty of Science, Centenary Institute, School of Life Sciences, University of Technology Sydney, Sydney, NSW 2050, Australia; (J.P.C.); (P.M.H.)
| | - Philip M Hansbro
- Centre for Inflammation, Faculty of Science, Centenary Institute, School of Life Sciences, University of Technology Sydney, Sydney, NSW 2050, Australia; (J.P.C.); (P.M.H.)
| | - Ashish D Diwan
- Spine Labs, St. George & Sutherland Clinical School, University of New South Wales, Kogarah, NSW 2217, Australia; (N.C.); (S.M.); (A.D.D.)
- Spine Service, St. George Hospital, Kogarah, NSW 2217, Australia
| | - Abhirup Das
- Spine Labs, St. George & Sutherland Clinical School, University of New South Wales, Kogarah, NSW 2217, Australia; (N.C.); (S.M.); (A.D.D.)
- Spine Service, St. George Hospital, Kogarah, NSW 2217, Australia
| |
Collapse
|
8
|
Lu H, Wu PF, Ma DL, Zhang W, Sun M. Growth Factors and Their Roles in Multiple Sclerosis Risk. Front Immunol 2021; 12:768682. [PMID: 34745143 PMCID: PMC8566812 DOI: 10.3389/fimmu.2021.768682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/07/2021] [Indexed: 12/12/2022] Open
Abstract
Background Previous studies have suggested essential roles of growth factors on the risk of Multiple Sclerosis (MS), but it remains undefined whether the effects are causal. Objective We applied Mendelian randomization (MR) approaches to disentangle the causal relationship between genetically predicted circulating levels of growth factors and the risk of MS. Methods Genetic instrumental variables for fibroblast growth factor (FGF) 23, growth differentiation factor 15 (GDF15), insulin growth factor 1 (IGF1), insulin-like growth factor binding proteins 3 (IGFBP3) and vascular endothelial growth factor (VEGF) were obtained from up-to-date genome-wide association studies (GWAS). Summary-level statistics of MS were obtained from the International Multiple Sclerosis Genetics Consortium, incorporating 14,802 subjects with MS and 26,703 healthy controls of European ancestry. Inverse-variance weighted (IVW) MR was used as the primary method and multiple sensitivity analyses were employed in this study. Results Genetically predicted circulating levels of FGF23 were associated with risk of MS. The odds ratio (OR) of IVW was 0.63 (95% confidence interval [CI], 0.49-0.82; p < 0.001) per one standard deviation increase in circulating FGF23 levels. Weighted median estimators also suggested FGF23 associated with lower MS risk (OR = 0.67; 95% CI, 0.51-0.87; p = 0.003). While MR-Egger approach provided no evidence of horizontal pleiotropy (intercept = -0.003, p = 0.95). Results of IVW methods provided no evidence for causal roles of GDF1, IGF1, IGFBP3 and VEGF on MS risks, and additional sensitivity analyses confirmed the robustness of these null findings. Conclusion Our results implied a causal relationship between FGF23 and the risk of MS. Further studies are warranted to confirm FGF23 as a genetically valid target for MS.
Collapse
Affiliation(s)
- Hui Lu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Peng-Fei Wu
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China.,Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Deng-Lei Ma
- Department of Pharmacy, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Wan Zhang
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States.,Department of Biology, Boston University, Boston, MA, United States
| | - Meichen Sun
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
9
|
Ghareghani M, Ghanbari A, Eid A, Shaito A, Mohamed W, Mondello S, Zibara K. Hormones in experimental autoimmune encephalomyelitis (EAE) animal models. Transl Neurosci 2021; 12:164-189. [PMID: 34046214 PMCID: PMC8134801 DOI: 10.1515/tnsci-2020-0169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 04/05/2021] [Accepted: 04/14/2021] [Indexed: 12/30/2022] Open
Abstract
Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system (CNS) in which activated immune cells attack the CNS and cause inflammation and demyelination. While the etiology of MS is still largely unknown, the interaction between hormones and the immune system plays a role in disease progression, but the mechanisms by which this occurs are incompletely understood. Several in vitro and in vivo experimental, but also clinical studies, have addressed the possible role of the endocrine system in susceptibility and severity of autoimmune diseases. Although there are several demyelinating models, experimental autoimmune encephalomyelitis (EAE) is the oldest and most commonly used model for MS in laboratory animals which enables researchers to translate their findings from EAE into human. Evidences imply that there is great heterogeneity in the susceptibility to the induction, the method of induction, and the response to various immunological or pharmacological interventions, which led to conflicting results on the role of specific hormones in the EAE model. In this review, we address the role of endocrine system in EAE model to provide a comprehensive view and a better understanding of the interactions between the endocrine and the immune systems in various models of EAE, to open up a ground for further detailed studies in this field by considering and comparing the results and models used in previous studies.
Collapse
Affiliation(s)
- Majid Ghareghani
- Neuroscience Laboratory, CHU de Québec Research Center and Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec City, QC, Canada
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Amir Ghanbari
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Ali Eid
- Biomedical and Pharmaceutical Research Unit and Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Abdullah Shaito
- Department of Biological and Chemical Sciences, Faculty of Arts and Sciences, Lebanese International University, Beirut, Lebanon
| | - Wael Mohamed
- Clinical Pharmacology Department, Menoufia Medical School, Menoufia University, Shibin Al Kawm, Egypt
- Department of Basic Medical Sciences, Kulliyyah of Medicine, International Islamic University Malaysia (IIUM), Kuantan, Pahang, Malaysia
| | - Stefania Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Kazem Zibara
- PRASE, Lebanese University, Beirut, Lebanon
- Biology Department, Faculty of Sciences – I, Lebanese University, Beirut, Lebanon
| |
Collapse
|
10
|
Mehrbod P, Ebrahimi SN, Fotouhi F, Eskandari F, Eloff JN, McGaw LJ, Fasina FO. Experimental validation and computational modeling of anti-influenza effects of quercetin-3-O-α-L-rhamnopyranoside from indigenous south African medicinal plant Rapanea melanophloeos. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 19:346. [PMID: 31791311 PMCID: PMC6888925 DOI: 10.1186/s12906-019-2774-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 11/27/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND Influenza A virus (IAV) is still a major health threat. The clinical manifestations of this infection are related to immune dysregulation, which causes morbidity and mortality. The usage of traditional medication with immunomodulatory properties against influenza infection has been increased recently. Our previous study showed antiviral activity of quercetin-3-O-α-L-rhamnopyranoside (Q3R) isolated from Rapanea melanophloeos (RM) (L.) Mez (family Myrsinaceae) against H1N1 (A/PR/8/34) infection. This study aimed to confirm the wider range of immunomodulatory effect of Q3R on selective pro- and anti-inflammatory cytokines against IAV in vitro, to evaluate the effect of Q3R on apoptosis pathway in combination with H1N1, also to assess the physical interaction of Q3R with virus glycoproteins and RhoA protein using computational docking. METHODS MDCK cells were exposed to Q3R and 100CCID50/100 μl of H1N1 in combined treatments (co-, pre- and post-penetration treatments). The treatments were tested for the cytokines evaluation at RNA and protein levels by qPCR and ELISA, respectively. In another set of treatment, apoptosis was examined by detecting RhoA GTPase protein and caspase-3 activity. Molecular docking was used as a tool for evaluation of the potential anti-influenza activity of Q3R. RESULTS The expressions of cytokines in both genome and protein levels were significantly affected by Q3R treatment. It was shown that Q3R was much more effective against influenza when it was applied in co-penetration treatment. Q3R in combination with H1N1 increased caspase-3 activity while decreasing RhoA activation. The molecular docking results showed strong binding ability of Q3R with M2 transmembrane, Neuraminidase of 2009 pandemic H1N1, N1 and H1 of PR/8/1934 and Human RhoA proteins, with docking energy of - 10.81, - 10.47, - 9.52, - 9.24 and - 8.78 Kcal/mol, respectively. CONCLUSIONS Quercetin-3-O-α-L-rhamnopyranoside from RM was significantly effective against influenza infection by immunomodulatory properties, affecting the apoptosis pathway and binding ability to viral receptors M2 transmembrane and Neuraminidase of 2009 pandemic H1N1 and human RhoA cellular protein. Further research will focus on detecting the detailed specific mechanism of Q3R in virus-host interactions.
Collapse
Affiliation(s)
- Parvaneh Mehrbod
- Influenza and Respiratory Viruses Department, Pasteur Institute of Iran, Tehran, Iran
- Department of Veterinary Tropical Diseases, University of Pretoria, Pretoria, South Africa
| | - Samad Nejad Ebrahimi
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Fatemeh Fotouhi
- Influenza and Respiratory Viruses Department, Pasteur Institute of Iran, Tehran, Iran
| | - Fatemeh Eskandari
- Influenza and Respiratory Viruses Department, Pasteur Institute of Iran, Tehran, Iran
| | - Jacobus N. Eloff
- Phytomedicine Programme, Department of Paraclinical Sciences, University of Pretoria, Pretoria, South Africa
| | - Lyndy J. McGaw
- Phytomedicine Programme, Department of Paraclinical Sciences, University of Pretoria, Pretoria, South Africa
| | - Folorunso O. Fasina
- Department of Veterinary Tropical Diseases, University of Pretoria, Pretoria, South Africa
- ECTAD, Food and Agriculture Organization of the United Nations (FAO), Dar es Salaam, Tanzania
| |
Collapse
|
11
|
Chu T, Zhang YP, Tian Z, Ye C, Zhu M, Shields LBE, Kong M, Barnes GN, Shields CB, Cai J. Dynamic response of microglia/macrophage polarization following demyelination in mice. J Neuroinflammation 2019; 16:188. [PMID: 31623610 PMCID: PMC6798513 DOI: 10.1186/s12974-019-1586-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 09/11/2019] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND The glial response in multiple sclerosis (MS), especially for recruitment and differentiation of oligodendrocyte progenitor cells (OPCs), predicts the success of remyelination of MS plaques and return of function. As a central player in neuroinflammation, activation and polarization of microglia/macrophages (M/M) that modulate the inflammatory niche and cytokine components in demyelination lesions may impact the OPC response and progression of demyelination and remyelination. However, the dynamic behaviors of M/M and OPCs during demyelination and spontaneous remyelination are poorly understood, and the complex role of neuroinflammation in the demyelination-remyelination process is not well known. In this study, we utilized two focal demyelination models with different dynamic patterns of M/M to investigate the correlation between M/M polarization and the demyelination-remyelination process. METHODS The temporal and spatial features of M/M activation/polarization and OPC response in two focal demyelination models induced by lysolecithin (LPC) and lipopolysaccharide (LPS) were examined in mice. Detailed discrimination of morphology, sensorimotor function, diffusion tensor imaging (DTI), inflammation-relevant cytokines, and glial responses between these two models were analyzed at different phases. RESULTS The results show that LPC and LPS induced distinctive temporal and spatial lesion patterns. LPS produced diffuse demyelination lesions, with a delayed peak of demyelination and functional decline compared to LPC. Oligodendrocytes, astrocytes, and M/M were scattered throughout the LPS-induced demyelination lesions but were distributed in a layer-like pattern throughout the LPC-induced lesion. The specific M/M polarization was tightly correlated to the lesion pattern associated with balance beam function. CONCLUSIONS This study elaborated on the spatial and temporal features of neuroinflammation mediators and glial response during the demyelination-remyelination processes in two focal demyelination models. Specific M/M polarization is highly correlated to the demyelination-remyelination process probably via modulations of the inflammatory niche, cytokine components, and OPC response. These findings not only provide a basis for understanding the complex and dynamic glial phenotypes and behaviors but also reveal potential targets to promote/inhibit certain M/M phenotypes at the appropriate time for efficient remyelination.
Collapse
Affiliation(s)
- Tianci Chu
- Department of Pediatrics, Pediatric Research Institute, University of Louisville School of Medicine, Donald Baxter Building, Suite 321B, 570 S. Preston Street, Louisville, KY, 40202, USA
| | - Yi Ping Zhang
- Norton Neuroscience Institute, Norton Healthcare, 210 East Gray Street, Suite 1102, Louisville, KY, 40202, USA
| | - Zhisen Tian
- Department of Pediatrics, Pediatric Research Institute, University of Louisville School of Medicine, Donald Baxter Building, Suite 321B, 570 S. Preston Street, Louisville, KY, 40202, USA
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, 130033, People's Republic of China
| | - Chuyuan Ye
- Department of Pediatrics, Pediatric Research Institute, University of Louisville School of Medicine, Donald Baxter Building, Suite 321B, 570 S. Preston Street, Louisville, KY, 40202, USA
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, People's Republic of China
| | - Mingming Zhu
- Department of Radiology, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Lisa B E Shields
- Norton Neuroscience Institute, Norton Healthcare, 210 East Gray Street, Suite 1102, Louisville, KY, 40202, USA
| | - Maiying Kong
- Department of Bioinformatics and Biostatistics, University of Louisville School of Public Health and Information Sciences, Louisville, KY, 40202, USA
| | - Gregory N Barnes
- Department of Pediatrics, Pediatric Research Institute, University of Louisville School of Medicine, Donald Baxter Building, Suite 321B, 570 S. Preston Street, Louisville, KY, 40202, USA
- Department of Neurology, University of Louisville School of Medicine, Louisville, KY, 40202, USA
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA
| | - Christopher B Shields
- Norton Neuroscience Institute, Norton Healthcare, 210 East Gray Street, Suite 1102, Louisville, KY, 40202, USA.
- Department of Neurological Surgery, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
| | - Jun Cai
- Department of Pediatrics, Pediatric Research Institute, University of Louisville School of Medicine, Donald Baxter Building, Suite 321B, 570 S. Preston Street, Louisville, KY, 40202, USA.
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA.
| |
Collapse
|
12
|
Frank JA, Richert N, Lewis B, Bash C, Howard T, Civil R, Stone R, Eaton J, McFarland H, Leist T. A pilot study of recombinant insulin-like growth factor-I in seven multiple sclerosis patients. Mult Scler 2017. [DOI: 10.1177/135245850200800106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The purpose of this open-label, crossover study was to determine the safety and efficacy of recombinant insulin-like growth factor-I (rhIGF-I) using magnetic resonance imaging (MRI) and clinical measures of disease activity in seven multiple sclerosis (MS) patients. Monthly clinical and MRI examinations were performed during a 24-week baseline and a 24-week treatment period with rhIGF-I. The primary outcome measure was contrast enhancing lesion (CEL) frequency on treatment compared to baseline. Secondary outcome measures included clinical and MRI measures of disease activity including. white matter lesion load (WMLL), magnetization transfer ratio (MTR), TI-Hypointensity volume, cervical spine cross-sectional area and proton magnetic resonance spectroscopic (MRS) imaging for determining regional metabolite ratios. rhIGF-I (Cephalon) was administered at a dose of 50 mg subcutaneously twice a day for 6 months. rhIGF-I was safe and well tolerated with no severe adverse reactions. There was no significant difference between baseline and treatment periods for any MRI or clinical measures of disease activity. Although rhIGF-I did not alter the course of disease in this small cohort of MS patients, the drug was well tolerated. Further studies using rhIGF-I alone or in combination with other therapies may be of value because of the proposed mechanism of action of this growth factor on the oligodendrocyte and remyelination. Multiple Sclerosis (2002)8,24-29
Collapse
Affiliation(s)
- JA Frank
- Laboratory of Diagnostic Radiology Research, National
Institutes of Health, Building 10, Room B1N256, 10 Center Drive MSC 1074,
Bethesda, Maryland 20892, USA
| | - N. Richert
- Laboratory of Diagnostic Radiology Research, National
Institutes of Health, Building 10, Room B1N256, 10 Center Drive MSC 1074,
Bethesda, Maryland 20892, USA
| | - B. Lewis
- Laboratory of Diagnostic Radiology Research, National
Institutes of Health, Building 10, Room B1N256, 10 Center Drive MSC 1074,
Bethesda, Maryland 20892, USA
| | - C. Bash
- Laboratory of Diagnostic Radiology Research, National
Institutes of Health, Building 10, Room B1N256, 10 Center Drive MSC 1074,
Bethesda, Maryland 20892, USA
| | - T. Howard
- Laboratory of Diagnostic Radiology Research, National
Institutes of Health, Building 10, Room B1N256, 10 Center Drive MSC 1074,
Bethesda, Maryland 20892, USA
| | - R. Civil
- Clinical and Regulatory Affairs, Cephalon, Inc., 145
Brandywine Parkway, West Chester, Pennsylvania, USA
| | - R. Stone
- Neuroimmunology Branch, National Institutes of Health,
Building 10, Room B1N256, 10 Center Drive MSC 1074, Bethesda, Maryland, 20892,
USA
| | - J. Eaton
- Neuroimmunology Branch, National Institutes of Health,
Building 10, Room B1N256, 10 Center Drive MSC 1074, Bethesda, Maryland, 20892,
USA
| | - H. McFarland
- Neuroimmunology Branch, National Institutes of Health,
Building 10, Room B1N256, 10 Center Drive MSC 1074, Bethesda, Maryland, 20892,
USA
| | - T. Leist
- Neuroimmunology Branch, National Institutes of Health,
Building 10, Room B1N256, 10 Center Drive MSC 1074, Bethesda, Maryland, 20892,
USA
| |
Collapse
|
13
|
Labandeira-Garcia JL, Costa-Besada MA, Labandeira CM, Villar-Cheda B, Rodríguez-Perez AI. Insulin-Like Growth Factor-1 and Neuroinflammation. Front Aging Neurosci 2017; 9:365. [PMID: 29163145 PMCID: PMC5675852 DOI: 10.3389/fnagi.2017.00365] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Accepted: 10/23/2017] [Indexed: 12/15/2022] Open
Abstract
Insulin-like growth factor-1 (IGF-1) effects on aging and neurodegeneration is still controversial. However, it is widely admitted that IGF-1 is involved in the neuroinflammatory response. In peripheral tissues, several studies showed that IGF-1 inhibited the expression of inflammatory markers, although other studies concluded that IGF-1 has proinflammatory functions. Furthermore, proinflammatory cytokines such as TNF-α impaired IGF-1 signaling. In the brain, there are controversial results on effects of IGF-1 in neuroinflammation. In addition to direct protective effects on neurons, several studies revealed anti-inflammatory effects of IGF-1 acting on astrocytes and microglia, and that IGF-1 may also inhibit blood brain barrier permeability. Altogether suggests that the aging-related decrease in IGF-1 levels may contribute to the aging-related pro-inflammatory state. IGF-1 inhibits the astrocytic response to inflammatory stimuli, and modulates microglial phenotype (IGF-1 promotes the microglial M2 and inhibits of M1 phenotype). Furthermore, IGF-1 is mitogenic for microglia. IGF-1 and estrogen interact to modulate the neuroinflammatory response and microglial and astrocytic phenotypes. Brain renin-angiotensin and IGF-1 systems also interact to modulate neuroinflammation. Induction of microglial IGF-1 by angiotensin, and possibly by other pro-inflammatory inducers, plays a major role in the repression of the M1 microglial neurotoxic phenotype and the enhancement of the transition to an M2 microglial repair/regenerative phenotype. This mechanism is impaired in aged brains. Aging-related decrease in IGF-1 may contribute to the loss of capacity of microglia to undergo M2 activation. Fine tuning of IGF-1 levels may be critical for regulating the neuroinflammatory response, and IGF-1 may be involved in inflammation in a context-dependent mode.
Collapse
Affiliation(s)
- Jose L Labandeira-Garcia
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Maria A Costa-Besada
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Carmen M Labandeira
- Department of Clinical Neurology, Hospital Alvaro Cunqueiro, University Hospital Complex, Vigo, Spain
| | - Begoña Villar-Cheda
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Ana I Rodríguez-Perez
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| |
Collapse
|
14
|
Parvaneh Tafreshi A, Talebi F, Ghorbani S, Bernard C, Noorbakhsh F. Altered expression of IGF-I system in neurons of the inflamed spinal cord during acute experimental autoimmune encephalomyelitis. J Comp Neurol 2017; 525:3072-3082. [PMID: 28617951 DOI: 10.1002/cne.24263] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 06/07/2017] [Accepted: 06/09/2017] [Indexed: 11/09/2022]
Abstract
There is growing evidence that the impaired IGF-I system contributes to neurodegeneration. In this study, we examined the spinal cords of the EAE, the animal model of multiple sclerosis, to see if the expression of the IGF-I system is altered. To induce EAE, C57/BL6 mice were immunized with the Hooke lab MOG kit, sacrificed at the peak of the disease and their spinal cords were examined for the immunoreactivities (ir) of the IGF-I, IGF binding protein-1 (IGFBP-1) and glycogen synthase kinase 3β (GSK3β), as one major downstream molecule in the IGF-I signaling. Although neurons in the non EAE spinal cords did not show the IGF-I immunoreactivity, they were numerously positive for the IGFBP-1. In the inflamed EAE spinal cord however, the patterns of expressions were reversed, that is, a significant increased number of IGF-I expressing neurons versus a reduced number of IGFBP-1 positive neurons. Moreover, while nearly all IGF-I-ir neurons expressed GSK3β, some expressed it more intensely. Considering our previous finding where we showed a significant reduced number of the inactive (phosphorylated) but not that of the total GSK3β expressing neurons in the EAE spinal cord, it is conceivable that the intense total GSK3β expression in the IGF-I-ir neurons belongs to the active form of GSK3β known to exert neuroinflammatory effects. We therefore suggest that the altered expression of the IGF-I system including GSK3β in spinal cord neurons might involve in pathophysiological events during the EAE.
Collapse
Affiliation(s)
- Azita Parvaneh Tafreshi
- Department of Molecular Medicine, Faculty of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Farideh Talebi
- Department of Immunology, Faculty of Medicine, Tehran University of Medical, Sciences, Tehran, Iran
| | - Samira Ghorbani
- Department of Immunology, Faculty of Medicine, Tehran University of Medical, Sciences, Tehran, Iran
| | - Claude Bernard
- Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria, Australia
| | - Farshid Noorbakhsh
- Department of Immunology, Faculty of Medicine, Tehran University of Medical, Sciences, Tehran, Iran
| |
Collapse
|
15
|
Chew LJ, DeBoy CA. Pharmacological approaches to intervention in hypomyelinating and demyelinating white matter pathology. Neuropharmacology 2016; 110:605-625. [PMID: 26116759 PMCID: PMC4690794 DOI: 10.1016/j.neuropharm.2015.06.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 06/10/2015] [Accepted: 06/17/2015] [Indexed: 12/17/2022]
Abstract
White matter disease afflicts both developing and mature central nervous systems. Both cell intrinsic and extrinsic dysregulation result in profound changes in cell survival, axonal metabolism and functional performance. Experimental models of developmental white matter (WM) injury and demyelination have not only delineated mechanisms of signaling and inflammation, but have also paved the way for the discovery of pharmacological approaches to intervention. These reagents have been shown to enhance protection of the mature oligodendrocyte cell, accelerate progenitor cell recruitment and/or differentiation, or attenuate pathological stimuli arising from the inflammatory response to injury. Here we highlight reports of studies in the CNS in which compounds, namely peptides, hormones, and small molecule agonists/antagonists, have been used in experimental animal models of demyelination and neonatal brain injury that affect aspects of excitotoxicity, oligodendrocyte development and survival, and progenitor cell function, and which have been demonstrated to attenuate damage and improve WM protection in experimental models of injury. The molecular targets of these agents include growth factor and neurotransmitter receptors, morphogens and their signaling components, nuclear receptors, as well as the processes of iron transport and actin binding. By surveying the current evidence in non-immune targets of both the immature and mature WM, we aim to better understand pharmacological approaches modulating endogenous oligodendroglia that show potential for success in the contexts of developmental and adult WM pathology. This article is part of the Special Issue entitled 'Oligodendrocytes in Health and Disease'.
Collapse
Affiliation(s)
- Li-Jin Chew
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC, USA.
| | - Cynthia A DeBoy
- Biology Department, Trinity Washington University, Washington, DC, USA
| |
Collapse
|
16
|
Huang Y, Dreyfus CF. The role of growth factors as a therapeutic approach to demyelinating disease. Exp Neurol 2016; 283:531-40. [PMID: 27016070 PMCID: PMC5010931 DOI: 10.1016/j.expneurol.2016.02.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 02/19/2016] [Accepted: 02/24/2016] [Indexed: 01/19/2023]
Abstract
A variety of growth factors are being explored as therapeutic agents relevant to the axonal and oligodendroglial deficits that occur as a result of demyelinating lesions such as are evident in Multiple Sclerosis (MS). This review focuses on five such proteins that are present in the lesion site and impact oligodendrocyte regeneration. It then presents approaches that are being exploited to manipulate the lesion environment affiliated with multiple neurodegenerative diseases and suggests that the utility of these approaches can extend to demyelination. Challenges are to further understand the roles of specific growth factors on a cellular and tissue level. Emerging technologies can then be employed to optimize the use of growth factors to ameliorate the deficits associated with demyelinating degenerative diseases.
Collapse
Affiliation(s)
- Yangyang Huang
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, 683 Hoes Lane West, Piscataway, NJ 08854, USA.
| | - Cheryl F Dreyfus
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, 683 Hoes Lane West, Piscataway, NJ 08854, USA.
| |
Collapse
|
17
|
Delaney CL, Feldman EL. Review ■ : Insulin-like Growth Factor-I and Apoptosis in Glial Cell Biology. Neuroscientist 2016. [DOI: 10.1177/107385840000600112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Insulin-like growth factor-I (IGF-I) is a potent trophic factor capable of promoting both survival and differentiation of neurons and glia. This review examines the role of IGF-I and apoptosis in oligodendrocyte and Schwann cell biology in vitro and in vivo. Apoptosis is an essential element of development, homeostasis, and disease. IGF-I protects oligodendrocytes and Schwann cells from apoptosis during development and after apoptotic stimuli. Transgenic mouse models, which ablate or increase expression of IGF-I, have abnormal oligodendrocytes and myelin formation. A more thorough understanding of the protective mechanism of IGF-I in oligodendrocytes and Schwann cells will aid in its precise application in treating a variety of neurologic disorders. NEUROSCIENTIST 6:39-47, 2000
Collapse
Affiliation(s)
| | - Eva L. Feldman
- Department of Neurology University of Michigan Ann Arbor, Michigan
| |
Collapse
|
18
|
Erdoğan Ö, Xie L, Wang L, Wu B, Kong Q, Wan Y, Chen X. Proteomic dissection of LPS-inducible, PHF8-dependent secretome reveals novel roles of PHF8 in TLR4-induced acute inflammation and T cell proliferation. Sci Rep 2016; 6:24833. [PMID: 27112199 PMCID: PMC4845005 DOI: 10.1038/srep24833] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 04/01/2016] [Indexed: 11/09/2022] Open
Abstract
Endotoxin (LPS)-induced changes in histone lysine methylation contribute to the gene-specific transcription for control of inflammation. Still unidentified are the chromatin regulators that drive the transition from a transcriptional-repressive to a transcriptional-active chromatin state of pro-inflammatory genes. Here, using combined approaches to analyze LPS-induced changes in both gene-specific transcription and protein secretion to the extracellular compartment, we characterize novel functions of the lysine demethylase PHF8 as a pro-inflammatory, gene-specific chromatin regulator. First, in the LPS-induced, acute-inflamed macrophages, PHF8 knockdown led to both a reduction of pro-inflammatory factors and an increase in a transcriptional-repressive code (H3K9me2) written by the methyltransferase G9a. Through unbiased quantitative secretome screening we discovered that LPS induces the secretion of a cluster of PHF8-dependent, 'tolerizable' proteins that are related to diverse extracellular pathways/processes including those for the activation of adaptive immunity. Specifically, we determined that PHF8 promotes T-cell activation and proliferation, thus providing the first link between the epigenetic regulation of inflammation and adaptive immunity. Further, we found that, in the acute-inflamed macrophages, the acute-active PHF8 opposes the H3K9me1/2-writing activity of G9a to activate specific protein secretions that are suppressed by G9a in the endotoxin-tolerant cells, revealing the inflammatory-phenotypic chromatin drivers that regulate the gene-specific chromatin plasticity.
Collapse
Affiliation(s)
- Özgün Erdoğan
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, US
| | - Ling Xie
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, US
| | - Li Wang
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, US
- Department of Chemistry, Fudan University, Shanghai, China
| | - Bing Wu
- Departement of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, US
| | - Qing Kong
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, US
| | - Yisong Wan
- Departement of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, US
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, US
| | - Xian Chen
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, US
- Department of Chemistry, Fudan University, Shanghai, China
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, US
| |
Collapse
|
19
|
Bake S, Okoreeh AK, Alaniz RC, Sohrabji F. Insulin-Like Growth Factor (IGF)-I Modulates Endothelial Blood-Brain Barrier Function in Ischemic Middle-Aged Female Rats. Endocrinology 2016; 157:61-9. [PMID: 26556536 PMCID: PMC4701884 DOI: 10.1210/en.2015-1840] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In comparison with young females, middle-aged female rats sustain greater cerebral infarction and worse functional recovery after stroke. These poorer stroke outcomes in middle-aged females are associated with an age-related reduction in IGF-I levels. Poststroke IGF-I treatment decreases infarct volume in older females and lowers the expression of cytokines in the ischemic hemisphere. IGF-I also reduces transfer of Evans blue dye to the brain, suggesting that this peptide may also promote blood-brain barrier function. To test the hypothesis that IGF-I may act at the blood-brain barrier in ischemic stroke, 2 approaches were used. In the first approach, middle-aged female rats were subjected to middle cerebral artery occlusion and treated with IGF-I after reperfusion. Mononuclear cells from the ischemic hemisphere were stained for CD4 or triple-labeled for CD4/CD25/FoxP3 and subjected to flow analyses. Both cohorts of cells were significantly reduced in IGF-I-treated animals compared with those in vehicle controls. Reduced trafficking of immune cells to the ischemic site suggests that blood-brain barrier integrity is better maintained in IGF-I-treated animals. The second approach directly tested the effect of IGF-I on barrier function of aging endothelial cells. Accordingly, brain microvascular endothelial cells from middle-aged female rats were cultured ex vivo and subjected to ischemic conditions (oxygen-glucose deprivation). IGF-I treatment significantly reduced the transfer of fluorescently labeled BSA across the endothelial monolayer as well as cellular internalization of fluorescein isothiocyanate-BSA compared with those in vehicle-treated cultures, Collectively, these data support the hypothesis that IGF-I improves blood-brain barrier function in middle-aged females.
Collapse
MESH Headings
- Aging
- Animals
- Blood-Brain Barrier/drug effects
- Blood-Brain Barrier/immunology
- Blood-Brain Barrier/metabolism
- Blood-Brain Barrier/pathology
- Brain Ischemia/drug therapy
- Brain Ischemia/immunology
- Brain Ischemia/metabolism
- Brain Ischemia/pathology
- Capillary Permeability/drug effects
- Cell Hypoxia/drug effects
- Cells, Cultured
- Cerebrum/drug effects
- Cerebrum/immunology
- Cerebrum/metabolism
- Cerebrum/pathology
- Drug Implants
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/immunology
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/pathology
- Female
- Humans
- Hypoglycemia/etiology
- Insulin-Like Growth Factor I/administration & dosage
- Insulin-Like Growth Factor I/genetics
- Insulin-Like Growth Factor I/pharmacology
- Insulin-Like Growth Factor I/therapeutic use
- Leukocytes, Mononuclear/drug effects
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/metabolism
- Leukocytes, Mononuclear/pathology
- Microvessels/drug effects
- Microvessels/immunology
- Microvessels/metabolism
- Microvessels/pathology
- Nerve Tissue Proteins/agonists
- Nerve Tissue Proteins/antagonists & inhibitors
- Nerve Tissue Proteins/metabolism
- Rats, Sprague-Dawley
- Receptor, IGF Type 1/agonists
- Receptor, IGF Type 1/metabolism
- Recombinant Proteins/administration & dosage
- Recombinant Proteins/pharmacology
- Recombinant Proteins/therapeutic use
- Signal Transduction/drug effects
- Stroke/drug therapy
- Stroke/immunology
- Stroke/metabolism
- Stroke/pathology
Collapse
Affiliation(s)
- Shameena Bake
- Women's Health in Neuroscience Program (S.B., A.K.O., F.S.), Department of Neuroscience and Experimental Therapeutics and Department of Microbial Pathogenesis and Immunology (R.C.A.), Texas A&M University Health Science Center, Bryan, Texas 77807
| | - Andre K Okoreeh
- Women's Health in Neuroscience Program (S.B., A.K.O., F.S.), Department of Neuroscience and Experimental Therapeutics and Department of Microbial Pathogenesis and Immunology (R.C.A.), Texas A&M University Health Science Center, Bryan, Texas 77807
| | - Robert C Alaniz
- Women's Health in Neuroscience Program (S.B., A.K.O., F.S.), Department of Neuroscience and Experimental Therapeutics and Department of Microbial Pathogenesis and Immunology (R.C.A.), Texas A&M University Health Science Center, Bryan, Texas 77807
| | - Farida Sohrabji
- Women's Health in Neuroscience Program (S.B., A.K.O., F.S.), Department of Neuroscience and Experimental Therapeutics and Department of Microbial Pathogenesis and Immunology (R.C.A.), Texas A&M University Health Science Center, Bryan, Texas 77807
| |
Collapse
|
20
|
Koutsoudaki PN, Papastefanaki F, Stamatakis A, Kouroupi G, Xingi E, Stylianopoulou F, Matsas R. Neural stem/progenitor cells differentiate into oligodendrocytes, reduce inflammation, and ameliorate learning deficits after transplantation in a mouse model of traumatic brain injury. Glia 2015; 64:763-79. [PMID: 26712314 DOI: 10.1002/glia.22959] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 11/30/2015] [Accepted: 12/03/2015] [Indexed: 01/09/2023]
Abstract
The central nervous system has limited capacity for regeneration after traumatic injury. Transplantation of neural stem/progenitor cells (NPCs) has been proposed as a potential therapeutic approach while insulin-like growth factor I (IGF-I) has neuroprotective properties following various experimental insults to the nervous system. We have previously shown that NPCs transduced with a lentiviral vector for IGF-I overexpression have an enhanced ability to give rise to neurons in vitro but also in vivo, upon transplantation in a mouse model of temporal lobe epilepsy. Here we studied the regenerative potential of NPCs, IGF-I-transduced or not, in a mouse model of hippocampal mechanical injury. NPC transplantation, with or without IGF-I transduction, rescued the injury-induced spatial learning deficits as revealed in the Morris Water Maze. Moreover, it had beneficial effects on the host tissue by reducing astroglial activation and microglial/macrophage accumulation while enhancing generation of endogenous oligodendrocyte precursor cells. One or two months after transplantation the grafted NPCs had migrated towards the lesion site and in the neighboring myelin-rich regions. Transplanted cells differentiated toward the oligodendroglial, but not the neuronal or astrocytic lineages, expressing the early and late oligodendrocyte markers NG2, Olig2, and CNPase. The newly generated oligodendrocytes reached maturity and formed myelin internodes. Our current and previous observations illustrate the high plasticity of transplanted NPCs which can acquire injury-dependent phenotypes within the host CNS, supporting the fact that reciprocal interactions between transplanted cells and the host tissue are an important factor to be considered when designing prospective cell-based therapies for CNS degenerative conditions.
Collapse
Affiliation(s)
- Paraskevi N Koutsoudaki
- Laboratory of Cellular and Molecular Neurobiology, Hellenic Pasteur Institute, Athens, 11521, Greece
| | - Florentia Papastefanaki
- Laboratory of Cellular and Molecular Neurobiology, Hellenic Pasteur Institute, Athens, 11521, Greece
| | - Antonios Stamatakis
- Biology-Biochemistry Laboratory, Department of Basic Sciences, Faculty of Nursing, University of Athens, Athens, 11527, Greece
| | - Georgia Kouroupi
- Laboratory of Cellular and Molecular Neurobiology, Hellenic Pasteur Institute, Athens, 11521, Greece
| | - Evangelia Xingi
- Light Microscopy Unit, Hellenic Pasteur Institute, Athens, 11521, Greece
| | - Fotini Stylianopoulou
- Biology-Biochemistry Laboratory, Department of Basic Sciences, Faculty of Nursing, University of Athens, Athens, 11527, Greece
| | - Rebecca Matsas
- Laboratory of Cellular and Molecular Neurobiology, Hellenic Pasteur Institute, Athens, 11521, Greece
| |
Collapse
|
21
|
Sohrabji F. Estrogen-IGF-1 interactions in neuroprotection: ischemic stroke as a case study. Front Neuroendocrinol 2015; 36:1-14. [PMID: 24882635 PMCID: PMC4247812 DOI: 10.1016/j.yfrne.2014.05.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 05/15/2014] [Accepted: 05/16/2014] [Indexed: 12/25/2022]
Abstract
The steroid hormone 17b-estradiol and the peptide hormone insulin-like growth factor (IGF)-1 independently exert neuroprotective actions in neurologic diseases such as stroke. Only a few studies have directly addressed the interaction between the two hormone systems, however, there is a large literature that indicates potentially greater interactions between the 17b-estradiol and IGF-1 systems. The present review focuses on key issues related to this interaction including IGF-1 and sex differences and common activation of second messenger systems. Using ischemic stroke as a case study, this review also focuses on independent and cooperative actions of estrogen and IGF-1 on neuroprotection, blood brain barrier integrity, angiogenesis, inflammation and post-stroke epilepsy. Finally, the review also focuses on the astrocyte, a key mediator of post stroke repair, as a local source of 17b-estradiol and IGF-1. This review thus highlights areas where significant new research is needed to clarify the interactions between these two neuroprotectants.
Collapse
Affiliation(s)
- Farida Sohrabji
- Women's Health in Neuroscience Program, Neuroscience and Experimental Therapeutics, TAMHSC College of Medicine, Bryan, TX 77807, United States.
| |
Collapse
|
22
|
Abstract
Multiple sclerosis (MS) is a demyelinating disease of the central nervous system that is pathologically characterized by inflammatory demyelination and neurodegeneration. Axonal damage, along with neuronal loss, occurs from disease onset and may lead to progressive and permanent disability. In contrast with the inflammatory pathways, the molecular mechanisms leading to MS neurodegeneration remain largely elusive. With improved understanding of these mechanisms, new potential therapeutic targets for neuroprotection have emerged. We review the current understanding of neurodegenerative processes at play in MS and discuss potential outcome measures and targets for neuroprotection trials.
Collapse
Affiliation(s)
- Amir-Hadi Maghzi
- Multiple Sclerosis Center, Department of Neurology, University of California San Francisco (UCSF), 675 Nelson Rising Lane, 2nd floor, Room 221F, Box 3206, 94158, San Francisco, CA, USA,
| | | | | |
Collapse
|
23
|
Cai Z, Hussain MD, Yan LJ. Microglia, neuroinflammation, and beta-amyloid protein in Alzheimer's disease. Int J Neurosci 2013; 124:307-21. [DOI: 10.3109/00207454.2013.833510] [Citation(s) in RCA: 320] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
24
|
Wootla B, Watzlawik JO, Denic A, Rodriguez M. The road to remyelination in demyelinating diseases: current status and prospects for clinical treatment. Expert Rev Clin Immunol 2013; 9:535-49. [PMID: 23730884 DOI: 10.1586/eci.13.37] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Within CNS disorders, demyelinating diseases are among the most devastating and cost intensive due to long-term disabilities affecting relatively young patients. Multiple sclerosis, a chronic inflammatory demyelinating disease in which the persistent inhibitory microenvironment of the resident oligodendrocyte precursor cells abrogates regeneration of myelin sheaths, is the most prominent disease in the spectrum of demyelinating diseases. The essential goal is to stimulate creation of new myelin sheaths on the demyelinated axons, leading to restoration of saltatory conduction and resolving functional deficits. The past few decades witnessed significant efforts to understand the cellular interactions at the lesion site with studies suggesting efficient remyelination as a prerequisite for functional repair. Despite its proven efficacy in experimental models, immunosuppression has not had profound clinical consequences in multiple sclerosis, which argued for a paradigm shift in the design of therapeutics aiming to achieve remyelination. For example, targeting oligodendrocytes themselves may drive remyelination in the CNS. This group and others have demonstrated that natural autoreactive antibodies directed at oligodendrocyte progenitors participate in remyelination. Accordingly, the authors developed a recombinant autoreactive natural human IgM antibody with therapeutic potential for remyelination.
Collapse
Affiliation(s)
- Bharath Wootla
- Department of Neurology, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA.
| | | | | | | |
Collapse
|
25
|
Puche JE, Castilla-Cortázar I. Human conditions of insulin-like growth factor-I (IGF-I) deficiency. J Transl Med 2012; 10:224. [PMID: 23148873 PMCID: PMC3543345 DOI: 10.1186/1479-5876-10-224] [Citation(s) in RCA: 172] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 11/07/2012] [Indexed: 12/13/2022] Open
Abstract
Insulin-like growth factor I (IGF-I) is a polypeptide hormone produced mainly by the liver in response to the endocrine GH stimulus, but it is also secreted by multiple tissues for autocrine/paracrine purposes. IGF-I is partly responsible for systemic GH activities although it possesses a wide number of own properties (anabolic, antioxidant, anti-inflammatory and cytoprotective actions). IGF-I is a closely regulated hormone. Consequently, its logical therapeutical applications seems to be limited to restore physiological circulating levels in order to recover the clinical consequences of IGF-I deficiency, conditions where, despite continuous discrepancies, IGF-I treatment has never been related to oncogenesis. Currently the best characterized conditions of IGF-I deficiency are Laron Syndrome, in children; liver cirrhosis, in adults; aging including age-related-cardiovascular and neurological diseases; and more recently, intrauterine growth restriction. The aim of this review is to summarize the increasing list of roles of IGF-I, both in physiological and pathological conditions, underlying that its potential therapeutical options seem to be limited to those proven states of local or systemic IGF-I deficiency as a replacement treatment, rather than increasing its level upper the normal range.
Collapse
Affiliation(s)
- Juan E Puche
- Applied Molecular Medicine Institute (IMMA), School of Medicine, Department of Medical Physiology, Universidad CEU San Pablo, Madrid, Spain
| | - Inma Castilla-Cortázar
- Applied Molecular Medicine Institute (IMMA), School of Medicine, Department of Medical Physiology, Universidad CEU San Pablo, Madrid, Spain
| |
Collapse
|
26
|
Bartanusz V, Jezova D, Alajajian B, Digicaylioglu M. The blood-spinal cord barrier: morphology and clinical implications. Ann Neurol 2011; 70:194-206. [PMID: 21674586 DOI: 10.1002/ana.22421] [Citation(s) in RCA: 323] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2010] [Revised: 02/18/2011] [Accepted: 03/04/2011] [Indexed: 12/11/2022]
Abstract
The blood-spinal cord barrier (BSCB) is the functional equivalent of the blood-brain barrier (BBB) in the sense of providing a specialized microenvironment for the cellular constituents of the spinal cord. Even if intuitively the BSCB could be considered as the morphological extension of the BBB into the spinal cord, evidence suggests that this is not so. The BSCB shares the same principal building blocks with the BBB; nevertheless, it seems that morphological and functional differences may exist between them. Dysfunction of the BSCB plays a fundamental role in the etiology or progression of several pathological conditions of the spinal cord, such as spinal cord injury, amyotrophic lateral sclerosis, and radiation-induced myelopathy. This review summarizes current knowledge of the morphology of the BSCB, the methodology of studying the BSCB, and the potential role of BSCB dysfunction in selected disorders of the spinal cord, and finally summarizes therapeutic approaches to the BSCB.
Collapse
Affiliation(s)
- Viktor Bartanusz
- Department of Neurosurgery, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | | | | | | |
Collapse
|
27
|
|
28
|
Meuth SG, Bittner S, Ulzheimer JC, Kleinschnitz C, Kieseier BC, Wiendl H. Therapeutic approaches to multiple sclerosis: an update on failed, interrupted, or inconclusive trials of neuroprotective and alternative treatment strategies. BioDrugs 2010; 24:317-30. [PMID: 20795753 DOI: 10.2165/11537190-000000000-00000] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Currently approved multiple sclerosis (MS) therapeutics have a mainly anti-inflammatory mode of action. However, a number of promising clinical trials have been initiated that either focus on neuroprotection or follow completely different treatment strategies. So far, all of these clinical trials have failed to show efficacy or had to be halted prematurely because of unexpected adverse events. Some others show results that are of unknown significance with regard to a reliable assessment of true efficacy versus safety. For example, trials addressing the highly promising sodium channel blockers are under close observation because of potential adverse effects after drug withdrawal. Previously failed therapeutic approaches in MS have indicated that there are discrepancies between the theoretical expectations and practical outcomes of different compounds. Learning from these failures helps to optimize future study designs and to reduce risks to patients. This review summarizes trials on MS treatments since 2001 that failed or were interrupted, attempts to analyze the underlying reasons for failure, and discusses the implications for our current view of MS pathogenesis, clinical practice, and the design of future studies. In order to maintain clarity, this review focuses on neuroprotective and various other treatment strategies. Clinical trials addressing anti-inflammatory research strategies are presented elsewhere.
Collapse
Affiliation(s)
- Sven G Meuth
- Department of Neurology, University of Wuerzburg, Wuerzburg, Germany
| | | | | | | | | | | |
Collapse
|
29
|
Chesik D, De Keyser J, Bron R, Fuhler GM. Insulin-like growth factor binding protein-1 activates integrin-mediated intracellular signaling and migration in oligodendrocytes. J Neurochem 2010; 113:1319-30. [PMID: 20345750 DOI: 10.1111/j.1471-4159.2010.06703.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In multiple sclerosis (MS), oligodendrocytes in lesions are lost, leaving damaged tissue virtually devoid of these myelin-producing cells. Our group has recently demonstrated enhanced expression of insulin-like growth factor (IGF) binding protein-1 (IGFBP-1) in oligodendrocytes (CNPase(+)) localized adjacent to MS lesions. In the present study, we demonstrate IGF-1-independent actions of IGFBP-1 on OLN-93 oligodendroglial cells, including activation of kinases ERK1/2, focal adhesion kinase and p21-activated kinase as well as small monomeric GTPases Rac and Ral. Activation of these intracellular signaling components was inhibited by GRGDS peptide, indicating signaling through integrin receptors. While both IGF-1 and IGFBP-1 demonstrated rapid induction of actin polymerization, IGFBP-1 proved to be a more potent inducer of migration than IGF-1, inducing a threefold increased migration rate. Furthermore, through integrin receptor signaling IGFBP-1 induced rapid transient translocalization of intracellular Rac toward punctuated structures followed by translocation of Rac to the plasma membrane. Our results suggest that up-regulation of IGFBP-1 in oligodendrocytes in MS may serve two functions: (i) regulate IGF-1 actions, (ii) exert IGF-independent effects through its RGD sequence.
Collapse
Affiliation(s)
- Daniel Chesik
- Department of Neurology, University Medical Center Groningen, Groningen, The Netherlands.
| | | | | | | |
Collapse
|
30
|
|
31
|
Chesik D, De Keyser J. Progesterone and dexamethasone differentially regulate the IGF-system in glial cells. Neurosci Lett 2009; 468:178-82. [PMID: 19853640 DOI: 10.1016/j.neulet.2009.10.051] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Revised: 10/01/2009] [Accepted: 10/15/2009] [Indexed: 10/20/2022]
Abstract
IGF-1 is an important factor for myelin synthesis and hence possesses therapeutic potential in treating demyelinating disease such as multiple sclerosis. However, IGF-1 poorly crosses the blood-brain barrier. In this study, we investigated the effects of the sex steroid progesterone and the glucocorticoid dexamethasone on regulation of the IGF-system in glial cells. By means of quantitative PCR analysis, we demonstrate that progesterone upregulates IGF-1, the type 1 IGF receptor and IGFBP-2 in primary rat astrocytes and both IGF-1 and IGFBP-6 in OLN-93 oligodendroglial progenitor cells. In contrast, dexamethasone showed a negative effect on expression of IGF-1, the type 1 IGF receptor and the respective IGF binding proteins in both cell types. In oligodendrocytes, the differentiation marker CNPase was positively regulated by progesterone and negatively regulated by dexamethasone. Further, oligodendroglial cell migration was enhanced approximately 4-fold by progesterone. This study implicates progesterone as a positive regulator of IGF-system in glial cells and demonstrates a further biological function of progesterone in oligodendrocyte biology, namely stimulation of progenitor cell migration. Dexamethasone, on the other hand, is a negative regulator of the IGF-system in glial cells.
Collapse
Affiliation(s)
- Daniel Chesik
- Department of Neurology, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands.
| | | |
Collapse
|
32
|
Hua K, Forbes ME, Lichtenwalner RJ, Sonntag WE, Riddle DR. Adult-onset deficiency in growth hormone and insulin-like growth factor-I alters oligodendrocyte turnover in the corpus callosum. Glia 2009; 57:1062-71. [PMID: 19115393 DOI: 10.1002/glia.20829] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Growth hormone (GH) and insulin-like growth factor-I (IGF-I) provide trophic support during development and also appear to influence cell structure, function and replacement in the adult brain. Recent studies demonstrated effects of the GH/IGF-I axis on adult neurogenesis, but it is unclear whether the GH/IGF-I axis influences glial turnover in the normal adult brain. In the current study, we used a selective model of adult-onset GH and IGF-I deficiency to evaluate the role of GH and IGF-I in regulating glial proliferation and survival in the adult corpus callosum. GH/IGF-I-deficient dwarf rats of the Lewis strain were made GH/IGF-I replete via twice daily injections of GH starting at postnatal day 28 (P28), approximately the age at which GH pulse amplitude increases in developing rodents. GH/IGF-I deficiency was initiated in adulthood by removing animals from GH treatment. Quantitative analyses revealed that adult-onset GH/IGF-I deficiency decreased cell proliferation in the white matter and decreased the survival of newborn oligodendrocytes. These findings are consistent with the hypothesis that aging-related changes in the GH/IGF-I axis produce deficits in ongoing turnover of oligodendrocytes, which may contribute to aging-related cognitive changes and deficits in remyelination after injury.
Collapse
Affiliation(s)
- Kun Hua
- Department of Neurobiology and Anatomy, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157-1010, USA
| | | | | | | | | |
Collapse
|
33
|
Viguié C, Picard-Hagen N, Gayrard V, Toutain PL. Increased GH secretion in scrapie, a prion-associated neurodegenerative disease, is not due to suppressed IGF-1 negative feedback. Domest Anim Endocrinol 2009; 36:127-37. [PMID: 19179038 DOI: 10.1016/j.domaniend.2008.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Revised: 12/09/2008] [Accepted: 12/09/2008] [Indexed: 11/23/2022]
Abstract
GH secretion is increased in scrapie-diseased sheep. Although the role of the somatotropic axis as a neurotrophic and neuroprotective factor is well documented, no studies have been carried out on the mechanisms and functional significance of somatotropic perturbation in the pathophysiology of prion-associated neurodegenerative disease. The goal of this study was to test the hypothesis that increased GH secretion observed in a natural animal prion disease, scrapie, might reflect a general lack of action of IGF-1 and, more particularly, a suppressed IGF-1 negative feedback. The effect of human recombinant IGF-1 (rhIGF-1) on spontaneous and GHRH-induced secretions was studied in so-called "scrapie-resistant" and "scrapie sensitive" rams in vivo and in vitro on pituitary dissociated cells from both groups. The effect of rhIGF-1 infusion on spontaneous and GHRH-induced GH secretions was evaluated during the preclinical and clinical stages of the disease in vivo. Our results indicated that rhIGF-1 suppressed spontaneous GH secretion but not GHRH-induced secretion in vivo. RhIGF-1 had no effect on spontaneous and GHRH-induced GH secretion from dissociated pituitary cells. Clinical scrapie was associated with a significantly greater rhIGF-1-induced inhibition of GH spontaneous secretion (mean+/-S.E.M. inhibition of GH secretion: 31+/-8% vs. 45+/-4% in control and scrapie-affected rams, respectively). It can be concluded that the increase in GH secretion in scrapie-affected animals does not reflect a global lack of action of IGF-1. Further investigations are required to determine if other IGF-1 effects and more particularly neuroprotective mechanisms are altered in prion-associated neurodegenerative diseases.
Collapse
Affiliation(s)
- Catherine Viguié
- UMR 181, INRA, ENVT 23 Chemin des Capelles, F-31076 Toulouse Cedex 3, France.
| | | | | | | |
Collapse
|
34
|
Kraus J, Voigt K, Schuller AM, Scholz M, Kim KS, Schilling M, Schäbitz WR, Oschmann P, Engelhardt B. Interferon-β stabilizes barrier characteristics of the blood–brain barrier in four different species in vitro. Mult Scler 2008; 14:843-852. [DOI: 10.1177/1352458508088940] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Background Blood–brain barrier (BBB) breakdown is an early event in the pathogenesis of multiple sclerosis (MS). In a previous study we have found a direct stabilization of barrier characteristics after treatment of bovine brain capillary endothelial cells (BCECs) with human recombinant interferon-β-1a (IFN-β-1a) in an in vitro BBB model. In the present study we examined the effect of human recombinant IFN-β-1a on the barrier properties of BCECs derived from four different species including humans to predict treatment efficacy of IFN-β-1a in MS patients. Methods We used primary bovine and porcine BCECs, as well as human and murine BCEC cell lines. We investigated the influence of human recombinant IFN-β-1a on the paracellular permeability for 3H-inulin and 14C-sucrose across monolayers of bovine, human, and murine BCECs. In addition, the transendothelial electrical resistance (TEER) was determined in in vitro systems applying porcine and murine BCECS. Results We found a stabilizing effect on the barrier characteristics of BCECs after pretreatment with IFN-β-1a in all applied in vitro models: addition of IFN-β-1a resulted in a significant decrease of the paracellular permeability across monolayers of human, bovine, and murine BCECs. Furthermore, the TEER was significantly increased after pretreatment of porcine and murine BCECs with IFN-β-1a. Conclusion Our data suggest that BBB stabilization by IFN-β-1a may contribute to its beneficial effects in the treatment of MS. A human in vitro BBB model might be useful as bioassay for testing the treatment efficacy of drugs in MS.
Collapse
Affiliation(s)
- J Kraus
- Department of Neurology, Paracelsus Private Medical University and Salzburger Landesklinken, Christian-Doppler-Klinik, Salzburg, Austria; Department of Neurology, University Hospital of Münster, Münster, Germany,
| | - K Voigt
- Research Group for Multiple Sclerosis and Neuroimmunology, Department of Neurology, Justus-Liebig University of Giessen, Giessen, Germany
| | - AM Schuller
- Department of Thoracic and Cardiovascular Surgery, Johann-Wolfgang-Goethe University of Frankfurt, Frankfurt am Main, Germany
| | - M Scholz
- Department of Trauma and Hand Surgery, Heinrich-Heine University of Duesseldorf, Duesseldorf, Germany
| | - KS Kim
- Department of Pediatric Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - M Schilling
- Department of Neurology, University Hospital of Münster, Münster, Germany
| | - WR Schäbitz
- Department of Neurology, University Hospital of Münster, Münster, Germany
| | - P Oschmann
- Research Group for Multiple Sclerosis and Neuroimmunology, Department of Neurology, Justus-Liebig University of Giessen, Giessen, Germany
| | - B Engelhardt
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| |
Collapse
|
35
|
White LJ, Castellano V. Exercise and brain health--implications for multiple sclerosis: Part 1--neuronal growth factors. Sports Med 2008; 38:91-100. [PMID: 18201113 DOI: 10.2165/00007256-200838020-00001] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The benefits of regular exercise to promote general health and reduce the risk of hypokinetic diseases associated with sedentary lifestyles are well recognized. Recent studies suggest that exercise may enhance neurobiological processes that promote brain health in aging and disease. A current frontier in the neurodegenerative disorder multiple sclerosis (MS) concerns the role of physical activity for promoting brain health through protective, regenerative and adaptive neural processes. Research on neuromodulation, raises the possibility that regular physical activity may mediate favourable changes in disease factors and symptoms associated with MS, in part through changes in neuroactive proteins. Insulin-like growth factor-I appears to act as a neuroprotective agent and studies indicate that exercise could promote this factor in MS. Neurotrophins, brain-derived neurotrophic factor (BDNF) and nerve growth factor likely play roles in neuronal survival and activity-dependent plasticity. Physical activity has also been shown to up-regulate hippocampal BDNF, which may play a role in mood states, learning and memory to lessen the decline in cognitive function associated with MS. In addition, exercise may promote anti-oxidant defences and neurotrophic support that could attenuate CNS vulnerability to neuronal degeneration. Exercise exposure (preconditioning) may serve as a mechanism to enhance stress resistance and thereby may support neuronal survival under heightened stress conditions. Considering that axonal loss and cerebral atrophy occur early in the disease, exercise prescription in the acute stage could promote neuroprotection, neuroregeneration and neuroplasticity and reduce long-term disability. This review concludes with a proposed conceptual model to connect these promising links between exercise and brain health.
Collapse
Affiliation(s)
- Lesley J White
- Department of Kinesiology, University of Georgia, Athens, Georgia 30602, USA.
| | | |
Collapse
|
36
|
Wilczak N, De Keyser J, Chesik D. Targeting Insulin-Like Growth Factor-1 Signaling into the Central Nervous System for Promoting Myelin Repair. Drug Target Insights 2008. [DOI: 10.4137/dti.s362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Nadine Wilczak
- Department of Neurology, University Medical Center Groningen, the Netherlands
| | - Jacques De Keyser
- Department of Neurology, University Medical Center Groningen, the Netherlands
| | - Daniel Chesik
- Department of Neurology, University Medical Center Groningen, the Netherlands
| |
Collapse
|
37
|
Zeis T, Schaeren-Wiemers N. Lame Ducks or Fierce Creatures? - The Role of Oligodendrocytes in Multiple Sclerosis. J Mol Neurosci 2008; 35:91-100. [DOI: 10.1007/s12031-008-9042-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Accepted: 01/11/2008] [Indexed: 11/29/2022]
|
38
|
Koehler NKU, Roebbert M, Dehghani K, Ballmaier M, Claus P, von Hoersten S, Shing M, Odin P, Strehlau J, Heidenreich F. Up-regulation of platelet-derived growth factor by peripheral-blood leukocytes during experimental allergic encephalomyelitis. J Neurosci Res 2008; 86:392-402. [PMID: 17893914 DOI: 10.1002/jnr.21497] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In multiple sclerosis (MS) and its animal model, experimental allergic encephalomyelitis (EAE), clinical disease is associated with infiltration of the central nervous system (CNS) by immune cells. Subsequent remission with remyelination has been linked to an increased occurrence of oligodendrocyte progenitor (O2A) cells. Platelet-derived growth factor (PDGF) and fibroblast growth factor-2 (FGF-2) are key growth factors for O2A cells, yet little is known about their relevance in EAE and MS. We analyzed the expression of PDGF, FGF-2, and their receptors by peripheral-blood leukocytes (PBLs) and lymphocyte subsets during MBP-induced EAE. Strong up-regulation of PDGF, but not FGF-2, was observed in PBLs, with the highest expression after the disease maximum. T, NK, and NKT cells expressed PDGF, which is a novel observation because thus far only monocytes/macrophages have been reported to express PDGF. These results extend the idea that growth factors may contribute to improved CNS tissue repair, including PDGF, which is secreted by lesion-homing immune cells. The production of PDGF by lymphocytes may have potential therapeutic value when activating or modulating T-cell responses in demyelinating diseases.
Collapse
|
39
|
Chuu JJ, Liu SH, Lin-Shiau SY. Differential neurotoxic effects of methylmercury and mercuric sulfide in rats. Toxicol Lett 2007; 169:109-20. [PMID: 17292570 DOI: 10.1016/j.toxlet.2006.12.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2006] [Revised: 12/20/2006] [Accepted: 12/20/2006] [Indexed: 10/23/2022]
Abstract
Methylmercury (MeHg) is an environmental toxicant, while mercuric sulfide (HgS) is a main active component of cinnabar, a Chinese mineral medicine used as a sedative. Because the neurotoxicological effects of HgS were not clearly understood, in this study, we attempted to compare HgS with MeHg in various physiological responses in Sprague-Dawley rats. After oral administration (2 mg/(kg day)) for consecutive 5 and 14 days, MeHg reversibly decreased both of motor nerve conduction velocity (MNCV) and tail flick response, whereas irreversibly inhibited all of the motor equilibrium performance, recovery of compound muscle action potentials (CMAP) following exhaustic tetanic stimuli and Na+/K+-ATPase activity of the isolated sciatic nerve. These toxic effects of MeHg were found in well correlation of Hg contents of various tissues (blood, cerebral cortex, liver and kidney) in rats. For comparison, a dose of 1g/(kg day) of HgS was orally administered to the rats based on our previous findings on ototoxicity of HgS. The results revealed that HgS only reversibly delayed the recovery of suppressed CMAP and inhibited sciatic nerve Na+/K+-ATPase activity in accordance to the lower Hg contents of the tissues. These findings provide the important information on the differential susceptibility of various nervous tissues to MeHg and HgS. The neruotoxic effects produced by HgS was estimated to be about 1000 of those induced by MeHg found in this study and our previous reports.
Collapse
Affiliation(s)
- Jiunn-Jye Chuu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | |
Collapse
|
40
|
Chesik D, Wilczak N, De Keyser J. The insulin-like growth factor system in multiple sclerosis. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2007; 79:203-26. [PMID: 17531843 DOI: 10.1016/s0074-7742(07)79009-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Multiple sclerosis (MS) is a chronic disorder of the central nervous system characterized by inflammation, demyelination, and axonal degeneration. Present therapeutic strategies for MS reduce inflammation and its destructive consequences, but are not effective in the progressive phase of the disease. There is a need for neuroprotective and restorative therapies in MS. Insulin-like growth factor-1 (IGF-1) is of considerable interest because it is not only a potent neuroprotective trophic factor but also a survival factor for cells of the oligodendrocyte lineage and possesses a potent myelinogenic capacity. However, the IGF system is complex and includes not only IGF-1 and IGF-2 and their receptors but also modulating IGF-binding proteins (IGFBPs), of which six have been identified. This chapter provides an overview of the role of the IGF system in the pathophysiology of MS, relevant findings in preclinical models, and discusses the possible use of IGF-1 as a therapeutic agent for MS.
Collapse
Affiliation(s)
- Daniel Chesik
- Department of Neurology, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | | | | |
Collapse
|
41
|
Cole GM, Frautschy SA. The role of insulin and neurotrophic factor signaling in brain aging and Alzheimer’s Disease. Exp Gerontol 2007; 42:10-21. [PMID: 17049785 DOI: 10.1016/j.exger.2006.08.009] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2006] [Revised: 08/23/2006] [Accepted: 08/23/2006] [Indexed: 12/15/2022]
Abstract
Although increased lifespan is associated with reduced insulin signaling, insulin signaling is essential for neuronal development and survival. Insulin resistance is central to Type II diabetes and is also implicated in the pathogenesis of Alzheimer's Disease (AD). This has prompted ongoing clinical trials in AD patients to test the efficacy of improving insulin - like signaling with dietary omega-3 fatty acids or insulin - sensitizing drugs as well as exercise regimens. Here we review the role of insulin signaling in brain aging and AD, concluding that the signaling pathways downstream to neurotrophic and insulin signaling are defective and coincident with aberrant phosphorylation and translocation of key components, notably AKT and GSK3beta, but also rac> PAK signaling. These responses are likely to contribute to defects in synaptic plasticity, learning and memory. Both oligomers of beta-amyloid (which are elevated in the AD brain) and pro-inflammatory cytokines (which are elevated in the aged or AD brain) can be used to mimic the trophic factor/insulin resistance observed in AD, but details on other factors and mechanisms contributing to this resistance remain elusive. A better understanding of the precise mechanisms underlying alterations in the insulin/neurotrophic factor signal transduction pathways should aid the search for better AD therapeutic and prevention strategies.
Collapse
Affiliation(s)
- Greg M Cole
- Greater Los Angeles Veterans Affairs Healthcare System, Geriatric Research, Education and Clinical Center, 16111 Plummer Street, Sepulveda, CA 91343, USA.
| | | |
Collapse
|
42
|
Kumar S, Biancotti JC, Yamaguchi M, de Vellis J. Combination of growth factors enhances remyelination in a cuprizone-induced demyelination mouse model. Neurochem Res 2006; 32:783-97. [PMID: 17186374 DOI: 10.1007/s11064-006-9208-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2006] [Accepted: 10/16/2006] [Indexed: 10/23/2022]
Abstract
Loss of oligodendrocytes (OLs) is often associated with demyelination. PDGF-AA, bFGF, NT3 and IGF-1 are known to regulate OL proliferation, survival and/or differentiation. Following cuprizone-induced demyelination in mice a combination of above four growth factors (GF) was intracranially injected to stimulate remyelination in vivo. Activation of cell signaling and transcription factors involved in cell proliferation, survival and differentiation was observed in response to GF. Increased cell proliferation and migration occurred in corpus callosum, lateral ventricles, rostral migratory stream and cerebri at 2-5 days post injection (dpi) of GF cocktail. The fate of these newly formed nestin or bromodeoxyuridine (BrdU) positive progenitors was traced to proteoglycan NG2 and glutathione transferase (GST) pi positive cells, early and mature OL lineage markers, respectively. Immunostaining for myelin showed the presence of more myelinated fibers in GF-injected brains at 21 dpi. Remyelination in response to GF was confirmed by electron microscopy. In conclusion, this combination of GF is a promising tool to consider for remyelination strategies.
Collapse
Affiliation(s)
- Shalini Kumar
- Department of Neurobiology, Mental Retardation Research Center, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California-Los Angeles, 635 Charles E. Young Drive South, Los Angeles, CA 90095-7332, USA
| | | | | | | |
Collapse
|
43
|
Prasad R, Giri S, Nath N, Singh I, Singh AK. 5-aminoimidazole-4-carboxamide-1-beta-4-ribofuranoside attenuates experimental autoimmune encephalomyelitis via modulation of endothelial-monocyte interaction. J Neurosci Res 2006; 84:614-25. [PMID: 16770773 DOI: 10.1002/jnr.20953] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Experimental autoimmune encephalomyelitis (EAE) is a model for studying multiple sclerosis (MS), a chronic demyelinating disorder of the CNS. 5-Aminoimidazole-4-carboxamide ribonucleoside (AICAR), an activator of AMP-activated protein kinase (AMPK), has been reported to show antiinflammatory and immunomodulatory effects in various models of inflammation. Recently, we have reported AICAR-mediated attenuation of active and passive EAE in mouse model [Nath et al. (2005) J. Immunol. 175:566-574]. Here we used a rat model of acute EAE to show antiinflammatory effects of AICAR after daily treatment starting at onset of the disease. By maintaining the blood-brain barrier (BBB), AICAR-administered animals showed lower clinical scores compared with untreated EAE animals. AICAR inhibited the infiltration of inflammatory cells across the BBB, resulting in lowered expression of proinflammatory mediators in the CNS and protection from severe demyelination. By using in vitro model of endothelial-leukocyte interaction, we showed that AICAR inhibited adhesion of monocytes to tumor necrosis factor-alpha-activated endothelial cells. One of the mechanisms of this action is through down-regulation of expression of endothelial cell adhesion molecules via modulation of nuclear factor kappaB activation. The data suggest that AICAR attenuates EAE progression by limiting infiltration of leukocytes across the BBB, thereby controlling the consequent inflammatory reaction in the CNS.
Collapse
MESH Headings
- Aminoimidazole Carboxamide/analogs & derivatives
- Aminoimidazole Carboxamide/pharmacology
- Aminoimidazole Carboxamide/therapeutic use
- Animals
- Anti-Inflammatory Agents/pharmacology
- Anti-Inflammatory Agents/therapeutic use
- Blood-Brain Barrier/drug effects
- Blood-Brain Barrier/immunology
- Blood-Brain Barrier/metabolism
- Cell Adhesion/drug effects
- Cell Adhesion/immunology
- Cell Adhesion Molecules/drug effects
- Cell Adhesion Molecules/immunology
- Chemotaxis, Leukocyte/drug effects
- Chemotaxis, Leukocyte/immunology
- Disease Models, Animal
- Down-Regulation/drug effects
- Down-Regulation/immunology
- Encephalomyelitis, Autoimmune, Experimental/drug therapy
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/physiopathology
- Endothelial Cells/drug effects
- Endothelial Cells/metabolism
- Female
- Inflammation Mediators/immunology
- Inflammation Mediators/metabolism
- Mice
- Monocytes/drug effects
- Monocytes/metabolism
- NF-kappa B/immunology
- NF-kappa B/metabolism
- Rats
- Rats, Inbred Lew
- Ribonucleotides/pharmacology
- Ribonucleotides/therapeutic use
- Tumor Necrosis Factor-alpha/immunology
- Tumor Necrosis Factor-alpha/metabolism
Collapse
Affiliation(s)
- Ratna Prasad
- Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | | | | | |
Collapse
|
44
|
Decker L, Lachapelle F, Magy L, Picard-Riera N, Nait-Oumesmar B, Baron-Van Evercooren A. Fibroblast growth factors in oligodendrocyte physiology and myelin repair. ERNST SCHERING RESEARCH FOUNDATION WORKSHOP 2006:39-59. [PMID: 16315608 DOI: 10.1007/3-540-27626-2_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- L Decker
- INSERM U368, Ecole Normale Supérieure, Paris, France.
| | | | | | | | | | | |
Collapse
|
45
|
Abstract
Multiple sclerosis (MS) is the most common neurological cause of disability in young people. The disease-modifying treatments, IFN-beta and glatiramer acetate, have been widely available over the last decade and have shown a beneficial effect on relapse rate and magnetic resonance imaging parameters of disease activity; however, their effect on disease progression and disability is modest. Therefore, the search for alternative treatment strategies continues. As understanding of the heterogeneous pathophysiology of MS has increased, emphasis has shifted to more selective therapy that targets components of the inflammatory cascade and the promotion of remyelination and neuroprotection. These agents target the blood-brain barrier, systemic immune dysfunction, local inflammation and neurodegeneration. Combination therapies are being investigated for patients who fail first-line treatments. Many new drugs are being developed and tested that address these issues with the aim of finding a more effective and convenient therapy. These include humanized monoclonal antibodies such as daclizumab (IL-2 antagonist), oral immunomodulators such as sirolimus and statins and neuroprotective agents such as NMDA antagonists and Na+-channel blockers. Many of the treatments discussed in this review are still at early stages of development, but provide exciting potential treatment options; others have proved disappointing in larger extended-phase studies.
Collapse
Affiliation(s)
- Rachel Farrell
- Department of Neuroinflammation, Institute of Neurology, Queen Square, London, WC1N 3BG, UK.
| | | | | |
Collapse
|
46
|
Popken GJ, Dechert-Zeger M, Ye P, D'Ercole AJ. Brain Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2005; 567:187-220. [PMID: 16372399 DOI: 10.1007/0-387-26274-1_8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Affiliation(s)
- Gregory J Popken
- Division Pediatric Endocrinology, Department of Pediatrics, University of North Carolina at Chapel Hill, NC 27599-7039, USA
| | | | | | | |
Collapse
|
47
|
Genoud S, Maricic I, Kumar V, Gage FH. Targeted expression of IGF-1 in the central nervous system fails to protect mice from experimental autoimmune encephalomyelitis. J Neuroimmunol 2005; 168:40-5. [PMID: 16120466 DOI: 10.1016/j.jneuroim.2005.06.033] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2005] [Accepted: 06/27/2005] [Indexed: 11/21/2022]
Abstract
Insulin-like growth factor 1 (IGF-1) has been identified as a critical molecule in the induction of myelination in the central nervous system (CNS). Systemic injection of IGF-1 has been shown to have a varied and transiently protective effect on the clinical course of experimental autoimmune encephalomyelitis (EAE). Since systemic IGF-1 can also modulate peripheral immune lymphocytes, we examined whether a sustained and local delivery of IGF-1 into the spinal cord would have any influence on the chronic course of EAE in C57/BL6 mice. The capability of adeno-associated virus (AAV) to be retrogradely transported efficiently from muscle to motor neurons of the spinal cord was used to overcome the difficulty routinely encountered when attempting chronic delivery of molecules into the CNS. We demonstrate that AAV-mediated delivery of IGF-1 in CNS did not have any beneficial effect on the clinical course of EAE. Injection of AAV-IGF1 after induction of the disease worsened the clinical symptoms. Furthermore, CNS expression of IGF-1 did not affect the pathogenic anti-MOG T cell response, as examined by proliferation and cytokine secretion. Thus, enhanced expression of IGF-1 in the CNS during inflammation does not have a significant effect on myelination. These data have important implications for the potential use of IGF-1 in the treatment of multiple sclerosis.
Collapse
MESH Headings
- Animals
- Blotting, Northern/methods
- Cell Line
- Cell Proliferation/drug effects
- Central Nervous System/drug effects
- Central Nervous System/metabolism
- Cytokines/genetics
- Cytokines/metabolism
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Encephalomyelitis, Autoimmune, Experimental/chemically induced
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/prevention & control
- Gene Expression/drug effects
- Gene Expression Regulation/drug effects
- Gene Expression Regulation/physiology
- Glycoproteins
- Humans
- Immunohistochemistry/methods
- Insulin-Like Growth Factor I/metabolism
- Insulin-Like Growth Factor I/physiology
- Lymphocyte Activation/drug effects
- Lymphocyte Activation/physiology
- Mice
- Mice, Inbred C57BL
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Myelin-Oligodendrocyte Glycoprotein
- Peptide Fragments
- Reverse Transcriptase Polymerase Chain Reaction/methods
- Spinal Cord/drug effects
- Spinal Cord/metabolism
- Time Factors
Collapse
Affiliation(s)
- Stéphane Genoud
- Laboratory of Genetics, The Salk Institute, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
48
|
|
49
|
Chesik D, Glazenburg K, Wilczak N, Geeraedts F, De Keyser J. Insulin-like growth factor binding protein-1-6 expression in activated microglia. Neuroreport 2004; 15:1033-7. [PMID: 15076729 DOI: 10.1097/00001756-200404290-00020] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In the CNS insulin-like growth factor-1 (IGF-1) enhances survival of neurons, promotes myelin synthesis and acts as a mitogen for microglia. The effects of IGF-1 are regulated by a family of 6 IGF binding proteins (IGFBPs). We investigated mRNA expression patterns of IGFBPs in primary rat microglia under basal conditions and after activation with lipopolysaccharide (LPS). Under basal conditions, microglia expressed IGFBP-2 to -6, whereas, IGFBP-1 could not be detected. Following 2 h treatment with LPS mRNA levels for IGFBP-4 and -6 displayed a down regulation, and IGFBP-5 became undetectable. Levels of IGFBP-2 and -3 remained unaltered. Expression patterns of IGFBPs might play an important role in regulating the autocrine/paracrine IGF-1 actions on microglia under inflammatory conditions.
Collapse
Affiliation(s)
- Daniel Chesik
- Department of Neurology, University Hospital Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands.
| | | | | | | | | |
Collapse
|
50
|
Althaus HH. Remyelination in multiple sclerosis: a new role for neurotrophins? PROGRESS IN BRAIN RESEARCH 2004; 146:415-32. [PMID: 14699977 DOI: 10.1016/s0079-6123(03)46026-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Multiple sclerosis (MS) is a common neurological disease, which affects young adults. Its course is unpredictable and runs over decades. It is considered as an autoimmune disease, and is neuropathologically characterized by demyelination, variable loss of oligodendroglial cells, and axonal degeneration. Demyelination provides a permitting condition for axonal degeneration, which seems to be causative of permanent neurological deficits. Hence, the current treatment, which works preferentially immunmodulatory, should be complemented by therapeutics, which improves remyelination not only for restoring conduction velocity but also for preventing an irreversible axonal damage. One strategy to achieve this aim would be to promote remyelination by stimulating oligodendroglial cells remaining in MS lesions. While central nervous system neurons were already known to respond to neurotrophins (NT), interactions with glial cells became apparent more recently. In vitro and in vivo studies have shown that NT influence proliferation, differentiation, survival, and regeneration of mature oligodendrocytes and oligodendroglial precursors in favor of a myelin repair. Two in vivo models provided direct evidence that NT can improve remyelination. In addition, their neuroprotective and anti-inflammatory role would support a repair. Hence, a wealth of data point to NT as promising therapeutical candidates.
Collapse
Affiliation(s)
- Hans H Althaus
- Max-Planck-Institute for Experimental Medicine, RU Neural Regeneration, H.-Reinstr. 3, D-37075 Göttingen, Germany.
| |
Collapse
|