1
|
Peters AE, Ford EA, Roman SD, Bromfield EG, Nixon B, Pringle KG, Sutherland JM. Impact of Bisphenol A and its alternatives on oocyte health: a scoping review. Hum Reprod Update 2024; 30:653-691. [PMID: 39277428 DOI: 10.1093/humupd/dmae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/11/2024] [Indexed: 09/17/2024] Open
Abstract
BACKGROUND Bisphenol A (BPA) is an endocrine disrupting chemical released from plastic materials, including food packaging and dental sealants, persisting in the environment and ubiquitously contaminating ecosystems and human populations. BPA can elicit an array of damaging health effects and, alarmingly, 'BPA-free' alternatives mirror these harmful effects. Bisphenol exposure can negatively impact female fertility, damaging both the ovary and oocytes therein. Such damage can diminish reproductive capacity, pregnancy success, and offspring health. Despite global government regulations in place to indicate 'safe' BPA exposure levels, these policies have not considered the effects of bisphenols on oocyte health. OBJECTIVE AND RATIONALE This scoping review was conducted to evaluate evidence on the effects of BPA and BPA alternatives on standardized parameters of oocyte health. In doing so, this review addresses a critical gap in the literature providing a comprehensive, up-to-date synthesis of the effects of bisphenols on oocyte health. SEARCH METHODS This scoping review was conducted in accordance with PRISMA guidelines. Four databases, Medline, Embase, Scopus, and Web of Science, were searched twice (23 February 2022 and 1 August 2023) to capture studies assessing mammalian oocyte health post-bisphenol exposure. Search terms regarding oocytes, ovarian follicles, and bisphenols were utilized to identify relevant studies. Manuscripts written in English and reporting the effect of any bisphenol on mammalian oocyte health from all years were included. Parameters for toxicological studies were evaluated, including the number of bisphenol concentrations/doses tested, dosing regimen, biological replicates and/or animal numbers, and statistical information (for human studies). Standardized parameters of oocyte health including follicle counts, oocyte yield, oocyte meiotic capacity, morphology of oocyte and cumulus cells, and oocyte meiotic spindle integrity were extracted across the studies. OUTCOMES After screening 3147 studies, 107 studies of either humans or mammalian animal models or humans were included. Of the in vitro exposure studies, 96.3% (26/27) and 94.1% (16/17) found at least one adverse effect on oocyte health using BPA or BPA alternatives (including BHPF, BPAF, BPB, BPF, and BPS), respectively. These included increased meiotic cell cycle arrest, altered morphology, and abnormal meiotic spindle/chromosomal alignment. In vivo, 85.7% (30/35) of studies on BPA and 92.3% (12/13) on BPA alternatives documented adverse effects on follicle development, morphology, or spindle/chromosome alignment. Importantly, these effects were recorded using levels below those deemed 'safe' for human exposure. Over half (11/21) of all human observational studies showed associations between higher urinary BPA levels and reduced antral follicle counts or oocyte yield in IVF patients. Recommendations are presented based on the identified shortcomings of the current evidence, incorporating elements of FDA requirements for future research in the field. WIDER IMPLICATIONS These data highlight the detrimental impacts of low-level BPA and BPA alternative exposure, contributing to poor oocyte quality and reduced fertility. These outcomes are valuable in promoting the revision of current policies and guidelines pertaining to BPA exposure internationally. This study serves as a valuable resource to scientists, providing key recommendations on study design, reporting elements, and endpoint measures to strengthen future studies. Ultimately, this review highlights oocyte health as a fundamentally important endpoint in reproductive toxicological studies, indicating an important direction for future research into endocrine disrupting chemicals to improve fertility outcomes.
Collapse
Affiliation(s)
- Alexandra E Peters
- School of Biomedical Science and Pharmacy, College of Health, Medicine, and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Mothers and Babies Research Program and Women's Health Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Emmalee A Ford
- School of Biomedical Science and Pharmacy, College of Health, Medicine, and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Mothers and Babies Research Program and Women's Health Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- The Research Centre, Family Planning Australia, Newington, NSW, Australia
| | - Shaun D Roman
- Department of Research, NSW Health Pathology, Newcastle, NSW, Australia
| | - Elizabeth G Bromfield
- Faculty of Science, School of BioSciences, Bio21 Institute, The University of Melbourne, Parkville, VIC, Australia
- School of Environmental and Life Sciences, College of Engineering, Science, and Environment, University of Newcastle, Callaghan, NSW, Australia
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Brett Nixon
- School of Environmental and Life Sciences, College of Engineering, Science, and Environment, University of Newcastle, Callaghan, NSW, Australia
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Kirsty G Pringle
- School of Biomedical Science and Pharmacy, College of Health, Medicine, and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Mothers and Babies Research Program and Women's Health Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Jessie M Sutherland
- School of Biomedical Science and Pharmacy, College of Health, Medicine, and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Mothers and Babies Research Program and Women's Health Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| |
Collapse
|
2
|
Lee GY, Lim JH, Joung H, Yoon D. Association Between Ultraprocessed Food Consumption and Metabolic Disorders in Children and Adolescents with Obesity. Nutrients 2024; 16:3524. [PMID: 39458518 PMCID: PMC11510381 DOI: 10.3390/nu16203524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/12/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES We investigated the effects of ultraprocessed food (UPF) consumption on metabolic disorders (e.g., adiposity, metabolic associated steatotic liver disease [MASLD], and insulin resistance) in children and adolescents with obesity to improve dietary guidelines and public health strategies. METHODS The dietary intake of 149 participants (aged 8-17 years) was assessed with food diaries. The NOVA classification system was used to classify food according to the degree of processing. Metabolic outcomes, including the fat mass index (FMI), hepatic fat percentage, and insulin resistance, were measured via dual-energy X-ray absorptiometry (DXA), magnetic resonance imaging proton density fat fraction (MRI-PDFF), and biochemical analysis, respectively. RESULTS Greater UPF consumption from baseline to the 6-month follow-up was significantly associated with increased insulin and decreased total cholesterol and LDL-cholesterol. UPF consumption was positively associated with the prevalence of MASLD (liver MRI-PDFF ≥ 5%; odds ratio T3 vs. T1 = 1.75; 95% confidence interval [CI] 1.03, 3.00), moderate-to-severe MASLD (liver MRI-PDFF ≥ 10%; OR T3 vs. T1 = 4.19; 95% CI 1.72, 10.22), and insulin resistance (OR T3 vs. T1 = 2.44; 95% CI 1.33, 4.48), after adjusting for covariates. A linear dose-response relationship was observed between UPF consumption and the odds of moderate-to-severe MASLD and insulin resistance. CONCLUSIONS Greater UPF consumption was strongly associated with MASLD and insulin resistance in children and adolescents with obesity, underscoring the importance of reducing UPF consumption through dietary guidelines and public health interventions to mitigate the risk of obesity-related metabolic conditions in young populations.
Collapse
Affiliation(s)
- Gyeong-yoon Lee
- Division of Endocrine and Kidney Disease Research, Department of Chronic Disease Convergence Research, National Institute of Health, Cheongju 28159, Republic of Korea; (G.-y.L.); (J.H.L.)
- Department of Public Health, Graduate School of Public Health, Seoul National University, Seoul 08826, Republic of Korea
| | - Joo Hyun Lim
- Division of Endocrine and Kidney Disease Research, Department of Chronic Disease Convergence Research, National Institute of Health, Cheongju 28159, Republic of Korea; (G.-y.L.); (J.H.L.)
| | - Hyojee Joung
- Department of Public Health, Graduate School of Public Health, Seoul National University, Seoul 08826, Republic of Korea
- Institute of Health and Environment, Seoul National University, Seoul 08826, Republic of Korea
| | - Dankyu Yoon
- Division of Endocrine and Kidney Disease Research, Department of Chronic Disease Convergence Research, National Institute of Health, Cheongju 28159, Republic of Korea; (G.-y.L.); (J.H.L.)
| |
Collapse
|
3
|
Pan F, Yang W, Zhao T, Liu K, Zhao S, Zhao L. Procyanidine alleviates bisphenol A-induced apoptosis in TM3 cells via the Nrf2 signaling pathway. Food Chem Toxicol 2024; 192:114908. [PMID: 39117098 DOI: 10.1016/j.fct.2024.114908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Contaminated foods are a major source of bisphenol A (BPA) and are widely used in food packaging. Prolonged exposure to BPA can cause reproductive dysfunction in humans. Procyanidine (PC) is a potent natural antioxidant; however, the exact mechanism by which PC mitigates Leydig cell damage caused by BPA is unknown. In this study, the protective effect of PC against BPA-induced TM3 cell damage was investigated, and the underlying mechanism was assessed. PC treatment attenuates BPA-induced TM3 cell damage by suppressing oxidative stress and inhibiting TM3 apoptosis. In addition, PC upregulates the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and its downstream antioxidant target genes. Treatment with the NRF2 inhibitor ML385 reversed the PC-induced upregulation of the mRNA expression of these genes. Overall, PC may mitigate BPA-induced cell damage by activating the Nrf2 signaling pathway, suggesting that PC supplementation may alleviate BPA toxicity in TM3 cells.
Collapse
Affiliation(s)
- Feilong Pan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin, 150030, China
| | - Wenzhe Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin, 150030, China
| | - Tong Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin, 150030, China
| | - Kexiang Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin, 150030, China
| | - Shuchen Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin, 150030, China
| | - Lijia Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin, 150030, China.
| |
Collapse
|
4
|
Monda A, de Stefano MI, Villano I, Allocca S, Casillo M, Messina A, Monda V, Moscatelli F, Dipace A, Limone P, Di Maio G, La Marra M, Di Padova M, Chieffi S, Messina G, Monda M, Polito R. Ultra-Processed Food Intake and Increased Risk of Obesity: A Narrative Review. Foods 2024; 13:2627. [PMID: 39200554 PMCID: PMC11353718 DOI: 10.3390/foods13162627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/15/2024] [Accepted: 08/20/2024] [Indexed: 09/02/2024] Open
Abstract
The prevalence of obesity has become a global health concern, with significant impacts on quality of life and mortality rates. Recent research has highlighted the role of ultra-processed foods (UPFs) in driving the obesity epidemic. UPFs undergo extensive processing, often containing high levels of sugars, fats, and additives, while lacking essential nutrients. Studies have linked UPF consumption to obesity and cardiometabolic diseases, underscoring the importance of dietary patterns rich in whole foods. Thus, the aim of this narrative review is to elucidate the correlation between ultra-processed foods and the increased trend of obesity and its related complications. These foods, prevalent in modern diets, contribute to nutritional deficiencies and excessive caloric intake, exacerbating obesity rates. Lifestyle factors such as busy schedules and quick meal management further drive UPF consumption, disrupting hunger regulation and promoting overeating. UPF consumption correlates with adverse health outcomes, including dyslipidemia, hypertension, and insulin resistance. Promoting whole, minimally processed foods and implementing school-based nutrition education programs are crucial steps. Also, numerous challenges exist, including unequal access to healthy foods, the industry's influence, and behavioral barriers to dietary change. Future research should explore innovative approaches, such as nutrigenomics and digital health technologies, to personalize interventions and evaluate policy effectiveness. Collaboration across disciplines and sectors will be vital to develop comprehensive solutions and improve public health outcomes globally.
Collapse
Affiliation(s)
- Antonietta Monda
- Department of Human Science and Promotion of Quality of Life, Telematic University San Raffaele, 00166 Rome, Italy;
| | - Maria Ida de Stefano
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (M.I.d.S.); (R.P.)
| | - Ines Villano
- Department of Wellness, Nutrition and Sport, Telematic University Pegaso, 80143 Naples, Italy; (I.V.); (F.M.); (A.D.); (P.L.)
| | - Salvatore Allocca
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (S.A.); (M.C.); (G.D.M.); (M.L.M.); (S.C.); (G.M.)
| | - Maria Casillo
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (S.A.); (M.C.); (G.D.M.); (M.L.M.); (S.C.); (G.M.)
| | - Antonietta Messina
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Vincenzo Monda
- Department of Economics, Law, Cybersecurity, and Sports Sciences, University of Naples “Parthenope”, 80132 Naples, Italy;
| | - Fiorenzo Moscatelli
- Department of Wellness, Nutrition and Sport, Telematic University Pegaso, 80143 Naples, Italy; (I.V.); (F.M.); (A.D.); (P.L.)
| | - Anna Dipace
- Department of Wellness, Nutrition and Sport, Telematic University Pegaso, 80143 Naples, Italy; (I.V.); (F.M.); (A.D.); (P.L.)
| | - Pierpaolo Limone
- Department of Wellness, Nutrition and Sport, Telematic University Pegaso, 80143 Naples, Italy; (I.V.); (F.M.); (A.D.); (P.L.)
| | - Girolamo Di Maio
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (S.A.); (M.C.); (G.D.M.); (M.L.M.); (S.C.); (G.M.)
| | - Marco La Marra
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (S.A.); (M.C.); (G.D.M.); (M.L.M.); (S.C.); (G.M.)
| | - Marilena Di Padova
- Department of Humanistic Studies, University of Foggia, 71122 Foggia, Italy;
| | - Sergio Chieffi
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (S.A.); (M.C.); (G.D.M.); (M.L.M.); (S.C.); (G.M.)
| | - Giovanni Messina
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (S.A.); (M.C.); (G.D.M.); (M.L.M.); (S.C.); (G.M.)
| | - Marcellino Monda
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (S.A.); (M.C.); (G.D.M.); (M.L.M.); (S.C.); (G.M.)
| | - Rita Polito
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (M.I.d.S.); (R.P.)
| |
Collapse
|
5
|
Patel J, Chaudhary H, Panchal S, Parekh B, Joshi R. Connecting Bisphenol A Exposure to PCOS: Findings from a Case-Control Investigation. Reprod Sci 2024; 31:2273-2281. [PMID: 38637475 DOI: 10.1007/s43032-024-01548-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/02/2024] [Indexed: 04/20/2024]
Abstract
Polycystic Ovary Syndrome (PCOS) is a multifaceted condition influenced by genetic, hormonal, and environmental factors. Among environmental factors, Bisphenol A (BPA)-a recognized endocrine disruptor-has been implicated in the development of PCOS. The study aimed to compare BPA levels in women diagnosed with PCOS with those in healthy controls, using the high-performance liquid chromatography (HPLC) technique. The study involved 80 women diagnosed with PCOS and 50 healthy control participants. Demographic and biochemical parameters were recorded, including age, Body Mass Index (BMI), and levels of testosterone, estradiol, Luteinizing Hormone (LH), Follicle Stimulating Hormone (FSH), Prolactin (PRL), Dehydroepiandrosterone Sulfate (DHEA-S), Thyroid Stimulating Hormone (TSH), and Insulin Resistance as measured by the Homeostatic Model Assessment (HOMA-IR). Furthermore, BPA levels were measured using the HPLC technique. Women with PCOS exhibited significantly higher mean age and BMI compared to healthy controls (p = 0.01, p < 0.0001, respectively). Additionally, higher levels of testosterone (p = 0.04), LH (p = 0.03) and BPA (p < 0.0001) were observed in women with PCOS. However, estradiol, FSH, PRL, LH/FSH ratio, DHEA-S, and TSH levels were not significantly different between the two groups. HOMA-IR levels were not recorded for the control group. A notable positive relationship emerged between Bisphenol A and luteinizing hormone (LH) levels (r = 0.23, p = 0.03), also significant negative correlation appeared between Bisphenol A and thyroid-stimulating hormone (TSH) levels. This study found that women with PCOS have elevated BPA levels compared with healthy controls, showing a need for further research on the relationship between BPA exposure and the development of PCOS.
Collapse
Affiliation(s)
- Jalpa Patel
- Department of Biochemistry and Forensic Science, University School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
| | - Hiral Chaudhary
- Department of Biochemistry and Forensic Science, University School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
| | - Sonal Panchal
- Dr. Nagori's Institute for Infertility and IVF, Ahmedabad, Gujarat, India
| | - Bhavin Parekh
- Department of Biochemistry and Forensic Science, University School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
| | - Rushikesh Joshi
- Department of Biochemistry and Forensic Science, University School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India.
| |
Collapse
|
6
|
Toledano JM, Puche-Juarez M, Moreno-Fernandez J, Gonzalez-Palacios P, Rivas A, Ochoa JJ, Diaz-Castro J. Implications of Prenatal Exposure to Endocrine-Disrupting Chemicals in Offspring Development: A Narrative Review. Nutrients 2024; 16:1556. [PMID: 38892490 PMCID: PMC11173790 DOI: 10.3390/nu16111556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 06/21/2024] Open
Abstract
During the last decades, endocrine-disrupting chemicals (EDCs) have attracted the attention of the scientific community, as a result of a deepened understanding of their effects on human health. These compounds, which can reach populations through the food chain and a number of daily life products, are known to modify the activity of the endocrine system. Regarding vulnerable groups like pregnant mothers, the potential damage they can cause increases their importance, since it is the health of two lives that is at risk. EDCs can affect the gestation process, altering fetal development, and eventually inducing the appearance of many disorders in their childhood and/or adulthood. Because of this, several of these substances have been studied to clarify the influence of their prenatal exposure on the cognitive and psychomotor development of the newborn, together with the appearance of non-communicable diseases and other disorders. The most novel research on the subject has been gathered in this narrative review, with the aim of clarifying the current knowledge on the subject. EDCs have shown, through different studies involving both animal and human investigation, a detrimental effect on the development of children exposed to the during pregnancy, sometimes with sex-specific outcomes. However, some other studies have failed to find these associations, which highlights the need for deeper and more rigorous research, that will provide an even more solid foundation for the establishment of policies against the extended use of these chemicals.
Collapse
Affiliation(s)
- Juan M. Toledano
- Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain; (J.M.T.); (J.J.O.); (J.D.-C.)
- Institute of Nutrition and Food Technology “José Mataix Verdú”, University of Granada, 18071 Granada, Spain;
- Nutrition and Food Sciences Ph.D. Program, University of Granada, 18071 Granada, Spain
| | - Maria Puche-Juarez
- Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain; (J.M.T.); (J.J.O.); (J.D.-C.)
- Institute of Nutrition and Food Technology “José Mataix Verdú”, University of Granada, 18071 Granada, Spain;
- Nutrition and Food Sciences Ph.D. Program, University of Granada, 18071 Granada, Spain
| | - Jorge Moreno-Fernandez
- Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain; (J.M.T.); (J.J.O.); (J.D.-C.)
- Institute of Nutrition and Food Technology “José Mataix Verdú”, University of Granada, 18071 Granada, Spain;
- Instituto de Investigación Biosanitaria (IBS), 18016 Granada, Spain;
| | - Patricia Gonzalez-Palacios
- Institute of Nutrition and Food Technology “José Mataix Verdú”, University of Granada, 18071 Granada, Spain;
- Department of Nutrition and Food Science, University of Granada, 18071 Granada, Spain
| | - Ana Rivas
- Instituto de Investigación Biosanitaria (IBS), 18016 Granada, Spain;
- Department of Nutrition and Food Science, University of Granada, 18071 Granada, Spain
| | - Julio J. Ochoa
- Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain; (J.M.T.); (J.J.O.); (J.D.-C.)
- Institute of Nutrition and Food Technology “José Mataix Verdú”, University of Granada, 18071 Granada, Spain;
- Instituto de Investigación Biosanitaria (IBS), 18016 Granada, Spain;
| | - Javier Diaz-Castro
- Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain; (J.M.T.); (J.J.O.); (J.D.-C.)
- Institute of Nutrition and Food Technology “José Mataix Verdú”, University of Granada, 18071 Granada, Spain;
- Instituto de Investigación Biosanitaria (IBS), 18016 Granada, Spain;
| |
Collapse
|
7
|
Talebi S, Mehrabani S, Ghoreishy SM, Wong A, Moghaddam A, Feyli PR, Amirian P, Zarpoosh M, Kermani MAH, Moradi S. The association between ultra-processed food and common pregnancy adverse outcomes: a dose-response systematic review and meta-analysis. BMC Pregnancy Childbirth 2024; 24:369. [PMID: 38750456 PMCID: PMC11097443 DOI: 10.1186/s12884-024-06489-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/07/2024] [Indexed: 05/18/2024] Open
Abstract
OBJECTIVES Given the increasing incidence of negative outcomes during pregnancy, our research team conducted a dose-response systematic review and meta-analysis to investigate the relationship between ultra-processed foods (UPFs) consumption and common adverse pregnancy outcomes including gestational diabetes mellitus (GDM), preeclampsia (PE), preterm birth (PTB), low birth weight (LBW), and small for gestational age (SGA) infants. UPFs are described as formulations of food substances often modified by chemical processes and then assembled into ready-to-consume hyper-palatable food and drink products using flavors, colors, emulsifiers, and other cosmetic additives. Examples include savory snacks, reconstituted meat products, frozen meals that have already been made, and soft drinks. METHODS A comprehensive search was performed using the Scopus, PubMed, and Web of Science databases up to December 2023. We pooled relative risk (RR) and 95% confidence intervals (CI) using a random-effects model. RESULTS Our analysis (encompassing 54 studies with 552,686 individuals) revealed a significant association between UPFs intake and increased risks of GDM (RR = 1.19; 95% CI: 1.10, 1.27; I2 = 77.5%; p < 0.001; studies = 44; number of participants = 180,824), PE (RR = 1.28; 95% CI: 1.03, 1.59; I2 = 80.0%; p = 0.025; studies = 12; number of participants = 54,955), while no significant relationships were found for PTB, LBW and SGA infants. Importantly, a 100 g increment in UPFs intake was related to a 27% increase in GDM risk (RR = 1.27; 95% CI: 1.07, 1.51; I2 = 81.0%; p = 0.007; studies = 9; number of participants = 39,812). The non-linear dose-response analysis further indicated a positive, non-linear relationship between UPFs intake and GDM risk Pnonlinearity = 0.034, Pdose-response = 0.034), although no such relationship was observed for PE (Pnonlinearity = 0.696, Pdose-response = 0.812). CONCLUSION In summary, both prior to and during pregnancy, chronic and excessive intake of UPFs is associated with an increased risk of GDM and PE. However, further observational studies, particularly among diverse ethnic groups with precise UPFs consumption measurement tools, are imperative for a more comprehensive understanding.
Collapse
Affiliation(s)
- Sepide Talebi
- Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Sanaz Mehrabani
- Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seyed Mojtaba Ghoreishy
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
- Student research committee, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Alexei Wong
- Department of Health and Human Performance, Marymount University, Arlington, VA, USA
| | - Aliasghar Moghaddam
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Razi University, Kermanshah, Iran
| | - Peyman Rahimi Feyli
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Razi University, Kermanshah, Iran
| | - Parsa Amirian
- General Practitioner, Kermanshah University of Medical Sciences (KUMS), Kermanshah, Iran
| | - Mahsa Zarpoosh
- General Practitioner, Kermanshah University of Medical Sciences (KUMS), Kermanshah, Iran
| | - Mohammad Ali Hojjati Kermani
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Masih Daneshvari Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajjad Moradi
- Department of Nutrition and Food Sciences, Research Center for Evidence-Based Health Management, Maragheh University of Medical Sciences, Maragheh, Iran.
| |
Collapse
|
8
|
Ismael LQ, Keong YY, Bahari H, Lan CA, Yin KB. Bombesin-like receptor 3 expression induced by bisphenol A is likely associated with reduced cell proliferation by inhibiting DNA synthesis and inducing inflammation in liver cells. Mol Biol Rep 2024; 51:271. [PMID: 38302795 DOI: 10.1007/s11033-023-09080-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/29/2023] [Indexed: 02/03/2024]
Abstract
BACKGROUND Bisphenol A (BPA) is an exogenous endocrine disruptor mimicking hormones closely associated with health complications, such as cancer progression. BPA is also related to an increase in the prevalence of obesity-related diseases due to its obesogenic action. Bombesin-like receptor 3 (BRS3) is an important factor that should be considered in the adipogenic gene network, as depletion of this gene alters adiposity. METHODS Therefore, the present study aimed to investigate the messenger ribonucleic acid (mRNA) expression of BRS3 in human liver THLE-2 cells post-BPA treatment by real-time polymerase chain reaction. The effects of BPA on the levels of pro-inflammatory proteins, interleukin 6 (IL6) and CC motif chemokine ligand 2 (CCL2), in conditioned media of BPA-treated THLE-2 cells and deoxyribonucleic acid (DNA) synthesis in replicating BPA-treated THLE-2 cells during the cell cycle were also examined by enzyme-linked immunosorbent assay (ELISA) and flow cytometry, respectively. RESULTS The study found that the mRNA expression of BRS3 was increased in THLE-2 cells treated with BPA. The study also showed that the expression levels of IL6 and CCL2 reached an optimum level in the conditioned media of BPA-treated THLE-2 cells after 48 h of treatment. Subsequently, the DNA synthesis analysis showed that bromodeoxyuridine/propidium iodide (BrdU/PI) stained positive cells were decreased in BPA-treated THLE-2 cells at 72 h of treatment. CONCLUSION The study demonstrates that BRS3 expression induced by BPA is likely associated with reduced cell proliferation by inhibiting DNA synthesis and inducing cellular inflammation in liver cells.
Collapse
Affiliation(s)
- Layla Qasim Ismael
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia (USM), 11800, USM, Penang, Malaysia
- Department of Medical Biochemical Analysis, Cihan University-Erbil, Erbil, 44001, Iraq
| | - Yong Yoke Keong
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Seri Kembangan, 43400, Serdang, Selangor, Malaysia
| | - Hasnah Bahari
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Seri Kembangan, 43400, Serdang, Selangor, Malaysia
| | - Chew Ai Lan
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia (USM), 11800, USM, Penang, Malaysia
| | - Khoo Boon Yin
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia (USM), 11800, USM, Penang, Malaysia.
| |
Collapse
|
9
|
Xia Z, Lv C, Zhang Y, Shi R, Lu Q, Tian Y, Lei X, Gao Y. Associations of exposure to bisphenol A and its substitutes with neurodevelopmental outcomes among infants at 12 months of age: A cross-sectional study. CHEMOSPHERE 2023; 341:139973. [PMID: 37640215 DOI: 10.1016/j.chemosphere.2023.139973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/16/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
BACKGROUND Bisphenol A (BPA) exposure has been linked to adverse childhood neurodevelopment, but little is known about whether BPA substitutes exposures are also related to childhood neurodevelopment. OBJECTIVES To investigate the associations of exposure to BPA and its substitutes with infant neurodevelopment at 12 months. METHODS A total of 420 infants at 12 months were included from the Laizhou Wan (Bay) Birth Cohort in Shandong, China. Urinary concentrations of BPA and its substitutes including bisphenol S (BPS), bisphenol B (BPB), bisphenol AF (BPAF), bisphenol AP (BPAP), bisphenol P (BPP) and bisphenol Z (BPZ) were measured. Developmental quotient (DQ) scores based on the Gesell Development Schedules (GDS) were used to evaluate infant neurodevelopment. The multivariable linear regression and weighted quantile sum (WQS) regression were applied to estimate the associations of exposure to individual bisphenols and their mixtures with DQ scores, respectively. Sex-stratified analyses were also performed. RESULTS BPA was detected in most infants (89.05%) and had the highest median concentration (0.709 ng/mL) among all bisphenols. BPA substitutes except BPZ were ubiquitous in infants' urine samples (>70%), and BPS showed the highest median concentration (0.064 ng/mL) followed by BPAP (0.036 ng/mL), BPAF (0.028 ng/mL), BPP (0.015 ng/mL) and BPB (0.013 ng/mL). In multivariable linear regression, only BPAF exposure was inversely associated with social DQ scores among all infants (β = -0.334; 95% CI: -0.650, -0.019). After sex stratification, this inverse association was significant in girls (β = -0.605; 95% CI: -1.030, -0.180). Besides, BPA exposure was negatively related to gross motor DQ scores in boys (β = -1.061; 95% CI: -2.078, -0.045). WQS analyses confirmed these results. CONCLUSIONS Our study suggests that bisphenol exposure during infancy may be associated with poor infant neurodevelopment, and BPAF as a commonly used BPA substitute contributing the most to this adverse association deserves more attention.
Collapse
Affiliation(s)
- Zhuanning Xia
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Cheng Lv
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yan Zhang
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Rong Shi
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qi Lu
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ying Tian
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; MOE-Shanghai Key Laboratory of Children's Environmental Health, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Xiaoning Lei
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Yu Gao
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
10
|
Zhu Z, Long X, Wang J, Cao Q, Yang H, Zhang Y. Bisphenol A has a sex-dependent disruptive effect on hepatic lipid metabolism in zebrafish. Comp Biochem Physiol C Toxicol Pharmacol 2023; 268:109616. [PMID: 36963593 DOI: 10.1016/j.cbpc.2023.109616] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/02/2023] [Accepted: 03/18/2023] [Indexed: 03/26/2023]
Abstract
Bisphenol A (BPA) is an endocrine disruptor that has adverse effects on lipid metabolism. However, most of the current studies on the effects of BPA on lipid metabolism in fish have focused on middle- and short-term exposure tests. The aim of this study was to investigate the effects of long-term BPA exposure on liver lipid metabolism in zebrafish. Post-fertilization embryos were exposed to environmentally relevant concentrations of BPA for 120 days, and the changes in triglyceride (TG), total cholesterol (TC) levels, and gene expression related to liver lipid metabolism were investigated in both male and female fish. The results showed that long-term exposure to BPA led to lipid deposition in liver, and there was a sex difference. In the liver of female fish, there was higher lipid transport and synthesis at low concentration of BPA, while overall metabolic levels were increased at high concentration of BPA. In contrast, BPA showed a dose-dependent effect on the lipid deposition in male fish. The expression of mRNA of TG transport-related and lipid synthesis-related genes was significantly up-regulated and the expression of genes related to lipid catabolism, was significantly down-regulated with increasing BPA dose. Taken together, our results indicate that long-term exposure to BPA can increase lipid deposition in a gender-specific manner. This may be due to the different responses of lipid metabolism related genes to BPA in male and female zebrafish. These results will provide a new reference for a deeper understanding of the ecotoxicological effects of BPA on aquatic animals.
Collapse
Affiliation(s)
- Zhu Zhu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xiaodong Long
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Jing Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Qingsheng Cao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Hui Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yingying Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
11
|
Mambrini SP, Menichetti F, Ravella S, Pellizzari M, De Amicis R, Foppiani A, Battezzati A, Bertoli S, Leone A. Ultra-Processed Food Consumption and Incidence of Obesity and Cardiometabolic Risk Factors in Adults: A Systematic Review of Prospective Studies. Nutrients 2023; 15:nu15112583. [PMID: 37299546 DOI: 10.3390/nu15112583] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Ultra-processed foods (UPF) are energy-dense, nutritionally unbalanced products, low in fiber but high in saturated fat, salt, and sugar. Recently, UPF consumption has increased likewise the incidence of obesity and cardiometabolic diseases. To highlight a possible relationship, we conducted a systematic review of prospective studies from PubMed and Web of Science investigating the association between UPF consumption and the incidence of obesity and cardiometabolic risk factors. Seventeen studies were selected. Eight evaluated the incidence of general and abdominal obesity, one the incidence of impaired fasting blood glucose, four the incidence of diabetes, two the incidence of dyslipidemia, and only one the incidence of metabolic syndrome. Studies' quality was assessed according to the Critical Appraisal Checklist for cohort studies proposed by the Joanna Briggs Institute. Substantial agreement emerged among the studies in defining UPF consumption as being associated with the incident risk of general and abdominal obesity. More limited was the evidence on cardiometabolic risk. Nevertheless, most studies reported that UPF consumption as being associated with an increased risk of hypertension, diabetes, and dyslipidemia. In conclusion, evidence supports the existence of a relationship between UPF consumption and the incidence of obesity and cardiometabolic risk. However, further longitudinal studies considering diet quality and changes over time are needed.
Collapse
Affiliation(s)
- Sara Paola Mambrini
- IRCCS Auxologico, Laboratory of Metabolic Research, San Giuseppe Hospital, 28824 Piancavallo, Italy
- International Center for the Assessment of Nutritional Status and the Development of Dietary Intervention Strategies (ICANS-DIS), Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, 20133 Milan, Italy
| | - Francesca Menichetti
- International Center for the Assessment of Nutritional Status and the Development of Dietary Intervention Strategies (ICANS-DIS), Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, 20133 Milan, Italy
| | - Simone Ravella
- International Center for the Assessment of Nutritional Status and the Development of Dietary Intervention Strategies (ICANS-DIS), Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, 20133 Milan, Italy
| | - Marta Pellizzari
- IRCCS Auxologico, Laboratory of Nutrition and Obesity Research, Department of Endocrine and Metabolic Diseases, 20145 Milan, Italy
| | - Ramona De Amicis
- International Center for the Assessment of Nutritional Status and the Development of Dietary Intervention Strategies (ICANS-DIS), Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, 20133 Milan, Italy
- IRCCS Auxologico, Laboratory of Nutrition and Obesity Research, Department of Endocrine and Metabolic Diseases, 20145 Milan, Italy
| | - Andrea Foppiani
- International Center for the Assessment of Nutritional Status and the Development of Dietary Intervention Strategies (ICANS-DIS), Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, 20133 Milan, Italy
| | - Alberto Battezzati
- International Center for the Assessment of Nutritional Status and the Development of Dietary Intervention Strategies (ICANS-DIS), Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, 20133 Milan, Italy
- IRCCS Auxologico, Clinical Nutrition Unit, Department of Endocrine and Metabolic Diseases, 20145 Milan, Italy
| | - Simona Bertoli
- International Center for the Assessment of Nutritional Status and the Development of Dietary Intervention Strategies (ICANS-DIS), Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, 20133 Milan, Italy
- IRCCS Auxologico, Laboratory of Nutrition and Obesity Research, Department of Endocrine and Metabolic Diseases, 20145 Milan, Italy
| | - Alessandro Leone
- International Center for the Assessment of Nutritional Status and the Development of Dietary Intervention Strategies (ICANS-DIS), Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, 20133 Milan, Italy
| |
Collapse
|
12
|
Ismael LQ, Abdulhameed AR, Keong YY, Abdullah MNH, Bahari H, Jie TJ, Yin KB. Bisphenol A is a carcinogen that induces lipid accumulation, peroxisome proliferator‑activated receptor‑γ expression and liver disease. Exp Ther Med 2022; 24:735. [PMID: 36466761 PMCID: PMC9709766 DOI: 10.3892/etm.2022.11671] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 08/24/2022] [Indexed: 11/05/2022] Open
Abstract
Bisphenol (BP) A is an exogenous endocrine disruptor that mimics hormones closely associated with health complications, e.g., obesity and cancers. The present study aimed to evaluate the effects of BPA on human liver cells and tissue. The peroxisome proliferator-activated receptor (PPAR)-γ expression profile across tumour samples and paired normal tissue was first analysed using GEPIA. Subsequently, BPA-treated liver THLE-2 cell viability was evaluated using an MTT assay. Clusterin, PPARα and PPARγ gene expression in BPA-treated THLE-2 cells was assessed using GEPIA before validating the gene expression using real-time PCR and analysing overall survival using TCGA data in GEPIA. Cytoplasmic lipid accumulation was examined in BPA-treated THLE-2 cells using Oil Red O staining, and liver tissue was examined using haematoxylin and eosin staining. Finally, cytochrome P450 (CYP) gene expression was assessed in BPA-treated THLE-2 cells using real-time PCR. PPARγ is likely the primary nuclear receptor protein involved in lipid accumulation in THLE-2 cells following BPA treatment and is associated with liver disease. THLE-2 cells exposed to BPA showed a decrease in viability and lipid accumulation after 48 h treatment. Higher PPARγ gene expression was significantly associated with survival of patients with liver cancer, with an average survival time of <80 months. Haematoxylin and eosin-stained sections showed notable disruption of the liver architecture in tissue exposed to BPA. Downregulated CYP1A1 and CYP1B1 gene expression implied that BPA-treated THLE-2 cells decreased capacity for carcinogen metabolism, while upregulated CYP2S1 gene expression exerted minimal cytotoxicity. The present study revealed that BPA served as a carcinogen, enhanced tumorigenesis susceptibility and may induce other types of liver disease.
Collapse
Affiliation(s)
- Layla Qasim Ismael
- Institute for Research in Molecular Medicine, University Sains Malaysia, Minden, Penang 11800, Malaysia
- Department of Medical Biochemical Analysis, Cihan University-Erbil, Erbil 44001, Iraq
| | - Ahmed Rashid Abdulhameed
- Physiology Unit, Department of Human Anatomy, Faculty of Medicine and Health Sciences, University Putra Malaysia, Serdang 43400, Malaysia
| | - Yong Yoke Keong
- Physiology Unit, Department of Human Anatomy, Faculty of Medicine and Health Sciences, University Putra Malaysia, Serdang 43400, Malaysia
| | - Muhammad Nazrul Hakim Abdullah
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University Putra Malaysia, Serdang 43400, Malaysia
| | - Hasnah Bahari
- Physiology Unit, Department of Human Anatomy, Faculty of Medicine and Health Sciences, University Putra Malaysia, Serdang 43400, Malaysia
| | - Tan Jun Jie
- Advanced Medical and Dental Institute, University Sains Malaysia, Bertam, Penang 13200, Malaysia
| | - Khoo Boon Yin
- Institute for Research in Molecular Medicine, University Sains Malaysia, Minden, Penang 11800, Malaysia
| |
Collapse
|
13
|
Zhang Y, Jiang Y, Wang Z, Wang J, Zhu M, Yang H. Effects of Dietary Resveratrol, Bile Acids, Allicin, Betaine, and Inositol on Recovering the Lipid Metabolism Disorder in the Liver of Rare Minnow Gobiocypris rarus Caused by Bisphenol A. AQUACULTURE NUTRITION 2022; 2022:6082343. [PMID: 36860429 PMCID: PMC9973200 DOI: 10.1155/2022/6082343] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/12/2022] [Accepted: 09/14/2022] [Indexed: 06/17/2023]
Abstract
The fatty liver is one of the main problems in aquaculture. In addition to the nutritional factors, endocrine disrupter chemicals (EDCs) are one of the causes of fatty liver in fish. Bisphenol A (BPA) is a plasticizer widely used in the production of various plastic products and exhibits certain endocrine estrogen effects. Our previous study found that BPA could increase the accumulation of triglyceride (TG) in fish liver by disturbing the expression of lipid metabolism-related genes. How to recover the lipid metabolism disorder caused by BPA and other environmental estrogens remains to be explored. In the present study, Gobiocypris rarus was used as a research model, and 0.01% resveratrol, 0.05% bile acid, 0.01% allicin, 0.1% betaine, and 0.01% inositol were added to the feed of the G. rarus that exposed to 15 μg/L BPA. At the same time, a BPA exposure group without feed additives (BPA group) and a blank group with neither BPA exposure nor feed additives (Con group) were setted. The liver morphology, hepatosomatic index (HSI), hepatic lipid deposition, TG level, and expression of lipid metabolism-related genes were analyzed after 5 weeks of feeding. The HSI in bile acid and allicin groups was significantly lower than that in Con group. The TG in resveratrol, bile acid, allicin, and inositol groups returned to Con level. Principal component analysis of TG synthesis, decomposition, and transport related genes showed that dietary bile acid and inositol supplementation had the best effect on the recovery of BPA-induced lipid metabolism disorder, followed by allicin and resveratrol. In terms of lipid metabolism-related enzyme activity, bile acid and inositol were the most effective in recovering BPA-induced lipid metabolism disorders. The addition of these additives had a restorative effect on the antioxidant capacity of G. rarus livers, but bile acids and inositol were relatively the most effective. The results of the present study demonstrated that under the present dosage, bile acids and inositol had the best improvement effect on the fatty liver of G. rarus caused by BPA. The present study will provide important reference for solving the problem of fatty liver caused by environmental estrogen in aquaculture.
Collapse
Affiliation(s)
- Yingying Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yinan Jiang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Ziying Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Jiayu Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Mingzhen Zhu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Hui Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
14
|
Ďurovcová I, Kyzek S, Fabová J, Makuková J, Gálová E, Ševčovičová A. Genotoxic potential of bisphenol A: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 306:119346. [PMID: 35489531 DOI: 10.1016/j.envpol.2022.119346] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/05/2022] [Accepted: 04/20/2022] [Indexed: 05/25/2023]
Abstract
Bisphenol A (BPA), as a major component of some plastic products, is abundant environmental pollutant. Due to its ability to bind to several types of estrogen receptors, it can trigger multiple cellular responses, which can contribute to various manifestations at the organism level. The most studied effect of BPA is endocrine disruption, but recently its prooxidative potential has been confirmed. BPA ability to induce oxidative stress through increased ROS production, altered activity of antioxidant enzymes, or accumulation of oxidation products of biomacromolecules is observed in a wide range of organisms - estrogen receptor-positive and -negative. Subsequently, increased intracellular oxidation can lead to DNA damage induction, represented by oxidative damage, single- and double-strand DNA breaks. Importantly, BPA shows several mechanisms of action and can trigger adverse effects on all organisms inhabiting a wide variety of ecosystem types. Therefore, the main aim of this review is to summarize the genotoxic effects of BPA on organisms across all taxa.
Collapse
Affiliation(s)
- Ivana Ďurovcová
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15, Bratislava, Slovakia.
| | - Stanislav Kyzek
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15, Bratislava, Slovakia.
| | - Jana Fabová
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15, Bratislava, Slovakia.
| | - Jana Makuková
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15, Bratislava, Slovakia.
| | - Eliška Gálová
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15, Bratislava, Slovakia.
| | - Andrea Ševčovičová
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15, Bratislava, Slovakia.
| |
Collapse
|
15
|
Abulehia HFS, Mohd Nor NS, Sheikh Abdul Kadir SH. The Current Findings on the Impact of Prenatal BPA Exposure on Metabolic Parameters: In Vivo and Epidemiological Evidence. Nutrients 2022; 14:2766. [PMID: 35807946 PMCID: PMC9269235 DOI: 10.3390/nu14132766] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/29/2022] [Accepted: 06/29/2022] [Indexed: 02/01/2023] Open
Abstract
Metabolic syndrome (MS) is a multifactorial disease entity and is not fully understood. Growing evidence suggests that early exposure to bisphenol A (BPA) is a significant risk factor for the development of metabolic diseases. BPA is a monomer used in the manufacturing of polycarbonate plastics, thermal receipt paper, and epoxy resins. Owing to its widespread use, BPA has been detected in human fluids and tissues, including blood, placental breast milk, and follicular fluid. In the present review, we aimed to review the impact of prenatal exposure to different doses of BPA on metabolic parameters as determined by in vivo and epidemiological studies. The PubMed, Scopus, and Web of Science electronic databases were searched to identify articles published during a period of 15 years from 2006 to 2021, and 29 studies met the criteria. Most studies demonstrated that prenatal exposure to low BPA concentrations correlated with alterations in metabolic parameters in childhood and an increased risk of metabolic diseases, such as obesity and type 2 diabetes mellitus (T2DM), in adulthood. Therefore, prenatal exposure to low doses of BPA may be associated with an increased risk of obesity and T2DM in a sex-specific manner.
Collapse
Affiliation(s)
- Hala F. S. Abulehia
- Institute of Medical Molecular Biotechnology, Faculty of Medicine, Universiti Teknologi MARA (UiTM), Cawangan Selangor, Kampus Sungai Buloh, Jalan Hospital, Sungai Buloh 47000, Selangor, Malaysia;
| | - Noor Shafina Mohd Nor
- Institute of Medical Molecular Biotechnology, Faculty of Medicine, Universiti Teknologi MARA (UiTM), Cawangan Selangor, Kampus Sungai Buloh, Jalan Hospital, Sungai Buloh 47000, Selangor, Malaysia;
- Department of Paediatrics, Faculty of Medicine, Universiti Teknologi MARA (UiTM), Cawangan Selangor, Kampus Sungai Buloh, Jalan Hospital, Sungai Buloh 47000, Selangor, Malaysia
- Institute for Pathology, Laboratory and Forensic Medicine (I-PPerForM), Faculty of Medicine, Universiti Teknologi MARA (UiTM), Cawangan Selangor, Kampus Sungai Buloh, Jalan Hospital, Sungai Buloh 47000, Selangor, Malaysia;
| | - Siti Hamimah Sheikh Abdul Kadir
- Institute for Pathology, Laboratory and Forensic Medicine (I-PPerForM), Faculty of Medicine, Universiti Teknologi MARA (UiTM), Cawangan Selangor, Kampus Sungai Buloh, Jalan Hospital, Sungai Buloh 47000, Selangor, Malaysia;
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Universiti Teknologi MARA (UiTM), Cawangan Selangor, Kampus Sungai Buloh, Jalan Hospital, Sungai Buloh 47000, Selangor, Malaysia
| |
Collapse
|
16
|
Ultra-processed foods and obesity and adiposity parameters among children and adolescents: a systematic review. Eur J Nutr 2022; 61:2297-2311. [PMID: 35322333 PMCID: PMC8942762 DOI: 10.1007/s00394-022-02873-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 03/08/2022] [Indexed: 12/18/2022]
Abstract
PURPOSE According to the NOVA classification, ultra-processed foods are products made through physical, biological and chemical processes and typically with multiple ingredients and additives, in which whole foods are mostly or entirely absent. From a nutritional point of view, they are typically energy-dense foods high in fat, sugar, and salt and low in fiber. The association between the consumption of ultra-processed food and obesity and adiposity measurements has been established in adults. However, the situation remains unclear in children and adolescents. METHODS We carried out a systematic review, in which we summarize observational studies investigating the association between the consumption of ultra-processed food, as defined by NOVA classification, and obesity and adiposity parameters among children and adolescents. A literature search was performed using PUBMED and Web of Science databases for relevant articles published prior to May 2021. RESULTS Ten studies, five longitudinal and five cross-sectional, mainly conducted in Brazil, were included in this review. Four longitudinal studies in children with a follow-up longer than 4 years found a positive association between the consumption of ultra-processed food and obesity and adiposity parameters, whereas cross-sectional studies failed to find an association. CONCLUSION These data suggest that a consistent intake of ultra-processed foods over time is needed to impact nutritional status and body composition of children and adolescents. Further well-designed prospective studies worldwide are needed to confirm these findings considering country-related differences in dietary habits and food production technologies.
Collapse
|
17
|
Afzal G, Ahmad HI, Hussain R, Jamal A, Kiran S, Hussain T, Saeed S, Nisa MU. Bisphenol A Induces Histopathological, Hematobiochemical Alterations, Oxidative Stress, and Genotoxicity in Common Carp ( Cyprinus carpio L.). OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5450421. [PMID: 35126815 PMCID: PMC8816551 DOI: 10.1155/2022/5450421] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/04/2022] [Indexed: 12/29/2022]
Abstract
Bisphenol A (BPA) is one of the environmental endocrine disrupting toxicants and is widely used in the industry involving plastics, polycarbonate, and epoxy resins. This study was designed to investigate the toxicological effects of BPA on hematology, serum biochemistry, and histopathology of different organs of common carp (Cyprinus carpio). A total of 60 fish were procured and haphazardly divided into four groups. Each experimental group contained 15 fish. The fish retained in group A was kept as the untreated control group. Three levels of BPA 3.0, 4.5, and 6 mg/L were given to groups B, C, and D for 30 days. Result indicated significant reduction in hemoglobin (Hb), lymphocytes, packed cell volume (PCV), red blood cells (RBC), and monocytes in a dose-dependent manner as compared to the control group. However, significantly higher values of leucocytes and neutrophils were observed in the treated groups (P < 0.05). Results on serum biochemistry revealed that the quantity of glucose, cholesterol, triglycerides, urea, and creatinine levels was significantly high (P < 0.05). Our study results showed significantly (P < 0.05) increase level of oxidative stress parameters like reactive oxygen species (ROS) and thiobarbituric acid reactive substances (TBARS) and lower values of antioxidant enzymes (superoxide dismutase (SOD), catalase (CAT), peroxidase (POD) in treated groups (4.5 mg/L and 6 mg/L)) in the brain, liver, gills, and kidneys. Our study depicted significant changes in erythrocytes (pear shaped erythrocytes, leptocytes, microcytes, spherocytes, erythrocytes with broken, lobed, micronucleus, blabbed, vacuolated nucleus, and nuclear remnants) among treated groups (4.5 mg/L and 6 mg/L). Comet assay showed increased genotoxicity in different tissues including the brain, liver, gills, and kidneys in the treated fish group. Based on the results of our experiment, it can be concluded that the BPA exposure to aquatic environment is responsible for deterioration of fish health, performance leading to dysfunction of multiple vital organs.
Collapse
Affiliation(s)
- Gulnaz Afzal
- Department of Zoology, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Hafiz Ishfaq Ahmad
- Department of Animal Breeding and Genetics, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Riaz Hussain
- Department of Pathology, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Adil Jamal
- Sciences and Research, College of Nursing, Umm Al Qura University, Makkah 715, Saudi Arabia
| | - Shumaila Kiran
- Department of Applied Chemistry, Government College University, Faisalabad, Pakistan
| | - Tarique Hussain
- Animal Sciences Division, Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Jhang Road, Faisalabad 38000, Pakistan
| | - Saba Saeed
- Institute of Physics, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Mehr un Nisa
- Department of Zoology, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| |
Collapse
|
18
|
Tosirisuk N, Sakorn N, Jantarat C, Nosoongnoen W, Aroonpakmongkol S, Supornsilchai V. Increased bisphenol A levels in Thai children and adolescents with type 1 diabetes mellitus. Pediatr Int 2022; 64:e14944. [PMID: 34342913 DOI: 10.1111/ped.14944] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/08/2021] [Accepted: 06/16/2021] [Indexed: 01/06/2023]
Abstract
BACKGROUND The incidence of type 1 diabetes mellitus (T1DM) in children and adolescents continues to increase worldwide. The reason for this is unclear. In addition to the role of genetics, bisphenol A (BPA) has been investigated as a possible causal factor for T1DM. This study aimed to determine the correlation between urinary BPA levels and T1DM in Thai children and adolescents. METHODS A cross-sectional study was conducted in T1DM patients who were followed at the endocrinology clinic at King Chulalongkorn Memorial Hospital from December 2018 to December 2019 and age-matched healthy controls. Urinary BPA levels were analyzed by high-performance liquid chromatography and adjusted by urine creatinine. Anthropometric data were measured in all participants and clinical data were collected for the T1DM patients. All participants completed a questionnaire regarding possible BPA exposures. Multivariate logistic regression analysis was used to estimate the adjusted odds ratio for T1DM. RESULTS Seventy-five T1DM patients and 113 age-matched controls were included in the study. The mean age for T1DM and control groups were 14.8 ± 5.7 and 14.4 ± 6.2 years, respectively. The T1DM group had a significantly higher median (interquartile range) level of adjusted urinary BPA compared to the control (31.50 [7.87, 69.45] vs 10.1 [0, 54.01] μg/g creatinine, P = 0.02). Urinary BPA of 17 μg/g creatinine or more was significantly associated with TIDM, with adjusted odds ratio (95% Confident interval, CI) of 2.38 (1.27, 4.44), P = 0.006. CONCLUSIONS Higher urinary BPA level is one of the possible risk factors for T1DM.
Collapse
Affiliation(s)
- Naruporn Tosirisuk
- Division of Endocrinology, Department of Pediatrics, Faculty of Medicine, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Natee Sakorn
- School of Pharmacy, Walailak University, Nakhon Si Thammarat, Thailand
| | - Chutima Jantarat
- School of Pharmacy, Walailak University, Nakhon Si Thammarat, Thailand
| | - Wichit Nosoongnoen
- Department of Pharmacy, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Suphab Aroonpakmongkol
- Division of Endocrinology, Department of Pediatrics, Faculty of Medicine, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Vichit Supornsilchai
- Division of Endocrinology, Department of Pediatrics, Faculty of Medicine, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| |
Collapse
|
19
|
Rebai I, Fernandes JO, Azzouz M, Benmohammed K, Bader G, Benmbarek K, Cunha SC. Urinary bisphenol levels in plastic industry workers. ENVIRONMENTAL RESEARCH 2021; 202:111666. [PMID: 34265347 DOI: 10.1016/j.envres.2021.111666] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 06/13/2023]
Abstract
Bisphenol A (BPA) is a known endocrine disruptor compound that is widely applied as a monomer base in polycarbonate plastics and as a binding agent in several epoxy resins. Plastic industry workers have usually heavier and prolonged exposures to BPA. Hence, the present work aims to assess the levels of BPA and their analogs (S, F, B, AF, Z, E, and AP) in 170 urine samples from a cross-sectional study of workers from a plastic industry located in north Constantine (Algeria). This work was complemented with a questionnaire about sexual functions and evaluation of sexual hormone levels. The results showed a stable presence of BPA (average of 3.24 μg/L), accounting for more than 90% of the total BPs. Of the remaining BP analogs, only trace amounts of BPB were detected in three samples (average of 2.73 μg/L). Significant associations with BPA urinary levels were noted with age (p = 0.006), occupational level of exposure (p = 0.023), and years of experience (p = 0.001).
Collapse
Affiliation(s)
- Iméne Rebai
- Laboratory of Toxicology, Faculty of Medicine, Salah Boubnider University 3, Constantine, Algeria; Laboratory of Preventive Medicine for Chronic Diseases, Salah Boubnider University 3, Constantine, Algeria.
| | - José O Fernandes
- LAQV-REQUIMTE, Laboratory of Bromatology and Hidrology, Faculty of Pharmacy, University of Porto, Porto, Portugal.
| | - Mohamed Azzouz
- Laboratory of Toxicology, Faculty of Medicine, Youcef Benkhedda University I, Algiers, Algeria
| | - Karima Benmohammed
- Laboratory of Preventive Medicine for Chronic Diseases, Salah Boubnider University 3, Constantine, Algeria; Endocrinology Department, Faculty of Medicine, Salah Boubnider University 3, Constantine, Algeria
| | - Ghania Bader
- Occupational Medicine Department, Local Health Establishment of Hamma Bouziane, Constantine, Algeria
| | - Karima Benmbarek
- Biochemistry Department, Faculty of Medicine, Salah Boubnider University 3, Constantine, Algeria
| | - Sara C Cunha
- LAQV-REQUIMTE, Laboratory of Bromatology and Hidrology, Faculty of Pharmacy, University of Porto, Porto, Portugal.
| |
Collapse
|
20
|
Ayoub N, Mantash H, Dhaini HR, Mourad A, Hneino M, Daher Z. Serum Cadmium Levels and Risk of Metabolic Syndrome: A Cross-Sectional Study. Biol Trace Elem Res 2021; 199:3625-3633. [PMID: 33405080 DOI: 10.1007/s12011-020-02502-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 11/17/2020] [Indexed: 12/15/2022]
Abstract
The increase in the prevalence of metabolic disorders globally is becoming a public health concern. Previous studies have reported an association between environmental exposures to hazardous substances, including various heavy metals, and the risk for metabolic syndrome. However, reports on the contributions of cadmium (Cd) to the risk for obesity and diabetes remain inconsistent. This study aims to investigate an association between serum Cd levels (SCL) and diabesity and dyslipidemia risk scores. A total of 140 subjects were identified from a public academic institution in Lebanon. Socio-demographic information, diabesity, and obesity risk scores were determined using an interview-based adapted FINDRISC questionnaire and analysis of an acquired blood sample. SCL was quantified using inductively coupled plasma mass spectrometry (ICP-MS). The statistical analysis relied on a chi-squared test and multivariate logistic regression models, along with checks for confounders and effect modifiers. Our results showed a Cd geometric mean of 4.04 μg/L (± 2.5). High SCL was significantly associated with higher dyslipidemia risk (OR: 3.05 [95% CI: 1.19-7.86], P = 0.02), even after adjusting for confounders. However, SCL did not show a statistically significant association with diabetes and obesity outcomes. Elevated SCL increases the risk of dyslipidemia and alters the blood lipid profile. In addition, our findings do not support a role for Cd in diabesity.
Collapse
Affiliation(s)
- Nour Ayoub
- Faculty of Public Health I, Lebanese University, Rafic Hariri University Campus, Hadath, Beirut, Lebanon
| | - Hiba Mantash
- Faculty of Public Health I, Lebanese University, Rafic Hariri University Campus, Hadath, Beirut, Lebanon
| | - Hassan R Dhaini
- Department of Environmental Health, American University of Beirut, Beirut, Lebanon
| | - Abbas Mourad
- Faculty of Sciences I, Lebanese University, Rafic Hariri University Campus, Hadath, Beirut, Lebanon
| | - Mohammad Hneino
- Faculty of Public Health I, Lebanese University, Rafic Hariri University Campus, Hadath, Beirut, Lebanon
| | - Zeina Daher
- Faculty of Public Health I, Lebanese University, Rafic Hariri University Campus, Hadath, Beirut, Lebanon.
| |
Collapse
|
21
|
Afzal G, Ahmad HI, Jamal A, Mustafa G, Kiran S, Hussain R, Anjum S, Rafay M, Ghaffar A, Saeed S. Bisphenol A mediated histopathological, hemato-biochemical and oxidative stress in rabbits (Oryctolagus cuniculus). TOXIN REV 2021. [DOI: 10.1080/15569543.2021.1972318] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Gulnaz Afzal
- Department of Zoology, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Hafiz Ishfaq Ahmad
- Department of Animal Breeding and Genetics, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Adil Jamal
- Sciences and Research College of Nursing, Umm al Qura University, Makkah-715, Kingdom of Saudi Arabia
| | - Ghulam Mustafa
- Department of Biochemistry, Government College University, Faisalabad, Pakistan
| | - Shumaila Kiran
- Department of Applied Chemistry, Government College University, Faisalabad, Pakistan
| | - Riaz Hussain
- Department of Pathology, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Shazia Anjum
- Institute of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Rafay
- Department of Forestry, Range and Wildlife Management, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Abdul Ghaffar
- Department of Zoology, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Saba Saeed
- Institute of Physics, The Islamia University of Bahawalpur, Bahawalpur
| |
Collapse
|
22
|
Pre-Gestational Consumption of Ultra-Processed Foods and Risk of Gestational Diabetes in a Mediterranean Cohort. The SUN Project. Nutrients 2021; 13:nu13072202. [PMID: 34206854 PMCID: PMC8308322 DOI: 10.3390/nu13072202] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/04/2021] [Accepted: 06/22/2021] [Indexed: 12/18/2022] Open
Abstract
We aimed to investigate the relationship between the pre-gestational consumption of ultra-processed foods (UPF) and the risk of gestational diabetes (GDM). We carried out a prospective study among 3730 Spanish women of the SUN cohort who reported at least one pregnancy after baseline recruitment. Cases of GDM were identified among women with a confirmed diagnosis of GDM. UPF consumption was assessed through a validated, semi-quantitative food frequency questionnaire and the frequency of UPF consumption was categorized in tertiles. We identified 186 cases of GDM. In the pooled sample, we did not observe a significant association of UPF with the risk of GDM. When we stratified by age, the multivariate OR for the third tertile of UPF consumption compared with the lowest one was 2.05 (95% CI 1.03, 4.07) in women aged ≥30 years at baseline (Ptrend = 0.041). The association remained significant in a sensitivity analysis after changing many of our assumptions and adjusting for additional confounders. No association between a higher UPF consumption and GDM risk was observed in women aged 18–29 years. The pre-gestational UPF consumption may be a risk factor for GDM, especially in women aged 30 years or more. Confirmatory studies are needed to validate these findings.
Collapse
|
23
|
Ermini L, Nuzzo AM, Ietta F, Romagnoli R, Moretti L, Masturzo B, Paulesu L, Rolfo A. Placental Glucose Transporters and Response to Bisphenol A in Pregnancies from of Normal and Overweight Mothers. Int J Mol Sci 2021; 22:6625. [PMID: 34205666 PMCID: PMC8233759 DOI: 10.3390/ijms22126625] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 12/12/2022] Open
Abstract
Bisphenol A (BPA) is a synthetic phenol extensively used in the manufacture of polycarbonate plastics and epoxy resins and a component of liquid and food storages. Among health disorders potentially attributed to BPA, the effects on metabolism have been especially studied. BPA represents a hazard in prenatal life because of its presence in tissues and fluids during pregnancy. Our recent study in rats fed with BPA showed a placental increase in glucose type 1 transporter (GLUT-1), suggesting a higher uptake of glucose. However, the role of BPA on GLUT transporters in pregnant women with metabolic dysfunction has not yet been investigated. In this study, placental tissue from 26 overweight (OW) women and 32 age-matched normal weight (NW) pregnant women were examined for expression of GLUT1 and GLUT4. Placental explants from OW and NW mothers were exposed to BPA 1 nM and 1 μM and tested for GLUTs expression. The data showed a different response of placental explants to BPA in GLUT1 expression with an increase in NW mothers and a decrease in OW ones. GLUT4 expression was lower in the explants from OW than NW mothers, while no difference was showed between OW and NW in placental biopsies for any of the transporters.
Collapse
Affiliation(s)
- Leonardo Ermini
- Department of Life Sciences, University of Siena, 53100 Siena, Italy; (L.E.); (R.R.); (L.P.)
| | - Anna Maria Nuzzo
- Department of Surgical Sciences, University of Turin, Via Ventimiglia 3, 10126 Turin, Italy; (A.M.N.); (L.M.); (A.R.)
| | - Francesca Ietta
- Department of Life Sciences, University of Siena, 53100 Siena, Italy; (L.E.); (R.R.); (L.P.)
| | - Roberta Romagnoli
- Department of Life Sciences, University of Siena, 53100 Siena, Italy; (L.E.); (R.R.); (L.P.)
| | - Laura Moretti
- Department of Surgical Sciences, University of Turin, Via Ventimiglia 3, 10126 Turin, Italy; (A.M.N.); (L.M.); (A.R.)
| | - Bianca Masturzo
- Città della Salute e della Scienza, Sant’Anna University Hospital, University of Turin, 10126 Turin, Italy;
| | - Luana Paulesu
- Department of Life Sciences, University of Siena, 53100 Siena, Italy; (L.E.); (R.R.); (L.P.)
| | - Alessandro Rolfo
- Department of Surgical Sciences, University of Turin, Via Ventimiglia 3, 10126 Turin, Italy; (A.M.N.); (L.M.); (A.R.)
| |
Collapse
|
24
|
Cohen IC, Cohenour ER, Harnett KG, Schuh SM. BPA, BPAF and TMBPF Alter Adipogenesis and Fat Accumulation in Human Mesenchymal Stem Cells, with Implications for Obesity. Int J Mol Sci 2021; 22:ijms22105363. [PMID: 34069744 PMCID: PMC8160667 DOI: 10.3390/ijms22105363] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/14/2021] [Accepted: 05/14/2021] [Indexed: 12/20/2022] Open
Abstract
Bisphenol A (BPA) is an endocrine-disrupting chemical used in the production of plastics, and is linked to developmental, reproductive, and metabolic disorders including obesity. Manufacturers have begun using ‘BPA-free’ alternatives instead of BPA in many consumer products. However, these alternatives have had much less testing and oversight, yet they are already being mass-produced and used across industries from plastics to food-contact coatings. Here, we used human female adipose-derived stem cells (hASCs), a type of adult mesenchymal stem cell, to compare the effects of BPA and BPA alternatives on adipogenesis or fat cell development in vitro. We focused on two commonly used BPA replacements, bisphenol AF (BPAF) and tetramethyl bisphenol F (TMBPF; monomer of the new valPure V70 food-contact coating). Human ASCs were differentiated into adipocytes using chemically defined media in the presence of control differentiation media with and without 17β-estradiol (E2; 10 μM), or with increasing doses of BPA (0, 0.1 and 1 μM), BPAF (0, 0.1, 1 and 10 nM), or TMBPF (0, 0.01 and 0.1 μM). After differentiation, the cells were stained and imaged to visualize and quantify the accumulation of lipid vacuoles and number of developing fat cells. Treated cells were also examined for cell viability and apoptosis (programmed cell death) using the respective cellular assays. Similar to E2, BPA at 0.1 μM and BPAF at 0.1 nM, significantly increased adipogenesis and lipid production by 20% compared to control differentiated cells (based on total lipid vacuole number to cell number ratios), whereas higher levels of BPA and BPAF significantly decreased adipogenesis (p < 0.005). All tested doses of TMBPF significantly reduced adipogenesis and lipid production by 30–40%, likely at least partially through toxic effects on stem cells, as viable cell numbers decreased and apoptosis levels increased throughout differentiation. These findings indicate that low, environmentally-relevant doses of BPA, BPAF, and TMBPF have significant effects on fat cell development and lipid accumulation, with TMBPF having non-estrogenic, anti-adipogenic effects. These and other recent results may provide a potential cellular mechanism between exposure to bisphenols and human obesity, and underscore the likely impact of these chemicals on fat development in vivo.
Collapse
Affiliation(s)
- Isabel C. Cohen
- Department of Biology, Saint Mary’s College of California, Moraga, CA 94575, USA; (I.C.C.); (K.G.H.)
| | - Emry R. Cohenour
- Department of Cell and Molecular Biology, California State University, East Bay, Hayward, CA 94542, USA;
| | - Kristen G. Harnett
- Department of Biology, Saint Mary’s College of California, Moraga, CA 94575, USA; (I.C.C.); (K.G.H.)
| | - Sonya M. Schuh
- Department of Biology, Saint Mary’s College of California, Moraga, CA 94575, USA; (I.C.C.); (K.G.H.)
- Correspondence:
| |
Collapse
|
25
|
Zahra A, Sisu C, Silva E, De Aguiar Greca SC, Randeva HS, Chatha K, Kyrou I, Karteris E. Is There a Link between Bisphenol A (BPA), a Key Endocrine Disruptor, and the Risk for SARS-CoV-2 Infection and Severe COVID-19? J Clin Med 2020; 9:E3296. [PMID: 33066495 PMCID: PMC7602132 DOI: 10.3390/jcm9103296] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 01/08/2023] Open
Abstract
Infection by the severe acute respiratory syndrome (SARS) coronavirus-2 (SARS-CoV-2) is the causative agent of a new disease (COVID-19). The risk of severe COVID-19 is increased by certain underlying comorbidities, including asthma, cancer, cardiovascular disease, hypertension, diabetes, and obesity. Notably, exposure to hormonally active chemicals called endocrine-disrupting chemicals (EDCs) can promote such cardio-metabolic diseases, endocrine-related cancers, and immune system dysregulation and thus, may also be linked to higher risk of severe COVID-19. Bisphenol A (BPA) is among the most common EDCs and exerts its effects via receptors which are widely distributed in human tissues, including nuclear oestrogen receptors (ERα and ERβ), membrane-bound oestrogen receptor (G protein-coupled receptor 30; GPR30), and human nuclear receptor oestrogen-related receptor gamma. As such, this paper focuses on the potential role of BPA in promoting comorbidities associated with severe COVID-19, as well as on potential BPA-induced effects on key SARS-CoV-2 infection mediators, such as angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2). Interestingly, GPR30 appears to exhibit greater co-localisation with TMPRSS2 in key tissues like lung and prostate, suggesting that BPA exposure may impact on the local expression of these SARS-CoV-2 infection mediators. Overall, the potential role of BPA on the risk and severity of COVID-19 merits further investigation.
Collapse
Affiliation(s)
- Aeman Zahra
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (A.Z.); (C.S.); (E.S.); (S.-C.D.A.G.)
| | - Cristina Sisu
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (A.Z.); (C.S.); (E.S.); (S.-C.D.A.G.)
| | - Elisabete Silva
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (A.Z.); (C.S.); (E.S.); (S.-C.D.A.G.)
| | - Sophie-Christine De Aguiar Greca
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (A.Z.); (C.S.); (E.S.); (S.-C.D.A.G.)
| | - Harpal S. Randeva
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK; (H.S.R.); (I.K.)
- Aston Medical Research Institute, Aston Medical School, Aston University, Birmingham B4 7ET, UK
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK;
| | - Kamaljit Chatha
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK;
- Department of Biochemistry and Immunology, University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
| | - Ioannis Kyrou
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK; (H.S.R.); (I.K.)
- Aston Medical Research Institute, Aston Medical School, Aston University, Birmingham B4 7ET, UK
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK;
| | - Emmanouil Karteris
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (A.Z.); (C.S.); (E.S.); (S.-C.D.A.G.)
| |
Collapse
|
26
|
Rolfo A, Nuzzo AM, De Amicis R, Moretti L, Bertoli S, Leone A. Fetal-Maternal Exposure to Endocrine Disruptors: Correlation with Diet Intake and Pregnancy Outcomes. Nutrients 2020; 12:E1744. [PMID: 32545151 PMCID: PMC7353272 DOI: 10.3390/nu12061744] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/25/2020] [Accepted: 06/07/2020] [Indexed: 02/06/2023] Open
Abstract
Endocrine-disrupting chemicals (EDCs) are exogenous substances able to mimic or to interfere with the endocrine system, thus altering key biological processes such as organ development, reproduction, immunity, metabolism and behavior. High concentrations of EDCs are found in several everyday products including plastic bottles and food containers and they could be easily absorbed by dietary intake. In recent years, considerable interest has been raised regarding the biological effects of EDCs, particularly Bisphenol A (BPA) and phthalates, on human pregnancy and fetal development. Several evidence obtained on in vitro and animal models as well as by epidemiologic and population studies strongly indicated that endocrine disruptors could negatively impact fetal and placental health by interfering with the embryonic developing epigenome, thus establishing disease paths into adulthood. Moreover, EDCs could cause and/or contribute to the onset of severe gestational conditions as Preeclampsia (PE), Fetal Growth Restriction (FGR) and gestational diabetes in pregnancy, as well as obesity, diabetes and cardiovascular complications in reproductive age. Therefore, despite contrasting data being present in the literature, endocrine disruptors must be considered as a therapeutic target. Future actions aimed at reducing or eliminating EDC exposure during the perinatal period are mandatory to guarantee pregnancy success and preserve fetal and adult health.
Collapse
Affiliation(s)
- Alessandro Rolfo
- Department of Surgical Sciences, University of Turin, Via Ventimiglia 3, 10126 Turin, Italy; (A.M.N.); (L.M.)
| | - Anna Maria Nuzzo
- Department of Surgical Sciences, University of Turin, Via Ventimiglia 3, 10126 Turin, Italy; (A.M.N.); (L.M.)
| | - Ramona De Amicis
- International Center for the Assessment of Nutritional Status (ICANS), Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Sandro Botticelli 21, 20133 Milan, Italy; (R.D.A.); (S.B.); (A.L.)
| | - Laura Moretti
- Department of Surgical Sciences, University of Turin, Via Ventimiglia 3, 10126 Turin, Italy; (A.M.N.); (L.M.)
| | - Simona Bertoli
- International Center for the Assessment of Nutritional Status (ICANS), Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Sandro Botticelli 21, 20133 Milan, Italy; (R.D.A.); (S.B.); (A.L.)
- Istituto Auxologico Italiano, IRCCS, Lab of Nutrition and Obesity Research, 20145 Milan, Italy
| | - Alessandro Leone
- International Center for the Assessment of Nutritional Status (ICANS), Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Sandro Botticelli 21, 20133 Milan, Italy; (R.D.A.); (S.B.); (A.L.)
| |
Collapse
|
27
|
Kadayifci FZ, Haggard S, Jeon S, Ranard K, Tao D, Pan YX. Early-life Programming of Type 2 Diabetes Mellitus: Understanding the Association between Epigenetics/Genetics and Environmental Factors. Curr Genomics 2020; 20:453-463. [PMID: 32477001 PMCID: PMC7235385 DOI: 10.2174/1389202920666191009110724] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/03/2019] [Accepted: 09/06/2019] [Indexed: 11/22/2022] Open
Abstract
Type 2 Diabetes Mellitus is an increasing public health problem that poses a severe social and economic burden affecting both developed and developing countries. Defects in insulin signaling itself are among the earliest indications that an individual is predisposed to the development of insulin resistance and subsequently Type 2 Diabetes Mellitus. To date, however, the underlying molecular mechanisms which result in resistance to the actions of insulin are poorly understood. Furthermore, it has been shown that maternal obesity is associated with an increased risk of obesity and insulin resistance in the offspring. However, the genetic and/or epigenetic modifications within insulin-sensitive tissues such as the liver and skeletal muscle, which contribute to the insulin-resistant phenotype, still remain unknown. More importantly, a lack of in-depth understanding of how the early life environment can have long-lasting effects on health and increased risk of Type 2 Diabetes Mellitus in adulthood poses a major limitation to such efforts. The focus of the current review is thus to discuss recent experimental and human evidence of an epigenetic component associated with components of nutritional programming of Type 2 Diabetes Mellitus, including altered feeding behavior, adipose tissue, and pancreatic beta-cell dysfunction, and transgenerational risk transmission.
Collapse
Affiliation(s)
- Fatma Z Kadayifci
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Sage Haggard
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Sookyoung Jeon
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Katie Ranard
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Dandan Tao
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Yuan-Xiang Pan
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Illinois Informatics Institute, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
28
|
Endocrine disruption and obesity: A current review on environmental obesogens. CURRENT RESEARCH IN GREEN AND SUSTAINABLE CHEMISTRY 2020; 3. [PMCID: PMC7326440 DOI: 10.1016/j.crgsc.2020.06.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Obesity represents an important public health concern because it substantially increases the risk of multiple chronic diseases and thereby contributing to a decline in both quality of life and life expectancy. Besides unhealthy diet, physical inactivity and genetic susceptibility, environmental pollutants also contribute to the rising prevalence of obesity epidemic. An environmental obesogen is defined as a chemical that can alter lipid homeostasis to promote adipogenesis and lipid accumulation whereas an endocrine disrupting chemical (EDC) is defined as a synthetic chemical that can interfere with the endocrine function and cause adverse health effects. Many obesogens are EDCs that interfere with normal endocrine regulation of metabolism, adipose tissue development and maintenance, appetite, weight and energy balance. An expanding body of scientific evidence from animal and epidemiological studies has begun to provide links between exposure to EDCs and obesity. Despite the significance of environmental obesogens in the pathogenesis of metabolic diseases, the contribution of synthetic chemical exposure to obesity epidemic remains largely unrecognised. Hence, the purpose of this review is to provide a current update on the evidences from animal and human studies on the role of fourteen environmental obesogens in obesity, a comprehensive view of the mechanisms of action of these obesogens and current green and sustainable chemistry strategies to overcome chemical exposure to prevent obesity. Designing of safer version of obesogens through green chemistry approaches requires a collaborative undertaking to evaluate the toxicity of endocrine disruptors using appropriate experimental methods, which will help in developing a new generation of inherently safer chemicals. Many environmental obesogens are endocrine disrupting chemicals that interfere with normal endocrine regulation of metabolism. Understanding the role of environmental obesogens in the epidemics of obesity is in an infant stage. Green chemistry approach aims to design a safer version of these chemicals by understanding their hazardous effects. Further studies are necessary to fully establish the hazardous effects of obesogens and their association to human obesity.
Collapse
|
29
|
Gorini F, Bustaffa E, Coi A, Iervasi G, Bianchi F. Bisphenols as Environmental Triggers of Thyroid Dysfunction: Clues and Evidence. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E2654. [PMID: 32294918 PMCID: PMC7216215 DOI: 10.3390/ijerph17082654] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 12/25/2022]
Abstract
Bisphenols (BPs), and especially bisphenol A (BPA), are known endocrine disruptors (EDCs), capable of interfering with estrogen and androgen activities, as well as being suspected of other health outcomes. Given the crucial role of thyroid hormones and the increasing incidence of thyroid carcinoma in the last few decades, this review analyzes the effects of BPS on the thyroid, considering original research in vitro, in vivo, and in humans published from January 2000 to October 2019. Both in vitro and in vivo studies reported the ability of BPs to disrupt thyroid function through multiple mechanisms. The antagonism with thyroid receptors (TRs), which affects TR-mediated transcriptional activity, the direct action of BPs on gene expression at the thyroid and the pituitary level, the competitive binding with thyroid transport proteins, and the induction of toxicity in several cell lines are likely the main mechanisms leading to thyroid dysfunction. In humans, results are more contradictory, though some evidence suggests the potential of BPs in increasing the risk of thyroid nodules. A standardized methodology in toxicological studies and prospective epidemiological studies with individual exposure assessments are warranted to evaluate the pathophysiology resulting in the damage and to establish the temporal relationship between markers of exposure and long-term effects.
Collapse
|
30
|
Katsikantami I, Tzatzarakis MN, Karzi V, Stavroulaki A, Xezonaki P, Vakonaki E, Alegakis AK, Sifakis S, Rizos AK, Tsatsakis AM. Biomonitoring of bisphenols A and S and phthalate metabolites in hair from pregnant women in Crete. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 712:135651. [PMID: 31810691 DOI: 10.1016/j.scitotenv.2019.135651] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 11/18/2019] [Accepted: 11/18/2019] [Indexed: 06/10/2023]
Abstract
Phthalates, bisphenols A and S (BPA, BPS) are used as plasticizers and many of them are documented or suspected of being endocrine disruptors. Several studies indicate that exposure during pregnancy may affect the newborn's health and development. The aim of this cross-sectional study is the biomonitoring of seven phthalate metabolites, BPA and BPS in hair from 100 pregnant women in Crete. The most frequently detected compounds were monoethylhexyl phthalate (mEHP) (68%), mono isobutyl phthalate (miBP) (40%), BPA (37%), BPS (34%) and mono-n-butyl phthalate (mnBP) (28%). Phthalate metabolites were detected at medians from 19.5 to 44.4 pg/mg, BPA at 69.9 pg/mg and BPS at 3.5 pg/mg. Significant positive correlations between phthalate metabolites were found which indicated their common sources of exposure. The frequent use of plastics for food storage was strongly associated with mEHP (p = .013) and a weaker association was found for miBP (p = .063). The frequent use of cosmetics during or before pregnancy was associated with levels of phthalate metabolites in hair. More specifically, the use of hair spray before pregnancy was significantly correlated with monobenzyl phthalate (mBzP) (p = .041) and a trend was found for miBP (p = .066). The use of makeup products during pregnancy was strongly associated with miBP (p = .015) and the use of deodorant during pregnancy was inversely associated with mEHP (p = .021). Strong associations came up between mEHP and lower birth weight (Spearman correlation coefficient, r = -0.302, p = .021) and exposure to BPS was associated with increased body mass index of the participants (p = .036). Although data in literature on biomonitoring of the compounds in hair are limited, the findings of this study are promising and in agreement with existing data in hair or urine.
Collapse
Affiliation(s)
- Ioanna Katsikantami
- Department of Chemistry, University of Crete & Foundation for Research and Technology-Hellas (FORTH-IESL), 71003 Heraklion, Crete, Greece; Laboratory of Toxicology Science and Research, Medical School, University of Crete, 71003 Heraklion, Crete, Greece
| | - Manolis N Tzatzarakis
- Laboratory of Toxicology Science and Research, Medical School, University of Crete, 71003 Heraklion, Crete, Greece.
| | - Vasiliki Karzi
- Department of Chemistry, University of Crete & Foundation for Research and Technology-Hellas (FORTH-IESL), 71003 Heraklion, Crete, Greece; Laboratory of Toxicology Science and Research, Medical School, University of Crete, 71003 Heraklion, Crete, Greece
| | - Athina Stavroulaki
- Department of Chemistry, University of Crete & Foundation for Research and Technology-Hellas (FORTH-IESL), 71003 Heraklion, Crete, Greece; Laboratory of Toxicology Science and Research, Medical School, University of Crete, 71003 Heraklion, Crete, Greece
| | | | - Elena Vakonaki
- Laboratory of Toxicology Science and Research, Medical School, University of Crete, 71003 Heraklion, Crete, Greece
| | - Athanasios K Alegakis
- Laboratory of Toxicology Science and Research, Medical School, University of Crete, 71003 Heraklion, Crete, Greece
| | | | - Apostolos K Rizos
- Department of Chemistry, University of Crete & Foundation for Research and Technology-Hellas (FORTH-IESL), 71003 Heraklion, Crete, Greece.
| | - Aristidis M Tsatsakis
- Laboratory of Toxicology Science and Research, Medical School, University of Crete, 71003 Heraklion, Crete, Greece.
| |
Collapse
|
31
|
Dietary Habits of Saharawi Type II Diabetic Women Living in Algerian Refugee Camps: Relationship with Nutritional Status and Glycemic Profile. Nutrients 2020; 12:nu12020568. [PMID: 32098332 PMCID: PMC7071476 DOI: 10.3390/nu12020568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 02/17/2020] [Accepted: 02/19/2020] [Indexed: 12/18/2022] Open
Abstract
Diabetes is one of the main health problems among Saharawi refugees living in Algerian camps, especially for women. As is known, diet plays an important role in the management of diabetes. However, the dietary habits of Saharawi diabetic women are unknown. Therefore, we investigated the dietary habits and established their relationship with the nutritional status and glycemic profile of such women. We recruited 65 Saharawi type II diabetic women taking orally glucose-lowering drugs only. Dietary habits were investigated using qualitative 24 h recall carried out over three non-consecutive days. Anthropometric measurements were taken and blood parameters were measured. About 80% of the women were overweight and about three out of four women had uncompensated diabetes and were insulin resistant. The Saharawi diet was found to mainly include cereals, oils, sugars, vegetables (especially onions, tomatoes, and carrots), tea, and meat. Principal component analysis identified two major dietary patterns, the first one “healthy” and the second one “unhealthy”. Women in the higher tertile of adherence to the unhealthy dietary pattern had a higher homeostatic model assessment for insulin resistance (HOMA) index (b = 2.49; 95% CI: 0.41–4.57; p = 0.02) and circulating insulin (b = 4.52; 95% CI: 0.44–8.60; p = 0.03) than the women in the lowest tertile. Food policies should be oriented to improve the quality of diet of Saharawi diabetic women.
Collapse
|
32
|
Stoker C, Andreoli MF, Kass L, Bosquiazzo VL, Rossetti MF, Canesini G, Luque EH, Ramos JG. Perinatal exposure to bisphenol A (BPA) impairs neuroendocrine mechanisms regulating food intake and kisspetin system in adult male rats. Evidences of metabolic disruptor hypothesis. Mol Cell Endocrinol 2020; 499:110614. [PMID: 31606416 DOI: 10.1016/j.mce.2019.110614] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/27/2019] [Accepted: 10/07/2019] [Indexed: 12/31/2022]
Abstract
Bisphenol A (BPA) is a compound used in the polymerization of plastic polycarbonates. It is an endocrine disruptor and it has been postulated to be an obesogen. Our objective was to determine the influence of perinatal exposure to BPA on body weight, hormone levels, metabolic parameters and hypothalamic signals that regulate food intake and kisspeptin system in adult male rats. Male rats were exposed to 50 μg/kg/day of BPA or vehicle from day 9 of gestation to weaning in the drinking water. Since weaning, they were fed with control or high fat diet for 20 weeks. Perinatal exposure to BPA impaired glucose homeostasis, induced obesity and increased food intake in adult male rats altering hypothalamic signals, partially mimicking and/or producing an exacerbation of the effects of feeding fat diet. We also observed an increase in kisspeptin expression by BPA exposure. Evidences shown in this work support the metabolic disruptor hypothesis for BPA.
Collapse
Affiliation(s)
- Cora Stoker
- Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Argentina; Instituto de Salud y Ambiente del Litoral (ISAL), Universidad Nacional del Litoral (UNL)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Bioquímica y Ciencias Biológicas, UNL, Argentina.
| | - M Florencia Andreoli
- Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Argentina; Instituto de Salud y Ambiente del Litoral (ISAL), Universidad Nacional del Litoral (UNL)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Bioquímica y Ciencias Biológicas, UNL, Argentina.
| | - Laura Kass
- Instituto de Salud y Ambiente del Litoral (ISAL), Universidad Nacional del Litoral (UNL)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Bioquímica y Ciencias Biológicas, UNL, Argentina.
| | - Verónica L Bosquiazzo
- Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Argentina; Instituto de Salud y Ambiente del Litoral (ISAL), Universidad Nacional del Litoral (UNL)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Bioquímica y Ciencias Biológicas, UNL, Argentina.
| | - M Florencia Rossetti
- Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Argentina; Instituto de Salud y Ambiente del Litoral (ISAL), Universidad Nacional del Litoral (UNL)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Bioquímica y Ciencias Biológicas, UNL, Argentina.
| | - G Canesini
- Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Argentina; Instituto de Salud y Ambiente del Litoral (ISAL), Universidad Nacional del Litoral (UNL)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Bioquímica y Ciencias Biológicas, UNL, Argentina.
| | - Enrique H Luque
- Instituto de Salud y Ambiente del Litoral (ISAL), Universidad Nacional del Litoral (UNL)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Bioquímica y Ciencias Biológicas, UNL, Argentina.
| | - Jorge G Ramos
- Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Argentina; Instituto de Salud y Ambiente del Litoral (ISAL), Universidad Nacional del Litoral (UNL)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Bioquímica y Ciencias Biológicas, UNL, Argentina.
| |
Collapse
|
33
|
Effects of bisphenol S, a major substitute of bisphenol A, on neurobehavioral responses and cerebral monocarboxylate transporters expression in mice. Food Chem Toxicol 2019; 132:110670. [DOI: 10.1016/j.fct.2019.110670] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/18/2019] [Accepted: 07/09/2019] [Indexed: 01/04/2023]
|
34
|
González N, Cunha SC, Monteiro C, Fernandes JO, Marquès M, Domingo JL, Nadal M. Quantification of eight bisphenol analogues in blood and urine samples of workers in a hazardous waste incinerator. ENVIRONMENTAL RESEARCH 2019; 176:108576. [PMID: 31299620 DOI: 10.1016/j.envres.2019.108576] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 06/29/2019] [Accepted: 07/03/2019] [Indexed: 06/10/2023]
Abstract
Bisphenol A (BPA) has been widely used in the manufacture of polycarbonate plastic and epoxy resins. In recent years, producers have started replacing BPA by other chemical analogues, such as bisphenol -S (BPS) and -F (BPF), all of them under the label "BPA-free". However, despite bisphenol (BP) analogues have a very similar structure, their endocrine-disrupting properties could differ from those of BPA. Unfortunately, information regarding human exposure to BP analogues is very limited, not only as single substances, but also as chemical mixtures. The aim of this study was to determine the levels of 8 BP analogues (A, S, F, B, AF, Z, E, and AP) in biological samples from a controlled cohort of workers in a hazardous waste incinerator (HWI) located in Constantí (Catalonia, Spain). Firstly, a chemical method to analyze a mixture of those 8 analogues in total blood and urine was optimized, being samples quantified by means of gas chromatography coupled to mass spectrometry (GC-MS). Furthermore, a biomonitoring study was performed by collecting samples of total blood and urine of 29 people working in the HWI. Among the 8 BP analogues assessed, BPA presented the highest levels in both biological samples, with mean total (free + conjugated) BPA concentrations of 0.58 and 0.86 μg/L in blood and urine, respectively. Free vs. total BPA levels presented a mean percentage of 79% in blood and 19% in urine. Beyond BPA, traces of BPB were also found in a single sample of blood. Furthermore, none of the remaining BP analogues was detected in blood or urine. Despite BPA has been regulated, it is still very present in the environment, being human exposure to this chemical still an issue of concern for the public health.
Collapse
Affiliation(s)
- Neus González
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201, Reus, Catalonia, Spain
| | - Sara C Cunha
- LAQV-REQUIMTE, Department of Bromatology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Carolina Monteiro
- LAQV-REQUIMTE, Department of Bromatology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - José O Fernandes
- LAQV-REQUIMTE, Department of Bromatology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Montse Marquès
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201, Reus, Catalonia, Spain
| | - José L Domingo
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201, Reus, Catalonia, Spain
| | - Martí Nadal
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201, Reus, Catalonia, Spain.
| |
Collapse
|
35
|
Di Gregorio I, Busiello RA, Burgos Aceves MA, Lepretti M, Paolella G, Lionetti L. Environmental Pollutants Effect on Brown Adipose Tissue. Front Physiol 2019; 9:1891. [PMID: 30687113 PMCID: PMC6333681 DOI: 10.3389/fphys.2018.01891] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 12/14/2018] [Indexed: 12/19/2022] Open
Abstract
Brown adipose tissue (BAT) with its thermogenic function due to the presence of the mitochondrial uncoupling protein 1 (UCP1), has been positively associated with improved resistance to obesity and metabolic diseases. During recent years, the potential influence of environmental pollutants on energetic homoeostasis and obesity development has drawn increased attention. The purpose of this review is to discuss how regulation of BAT function could be involved in the environmental pollutant effect on body energy metabolism. We mainly focused in reviewing studies on animal models, which provide a better insight into the cellular mechanisms involved in this effect on body energy metabolism. The current literature supports the hypothesis that some environmental pollutants, acting as endocrine disruptors (EDCs), such as dichlorodiphenyltrichoroethane (DDT) and its metabolite dichlorodiphenylethylene (DDE) as well as some, traffic pollutants, are associated with increased obesity risk, whereas some other chemicals, such as perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA), had a reverse association with obesity. Noteworthy, the EDCs associated with obesity and metabolic disorders impaired BAT mass and function. Perinatal exposure to DDT impaired BAT thermogenesis and substrate utilization, increasing susceptibility to metabolic syndrome. Ambient particulate air pollutions induced insulin resistance associated with BAT mitochondrial dysfunction. On the other hand, the environmental pollutants (PFOS/PFOA) elicited a reduction in body weight and adipose mass associated with upregulation of UCP1 and increased oxidative capacity in brown-fat mitochondria. Further research is needed to better understand the physiological role of BAT in response to exposure to both obesogenic and anti-obesogenic pollutants and to confirm the same role in humans.
Collapse
Affiliation(s)
| | | | | | | | | | - Lillà Lionetti
- Department of Chemistry and Biology “A. Zambelli”, University of Salerno, Fisciano, Italy
| |
Collapse
|
36
|
Dunder L, Halin Lejonklou M, Lind L, Risérus U, Lind PM. Low-dose developmental bisphenol A exposure alters fatty acid metabolism in Fischer 344 rat offspring. ENVIRONMENTAL RESEARCH 2018; 166:117-129. [PMID: 29885613 DOI: 10.1016/j.envres.2018.05.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/18/2018] [Accepted: 05/22/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Bisphenol A (BPA) is an endocrine disruptor and also a suggested obesogen and metabolism-disrupting chemical. Accumulating data indicates that the fatty acid (FA) profile and their ratios in plasma and other metabolic tissues are associated with metabolic disorders. Stearoyl-CoA desaturase 1 (SCD-1) is a key regulator of lipid metabolism and its activity can be estimated by dividing the FA product by its precursor measured in blood or other tissues. OBJECTIVE The primary aim of this study was to investigate the effect of low-dose developmental BPA exposure on tissue-specific FA composition including estimated SCD-1 activity, studied in 5- and 52-week (wk)-old Fischer 344 (F344) rat offspring. METHODS Pregnant F344 rats were exposed to BPA via their drinking water corresponding to 0: [CTRL], 0.5: [BPA0.5], or 50 µg/kg BW/day: [BPA50], from gestational day 3.5 until postnatal day 22. RESULTS BPA0.5 increased SCD-16 (estimated as the 16:1n-7/16:0 ratio) and SCD-18 (estimated as the 18:1n-9/18:0 ratio) indices in inguinal white adipose tissue triglycerides (iWAT-TG) and in plasma cholesterol esters (PL-CE), respectively, in 5-wk-old male offspring. In addition, BPA0.5 altered the FA composition in male offspring, e.g. by decreasing levels of the essential polyunsaturated FA linoleic acid (18:2n-6) in iWAT-and liver-TG. No differences were observed regarding the studied FAs in 52-wk-old offspring, although a slightly increased BW was observed in 52-wk-old female offspring. CONCLUSIONS Low-dose developmental BPA exposure increased SCD-16 in iWAT-TG and SCD-18 in PL-CE of male offspring, which may reflect higher SCD-1 activity in these tissues. Altered desaturation activity and signs of altered FA composition are novel findings that may indicate insulin resistance in the rat offspring. These aforementioned results, together with the observed increased BW, adds to previously published data demonstrating that BPA can act as a metabolism disrupting chemical.
Collapse
Affiliation(s)
- Linda Dunder
- Department of Medical Sciences, Occupational and Environmental Medicine, Uppsala University, Sweden.
| | - Margareta Halin Lejonklou
- Department of Medical Sciences, Occupational and Environmental Medicine, Uppsala University, Sweden.
| | - Lars Lind
- Department of Medical Sciences, Cardiovascular Epidemiology, Uppsala University, Sweden.
| | - Ulf Risérus
- Department of Public Health and Caring Sciences, Clinical Nutrition and Metabolism, Uppsala University, Sweden.
| | - P Monica Lind
- Department of Medical Sciences, Occupational and Environmental Medicine, Uppsala University, Sweden.
| |
Collapse
|
37
|
Almeida S, Raposo A, Almeida-González M, Carrascosa C. Bisphenol A: Food Exposure and Impact on Human Health. Compr Rev Food Sci Food Saf 2018; 17:1503-1517. [PMID: 33350146 DOI: 10.1111/1541-4337.12388] [Citation(s) in RCA: 254] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 07/16/2018] [Accepted: 07/25/2018] [Indexed: 12/18/2022]
Abstract
Bisphenol A (BPA) is an industrial compound used extensively to produce synthetic polymers, such as epoxy resins, which are incorporated into the inner coating of metal cans, and also to manufacture polycarbonates with applications in bottles, including bottles of water. Several studies have reported on the transfer of this compound to food. Regarding human exposure to BPA, food intake can be considered the most serious among all the routes, not only because it potentially reaches more people in different age groups (including infants, an especially vulnerable group), but also because it inadvertently occurs over long time periods. BPA is considered an endocrine disruptor and several studies have proposed a relationship between exposure to BPA and the appearance of adverse health effects, such as cancer, infertility, diabetes, and obesity, among others. In 2015 however, the European Food Safety Authority concluded in its last scientific opinion that this compound does not pose any risk to the exposed population's health. Therefore, the EU regards BPA as an authorized product to be used as food contact material. Although BPA intake through food is apparently below the set limits, research into BPA and its potential negative effects is still ongoing. This review contains the most recent in vitro and in vivo studies on BPA toxicity and its harmful effects on health, and it intends to address human exposure to BPA, namely through dietary exposure and its impact on human health.
Collapse
Affiliation(s)
- Susana Almeida
- CBIOS (Research Center for Biosciences and Health Technologies), Univ. Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024, Lisboa, Portugal
| | - António Raposo
- CBIOS (Research Center for Biosciences and Health Technologies), Univ. Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024, Lisboa, Portugal
| | - Maira Almeida-González
- Toxicology Unit, Research Inst. of Biomedical and Health Sciences (IUIBS), Univ. de Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, 35016 Las Palmas de Gran Canaria, Spain
| | - Conrado Carrascosa
- Dept. of Animal Pathology and Production, Bromatology and Food Technology, Faculty of Veterinary, Univ. de Las Palmas de Gran Canaria, Trasmontaña s/n, 35413, Arucas, Spain
| |
Collapse
|
38
|
da Silva MM, Xavier LLF, Gonçalves CFL, Santos-Silva AP, Paiva-Melo FD, de Freitas ML, Fortunato RS, Miranda-Alves L, Ferreira ACF. Bisphenol A increases hydrogen peroxide generation by thyrocytes both in vivo and in vitro. Endocr Connect 2018; 7:/journals/ec/aop/ec-18-0348.xml. [PMID: 30352396 PMCID: PMC6215800 DOI: 10.1530/ec-18-0348] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 09/25/2018] [Indexed: 12/18/2022]
Abstract
Bisphenol A (BPA) is the most common monomer in polycarbonate plastics and an endocrine disruptor. Though some effects of BPA on thyroid hormone (TH) synthesis and action have been described, the impact of this compound on thyroid H2O2 generation remains elusive. H2O2 is a reactive oxygen species (ROS) which could have deleterious effect on thyrocytes if in excess. Therefore, herein we aimed at evaluating the effect of BPA exposition both in vivo and in vitro on H2O2 generation in thyrocytes, besides other essential steps for TH synthesis. Female Wistar rats were treated with vehicle (control) or BPA 40 mg/Kg BW for 15 days, by gavage. We then evaluated thyroid iodide uptake, mediated by sodium-iodide symporter (NIS), thyroperoxidase (TPO) and dual oxidase (DOUX) activities (H2O2 generation). Hydrogen peroxide generation was increased, while iodide uptake and TPO activity were reduced by BPA exposition. We have also incubated the rat thyroid cell line PCCL3 with 10-9 M BPA and evaluated Nis and Duox mRNA levels, besides H2O2 generation. Similar to that found in vivo, BPA treatment also led to increased H2O2 generation in PCCL3. Nis mRNA levels were reduced and Duox2 mRNA levels were increased in BPA-exposed cells. To evaluate the importance of oxidative stress on BPA-induced Nis reduction, PCCL3 was treated with BPA in association to n-acetylcysteine, an antioxidant, which reversed the effect of BPA on Nis. Our data suggest that BPA increases ROS production in thyrocytes, what could lead to oxidative damage thus possibly predisposing to thyroid disease.
Collapse
Affiliation(s)
- Maurício Martins da Silva
- Laboratory of Endocrine PhysiologyInstituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Lueni Lopes Felix Xavier
- Laboratory of Endocrine PhysiologyInstituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Carlos Frederico Lima Gonçalves
- Laboratory of Endocrine PhysiologyInstituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Ana Paula Santos-Silva
- Laboratory of Endocrine PhysiologyInstituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
- NUMPEXCampus Duque de Caxias, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Francisca Diana Paiva-Melo
- Laboratory of Endocrine PhysiologyInstituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Mariana Lopes de Freitas
- Laboratory of Endocrine PhysiologyInstituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Rodrigo Soares Fortunato
- Laboratory of Molecular RadiobiologyInstituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Leandro Miranda-Alves
- Laboratory of Endocrine PhysiologyInstituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Andrea Claudia Freitas Ferreira
- Laboratory of Endocrine PhysiologyInstituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
- NUMPEXCampus Duque de Caxias, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| |
Collapse
|
39
|
Abstract
The incidence of metabolic disorders like type 2 diabetes (T2D) and obesity continue to increase. Although it is evident that the increasing incidence of diabetes confers a global societal and economic burden, the mechanisms responsible for the increased incidence of T2D are not well understood. Extensive efforts to understand the association of early-life perturbations with later onset of metabolic diseases, the founding principle of developmental origins of health and disease, have been crucial in determining the mechanisms that may be driving the pathogenesis of T2D. As the programming of the epigenome occurs during critical periods of development, it has emerged as a potential molecular mechanism that could occur early in life and impact metabolic health decades later. In this review, we critically evaluate human and animal studies that illustrated an association of epigenetic processes with development of T2D as well as intervention strategies that have been employed to reverse the perturbed epigenetic modification or reprogram the naturally occurring epigenetic marks to favor improved metabolic outcome. We highlight that although our understanding of epigenetics and its contribution toward developmental origins of T2D continues to grow, whether epigenetics is a cause, consequence, or merely a correlation remains debatable due to the many limitations/challenges of the existing epigenetic studies. Finally, we discuss the potential of establishing collaborative research efforts between different disciplines, including physiology, epigenetics, and bioinformatics, to help advance the developmental origins field with great potential for understanding the pathogenesis of T2D and developing preventive strategies for T2D.
Collapse
Affiliation(s)
- Amita Bansal
- Center for Research on Reproduction and Women's Health, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
- Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
- Division of Neonatology, Department of Pediatrics, Children's Hospital of Philadelphia , Philadelphia, Pennsylvania
| | - Rebecca A Simmons
- Center for Research on Reproduction and Women's Health, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
- Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
- Division of Neonatology, Department of Pediatrics, Children's Hospital of Philadelphia , Philadelphia, Pennsylvania
| |
Collapse
|
40
|
Bisphenol A and estrogen induce proliferation of human thyroid tumor cells via an estrogen-receptor-dependent pathway. Arch Biochem Biophys 2017; 633:29-39. [PMID: 28882636 DOI: 10.1016/j.abb.2017.09.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 08/29/2017] [Accepted: 09/01/2017] [Indexed: 01/24/2023]
Abstract
OBJECTIVE To determine the relationship between papillary thyroid carcinoma and environmental exposure to bisphenol A (BPA) or 17-β estrogen (E2) by assessing the effects of these compounds on estrogen receptor expression and AKT/mTOR signaling. METHODS The effects of low levels of BPA (1mM-10nM) and 17β-estradiol (E2, 0.1mM-1nM) on ER expression and cellular proliferation were determined in human thyroid papillary cancer BHP10-3 cells. Protein and mRNA levels of estrogen nuclear receptors (ERα/ERβ) and membrane receptors (GPR30) were determined by immunofluorescence assay, Western blotting, and RT-PCR, respectively, and proliferation was assessed by CCK-8 assay. RESULTS The proliferative effects of BPA and E2 were both concentration- and time-dependent. Expression of ERα/ERβ and GPR30 were enhanced by BPA and E2. BPA and E2 could quickly phosphorylate AKT/mTOR. Moreover, ICI suppressed ERα expression and activated GPR30 as did G-1. G-15 reversed the effects of E2 on GPR30 and AKT/mTOR, but did not alter the effect of BPA. CONCLUSIONS BPA influences thyroid cancer proliferation by regulating expression of ERs and GPR30, a mechanism that differs from E2. In addition, ICI and G-15 may have the potential to be used as anti-thyroid cancer agents.
Collapse
|
41
|
Bisphenol A and Metabolic Diseases: Challenges for Occupational Medicine. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14090959. [PMID: 28841159 PMCID: PMC5615496 DOI: 10.3390/ijerph14090959] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 08/21/2017] [Accepted: 08/21/2017] [Indexed: 02/08/2023]
Abstract
The prevalence of metabolic diseases has markedly increased worldwide during the last few decades. Lifestyle factors (physical activity, energy-dense diets), together with a genetic predisposition, are well known factors in the pathophysiology of health problems. Bisphenol A (BPA) is a chemical compound used for polycarbonate plastics, food containers, epoxy resins coating metallic cans for food and beverage conservation. The ability of BPA to act as an endocrine disruptor-xenoestrogen in particular-is largely documented in literature, with numerous publications of in vivo and in vitro studies as well as epidemiological data on humans. Recently, different researchers studied the involvement of BPA in the development of insulin resistance; evidences in this way showed a potential role in etiology of metabolic disease, both for children and for adults. We review the epidemiological literature in the relation between BPA exposure and the risk of metabolic diseases in adults, with a focus on occupational exposure. Considering published data and the role of occupational physicians in promoting Workers' Health, specific situations of exposure to BPA in workplace are described, and proposals for action to be taken are suggested. The comparison of the studies showed that exposure levels were higher in workers than in the general population, even if, sometimes, the measurement units used did not permit rapid comprehension. Nevertheless, occupational medicine focus on reproductive effects and not metabolic ones.
Collapse
|
42
|
Basini G, Bussolati S, Grolli S, Ramoni R, Grasselli F. Bisphenol A interferes with swine vascular endothelial cell functions. Can J Physiol Pharmacol 2017; 95:365-371. [DOI: 10.1139/cjpp-2016-0180] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Several studies have demonstrated that the endocrine disruptor bisphenol A (BPA) negatively affects animal and human health. An angiogenic process has been suggested among the events disrupted by this molecule, but the underlying mechanisms have not yet been clarified. The effect of BPA on angiogenesis was investigated by means of a bioassay previously validated in our laboratory. Using immortalized swine aortic endothelial cell line (AOC), the development of new blood vessels through a three-dimensional in vitro angiogenesis assay was evaluated. Subsequently, since vascular endothelial growth factor (VEGF) and nitric oxide (NO) are key players in the regulation of the angiogenic process, the effect of BPA on the production of these molecules by AOC was examined. BPA (10 μmol/L) stimulated AOC growth (p < 0.05) and VEGF production (p < 0.05), but did not modify NO levels. Our data suggest that the endocrine-disrupting effects of BPA could also be associated with the promotion of vascular growth, thus interfering with a physiologically finely tuned process resulting from a delicate balance of numerous molecular processes. The stimulatory effects of BPA on VEGF production may have negative implications, potentially switching the balance toward uncontrolled neovascularization. Moreover, since angiogenesis is involved in several pathologies, including cancer growth and progression, potential health risks of BPA exposure should be carefully monitored.
Collapse
Affiliation(s)
- Giuseppina Basini
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Via del Taglio 10, 43126 Parma, Italy
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Via del Taglio 10, 43126 Parma, Italy
| | - Simona Bussolati
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Via del Taglio 10, 43126 Parma, Italy
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Via del Taglio 10, 43126 Parma, Italy
| | - Stefano Grolli
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Via del Taglio 10, 43126 Parma, Italy
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Via del Taglio 10, 43126 Parma, Italy
| | - Roberto Ramoni
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Via del Taglio 10, 43126 Parma, Italy
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Via del Taglio 10, 43126 Parma, Italy
| | - Francesca Grasselli
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Via del Taglio 10, 43126 Parma, Italy
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Via del Taglio 10, 43126 Parma, Italy
| |
Collapse
|
43
|
Porreca I, Ulloa-Severino L, Almeida P, Cuomo D, Nardone A, Falco G, Mallardo M, Ambrosino C. Molecular targets of developmental exposure to bisphenol A in diabesity: a focus on endoderm-derived organs. Obes Rev 2017; 18:99-108. [PMID: 27776381 DOI: 10.1111/obr.12471] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 08/08/2016] [Accepted: 08/23/2016] [Indexed: 12/20/2022]
Abstract
Several studies associate foetal human exposure to bisphenol A (BPA) to metabolic/endocrine diseases, mainly diabesity. They describe the role of BPA in the disruption of pancreatic beta cell, adipocyte and hepatocyte functions. Indeed, the complexity of the diabesity phenotype is due to the involvement of different endoderm-derived organs, all targets of BPA. Here, we analyse this point delineating a picture of different mechanisms of BPA toxicity in endoderm-derived organs leading to diabesity. Moving from epidemiological data, we summarize the in vivo experimental data of the BPA effects on endoderm-derived organs (thyroid, pancreas, liver, gut, prostate and lung) after prenatal exposure. Mainly, we gather molecular data evidencing harmful effects at low-dose exposure, pointing to the risk to human health. Although the fragmentation of molecular data does not allow a clear conclusion to be drawn, the present work indicates that the developmental exposure to BPA represents a risk for endoderm-derived organs development as it deregulates the gene expression from the earliest developmental stages. A more systematic analysis of BPA impact on the transcriptomes of endoderm-derived organs is still missing. Here, we suggest in vitro toxicogenomics approaches as a tool for the identification of common mechanisms of BPA toxicity leading to the diabesity in organs having the same developmental origin.
Collapse
Affiliation(s)
| | - L Ulloa-Severino
- IRGS, Biogem, Ariano Irpino, Italy.,PhD School in Nanotechnology, University of Trieste, Trieste, Italy
| | - P Almeida
- STAB VIDA-Investigação e Serviços em Ciências Biológicas, Madan Parque, Caparica, Portugal
| | - D Cuomo
- IRGS, Biogem, Ariano Irpino, Italy
| | - A Nardone
- Department of Public Health, University of Naples 'Federico II', Naples, Italy
| | - G Falco
- IRGS, Biogem, Ariano Irpino, Italy.,Department of Biology, University of Naples 'Federico II', Naples, Italy
| | - M Mallardo
- Molecular Medicine and Medical Biotechnologies, University of Naples 'Federico II', Naples, Italy
| | - C Ambrosino
- IRGS, Biogem, Ariano Irpino, Italy.,Department of Science and Technology, University of Sannio, Benevento, Italy
| |
Collapse
|