1
|
Zhuang J, Hou Y, Wang Y, Gao Y, Chen Y, Qi J, Li P, Bian Y, Ju N. Relationship between microorganisms and milk metabolites during quality changes in refrigerated raw milk: A metagenomic and metabolomic exploration. Int J Food Microbiol 2024; 425:110891. [PMID: 39216362 DOI: 10.1016/j.ijfoodmicro.2024.110891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/06/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Although cold storage at 4 °C can effectively prolong the shelf life of raw milk, it cannot prevent its eventual spoilage. In this study, we analyzed the main physicochemical and microbial indexes of raw milk stored at 4 °C for 6 days. The changes in microbial profiles and milk metabolites and their relationship during refrigeration were also explored. Metagenomic analysis performed using the Illumina Hiseq Xten sequencing platform revealed that the dominant genera in raw milk evolved from Acinetobacter, Streptococcus, Staphylococcus, and Anaplasma to Flavobacterium, Pseudomonas, and Lactococcus during cold storage. Using the UHPLC-Q-TOF MS method, 77 significantly different metabolites (p < 0.05) were identified, among which lipids were the most abundant (37). The most significant metabolic changes largely occurred at 3-4 days of refrigeration, coinciding with the rapid increase in dominant psychrotrophic bacteria. Subsequently, correlation analysis demonstrated that these lipid-related metabolites were significantly associated with Acinetobacter, Flavobacterium, and Pseudomonas. Both macro indicators and microanalysis indicated that the key stage of quality changes in raw milk was 3-4 days. Thus, this stage can be targeted for the quality control of raw milk.
Collapse
Affiliation(s)
- Jiao Zhuang
- School of Food Science & Engineering, Ningxia University, Yinchuan 750021, China
| | - Yanru Hou
- School of Food Science & Engineering, Ningxia University, Yinchuan 750021, China
| | - Yuanyuan Wang
- School of Food Science & Engineering, Ningxia University, Yinchuan 750021, China
| | - Yan Gao
- School of Food Science & Engineering, Ningxia University, Yinchuan 750021, China
| | - Yanhui Chen
- School of Food Science & Engineering, Ningxia University, Yinchuan 750021, China
| | - Jin Qi
- School of Food Science & Engineering, Ningxia University, Yinchuan 750021, China
| | - Puyu Li
- School of Food Science & Engineering, Ningxia University, Yinchuan 750021, China
| | - Yongxia Bian
- School of Food Science & Engineering, Ningxia University, Yinchuan 750021, China
| | - Ning Ju
- School of Food Science & Engineering, Ningxia University, Yinchuan 750021, China.
| |
Collapse
|
2
|
Redeker KEM, Brockmöller J. Several orphan solute carriers functionally identified as organic cation transporters: Substrates specificity compared with known cation transporters. J Biol Chem 2024; 300:107629. [PMID: 39098524 PMCID: PMC11406361 DOI: 10.1016/j.jbc.2024.107629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/10/2024] [Accepted: 07/25/2024] [Indexed: 08/06/2024] Open
Abstract
Organic cations comprise a significant part of medically relevant drugs and endogenous substances. Such substances need organic cation transporters for efficient transfer via cell membranes. However, the membrane transporters of most natural or synthetic organic cations are still unknown. To identify these transporters, genes of 10 known OCTs and 18 orphan solute carriers (SLC) were overexpressed in HEK293 cells and characterized concerning their transport activities with a broad spectrum of low molecular weight substances emphasizing organic cations. Several SLC35 transporters and SLC38A10 significantly enhanced the transport of numerous relatively hydrophobic organic cations. Significant organic cation transport activities have been found in gene families classified as transporters of other substance classes. For instance, SLC35G3 and SLC38A10 significantly accelerated the uptake of several cations, such as clonidine, 3,4-methylenedioxymethamphetamine, and nicotine, which are known as substrates of a thus far genetically unidentified proton/organic cation antiporter. The transporters SLC35G4 and SLC35F5 stood out by their significantly increased choline uptake, and several other SLC transported choline together with a broader spectrum of organic cations. Overall, there are many more polyspecific organic cation transporters than previously estimated. Several transporters had one predominant substrate but accepted some other cationic substrates, and others showed no particular preference for one substrate but transported several organic cations. The role of these transporters in biology and drug therapy remains to be elucidated.
Collapse
Affiliation(s)
- Kyra-Elisa Maria Redeker
- Institute of Clinical Pharmacology, University Medical Center Göttingen, Georg-August-University Göttingen, Göttingen, Germany.
| | - Jürgen Brockmöller
- Institute of Clinical Pharmacology, University Medical Center Göttingen, Georg-August-University Göttingen, Göttingen, Germany
| |
Collapse
|
3
|
Zhu Y, Tong X, Xue J, Qiu H, Zhang D, Zheng DQ, Tu ZC, Ye C. Phospholipid biosynthesis modulates nucleotide metabolism and reductive capacity. Nat Chem Biol 2024:10.1038/s41589-024-01689-z. [PMID: 39060393 DOI: 10.1038/s41589-024-01689-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 07/02/2024] [Indexed: 07/28/2024]
Abstract
Phospholipid and nucleotide syntheses are fundamental metabolic processes in eukaryotic organisms, with their dysregulation implicated in various disease states. Despite their importance, the interplay between these pathways remains poorly understood. Using genetic and metabolic analyses in Saccharomyces cerevisiae, we elucidate how cytidine triphosphate usage in the Kennedy pathway for phospholipid synthesis influences nucleotide metabolism and redox balance. We find that deficiencies in the Kennedy pathway limit nucleotide salvage, prompting compensatory activation of de novo nucleotide synthesis and the pentose phosphate pathway. This metabolic shift enhances the production of antioxidants such as NADPH and glutathione. Moreover, we observe that the Kennedy pathway for phospholipid synthesis is inhibited during replicative aging, indicating its role in antioxidative defense as an adaptive mechanism in aged cells. Our findings highlight the critical role of phospholipid synthesis pathway choice in the integrative regulation of nucleotide metabolism, redox balance and membrane properties for cellular defense.
Collapse
Affiliation(s)
- Yibing Zhu
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Xiaomeng Tong
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Jingyuan Xue
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Hong Qiu
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Dan Zhang
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dao-Qiong Zheng
- Ocean College, Zhejiang University, Zhoushan, China
- Hainan Institute, Zhejiang University, Sanya, China
| | - Zong-Cai Tu
- National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, China
| | - Cunqi Ye
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China.
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Hainan Institute, Zhejiang University, Sanya, China.
- National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, China.
| |
Collapse
|
4
|
Asantewaa G, Tuttle ET, Ward NP, Kang YP, Kim Y, Kavanagh ME, Girnius N, Chen Y, Rodriguez K, Hecht F, Zocchi M, Smorodintsev-Schiller L, Scales TQ, Taylor K, Alimohammadi F, Duncan RP, Sechrist ZR, Agostini-Vulaj D, Schafer XL, Chang H, Smith ZR, O'Connor TN, Whelan S, Selfors LM, Crowdis J, Gray GK, Bronson RT, Brenner D, Rufini A, Dirksen RT, Hezel AF, Huber AR, Munger J, Cravatt BF, Vasiliou V, Cole CL, DeNicola GM, Harris IS. Glutathione synthesis in the mouse liver supports lipid abundance through NRF2 repression. Nat Commun 2024; 15:6152. [PMID: 39034312 PMCID: PMC11271484 DOI: 10.1038/s41467-024-50454-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 07/12/2024] [Indexed: 07/23/2024] Open
Abstract
Cells rely on antioxidants to survive. The most abundant antioxidant is glutathione (GSH). The synthesis of GSH is non-redundantly controlled by the glutamate-cysteine ligase catalytic subunit (GCLC). GSH imbalance is implicated in many diseases, but the requirement for GSH in adult tissues is unclear. To interrogate this, we have developed a series of in vivo models to induce Gclc deletion in adult animals. We find that GSH is essential to lipid abundance in vivo. GSH levels are highest in liver tissue, which is also a hub for lipid production. While the loss of GSH does not cause liver failure, it decreases lipogenic enzyme expression, circulating triglyceride levels, and fat stores. Mechanistically, we find that GSH promotes lipid abundance by repressing NRF2, a transcription factor induced by oxidative stress. These studies identify GSH as a fulcrum in the liver's balance of redox buffering and triglyceride production.
Collapse
Affiliation(s)
- Gloria Asantewaa
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, USA
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Emily T Tuttle
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Nathan P Ward
- Department of Metabolism and Physiology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Yun Pyo Kang
- Department of Metabolism and Physiology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Yumi Kim
- Department of Metabolism and Physiology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Madeline E Kavanagh
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA
- Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Nomeda Girnius
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Ying Chen
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Katherine Rodriguez
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Fabio Hecht
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Marco Zocchi
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Leonid Smorodintsev-Schiller
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - TashJaé Q Scales
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Kira Taylor
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Fatemeh Alimohammadi
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| | - Renae P Duncan
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Zachary R Sechrist
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Diana Agostini-Vulaj
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Xenia L Schafer
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, USA
| | - Hayley Chang
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Zachary R Smith
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Thomas N O'Connor
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| | - Sarah Whelan
- Leicester Cancer Research Centre, University of Leicester, Leicester, UK
| | - Laura M Selfors
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Jett Crowdis
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - G Kenneth Gray
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | | | - Dirk Brenner
- Experimental and Molecular Immunology, Dept. of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Odense Research Center for Anaphylaxis (ORCA), Department of Dermatology and Allergy Center, Odense University Hospital, University of Southern Denmark, Odense, Denmark
| | - Alessandro Rufini
- Leicester Cancer Research Centre, University of Leicester, Leicester, UK
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
| | - Robert T Dirksen
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| | - Aram F Hezel
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Aaron R Huber
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Joshua Munger
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Benjamin F Cravatt
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Calvin L Cole
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Gina M DeNicola
- Department of Metabolism and Physiology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Isaac S Harris
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA.
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA.
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
5
|
Arshad U, Santos JEP. Graduate Student Literature Review: Exploring choline's important roles as a nutrient for transition dairy cows. J Dairy Sci 2024; 107:4357-4369. [PMID: 38522836 DOI: 10.3168/jds.2023-24050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 01/22/2024] [Indexed: 03/26/2024]
Abstract
In late gestation and in the first weeks postpartum, lipid droplets accumulate in the hepatic tissue resulting in approximately 40% to 50% of the dairy cows developing hepatic lipidosis in the first weeks of lactation. Elevated concentrations of triacylglycerol in the hepatic tissue are associated with increased risk of peripartum diseases and impaired productive performance. Cows with hepatic lipidosis need to dispose the excess of hepatic triacylglycerol, but this is a slow process in the bovine liver and relies on primary mechanisms such as complete oxidation and ketogenesis because of the limited export of triacylglycerols as lipoproteins. Choline is a lipotropic compound because, among other functions, it facilitates the export of lipids from the liver. Supplementing choline as rumen-protected choline (RPC) to diets of feed-restricted dairy cows reduces the degree of triacylglycerol infiltration into the hepatic parenchyma in part by enhancing export of triacylglycerol as nascent lipoprotein. The reduced accumulation of triacylglycerol in hepatic tissue in feed-restricted cows fed RPC might affect secondary pathways involved in hepatic disposal of fatty acids such as increased cellular autophagy and lipophagy and minimize endoplasmic reticulum stress response and hepatocyte inflammation. Collectively, these effects on secondary pathways might further reduce the severity of hepatic lipidosis in cows. One of the benefits of supplementing RPC is improved fat digestibility, perhaps because choline, through phosphatidylcholines, facilitates lipid transport within the enterocyte by increasing the synthesis of chylomicrons. Finally, when supplemented during the transition period, RPC improves productive performance of cows, irrespective of their body condition, that extends well beyond the period of supplementation. This review summarizes the current understanding of hepatic lipidosis in early lactation, recapitulates the absorption, transport and metabolism of choline, and discusses its role on hepatic metabolism and gastrointestinal functions, which collectively results in improved performance in dairy cows.
Collapse
Affiliation(s)
- U Arshad
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611; Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706.
| | | |
Collapse
|
6
|
Thomson AR, Hwa H, Pasanta D, Hopwood B, Powell HJ, Lawrence R, Tabuenca ZG, Arichi T, Edden RAE, Chai X, Puts NA. The developmental trajectory of 1H-MRS brain metabolites from childhood to adulthood. Cereb Cortex 2024; 34:bhae046. [PMID: 38430105 PMCID: PMC10908220 DOI: 10.1093/cercor/bhae046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 03/03/2024] Open
Abstract
Human brain development is ongoing throughout childhood, with for example, myelination of nerve fibers and refinement of synaptic connections continuing until early adulthood. 1H-Magnetic Resonance Spectroscopy (1H-MRS) can be used to quantify the concentrations of endogenous metabolites (e.g. glutamate and γ -aminobutyric acid (GABA)) in the human brain in vivo and so can provide valuable, tractable insight into the biochemical processes that support postnatal neurodevelopment. This can feasibly provide new insight into and aid the management of neurodevelopmental disorders by providing chemical markers of atypical development. This study aims to characterize the normative developmental trajectory of various brain metabolites, as measured by 1H-MRS from a midline posterior parietal voxel. We find significant non-linear trajectories for GABA+ (GABA plus macromolecules), Glx (glutamate + glutamine), total choline (tCho) and total creatine (tCr) concentrations. Glx and GABA+ concentrations steeply decrease across childhood, with more stable trajectories across early adulthood. tCr and tCho concentrations increase from childhood to early adulthood. Total N-acetyl aspartate (tNAA) and Myo-Inositol (mI) concentrations are relatively stable across development. Trajectories likely reflect fundamental neurodevelopmental processes (including local circuit refinement) which occur from childhood to early adulthood and can be associated with cognitive development; we find GABA+ concentrations significantly positively correlate with recognition memory scores.
Collapse
Affiliation(s)
- Alice R Thomson
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, 16 De Crespigny Park, London, SE5 8AF, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, Department of Neurodevelopmental Disorders, New Hunt's House, Guy's Campus, King's College London, London, SE1 1UL, United Kingdom
| | - Hannah Hwa
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, 16 De Crespigny Park, London, SE5 8AF, United Kingdom
| | - Duanghathai Pasanta
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, 16 De Crespigny Park, London, SE5 8AF, United Kingdom
| | - Benjamin Hopwood
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, 16 De Crespigny Park, London, SE5 8AF, United Kingdom
| | - Helen J Powell
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, 16 De Crespigny Park, London, SE5 8AF, United Kingdom
| | - Ross Lawrence
- Division of Cognitive Neurology, Department of Neurology, Johns Hopkins University, 1629 Thames Street Suite 350, Baltimore, MD 21231, United States
| | - Zeus G Tabuenca
- Department of Statistical Methods, University of Zaragoza, Pedro Cerbuna 12, Zaragoza, 50009, Spain
| | - Tomoki Arichi
- MRC Centre for Neurodevelopmental Disorders, Department of Neurodevelopmental Disorders, New Hunt's House, Guy's Campus, King's College London, London, SE1 1UL, United Kingdom
- Centre for the Developing Brain, Department of Perinatal Imaging & Health, 1st Floor, South Wing, St Thomas’ Hospital, London, SE1 7EH, United Kingdom
| | - Richard A E Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, 601 North Caroline Street, Baltimore, MD 21287, United States
- F.M. Kirby Research Centre for Functional Brain Imaging, Kennedy Krieger Institute, 707 North Broadway, Baltimore, MD 21205, United States
| | - Xiaoqian Chai
- Department of Neurology and Neurosurgery, McGill University, QC H3A2B4, Canada
| | - Nicolaas A Puts
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, 16 De Crespigny Park, London, SE5 8AF, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, Department of Neurodevelopmental Disorders, New Hunt's House, Guy's Campus, King's College London, London, SE1 1UL, United Kingdom
| |
Collapse
|
7
|
Socha MW, Flis W, Wartęga M. Epigenetic Genome Modifications during Pregnancy: The Impact of Essential Nutritional Supplements on DNA Methylation. Nutrients 2024; 16:678. [PMID: 38474806 PMCID: PMC10934520 DOI: 10.3390/nu16050678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Pregnancy is an extremely stressful period in a pregnant woman's life. Currently, women's awareness of the proper course of pregnancy and its possible complications is constantly growing. Therefore, a significant percentage of women increasingly reach for various dietary supplements during gestation. Some of the most popular substances included in multi-ingredient supplements are folic acid and choline. Those substances are associated with positive effects on fetal intrauterine development and fewer possible pregnancy-associated complications. Recently, more and more attention has been paid to the impacts of specific environmental factors, such as diet, stress, physical activity, etc., on epigenetic modifications, understood as changes occurring in gene expression without the direct alteration of DNA sequences. Substances such as folic acid and choline may participate in epigenetic modifications by acting via a one-carbon cycle, leading to the methyl-group donor formation. Those nutrients may indirectly impact genome phenotype by influencing the process of DNA methylation. This review article presents the current state of knowledge on the use of folic acid and choline supplementation during pregnancy, taking into account their impacts on the maternal-fetal unit and possible pregnancy outcomes, and determining possible mechanisms of action, with particular emphasis on their possible impacts on epigenetic modifications.
Collapse
Affiliation(s)
- Maciej W. Socha
- Department of Perinatology, Gynecology and Gynecologic Oncology, Faculty of Health Sciences, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Łukasiewicza 1, 85-821 Bydgoszcz, Poland;
- Department of Obstetrics and Gynecology, St. Adalbert’s Hospital in Gdańsk, Copernicus Healthcare Entity, Jana Pawła II 50, 80-462 Gdańsk, Poland
| | - Wojciech Flis
- Department of Perinatology, Gynecology and Gynecologic Oncology, Faculty of Health Sciences, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Łukasiewicza 1, 85-821 Bydgoszcz, Poland;
- Department of Obstetrics and Gynecology, St. Adalbert’s Hospital in Gdańsk, Copernicus Healthcare Entity, Jana Pawła II 50, 80-462 Gdańsk, Poland
| | - Mateusz Wartęga
- Department of Pathophysiology, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie-Skłodowskiej 9, 85-094 Bydgoszcz, Poland;
| |
Collapse
|
8
|
Zirakchian Zadeh M. The role of conventional and novel PET radiotracers in assessment of myeloma bone disease. Bone 2024; 179:116957. [PMID: 37972747 DOI: 10.1016/j.bone.2023.116957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023]
Abstract
Over 80 % of patients with multiple myeloma (MM) experience osteolytic bone lesions, primarily due to an imbalanced interaction between osteoclasts and osteoblasts. This imbalance can lead to several adverse outcomes such as pain, fractures, limited mobility, and neurological impairments. Myeloma bone disease (MBD) raises the expense of management in addition to being a major source of disability and morbidity in myeloma patients. Whole-body x-ray radiography was the gold standard imaging modality for detecting lytic lesions. Osteolytic lesions are difficult to identify at an earlier stage on X-ray since the lesions do not manifest themselves on conventional radiographs until at least 30 % to 50 % of the bone mass has been destroyed. Hence, early diagnosis of osteolytic lesions necessitates the utilization of more complex and advanced imaging modalities, such as PET. One of the PET radiotracers that has been frequently investigated in MM is 18F-FDG, which has demonstrated a high level of sensitivity and specificity in detecting myeloma lesions. However, 18F-FDG PET/CT has several restrictions, and therefore the novel PET tracers that can overcome the limitations of 18F-FDG PET/CT should be further examined in assessment of MBD. The objective of this review article is to thoroughly examine the significance of both conventional and novel PET radiotracers in the assessment of MBD. The intention is to present the information in a manner that would be easily understood by healthcare professionals from diverse backgrounds, while minimizing the use of complex nuclear medicine terminology.
Collapse
Affiliation(s)
- Mahdi Zirakchian Zadeh
- Molecular Imaging and Therapy and Interventional Radiology Services, Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
9
|
Smiriglia A, Lorito N, Serra M, Perra A, Morandi A, Kowalik MA. Sex difference in liver diseases: How preclinical models help to dissect the sex-related mechanisms sustaining NAFLD and hepatocellular carcinoma. iScience 2023; 26:108363. [PMID: 38034347 PMCID: PMC10682354 DOI: 10.1016/j.isci.2023.108363] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023] Open
Abstract
Only a few preclinical findings are confirmed in the clinic, posing a critical issue for clinical development. Therefore, identifying the best preclinical models can help to dissect molecular and mechanistic insights into liver disease pathogenesis while being clinically relevant. In this context, the sex relevance of most preclinical models has been only partially considered. This is particularly significant in NAFLD and HCC, which have a higher prevalence in men when compared to pre-menopause women but not to those in post-menopausal status, suggesting a role for sex hormones in the pathogenesis of the diseases. This review gathers the sex-relevant findings and the available preclinical models focusing on both in vitro and in vivo studies and discusses the potential implications and perspectives of introducing the sex effect in the selection of the best preclinical model. This is a critical aspect that would help to tailor personalized therapies based on sex.
Collapse
Affiliation(s)
- Alfredo Smiriglia
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy
| | - Nicla Lorito
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy
| | - Marina Serra
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy
| | - Andrea Perra
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy
| | - Andrea Morandi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy
| | - Marta Anna Kowalik
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy
| |
Collapse
|
10
|
Lu J, Tao X, Luo J, Zhu T, Jiao L, Sun P, Zhou Q, Tocher DR, Jin M. Dietary choline activates the Ampk/Srebp signaling pathway and decreases lipid levels in Pacific white shrimp ( Litopenaeus vannamei). ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 15:58-70. [PMID: 37818178 PMCID: PMC10561004 DOI: 10.1016/j.aninu.2023.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 03/01/2023] [Accepted: 05/04/2023] [Indexed: 10/12/2023]
Abstract
An 8-week feeding trial was conducted in Pacific white shrimp (Litopenaeus vannamei) to evaluate the effects of dietary choline supplementation on choline transport and metabolism, hepatopancreas histological structure and fatty acid profile, and regulation of lipid metabolism. Six isonitrogenous and isolipidic diets were formulated to contain different choline levels of 2.91 (basal diet), 3.85, 4.67, 6.55, 10.70 and 18.90 g/kg, respectively. A total of 960 shrimp (initial weight, 1.38 ± 0.01 g) were distributed randomly into twenty-four 250-L cylindrical fiber-glass tanks, with each diet assigned randomly to 4 replicate tanks. The results indicated that dietary choline significantly promoted the deposition of choline, betaine and carnitine (P < 0.05). The diameters and areas of R cells, total lipid and triglyceride contents in hepatopancreas, and triglyceride and non-esterified fatty acid contents in hemolymph were negatively correlated with dietary choline level. The contents of functional fatty acids in hepatopancreas, the activity of acetyl-CoA carboxylase (Acc), and the mRNA expression of fas, srebp and acc were highest in shrimp fed the diet containing 4.67 g/kg choline, and significantly higher than those fed the diet containing 2.91 g/kg, the lowest level of choline (P < 0.05). The number of R cells, content of very low-density lipoprotein (VLDL), activities of carnitine palmitoyl-transferase (Cpt1), lipoprotein lipase and hepatic lipase, and the mRNA expression levels of cpt1, fabp, fatp, ldlr, and ampk in hepatopancreas increased significantly as dietary choline increased (P < 0.05). In addition, hepatopancreas mRNA expression levels of ctl1, ctl2, oct1, badh, bhmt, ck, cept, and cct were generally up-regulated as dietary choline level increased (P < 0.01). In conclusion, dietary choline promoted the deposition of choline and its metabolites by up-regulating genes related to choline transport and metabolism. Moreover, appropriate dietary choline level promoted the development of hepatopancreas R cells and maintained the normal accumulation of lipids required for development, while high dietary choline not only promoted hepatopancreas lipid export by enhancing VLDL synthesis, but also promoted fatty acid β-oxidation and inhibited de novo fatty acid synthesis by activating the Ampk/Srebp signaling pathway. These findings provided further insight and understanding of the mechanisms by which dietary choline regulated lipid metabolism in L. vannamei.
Collapse
Affiliation(s)
- Jingjing Lu
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Xinyue Tao
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Jiaxiang Luo
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Tingting Zhu
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Lefei Jiao
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Peng Sun
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Qicun Zhou
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Douglas R. Tocher
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Min Jin
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| |
Collapse
|
11
|
Lucas-Torres C, Caradeuc C, Prieur L, Djemai H, Youssef L, Noirez P, Coumoul X, Audouze K, Giraud N, Bertho G. NMR metabolomics study of chronic low-dose exposure to a cocktail of persistent organic pollutants. NMR IN BIOMEDICINE 2023; 36:e5006. [PMID: 37524504 DOI: 10.1002/nbm.5006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/09/2023] [Accepted: 06/27/2023] [Indexed: 08/02/2023]
Abstract
Nowadays, exposure to endocrine-disrupting chemicals (EDCs), including persistent organic pollutants (POPs), is one of the most critical threats to public health. EDCs are chemicals that mimic, block, or interfere with hormones in the body's endocrine system and have been associated with a wide range of health issues. This innovative, untargeted metabolomics study investigates chronic low-dose internal exposure to a cocktail of POPs on multiple tissues that are known to accumulate these lipophilic compounds. Interestingly, the metabolic response differs among selected tissues/organs in mice. In the liver, we observed a dynamic effect according to the exposure time and the doses of POPs. In the brain tissue, the situation is the opposite, leading to the conclusion that the presence of POPs immediately gives a saturated effect that is independent of the dose and the duration of exposure studied. By contrast, for the adipose tissues, nearly no effect is observed. This metabolic profiling leads to a holistic and dynamic overview of the main metabolic pathways impacted in lipophilic tissues by a cocktail of POPs.
Collapse
Affiliation(s)
- Covadonga Lucas-Torres
- CNRS UMR 8601, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Université Paris Cité, Paris, France
| | - Cédric Caradeuc
- CNRS UMR 8601, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Université Paris Cité, Paris, France
| | - Laura Prieur
- CNRS UMR 8601, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Université Paris Cité, Paris, France
| | - Haidar Djemai
- INSERM UMR-S 1124, Environmental Toxicity, Therapeutic Targets, Cellular Signaling & Biomarkers (T3S), Université Paris Cité, Paris, France
| | - Layale Youssef
- INSERM UMR-S 1124, Environmental Toxicity, Therapeutic Targets, Cellular Signaling & Biomarkers (T3S), Université Paris Cité, Paris, France
| | - Philippe Noirez
- INSERM UMR-S 1124, Environmental Toxicity, Therapeutic Targets, Cellular Signaling & Biomarkers (T3S), Université Paris Cité, Paris, France
- Performance, Santé, Métrologie, Société (PSMS), UFR STAPS, Campus Moulin de la Housse, Université de Reims Champagne-Ardenne, Reims, France
- Département des Sciences de l'Activité Physique, Université du Québec À Montréal (UQAM), Montreal, Quebec, Canada
| | - Xavier Coumoul
- INSERM UMR-S 1124, Environmental Toxicity, Therapeutic Targets, Cellular Signaling & Biomarkers (T3S), Université Paris Cité, Paris, France
| | - Karine Audouze
- INSERM UMR-S 1124, Environmental Toxicity, Therapeutic Targets, Cellular Signaling & Biomarkers (T3S), Université Paris Cité, Paris, France
| | - Nicolas Giraud
- CNRS UMR 8601, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Université Paris Cité, Paris, France
| | - Gildas Bertho
- CNRS UMR 8601, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Université Paris Cité, Paris, France
| |
Collapse
|
12
|
Won JY, Louis JM, Roh ES, Cha SH, Han JH. Functional characterization of Clonorchis sinensis choline transporter. PARASITES, HOSTS AND DISEASES 2023; 61:428-438. [PMID: 38043538 PMCID: PMC10693965 DOI: 10.3347/phd.23082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/27/2023] [Indexed: 12/05/2023]
Abstract
Clonorchis sinensis is commonly found in East Asian countries. Clonorchiasis is prevalent in these countries and can lead to various clinical symptoms. In this study, we used overlap extension polymerase chain reaction (PCR) and the Xenopus laevis oocyte expression system to isolate a cDNA encoding the choline transporter of C. sinensis (CsChT). We subsequently characterized recombinant CsChT. Expression of CsChT in X. laevis oocytes enabled efficient transport of radiolabeled choline, with no detectable uptake of arginine, α-ketoglutarate, p-aminohippurate, taurocholate, and estrone sulfate. Influx and efflux experiments showed that CsChT-mediated choline uptake was time- and sodium-dependent, with no exchange properties. Concentration-dependent analyses of revealed saturable kinetics consistent with the Michaelis-Menten equation, while nonlinear regression analyses revealed a Km value of 8.3 μM and a Vmax of 61.0 pmol/oocyte/h. These findings contribute to widen our understanding of CsChT transport properties and the cascade of choline metabolisms within C. sinensis.
Collapse
Affiliation(s)
- Jeong Yeon Won
- Department of Parasitology and Tropical Medicine, Inha University School of Medicine, Incheon 22212, Korea
| | - Johnsy Mary Louis
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon 24341, Korea
| | - Eui Sun Roh
- Department of Parasitology and Tropical Medicine, Inha University School of Medicine, Incheon 22212, Korea
| | - Seok Ho Cha
- Department of Parasitology and Tropical Medicine, Inha University School of Medicine, Incheon 22212, Korea
| | - Jin-Hee Han
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon 24341, Korea
| |
Collapse
|
13
|
Guerra G, Segrado F, Pasanisi P, Bruno E, Lopez S, Raspagliesi F, Bianchi M, Venturelli E. Circulating choline and phosphocholine measurement by a hydrophilic interaction liquid chromatography-tandem mass spectrometry. Heliyon 2023; 9:e21921. [PMID: 38027764 PMCID: PMC10665723 DOI: 10.1016/j.heliyon.2023.e21921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/31/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023] Open
Abstract
Background Given the growing interest in studying the role of choline and phosphocholine in the development and progression of tumor pathology, in this study we describe the development and validation of a fast and robust method for the simultaneous analysis of choline and phosphocholine in human plasma. Methods Choline and phosphocholine quantification in human plasma was obtained using a hydrophilic interaction liquid chromatography-tandem mass spectrometry technique. Assay performance parameters were evaluated using EMA guidelines. Results Calibration curve ranged from 0.60 to 38.40 μmol/L (R2 = 0.999) and 0.08-5.43 μmol/L (R2 = 0.998) for choline and phosphocholine, respectively. The Limit Of Detection of the method was 0.06 μmol/L for choline and 0.04 μmol/L for phosphocholine. The coefficient of variation range for intra-assay precision is 2.2-4.1 % (choline) and 3.2-15 % (phosphocholine), and the inter-assay precision range is < 1-6.5 % (choline) and 6.2-20 % (phosphocholine). The accuracy of the method was below the ±20 % benchmarks at all the metabolites concentration levels. In-house plasma pool of apparently healthy adults was tested, and a mean concentration of 15.97 μmol/L for Choline and 0.34 μmol/L for Phosphocholine was quantified. Conclusions The developed method shows good reliability in quantifying Choline and Phosphocholine in human plasma for clinical purposes.
Collapse
Affiliation(s)
- Giulia Guerra
- Nutrition Research and Metabolomics Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Francesco Segrado
- Nutrition Research and Metabolomics Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Patrizia Pasanisi
- Nutrition Research and Metabolomics Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Eleonora Bruno
- Nutrition Research and Metabolomics Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Salvatore Lopez
- Unit of Oncological Gynecology, Department of Oncologycal Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Francesco Raspagliesi
- Unit of Oncological Gynecology, Department of Oncologycal Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Michela Bianchi
- Nutrition Research and Metabolomics Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Elisabetta Venturelli
- Nutrition Research and Metabolomics Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
14
|
Cerna-Vargas JP, Gumerov VM, Krell T, Zhulin IB. Amine-recognizing domain in diverse receptors from bacteria and archaea evolved from the universal amino acid sensor. Proc Natl Acad Sci U S A 2023; 120:e2305837120. [PMID: 37819981 PMCID: PMC10589655 DOI: 10.1073/pnas.2305837120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 09/09/2023] [Indexed: 10/13/2023] Open
Abstract
Bacteria possess various receptors that sense different signals and transmit information to enable an optimal adaptation to the environment. A major limitation in microbiology is the lack of information on the signal molecules that activate receptors. Signals recognized by sensor domains are poorly reflected in overall sequence identity, and therefore, the identification of signals from the amino acid sequence of the sensor alone presents a challenge. Biogenic amines are of great physiological importance for microorganisms and humans. They serve as substrates for aerobic and anaerobic growth and play a role of neurotransmitters and osmoprotectants. Here, we report the identification of a sequence motif that is specific for amine-sensing sensor domains that belong to the Cache superfamily of the most abundant extracellular sensors in prokaryotes. We identified approximately 13,000 sensor histidine kinases, chemoreceptors, receptors involved in second messenger homeostasis and Ser/Thr phosphatases from 8,000 bacterial and archaeal species that contain the amine-recognizing motif. The screening of compound libraries and microcalorimetric titrations of selected sensor domains confirmed their ability to specifically bind biogenic amines. Mutants in the amine-binding motif or domains that contain a single mismatch in the binding motif had either no or a largely reduced affinity for amines. We demonstrate that the amine-recognizing domain originated from the universal amino acid-sensing Cache domain, thus providing insight into receptor evolution. Our approach enables precise "wet"-lab experiments to define the function of regulatory systems and therefore holds a strong promise to enable the identification of signals stimulating numerous receptors.
Collapse
Affiliation(s)
- Jean Paul Cerna-Vargas
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada18008, Spain
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria/Consejo Superior de Investigaciones Científicas, Parque Científico y Tecnológico de la Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid28223, Spain
| | - Vadim M. Gumerov
- Department of Microbiology and Translational Data Analytics Institute, The Ohio State University, Columbus, OH43210
| | - Tino Krell
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada18008, Spain
| | - Igor B. Zhulin
- Department of Microbiology and Translational Data Analytics Institute, The Ohio State University, Columbus, OH43210
| |
Collapse
|
15
|
Swain A, Soni ND, Wilson N, Juul H, Benyard B, Haris M, Kumar D, Nanga RPR, Detre J, Lee VM, Reddy R. Early-stage mapping of macromolecular content in APP NL-F mouse model of Alzheimer's disease using nuclear Overhauser effect MRI. Front Aging Neurosci 2023; 15:1266859. [PMID: 37876875 PMCID: PMC10590923 DOI: 10.3389/fnagi.2023.1266859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/15/2023] [Indexed: 10/26/2023] Open
Abstract
Non-invasive methods of detecting early-stage Alzheimer's disease (AD) can provide valuable insight into disease pathology, improving the diagnosis and treatment of AD. Nuclear Overhauser enhancement (NOE) MRI is a technique that provides image contrast sensitive to lipid and protein content in the brain. These macromolecules have been shown to be altered in Alzheimer's pathology, with early disruptions in cell membrane integrity and signaling pathways leading to the buildup of amyloid-beta plaques and neurofibrillary tangles. We used template-based analyzes of NOE MRI data and the characteristic Z-spectrum, with parameters optimized for increase specificity to NOE, to detect changes in lipids and proteins in an AD mouse model that recapitulates features of human AD. We find changes in NOE contrast in the hippocampus, hypothalamus, entorhinal cortex, and fimbria, with these changes likely attributed to disruptions in the phospholipid bilayer of cell membranes in both gray and white matter regions. This study suggests that NOE MRI may be a useful tool for monitoring early-stage changes in lipid-mediated metabolism in AD and other disorders with high spatial resolution.
Collapse
Affiliation(s)
- Anshuman Swain
- School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States
- Center for Advanced Metabolic Imaging in Precision Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Narayan D. Soni
- Center for Advanced Metabolic Imaging in Precision Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Neil Wilson
- Center for Advanced Metabolic Imaging in Precision Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Halvor Juul
- Center for Advanced Metabolic Imaging in Precision Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Blake Benyard
- School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States
- Center for Advanced Metabolic Imaging in Precision Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Mohammad Haris
- Center for Advanced Metabolic Imaging in Precision Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Dushyant Kumar
- Center for Advanced Metabolic Imaging in Precision Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Ravi Prakash Reddy Nanga
- Center for Advanced Metabolic Imaging in Precision Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - John Detre
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Functional Neuroimaging, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Virginia M. Lee
- Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Alzheimer’s Disease Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Ravinder Reddy
- Center for Advanced Metabolic Imaging in Precision Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
16
|
Huang Y, Chen J, Lu J, Luo H, Ying N, Dong W, Lin M, Zheng H. Transient neonatal hyperglycemia induces metabolic shifts in the rat hippocampus: a 1H NMR-based metabolomics analysis. Metab Brain Dis 2023; 38:2281-2288. [PMID: 37358727 DOI: 10.1007/s11011-023-01255-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 06/13/2023] [Indexed: 06/27/2023]
Abstract
Diabetes has been reported to induce brain metabolic disturbance, but the effect of transient neonatal hyperglycemia (TNH) on brain metabolism remains unclear. Herein the rats were treated with a single intraperitoneal injection of 100 µg/g body weight of streptozotocin within 12 h after birth and displayed a typical clinical characteristic of TNH. Then we used NMR-based metabolomics to examine the metabolic changes in the hippocampus between TNH and normal control (Ctrl) rats at postnatal 7 days (P7) and 21 days (P21). The results show that TNH rats had significantly increased levels of N-acetyl aspartate, glutamine, aspartate and choline in the hippocampus relative to Ctrl rats at P7. Moreover, we found that the levels of alanine, myo-inositol and choline were significantly lower in TNH rats, although their blood glucose levels have been recovered to the normal level at P21. Therefore, our results suggest that TNH may have a long-term effect on hippocampal metabolic changes mainly involving neurotransmitter metabolism and choline metabolism.
Collapse
Affiliation(s)
- Yinli Huang
- Department of Endocrinology, Pingyang Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325400, China
| | - Junli Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Jiahui Lu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Hanqi Luo
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Na Ying
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Wei Dong
- Department of Endocrinology, Pingyang Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325400, China
| | - Minjie Lin
- Department of Endocrinology, Pingyang Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325400, China
| | - Hong Zheng
- Department of Endocrinology, Pingyang Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325400, China.
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
17
|
Najjar RS. The Impacts of Animal-Based Diets in Cardiovascular Disease Development: A Cellular and Physiological Overview. J Cardiovasc Dev Dis 2023; 10:282. [PMID: 37504538 PMCID: PMC10380617 DOI: 10.3390/jcdd10070282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/29/2023] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death in the United States, and diet plays an instrumental role in CVD development. Plant-based diets have been strongly tied to a reduction in CVD incidence. In contrast, animal food consumption may increase CVD risk. While increased serum low-density lipoprotein (LDL) cholesterol concentrations are an established risk factor which may partially explain the positive association with animal foods and CVD, numerous other biochemical factors are also at play. Thus, the aim of this review is to summarize the major cellular and molecular effects of animal food consumption in relation to CVD development. Animal-food-centered diets may (1) increase cardiovascular toll-like receptor (TLR) signaling, due to increased serum endotoxins and oxidized LDL cholesterol, (2) increase cardiovascular lipotoxicity, (3) increase renin-angiotensin system components and subsequent angiotensin II type-1 receptor (AT1R) signaling and (4) increase serum trimethylamine-N-oxide concentrations. These nutritionally mediated factors independently increase cardiovascular oxidative stress and inflammation and are all independently tied to CVD development. Public policy efforts should continue to advocate for the consumption of a mostly plant-based diet, with the minimization of animal-based foods.
Collapse
Affiliation(s)
- Rami Salim Najjar
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
18
|
Cerna-Vargas JP, Gumerov VM, Krell T, Zhulin IB. Amine recognizing domain in diverse receptors from bacteria and archaea evolved from the universal amino acid sensor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.06.535858. [PMID: 37066253 PMCID: PMC10104139 DOI: 10.1101/2023.04.06.535858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Bacteria contain many different receptor families that sense different signals permitting an optimal adaptation to the environment. A major limitation in microbiology is the lack of information on the signal molecules that activate receptors. Due to a significant sequence divergence, the signal recognized by sensor domains is only poorly reflected in overall sequence identity. Biogenic amines are of central physiological relevance for microorganisms and serve for example as substrates for aerobic and anaerobic growth, neurotransmitters or osmoprotectants. Based on protein structural information and sequence analysis, we report here the identification of a sequence motif that is specific for amine-sensing dCache sensor domains (dCache_1AM). These domains were identified in more than 13,000 proteins from 8,000 bacterial and archaeal species. dCache_1AM containing receptors were identified in all major receptor families including sensor kinases, chemoreceptors, receptors involved in second messenger homeostasis and Ser/Thr phosphatases. The screening of compound libraries and microcalorimetric titrations of selected dCache_1AM domains confirmed their capacity to specifically bind amines. Mutants in the amine binding motif or domains that contain a single mismatch in the binding motif, had either no or a largely reduced affinity for amines, illustrating the specificity of this motif. We demonstrate that the dCache_1AM domain has evolved from the universal amino acid sensing domain, providing novel insight into receptor evolution. Our approach enables precise "wet"-lab experiments to define the function of regulatory systems and thus holds a strong promise to address an important bottleneck in microbiology: the identification of signals that stimulate numerous receptors.
Collapse
Affiliation(s)
- Jean Paul Cerna-Vargas
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, 18008 Granada, Spain
- Centro de Biotecnología y Genómica de Plantas CBGP, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria/CSIC, Parque Científico y Tecnológico de la UPM, Pozuelo de Alarcón, Madrid, Spain
| | - Vadim M. Gumerov
- Department of Microbiology and Translational Data Analytics Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Tino Krell
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, 18008 Granada, Spain
| | - Igor B. Zhulin
- Department of Microbiology and Translational Data Analytics Institute, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
19
|
Cullen MG, Bliss L, Stanley DA, Carolan JC. Investigating the effects of glyphosate on the bumblebee proteome and microbiota. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:161074. [PMID: 36566850 DOI: 10.1016/j.scitotenv.2022.161074] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Glyphosate is one of the most widely used herbicides globally. It acts by inhibiting an enzyme in an aromatic amino acid synthesis pathway specific to plants and microbes, leading to the view that it poses no risk to other organisms. However, there is growing concern that glyphosate is associated with health effects in humans and an ever-increasing body of evidence that suggests potential deleterious effects on other animals including pollinating insects such as bees. Although pesticides have long been considered a factor in the decline of wild bee populations, most research on bees has focussed on demonstrating and understanding the effects of insecticides. To assess whether glyphosate poses a risk to bees, we characterised changes in survival, behaviour, sucrose solution consumption, the digestive tract proteome, and the microbiota in the bumblebee Bombus terrestris after chronic exposure to field relevant doses of technical grade glyphosate or the glyphosate-based formulation, RoundUp Optima+®. Regardless of source, there were changes in response to glyphosate exposure in important cellular and physiological processes in the digestive tract of B. terrestris, with proteins associated with oxidative stress regulation, metabolism, cellular adhesion, the extracellular matrix, and various signalling pathways altered. Interestingly, proteins associated with endocytosis, oxidative phosphorylation, the TCA cycle, and carbohydrate, lipid, and amino acid metabolism were differentially altered depending on whether the exposure source was glyphosate alone or RoundUp Optima+®. In addition, there were alterations to the digestive tract microbiota of bees depending on the glyphosate source No impacts on survival, behaviour, or food consumption were observed. Our research provides insights into the potential mode of action and consequences of glyphosate exposure at the molecular, cellular and organismal level in bumblebees and highlights issues with the current honeybee-centric risk assessment of pesticides and their formulations, where the impact of co-formulants on non-target organisms are generally overlooked.
Collapse
Affiliation(s)
- Merissa G Cullen
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland.
| | - Liam Bliss
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Dara A Stanley
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 2, Ireland; Earth Institute, University College Dublin, Belfield, Dublin 2, Ireland
| | - James C Carolan
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| |
Collapse
|
20
|
Thiruchenthooran V, Sánchez-López E, Gliszczyńska A. Perspectives of the Application of Non-Steroidal Anti-Inflammatory Drugs in Cancer Therapy: Attempts to Overcome Their Unfavorable Side Effects. Cancers (Basel) 2023; 15:cancers15020475. [PMID: 36672424 PMCID: PMC9856583 DOI: 10.3390/cancers15020475] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/30/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) express anti-tumoral activity mainly by blocking cyclooxygenase-2 involved in the synthesis of prostaglandins. Therefore, in the last few decades, many have attempted to explore the possibilities of applying this group of drugs as effective agents for the inhibition of neoplastic processes. This review summarizes the evidence presented in the literature regarding the anti-tumoral actions of NSAIDs used as monotherapies as well as in combination with conventional chemotherapeutics and natural products. In several clinical trials, it was proven that combinations of NSAIDs and chemotherapeutic drugs (CTDs) were able to obtain suitable results. The combination with phospholipids may resolve the adverse effects of NSAIDs and deliver derivatives with increased antitumor activity, whereas hybrids with terpenoids exhibit superior activity against their parent drugs or physical mixtures. Therefore, the application of NSAIDs in cancer therapy seems to be still an open chapter and requires deep and careful evaluation. The literature's data indicate the possibilities of re-purposing anti-inflammatory drugs currently approved for cancer treatments.
Collapse
Affiliation(s)
- Vaikunthavasan Thiruchenthooran
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Elena Sánchez-López
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, University of Barcelona, 08028 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
- Unit of Synthesis and Biomedical Applications of Peptides, IQAC-CSIC, 08034 Barcelona, Spain
- Correspondence: (E.S.-L.); or (A.G.)
| | - Anna Gliszczyńska
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
- Correspondence: (E.S.-L.); or (A.G.)
| |
Collapse
|
21
|
Ake S, Kamila S, Wang G. Quantification of MicroRNAs or Viral RNAs with Microelectrode Sensors Enabled by Electrochemical Signal Amplification. Methods Mol Biol 2023; 2630:117-133. [PMID: 36689180 DOI: 10.1007/978-1-0716-2982-6_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Quantification of circulating microRNAs (miRNAs) or viral RNAs is of great significance because of their broad relevance to human health. Currently, quantitative reverse transcription polymerase chain reaction (qRT-PCR), as well as microarray and gene sequencing, are considered mainstream techniques for miRNA identification and quantitation and the gold standard for SARS-CoV2 detection in the COVID-19 pandemic. However, these laboratory techniques are challenged by the low levels and wide dynamic range (from aM to nM) of miRNAs in a physiological sample, as well as the difficulty in the implementation in point-of-care settings. Here, we describe a one-step label-free electrochemical sensing technique by assembling self-folded multi-stem DNA-redox probe structure on gold microelectrodes and introducing a reductant, tris(2-carboxyethyl) phosphine hydrochloride (TCEP), in the detection buffer solution to achieve ultrasensitive detection with a detection limit of 0.1 fM that can be further improved if needed.
Collapse
Affiliation(s)
- Sarah Ake
- Department of Chemistry, Georgia State University, Atlanta, GA, USA
| | - Swagatika Kamila
- Department of Chemistry, Georgia State University, Atlanta, GA, USA
| | - Gangli Wang
- Department of Chemistry, Georgia State University, Atlanta, GA, USA.
| |
Collapse
|
22
|
D’Ascenzo N, Antonecchia E, Angiolillo A, Bender V, Camerlenghi M, Xie Q, Di Costanzo A. Metabolomics of blood reveals age-dependent pathways in Parkinson’s Disease. Cell Biosci 2022; 12:102. [PMID: 35794650 PMCID: PMC9258166 DOI: 10.1186/s13578-022-00831-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 06/08/2022] [Indexed: 01/01/2023] Open
Abstract
Background Parkinson’s Disease (PD) is the second most frequent degenerative disorder, the risk of which increases with age. A preclinical PD diagnostic test does not exist. We identify PD blood metabolites and metabolic pathways significantly correlated with age to develop personalized age-dependent PD blood biomarkers. Results We found 33 metabolites producing a receiver operating characteristic (ROC) area under the curve (AUC) value of 97%. PCA revealed that they belong to three pathways with distinct age-dependent behavior: glycine, threonine and serine metabolism correlates with age only in PD patients; unsaturated fatty acids biosynthesis correlates with age only in a healthy control group; and, finally, tryptophan metabolism characterizes PD but does not correlate with age. Conclusions The targeted analysis of the blood metabolome proposed in this paper allowed to find specific age-related metabolites and metabolic pathways. The model offers a promising set of blood biomarkers for a personalized age-dependent approach to the early PD diagnosis. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-022-00831-5.
Collapse
|
23
|
Xanthan gum modified fish gelatin and binary culture modulates the metabolism of probiotics in fermented milk mainly via amino acid metabolism pathways. Food Res Int 2022; 161:111844. [DOI: 10.1016/j.foodres.2022.111844] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/16/2022] [Accepted: 08/21/2022] [Indexed: 02/07/2023]
|
24
|
Latif S, Kang YS. Blood-Brain Barrier Solute Carrier Transporters and Motor Neuron Disease. Pharmaceutics 2022; 14:2167. [PMID: 36297602 PMCID: PMC9608738 DOI: 10.3390/pharmaceutics14102167] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/22/2022] [Accepted: 10/04/2022] [Indexed: 01/21/2024] Open
Abstract
Defective solute carrier (SLC) transporters are responsible for neurotransmitter dysregulation, resulting in neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS). We provided the role and kinetic parameters of transporters such as ASCTs, Taut, LAT1, CAT1, MCTs, OCTNs, CHT, and CTL1, which are mainly responsible for the transport of essential nutrients, acidic, and basic drugs in blood-brain barrier (BBB) and motor neuron disease. The affinity for LAT1 was higher in the BBB than in the ALS model cell line, whereas the capacity was higher in the NSC-34 cell lines than in the BBB. Affinity for MCTs was lower in the BBB than in the NSC-34 cell lines. CHT in BBB showed two affinity sites, whereas no expression was observed in ALS cell lines. CTL1 was the main transporter for choline in ALS cell lines. The half maximal inhibitory concentration (IC50) analysis of [3H]choline uptake indicated that choline is sensitive in TR-BBB cells, whereas amiloride is most sensitive in ALS cell lines. Knowledge of the transport systems in the BBB and motor neurons will help to deliver drugs to the brain and develop the therapeutic strategy for treating CNS and neurological diseases.
Collapse
Affiliation(s)
| | - Young-Sook Kang
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women’s University, 100 Cheongpa-ro 47-gil, Yongsan-gu, Seoul 04310, Korea
| |
Collapse
|
25
|
Huo D, Su F, Cui W, Liu S, Zhang L, Yang H, Sun L. Heat stress and evisceration caused lipid metabolism and neural transduction changes in sea cucumber: Evidence from metabolomics. MARINE POLLUTION BULLETIN 2022; 182:113993. [PMID: 35952546 DOI: 10.1016/j.marpolbul.2022.113993] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/28/2022] [Accepted: 07/24/2022] [Indexed: 06/15/2023]
Abstract
When encountering adverse environmental conditions, some holothurians can eject their internal organs in a process called evisceration. As global warming intensified, eviscerated and intact sea cucumbers both experience heat stress, but how they performed was uncertain. We constructed 24 metabolomics profiles to reveal the metabolite changes of eviscerated and intact sea cucumbers under normal and high temperature conditions, respectively. Carboxylic acids and fatty acyls were the most abundant metabolic categories in evisceration and heat stress treatments, respectively. Neural transduction was involved in sea cucumber evisceration and stress response, and the commonly enriched pathway was "neuroactive ligand-receptor interaction". Lipid metabolism in eviscerated sea cucumbers differed from those of intact individuals and was more seriously affected by heat stress. Choline is a key metabolite for revealing the evisceration mechanism. Our results contribute to understanding the mechanisms of evisceration in sea cucumbers, and how sea cucumbers might respond to increasingly warming ocean conditions.
Collapse
Affiliation(s)
- Da Huo
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China
| | - Fang Su
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China
| | - Wei Cui
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China
| | - Shilin Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China
| | - Libin Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China
| | - Hongsheng Yang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China
| | - Lina Sun
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China.
| |
Collapse
|
26
|
Wang C, Yang J, Li E, Luo S, Sun C, Liao Y, Li M, Ge J, Lei J, Zhou F, Wu L, Liao W. Metabolic signatures of hepatolithiasis using ultra-high performance liquid chromatography-tandem mass spectrometry. Metabolomics 2022; 18:69. [PMID: 35976530 DOI: 10.1007/s11306-022-01927-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/01/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS A metabolomic study of hepatolithiasis has yet to be performed. The purpose of the present study was to characterize the metabolite profile and identify potential biomarkers of hepatolithiasis using a metabolomic approach. METHODS We comprehensively analyzed the serum metabolites from 30 patients with hepatolithiasis and 20 healthy individuals using ultra-high performance liquid chromatography-tandem mass spectrometry operated in negative and positive ionization modes. Statistical analyses were performed using univariate (Student's t-test) and multivariate (orthogonal partial least-squares discriminant analysis) statistics and R language. Receiver operator characteristic (ROC) curve analysis was performed to identify potential predictors of hepatolithiasis. RESULTS We identified 277 metabolites that were significantly different between hepatolithiasis serum group and healthy control serum group. These metabolites were principally lipids and lipid-like molecules and amino acid metabolites. The steroid hormone biosynthesis pathway was enriched in hepatolithiasis serum group. In all specific metabolites, 75 metabolites were over-expressed in hepatolithiasis serum group. The AUC values for 60 metabolites exceeded 0.70, 4 metabolites including 18-β-Glycyrrhetinic acid, FMH, Rifampicin and PC (4:0/16:2) exceeded 0.90. CONCLUSIONS We have identified serum metabolites that are associated with hepatolithiasis for the first time. 60 potential metabolic biomarkers were identified, 18-β-Glycyrrhetinic acid, FMH, Rifampicin and PC (4:0/16:2) may have the potential clinical utility in hepatolithiasis.
Collapse
Affiliation(s)
- Cong Wang
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, China
| | - Jun Yang
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, China
| | - Enliang Li
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, China
| | - Shuaiwu Luo
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, China
| | - Chi Sun
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, China
| | - Yuting Liao
- Department of Nursing, Gannan Medical College, No. 1, Medical Road, Ganzhou, 341000, China
| | - Min Li
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, China
| | - Jin Ge
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, China
| | - Jun Lei
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, China
| | - Fan Zhou
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, China.
| | - Linquan Wu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, China.
| | - Wenjun Liao
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, China.
| |
Collapse
|
27
|
Rabow Z, Laubach K, Kong X, Shen T, Mohibi S, Zhang J, Fiehn O, Chen X. p73α1, an Isoform of the p73 Tumor Suppressor, Modulates Lipid Metabolism and Cancer Cell Growth via Stearoyl-CoA Desaturase-1. Cells 2022; 11:2516. [PMID: 36010592 PMCID: PMC9406568 DOI: 10.3390/cells11162516] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 01/26/2023] Open
Abstract
Altered lipid metabolism is a hallmark of cancer. p73, a p53 family member, regulates cellular processes and is expressed as multiple isoforms. However, the role of p73 in regulating lipid metabolism is not well-characterized. Previously, we found that loss of p73 exon 12 (E12) leads to an isoform switch from p73α to p73α1, the latter of which has strong tumor suppressive activity. In this study, comprehensive untargeted metabolomics was performed to determine whether p73α1 alters lipid metabolism in non-small cell lung carcinoma cells. RNA-seq and molecular biology approaches were combined to identify lipid metabolism genes altered upon loss of E12 and identify a direct target of p73α1. We found that loss of E12 leads to decreased levels of phosphatidylcholines, and this was due to decreased expression of genes involved in phosphatidylcholine synthesis. Additionally, we found that E12-knockout cells had increased levels of phosphatidylcholines containing saturated fatty acids (FAs) and decreased levels of phosphatidylcholines containing monounsaturated fatty acids (MUFAs). We then found that p73α1 inhibits cancer cell viability through direct transcriptional suppression of Stearoyl-CoA Desaturase-1 (SCD1), which converts saturated FAs to MUFAs. Finally, we showed that p73α1-mediated suppression of SCD1 leads to increased ratios of saturated FAs to MUFAs.
Collapse
Affiliation(s)
- Zachary Rabow
- West Coast Metabolomics Center, University of California, Davis, CA 95616, USA
| | - Kyra Laubach
- Comparative Oncology Laboratory, Schools of Medicine and Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Xiangmudong Kong
- Comparative Oncology Laboratory, Schools of Medicine and Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Tong Shen
- West Coast Metabolomics Center, University of California, Davis, CA 95616, USA
| | - Shakur Mohibi
- Comparative Oncology Laboratory, Schools of Medicine and Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Jin Zhang
- Comparative Oncology Laboratory, Schools of Medicine and Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Oliver Fiehn
- West Coast Metabolomics Center, University of California, Davis, CA 95616, USA
| | - Xinbin Chen
- Comparative Oncology Laboratory, Schools of Medicine and Veterinary Medicine, University of California, Davis, CA 95616, USA
| |
Collapse
|
28
|
Functional Expression of Choline Transporters in Microglia and Their Regulation of Microglial M1/M2 Polarization. Int J Mol Sci 2022; 23:ijms23168924. [PMID: 36012189 PMCID: PMC9408370 DOI: 10.3390/ijms23168924] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/04/2022] [Accepted: 08/09/2022] [Indexed: 12/24/2022] Open
Abstract
Background: Microglia are key cells of the immune system in the central nervous system and are suggested to be deeply involved in the development of neurodegenerative diseases. It is well known that microglia have functional plasticity, with an inflammatory M1 phenotype and an anti-inflammatory M2 phenotype. Inhibition of choline transport in macrophages has been reported to suppress the secretion of inflammatory cytokines. However, the role of the choline transport system in regulating microglial M1/M2 polarization has not been fully elucidated to date. In this study, we investigated the mechanism of choline uptake in microglia, and its association with microglial M1/M2 polarization. Methods: The immortalized mouse microglial cell line SIM-A9 was used for [3H]choline uptake and expression analysis of choline transporters. The association between the choline uptake system and the M1/M2 polarization of microglia was also analyzed. Results: Choline transporter-like protein (CTL) 1 and CTL2 were highly expressed in SIM-A9 cells, and CTL1 and CTL2 were localized in the plasma membrane and mitochondria, respectively. Functional analysis of choline uptake demonstrated the existence of Na+-independent, pH-dependent, and intermediate-affinity choline transport systems. Choline uptake was concentration-dependently inhibited by hemicholinium-3 (HC-3), an inhibitor of choline uptake, and increased by lipopolysaccharide (LPS) and interleukin-4 (IL-4). Expression of the mRNA of M1 microglia markers IL-1β and IL-6 was increased by LPS, and their effects were suppressed by choline deprivation and HC-3. In contrast, mRNA expression of the M2 microglial marker arginase-1 (Arg-1) was increased by IL-4, and the effect was enhanced by choline deprivation and HC-3. Conclusions: Our results suggest that inhibition of CTL1-mediated choline uptake in microglia preferentially induces M2 microglia polarization, which is a potential therapeutic approach for inflammatory brain diseases.
Collapse
|
29
|
Wada Y, Okano K, Sato K, Sugimoto M, Shimomura A, Nagao M, Matsukawa H, Ando Y, Suto H, Oshima M, Kondo A, Asano E, Kishino T, Kumamoto K, Kobara H, Kamada H, Masaki T, Soga T, Suzuki Y. Tumor metabolic alterations after neoadjuvant chemoradiotherapy predict postoperative recurrence in patients with pancreatic cancer. Jpn J Clin Oncol 2022; 52:887-895. [PMID: 35523689 DOI: 10.1093/jjco/hyac074] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 04/13/2022] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE We investigated the metabolic changes in pancreatic ductal adenocarcinoma to identify the mechanisms of treatment response of neoadjuvant chemoradiation therapy. METHODS Frozen tumor and non-neoplastic pancreas tissues were prospectively obtained from 88 patients with pancreatic ductal adenocarcinoma who underwent curative-intent surgery. Sixty-two patients received neoadjuvant chemoradiation therapy and 26 patients did not receive neoadjuvant therapy (control group). Comprehensive analysis of metabolites in tumor and non-neoplastic pancreatic tissue was performed by capillary electrophoresis-mass spectrometry. RESULTS Capillary electrophoresis-mass spectrometry detected 90 metabolites for analysis among more than 500 ionic metabolites quantified. There were significant differences in 27 tumor metabolites between the neoadjuvant chemoradiation therapy and control groups. There were significant differences in eight metabolites [1-MethylnNicotinamide, Carnitine, Glucose, Glutathione (red), N-acetylglucosamine 6-phosphate, N-acetylglucosamine 1-phosphate, UMP, Phosphocholine] between good responder and poor responder for neoadjuvant chemoradiation therapy. Among these metabolites, phosphocholine, Carnitine and Glutathione were associated with recurrence-free survival only in the neoadjuvant chemoradiation therapy group. Microarray confirmed marked gene suppression of choline transporters [CTL1-4 (SLC44A1-44A4)] in pancreatic ductal adenocarcinoma tissue of neoadjuvant chemoradiation therapy group. CONCLUSION The present study identifies several important metabolic consequences and potential neoadjuvant chemoradiation therapy targets in pancreatic ductal adenocarcinoma. Choline metabolism is one of the key pathways involved in recurrence of the patients with pancreatic ductal adenocarcinoma who received neoadjuvant chemoradiation therapy.
Collapse
Affiliation(s)
- Yukiko Wada
- Department of Gastroenterological Surgery, Kagawa University, Kita-gun, Kagawa, Japan
| | - Keiichi Okano
- Department of Gastroenterological Surgery, Kagawa University, Kita-gun, Kagawa, Japan
| | - Kiyotoshi Sato
- Institute for Advanced Biosciences, Keio University, Kakuganji, Tsuruoka, Japan
| | - Masahiro Sugimoto
- Institute for Advanced Biosciences, Keio University, Kakuganji, Tsuruoka, Japan
| | - Ayaka Shimomura
- Department of Gastroenterological Surgery, Kagawa University, Kita-gun, Kagawa, Japan
| | - Mina Nagao
- Department of Gastroenterological Surgery, Kagawa University, Kita-gun, Kagawa, Japan
| | - Hiroyuki Matsukawa
- Department of Gastroenterological Surgery, Kagawa University, Kita-gun, Kagawa, Japan
| | - Yasuhisa Ando
- Department of Gastroenterological Surgery, Kagawa University, Kita-gun, Kagawa, Japan
| | - Hironobu Suto
- Department of Gastroenterological Surgery, Kagawa University, Kita-gun, Kagawa, Japan
| | - Minoru Oshima
- Department of Gastroenterological Surgery, Kagawa University, Kita-gun, Kagawa, Japan
| | - Akihiro Kondo
- Department of Gastroenterological Surgery, Kagawa University, Kita-gun, Kagawa, Japan
| | - Eisuke Asano
- Department of Gastroenterological Surgery, Kagawa University, Kita-gun, Kagawa, Japan
| | - Takayoshi Kishino
- Department of Gastroenterological Surgery, Kagawa University, Kita-gun, Kagawa, Japan
| | - Kensuke Kumamoto
- Department of Gastroenterological Surgery, Kagawa University, Kita-gun, Kagawa, Japan
| | - Hideki Kobara
- Department of Gastroenterology and Neurology, Kagawa University, Takamatsu, Kagawa, Japan
| | - Hideki Kamada
- Department of Gastroenterology and Neurology, Kagawa University, Takamatsu, Kagawa, Japan
| | - Tsutomu Masaki
- Department of Gastroenterology and Neurology, Kagawa University, Takamatsu, Kagawa, Japan
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, Kakuganji, Tsuruoka, Japan
| | - Yasuyuki Suzuki
- Department of Gastroenterological Surgery, Kagawa University, Kita-gun, Kagawa, Japan
| |
Collapse
|
30
|
Yan J, Feng X, Zhou X, Zhao M, Xiao H, Li R, Shen H. Identification of gut metabolites associated with Parkinson’s disease using bioinformatic analyses. Front Aging Neurosci 2022; 14:927625. [PMID: 35959296 PMCID: PMC9360421 DOI: 10.3389/fnagi.2022.927625] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundParkinson’s disease (PD) is a common neurodegenerative disease affecting the movement of elderly patients. Environmental exposures are the risk factors for PD; however, gut environmental risk factors for PD are critically understudied. The proof-of-concept study is to identify gut metabolites in feces, as environmental exposure risk factors, that are associated with PD and potentially increase the risk for PD by using leverage of known toxicology results.Materials and methodsWe collected the data regarding the gut metabolites whose levels were significantly changed in the feces of patients with PD from the original clinical studies after searching the following databases: EBM Reviews, PubMed, Embase, MEDLINE, and Elsevier ClinicalKey. We further searched each candidate metabolite-interacting PD gene set by using the public Comparative Toxicogenomics Database (CTD), identified and validated gut metabolites associated with PD, and determined gut metabolites affecting specific biological functions and cellular pathways involved in PD by using PANTHER tools.ResultsSixteen metabolites were identified and divided into the following main categories according to their structures and biological functions: alcohols (ethanol), amino acids (leucine, phenylalanine, pyroglutamic acid, glutamate, and tyrosine), short-chain fatty acids (propionate and butyrate), unsaturated fatty acids (linoleic acid and oleic acid), energy metabolism (lactate, pyruvate, and fumarate), vitamins (nicotinic acid and pantothenic acid), and choline metabolism (choline). Finally, a total of three identified metabolites, including butyrate, tyrosine, and phenylalanine, were validated that were associated with PD.ConclusionOur findings identified the gut metabolites that were highly enriched for PD genes and potentially increase the risk of developing PD. The identification of gut metabolite exposures can provide biomarkers for disease identification, facilitate an understanding of the relationship between gut metabolite exposures and response, and present an opportunity for PD prevention and therapies.
Collapse
Affiliation(s)
- Jun Yan
- Department of Geriatric, Nanjing Medical University Affiliated Brain Hospital, Nanjing, China
| | - Xia Feng
- Department of Pharmacy, Nanjing Medical University Affiliated Brain Hospital, Nanjing, China
| | - Xia Zhou
- Institute of Neuropsychiatry, Nanjing Medical University Affiliated Brain Hospital, Nanjing, China
| | - Mengjie Zhao
- Institute of Neuropsychiatry, Nanjing Medical University Affiliated Brain Hospital, Nanjing, China
| | - Hong Xiao
- Institute of Neuropsychiatry, Nanjing Medical University Affiliated Brain Hospital, Nanjing, China
| | - Rui Li
- School of Pharmacy, Nanjing Medical University, Nanjing, China
- *Correspondence: Hong Shen,
| | - Hong Shen
- Institute of Neuropsychiatry, Nanjing Medical University Affiliated Brain Hospital, Nanjing, China
- Rui Li,
| |
Collapse
|
31
|
Wang R, Quan Z, Zheng T, Wang K, Liu Y, Han Z, Wang X, Ma S, Liu L, Lau WY, Sun X. Pathophysiological mechanisms of ALPPS: experimental model. Br J Surg 2022; 109:510-519. [PMID: 35576390 DOI: 10.1093/bjs/znac007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 01/05/2022] [Accepted: 01/05/2022] [Indexed: 12/31/2022]
Abstract
BACKGROUND Associating liver partition and portal vein ligation for staged hepatectomy (ALPPS) is a two-stage strategy that may increase hepatic tumour resectability and reduce postoperative liver failure rate by inducing rapid hypertrophy of the future liver remnant (FLR). Pathophysiological mechanisms after the first stage of ALPPS are poorly understood. METHODS An ALPPS model was established in rabbits with liver VX2 tumour. The pathophysiological mechanisms after the first stage of ALPPS in the FLR and tumour were assessed by multiplexed positron emission tomography (PET) tracers, dynamic contrast-enhanced MRI (DCE-MRI) and histopathology. RESULTS Tumour volume in the ALPPS model differed from post-stage 1 ALPPS at day 14 compared to control animals. 18F-FDG uptake of tumour increased from day 7 onwards in the ALPPS model. Valid volumetric function measured by 18F-methylcholine PET showed good values in accurately monitoring dynamics and time window for functional liver regeneration (days 3 to 7). DCE-MRI revealed changes in the vascular hyperpermeability function, with a peak on day 7 for tumour and FLR. CONCLUSION Molecular and functional imaging are promising non-invasive methods to investigate the pathophysiological mechanisms of ALPPS with potential for clinical application.
Collapse
Affiliation(s)
- Ruifeng Wang
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, Heilongjiang, China.,Department of Nuclear Medicine, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang 150028, China.,Department of Gastroenterology, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Zhen Quan
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, Heilongjiang, China.,Department of Nuclear Medicine, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang 150028, China
| | - Tongsen Zheng
- Department of Gastrointestinal Medical Oncology, The Affiliated Tumour Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Kai Wang
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, Heilongjiang, China.,Department of Nuclear Medicine, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang 150028, China
| | - Yang Liu
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, Heilongjiang, China.,Department of Nuclear Medicine, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang 150028, China
| | - Zhaoguo Han
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, Heilongjiang, China.,Department of Nuclear Medicine, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang 150028, China.,Biomedical Research Imaging Center, Department of Radiology, and UNC Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, USA
| | - Xiance Wang
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, Heilongjiang, China.,Department of Nuclear Medicine, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang 150028, China
| | - Shiling Ma
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, Heilongjiang, China.,Department of Nuclear Medicine, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang 150028, China
| | - Lianxin Liu
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, Heilongjiang Province 150001, China.,Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Wan Yee Lau
- Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Xilin Sun
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, Heilongjiang, China.,Department of Nuclear Medicine, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang 150028, China
| |
Collapse
|
32
|
Aximujiang K, Kaheman K, Wushouer X, Wu G, Ahemaiti A, Yunusi K. Lactobacillus acidophilus and HKL Suspension Alleviates Ulcerative Colitis in Rats by Regulating Gut Microbiota, Suppressing TLR9, and Promoting Metabolism. Front Pharmacol 2022; 13:859628. [PMID: 35600873 PMCID: PMC9118348 DOI: 10.3389/fphar.2022.859628] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/28/2022] [Indexed: 12/12/2022] Open
Abstract
Ulcerative colitis (UC) is a chronic non-specific inflammatory bowel disease with complex pathogenesis. The intestinal flora disturbance affects the homeostasis of the intestinal environment, leading to metabolic imbalance and immune abnormalities of the host, contributing to the perpetuation of intestinal inflammation. We suggest that the combination of anti-inflammatory therapy and the regulation of intestinal flora balance may help in the treatment process. Previously, we used a combination treatment consisting of Lactobacillus acidophilus (Lac) and Chinese medicine Huan Kui Le (HKL) suspension in a UC rat model, where the combined intervention was more effective than either treatment alone. Herein, the mechanism of action of this combined treatment has been investigated using 16S rRNA sequencing, immunohistochemistry, and ELISA methods in the colon, and untargeted metabolomics profiling in serum. Colon protein expression levels of IL-13 and TGF-β were upregulated, whereas those of TLR9 and TLR4 were downregulated, consistent with an anti-inflammatory effect. In addition, gut microbiota structure changed, shown by a decrease in opportunistic pathogens correlated with intestinal inflammation, such as Klebsiella and Escherichia-Shigella, and an increase in beneficial bacteria such as Bifidobacterium. The latter correlated positively with IL-13 and TGF-β and negatively with IFN-γ. Finally, this treatment alleviated the disruption of the metabolic profile observed in UC rats by increasing short-chain fatty acid (SCFA)-producing bacteria in the colonic epithelium. This combination treatment also affected the metabolism of lactic acid, creatine, and glycine and inhibited the growth of Klebsiella. Overall, we suggest that treatment combining probiotics and traditional Chinese medicine is a novel strategy beneficial in UC that acts by modulating gut microbiota and its metabolites, TLR9, and cytokines in different pathways.
Collapse
Affiliation(s)
- Kasimujiang Aximujiang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
- College of Pharmacy, Xinjiang Medical University, Urumqi, China
| | - Kuerbannaimu Kaheman
- Department of Rehabilitation Medicine, First Affiliated Hospital in Xinjiang Medical University, Urumqi, China
| | - Xilinguli Wushouer
- Department of Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
| | - Guixia Wu
- Department of Physiology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
| | - Abulaiti Ahemaiti
- The Functional Center, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
| | - Kurexi Yunusi
- Uygur Medical College, Xinjiang Medical University, Urumqi, China
| |
Collapse
|
33
|
Donovan E, Avila C, Klausner S, Parikh V, Fenollar-Ferrer C, Blakely RD, Sarter M. Disrupted Choline Clearance and Sustained Acetylcholine Release In Vivo by a Common Choline Transporter Coding Variant Associated with Poor Attentional Control in Humans. J Neurosci 2022; 42:3426-3444. [PMID: 35232764 PMCID: PMC9034784 DOI: 10.1523/jneurosci.1334-21.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 02/20/2022] [Accepted: 02/23/2022] [Indexed: 11/21/2022] Open
Abstract
Transport of choline via the neuronal high-affinity choline transporter (CHT; SLC5A7) is essential for cholinergic terminals to synthesize and release acetylcholine (ACh). In humans, we previously demonstrated an association between a common CHT coding substitution (rs1013940; Ile89Val) and reduced attentional control as well as attenuated frontal cortex activation. Here, we used a CRISPR/Cas9 approach to generate mice expressing the I89V substitution and assessed, in vivo, CHT-mediated choline transport, and ACh release. Relative to wild-type (WT) mice, CHT-mediated clearance of choline in male and female mice expressing one or two Val89 alleles was reduced by over 80% in cortex and over 50% in striatum. Choline clearance in CHT Val89 mice was further reduced by neuronal inactivation. Deficits in ACh release, 5 and 10 min after repeated depolarization at a low, behaviorally relevant frequency, support an attenuated reloading capacity of cholinergic neurons in mutant mice. The density of CHTs in total synaptosomal lysates and neuronal plasma-membrane-enriched fractions was not impacted by the Val89 variant, indicating a selective impact on CHT function. When challenged with a visual disruptor to reveal attentional control mechanisms, Val89 mice failed to adopt a more conservative response bias. Structural modeling revealed that Val89 may attenuate choline transport by altering conformational changes of CHT that support normal transport rates. Our findings support the view that diminished sustained cholinergic signaling capacity underlies perturbed attentional performance in individuals expressing CHT Val89. The CHT Val89 mouse serves as a valuable model to study heritable risk for cognitive disorders arising from cholinergic dysfunction.SIGNIFICANCE STATEMENT Acetylcholine (ACh) signaling depends on the functional capacity of the neuronal choline transporter (CHT). Previous research demonstrated that humans expressing the common CHT coding variant Val89 exhibit attentional vulnerabilities and attenuated fronto-cortical activation during attention. Here, we find that mice engineered to express the Val89 variant exhibit reduced CHT-mediated choline clearance and a diminished capacity to sustain ACh release. Additionally, Val89 mice lack cognitive flexibility in response to an attentional challenge. These findings provide a mechanistic and cognitive framework for interpreting the attentional phenotype associated with the human Val89 variant and establish a model that permits a more invasive interrogation of CNS effects as well as the development of therapeutic strategies for those, including Val89 carriers, with presynaptic cholinergic perturbations.
Collapse
Affiliation(s)
- Eryn Donovan
- Department of Psychology, University of Michigan, Ann Arbor, Michigan 48109
| | - Cassandra Avila
- Department of Psychology, University of Michigan, Ann Arbor, Michigan 48109
| | - Sarah Klausner
- Department of Psychology, University of Michigan, Ann Arbor, Michigan 48109
| | - Vinay Parikh
- Department of Psychology & Neuroscience Program, Temple University, Philadelphia, Pennsylvania 19122
| | - Cristina Fenollar-Ferrer
- Laboratory of Molecular Genetics, Section of Human Genetics, National Institute on Deafness and Other Communication Disorders, Bethesda, Maryland 20892
| | - Randy D Blakely
- Stiles-Nicholson Brain Institute and Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, Florida 33458
| | - Martin Sarter
- Department of Psychology, Neuroscience Program and Department of Neurology, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
34
|
Jaswal A, Hazari PP, Prakash S, Sethi P, Kaushik A, Roy BG, Kathait S, Singh B, Mishra AK. [ 99mTc]Tc-DTPA-Bis(cholineethylamine) as an Oncologic Tracer for the Detection of Choline Transporter (ChT) and Choline Kinase (ChK) Expression in Cancer. ACS OMEGA 2022; 7:12509-12523. [PMID: 35474820 PMCID: PMC9025991 DOI: 10.1021/acsomega.1c04256] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
OBJECTIVE The elevated choline transporters (ChT), choline kinase (ChK), choline uptake, and phosphorylation in certain tumor cells have influenced the development of radiolabeled choline derivatives as diagnostic probes for imaging cell membrane proliferation. We, therefore, aimed to develop a choline-based moiety for imaging choline kinase-overexpressed tumors by single-photon emission tomography (SPECT). A novel choline-based diagnostic probe was synthesized and evaluated preclinically in various ChT- and ChK-overexpressed tumor models for SPECT imaging applications. METHODS The synthesis of diethylenetriaminepentaacetic acid-bis-choline ethylamine [DTPA-bis(ChoEA)] featured the conjugation of dimethylaminoethanol to a bifunctional chelator DTPA anhydride. [99mTc]Tc-DTPA-bis(ChoEA) was prepared, and its in vivo characteristics were evaluated in BALB/c mice and tumor-xenografted PC3, A549, and HCT116 athymic mouse models. The in vitro parameters, including cell binding and cytotoxicity, were assessed in PC3, A549, and HCT116 cell lines. To evaluate the specificity of the radioprobe, competitive binding studies were performed. Small-animal SPECT/CT diagnostic imaging was performed for in vivo evaluation. The mouse biodistribution data was further investigated to estimate the radiation dose in humans. RESULTS In silico studies suggested high binding with enhanced specificity. A standard radiolabeling procedure using stannous chloride as a reducing agent showed a labeling yield of 99.5 ± 0.5%. The in silico studies suggested high binding with enhanced specificity. [99mTc]Tc-DTPA-bis(ChoEA) showed high in vitro stability and specificity. The pharmacokinetic studies of [99mTc]Tc-DTPA-bis(ChoEA) in mice showed an increased tumor-to-background ratio after few minutes of intravenous administration. The first-in-human trial was also conducted. The effective dose was estimated to be 0.00467 mSv/MBq (4.67 mSv/GBq), resulting in a radiation dose of up to 1.73 mSv for the 370 MBq injection of [99mTc]Tc-DTPA-bis(ChoEA). CONCLUSIONS The synthesized radioprobe [99mTc]Tc-DTPA-bis(ChoEA) accumulates specifically in choline kinase-overexpressed tumors with a high signal-to-noise ratio. The preclinical and first-in-man data suggested that [99mTc]Tc-DTPA-bis(ChoEA) could potentially be used as a diagnostic SPECT tracer in the monitoring and staging of cancer.
Collapse
Affiliation(s)
- Ambika
Parmar Jaswal
- Division
of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences, Brig S.K. Mazumdar Road, Delhi 110054, India
| | - Puja Panwar Hazari
- Division
of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences, Brig S.K. Mazumdar Road, Delhi 110054, India
| | - Surbhi Prakash
- Division
of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences, Brig S.K. Mazumdar Road, Delhi 110054, India
| | - Pallavi Sethi
- Division
of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences, Brig S.K. Mazumdar Road, Delhi 110054, India
| | - Aruna Kaushik
- Department
of Nuclear Medicine, Institute of Nuclear
Medicine and Allied Sciences, Brig S.K. Mazumdar Road, Delhi 110054, India
| | - Bal G. Roy
- Experimental
Animal Facility, Institute of Nuclear Medicine
and Allied Sciences, Brig S.K. Mazumdar Road, Delhi 110054, India
| | - Swati Kathait
- Division
of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences, Brig S.K. Mazumdar Road, Delhi 110054, India
| | - Baljinder Singh
- Post
Graduate Institute of Medical Education & Research, Chandigarh 160012, India
| | - Anil Kumar Mishra
- Division
of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences, Brig S.K. Mazumdar Road, Delhi 110054, India
| |
Collapse
|
35
|
García-Molina P, Sola-Leyva A, Luque-Navarro PM, Laso A, Ríos-Marco P, Ríos A, Lanari D, Torretta A, Parisini E, López-Cara LC, Marco C, Carrasco-Jiménez MP. Anticancer Activity of the Choline Kinase Inhibitor PL48 Is Due to Selective Disruption of Choline Metabolism and Transport Systems in Cancer Cell Lines. Pharmaceutics 2022; 14:pharmaceutics14020426. [PMID: 35214160 PMCID: PMC8876215 DOI: 10.3390/pharmaceutics14020426] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/23/2022] [Accepted: 02/14/2022] [Indexed: 02/04/2023] Open
Abstract
A large number of different types of cancer have been shown to be associated with an abnormal metabolism of phosphatidylcholine (PC), the main component of eukaryotic cell membranes. Indeed, the overexpression of choline kinase α1 (ChoKα1), the enzyme that catalyses the bioconversion of choline to phosphocholine (PCho), has been found to associate with cell proliferation, oncogenic transformation and carcinogenesis. Hence, ChoKα1 has been described as a possible cancer therapeutic target. Moreover, the choline transporter CTL1 has been shown to be highly expressed in several tumour cell lines. In the present work, we evaluate the antiproliferative effect of PL48, a rationally designed inhibitor of ChoKα1, in MCF7 and HepG2 cell lines. In addition, we illustrate that the predominant mechanism of cellular choline uptake in these cells is mediated by the CTL1 choline transporter. A possible correlation between the inhibition of both choline uptake and ChoKα1 activity and cell proliferation in cancer cell lines is also highlighted. We conclude that the efficacy of this inhibitor on cell proliferation in both cell lines is closely correlated with its capability to block choline uptake and ChoKα1 activity, making both proteins potential targets in cancer therapy.
Collapse
Affiliation(s)
- Pablo García-Molina
- Department of Biochemistry and Molecular Biology I, University of Granada, 18071 Granada, Spain; (P.G.-M.); (A.S.-L.); (A.L.); (P.R.-M.)
| | - Alberto Sola-Leyva
- Department of Biochemistry and Molecular Biology I, University of Granada, 18071 Granada, Spain; (P.G.-M.); (A.S.-L.); (A.L.); (P.R.-M.)
| | - Pilar M. Luque-Navarro
- Department of Pharmaceutical and Organic Chemistry, University of Granada, 18071 Granada, Spain;
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy;
| | - Alejandro Laso
- Department of Biochemistry and Molecular Biology I, University of Granada, 18071 Granada, Spain; (P.G.-M.); (A.S.-L.); (A.L.); (P.R.-M.)
| | - Pablo Ríos-Marco
- Department of Biochemistry and Molecular Biology I, University of Granada, 18071 Granada, Spain; (P.G.-M.); (A.S.-L.); (A.L.); (P.R.-M.)
| | - Antonio Ríos
- Department of Cell Biology, University of Granada, 18071 Granada, Spain;
| | - Daniela Lanari
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy;
| | - Archimede Torretta
- Center for Nano Science and Technology @Polimi, Istituto Italiano di Tecnologia, Via Pascoli 70/3, 20133 Milano, Italy; (A.T.); (E.P.)
| | - Emilio Parisini
- Center for Nano Science and Technology @Polimi, Istituto Italiano di Tecnologia, Via Pascoli 70/3, 20133 Milano, Italy; (A.T.); (E.P.)
- Department of Biotechnology, Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia
| | - Luisa C. López-Cara
- Department of Pharmaceutical and Organic Chemistry, University of Granada, 18071 Granada, Spain;
- Correspondence: (L.C.L.-C.); (C.M.); (M.P.C.-J.)
| | - Carmen Marco
- Department of Biochemistry and Molecular Biology I, University of Granada, 18071 Granada, Spain; (P.G.-M.); (A.S.-L.); (A.L.); (P.R.-M.)
- Correspondence: (L.C.L.-C.); (C.M.); (M.P.C.-J.)
| | - María P. Carrasco-Jiménez
- Department of Biochemistry and Molecular Biology I, University of Granada, 18071 Granada, Spain; (P.G.-M.); (A.S.-L.); (A.L.); (P.R.-M.)
- Correspondence: (L.C.L.-C.); (C.M.); (M.P.C.-J.)
| |
Collapse
|
36
|
Alagawany M, Elnesr SS, Farag MR, El-Naggar K, Taha AE, Khafaga AF, Madkour M, Salem HM, El-Tahan AM, El-Saadony MT, Abd El-Hack ME. Betaine and related compounds: Chemistry, metabolism and role in mitigating heat stress in poultry. J Therm Biol 2022; 104:103168. [DOI: 10.1016/j.jtherbio.2021.103168] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/07/2021] [Accepted: 12/16/2021] [Indexed: 02/06/2023]
|
37
|
Razmaria AA, Schoder H, Morris MJ. Advances in Prostate Cancer Imaging. Urol Oncol 2022. [DOI: 10.1007/978-3-030-89891-5_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
38
|
Hu M, Zhao H, Yang B, Yang S, Liu H, Tian H, Shui G, Chen Z, E L, Lai J, Song W. ZmCTLP1 is required for the maintenance of lipid homeostasis and the basal endosperm transfer layer in maize kernels. THE NEW PHYTOLOGIST 2021; 232:2384-2399. [PMID: 34559890 PMCID: PMC9292782 DOI: 10.1111/nph.17754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 09/15/2021] [Indexed: 05/26/2023]
Abstract
Maize kernel weight is influenced by the unloading of nutrients from the maternal placenta and their passage through the transfer tissue of the basal endosperm transfer layer (BETL) and the basal intermediate zone (BIZ) to the upper part of the endosperm. Here, we show that Small kernel 10 (Smk10) encodes a choline transporter-like protein 1 (ZmCTLP1) that facilitates choline uptake and is located in the trans-Golgi network (TGN). Its loss of function results in reduced choline content, leading to smaller kernels with a lower starch content. Mutation of ZmCTLP1 disrupts membrane lipid homeostasis and the normal development of wall in-growths. Expression levels of Mn1 and ZmSWEET4c, two kernel filling-related genes, are downregulated in the smk10, which is likely to be one of the major causes of incompletely differentiated transfer cells. Mutation of ZmCTLP1 also reduces the number of plasmodesmata (PD) in transfer cells, indicating that the smk10 mutant is impaired in PD formation. Intriguingly, we also observed premature cell death in the BETL and BIZ of the smk10 mutant. Together, our results suggest that ZmCTLP1-mediated choline transport affects kernel development, highlighting its important role in lipid homeostasis, wall in-growth formation and PD development in transfer cells.
Collapse
Affiliation(s)
- Mingjian Hu
- State Key Laboratory of Plant Physiology and Biochemistry and National Maize Improvement CenterDepartment of Plant Genetics and BreedingChina Agricultural UniversityBeijing100193China
| | - Haiming Zhao
- State Key Laboratory of Plant Physiology and Biochemistry and National Maize Improvement CenterDepartment of Plant Genetics and BreedingChina Agricultural UniversityBeijing100193China
| | - Bo Yang
- State Key Laboratory of Plant Physiology and Biochemistry and National Maize Improvement CenterDepartment of Plant Genetics and BreedingChina Agricultural UniversityBeijing100193China
| | - Shuang Yang
- State Key Laboratory of Plant Physiology and Biochemistry and National Maize Improvement CenterDepartment of Plant Genetics and BreedingChina Agricultural UniversityBeijing100193China
| | - Haihong Liu
- State Key Laboratory of Plant Physiology and BiochemistryCollege of Biological SciencesChina Agricultural UniversityBeijing100193China
| | - He Tian
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101China
| | - Zongliang Chen
- State Key Laboratory of Plant Physiology and Biochemistry and National Maize Improvement CenterDepartment of Plant Genetics and BreedingChina Agricultural UniversityBeijing100193China
- Waksman Institute of MicrobiologyRutgers UniversityPiscatawayNJ08854‐8020USA
| | - Lizhu E
- State Key Laboratory of Plant Physiology and Biochemistry and National Maize Improvement CenterDepartment of Plant Genetics and BreedingChina Agricultural UniversityBeijing100193China
- Center for Crop Functional Genomics and Molecular BreedingChina Agricultural UniversityBeijing100193China
| | - Jinsheng Lai
- State Key Laboratory of Plant Physiology and Biochemistry and National Maize Improvement CenterDepartment of Plant Genetics and BreedingChina Agricultural UniversityBeijing100193China
- Center for Crop Functional Genomics and Molecular BreedingChina Agricultural UniversityBeijing100193China
| | - Weibin Song
- State Key Laboratory of Plant Physiology and Biochemistry and National Maize Improvement CenterDepartment of Plant Genetics and BreedingChina Agricultural UniversityBeijing100193China
- Center for Crop Functional Genomics and Molecular BreedingChina Agricultural UniversityBeijing100193China
| |
Collapse
|
39
|
Maruyama T, Mano A, Ishii T, Kakinuma Y, Kaneda M. P2X 2 receptors supply extracellular choline as a substrate for acetylcholine synthesis. FEBS Open Bio 2021; 12:250-257. [PMID: 34787962 PMCID: PMC8727932 DOI: 10.1002/2211-5463.13332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/03/2021] [Accepted: 11/16/2021] [Indexed: 01/14/2023] Open
Abstract
Acetylcholine (ACh), an excitatory neurotransmitter, is biosynthesized from choline in cholinergic neurons. Import from the extracellular space to the intracellular environment through the high-affinity choline transporter is currently regarded to be the only source of choline for ACh synthesis. We recently demonstrated that the P2X2 receptor, through which large cations permeate, functions as an alternative pathway for choline transport in the mouse retina. In the present study, we investigated whether choline entering cells through P2X2 receptors is used for ACh synthesis using a recombinant system. When P2X2 receptors expressed on HEK293 cell lines were stimulated with ATP, intracellular ACh concentrations increased. These results suggest that P2X2 receptors function in a novel pathway that supplies choline for ACh synthesis.
Collapse
Affiliation(s)
- Takuma Maruyama
- Department of Physiology, Nippon Medical School, Tokyo, Japan
| | - Asuka Mano
- Department of Physiology, Nippon Medical School, Tokyo, Japan
| | - Toshiyuki Ishii
- Department of Physiology, Nippon Medical School, Tokyo, Japan
| | | | - Makoto Kaneda
- Department of Physiology, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
40
|
Johns B, Ficken M, Engberg M, Wecker L, Philpot R. Increasing dietary choline attenuates spatial memory deficits resulting from exposure to the chemotherapeutic agents cyclophosphamide and doxorubicin. J Psychopharmacol 2021; 35:1300-1309. [PMID: 34225528 PMCID: PMC9152698 DOI: 10.1177/02698811211029752] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Choline supplementation (+Ch) improves cognitive function in impaired animals and humans. Chemotherapy-related cognitive deficits (CRCDs) occur in cancer patients, and these deficits persist following treatment, adversely impacting quality of life. To date, there are no approved treatments for this condition. AIM Because +Ch improves impaired memory, it was of interest to determine whether +Ch can attenuate spatial memory deficits induced by the chemotherapeutic agents doxorubicin (DOX) and cyclophosphamide (CYP). METHODS Female BALB/C mice, 64 days of age, were trained in the Morris water maze and baseline performance determined on day 15. Following baseline assessment, mice were placed on +Ch diet (2.0% Ch) or remained on standard diet (0.12% Ch). Mice received intravenous injections of DOX (2.5 mg/kg) and CYP (25 mg/kg), or equivalent volumes of saline (0.9% NaCl), on days 16, 23, 30, and 37, and spatial memory was assessed weekly from day 22 to 71. RESULTS DOX and CYP produced a prolonged impairment in spatial memory as indicated by an increased latency to the correct zone (p < 0.05), and a decrease in time in the correct zone (p < 0.05), % of total swim distance in the correct zone (p < 0.05) and % entries to the correct zone (p < 0.05). These effects were attenuated by +Ch. CONCLUSION Although it remains to be determined whether this effect extends to other cognitive domains and whether +Ch is prophylactic or therapeutic, these findings suggest that +Ch may be an effective intervention for CRCDs.
Collapse
Affiliation(s)
| | | | | | | | - R.M. Philpot
- Corresponding Author: Rex M. Philpot, Ph.D., Assistant Professor, Department of Psychiatry and Behavioral Neurosciences, Morsani College of Medicine, University of South Florida, Tampa, 3515 E Fletcher Ave., Tampa, FL 33612,
| |
Collapse
|
41
|
Zhang J, Wang G, Zou Y, Zhao Y, Ge C, Liao G. Changes in physicochemical properties and water‐soluble small molecular compounds of dry‐cured Xuanwei ham during processing. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jingjing Zhang
- Livestock Product Processing and Engineering Technology Research Center of Yunnan Province Yunnan Agricultural University Kunming China
- College of Food Science and Technology Yunnan Agricultural University Kunming China
| | - Guiying Wang
- Livestock Product Processing and Engineering Technology Research Center of Yunnan Province Yunnan Agricultural University Kunming China
- College of Food Science and Technology Yunnan Agricultural University Kunming China
| | - Yinling Zou
- Livestock Product Processing and Engineering Technology Research Center of Yunnan Province Yunnan Agricultural University Kunming China
- College of Food Science and Technology Yunnan Agricultural University Kunming China
| | - Yaying Zhao
- Livestock Product Processing and Engineering Technology Research Center of Yunnan Province Yunnan Agricultural University Kunming China
- College of Food Science and Technology Yunnan Agricultural University Kunming China
| | - Changrong Ge
- Livestock Product Processing and Engineering Technology Research Center of Yunnan Province Yunnan Agricultural University Kunming China
| | - Guozhou Liao
- Livestock Product Processing and Engineering Technology Research Center of Yunnan Province Yunnan Agricultural University Kunming China
| |
Collapse
|
42
|
Tortorelli G, Oakley CA, Davy SK, van Oppen MJH, McFadden GI. Cell wall proteomic analysis of the cnidarian photosymbionts Breviolum minutum and Cladocopium goreaui. J Eukaryot Microbiol 2021; 69:e12870. [PMID: 34448326 PMCID: PMC9293036 DOI: 10.1111/jeu.12870] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The algal cell wall is an important cellular component that functions in defense, nutrient utilization, signaling, adhesion, and cell–cell recognition—processes important in the cnidarian–dinoflagellate symbiosis. The cell wall of symbiodiniacean dinoflagellates is not well characterized. Here, we present a method to isolate cell walls of Symbiodiniaceae and prepare cell‐wall‐enriched samples for proteomic analysis. Label‐free liquid chromatography–electrospray ionization tandem mass spectrometry was used to explore the surface proteome of two Symbiodiniaceae species from the Great Barrier Reef: Breviolum minutum and Cladocopium goreaui. Transporters, hydrolases, translocases, and proteins involved in cell‐adhesion and protein–protein interactions were identified, but the majority of cell wall proteins had no homologues in public databases. We propose roles for some of these proteins in the cnidarian–dinoflagellate symbiosis. This work provides the first proteomics investigation of cell wall proteins in the Symbiodiniaceae and represents a basis for future explorations of the roles of cell wall proteins in Symbiodiniaceae and other dinoflagellates.
Collapse
Affiliation(s)
- Giada Tortorelli
- School of Biosciences, The University of Melbourne, Melbourne, Vic, Australia
| | - Clinton A Oakley
- School of Biological Sciences, Victoria University of Wellington, Kelburn, New Zealand
| | - Simon K Davy
- School of Biological Sciences, Victoria University of Wellington, Kelburn, New Zealand
| | - Madeleine J H van Oppen
- School of Biosciences, The University of Melbourne, Melbourne, Vic, Australia.,Australian Institute of Marine Science, Townsville, Qld, Australia
| | - Geoffrey I McFadden
- School of Biosciences, The University of Melbourne, Melbourne, Vic, Australia
| |
Collapse
|
43
|
ChoK-Full of Potential: Choline Kinase in B Cell and T Cell Malignancies. Pharmaceutics 2021; 13:pharmaceutics13060911. [PMID: 34202989 PMCID: PMC8234087 DOI: 10.3390/pharmaceutics13060911] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/09/2021] [Accepted: 06/17/2021] [Indexed: 12/20/2022] Open
Abstract
Aberrant choline metabolism, characterized by an increase in total choline-containing compounds, phosphocholine and phosphatidylcholine (PC), is a metabolic hallmark of carcinogenesis and tumor progression. This aberration arises from alterations in metabolic enzymes that control PC biosynthesis and catabolism. Among these enzymes, choline kinase α (CHKα) exhibits the most frequent alterations and is commonly overexpressed in human cancers. CHKα catalyzes the phosphorylation of choline to generate phosphocholine, the first step in de novo PC biosynthesis. CHKα overexpression is associated with the malignant phenotype, metastatic capability and drug resistance in human cancers, and thus has been recognized as a robust biomarker and therapeutic target of cancer. Of clinical importance, increased choline metabolism and CHKα activity can be detected by non-invasive magnetic resonance spectroscopy (MRS) or positron emission tomography/computed tomography (PET/CT) imaging with radiolabeled choline analogs for diagnosis and treatment monitoring of cancer patients. Both choline-based MRS and PET/CT imaging have also been clinically applied for lymphoid malignancies, including non-Hodgkin lymphoma, multiple myeloma and central nervous system lymphoma. However, information on how choline kinase is dysregulated in lymphoid malignancies is very limited and has just begun to be unraveled. In this review, we provide an overview of the current understanding of choline kinase in B cell and T cell malignancies with the goal of promoting future investigation in this area.
Collapse
|
44
|
Nakazaki E, Mah E, Sanoshy K, Citrolo D, Watanabe F. Citicoline and Memory Function in Healthy Older Adults: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. J Nutr 2021; 151:2153-2160. [PMID: 33978188 PMCID: PMC8349115 DOI: 10.1093/jn/nxab119] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/08/2021] [Accepted: 04/05/2021] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Supplementation of citicoline (CDP-choline), a naturally occurring mononucleotide, has shown beneficial effects on memory function and behavior in populations with a wide range of impairments. However, few studies have investigated its effect in healthy older populations. OBJECTIVE The objective of this study was to investigate the effects of citicoline (Cognizin®), on memory in healthy elderly populations with age-associated memory impairment (AAMI). METHODS A total of 100 healthy men and women aged between 50 and 85 y with AAMI participated in this randomized, double-blind, placebo-controlled trial. Participants were randomized to receive placebo (n = 51) or citicoline (n = 49; 500 mg/d) for 12 wk. Memory function was assessed at baseline and end of the intervention (12 wk) using computerized tests (Cambridge Brain Sciences, Ontario, Canada). Safety measurements included adverse events query, body weight, blood pressure, and hematology and metabolic panel. Intent-to-treat analysis was conducted using ANCOVA for the primary and secondary outcome variables with Bonferroni correction for multiple comparisons. RESULTS A total of 99 out of 100 participants completed the study in its entirety. After the 12-wk intervention, participants supplemented with citicoline showed significantly greater improvements in secondary outcomes of episodic memory (assessed by the Paired Associate test), compared with those on placebo (mean: 0.15 vs. 0.06, respectively, P = 0.0025). Composite memory (secondary outcome), calculated using the scores of 4 memory tests, also significantly improved to a greater extent following citicoline supplementation (mean: 3.78) compared with placebo (mean: 0.72, P = 0.0052). CONCLUSIONS Dietary supplementation of citicoline for 12 wk improved overall memory performance, especially episodic memory, in healthy older males and females with AAMI. The findings suggest that regular consumption of citicoline may be safe and potentially beneficial against memory loss due to aging. This trial was registered at clinicaltrials.gov as NCT03369925.
Collapse
Affiliation(s)
| | - Eunice Mah
- Biofortis Innovation Services, Addison, IL 60101, USA
| | | | - Danielle Citrolo
- Scientific and Regulatory Affairs, Kyowa Hakko USA Inc., New York, NY 10016, USA
| | - Fumiko Watanabe
- Research & Innovation Center, Kyowa Hakko Bio Co., Ltd, Tsukuba, Ibaraki, 305–0841, Japan
| |
Collapse
|
45
|
Taylor A, Grapentine S, Ichhpuniani J, Bakovic M. Choline transporter-like proteins 1 and 2 are newly identified plasma membrane and mitochondrial ethanolamine transporters. J Biol Chem 2021; 296:100604. [PMID: 33789160 PMCID: PMC8081925 DOI: 10.1016/j.jbc.2021.100604] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 03/24/2021] [Accepted: 03/26/2021] [Indexed: 12/31/2022] Open
Abstract
The membrane phospholipids phosphatidylcholine and phosphatidylethanolamine (PE) are synthesized de novo by the CDP-choline and CDP-ethanolamine (Kennedy) pathway, in which the extracellular substrates choline and ethanolamine are transported into the cell, phosphorylated, and coupled with diacylglycerol to form the final phospholipid product. Although multiple transport systems have been established for choline, ethanolamine transport is poorly characterized and there is no single protein assigned a transport function for ethanolamine. The solute carriers 44A (SLC44A) known as choline transporter-like proteins-1 and -2 (CTL1 and CTL2) are choline transporter at the plasma membrane and mitochondria. We report a novel function of CTL1 and CTL2 in ethanolamine transport. Using the lack or the gain of gene function in combination with specific antibodies and transport inhibitors we established two distinct ethanolamine transport systems of a high affinity, mediated by CTL1, and of a low affinity, mediated by CTL2. Both transporters are Na+-independent ethanolamine/H+ antiporters. Primary human fibroblasts with separate frameshift mutations in the CTL1 gene (M1= SLC44A1ΔAsp517 and M2= SLC44A1ΔSer126) are devoid of CTL1 ethanolamine transport but maintain unaffected CTL2 transport. The lack of CTL1 in M2 cells reduced the ethanolamine transport, the flux through the CDP-ethanolamine Kennedy pathway, and PE synthesis. In contrast, overexpression of CTL1 in M2 cells improved ethanolamine transport and PE synthesis. These data firmly establish that CTL1 and CTL2 are the first identified ethanolamine transporters in whole cells and mitochondria, with intrinsic roles in de novo PE synthesis by the Kennedy pathway and intracellular redistribution of ethanolamine.
Collapse
Affiliation(s)
- Adrian Taylor
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Canada
| | - Sophie Grapentine
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Canada
| | - Jasmine Ichhpuniani
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Canada
| | - Marica Bakovic
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Canada.
| |
Collapse
|
46
|
Functional Expression of Choline Transporters in Human Neural Stem Cells and Its Link to Cell Proliferation, Cell Viability, and Neurite Outgrowth. Cells 2021; 10:cells10020453. [PMID: 33672580 PMCID: PMC7924032 DOI: 10.3390/cells10020453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 01/11/2023] Open
Abstract
Choline and choline metabolites are essential for all cellular functions. They have also been reported to be crucial for neural development. In this work, we studied the functional characteristics of the choline uptake system in human neural stem cells (hNSCs). Additionally, we investigated the effect of extracellular choline uptake inhibition on the cellular activities in hNSCs. We found that the mRNAs and proteins of choline transporter-like protein 1 (CTL1) and CTL2 were expressed at high levels. Immunostaining showed that CTL1 and CTL2 were localized in the cell membrane and partly in the mitochondria, respectively. The uptake of extracellular choline was saturable and performed by a single uptake mechanism, which was Na+-independent and pH-dependent. We conclude that CTL1 is responsible for extracellular choline uptake, and CTL2 may uptake choline in the mitochondria and be involved in DNA methylation via choline oxidation. Extracellular choline uptake inhibition caused intracellular choline deficiency in hNSCs, which suppressed cell proliferation, cell viability, and neurite outgrowth. Our findings contribute to the understanding of the role of choline in neural development as well as the pathogenesis of various neurological diseases caused by choline deficiency or choline uptake impairment.
Collapse
|
47
|
Xue BC, Zhang JX, Wang ZS, Wang LZ, Peng QH, Da LC, Bao SK, Kong XY, Xue B. Metabolism response of grazing yak to dietary concentrate supplementation in warm season. Animal 2021; 15:100175. [PMID: 33610519 DOI: 10.1016/j.animal.2021.100175] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 12/22/2020] [Accepted: 01/04/2021] [Indexed: 12/14/2022] Open
Abstract
Supplementary feeding has a significant effect on the growth performance of grazing yaks. However, as far as is known, little information is available concerning how energy or protein feed supplementation affects the serum metabolome of grazing yaks during the warm season. We investigated the effects of supplementation with two different concentrates on the serum metabolome in grazing yaks using nuclear magnetic resonance spectroscopy in conjunction with multivariate data analysis. Twenty-four 2-year-old female yaks (133.04 ± 6.52 kg BW) were randomly divided into three groups and fed three different regimes (n = 8 per group): (1) grazing plus hull-less barley (HLB) supplementation, (2) grazing plus rapeseed meal (RSM) supplementation, and (3) grazing without supplementation. Both HLB and RSM supplementation significantly increased the average daily gain (ADG), and ADG under HLB supplementation was 11.9% higher (P < 0.05) than that of the RSM group. Supplementation markedly altered glucose, lipid, and protein metabolism, with the difference manifested as increased levels of some amino acids, acetyl-glycoproteins, low-density lipoproteins, and very low-density lipoproteins . Furthermore, the levels of 3-hydroxybutyrate, acetoacetate, and lactate metabolism were decreased. Serum metabolite changes in yaks in the HLB supplementation treatment differed from those in the RSM supplementation treatment; the difference was primarily manifested in lipid- and protein-related metabolites. We conclude that both the energy supplementation (HLB) and the protein supplementation (RSM) could remarkably promote the growth of yak heifers during the warm season, and the effect of energy supplementation was superior. Supplementary feeding changed the serum metabolite levels of yak heifers, indicating that such feeding could improve glucose's energy-supply efficiency and increase the metabolic intensity of lipids and proteins. Supplementation of yaks with HLB was more efficient in the promotion of yak glucose and protein anabolism compared to supplementation with RSM, while having a lesser effect on lipid metabolism.
Collapse
Affiliation(s)
- B C Xue
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - J X Zhang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Z S Wang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - L Z Wang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Q H Peng
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - L C Da
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - S K Bao
- Animal Husbandry and Scientific Research Institute of Qinghai Province, Haibei 810200, China
| | - X Y Kong
- Animal Husbandry and Scientific Research Institute of Qinghai Province, Haibei 810200, China
| | - B Xue
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| |
Collapse
|
48
|
Bauset C, Gisbert-Ferrándiz L, Cosín-Roger J. Metabolomics as a Promising Resource Identifying Potential Biomarkers for Inflammatory Bowel Disease. J Clin Med 2021; 10:jcm10040622. [PMID: 33562024 PMCID: PMC7915257 DOI: 10.3390/jcm10040622] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/02/2021] [Accepted: 02/02/2021] [Indexed: 12/12/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a relapsing chronic disorder of the gastrointestinal tract characterized by disruption of epithelial barrier function and excessive immune response to gut microbiota. The lack of biomarkers providing early diagnosis or defining the status of the pathology difficulties an accurate assessment of the disease. Given the different metabolomic profiles observed in IBD patients, metabolomics may reveal prime candidates to be studied, which may help in understanding the pathology and identifying novel therapeutic targets. In this review, we summarize the most current advances describing the promising metabolites such as lipids or amino acids found through untargeted metabolomics from serum, faecal, urine and biopsy samples.
Collapse
Affiliation(s)
- Cristina Bauset
- Department of Pharmacology and CIBER, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain; (C.B.); (L.G.-F.)
| | - Laura Gisbert-Ferrándiz
- Department of Pharmacology and CIBER, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain; (C.B.); (L.G.-F.)
| | - Jesús Cosín-Roger
- Hospital Dr. Peset, Fundación para la Investigación Sanitaria y Biomédica de la Comunitat Valenciana, FISABIO, 46017 Valencia, Spain
- Correspondence: ; Tel.: +34-963851234
| |
Collapse
|
49
|
Neurochemical characterization of mouse dorsal root ganglion neurons expressing organic cation transporter 2. Neuroreport 2021; 31:274-280. [PMID: 32032285 DOI: 10.1097/wnr.0000000000001416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Organic cation transporters (OCTs) are poly-specific carriers for endogenous and exogenous cationic compounds. These are widely distributed in the nervous system and mediate neuronal activities. As antineoplastic cationic drugs accumulate in the dorsal root ganglion (DRG), OCT function has been studied mainly in cultured DRG neurons. However, the histological distribution of OCTs in the DRG is unclear. This study investigated the localization of OCT2 (a member of OCTs) in mouse DRG neurons and determined their histochemical properties. OCT2 expression was found in about 20% of DRG neurons, which were small to medium size. OCT2-expressing neurons were labeled with markers for peptidergic nociceptive (substance P or calcitonin gene-related peptide) and tactile/proprioceptive (neurofilament 200 or tropomyosin receptor kinase B or C) neurons. OCT2 was also expressed in cholinergic DRG neurons identified by choline acetyltransferase promoter-derived Cre expression. In the spinal dorsal horn, OCT2 was distributed in superficial to deep laminae. OCT2 immunoreactivity was punctate in appearance and localized in the nerve terminals of sensory afferents with labeling of neurochemical markers. Our findings suggest that OCT2 as a low-affinity, high-capacity carrier may take up substrates including cationic neurotransmitters and drugs from the extracellular space around cell bodies in DRG neurons.
Collapse
|
50
|
Torres S, Samino S, Ràfols P, Martins-Green M, Correig X, Ramírez N. Unravelling the metabolic alterations of liver damage induced by thirdhand smoke. ENVIRONMENT INTERNATIONAL 2021; 146:106242. [PMID: 33197790 DOI: 10.1016/j.envint.2020.106242] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/16/2020] [Accepted: 10/22/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Thirdhand smoke (THS) is the accumulation of tobacco smoke gases and particles that become embedded in materials. Previous studies concluded that THS exposure induces oxidative stress and hepatic steatosis in liver. Despite the knowledge of the increasing danger of THS exposure, the metabolic disorders caused in liver are still not well defined. OBJECTIVES The aim of this study is to investigate the metabolic disorders caused by THS exposure in liver of male mice and to evaluate the effects of an antioxidant treatment in the exposed mice. METHODS We investigated liver from three mice groups: non-exposed mice, exposed to THS in conditions that mimic human exposure and THS-exposed treated with antioxidants. Liver samples were analyzed using a multiplatform untargeted metabolomics approach including nuclear magnetic resonance (1H NMR), liquid chromatography coupled to high-resolution mass spectrometry (LC-HRMS) and laser desorption/ionization mass spectrometry imaging (MSI), able to map lipids in liver tissues. RESULTS Our multiplatform approach allowed the annotation of eighty-eight metabolites altered by THS exposure, including amino acids, nucleotides and several types of lipids. The main dysregulated pathways by THS exposure were D-glutamine and D-glutamate metabolism, glycerophospholipid metabolism and oxidative phosphorylation and glutathione metabolism, being the last two related to oxidative stress. THS-exposed mice also presented higher lipid accumulation and decrease of metabolites involved in the phosphocholine synthesis, as well as choline deficiency, which is related to Non-Alcoholic Fatty Liver Disease and steatohepatitis. Interestingly, the antioxidant treatment of THS-exposed mice reduced the accumulation of some lipids, but could not revert all the metabolic alterations, including some related to the impairment of the mitochondrial function. CONCLUSIONS THS alters liver function at a molecular level, dysregulating many metabolic pathways. The molecular evidences provided here confirm that THS is a new factor for liver steatosis and provide the basis for future research in this respect.
Collapse
Affiliation(s)
- Sònia Torres
- Department of Electronic Engineering, Universitat Rovira i Virgili, Tarragona, Catalonia, Spain; Institut d'Investigació Sanitària Pere Virgili, Tarragona, Catalonia, Spain
| | - Sara Samino
- Department of Electronic Engineering, Universitat Rovira i Virgili, Tarragona, Catalonia, Spain; CIBERDEM, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders, Barcelona, Catalonia, Spain
| | - Pere Ràfols
- Department of Electronic Engineering, Universitat Rovira i Virgili, Tarragona, Catalonia, Spain; CIBERDEM, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders, Barcelona, Catalonia, Spain
| | - Manuela Martins-Green
- Department of Molecular, Cell and Systems Biology, University of California, Riverside CA 92521, USA
| | - Xavier Correig
- Department of Electronic Engineering, Universitat Rovira i Virgili, Tarragona, Catalonia, Spain; Institut d'Investigació Sanitària Pere Virgili, Tarragona, Catalonia, Spain; CIBERDEM, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders, Barcelona, Catalonia, Spain
| | - Noelia Ramírez
- Department of Electronic Engineering, Universitat Rovira i Virgili, Tarragona, Catalonia, Spain; Institut d'Investigació Sanitària Pere Virgili, Tarragona, Catalonia, Spain; CIBERDEM, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders, Barcelona, Catalonia, Spain.
| |
Collapse
|