1
|
Testa U, Castelli G, Pelosi E. Emerging Role of Chimeric Antigen Receptor-Natural Killer Cells for the Treatment of Hematologic Malignancies. Cancers (Basel) 2025; 17:1454. [PMID: 40361380 PMCID: PMC12071031 DOI: 10.3390/cancers17091454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 04/17/2025] [Accepted: 04/24/2025] [Indexed: 05/15/2025] Open
Abstract
The clinical use of T lymphocytes engineered with chimeric antigen receptors (CARs) has revolutionized the treatment of patients with refractory or relapsed hematological malignancies. CAR natural killer (CAR-NK) cells are NK cells engineered with CARs to specifically target cell antigens expressed on the membrane of tumor cells. CAR-NK cells could offer some advantages with respect to CAR-T cells, related to their specific and innate anti-tumor activity, availability as an "off the shelf" cellular therapy, reduced costs, and improved safety. Promising efficacy of CAR-Nk cell therapy was observed in clinical trials based on the treatment of some hematological malignancies. However, to date, the clinical experience of CAR-NK cell therapy has been preliminary, with the evaluation of only a limited number of patients. Furthermore, CAR-NK cell therapy has been limited by the short persistence of these cells and by the suboptimal cytotoxic activity of some CAR-NK preparations. Therefore, studies based on the enrollment of a number of patients is required to carefully assess and confirm the safety and the efficacy of CAR-NK cell therapy in hematological malignancies and to compare their efficacy with respect to allogeneic CAR-T cells.
Collapse
Affiliation(s)
- Ugo Testa
- Department of Oncology, Istituto Superiore di Sanità, 00135 Rome, Italy; (G.C.); (E.P.)
| | | | | |
Collapse
|
2
|
Karati D, Meur S, Das S, Adak A, Mukherjee S. Peptide-based drugs in immunotherapy: current advances and future prospects. Med Oncol 2025; 42:177. [PMID: 40266466 DOI: 10.1007/s12032-025-02739-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Accepted: 04/18/2025] [Indexed: 04/24/2025]
Abstract
In immunotherapy, peptide-based medications are showing great promise as a new class of therapies that can be used to treat autoimmune diseases, cancer, and other immune-related conditions. Peptides are being created for use in immunotherapy as vaccines, immunological modulators, and adjuvants because of their capacity to precisely alter immune responses. They can imitate endogenous signals or interact with immune cells, improving the body's capacity to identify and combat malignancies or reestablishing immunological tolerance in autoimmune disorders. Notably, peptide-based treatments have demonstrated promise in promoting tumor-specific immune responses and improving the effectiveness of already available immunotherapies, such as immune checkpoint inhibitors. Notwithstanding its potential, peptide-based medications' clinical translation is fraught with difficulties, such as those pertaining to immunogenicity, bioavailability, and peptide stability. Overcoming these obstacles has been made possible by developments in peptide engineering, including pharmacokinetic optimization, receptor-binding affinity enhancement, and the creation of innovative delivery systems. The targeted distribution and effectiveness of peptide medications can be improved by using liposomes, nanoparticles, and other delivery methods, increasing their therapeutic utility. With an emphasis on recent scientific developments, mechanisms of action, and therapeutic uses, this review examines the present status of peptide-based medications in immunotherapy. We also look at the obstacles that still need to be overcome in order to get peptide-based treatments from the lab to the clinic and offer suggestions for future research initiatives. By tackling these important problems, we hope to demonstrate how peptide-based medications have the ability to revolutionize immunotherapeutic treatment approaches.
Collapse
Affiliation(s)
- Dipanjan Karati
- Department of Pharmaceutical Technology, School of Pharmacy, Techno India University-TIU, Kolkata, West Bengal, 700091, India
| | - Shreyasi Meur
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata - Group of Institutions, Kolkata, West Bengal, 700053, India
| | - Soumi Das
- Department of Pharmacy Practice, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Arpan Adak
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata - Group of Institutions, Kolkata, West Bengal, 700053, India
| | - Swarupananda Mukherjee
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata - Group of Institutions, Kolkata, West Bengal, 700053, India.
| |
Collapse
|
3
|
Wang S, Wang Y, Gan M, Wan L, Liu Y, Xu Y, Hou Z, Deng Y, Wu X. Bioinformatics analysis of oxidative phosphorylation-related differentially expressed genes in osteoporosis. Eur J Med Res 2025; 30:294. [PMID: 40241169 PMCID: PMC12001448 DOI: 10.1186/s40001-025-02568-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 04/08/2025] [Indexed: 04/18/2025] Open
Abstract
BACKGROUND Osteoporosis (OP) is a common metabolic bone disease characterized by decreased bone mass and increased fracture risk. Recent studies suggest that oxidative phosphorylation (OXPHOS) plays a crucial role in the pathogenesis of OP. This study aims to investigate the differential expression and potential functional roles of OXPHOS-related genes in OP. METHODS We downloaded gene expression data from two OP-related datasets, GSE56815 and GSE7429, using the GEOquery package. We also collected OXPHOS-related genes from the GeneCards and MsigDB databases. The limma package was used for differential expression analysis of GSE56815, and differentially expressed genes (DEGs) were identified. We intersected these DEGs with OXPHOS-related genes to identify OXPHOS-related differentially expressed genes. Functional enrichment analyses, including Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG), were conducted using the clusterProfiler package. Additionally, we performed gene set enrichment analysis (GSEA). The Mann-Whitney U test analyzed differences in the expression of OXPHOSRDEGs, and their diagnostic potential was assessed by Receiver Operating Characteristic (ROC) curves. Correlation analysis, Protein-Protein Interaction (PPI) network construction, mRNA-miRNA, mRNA-TF interaction network construction, and immune infiltration analysis using CIBERSORT were also conducted. RAW264.7 cells were induced in vitro for 3 days to differentiate towards osteoblasts, and RT-PCR assay was used to verify the differentiation and detect the differential expression of target genes. RESULTS Our results identified 31 DEGs in GSE56815, with 26 upregulated and 5 downregulated genes. Among these, we identified 10 OXPHOSRDEGs: VPS35, TBC1D2, UBQLN2, SH3GLB2, WWP1, NFKBIA, MFSD10, SLC2 A3, RP2, and ZNF91. GO and KEGG enrichment analyses revealed significant involvement of these genes in mechanisms such as the positive regulation of the protein catabolic process and the endocytosis pathway. ROC analysis demonstrated high diagnostic accuracy for VPS35 (AUC = 0.832) and TBC1D2 (AUC = 0.751). Correlation analysis indicated strong relationships between certain OXPHOSRDEGs. The PPI network highlighted 8 hub genes with significant functional similarity among them. CONCLUSION This study systematically elucidates the differential expression and potential mechanisms of OXPHOS-related genes in OP through comprehensive bioinformatics analyses. The identified key genes offer valuable insights into the molecular underpinnings of OP and present potential diagnostic biomarkers and therapeutic targets for further investigation.
Collapse
Affiliation(s)
- Songmao Wang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Department of Orthopedics, The Second Affiliated Hospital of Luohe Medical College, Luohe, 462300, Henan, China
| | - Yaling Wang
- Department of Pharmacy, The Second Affiliated Hospital of Luohe Medical College, Luohe, 462300, Henan, China
| | - Minfeng Gan
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
| | - Lei Wan
- Department of Orthopedics, The Second Affiliated Hospital of Luohe Medical College, Luohe, 462300, Henan, China
| | - Yapu Liu
- Department of Orthopedics, The Second Affiliated Hospital of Luohe Medical College, Luohe, 462300, Henan, China
| | - Yonghui Xu
- Department of Orthopedics, The Second Affiliated Hospital of Luohe Medical College, Luohe, 462300, Henan, China
| | - Zhenxing Hou
- Department of Orthopedics, The Second Affiliated Hospital of Luohe Medical College, Luohe, 462300, Henan, China
| | - Yongkang Deng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
| | - Xuejian Wu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
4
|
Huerta-Yepez S, Chen PC, Kaur K, Jain Y, Singh T, Esedebe F, Liao YJ, DiBernardo G, Moatamed NA, Mei A, Malarkannan S, Graeber TG, Memarzadeh S, Jewett A. Supercharged NK cells, unlike primary activated NK cells, effectively target ovarian cancer cells irrespective of MHC-class I expression. BMJ ONCOLOGY 2025; 4:e000618. [PMID: 40196236 PMCID: PMC11973776 DOI: 10.1136/bmjonc-2024-000618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 02/07/2025] [Indexed: 04/09/2025]
Abstract
Objective To demonstrate the significance of supercharged natural killer (sNK) cells to target aggressive gynecological tumours. Methods and analysis We used cell cultures of peripheral blood-derived mononuclear cells (PBMCs) and purified NK cells alone and in the presence of tumours. MHC-class gene expression assessments of ovarian tumours were performed using gene set enrichment analysis (GSEA). Secretion and expression levels of cytokines in PBMCs and NK cells were determined using ELISA and scRNA seq analysis, respectively. A flow cytometer was used for surface marker analysis. 51Cr and eSight were used to determine the killing activity of NK cells. Results We have observed a significant decrease in the numbers and functions of NK cells in patients with ovarian cancer. GSEA revealed differently expressed genes, decreased differentiation- and immune-related genes, and increased genes for cell cycle analysis in recurrent tumours compared with chemo-naive ovarian tumours. Increased gene expression as well as secretion of interferon-γ and tumour necrosis factor-α and increased avidity in binding to tumour cells by sNK cells was observed. Unlike primary interleukin (IL)-2-activated NK cells, sNK cells effectively lysed OVCAR8 ovarian poorly differentiated cancer stem-like cells (PDCSCs) and well-differentiated OVCAR4 tumours. Primary ovarian tumours with lower MHC-class I expression were highly susceptible to both primary IL-2-activated NK and sNK cells, whereas the well-differentiated tumours with high expression of MHC-class I were only susceptible to sNK cells. Conclusion The use of sNK cells in immunotherapy emerges as a potentially effective strategy to target and eliminate the majority of ovarian tumour clones, thereby providing a potential therapeutic opportunity in preventing the recurrence of the disease.
Collapse
Affiliation(s)
- Sara Huerta-Yepez
- Division of Oral Biology and Medicine, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, University of California School of Dentistry, Le Conte Ave, Los Angeles, USA
- Oncology Research Unit, Hospital Infantil de Mexico Federico Gomez, Mexico City, Mexico
| | - Po-Chun Chen
- Division of Oral Biology and Medicine, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, University of California School of Dentistry, Le Conte Ave, Los Angeles, USA
| | - Kawaljit Kaur
- Division of Oral Biology and Medicine, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, University of California School of Dentistry, Le Conte Ave, Los Angeles, USA
| | - Yash Jain
- Division of Oral Biology and Medicine, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, University of California School of Dentistry, Le Conte Ave, Los Angeles, USA
| | - Tanya Singh
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
- UCLA Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, California, USA
| | - Favour Esedebe
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
- Bioinformatics Interdepartmental Program, University of California Los Angeles, Los Angeles, California, USA
| | - Yi Jou Liao
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
- Bioinformatics Interdepartmental Program, University of California Los Angeles, Los Angeles, California, USA
| | - Gabriella DiBernardo
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
- UCLA Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, California, USA
| | - Neda A Moatamed
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Ao Mei
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, USA
| | - Subramaniam Malarkannan
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States, Milwaukee, Wisconsin, USA
| | - Thomas G Graeber
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
- Bioinformatics Interdepartmental Program, University of California Los Angeles, Los Angeles, California, USA
- The Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California, USA
- Crump Institute for Molecular Imaging, Medical laboratory in Los Angeles, Los Angeles, California, USA
| | - Sanaz Memarzadeh
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
- UCLA Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, California, USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
- The Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California, USA
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, California, USA
- The VA Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | - Anahid Jewett
- Division of Oral Biology and Medicine, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, University of California School of Dentistry, Le Conte Ave, Los Angeles, USA
- The Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California, USA
| |
Collapse
|
5
|
Kostic M, Zivkovic N, Cvetanovic A, Basic J, Stojanovic I. Natural Killer Cells in Alzheimer's Disease: From Foe to Friend. Eur J Neurosci 2025; 61:e70096. [PMID: 40207701 DOI: 10.1111/ejn.70096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/24/2025] [Accepted: 03/19/2025] [Indexed: 04/11/2025]
Abstract
The neuroinflammatory aspect of Alzheimer's disease (AD) has been largely focused on microglia, the innate immune cells of the brain; however, recent evidence increasingly points to the importance of multiple alterations in the systemic immune response during disease development. Natural killer (NK) cells are also components of innate immunity, whose role in AD pathogenesis has been sporadically investigated and often conflicting results have been reported. Recent clinical trial has suggested the potential beneficial effects of AD immunotherapy based on ex vivo-expanded, genetically unmodified, NK cells. This has led to increased interest in understanding the function of these cells in the central nervous system in both physiological and pathological contexts such as AD. Considering that AD is predominantly a disease of the elderly population, in this review, we summarized the current state of knowledge on the physiological changes that occur in the NK cell compartment during the normal aging process and the pathophysiological alterations that occur throughout the AD continuum that could potentially explain the therapeutic efficacy of these cells.
Collapse
Affiliation(s)
- Milos Kostic
- Medical Faculty of Nis, Department of Immunology, University of Nis, Nis, Serbia
| | - Nikola Zivkovic
- Medical Faculty of Nis, Department of Pathology, University of Nis, Nis, Serbia
| | - Ana Cvetanovic
- Medical Faculty of Nis, Department of Oncology, University of Nis, Nis, Serbia
| | - Jelena Basic
- Medical Faculty of Nis, Department of Biochemistry, University of Nis, Nis, Serbia
| | - Ivana Stojanovic
- Medical Faculty of Nis, Department of Biochemistry, University of Nis, Nis, Serbia
| |
Collapse
|
6
|
Kaur K, Jewett A. Decreased surface receptors, function, and suboptimal osteoclasts-induced cell expansion in natural killer (NK) cells of elderly subjects. Aging (Albany NY) 2025; 17:798-821. [PMID: 40146570 PMCID: PMC11984426 DOI: 10.18632/aging.206226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 02/19/2025] [Indexed: 03/29/2025]
Abstract
Natural killer (NK) cells are known for their cytotoxic and cytokine secretion capabilities. The balance of activating and inhibitory receptors on their surface regulates NK cell function and survival. However, it is not fully understood how aging may modulate the levels of NK cell surface receptors ultimately affecting their interaction with other immune cells, especially with those known to activate and expand NK cells. Here, we report decreased levels of NK cells' surface receptors, cytotoxic function, and cytokine secretion in aged donors (75-85 years) as compared to younger donors (21-25 years). We used our previously established methodology to expand and supercharge NK cells from young and older individuals using osteoclasts (OCs) and probiotic bacteria. Significantly lower levels of NK cell expansion and functional activation were seen in NK cells from 75-85-year-old donors when compared to younger donors' NK cells. Surface receptors of OCs were also found to be decreased in 75-85-year-old donors compared to younger donors. In addition, OCs from 75-85-year-old donors induced lower levels of cell expansion and functional activation of NK cells when compared to OCs from younger donors. These findings illustrate defects in both peripheral blood-derived primary NK cells and OCs in older individuals; however, suppression appears to be more in NK cells when compared to OCs.
Collapse
Affiliation(s)
- Kawaljit Kaur
- Division of Oral Biology and Medicine, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, University of California School of Dentistry, Los Angeles, CA 90095, USA
| | - Anahid Jewett
- Division of Oral Biology and Medicine, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, University of California School of Dentistry, Los Angeles, CA 90095, USA
- The Jonsson Comprehensive Cancer Center, UCLA School of Dentistry and Medicine, Los Angeles, CA 90095, USA
| |
Collapse
|
7
|
Portillo AL, Rojas EA, Mehboob M, Moinuddin A, Balint E, Feng E, Silvestri C, Vahedi F, Ritchie TM, Mansour AJ, Bramson JL, Ashkar AA. CD56 does not contribute to the antitumor, tissue homing, and glycolytic capacity of human NK cells. J Leukoc Biol 2025; 117:qiae227. [PMID: 39449625 DOI: 10.1093/jleuko/qiae227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 10/23/2024] [Indexed: 10/26/2024] Open
Abstract
Natural killer (NK) cells are critical innate immune cells involved in the clearance of virally infected and malignant cells. Human NK cells are distinguished by their surface expression of CD56 and a lack of CD3. While CD56 expression and cell surface density has long been used as the prototypic marker to characterize primary human NK cell functional subsets, the exact functional role of CD56 in primary human NK cells is still not fully understood. Here, we eliminated the expression of CD56 in human ex vivo expanded NK cells (CD56bright) using CRISPR/Cas9 in order to assess the function of CD56 in this highly activated and cytotoxic NK cell population. We show that the expression of CD56 has no effect on NK cell proliferative capacity or expression of various activation and inhibitory markers. Further, CD56 does not contribute to NK cell-mediated cytotoxicity, inflammatory cytokine production, or the ability of NK cells to control tumor engraftment in vivo. We also found that while deletion of CD56 did not impact NK cell glycolytic metabolism, it did increase NK cell reliance on oxidative phosphorylation. Last, CD56 does not alter expanded NK cell in vivo tissue trafficking. Our results indicate that while CD56 expression could be used to indicate a hyperfunctional state of NK cells, it does not directly influence the antitumor functions of expanded NK cells.
Collapse
Affiliation(s)
- Ana L Portillo
- Department of Medicine, McMaster University, McMaster Children's Hospital, 1200 Main Street West, Hamilton, ON L8N 3Z5, Canada
- McMaster Immunology Research Centre, McMaster University, MDCL 4010, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
- Centre for Discovery in Cancer Research, McMaster University, MDCL 5106, 1280 Main Street West, Hamilton, ON L8S 4M1, Canada
| | - Eduardo A Rojas
- Department of Medicine, McMaster University, McMaster Children's Hospital, 1200 Main Street West, Hamilton, ON L8N 3Z5, Canada
- McMaster Immunology Research Centre, McMaster University, MDCL 4010, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
| | - Misaal Mehboob
- Department of Medicine, McMaster University, McMaster Children's Hospital, 1200 Main Street West, Hamilton, ON L8N 3Z5, Canada
- McMaster Immunology Research Centre, McMaster University, MDCL 4010, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
- Centre for Discovery in Cancer Research, McMaster University, MDCL 5106, 1280 Main Street West, Hamilton, ON L8S 4M1, Canada
| | - Adnan Moinuddin
- Department of Medicine, McMaster University, McMaster Children's Hospital, 1200 Main Street West, Hamilton, ON L8N 3Z5, Canada
- McMaster Immunology Research Centre, McMaster University, MDCL 4010, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
- Centre for Discovery in Cancer Research, McMaster University, MDCL 5106, 1280 Main Street West, Hamilton, ON L8S 4M1, Canada
| | - Elizabeth Balint
- Department of Medicine, McMaster University, McMaster Children's Hospital, 1200 Main Street West, Hamilton, ON L8N 3Z5, Canada
- McMaster Immunology Research Centre, McMaster University, MDCL 4010, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
- Centre for Discovery in Cancer Research, McMaster University, MDCL 5106, 1280 Main Street West, Hamilton, ON L8S 4M1, Canada
| | - Emily Feng
- Department of Medicine, McMaster University, McMaster Children's Hospital, 1200 Main Street West, Hamilton, ON L8N 3Z5, Canada
- McMaster Immunology Research Centre, McMaster University, MDCL 4010, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
- Centre for Discovery in Cancer Research, McMaster University, MDCL 5106, 1280 Main Street West, Hamilton, ON L8S 4M1, Canada
| | - Christopher Silvestri
- Department of Medicine, McMaster University, McMaster Children's Hospital, 1200 Main Street West, Hamilton, ON L8N 3Z5, Canada
- McMaster Immunology Research Centre, McMaster University, MDCL 4010, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
- Centre for Discovery in Cancer Research, McMaster University, MDCL 5106, 1280 Main Street West, Hamilton, ON L8S 4M1, Canada
| | - Fatemeh Vahedi
- Department of Medicine, McMaster University, McMaster Children's Hospital, 1200 Main Street West, Hamilton, ON L8N 3Z5, Canada
- McMaster Immunology Research Centre, McMaster University, MDCL 4010, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
- Centre for Discovery in Cancer Research, McMaster University, MDCL 5106, 1280 Main Street West, Hamilton, ON L8S 4M1, Canada
| | - Tyrah M Ritchie
- Department of Medicine, McMaster University, McMaster Children's Hospital, 1200 Main Street West, Hamilton, ON L8N 3Z5, Canada
- McMaster Immunology Research Centre, McMaster University, MDCL 4010, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
| | - Alexa J Mansour
- Department of Medicine, McMaster University, McMaster Children's Hospital, 1200 Main Street West, Hamilton, ON L8N 3Z5, Canada
- McMaster Immunology Research Centre, McMaster University, MDCL 4010, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
- Centre for Discovery in Cancer Research, McMaster University, MDCL 5106, 1280 Main Street West, Hamilton, ON L8S 4M1, Canada
| | - Jonathan L Bramson
- Department of Medicine, McMaster University, McMaster Children's Hospital, 1200 Main Street West, Hamilton, ON L8N 3Z5, Canada
- McMaster Immunology Research Centre, McMaster University, MDCL 4010, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
- Centre for Discovery in Cancer Research, McMaster University, MDCL 5106, 1280 Main Street West, Hamilton, ON L8S 4M1, Canada
| | - Ali A Ashkar
- Department of Medicine, McMaster University, McMaster Children's Hospital, 1200 Main Street West, Hamilton, ON L8N 3Z5, Canada
- McMaster Immunology Research Centre, McMaster University, MDCL 4010, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
- Centre for Discovery in Cancer Research, McMaster University, MDCL 5106, 1280 Main Street West, Hamilton, ON L8S 4M1, Canada
| |
Collapse
|
8
|
Nakamura K, Ida N, Hirasawa A, Okamoto K, Vu TH, Hai Ly DT, Masuyama H. CD63 as a potential biomarker for patients with ovarian cancer. Eur J Obstet Gynecol Reprod Biol 2025; 306:87-93. [PMID: 39799740 DOI: 10.1016/j.ejogrb.2025.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 12/12/2024] [Accepted: 01/05/2025] [Indexed: 01/15/2025]
Abstract
INTRODUCTION Exosomes play an important role in regulating physiological processes and mediating the systemic dissemination of various types of cancer. We investigated the association of exosomal tetraspanins CD9, CD63, and CD81 in patients with ovarian cancer (OC). MATERIAL AND METHODS We measured the plasma tetraspanins CD9, CD63, and CD81 by enzyme-linked immunosorbent assay in 91 patients who underwent treatment for OC between April 2018 and March 2024. Additionally, we analyzed clinical pathologic factors, chemotherapy response, and prognosis. RESULTS In terms of stages, CD63 expression was significantly higher in patients with stage IV compared to those with stage I OC (p = 0.003). In terms of histological type, CD63 expression was significantly higher in high-grade serous carcinoma (HGSC) than in clear cell carcinoma (CCC) with OC (p = 0.009). Furthermore, CD63 levels were significantly higher in advanced-stage, HGSC than in patients with early-stage, non-HGSC and early-stage, HGSC OC (p = 0.045 and p = 0.002, respectively). In the Neoadjuvant chemotherapy (NAC) of 12 patients with OC assessed as having either a partial response (PR) or complete response (CR), CD63 was significantly decreased (p = 0.043), whereas perforin was significantly increased (p = 0.001). In the NAC of 16 patients with OC, CD63 of the response rate to chemotherapy tended to differ between the progressive disease (PD) and PR/CR groups (p = 0.056). A moderate inverse correlation was observed between CD63 and perforin levels (R = 0.638, R2 = 0.428, p = 0.008). CONCLUSIONS CD63 could be a potential biomarker for all types of OC patients.
Collapse
Affiliation(s)
- Keiichiro Nakamura
- Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho kitaku, Okayama 700-8558, Japan.
| | - Naoyuki Ida
- Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho kitaku, Okayama 700-8558, Japan
| | - Akira Hirasawa
- Department of Clinical Genomic Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho kitaku, Okayama 700-8558, Japan.
| | - Kazuhiro Okamoto
- Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho kitaku, Okayama 700-8558, Japan
| | - Thuy Ha Vu
- Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho kitaku, Okayama 700-8558, Japan
| | - Dao Thi Hai Ly
- Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho kitaku, Okayama 700-8558, Japan.
| | - Hisashi Masuyama
- Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho kitaku, Okayama 700-8558, Japan.
| |
Collapse
|
9
|
Zhou J, Yan P, Ma W, Li J. Cytokine modulation and immunoregulation of uterine NK cells in pregnancy disorders. Cytokine Growth Factor Rev 2025; 81:40-53. [PMID: 39603954 DOI: 10.1016/j.cytogfr.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 11/19/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024]
Abstract
Uterine natural killer (uNK) cells play a pivotal role in promoting placental development and supporting maternal-fetal immune tolerance, primarily through cytokine regulation and growth factor production. While the importance of uNK cells in pregnancy is well-established, the mechanisms of their interactions with trophoblasts and contributions to various pregnancy complications remain incompletely understood. This review highlights recent advancements in understanding uNK cell functions, with a focus on cytokine production, growth factor secretion, and receptor-ligand interactions, particularly involving killer immunoglobulin-like receptors (KIR) and human leukocyte antigen-C (HLA-C). We explore how uNK cell dysfunction contributes to pregnancy complications, including preeclampsia, recurrent pregnancy loss, and placenta accreta spectrum (PAS) disorders, emphasizing their roles in immune tolerance and placental health. By detailing the distinct cytokine signaling pathways and functional subtypes of uNK cells, this review provides insights into their regulatory mechanisms essential for pregnancy maintenance. Additionally, we discuss emerging therapeutic strategies targeting uNK-trophoblast interactions and propose future research directions, including the development of non-invasive biomarkers and personalized interventions. This comprehensive review addresses critical knowledge gaps, aiming to advance research in reproductive immunology and guide therapeutic innovations in maternal health.
Collapse
Affiliation(s)
- Jun Zhou
- Department of Obstetrics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, China.
| | - Ping Yan
- Qingdao City Health Care Center for Cadres, Qingdao, Shandong 266071, China.
| | - Wenxue Ma
- Division of Regenerative Medicine, Department of Medicine, Sanford Stem Cell Institute, University of California San Diego, La Jolla, CA 92093, USA.
| | - Jing Li
- Department of Obstetrics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, China.
| |
Collapse
|
10
|
Lindenbergh PL, van der Stegen SJ. Adoptive Cell Therapy from the Dish: Potentiating Induced Pluripotent Stem Cells. Transfus Med Hemother 2025; 52:27-41. [PMID: 39944411 PMCID: PMC11813279 DOI: 10.1159/000540473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/19/2024] [Indexed: 02/16/2025] Open
Abstract
Background The clinical success of autologous adoptive cell therapy (ACT) is substantial but wide application is challenged by the quality and quantity of the patient's immune cells and the need for personalized manufacturing processes. Induced pluripotent stem cells (iPSCs) can be differentiated into immune effectors and thus provide an alternative, allogeneic cell source for ACT. Here, we compare iPSC-derived immune effectors to their PBMC-derived counterparts and review iPSC-derived ACT products currently under preclinical and clinical development. Summary iPSC-derived T cells, NK cells, macrophages, and neutrophils largely mimic their PBMC-derived counterparts in terms of cell-surface marker expression and cytotoxic effector functions. iPSC-derived immune effectors can be engineered with chimeric antigen receptors and other activating receptors to redirect their cytotoxic potential specifically to tumor-associated antigens (TAAs). However, several differences between iPSC- and PBMC-derived immune effectors remain and have inspired additional engineering strategies to enhance the antitumor capacity of iPSC-derived immune effectors. Key Messages iPSCs can be engineered to facilitate the generation of immune effectors with homogenous specificity for TAAs and enhanced effector functions. TAA-specific and functionally enhanced iPSC-derived T and NK cells are currently undergoing clinical evaluation in phase 1 trials. Engineered iPSC-derived macrophages and neutrophils are in preclinical development.
Collapse
Affiliation(s)
- Pieter L. Lindenbergh
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Hematology, Cancer Center Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | | |
Collapse
|
11
|
Pounds R, Croft W, Pearce H, Hossain T, Singh K, Balega J, Jeevan DN, Sundar S, Kehoe S, Yap J, Moss P, Zuo J. The emergence of DNAM-1 as the facilitator of NK cell-mediated killing in ovarian cancer. Front Immunol 2025; 15:1477781. [PMID: 39835114 PMCID: PMC11743932 DOI: 10.3389/fimmu.2024.1477781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 12/06/2024] [Indexed: 01/30/2025] Open
Abstract
Introduction Ovarian cancer (OC) is the sixth most common malignancy in women and the poor 5-year survival emphasises the need for novel therapies. NK cells play an important role in the control of malignant disease but the nature of tumour-infiltrating and peripheral NK cells in OC remains unclear. Methods Using flow cytometric analysis, we studied the phenotype and function of NK cells in blood, primary tumour and metastatic tissue in 80 women with OC. The cell type contexture of metastatic OC tissue was explored utilising scRNAseq analysis, with a focus on portraying an immunogenic tumour microenvironment and determining the characteristics of a dysfunctional NK cell population. Results The proportion of peripheral NK cells was markedly elevated with a highly activated profile and increased cytotoxicity. In contrast, NK cell numbers in primary tumour and metastasis were substantially reduced, with downregulation of activatory receptors together with elevated PD-1 expression. scRNA-Seq identified 5 NK cell subpopulations along with increased exhausted and immature NK cells within tumour tissue compared to normal tissue. These features were attenuated following chemotherapy where higher levels of activated and cytotoxic NK cells associated with improved disease-free survival. Correlation of NK cell phenotype with clinical outcomes revealed high levels of DNAM-1 expression on tissue-localised and peripheral NK cells to be associated with reduced survival. Expression of PVR, the DNAM-1 ligand, was significantly increased on tumours and DNAM-1 mediated NK cell lysis of primary tumour tissue was observed in vitro. Discussion These findings reveal profound modulation of the tumour tissue and systemic profile of NK cells which likely contributes to the high rates of local progression and metastasis seen with OC. Immunotherapeutic approaches that overcome local immune suppression and enhance DNAM-1-targeted lysis of OC offer the potential to improve disease control.
Collapse
Affiliation(s)
- Rachel Pounds
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Pan-Birmingham Gynaecological Cancer Centre, City Hospital, Birmingham, United Kingdom
| | - Wayne Croft
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Hayden Pearce
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Tasnia Hossain
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Kavita Singh
- Pan-Birmingham Gynaecological Cancer Centre, City Hospital, Birmingham, United Kingdom
| | - Janos Balega
- Pan-Birmingham Gynaecological Cancer Centre, City Hospital, Birmingham, United Kingdom
| | - David N. Jeevan
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Sudha Sundar
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Pan-Birmingham Gynaecological Cancer Centre, City Hospital, Birmingham, United Kingdom
| | - Sean Kehoe
- Oxford Gynaecological Cancer Centre, Churchill Hospital, Oxford University Hospitals Foundation Trust, Oxford, United Kingdom
| | - Jason Yap
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Pan-Birmingham Gynaecological Cancer Centre, City Hospital, Birmingham, United Kingdom
| | - Paul Moss
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Jianmin Zuo
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
12
|
Mataramvura H, Jӓger J, Jordan-Paiz A, Mazengera LR, Gumbo FZ, Bunders MJ, Duri K. Phenotypic characterization of NK cells in 5-year-old children exposed to maternal HIV and antiretroviral therapy in early-life. BMC Immunol 2024; 25:82. [PMID: 39702040 DOI: 10.1186/s12865-024-00674-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 11/26/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND HIV-exposed uninfected (HEU) children are at increased risk of morbidity during the first years of life. Although the immune responses of HEU infants in early-life are relatively well described, studies of natural killer (NK) cells in older HEU children are lacking. NK cell subsets were analysed in HEU children and compared to those in HIV unexposed uninfected (HUU) children aged ~ five years. METHODS Multi-parametric flow cytometry was used to characterize peripheral blood-derived NK cell CD56, CD16, CD57, NKG2A and KIR3DL1/KIR2DL2/L3 expression, including intracellular perforin and granzyme B. NK cell subsets were compared between HEU children exposed to prenatal antiretroviral therapy (ART) from conception [long-term (HEULT)]; those exposed to ART during pregnancy [medium-term (HEUMT)] with continued exposure throughout the breastfeeding period and HUU peers. Furthermore, clinical data of the children, including sick clinic visits and hospitalizations documented in morbidity diaries from birth to 5 years were compared between HEU and HUU groups. Frequencies of CD56bright and CD56dim NK cell were correlated with these clinical parameters. RESULTS 139 children were enrolled however, 133 comprising 43 HEULT, 38 HEUMT and 52 HUU were included in the main analyses. Total NK cell, CD56bright nor CD56dim NK cell proportions differed between HEU and HUU children. However, HEULT children had lower frequencies of CD56dim NK cells compared to HEUMT children, (p = 0.002) which maintained significance after controlling for preterm birth, p = 0.012. No differences were observed between HEULT and HUU. The expressions of NKG2A, KIR3DL1/KIR2DL2/L3 and CD57 on CD56bright and CD56dim NK cells were similar between the three groups. Furthermore, the frequencies of granzyme B and perforin double positive NK cells were similar between the HUU with HEULT and HEUMT children. CD56dim NK cell counts had a significant moderate negative correlation with recurrent respiratory infections (rho=-0.38; p = 0.010) in HUU children and negatively correlated with total sick clinic visits in HEUMT (rho=-0.40, p = 0.064). CONCLUSION The proportions of total NK cell, CD56bright and CD56dim NK cells, NK cells inhibitory and differentiation surface marker expression and cytolytic granule-positive cells were similar between HEU and HUU children. These data suggest that early-life HIV/ART exposure may not result in major changes in NK cell subsets at 5 years of age.
Collapse
Affiliation(s)
- Hope Mataramvura
- Immunology Unit, Department of Laboratory Diagnostic and Investigative Sciences, Faculty of Medicine and Health Sciences, University of Zimbabwe, UZ-FMHS), Harare, Zimbabwe.
| | - Julia Jӓger
- Department of Virus Immunology, Leibniz Institute of Virology, Hamburg, Germany
| | - Ana Jordan-Paiz
- Department of Virus Immunology, Leibniz Institute of Virology, Hamburg, Germany
| | - Lovemore Ronald Mazengera
- Immunology Unit, Department of Laboratory Diagnostic and Investigative Sciences, Faculty of Medicine and Health Sciences, University of Zimbabwe, UZ-FMHS), Harare, Zimbabwe
| | | | - Madeleine J Bunders
- Department of Virus Immunology, Leibniz Institute of Virology, Hamburg, Germany
- III. Department of Medicine, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Kerina Duri
- Immunology Unit, Department of Laboratory Diagnostic and Investigative Sciences, Faculty of Medicine and Health Sciences, University of Zimbabwe, UZ-FMHS), Harare, Zimbabwe
| |
Collapse
|
13
|
Li Q, Marcoux G, Hu Y, Rebetz J, Guo L, Semple E, Provan D, Xu S, Hou M, Peng J, Semple JW. Autoimmune effector mechanisms associated with a defective immunosuppressive axis in immune thrombocytopenia (ITP). Autoimmun Rev 2024; 23:103677. [PMID: 39515406 DOI: 10.1016/j.autrev.2024.103677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Immune thrombocytopenia (ITP) is an autoimmune disease characterized by an isolated thrombocytopenia and variable phenotype as some patients suffer no bleeding whilst others have bleeding from mild to severe, which may be fatal. This variability probably reflects the disease's complex pathophysiology; a dysregulated hyperreactive immune effector cell response involving the entire adaptive immune system (e.g. B and T cell subsets) that leads to platelet and megakaryocyte (MK) destruction. It appears that these effector responses are due to a breakdown in immune tolerance, and this is characterized by defects in several immunosuppressive cell types. These include defective T regulatory cells (Tregs), B regulatory cells (Bregs) and Myeloid-derived suppressor cells (MDSC), all of which are all intimately associated with antigen presenting cells (APC) such as dendritic cells (DC). The loss of this immunosuppressive axis allows for the activation of unchecked autoreactive T cells and B cells, leading to the development of autoantibodies and cytotoxic T cells (CTL), which can directly destroy platelets in the periphery and inhibit MK platelet production in the bone marrow (BM). This review will focus on the effector cell mechanisms in ITP and highlight the defective immunosuppressive axis that appears responsible for this platelet-specific immune hyperreactivity.
Collapse
Affiliation(s)
- Qizhao Li
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Geneviève Marcoux
- Division of Hematology and Transfusion Medicine, Lund University, Lund, Sweden
| | - Yuefen Hu
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Johan Rebetz
- Division of Hematology and Transfusion Medicine, Lund University, Lund, Sweden
| | - Li Guo
- Bloodworks Northwest Research Institute, Seattle, USA; Division of Hematology and Oncology, University of Washington; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, USA
| | | | - Drew Provan
- Department of Haematology, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, UK
| | - Shuqian Xu
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China.
| | - Ming Hou
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Jun Peng
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - John W Semple
- Division of Hematology and Transfusion Medicine, Lund University, Lund, Sweden; Clinical Immunology and Transfusion Medicine, Office of Medical Services, Region Skåne, Lund, Sweden; Departments of Pharmacology, Medicine and Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.
| |
Collapse
|
14
|
Choi EH, Son SU, Shin KS. Structural characterization of rhamnogalacturonan-I purified from Curcuma longa and its anti-lung cancer efficacy via immunostimulation. Food Sci Biotechnol 2024; 33:3591-3606. [PMID: 39493383 PMCID: PMC11525377 DOI: 10.1007/s10068-024-01595-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/29/2024] [Accepted: 05/02/2024] [Indexed: 11/05/2024] Open
Abstract
In this study, we investigated the structural characteristics, immunostimulatory activities, and anti-cancer effects of turmeric-derived polysaccharides (TPE-I). Several results related to the structural features revealed that TPE-I possesses a typical rhamnogalacturonan (RG)-I structure. Furthermore, macrophage cytokine secretion was significantly reduced by partial side chain and main chain cleavage of TPE-I via sequential enzymatic and chemical degradation. In contrast, the administration of TPE-I effectively enhanced the cytotoxic effects of natural killer (NK) cells and cytotoxic T lymphocytes against tumor cells. Additionally, the administration of TPE-I potently inhibited lung cancer induced by Colon26-M3.1, and this efficacy persisted even in mice with NK cell function blocked by anti-asialo GM1 antibody. Consequently, it was confirmed that TPE-I, a RG-I type polysaccharide purified from turmeric, has potent anticancer effects which are closely related to immunostimulation. The results of this study support the hypothesis that curcuminoids are not the only bioactive substances present in turmeric. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-024-01595-z.
Collapse
Affiliation(s)
- Eun Hye Choi
- Department of Food Science and Biotechnology, Kyonggi University, Suwon, 16227 Republic of Korea
| | - Seung-U Son
- Department of Food Science and Biotechnology, Kyonggi University, Suwon, 16227 Republic of Korea
- Transdisciplinary Major in Learning Health System, Department of Integrated Biomedical and Life Science, Korea University, Seoul, 02841 Republic of Korea
| | - Kwang-Soon Shin
- Department of Food Science and Biotechnology, Kyonggi University, Suwon, 16227 Republic of Korea
| |
Collapse
|
15
|
Watanabe CM, Suzuki CI, Dos Santos AM, Aloia TPA, Lee G, Wald D, Okamoto OK, de Azevedo JTC, de Godoy JAP, Santos FPS, Weinlich R, Kerbauy LN, Kutner JM, Paiva RDMA, Hamerschlak N. An Extended Flow Cytometry Evaluation of ex Vivo Expanded NK Cells Using K562.Clone1, a Feeder Cell Line Manufactured in Brazil. Transplant Cell Ther 2024; 30:1063.e1-1063.e19. [PMID: 38986739 DOI: 10.1016/j.jtct.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/12/2024]
Abstract
Natural killer (NK) cells play a crucial role in the immune system's response against cancer. However, the challenge of obtaining the required quantity of NK cells for effective therapeutic response necessitates the development of strategies for their ex vivo expansion. This study aimed to develop a novel feeder cell line, K562.Clone1, capable of promoting the ex vivo expansion of NK cells while preserving their cytotoxic potential. he K562 leukemic cell line was transduced with mbIL-21 and 4-1BBL proteins to generate K562.Clone1 cells. NK cells were then co-cultured with these feeder cells, and their expansion rate was monitored over 14 days. The cytotoxic potential of the expanded NK cells was evaluated against acute myeloid leukemia blasts and tumor cell lines of leukemia and glial origin. Statistical analysis was performed to determine the significance of the results. The K562.Clone1 co-cultured with peripheral NK showed a significant increase in cell count, with an approximate 94-fold expansion over 14 days. Expanded NK cells demonstrated cytotoxicity against the tested tumor cell lines, indicating preservation of their cytotoxic characteristics. Additionally, the CD56, CD16, inhibitory KIRs, and activation receptors were conserved and present in a well-balanced manner. The study successfully developed a feeder cell line, K562.Clone1, that effectively promotes the expansion of NK cells ex vivo while maintaining their cytotoxic potential. This development could significantly contribute to the advancement of NK cell therapy, especially in Brazil.
Collapse
Affiliation(s)
| | | | | | | | - Grace Lee
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio
| | - David Wald
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio; Department of Pathology, University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | - Oswaldo Keith Okamoto
- Department of Hemotherapy and Cellular Therapy, Hospital Israelita Albert Einstein, São Paulo, Brazil; Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| | - Julia T Cottas de Azevedo
- Experimental Research Laboratory, Hospital Israelita Albert Einstein, São Paulo, Brazil; Department of Hemotherapy and Cellular Therapy, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Juliana Aparecida Preto de Godoy
- Experimental Research Laboratory, Hospital Israelita Albert Einstein, São Paulo, Brazil; Department of Hemotherapy and Cellular Therapy, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Fabio P S Santos
- Experimental Research Laboratory, Hospital Israelita Albert Einstein, São Paulo, Brazil; Oncology and Hematology Center, Familia Dayan-Daycoval, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Ricardo Weinlich
- Experimental Research Laboratory, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Lucila N Kerbauy
- Experimental Research Laboratory, Hospital Israelita Albert Einstein, São Paulo, Brazil; Department of Hemotherapy and Cellular Therapy, Hospital Israelita Albert Einstein, São Paulo, Brazil; Oncology and Hematology Center, Familia Dayan-Daycoval, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Jose Mauro Kutner
- Department of Hemotherapy and Cellular Therapy, Hospital Israelita Albert Einstein, São Paulo, Brazil; Oncology and Hematology Center, Familia Dayan-Daycoval, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Raquel de Melo Alves Paiva
- Experimental Research Laboratory, Hospital Israelita Albert Einstein, São Paulo, Brazil; Department of Hemotherapy and Cellular Therapy, Hospital Israelita Albert Einstein, São Paulo, Brazil.
| | - Nelson Hamerschlak
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
16
|
Xie DH, Wang J, Sun K, Shi ZY, Wang YZ, Chang Y, Yuan XY, Liu YR, Jiang H, Jiang Q, Huang XJ, Qin YZ. The Functional and Prognostic Impact of TIGIT Expression on Bone Marrow NK Cells in Core Binding Factor-Acute Myeloid Leukemia Patients at Diagnosis. Biomedicines 2024; 12:2207. [PMID: 39457520 PMCID: PMC11504867 DOI: 10.3390/biomedicines12102207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/30/2024] [Accepted: 09/20/2024] [Indexed: 10/28/2024] Open
Abstract
Background: The effect of the expression of the newly identified immune checkpoint, T cell immunoglobulin and immunoreceptor tyrosine-based inhibition motif domain (TIGIT) on NK cells in core binding factor-acute myeloid leukemia (CBF-AML) remains to be investigated. Methods: Fresh bone marrow samples from a total of 39 newly diagnosed CBF-AML patients and 25 healthy donors (HDs) were collected for testing the phenotype and function state of total NK, CD56bright, and CD56dim NK cell subsets after in vitro stimulation. Results: The frequencies of TIGIT+ cells in total NK, CD56bright, and CD56dim NK cell subsets had no significant difference between patients and HDs. TNF-α and INF-γ levels were uniformly lower in TIGIT+ cells than the corresponding TIGIT- cells in all HDs, whereas those for TIGIT+ to TIGIT- cells in patients were highly heterogenous; TIGIT expression was not related to PFP and GZMB expression in HDs, whereas it was related to higher intracellular PFP and GZMB levels in patients. Patients' TIGIT+ NK cells displayed lower K562 cell-killing activity than their TIGIT- NK cells. In addition, high frequencies of TIGIT+ cells in total NK and CD56dim NK cells were associated with poor RFS. Conclusions: TIGIT expression affected the diagnostic bone marrow-sited NK cell function and had prognostic significance in CBF-AML patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Ya-Zhen Qin
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| |
Collapse
|
17
|
Xu J, Gao H, Azhar MS, Xu H, Chen S, Li M, Ni X, Yan T, Zhou H, Long Q, Yi W. Interleukin signaling in the regulation of natural killer cells biology in breast cancer. Front Immunol 2024; 15:1449441. [PMID: 39380989 PMCID: PMC11459090 DOI: 10.3389/fimmu.2024.1449441] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 09/09/2024] [Indexed: 10/10/2024] Open
Abstract
In the field of breast cancer treatment, the immunotherapy involving natural killer (NK) cells is increasingly highlighting its distinct potential and significance. Members of the interleukin (IL) family play pivotal regulatory roles in the growth, differentiation, survival, and apoptosis of NK cells, and are central to their anti-tumor activity. These cytokines enhance the ability of NK cells to recognize and eliminate tumor cells by binding to specific receptors and activating downstream signaling pathways. Furthermore, interleukins do not function in isolation; the synergistic or antagonistic interactions between different interleukins can drive NK cells toward various functional pathways, ultimately leading to diverse outcomes for breast cancer patients. This paper reviews the intricate relationship between NK cells and interleukins, particularly within the breast cancer tumor microenvironment. Additionally, we summarize the latest clinical studies and advancements in NK cell therapy for breast cancer, along with the potential applications of interleukin signaling in these therapies. In conclusion, this article underscores the critical role of NK cells and interleukin signaling in breast cancer treatment, providing valuable insights and a significant reference for future research and clinical practice.
Collapse
Affiliation(s)
- Jiachi Xu
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center For Breast Disease In Hunan Province, Changsha, Hunan, China
| | - Hongyu Gao
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center For Breast Disease In Hunan Province, Changsha, Hunan, China
| | - Muhammad Salman Azhar
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Haifan Xu
- Breast and Thyroid Surgery, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Siyuan Chen
- Breast and Thyroid Surgery, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Mingcan Li
- Breast and Thyroid Surgery, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Xinxi Ni
- Breast and Thyroid Surgery, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Ting Yan
- Breast and Thyroid Surgery, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Hui Zhou
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qian Long
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center For Breast Disease In Hunan Province, Changsha, Hunan, China
| | - Wenjun Yi
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center For Breast Disease In Hunan Province, Changsha, Hunan, China
| |
Collapse
|
18
|
Tang CW, Yang JH, Qin JW, Wu HJ, Cui HP, Ge LY, Liu AQ. Regulation of the PD-1/PD-L1 Axis and NK Cell Dysfunction by Exosomal miR-552-5p in Gastric Cancer. Dig Dis Sci 2024; 69:3276-3289. [PMID: 39020183 PMCID: PMC11415408 DOI: 10.1007/s10620-024-08536-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 06/18/2024] [Indexed: 07/19/2024]
Abstract
OBJECTIVE NK cells play a vital role in tumor immune resistance. Various factors affect NK cell activity. While NK cell dysfunction has been observed in numerous malignancies, the underlying mechanisms in gastric cancer remain unclear. METHOD Flow cytometry was used to identify the phenotypic distribution and expression of activated receptors on NK cells. ELISA was used to determine the expression of cytokines. We examined the expression of NK cell-related genes and explored their association with survival and prognosis. Additionally, we conducted PCR detection of miR-552-5p expression levels in plasma exosomes of patients and investigated its correlation with phenotypic distribution and activated receptors. We used flow cytometry and ELISA to verify the role of miR-552-5p in NK cell dysfunction. Furthermore, we investigated the potential role of PD-1/PD-L1 in regulating NK cell dysfunction in patients' cells. RESULTS We observed a significant decrease in the percentage of NKG2D and NKp30 and IFN-γ and TNF-α in patients than in healthy volunteers. Patients with low levels of CD56, CD16, NKG2D, and NKP46 exhibited poorer survival prognoses. Moreover, increased expression levels of plasma exosomal miR-552-5p in patients were negatively associated with NK cell phenotypic distribution and activated receptor expression. MiR-552-5p downregulated the secretion of perforin, granzyme, and IFN-γ as well as the expression of NKp30, NKp46, and NKG2D. Additionally, it suppressed the cytotoxicity of NK cells. The inhibitory effect of miR-552-5p, on NK cell function was reversed when anti-PD-L1 antibodies were used. CONCLUSION Exosomal miR-552-5p targets the PD-1/PD-L1 axis, leading to impaired NK cell function.
Collapse
Affiliation(s)
- Chun-Wei Tang
- Department of Endoscopy, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi, China
| | - Jin-Hua Yang
- Department of Endoscopy, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi, China
| | - Jing-Wen Qin
- Department of Endoscopy, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi, China
| | - Hui-Jie Wu
- Department of Digestive Endoscopy Center, Fujian Provincial Hospital, Fuzhou, 350001, Fujian, China
| | - Hao-Peng Cui
- Department of Endoscopy, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi, China
| | - Lian-Ying Ge
- Department of Endoscopy, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi, China
| | - Ai-Qun Liu
- Department of Endoscopy, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi, China.
| |
Collapse
|
19
|
Han X, Vollmer D, Yan X, Zhang Y, Zang M, Zhang C, Sherwin CM, Enioutina EY. Immunomodulatory Effects of Modified Colostrum, Whey, and Their Combination With Other Natural Products: Effects on Natural Killer Cells. CURRENT THERAPEUTIC RESEARCH 2024; 101:100750. [PMID: 39670221 PMCID: PMC11637189 DOI: 10.1016/j.curtheres.2024.100750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/30/2024] [Indexed: 12/14/2024]
Abstract
Objectives Natural killer (NK) cells are important immune system effector cells providing innate defenses against intracellular infections, including viral infections, immune surveillance, and cancer immunoediting. The primary purpose of this study was to investigate whether modified ultra-filtrated colostrum (UC) and hydrolyzed whey (W) products or their combinations with other natural products with reported immunomodulatory properties will stimulate NK cell cytotoxic activity by activation of granzyme B and IFN-γ production. Methods The ability of study products to stimulate the cytotoxic activity of human-purified CD56+ NK cells and the production of granzyme B and IFN-γ by activated NK cells was evaluated in the cytotoxic assay. Results All study products significantly increased NK-cell cytotoxic activity at an E: T ratio of 20:1. Treatment of cells with UC had a maximal cytotoxic effect at the minimal dose of 10 µg/ml, which exceeded the cytotoxic activity of IL-2. In contrast, the addition of egg yolk (CE) or CE + botanical blend (CEB) to UC resulted in a dose-dependent cytotoxic response with a maximal response at 1000 µg/ml. The maximal activity of blend products was comparable to UC activity. W exerted minimal stimulatory activity on NK cells. The magnitude of granzyme B and IFN-γ production was closely associated with the cytotoxic activity of NK cells stimulated with the study products. Conclusions All study products demonstrated stimulatory activity on NK cells, with UC having a maximal effect on NK cell cytotoxicity. The study products can be used as dietary supplements to support NK cell activity in healthy individuals.
Collapse
Affiliation(s)
| | | | - Xuefei Yan
- Crown Bioscience Inc., Science & Technology Innovation Park, Taicang, Jiangsu Province, P.R. China
| | - Yahong Zhang
- Crown Bioscience Inc., Science & Technology Innovation Park, Taicang, Jiangsu Province, P.R. China
| | - Mingfa Zang
- Crown Bioscience Inc., Science & Technology Innovation Park, Taicang, Jiangsu Province, P.R. China
| | - Chenfei Zhang
- Crown Bioscience Inc., Science & Technology Innovation Park, Taicang, Jiangsu Province, P.R. China
| | - Catherine M. Sherwin
- Department of Pediatrics, Wright State University Boonshoft School of Medicine/Dayton Children's Hospital, Dayton, Ohio
| | - Elena Y. Enioutina
- Division of Clinical Pharmacology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah
| |
Collapse
|
20
|
Mustokoweni S, Mahyudin F, Setiawati R, Nugrahenny D, Hidayat M, Kalim H, Mintaroem K, Fitri LE, Hogendoorn PCW. Correlation of High-Grade Osteosarcoma Response to Chemotherapy with Enhanced Tissue Immunological Response: Analysis of CD95R, IFN-γ, Catalase, Hsp70, and VEGF. Virchows Arch 2024; 484:925-937. [PMID: 38748263 PMCID: PMC11186924 DOI: 10.1007/s00428-024-03801-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/02/2024] [Accepted: 04/05/2024] [Indexed: 06/20/2024]
Abstract
High-grade osteosarcoma, a primary malignant bone tumour, is experiencing a global increase in reported incidence with varied prevalence. Despite advances in management, which include surgery and neoadjuvant chemotherapy often an unsatisfactory outcome is found due to poor or heterogeneous response to chemotherapy. Our study delved into chemotherapy responses in osteosarcoma patients and associated molecular expressions, focusing on CD95 receptor (CD95R), interferon (IFN)-γ, catalase, heat-shock protein (Hsp)70, and vascular endothelial growth factor (VEGF). Employing immunohistochemistry and Huvos grading of post-chemo specimens, we analysed formalin-fixed paraffin-embedded (FFPE) osteosarcoma tissue of resected post-chemotherapy specimens from Dr. Soetomo General Academic Hospital in Surabaya, Indonesia (DSGAH), spanning from 2016 to 2020. Results revealed varied responses (poor 40.38%, moderate 48.08%, good 11.54%) and distinct patterns in CD95R, IFN-γ, catalase, Hsp70, and VEGF expression. Significant differences among response groups were observed in CD95R and IFN-γ expression in tumour-infiltrating lymphocytes. The trend of diminishing CD95R expression from poor to good responses, accompanied by an increase in IFN-γ, implied a reduction in the count of viable osteosarcoma cells with the progression of Huvos grading. Catalase expression in osteosarcoma cells was consistently elevated in the poor response group, while Hsp70 expression was highest. VEGF expression in macrophages was significantly higher in the good response group. In conclusion, this study enhances our understanding of immune-chemotherapy interactions in osteosarcoma and identifies potential biomarkers for targeted interventions.
Collapse
Affiliation(s)
- Sjahjenny Mustokoweni
- Doctoral Program in Medical Sciences, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia.
- Department of Anatomical Pathology, Faculty of Medicine, Universitas Airlangga/Dr, Soetomo General Academic Hospital, Mayjen Prof. Dr. Moestopo 6-8, Airlangga, Gubeng, Surabaya, East Java, Indonesia.
| | - Ferdiansyah Mahyudin
- Department of Orthopaedic Surgery and Traumatology, Faculty of Medicine, Universitas Airlangga/Dr, Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Rosy Setiawati
- Department of Radiology, Faculty of Medicine, Universitas Airlangga/Dr, Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Dian Nugrahenny
- Department of Pharmacology, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Mohamad Hidayat
- Department of Orthopaedic Surgery and Traumatology, Faculty of Medicine, Universitas Brawijaya/Dr. Saiful Anwar General Hospital, Malang, Indonesia
| | - Handono Kalim
- Department of Internal Medicine, Faculty of Medicine, Universitas Brawijaya/Dr. Saiful Anwar General Hospital, Malang, Indonesia
| | - Karyono Mintaroem
- Department of Anatomical Pathology, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Loeki Enggar Fitri
- Department of Parasitology, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Pancras C W Hogendoorn
- Department of Anatomical Pathology, Faculty of Medicine, Universitas Airlangga/Dr, Soetomo General Academic Hospital, Mayjen Prof. Dr. Moestopo 6-8, Airlangga, Gubeng, Surabaya, East Java, Indonesia.
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
21
|
Nehete BP, DeLise A, Nehete PN. Identification of Specific Cell Surface Markers on Immune Cells of Squirrel Monkeys ( Saimiri sciureus). J Immunol Res 2024; 2024:8215195. [PMID: 38566886 PMCID: PMC10985276 DOI: 10.1155/2024/8215195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 03/08/2024] [Accepted: 03/14/2024] [Indexed: 04/04/2024] Open
Abstract
Nonhuman primates are an important experimental model for the development of targeted biological therapeutics because of their immunological closeness to humans. However, there are very few antibody reagents relevant for delineating the different immune cell subsets based on nonhuman primate antigens directly or with cross-reactivity to those in humans. Here, we report specific expression of HLA-DR, PD-1, and CD123 on different circulating immune cell subsets in the peripheral blood that included T cells (CD3+), T cells subsets (CD4+ and CD8+), B cells (CD20+), natural killer (NK) cells (CD3-CD16+), and natural killer T cells (CD3+CD16+) along with different monocyte subsets in squirrel monkey (Saimiri sciureus). We established cross-reactivity of commercial mouse antihuman monoclonal antibodies (mAbs), with these various immune cell surface markers. These findings should aid further future comprehensive understanding of the immune parameters and identification of new biomarkers to significantly improve SQM as a model for biomedical studies.
Collapse
Affiliation(s)
- Bharti P. Nehete
- Department of Comparative Medicine, The University of Texas MD Anderson Cancer Center, Bastrop, Texas, USA
| | - Ashley DeLise
- Department of Comparative Medicine, The University of Texas MD Anderson Cancer Center, Bastrop, Texas, USA
| | - Pramod N. Nehete
- Department of Comparative Medicine, The University of Texas MD Anderson Cancer Center, Bastrop, Texas, USA
- The University of Texas Graduate School of Biomedical Sciences, Houston, Texas, USA
| |
Collapse
|
22
|
Wang Z, Zhang G, Fu J, Li G, Zhao Z, Choe H, Ding K, Ma J, Wei J, Shang D, Zhang L. Mechanism exploration and biomarker identification of glycemic deterioration in patients with diseases of the exocrine pancreas. Sci Rep 2024; 14:4374. [PMID: 38388766 PMCID: PMC10883946 DOI: 10.1038/s41598-024-52956-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 01/25/2024] [Indexed: 02/24/2024] Open
Abstract
The damage to the endocrine pancreas among patients with diseases of the exocrine pancreas (DP) leads to reduced glycemic deterioration, ultimately resulting in diabetes of the exocrine pancreas (DEP). The present research aims to investigate the mechanism responsible for glycemic deterioration in DP patients, and to identify useful biomarkers, with the ultimate goal of enhancing clinical practice awareness. Gene expression profiles of patients with DP in this study were acquired from the Gene Expression Omnibus database. The original study defines DP patients to belong in one of three categories: non-diabetic (ND), impaired glucose tolerance (IGT) and DEP, which correspond to normoglycemia, early and late glycemic deterioration, respectively. After ensuring quality control, the discovery cohort included 8 ND, 20 IGT, and 12 DEP, while the validation cohort included 27 ND, 15 IGT, and 20 DEP. Gene set enrichment analysis (GSEA) employed differentially expressed genes (DEGs), while immunocyte infiltration was determined using single sample gene set enrichment analysis (ssGSEA). Additionally, correlation analysis was conducted to establish the link between clinical characteristics and immunocyte infiltration. The least absolute shrinkage and selection operator regression and random forest combined to identify biomarkers indicating glycemic deterioration in DP patients. These biomarkers were further validated through independent cohorts and animal experiments. With glycemic deterioration, biological processes in the pancreatic islets such as nutrient metabolism and complex immune responses are disrupted in DP patients. The expression of ACOT4, B2M, and ACKR2 was upregulated, whereas the expression of CACNA1F was downregulated. Immunocyte infiltration in the islet microenvironment showed a significant positive correlation with the age, body mass index (BMI), HbA1c and glycemia at the 2-h of patients. It was a crucial factor in glycemic deterioration. Additionally, B2M demonstrated a significant positive correlation with immunocyte infiltration and clinical features. Quantitative real-time PCR (qRT-PCR) and western blotting confirmed the upregulation in B2M. Immunofluorescent staining suggested the alteration of B2M was mainly in the alpha cells and beta cells. Overall, the study showed that gradually increased immunocyte infiltration was a significant contributor to glycemic deterioration in patients with DP, and it also highlighted B2M as a biomarker.
Collapse
Affiliation(s)
- Zhen Wang
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, 116044, China
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, 116000, China
| | - Guolin Zhang
- Department of Cardiology II, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116027, China
| | - Jixian Fu
- Department of Interventional Radiology, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Guangxing Li
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, 116044, China
| | - Zhihao Zhao
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, 116044, China
| | - HyokChol Choe
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, 116044, China
- Department of Clinical Medicine, Sinuiju Medical University, Sinuiju, Republic of Korea
| | - Kaiyue Ding
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, 116044, China
| | - Junnan Ma
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, 116044, China
| | - Jing Wei
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian, 116044, China.
| | - Dong Shang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, 116000, China.
| | - Lin Zhang
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, 116044, China.
| |
Collapse
|
23
|
Tsukanov VV, Savchenko AA, Cherepnin MA, Kasparov EV, Tikhonova EP, Vasyutin AV, Tonkikh JL, Anisimova AA, Belenyuk VD, Borisov AG. Association of Blood NK Cell Phenotype with the Severity of Liver Fibrosis in Patients with Chronic Viral Hepatitis C with Genotype 1 or 3. Diagnostics (Basel) 2024; 14:472. [PMID: 38472945 PMCID: PMC10930504 DOI: 10.3390/diagnostics14050472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/06/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND NK cells phenotype and functional state in different genotypes of chronic viral hepatitis C (CVHC), depending on liver fibrosis severity, have not been sufficiently studied, which limits the possibilities for the development of pathology therapy. METHODS The CVHC diagnosis was based on the EASL recommendations (2018). Clinical examination with liver elastometry was performed in 297 patients with genotype 1 and in 231 patients with genotype 3 CVHC. The blood NK cells phenotype was determined by flow cytometry in 74 individuals with genotype 1 and in 69 individuals with genotype 3 CVHC. RESULTS The frequency of METAVIR liver fibrosis stages F3-F4 was 32.5% in individuals with genotype 3, and 20.5% in individuals with genotype 1 CVHC (p = 0.003). In patients with both genotype 1 and genotype 3 CVHC, a decrease in the total number of blood NK cells, CD56brightCD16+ NK cells and an increase in the proportion of CD56dimCD16+ NK cells, CD94+ and CD38 + CD73+ NK cells were registered in patients with fibrosis stage F3-F4 by METAVIR in comparison with persons with METAVIR fibrosis stage F0-F1. CONCLUSIONS In patients with both genotype 1 and genotype 3 CVHC, an imbalance in the ratio between cytokine-producing and cytotoxic NK cells and an increase in the content of NK cells that express inhibitory molecules were determined in patients with severe liver fibrosis.
Collapse
Affiliation(s)
- Vladislav Vladimirovich Tsukanov
- Federal Research Center “Krasnoyarsk Science Center” of the Siberian Branch of the Russian Academy of Sciences, Scientific Research Institute of Medical Problems of the North, 660022 Krasnoyarsk, Russia; (A.A.S.); (M.A.C.); (E.V.K.); (A.V.V.); (J.L.T.); (V.D.B.); (A.G.B.)
| | - Andrei Anatolyevich Savchenko
- Federal Research Center “Krasnoyarsk Science Center” of the Siberian Branch of the Russian Academy of Sciences, Scientific Research Institute of Medical Problems of the North, 660022 Krasnoyarsk, Russia; (A.A.S.); (M.A.C.); (E.V.K.); (A.V.V.); (J.L.T.); (V.D.B.); (A.G.B.)
| | - Mikhail Aleksandrovich Cherepnin
- Federal Research Center “Krasnoyarsk Science Center” of the Siberian Branch of the Russian Academy of Sciences, Scientific Research Institute of Medical Problems of the North, 660022 Krasnoyarsk, Russia; (A.A.S.); (M.A.C.); (E.V.K.); (A.V.V.); (J.L.T.); (V.D.B.); (A.G.B.)
| | - Eduard Vilyamovich Kasparov
- Federal Research Center “Krasnoyarsk Science Center” of the Siberian Branch of the Russian Academy of Sciences, Scientific Research Institute of Medical Problems of the North, 660022 Krasnoyarsk, Russia; (A.A.S.); (M.A.C.); (E.V.K.); (A.V.V.); (J.L.T.); (V.D.B.); (A.G.B.)
| | - Elena Petrovna Tikhonova
- Krasnoyarsk State Medical University Named after Prof. V.F. Voino-Yasenetsky of the Ministry of Healthcare of Russian Federation, 660022 Krasnoyarsk, Russia; (E.P.T.); (A.A.A.)
| | - Alexander Viktorovich Vasyutin
- Federal Research Center “Krasnoyarsk Science Center” of the Siberian Branch of the Russian Academy of Sciences, Scientific Research Institute of Medical Problems of the North, 660022 Krasnoyarsk, Russia; (A.A.S.); (M.A.C.); (E.V.K.); (A.V.V.); (J.L.T.); (V.D.B.); (A.G.B.)
| | - Julia Leongardovna Tonkikh
- Federal Research Center “Krasnoyarsk Science Center” of the Siberian Branch of the Russian Academy of Sciences, Scientific Research Institute of Medical Problems of the North, 660022 Krasnoyarsk, Russia; (A.A.S.); (M.A.C.); (E.V.K.); (A.V.V.); (J.L.T.); (V.D.B.); (A.G.B.)
| | - Anna Alexandrovna Anisimova
- Krasnoyarsk State Medical University Named after Prof. V.F. Voino-Yasenetsky of the Ministry of Healthcare of Russian Federation, 660022 Krasnoyarsk, Russia; (E.P.T.); (A.A.A.)
| | - Vasily Dmitrievich Belenyuk
- Federal Research Center “Krasnoyarsk Science Center” of the Siberian Branch of the Russian Academy of Sciences, Scientific Research Institute of Medical Problems of the North, 660022 Krasnoyarsk, Russia; (A.A.S.); (M.A.C.); (E.V.K.); (A.V.V.); (J.L.T.); (V.D.B.); (A.G.B.)
| | - Alexandr Gennadyevich Borisov
- Federal Research Center “Krasnoyarsk Science Center” of the Siberian Branch of the Russian Academy of Sciences, Scientific Research Institute of Medical Problems of the North, 660022 Krasnoyarsk, Russia; (A.A.S.); (M.A.C.); (E.V.K.); (A.V.V.); (J.L.T.); (V.D.B.); (A.G.B.)
| |
Collapse
|
24
|
Rodriguez-Mogeda C, van Ansenwoude CMJ, van der Molen L, Strijbis EMM, Mebius RE, de Vries HE. The role of CD56 bright NK cells in neurodegenerative disorders. J Neuroinflammation 2024; 21:48. [PMID: 38350967 PMCID: PMC10865604 DOI: 10.1186/s12974-024-03040-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/07/2024] [Indexed: 02/15/2024] Open
Abstract
Emerging evidence suggests a potential role for natural killer (NK) cells in neurodegenerative diseases, such as multiple sclerosis, Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis. However, the precise function of NK cells in these diseases remains ambiguous. The existence of two NK cell subsets, CD56bright and CD56dim NK cells, complicates the understanding of the contribution of NK cells in neurodegeneration as their functions within the context of neurodegenerative diseases may differ significantly. CD56bright NK cells are potent cytokine secretors and are considered more immunoregulatory and less terminally differentiated than their mostly cytotoxic CD56dim counterparts. Hence, this review focusses on NK cells, specifically on CD56bright NK cells, and their role in neurodegenerative diseases. Moreover, it explores the mechanisms underlying their ability to enter the central nervous system. By consolidating current knowledge, we aim to provide a comprehensive overview on the role of CD56bright NK cells in neurodegenerative diseases. Elucidating their impact on neurodegeneration may have implications for future therapeutic interventions, potentially ameliorating disease pathogenesis.
Collapse
Affiliation(s)
- Carla Rodriguez-Mogeda
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam, The Netherlands
- MS Center Amsterdam, Amsterdam UMC Location Vrije Universiteit, Amsterdam, The Netherlands
| | - Chaja M J van Ansenwoude
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam, The Netherlands
- MS Center Amsterdam, Amsterdam UMC Location Vrije Universiteit, Amsterdam, The Netherlands
| | - Lennart van der Molen
- IQ Health Science Department, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Eva M M Strijbis
- Amsterdam Neuroscience, Amsterdam, The Netherlands
- MS Center Amsterdam, Amsterdam UMC Location Vrije Universiteit, Amsterdam, The Netherlands
- Department of Neurology, Amsterdam UMC Location Vrije Universiteit, Amsterdam, The Netherlands
| | - Reina E Mebius
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Infection and Immunity Institute, Amsterdam, The Netherlands
| | - Helga E de Vries
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
- Amsterdam Neuroscience, Amsterdam, The Netherlands.
- MS Center Amsterdam, Amsterdam UMC Location Vrije Universiteit, Amsterdam, The Netherlands.
| |
Collapse
|
25
|
Ravichandran S, Erra-Diaz F, Karakaslar OE, Marches R, Kenyon-Pesce L, Rossi R, Chaussabel D, Nehar-Belaid D, LaFon DC, Pascual V, Palucka K, Paust S, Nahm MH, Kuchel GA, Banchereau J, Ucar D. Distinct baseline immune characteristics associated with responses to conjugated and unconjugated pneumococcal polysaccharide vaccines in older adults. Nat Immunol 2024; 25:316-329. [PMID: 38182669 PMCID: PMC10834365 DOI: 10.1038/s41590-023-01717-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 11/21/2023] [Indexed: 01/07/2024]
Abstract
Pneumococcal infections cause serious illness and death among older adults. The capsular polysaccharide vaccine PPSV23 and conjugated alternative PCV13 can prevent these infections; yet, underlying immunological responses and baseline predictors remain unknown. We vaccinated 39 older adults (>60 years) with PPSV23 or PCV13 and observed comparable antibody responses (day 28) and plasmablast transcriptional responses (day 10); however, the baseline predictors were distinct. Analyses of baseline flow cytometry and bulk and single-cell RNA-sequencing data revealed a baseline phenotype specifically associated with weaker PCV13 responses, which was characterized by increased expression of cytotoxicity-associated genes, increased frequencies of CD16+ natural killer cells and interleukin-17-producing helper T cells and a decreased frequency of type 1 helper T cells. Men displayed this phenotype more robustly and mounted weaker PCV13 responses than women. Baseline expression levels of a distinct gene set predicted PPSV23 responses. This pneumococcal precision vaccinology study in older adults uncovered distinct baseline predictors that might transform vaccination strategies and initiate novel interventions.
Collapse
Affiliation(s)
| | - Fernando Erra-Diaz
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
- University of Buenos Aires, School of Medicine, Buenos Aires, Argentina
| | - Onur E Karakaslar
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
- Leiden University Medical Center (LUMC), Leiden, the Netherlands
| | - Radu Marches
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Lisa Kenyon-Pesce
- UConn Center on Aging, University of Connecticut, Farmington, CT, USA
| | - Robert Rossi
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | | | | | - David C LaFon
- Division of Pulmonary, Allergy and Critical Care Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Virginia Pascual
- Drukier Institute for Children's Health and Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Karolina Palucka
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Silke Paust
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Moon H Nahm
- Division of Pulmonary, Allergy and Critical Care Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - George A Kuchel
- UConn Center on Aging, University of Connecticut, Farmington, CT, USA
| | - Jacques Banchereau
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
- Immunoledge LLC, Montclair, NJ, USA
| | - Duygu Ucar
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA.
- Institute for Systems Genomics, University of Connecticut Health Center, Farmington, CT, USA.
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT, USA.
| |
Collapse
|
26
|
Barshidi A, Ardeshiri K, Ebrahimi F, Alian F, Shekarchi AA, Hojjat-Farsangi M, Jadidi-Niaragh F. The role of exhausted natural killer cells in the immunopathogenesis and treatment of leukemia. Cell Commun Signal 2024; 22:59. [PMID: 38254135 PMCID: PMC10802000 DOI: 10.1186/s12964-023-01428-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/08/2023] [Indexed: 01/24/2024] Open
Abstract
The immune responses to cancer cells involve both innate and acquired immune cells. In the meantime, the most attention has been drawn to the adaptive immune cells, especially T cells, while, it is now well known that the innate immune cells, especially natural killer (NK) cells, play a vital role in defending against malignancies. While the immune cells are trying to eliminate malignant cells, cancer cells try to prevent the function of these cells and suppress immune responses. The suppression of NK cells in various cancers can lead to the induction of an exhausted phenotype in NK cells, which will impair their function. Recent studies have shown that the occurrence of this phenotype in various types of leukemic malignancies can affect the prognosis of the disease, and targeting these cells may be considered a new immunotherapy method in the treatment of leukemia. Therefore, a detailed study of exhausted NK cells in leukemic diseases can help both to understand the mechanisms of leukemia progression and to design new treatment methods by creating a deeper understanding of these cells. Here, we will comprehensively review the immunobiology of exhausted NK cells and their role in various leukemic malignancies. Video Abstract.
Collapse
Affiliation(s)
- Asal Barshidi
- Department of Biological Sciences, Faculty of Sciences, University of Kurdistan, Sanandaj, Iran
| | - Keivan Ardeshiri
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Farbod Ebrahimi
- Nanoparticle Process Technology, Faculty of Engineering, University of Duisburg-Essen, Duisburg, Germany
| | - Fatemeh Alian
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Ali Akbar Shekarchi
- Department of Pathology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
27
|
Liu K, Han B. Role of immune cells in the pathogenesis of myocarditis. J Leukoc Biol 2024; 115:253-275. [PMID: 37949833 DOI: 10.1093/jleuko/qiad143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/15/2023] [Accepted: 10/24/2023] [Indexed: 11/12/2023] Open
Abstract
Myocarditis is an inflammatory heart disease that mostly affects young people. Myocarditis involves a complex immune network; however, its detailed pathogenesis is currently unclear. The diversity and plasticity of immune cells, either in the peripheral blood or in the heart, have been partially revealed in a number of previous studies involving patients and several kinds of animal models with myocarditis. It is the complexity of immune cells, rather than one cell type that is the culprit. Thus, recognizing the individual intricacies within immune cells in the context of myocarditis pathogenesis and finding the key intersection of the immune network may help in the diagnosis and treatment of this condition. With the vast amount of cell data gained on myocarditis and the recent application of single-cell sequencing, we summarize the multiple functions of currently recognized key immune cells in the pathogenesis of myocarditis to provide an immune background for subsequent investigations.
Collapse
Affiliation(s)
- Keyu Liu
- Department of Pediatric Cardiology, Shandong Provincial Hospital, Shandong University, Cheeloo Colledge of Medicine, No. 324 Jingwu Road, 250021, Jinan, China
| | - Bo Han
- Department of Pediatric Cardiology, Shandong Provincial Hospital, Shandong University, Cheeloo Colledge of Medicine, No. 324 Jingwu Road, 250021, Jinan, China
- Department of Pediatric Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324 Jingwu Road, 250021, Jinan, China
- Shandong Provincial Hospital, Shandong Provincial Clinical Research Center for Children' s Health and Disease office, No. 324 Jingwu Road, 250021, Jinan, China
| |
Collapse
|
28
|
Karmakar S, Mishra A, Pal P, Lal G. Effector and cytolytic function of natural killer cells in anticancer immunity. J Leukoc Biol 2024; 115:235-252. [PMID: 37818891 DOI: 10.1093/jleuko/qiad126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/21/2023] [Accepted: 09/28/2023] [Indexed: 10/13/2023] Open
Abstract
Adaptive immune cells play an important role in mounting antigen-specific antitumor immunity. The contribution of innate immune cells such as monocytes, macrophages, natural killer (NK) cells, dendritic cells, and gamma-delta T cells is well studied in cancer immunology. NK cells are innate lymphoid cells that show effector and regulatory function in a contact-dependent and contact-independent manner. The cytotoxic function of NK cells plays an important role in killing the infected and transformed host cells and controlling infection and tumor growth. However, several studies have also ascribed the role of NK cells in inducing pathophysiology in autoimmune diseases, promoting immune tolerance in the uterus, and antitumor function in the tumor microenvironment. We discuss the fundamentals of NK cell biology, its distribution in different organs, cellular and molecular interactions, and its cytotoxic and noncytotoxic functions in cancer biology. We also highlight the use of NK cell-based adoptive cellular therapy in cancer.
Collapse
Affiliation(s)
- Surojit Karmakar
- Laboratory of Autoimmunity and Tolerance, National Centre for Cell Science, Ganeshkhind, Pune, MH-411007, India
| | - Amrita Mishra
- Laboratory of Autoimmunity and Tolerance, National Centre for Cell Science, Ganeshkhind, Pune, MH-411007, India
| | - Pradipta Pal
- Laboratory of Autoimmunity and Tolerance, National Centre for Cell Science, Ganeshkhind, Pune, MH-411007, India
| | - Girdhari Lal
- Laboratory of Autoimmunity and Tolerance, National Centre for Cell Science, Ganeshkhind, Pune, MH-411007, India
| |
Collapse
|
29
|
Letafati A, Ardekani OS, Naderisemiromi M, Norouzi M, Shafiei M, Nik S, Mozhgani SH. Unraveling the dynamic mechanisms of natural killer cells in viral infections: insights and implications. Virol J 2024; 21:18. [PMID: 38216935 PMCID: PMC10785350 DOI: 10.1186/s12985-024-02287-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 01/04/2024] [Indexed: 01/14/2024] Open
Abstract
Viruses pose a constant threat to human well-being, necessitating the immune system to develop robust defenses. Natural killer (NK) cells, which play a crucial role in the immune system, have become recognized as vital participants in protecting the body against viral infections. These remarkable innate immune cells possess the unique ability to directly recognize and eliminate infected cells, thereby contributing to the early control and containment of viral pathogens. However, recent research has uncovered an intriguing phenomenon: the alteration of NK cells during viral infections. In addition to their well-established role in antiviral defense, NK cells undergo dynamic changes in their phenotype, function, and regulatory mechanisms upon encountering viral pathogens. These alterations can significantly impact the effectiveness of NK cell responses during viral infections. This review explores the multifaceted role of NK cells in antiviral immunity, highlighting their conventional effector functions as well as the emerging concept of NK cell alteration in the context of viral infections. Understanding the intricate interplay between NK cells and viral infections is crucial for advancing our knowledge of antiviral immune responses and could offer valuable information for the creation of innovative therapeutic approaches to combat viral diseases.
Collapse
Affiliation(s)
- Arash Letafati
- Department of Virology, Faculty of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | - Omid Salahi Ardekani
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | - Mina Naderisemiromi
- Department of Immunology, Faculty of Medicine and Health, The University of Manchester, Manchester, UK
| | - Mehdi Norouzi
- Department of Virology, Faculty of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | | | - Soheil Nik
- School of Medicine, Alborz University of Medical Sciences, Karaj, Alborz, Iran
| | - Sayed-Hamidreza Mozhgani
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran.
- Department of Microbiology and Virology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
30
|
Borlongan MC, Saha D, Wang H. Tumor Microenvironment: A Niche for Cancer Stem Cell Immunotherapy. Stem Cell Rev Rep 2024; 20:3-24. [PMID: 37861969 DOI: 10.1007/s12015-023-10639-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2023] [Indexed: 10/21/2023]
Abstract
Tumorigenic Cancer Stem Cells (CSCs), often called tumor-initiating cells (TICs), represent a unique subset of cells within the tumor milieu. They stand apart from the bulk of tumor cells due to their exceptional self-renewal, metastatic, and differentiation capabilities. Despite significant progress in classifying CSCs, these cells remain notably resilient to conventional radiotherapy and chemotherapy, contributing to cancer recurrence. In this review, our objective is to explore novel avenues of research that delve into the distinctive characteristics of CSCs within their surrounding tumor microenvironment (TME). We will start with an overview of the defining features of CSCs and then delve into their intricate interactions with cells from the lymphoid lineage, namely T cells, B cells, and natural killer (NK) cells. Furthermore, we will discuss their dynamic interplay with myeloid lineage cells, including macrophages, neutrophils, and myeloid-derived suppressor cells (MDSCs). Moreover, we will illuminate the crosstalk between CSCs and cells of mesenchymal origin, specifically fibroblasts, adipocytes, and endothelial cells. Subsequently, we will underscore the pivotal role of CSCs within the context of the tumor-associated extracellular matrix (ECM). Finally, we will highlight pre-clinical and clinical studies that target CSCs within the intricate landscape of the TME, including CAR-T therapy, oncolytic viruses, and CSC-vaccines, with the ultimate goal of uncovering novel avenues for CSC-based cancer immunotherapy.
Collapse
Affiliation(s)
- Mia C Borlongan
- College of Medicine, California Northstate University, 9700 West Taron Drive, Elk Grove, CA, 95757, USA
| | - Dipongkor Saha
- Department of Pharmaceutical and Biomedical Sciences College of Pharmacy, California Northstate University, 9700 West Taron Drive, Elk Grove, CA, 95757, USA.
| | - Hongbin Wang
- College of Medicine, California Northstate University, 9700 West Taron Drive, Elk Grove, CA, 95757, USA.
- Department of Pharmaceutical and Biomedical Sciences College of Pharmacy, California Northstate University, 9700 West Taron Drive, Elk Grove, CA, 95757, USA.
- Master Program of Pharmaceutical Sciences College of Graduate Studies, Department of Pharmaceutical and Biomedical Sciences College of Pharmacy, Department of Basic Science College of Medicine, California Northstate University, 9700 West Taron Drive, Elk Grove, CA, 95757, USA.
| |
Collapse
|
31
|
Roudsari PP, Alavi-Moghadam S, Aghayan HR, Arjmand R, Gilany K, Rezaei-Tavirani M, Arjmand B. GMP-Based Isolation of Full-Term Human Placenta-Derived NK Cells for CAR-NK Cell Therapy in Malignant Melanoma. Methods Mol Biol 2024; 2849:203-213. [PMID: 37801257 DOI: 10.1007/7651_2023_503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Melanoma, a severe type of skin cancer, poses significant management challenges due to its resistance to available treatments. Despite this obstacle, the high immunogenicity of melanoma renders it amenable to immune therapy, and NK cells have been identified as possessing anti-tumor properties in immunotherapy. The development of chimeric antigen receptor (CAR)-modified NK cells, or CAR-NK cells, has shown potential in enhancing immunotherapeutic regimens. To achieve this, researchers have explored various sources of NK cells, including those derived from the placenta, which offers benefits compared to other sources due to their limited ex vivo expansion potential. Recent studies have indicated the capacity to expand functional NK cells from placenta-derived cells in vitro that possess anti-tumor cytolytic properties. This chapter discusses the isolation of full-term human placenta-derived NK cells using Good Manufacturing Practice-based methods for CAR-NK cell therapy in melanoma.
Collapse
Affiliation(s)
| | - Sepideh Alavi-Moghadam
- Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Aghayan
- Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Cell Therapy and Regenerative Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Rasta Arjmand
- Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Cell Therapy and Regenerative Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Kambiz Gilany
- Integrative Oncology Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
- Reproductive Immunology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | | | - Babak Arjmand
- Iranian Cancer Control Center (MACSA), Tehran, Iran.
- Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
32
|
Wu M, Yuan S, Liu K, Wang C, Wen F. Gastric Cancer Signaling Pathways and Therapeutic Applications. Technol Cancer Res Treat 2024; 23:15330338241271935. [PMID: 39376170 PMCID: PMC11468335 DOI: 10.1177/15330338241271935] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/31/2024] [Accepted: 06/25/2024] [Indexed: 10/09/2024] Open
Abstract
Gastric cancer (GC) is a prevalent malignant tumor and ranks as the second leading cause of death among cancer patients worldwide. Due to its hidden nature and difficulty in detection, GC has a high incidence and poor prognosis. Traditional treatment methods such as systemic chemotherapy, radiotherapy, and surgical resection are commonly used, but they often fail to achieve satisfactory curative effects, resulting in a very low 5-year survival rate for GC patients. Currently, targeted therapy and immunotherapy are prominent areas of research both domestically and internationally. These methods hold promise for the treatment of GC. This article focuses on the signaling pathways associated with the development of GC, as well as the recent advancements and applications of targeted therapy and immunotherapy. The aim is to provide fresh insights for the clinical treatment of GC.
Collapse
Affiliation(s)
- Mingfang Wu
- The Second Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, China
| | - Shiman Yuan
- The Clinical Medical College, Guizhou Medical University, Guiyang, China
| | - Kai Liu
- The Clinical Medical College, Guizhou Medical University, Guiyang, China
| | - Chenyu Wang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Feng Wen
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Sichuan, China
| |
Collapse
|
33
|
Prokopeva AE, Emene CC, Gomzikova MO. Antitumor Immunity: Role of NK Cells and Extracellular Vesicles in Cancer Immunotherapy. Curr Issues Mol Biol 2023; 46:140-152. [PMID: 38248313 PMCID: PMC10814167 DOI: 10.3390/cimb46010011] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/27/2023] [Accepted: 12/02/2023] [Indexed: 01/23/2024] Open
Abstract
The immune system plays a crucial role in recognizing and eliminating altered tumor cells. However, tumors develop mechanisms to evade the body's natural immune defenses. Therefore, methods for specifically recognizing/targeting tumor cells, for instance, through the activation, directed polarization, and training of immune cells, have been developed based on the body's immune cells. This strategy has been termed cellular immunotherapy. One promising strategy for treating tumor diseases is NK cell-based immunotherapy. NK cells have the ability to recognize and destroy transformed cells without prior activation as well as tumor cells with reduced MHC-I expression. A novel approach in immunotherapy is the use of extracellular vesicles (EVs) derived from NK cells. The main advantages of NK cell-derived EVs are their small size and better tissue penetration into a tumor. The aim of this review is to systematically present existing information on the mechanisms of antitumor immunity and the role of NK cells and extracellular vesicles in cancer immunotherapy. Clinical and preclinical studies utilizing NK cells and extracellular vesicles for anticancer therapy currently underway will provide valuable insights for researchers in the field of cancer.
Collapse
Affiliation(s)
- Angelina E. Prokopeva
- Laboratory of Molecular Immunology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420111, Russia;
| | - Charles C. Emene
- Laboratory of Intercellular Communication, Kazan Federal University, Kazan 420111, Russia;
| | - Marina O. Gomzikova
- Laboratory of Molecular Immunology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420111, Russia;
- Laboratory of Intercellular Communication, Kazan Federal University, Kazan 420111, Russia;
| |
Collapse
|
34
|
Li LS, Yang L, Zhuang L, Ye ZY, Zhao WG, Gong WP. From immunology to artificial intelligence: revolutionizing latent tuberculosis infection diagnosis with machine learning. Mil Med Res 2023; 10:58. [PMID: 38017571 PMCID: PMC10685516 DOI: 10.1186/s40779-023-00490-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 11/06/2023] [Indexed: 11/30/2023] Open
Abstract
Latent tuberculosis infection (LTBI) has become a major source of active tuberculosis (ATB). Although the tuberculin skin test and interferon-gamma release assay can be used to diagnose LTBI, these methods can only differentiate infected individuals from healthy ones but cannot discriminate between LTBI and ATB. Thus, the diagnosis of LTBI faces many challenges, such as the lack of effective biomarkers from Mycobacterium tuberculosis (MTB) for distinguishing LTBI, the low diagnostic efficacy of biomarkers derived from the human host, and the absence of a gold standard to differentiate between LTBI and ATB. Sputum culture, as the gold standard for diagnosing tuberculosis, is time-consuming and cannot distinguish between ATB and LTBI. In this article, we review the pathogenesis of MTB and the immune mechanisms of the host in LTBI, including the innate and adaptive immune responses, multiple immune evasion mechanisms of MTB, and epigenetic regulation. Based on this knowledge, we summarize the current status and challenges in diagnosing LTBI and present the application of machine learning (ML) in LTBI diagnosis, as well as the advantages and limitations of ML in this context. Finally, we discuss the future development directions of ML applied to LTBI diagnosis.
Collapse
Affiliation(s)
- Lin-Sheng Li
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, the Eighth Medical Center of PLA General Hospital, Beijing, 100091, China
- Hebei North University, Zhangjiakou, 075000, Hebei, China
- Senior Department of Respiratory and Critical Care Medicine, the Eighth Medical Center of PLA General Hospital, Beijing, 100091, China
| | - Ling Yang
- Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Li Zhuang
- Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Zhao-Yang Ye
- Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Wei-Guo Zhao
- Senior Department of Respiratory and Critical Care Medicine, the Eighth Medical Center of PLA General Hospital, Beijing, 100091, China.
| | - Wen-Ping Gong
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, the Eighth Medical Center of PLA General Hospital, Beijing, 100091, China.
| |
Collapse
|
35
|
Mohammadian Gol T, Kim M, Sinn R, Ureña-Bailén G, Stegmeyer S, Gratz PG, Zahedipour F, Roig-Merino A, Antony JS, Mezger M. CRISPR-Cas9-Based Gene Knockout of Immune Checkpoints in Expanded NK Cells. Int J Mol Sci 2023; 24:16065. [PMID: 38003255 PMCID: PMC10671270 DOI: 10.3390/ijms242216065] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/31/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Natural killer (NK) cell immunotherapy has emerged as a novel treatment modality for various cancer types, including leukemia. The modulation of inhibitory signaling pathways in T cells and NK cells has been the subject of extensive investigation in both preclinical and clinical settings in recent years. Nonetheless, further research is imperative to optimize antileukemic activities, especially regarding NK-cell-based immunotherapies. The central scientific question of this study pertains to the potential for boosting cytotoxicity in expanded and activated NK cells through the inhibition of inhibitory receptors. To address this question, we employed the CRISPR-Cas9 system to target three distinct inhibitory signaling pathways in NK cells. Specifically, we examined the roles of A2AR within the metabolic purinergic signaling pathway, CBLB as an intracellular regulator in NK cells, and the surface receptors NKG2A and CD96 in enhancing the antileukemic efficacy of NK cells. Following the successful expansion of NK cells, they were transfected with Cas9+sgRNA RNP to knockout A2AR, CBLB, NKG2A, and CD96. The analysis of indel frequencies for all four targets revealed good knockout efficiencies in expanded NK cells, resulting in diminished protein expression as confirmed by flow cytometry and Western blot analysis. Our in vitro killing assays demonstrated that NKG2A and CBLB knockout led to only a marginal improvement in the cytotoxicity of NK cells against AML and B-ALL cells. Furthermore, the antileukemic activity of CD96 knockout NK cells did not yield significant enhancements, and the blockade of A2AR did not result in significant improvement in killing efficiency. In conclusion, our findings suggest that CRISPR-Cas9-based knockout strategies for immune checkpoints might not be sufficient to efficiently boost the antileukemic functions of expanded (and activated) NK cells and, at the same time, point to the need for strong cellular activating signals, as this can be achieved, for example, via transgenic chimeric antigen receptor expression.
Collapse
Affiliation(s)
- Tahereh Mohammadian Gol
- Department of General Pediatrics, Hematology and Oncology, University Children’s Hospital Tübingen, 72076 Tübingen, Germany; (T.M.G.); (M.K.); (P.G.G.); (F.Z.)
| | - Miso Kim
- Department of General Pediatrics, Hematology and Oncology, University Children’s Hospital Tübingen, 72076 Tübingen, Germany; (T.M.G.); (M.K.); (P.G.G.); (F.Z.)
| | - Ralph Sinn
- Department of General Pediatrics, Hematology and Oncology, University Children’s Hospital Tübingen, 72076 Tübingen, Germany; (T.M.G.); (M.K.); (P.G.G.); (F.Z.)
| | - Guillermo Ureña-Bailén
- Department of General Pediatrics, Hematology and Oncology, University Children’s Hospital Tübingen, 72076 Tübingen, Germany; (T.M.G.); (M.K.); (P.G.G.); (F.Z.)
| | - Sarah Stegmeyer
- Department of General Pediatrics, Hematology and Oncology, University Children’s Hospital Tübingen, 72076 Tübingen, Germany; (T.M.G.); (M.K.); (P.G.G.); (F.Z.)
| | - Paul Gerhard Gratz
- Department of General Pediatrics, Hematology and Oncology, University Children’s Hospital Tübingen, 72076 Tübingen, Germany; (T.M.G.); (M.K.); (P.G.G.); (F.Z.)
| | - Fatemeh Zahedipour
- Department of General Pediatrics, Hematology and Oncology, University Children’s Hospital Tübingen, 72076 Tübingen, Germany; (T.M.G.); (M.K.); (P.G.G.); (F.Z.)
| | | | - Justin S. Antony
- Department of General Pediatrics, Hematology and Oncology, University Children’s Hospital Tübingen, 72076 Tübingen, Germany; (T.M.G.); (M.K.); (P.G.G.); (F.Z.)
| | - Markus Mezger
- Department of General Pediatrics, Hematology and Oncology, University Children’s Hospital Tübingen, 72076 Tübingen, Germany; (T.M.G.); (M.K.); (P.G.G.); (F.Z.)
| |
Collapse
|
36
|
Mou J, Xie L, Xu Y, Zhou T, Liu Y, Huang Q, Tang K, Tian Z, Xing H, Qiu S, Rao Q, Wang M, Wang J. 2B4 inhibits the apoptosis of natural killer cells through phosphorylated extracellular signal-related kinase/B-cell lymphoma 2 signal pathway. Cytotherapy 2023; 25:1080-1090. [PMID: 37516949 DOI: 10.1016/j.jcyt.2023.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/25/2023] [Accepted: 07/07/2023] [Indexed: 07/31/2023]
Abstract
BACKGROUND AIMS Decades after the identification of natural killer (NK) cells as potential effector cells against malignantly transformed cells, an increasing amount of research suggests that NK cells are a prospective choice of immunocytes for cancer immunotherapy in addition to T lymphocytes for cancer immunotherapy. Recent studies have led to a breakthrough in the combination of hematopoietic stem-cell transplantation with allogeneic NK cells infusion for the treatment of malignant tumors. However, the short lifespan of NK cells in patients is the major impediment, limiting their efficacy. Therefore, prolonging the survival of NK cells will promote the application of NK-cell immunotherapy. As we have known, NK cells use a "missing-self" mechanism to lyse target cells and exert their functions through a wide array of activating, co-stimulatory and inhibitory receptors. Our previous study has suggested that CD244 (2B4), one of the co-stimulatory receptors, can improve the function of chimeric antigen receptor NK cells. However, the underlying mechanism of how 2B4 engages in the function of NK cells requires further investigation. Overall, we established a feeder cell with the expression of CD48, the ligand of 2B4, to investigate the function of 2B4-CD48 axis in NK cells, and meanwhile, to explore whether the newly generated feeder cell can improve the function of ex vivo-expanded NK cells. METHODS First, K562 cells overexpressing 4-1BBL and membrane-bound IL-21 (mbIL-21) were constructed (K562-41BBL-mbIL-21) and were sorted to generate the single clone. These widely used feeder cells (K562-41BBL-mbIL-21) were named as Basic Feeder hereinafter. Based on the Basic feeder, CD48 was overexpressed and named as CD48 Feeder. Then, the genetically modified feeder cells were used to expand primary NK cells from peripheral blood or umbilical cord blood. In vitro experiments were performed to compare proliferation ability, cytotoxicity, survival and activation/inhibition phenotypes of NK cells stimulated via different feeder cells. K562 cells were injected into nude mice subcutaneously with tail vein injection of NK cells from different feeder system for the detection of NK in vivo persistence and function. RESULTS Compared with Basic Feeders, CD48 Feeders can promote the proliferation of primary NK cells from peripheral blood and umbilical cord blood and reduce NK cell apoptosis by activating the p-ERK/BCL2 pathway both in vitro and in vivo without affecting overall phenotypes. Furthermore, NK cells expanded via CD48 Feeders showed stronger anti-tumor capability and infiltration ability into the tumor microenvironment. CONCLUSIONS In this preclinical study, the engagement of the 2B4-CD48 axis can inhibit the apoptosis of NK cells through the p-ERK/BCL2 signal pathway, leading to an improvement in therapeutic efficiency.
Collapse
Affiliation(s)
- Junli Mou
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Tianjin, China; Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Leling Xie
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Tianjin, China; Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yingxi Xu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Tianjin, China; Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Tong Zhou
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Tianjin, China; Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yu Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Tianjin, China; Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Qianqian Huang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Tianjin, China; Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Kejing Tang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Tianjin, China; Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Zheng Tian
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Tianjin, China; Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Haiyan Xing
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Tianjin, China; Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Shaowei Qiu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Tianjin, China; Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Qing Rao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Tianjin, China; Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Min Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Tianjin, China; Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.
| | - Jianxiang Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Tianjin, China; Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.
| |
Collapse
|
37
|
Elanany MM, Mostafa D, Hamdy NM. Remodeled tumor immune microenvironment (TIME) parade via natural killer cells reprogramming in breast cancer. Life Sci 2023; 330:121997. [PMID: 37536617 DOI: 10.1016/j.lfs.2023.121997] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/20/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
Breast cancer (BC) is the main cause of cancer-related mortality among women globally. Despite substantial advances in the identification and management of primary tumors, traditional therapies including surgery, chemotherapy, and radiation cannot completely eliminate the danger of relapse and metastatic illness. Metastasis is controlled by microenvironmental and systemic mechanisms, including immunosurveillance. This led to the evolvement of immunotherapies that has gained much attention in the recent years for cancer treatment directed to the innate immune system. The long forgotten innate immune cells known as natural killer (NK) cells have emerged as novel targets for more effective therapeutics for BC. Normally, NK cells has the capacity to identify and eradicate tumor cells either directly or by releasing cytotoxic granules, chemokines and proinflammatory cytokines. Yet, NK cells are exposed to inhibitory signals by cancer cells, which causes them to become dysfunctional in the immunosuppressive tumor microenvironment (TME) in BC, supporting tumor escape and spread. Potential mechanisms of NK cell dysfunction in BC metastasis have been recently identified. Understanding these immunologic pathways driving BC metastasis will lead to improvements in the current immunotherapeutic strategies. In the current review, we highlight how BC evades immunosurveillance by rendering NK cells dysfunctional and we shed the light on novel NK cell- directed therapies.
Collapse
Affiliation(s)
- Mona M Elanany
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Ain Shams University, Abassia, 11566 Cairo, Egypt
| | - Dina Mostafa
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Ain Shams University, Abassia, 11566 Cairo, Egypt.
| | - Nadia M Hamdy
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Ain Shams University, Abassia, 11566 Cairo, Egypt.
| |
Collapse
|
38
|
Razizadeh MH, Zafarani A, Taghavi-Farahabadi M, Khorramdelazad H, Minaeian S, Mahmoudi M. Natural killer cells and their exosomes in viral infections and related therapeutic approaches: where are we? Cell Commun Signal 2023; 21:261. [PMID: 37749597 PMCID: PMC10519079 DOI: 10.1186/s12964-023-01266-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/11/2023] [Indexed: 09/27/2023] Open
Abstract
Innate immunity is the first line of the host immune system to fight against infections. Natural killer cells are the innate immunity lymphocytes responsible for fighting against virus-infected and cancerous cells. They have various mechanisms to suppress viral infections. On the other hand, viruses have evolved to utilize different ways to evade NK cell-mediated responses. Viruses can balance the response by regulating the cytokine release pattern and changing the proportion of activating and inhibitory receptors on the surface of NK cells. Exosomes are a subtype of extracellular vesicles that are involved in intercellular communication. Most cell populations can release these nano-sized vesicles, and it was shown that these vesicles produce identical outcomes to the originating cell from which they are released. In recent years, the role of NK cell-derived exosomes in various diseases including viral infections has been highlighted, drawing attention to utilizing the therapeutic potential of these nanoparticles. In this article, the role of NK cells in various viral infections and the mechanisms used by viruses to evade these important immune system cells are initially examined. Subsequently, the role of NK cell exosomes in controlling various viral infections is discussed. Finally, the current position of these cells in the treatment of viral infections and the therapeutic potential of their exosomes are reviewed. Video Abstract.
Collapse
Affiliation(s)
- Mohammad Hossein Razizadeh
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Antimicrobial Resistance Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Zafarani
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahsa Taghavi-Farahabadi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Khorramdelazad
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Sara Minaeian
- Antimicrobial Resistance Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Mahmoudi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
39
|
Jiang D, Zhang J, Mao Z, Shi J, Ma P. Driving natural killer cell-based cancer immunotherapy for cancer treatment: An arduous journey to promising ground. Biomed Pharmacother 2023; 165:115004. [PMID: 37352703 DOI: 10.1016/j.biopha.2023.115004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/25/2023] Open
Abstract
Immunotherapy represents one of the most effective strategies for cancer treatment. Recently, progress has been made in using natural killer (NK) cells for cancer therapy. NK cells can directly kill tumor cells without pre-sensitization and thus show promise in clinical applications, distinct from the use of T cells. Whereas, research and development on NK cell-based immunotherapy is still in its infancy, and enhancing the therapeutic effects of NK cells remains a key problem to be solved. An incompletely understanding of the mechanisms of action of NK cells, immune resistance in the tumor microenvironment, and obstacles associated with the delivery of therapeutic agents in vivo, represent three mountains that need to be scaled. Here, we firstly describe the mechanisms underlying the development, activity, and maturation of NK cells, and the formation of NK‑cell immunological synapses. Secondly, we discuss strategies for NK cell-based immunotherapy strategies, including adoptive transfer of NK cell therapy and treatment with cytokines, monoclonal antibodies, and immune checkpoint inhibitors targeting NK cells. Finally, we review the use of nanotechnology to overcome immune resistance, including enhancing the anti-tumor efficiency of chimeric antigen receptor-NK, cytokines and immunosuppressive-pathways inhibitors, promoting NK cell homing and developing NK cell-based nano-engagers.
Collapse
Affiliation(s)
- Dandan Jiang
- Department of Pharmacy, Henan Provincial People's Hospital; People's Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450003, China
| | - Jingya Zhang
- Patent Examination Cooperation (Henan) Center of the Patent office, China National Intellectual Property Administration, Henan 450046, China
| | - Zhenkun Mao
- Department of Pharmacy, Henan Provincial People's Hospital; People's Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450003, China
| | - Jinjin Shi
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou 450001, China.
| | - Peizhi Ma
- Department of Pharmacy, Henan Provincial People's Hospital; People's Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450003, China.
| |
Collapse
|
40
|
Uyangaa E, Choi JY, Park SO, Byeon HW, Cho HW, Kim K, Eo SK. TLR3/TRIF pathway confers protection against herpes simplex encephalitis through NK cell activation mediated by a loop of type I IFN and IL-15 from epithelial and dendritic cells. Immunology 2023; 170:83-104. [PMID: 37278103 DOI: 10.1111/imm.13664] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 04/10/2023] [Indexed: 06/07/2023] Open
Abstract
Autosomal recessive (AR) and dominant (AD) deficiencies of TLR3 and TRIF are believed to be crucial genetic causes of herpes simplex encephalitis (HSE), which is a fatal disease causing focal or global cerebral dysfunction following infection with herpes simplex virus type 1 (HSV-1). However, few studies have been conducted on the immunopathological networks of HSE in the context of TLR3 and TRIF defects at the cellular and molecular levels. In this work, we deciphered the crosstalk between type I IFN (IFN-I)-producing epithelial layer and IL-15-producing dendritic cells (DC) to activate NK cells for the protective role of TLR3/TRIF pathway in HSE progression after vaginal HSV-1 infection. TLR3- and TRIF-ablated mice showed enhanced susceptibility to HSE progression, along with high HSV-1 burden in vaginal tract, lymphoid tissues and CNS. The increased HSV-1 burden in TLR3- and TRIF-ablated mice did not correlate with increased infiltration of Ly-6C+ monocytes, but it was closely associated with impaired NK cell activation in vaginal tract. Furthermore, using delicate ex vivo experiments and bone marrow transplantation, TRIF deficiency in tissue-resident cells, such as epithelial cells in vaginal tract, was found to cause impaired NK cell activation by means of low IFN-I production, whereas IFN-I receptor in DC was required for NK cell activation via IL-15 production in response to IFN-I produced from epithelial layer. These results provide new information about IFN-I- and IL-15-mediated crosstalk between epithelial cells and DC at the primary infection site, which suppresses HSE progression in a TLR3- and TRIF-dependent manner.
Collapse
Affiliation(s)
- Erdenebileg Uyangaa
- College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan, Republic of Korea
| | - Jin Young Choi
- College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan, Republic of Korea
| | - Seong Ok Park
- College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan, Republic of Korea
| | - Hee Won Byeon
- College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan, Republic of Korea
| | - Hye Won Cho
- College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan, Republic of Korea
| | - Koanhoi Kim
- Department of Pharmacology, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Seong Kug Eo
- College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan, Republic of Korea
| |
Collapse
|
41
|
Schorr C, Krishnan MS, Capitano M. Deficits in our understanding of natural killer cell development in mouse and human. Curr Opin Hematol 2023; 30:106-116. [PMID: 37074304 PMCID: PMC10239331 DOI: 10.1097/moh.0000000000000765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
PURPOSE OF REVIEW Natural killer (NK) cells are a type of immune cell that play a crucial role in the defense against cancer and viral infections. The development and maturation of NK cells is a complex process, involving the coordination of various signaling pathways, transcription factors, and epigenetic modifications. In recent years, there has been a growing interest in studying the development of NK cells. In this review, we discuss the field's current understanding of the journey a hematopoietic stem cell takes to become a fully mature NK cell and detail the sequential steps and regulation of conventional NK leukopoiesis in both mice and humans. RECENT FINDINGS Recent studies have highlighted the significance of defining NK development stages. Several groups report differing schema to identify NK cell development and new findings demonstrate novel ways to classify NK cells. Further investigation of NK cell biology and development is needed, as multiomic analysis reveals a large diversity in NK cell development pathways. SUMMARY We provide an overview of current knowledge on the development of NK cells, including the various stages of differentiation, the regulation of development, and the maturation of NK cells in both mice and humans. A deeper understanding of NK cell development has the potential to provide insights into new therapeutic strategies for the treatment of diseases such as cancer and viral infections.
Collapse
Affiliation(s)
- Christopher Schorr
- Indiana University School of Medicine, Indianapolis, IN
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN
| | - Maya Shraddha Krishnan
- Indiana University School of Medicine, Indianapolis, IN
- Department of Microbiology & Immunology, Indiana University School of Medicine, Indianapolis, IN
| | - Maegan Capitano
- Indiana University School of Medicine, Indianapolis, IN
- Department of Microbiology & Immunology, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
42
|
Sun L, Sun W, Liu M, Li N, Liu Y, Cao X, Chen L, Ren X, Wang H, Wang M. Wedelolactone induces natural killer cell activity and the improvement to bioavailability using polysaccharides from Ligustri Lucidi Fructus. Int J Biol Macromol 2023:125208. [PMID: 37285884 DOI: 10.1016/j.ijbiomac.2023.125208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 05/11/2023] [Accepted: 06/01/2023] [Indexed: 06/09/2023]
Abstract
Wedelolactone (WDL) is the major bioactive component in Ecliptae Herba. This present study investigated the effects of WDL on natural killer cell functions and possible underlying mechanisms. It was proved that wedelolactone enhanced the killing ability of NK92-MI by upregulating the expression of perforin and granzyme B through the JAK/STAT signaling pathway. Additionally, wedelolactone could induce the migration of NK-92MI cells by promoting CCR7 and CXCR4 expressions. However, the application of WDL is limited due to poor solubility and bioavailability. Accordingly, this study investigated the impact of polysaccharides from Ligustri Lucidi Fructus (LLFPs) on WDL. The biopharmaceutical properties and pharmacokinetic characteristics were determined to compare WDL individually and in combination with LLFPs. The results showed that LLFPs could benefit the biopharmaceutical properties of WDL. Specifically, stability, solubility, and permeability were increased by 1.19-1.82-fold, 3.22-fold, and 1.08-fold higher than those of WDL alone, respectively. Furthermore, the pharmacokinetic study revealed that LLFPs could remarkably improve AUC(0-t) (150.34 vs. 50.47 ng/mL ∗ h), t1/2 (40.78 vs. 2.81 h), and MRT(0-∞) (46.64 vs. 5.05 h) for WDL. In conclusion, WDL would be considered a potential immunopotentiator, and LLFPs could overcome the instability and insolubility, ultimately improving the bioavailability of this plant-derived phenolic coumestan.
Collapse
Affiliation(s)
- Lili Sun
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Wei Sun
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Meiqi Liu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Na Li
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yi Liu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xuexiao Cao
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Lu Chen
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiaoliang Ren
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Hong Wang
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Meng Wang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
43
|
Ravichandran S, Erra-Diaz F, Karakaslar OE, Marches R, Kenyon-Pesce L, Rossi R, Chaussabel D, Pascual V, Palucka K, Paust S, Nahm MH, Kuchel GA, Banchereau J, Ucar D. Distinct baseline immune characteristics associated with responses to conjugated and unconjugated pneumococcal polysaccharide vaccines in older adults. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.04.16.23288531. [PMID: 37131707 PMCID: PMC10153339 DOI: 10.1101/2023.04.16.23288531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Pneumococcal infections cause serious illness and death among older adults. A capsular polysaccharide vaccine PPSV23 (Pneumovax®) and a conjugated polysaccharide vaccine PCV13 (Prevnar®) are used to prevent these infections, yet underlying responses, and baseline predictors remain unknown. We recruited and vaccinated 39 older adults (>60 years) with PPSV23 or PCV13. Both vaccines induced strong antibody responses at day 28 and similar plasmablast transcriptional signatures at day 10, however, their baseline predictors were distinct. Analyses of baseline flow cytometry and RNA-seq data (bulk and single cell) revealed a novel baseline phenotype that is specifically associated with weaker PCV13 responses, characterized by i) increased expression of cytotoxicity-associated genes and increased CD16+ NK frequency; ii) increased Th17 and decreased Th1 cell frequency. Men were more likely to display this cytotoxic phenotype and mounted weaker responses to PCV13 than women. Baseline expression levels of a distinct gene set was predictive of PPSV23 responses. This first precision vaccinology study for pneumococcal vaccine responses of older adults uncovered novel and distinct baseline predictors that might transform vaccination strategies and initiate novel interventions.
Collapse
Affiliation(s)
| | - Fernando Erra-Diaz
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA
- University of Buenos Aires, School of Medicine, Buenos Aires, Argentina #Current Address
| | - Onur E Karakaslar
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA
- Leiden University Medical Center (LUMC), Leiden, Netherlands #Current Address
| | - Radu Marches
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA
| | - Lisa Kenyon-Pesce
- UConn Center on Aging, University of Connecticut, Farmington, Connecticut, USA
| | - Robert Rossi
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA
| | - Damien Chaussabel
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA
| | - Virginia Pascual
- Weill Cornell Medical College, Department of Pediatrics, NY, USA
| | - Karolina Palucka
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA
| | - Silke Paust
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Moon H Nahm
- Division of Pulmonary, Allergy and Critical Care Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - George A Kuchel
- UConn Center on Aging, University of Connecticut, Farmington, Connecticut, USA
| | - Jacques Banchereau
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA
- Immunai, New York, NY, USA, #Current Address
| | - Duygu Ucar
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA
- Institute for Systems Genomics, University of Connecticut Health Center, Farmington, Connecticut, USA
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| |
Collapse
|
44
|
Dahlvang JD, Dick JK, Sangala JA, Kennedy PR, Pomeroy EJ, Snyder KM, Moushon JM, Thefaine CE, Wu J, Hamilton SE, Felices M, Miller JS, Walcheck B, Webber BR, Moriarity BS, Hart GT. Ablation of SYK Kinase from Expanded Primary Human NK Cells via CRISPR/Cas9 Enhances Cytotoxicity and Cytokine Production. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1108-1122. [PMID: 36881874 PMCID: PMC10073313 DOI: 10.4049/jimmunol.2200488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 02/07/2023] [Indexed: 03/09/2023]
Abstract
CMV infection alters NK cell phenotype and function toward a more memory-like immune state. These cells, termed adaptive NK cells, typically express CD57 and NKG2C but lack expression of the FcRγ-chain (gene: FCER1G, FcRγ), PLZF, and SYK. Functionally, adaptive NK cells display enhanced Ab-dependent cellular cytotoxicity (ADCC) and cytokine production. However, the mechanism behind this enhanced function is unknown. To understand what drives enhanced ADCC and cytokine production in adaptive NK cells, we optimized a CRISPR/Cas9 system to ablate genes from primary human NK cells. We ablated genes that encode molecules in the ADCC pathway, such as FcRγ, CD3ζ, SYK, SHP-1, ZAP70, and the transcription factor PLZF, and tested subsequent ADCC and cytokine production. We found that ablating the FcRγ-chain caused a modest increase in TNF-α production. Ablation of PLZF did not enhance ADCC or cytokine production. Importantly, SYK kinase ablation significantly enhanced cytotoxicity, cytokine production, and target cell conjugation, whereas ZAP70 kinase ablation diminished function. Ablating the phosphatase SHP-1 enhanced cytotoxicity but reduced cytokine production. These results indicate that the enhanced cytotoxicity and cytokine production of CMV-induced adaptive NK cells is more likely due to the loss of SYK than the lack of FcRγ or PLZF. We found the lack of SYK expression could improve target cell conjugation through enhanced CD2 expression or limit SHP-1-mediated inhibition of CD16A signaling, leading to enhanced cytotoxicity and cytokine production.
Collapse
Affiliation(s)
- James D. Dahlvang
- Department of Medicine, Division of Infectious Disease and International Medicine, University of Minnesota, Minneapolis, MN 55455, USA
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jenna K. Dick
- Department of Medicine, Division of Infectious Disease and International Medicine, University of Minnesota, Minneapolis, MN 55455, USA
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jules A. Sangala
- Department of Medicine, Division of Infectious Disease and International Medicine, University of Minnesota, Minneapolis, MN 55455, USA
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Philippa R. Kennedy
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Medicine, Division of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis, MN 55455, USA
| | - Emily J. Pomeroy
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kristin M. Snyder
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Veterinary and Biological Sciences, University of Minnesota, St. Paul, MN 55108, USA
| | - Juliette M. Moushon
- Department of Medicine, Division of Infectious Disease and International Medicine, University of Minnesota, Minneapolis, MN 55455, USA
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Claire E. Thefaine
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jianming Wu
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Veterinary and Biological Sciences, University of Minnesota, St. Paul, MN 55108, USA
| | - Sara E. Hamilton
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Martin Felices
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Medicine, Division of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jeffrey S. Miller
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Medicine, Division of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis, MN 55455, USA
| | - Bruce Walcheck
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Veterinary and Biological Sciences, University of Minnesota, St. Paul, MN 55108, USA
| | - Beau R. Webber
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Branden S. Moriarity
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Geoffrey T. Hart
- Department of Medicine, Division of Infectious Disease and International Medicine, University of Minnesota, Minneapolis, MN 55455, USA
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Lead contact
| |
Collapse
|
45
|
Pham TN, Coupey J, Candeias SM, Ivanova V, Valable S, Thariat J. Beyond lymphopenia, unraveling radiation-induced leucocyte subpopulation kinetics and mechanisms through modeling approaches. J Exp Clin Cancer Res 2023; 42:50. [PMID: 36814272 PMCID: PMC9945629 DOI: 10.1186/s13046-023-02621-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/13/2023] [Indexed: 02/24/2023] Open
Abstract
Leucocyte subpopulations in both lymphoid and myeloid lineages have a significant impact on antitumor immune response. While radiation-induced lymphopenia is being studied extensively, radiation effects on lymphoid and myeloid subtypes have been relatively less addressed. Interactions between leucocyte subpopulations, their specific radiation sensitivity and the specific kinetics of each subpopulation can be modeled based on both experimental data and knowledge of physiological leucocyte depletion, production, proliferation, maturation and homeostasis. Modeling approaches of the leucocyte kinetics that may be used to unravel mechanisms underlying radiation induced-leucopenia and prediction of changes in cell counts and compositions after irradiation are presented in this review. The approaches described open up new possibilities for determining the influence of irradiation parameters both on a single-time point of acute effects and the subsequent recovery of leukocyte subpopulations. Utilization of these approaches to model kinetic data in post-radiotherapy states may be a useful tool for further development of new treatment strategies or for the combination of radiotherapy and immunotherapy.
Collapse
Affiliation(s)
- Thao-Nguyen Pham
- grid.412043.00000 0001 2186 4076Normandie Univ, UNICAEN, CNRS, ISTCT, GIP CYCERON, 14000 Caen, France ,grid.460771.30000 0004 1785 9671Laboratoire de Physique Corpusculaire UMR6534 IN2P3/ENSICAEN, Normandie Université, Caen, France
| | - Julie Coupey
- grid.412043.00000 0001 2186 4076Normandie Univ, UNICAEN, CNRS, ISTCT, GIP CYCERON, 14000 Caen, France
| | - Serge M. Candeias
- grid.457348.90000 0004 0630 1517Univ. Grenoble Alpes, CEA, CNRS, IRIG-LCBM-UMR5249, 38054 Grenoble, France
| | - Viktoriia Ivanova
- grid.412043.00000 0001 2186 4076Normandie Univ, UNICAEN, CNRS, ISTCT, GIP CYCERON, 14000 Caen, France
| | - Samuel Valable
- Normandie Univ, UNICAEN, CNRS, ISTCT, GIP CYCERON, 14000, Caen, France.
| | - Juliette Thariat
- Laboratoire de Physique Corpusculaire UMR6534 IN2P3/ENSICAEN, Normandie Université, Caen, France. .,Department of Radiation Oncology, Centre François Baclesse, Caen, Normandy, France.
| |
Collapse
|
46
|
Yang S, Wang Y, Liu Y, Jia K, Zhang Z, Dong Q. Cereulide and Emetic Bacillus cereus: Characterizations, Impacts and Public Precautions. Foods 2023; 12:833. [PMID: 36832907 PMCID: PMC9956921 DOI: 10.3390/foods12040833] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/10/2023] [Accepted: 02/12/2023] [Indexed: 02/18/2023] Open
Abstract
Cereulide, which can be produced by Bacillus cereus, is strongly associated with emetic-type food poisoning outbreaks. It is an extremely stable emetic toxin, which is unlikely to be inactivated by food processing. Considering the high toxicity of cereulide, its related hazards raise public concerns. A better understanding of the impact of B. cereus and cereulide is urgently needed to prevent contamination and toxin production, thereby protecting public health. Over the last decade, a wide range of research has been conducted regarding B. cereus and cereulide. Despite this, summarized information highlighting precautions at the public level involving the food industry, consumers and regulators is lacking. Therefore, the aim of the current review is to summarize the available data describing the characterizations and impacts of emetic B. cereus and cereulide; based on this information, precautions at the public level are proposed.
Collapse
Affiliation(s)
| | | | | | | | | | - Qingli Dong
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Jungong Road No. 334, Yangpu District, Shanghai 200093, China
| |
Collapse
|
47
|
Liu Q, Li J, Zheng H, Yang S, Hua Y, Huang N, Kleeff J, Liao Q, Wu W. Adoptive cellular immunotherapy for solid neoplasms beyond CAR-T. Mol Cancer 2023; 22:28. [PMID: 36750830 PMCID: PMC9903509 DOI: 10.1186/s12943-023-01735-9] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 01/30/2023] [Indexed: 02/09/2023] Open
Abstract
In recent decades, immune checkpoint blockade and chimeric antigen receptor T cell (CAR-T) therapy are two milestone achievements in clinical immunotherapy. However, both show limited efficacies in most solid neoplasms, which necessitates the exploration of new immunotherapeutic modalities. The failure of CAR-T and immune checkpoint blockade in several solid neoplasms is attributed to multiple factors, including low antigenicity of tumor cells, low infiltration of effector T cells, and diverse mechanisms of immunosuppression in the tumor microenvironment. New adoptive cell therapies have been attempted for solid neoplasms, including TCR-T, CAR-natural killer cells (CAR-NK), and CAR-macrophages (CAR-M). Compared to CAR-T, these new adoptive cell therapies have certain advantages in treating solid neoplasms. In this review, we summarized the 40-year evolution of adoptive cell therapies, then focused on the advances of TCR-T, CAR-NK, and CAR-M in solid neoplasms and discussed their potential clinical applications.
Collapse
Affiliation(s)
- Qiaofei Liu
- grid.506261.60000 0001 0706 7839Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, No.1 Shuai Fu Yuan, Dongcheng District, Beijing, 100730 China
| | - Jiayi Li
- grid.506261.60000 0001 0706 7839Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, No.1 Shuai Fu Yuan, Dongcheng District, Beijing, 100730 China
| | - Huaijin Zheng
- grid.506261.60000 0001 0706 7839Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, No.1 Shuai Fu Yuan, Dongcheng District, Beijing, 100730 China
| | - Sen Yang
- grid.506261.60000 0001 0706 7839Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, No.1 Shuai Fu Yuan, Dongcheng District, Beijing, 100730 China
| | - Yuze Hua
- grid.506261.60000 0001 0706 7839Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, No.1 Shuai Fu Yuan, Dongcheng District, Beijing, 100730 China
| | - Nan Huang
- grid.506261.60000 0001 0706 7839Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, No.1 Shuai Fu Yuan, Dongcheng District, Beijing, 100730 China
| | - Jorg Kleeff
- grid.9018.00000 0001 0679 2801Department of Visceral, Vascular and Endocrine Surgery, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Quan Liao
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, No.1 Shuai Fu Yuan, Dongcheng District, Beijing, 100730, China.
| | - Wenming Wu
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, No.1 Shuai Fu Yuan, Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
48
|
Qin R, An C, Chen W. Physical-Chemical Regulation of Membrane Receptors Dynamics in Viral Invasion and Immune Defense. J Mol Biol 2023; 435:167800. [PMID: 36007627 PMCID: PMC9394170 DOI: 10.1016/j.jmb.2022.167800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/13/2022] [Accepted: 08/18/2022] [Indexed: 02/04/2023]
Abstract
Mechanical cues dynamically regulate membrane receptors functions to trigger various physiological and pathological processes from viral invasion to immune defense. These cues mainly include various types of dynamic mechanical forces and the spatial confinement of plasma membrane. However, the molecular mechanisms of how they couple with biochemical cues in regulating membrane receptors functions still remain mysterious. Here, we review recent advances in methodologies of single-molecule biomechanical techniques and in novel biomechanical regulatory mechanisms of critical ligand recognition of viral and immune receptors including SARS-CoV-2 spike protein, T cell receptor (TCR) and other co-stimulatory immune receptors. Furthermore, we provide our perspectives of the general principle of how force-dependent kinetics determine the dynamic functions of membrane receptors and of biomechanical-mechanism-driven SARS-CoV-2 neutralizing antibody design and TCR engineering for T-cell-based therapies.
Collapse
Affiliation(s)
- Rui Qin
- Department of Cell Biology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Chenyi An
- Department of Cell Biology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China; School of Biology and Engineering, Guizhou Medical University, Guiyang, China
| | - Wei Chen
- Department of Cell Biology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou 311121, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the MOE Frontier Science Center for Brain Science & Brain-Machine Integration, State Key Laboratory for Modern Optical Instrumentation Key Laboratory for Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| |
Collapse
|
49
|
Wang ZH, Li W, Dong H, Han F. Current state of NK cell-mediated immunotherapy in chronic lymphocytic leukemia. Front Oncol 2023; 12:1077436. [PMID: 37078002 PMCID: PMC10107371 DOI: 10.3389/fonc.2022.1077436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 12/13/2022] [Indexed: 01/06/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) has become one of the most common hematological diseases in western countries, with an annual incidence of 42/100,000. Conventional chemotherapy and targeted therapeutic drugs showed limitations in prognosis or in efficiency in high-risk patients. Immunotherapy represented is one of the most effective therapeutic approaches with the potential of better effect and prognosis. Natural killer (NK) cells are good options for immunotherapy as they can effectively mediate anti-tumor activity of immune system by expressing activating and inhibiting receptors and recognizing specific ligands on various tumor cells. NK cells are critical in the immunotherapy of CLL by enhancing self-mediated antibody-dependent cytotoxicity (ADCC), allogeneic NK cell therapy and chimeric antigen receptor-natural killer (CAR-NK) cell therapy. In this article, we reviewed the features, working mechanisms, and receptors of NK cells, and the available evidence of the advantages and disadvantages of NK cell-based immunotherapies, and put forward future study directions in this field.
Collapse
Affiliation(s)
- Zong-Han Wang
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Wei Li
- Department of General Surgery, Second Affiliated Hospital of Jilin University, Changchun, Jilin, China
| | - Hao Dong
- Department of Gastrointestinal Nutrition and Surgical Surgery, The Second Affiliated Hospital of Jilin University, Changchun, Jilin, China
- *Correspondence: Hao Dong, ; Fujun Han,
| | - Fujun Han
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, China
- *Correspondence: Hao Dong, ; Fujun Han,
| |
Collapse
|
50
|
Gustafson MP, Ligon JA, Bersenev A, McCann CD, Shah NN, Hanley PJ. Emerging frontiers in immuno- and gene therapy for cancer. Cytotherapy 2023; 25:20-32. [PMID: 36280438 PMCID: PMC9790040 DOI: 10.1016/j.jcyt.2022.10.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 09/13/2022] [Accepted: 10/05/2022] [Indexed: 12/27/2022]
Abstract
BACKGROUND AIMS The field of cell and gene therapy in oncology has moved rapidly since 2017 when the first cell and gene therapies, Kymriah followed by Yescarta, were approved by the Food and Drug Administration in the United States, followed by multiple other countries. Since those approvals, several new products have gone on to receive approval for additional indications. Meanwhile, efforts have been made to target different cancers, improve the logistics of delivery and reduce the cost associated with novel cell and gene therapies. Here, we highlight various cell and gene therapy-related technologies and advances that provide insight into how these new technologies will speed the translation of these therapies into the clinic. CONCLUSIONS In this review, we provide a broad overview of the current state of cell and gene therapy-based approaches for cancer treatment - discussing various effector cell types and their sources, recent advances in both CAR and non-CAR genetic modifications, and highlighting a few promising approaches for increasing in vivo efficacy and persistence of therapeutic drug products.
Collapse
Affiliation(s)
- Michael P Gustafson
- Immuno-Gene Therapy Committee, International Society for Cell and Gene Therapy; Department of Laboratory Medicine and Pathology, Mayo Clinic in Arizona, Phoenix, Arizona, USA
| | - John A Ligon
- Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA; Department of Pediatrics, Division of Pediatric Hematology/Oncology, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Alexey Bersenev
- Immuno-Gene Therapy Committee, International Society for Cell and Gene Therapy; Department of Laboratory Medicine, Yale School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Chase D McCann
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, DC, USA; Department of Pediatrics, The George Washington University, Washington, DC, USA
| | - Nirali N Shah
- Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Patrick J Hanley
- Immuno-Gene Therapy Committee, International Society for Cell and Gene Therapy; Center for Cancer and Immunology Research, Children's National Hospital, Washington, DC, USA; Department of Pediatrics, The George Washington University, Washington, DC, USA.
| |
Collapse
|