1
|
Thach T, Dhanabalan K, Nandekar PP, Stauffer S, Heisler I, Alvarado S, Snyder J, Subramanian R. Mechanistic insights into the selective targeting of P2X3 receptor by camlipixant antagonist. J Biol Chem 2024:108109. [PMID: 39706278 DOI: 10.1016/j.jbc.2024.108109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 12/12/2024] [Accepted: 12/14/2024] [Indexed: 12/23/2024] Open
Abstract
ATP-activated P2X3 receptors play a pivotal role in chronic cough, affecting more than 10% of the population. Despite the challenges posed by the highly conserved structure of P2X receptors, efforts to develop selective drugs targeting P2X3 have led to the development of camlipixant, a potent, selective P2X3 antagonist. However, the mechanisms of receptor desensitization, ion permeation, and structural basis of camlipixant binding to P2X3 remain unclear. Here, we report a cryo-EM structure of camlipixant-bound P2X3, revealing a previously undiscovered selective drug-binding site in the receptor. Our findings also demonstrate that conformational changes in the upper-body domain, including the turret and camlipixant-binding pocket, play a critical role: turret opening facilitates P2X3 channel closure to a radius of 0.7 Å, hindering cation transfer, while turret closure leads to channel opening. Structural and functional studies combined with molecular dynamics simulations provide a comprehensive understanding of camlipixant's selective inhibition of P2X3, offering a foundation for future drug development targeting this receptor.
Collapse
Affiliation(s)
- Trung Thach
- Department of Biological Sciences, Purdue University, West Lafayette, IN-47907, USA.
| | | | | | - Seth Stauffer
- Elanco Animal Health, 2500 Innovation Way, Greenfield, IN-46140, USA
| | - Iring Heisler
- Elanco Animal Health, 2500 Innovation Way, Greenfield, IN-46140, USA
| | - Sarah Alvarado
- Elanco Animal Health, 2500 Innovation Way, Greenfield, IN-46140, USA
| | - Jonathan Snyder
- Elanco Animal Health, 2500 Innovation Way, Greenfield, IN-46140, USA
| | - Ramaswamy Subramanian
- Department of Biological Sciences, Purdue University, West Lafayette, IN-47907, USA; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN-47907, USA.
| |
Collapse
|
2
|
Thach T, Dhanabalan K, Nandekar PP, Stauffer S, Heisler I, Alvarado S, Snyder J, Subramanian R. A Second Drug Binding Site in P2X3. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.10.598171. [PMID: 38915546 PMCID: PMC11195084 DOI: 10.1101/2024.06.10.598171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Purinergic P2X3 receptors form trimeric cation-gated channels, which are activated by extracellular ATP. P2X3 plays a crucial role in chronic cough and affects over 10% of the population. Despite considerable efforts to develop drugs targeting P2X3, the highly conserved structure within the P2X receptor family presents obstacles for achieving selectivity. Camlipixant, a potent and selective P2X3 antagonist, is currently in phase III clinical trials. However, the mechanisms underlying receptor desensitization, ion permeation, principles governing antagonism, and the structure of P2X3 when bound to camlipixant remain elusive. In this study, we established a stable cell line expressing homotrimeric P2X3 and utilized a peptide scaffold to purify the complex and determine its structure using cryo-electron microscopy (cryo-EM). P2X3 binds to camlipixant at a previously unidentified drug-binding site and functions as an allosteric inhibitor. Structure-activity studies combined with modeling and simulations have shed light on the mechanisms underlying the selective targeting and inhibition of P2X3 by camlipixant, distinguishing it from other members of the P2X receptor family.
Collapse
Affiliation(s)
- Trung Thach
- Department of Biological Sciences, Purdue University, West Lafayette, IN-47907, USA
| | | | | | - Seth Stauffer
- Elanco Animal Health, 2500 Innovation Way, Greenfield, IN-46140, USA
| | - Iring Heisler
- Elanco Animal Health, 2500 Innovation Way, Greenfield, IN-46140, USA
| | - Sarah Alvarado
- Elanco Animal Health, 2500 Innovation Way, Greenfield, IN-46140, USA
| | - Jonathan Snyder
- Elanco Animal Health, 2500 Innovation Way, Greenfield, IN-46140, USA
| | - Ramaswamy Subramanian
- Department of Biological Sciences, Purdue University, West Lafayette, IN-47907, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN-47907, USA
| |
Collapse
|
3
|
Zhou Y, Huang X, Jin Y, Qiu M, Ambe PC, Basharat Z, Hong W. The role of mitochondrial damage-associated molecular patterns in acute pancreatitis. Biomed Pharmacother 2024; 175:116690. [PMID: 38718519 DOI: 10.1016/j.biopha.2024.116690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/27/2024] [Accepted: 04/29/2024] [Indexed: 06/03/2024] Open
Abstract
Acute pancreatitis (AP) is one of the most common gastrointestinal tract diseases with significant morbidity and mortality. Current treatments remain unspecific and supportive due to the severity and clinical course of AP, which can fluctuate rapidly and unpredictably. Mitochondria, cellular power plant to produce energy, are involved in a variety of physiological or pathological activities in human body. There is a growing evidence indicating that mitochondria damage-associated molecular patterns (mtDAMPs) play an important role in pathogenesis and progression of AP. With the pro-inflammatory properties, released mtDAMPs may damage pancreatic cells by binding with receptors, activating downstream molecules and releasing inflammatory factors. This review focuses on the possible interaction between AP and mtDAMPs, which include cytochrome c (Cyt c), mitochondrial transcription factor A (TFAM), mitochondrial DNA (mtDNA), cardiolipin (CL), adenosine triphosphate (ATP) and succinate, with focus on experimental research and potential therapeutic targets in clinical practice. Preventing or diminishing the release of mtDAMPs or targeting the mtDAMPs receptors might have a role in AP progression.
Collapse
Affiliation(s)
- Yan Zhou
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China; School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Xiaoyi Huang
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China; School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Yinglu Jin
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China; School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Minhao Qiu
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Peter C Ambe
- Department of General Surgery, Visceral Surgery and Coloproctology, Vinzenz-Pallotti-Hospital Bensberg, Vinzenz-Pallotti-Str. 20-24, Bensberg 51429, Germany
| | | | - Wandong Hong
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China.
| |
Collapse
|
4
|
Povo-Retana A, Sánchez-García S, Alvarez-Lucena C, Landauro-Vera R, Prieto P, Delgado C, Martín-Sanz P, Boscá L. Crosstalk between P2Y receptors and cyclooxygenase activity in inflammation and tissue repair. Purinergic Signal 2024; 20:145-155. [PMID: 37052777 PMCID: PMC10997571 DOI: 10.1007/s11302-023-09938-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/29/2023] [Indexed: 04/14/2023] Open
Abstract
The role of extracellular nucleotides as modulators of inflammation and cell stress is well established. One of the main actions of these molecules is mediated by the activation of purinergic receptors (P2) of the plasma membrane. P2 receptors can be classified according to two different structural families: P2X ionotropic ion channel receptors, and P2Y metabotropic G protein-coupled receptors. During inflammation, damaged cells release nucleotides and purinergic signaling occurs along the temporal pattern of the synthesis of pro-inflammatory and pro-resolving mediators by myeloid and lymphoid cells. In macrophages under pro-inflammatory conditions, the expression and activity of cyclooxygenase 2 significantly increases and enhances the circulating levels of prostaglandin E2 (PGE2), which exerts its effects both through specific plasma membrane receptors (EP1-EP4) and by activation of intracellular targets. Here we review the mechanisms involved in the crosstalk between PGE2 and P2Y receptors on macrophages, which is dependent on several isoforms of protein kinase C and protein kinase D1. Due to this crosstalk, a P2Y-dependent increase in calcium is blunted by PGE2 whereas, under these conditions, macrophages exhibit reduced migratory capacity along with enhanced phagocytosis, which contributes to the modulation of the inflammatory response and tissue repair.
Collapse
Affiliation(s)
- Adrián Povo-Retana
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), Arturo Duperier 4, 28029, Madrid, Spain.
| | - Sergio Sánchez-García
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), Arturo Duperier 4, 28029, Madrid, Spain
| | - Carlota Alvarez-Lucena
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), Arturo Duperier 4, 28029, Madrid, Spain
| | - Rodrigo Landauro-Vera
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), Arturo Duperier 4, 28029, Madrid, Spain
| | - Patricia Prieto
- Departamento de Farmacología, Farmacognosia y Botánica. Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal, 28040, Madrid, Spain
| | - Carmen Delgado
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), Arturo Duperier 4, 28029, Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Melchor Fernández Almagro 6, 28029, Madrid, Spain
| | - Paloma Martín-Sanz
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), Arturo Duperier 4, 28029, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Melchor Fernández Almagro 6, 28029, Madrid, Spain
| | - Lisardo Boscá
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), Arturo Duperier 4, 28029, Madrid, Spain.
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Melchor Fernández Almagro 6, 28029, Madrid, Spain.
| |
Collapse
|
5
|
Sun Z, Gao Q, Wei Y, Zhou Z, Chen Y, Xu C, Gao J, Liu D. Activated P2X receptors can up-regulate the expressions of inflammation-related genes via NF-κB pathway in spotted sea bass ( Lateolabrax maculatus). Front Immunol 2023; 14:1181067. [PMID: 37215129 PMCID: PMC10193947 DOI: 10.3389/fimmu.2023.1181067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 04/18/2023] [Indexed: 05/24/2023] Open
Abstract
P2X receptors, including seven subtypes, i.e., P2X1-7, are the ligand-gated ion channels activated by the extracellular ATP playing the critical roles in inflammation and immune response. Even though the immune functions of P2X receptors have been characterized extensively in mammals, their functions in fish remain largely unknown. In this study, four P2X receptor homologues were characterized in spotted sea bass (Lateolabrax maculatus), which were named LmP2X2, LmP2X4, LmP2X5, and LmP2X7. Their tissue distributions and expression patterns were then investigated by real-time quantitative PCR (qPCR). Furthermore, their functions in regulating the expressions of inflammation-associated genes and possible signaling pathway were examined by qPCR and luciferase assay. The results showed that they share similar topological structures, conserved genomic organization, and gene synteny with their counterparts in other species previously investigated. And the four P2X receptors were expressed constitutively in the tested tissues. In addition, the expression of each of the four receptor genes was significantly induced by stimulation of Edwardsiella tarda and/or pathogen-associated molecular patterns (PAMPs) in vivo. Also, in primary head kidney leukocytes of spotted sea bass, LmP2X2 and LmP2X5 were induced by using PAMPs and/or ATP. Notably, the expressions of CCL2, IL-8, and TNF-α recognized as the pro-inflammatory cytokines, and of the four apoptosis-related genes, i.e., caspase3, caspase6, caspase7, and P53, were differentially upregulated in the HEK 293T cells with over-expressed LmP2X2 and/or LmP2X7 following ATP stimulation. Also, the over-expression of LmP2X4 can upregulate the expressions of IL-8, caspase6, caspase7, and P53, and LmP2X5 upregulates of IL-8, TNF-α, caspase7, and P53. Then in the present study it was demonstrated that the activation of any one of the four receptors significantly upregulated the activity of NF-κB promoter, suggesting that the activated LmP2Xs may regulate the expressions of pro-inflammatory cytokines via the NF-κB pathway. Taken together, the four P2X receptors were identified firstly from fish species in Perciformes, and they participate in innate immune response of spotted sea bass possibly by regulating the expressions of the inflammation-related genes. Our study provides the new evidences for the P2X receptors' involvement in fish immunity.
Collapse
Affiliation(s)
- Zhaosheng Sun
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Qian Gao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Youchuan Wei
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Zhigang Zhou
- SinoNorway Fish Gastrointestinal Microbiota Joint Lab, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuxi Chen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Chong Xu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Jiaqi Gao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Danjie Liu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
6
|
Rodriguez NR, Fortune T, Vuong T, Swartz TH. The role of extracellular ATP and P2X receptors in the pathogenesis of HIV-1. Curr Opin Pharmacol 2023; 69:102358. [PMID: 36848824 PMCID: PMC10023410 DOI: 10.1016/j.coph.2023.102358] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/15/2023] [Accepted: 01/25/2023] [Indexed: 03/01/2023]
Abstract
Human Immunodeficiency Virus Type 1 (HIV-1) causes a chronic, incurable infection associated with chronic inflammation despite virologic suppression on antiretroviral therapy (ART). This chronic inflammation underlies significant comorbidities, including cardiovascular disease, neurocognition decline, and malignancies. The mechanisms of chronic inflammation have been attributed, in part, to the role of extracellular ATP and P2X-type purinergic receptors that sense damaged or dying cells and undergo signaling responses to activate inflammation and immunomodulation. This review describes the current literature on the role of extracellular ATP and P2X receptors in HIV-1 pathogenesis, describing the known intersection with the HIV-1 life cycle in mediating immunopathogenesis and neuronal disease. The literature supports key roles for this signaling mechanism in cell-to-cell communication and in activating transcriptional changes that impact the inflammatory state leading to disease progression. Future studies must characterize the numerous functions of ATP and P2X receptors in HIV-1 pathogenesis to inform future therapeutic targeting.
Collapse
Affiliation(s)
- Natalia R Rodriguez
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Trinisia Fortune
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Thien Vuong
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Talia H Swartz
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
7
|
Gómez-Pinedo U, Torre-Fuentes L, Matías-Guiu JA, Pytel V, Ojeda-Hernández DD, Selma-Calvo B, Montero-Escribano P, Vidorreta-Ballesteros L, Matías-Guiu J. Exonic variants of the P2RX7 gene in familial multiple sclerosis. Neurologia 2022:S2173-5808(22)00189-4. [PMID: 36470550 DOI: 10.1016/j.nrleng.2022.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/09/2022] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Several studies have analysed the presence of P2RX7 variants in patients with MS, reporting diverging results. METHODS Our study analyses P2RX7 variants detected through whole-exome sequencing (WES). RESULTS We analysed P2RX7, P2RX4, and CAMKK2 gene variants detected by whole-exome sequencing in all living members (n = 127) of 21 families including at least 2 individuals with multiple sclerosis. P2RX7 gene polymorphisms previously associated with autoimmune disease. Although no differences were observed between individuals with and without multiple sclerosis, we found greater polymorphism of gain-of-function variants of P2RX7 in families with individuals with multiple sclerosis than in the general population. Copresence of gain-of-function and loss-of-function variants was not observed to reduce the risk of presenting the disease. Three families displayed heterozygous gain-of-function SNPs in patients with multiple sclerosis but not in healthy individuals. We were unable to determine the impact of copresence of P2RX4 and CAMKK2 variants with P2RX7 variants, or the potential effect of the different haplotypes described in the gene. No clinical correlations with other autoimmune diseases were observed in our cohort. CONCLUSIONS Our results support the hypothesis that the disease is polygenic and point to a previously unknown mechanism of genetic predisposition to familial forms of multiple sclerosis. P2RX7 gene activity can be modified, which suggests the possibility of preventive pharmacological treatments for families including patients with familial multiple sclerosis.
Collapse
Affiliation(s)
- U Gómez-Pinedo
- Laboratory of Neurobiology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain.
| | - L Torre-Fuentes
- Laboratory of Neurobiology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain
| | - J A Matías-Guiu
- Department of Neurology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain
| | - V Pytel
- Laboratory of Neurobiology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain; Department of Neurology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain
| | - D D Ojeda-Hernández
- Laboratory of Neurobiology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain
| | - B Selma-Calvo
- Laboratory of Neurobiology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain
| | - P Montero-Escribano
- Department of Neurology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain
| | - L Vidorreta-Ballesteros
- Department of Neurology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain
| | - J Matías-Guiu
- Laboratory of Neurobiology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain; Department of Neurology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
8
|
Becker YLC, Duvvuri B, Fortin PR, Lood C, Boilard E. The role of mitochondria in rheumatic diseases. Nat Rev Rheumatol 2022; 18:621-640. [PMID: 36175664 DOI: 10.1038/s41584-022-00834-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2022] [Indexed: 11/09/2022]
Abstract
The mitochondrion is an intracellular organelle thought to originate from endosymbiosis between an ancestral eukaryotic cell and an α-proteobacterium. Mitochondria are the powerhouses of the cell, and can control several important processes within the cell, such as cell death. Conversely, dysregulation of mitochondria possibly contributes to the pathophysiology of several autoimmune diseases. Defects in mitochondria can be caused by mutations in the mitochondrial genome or by chronic exposure to pro-inflammatory cytokines, including type I interferons. Following the release of intact mitochondria or mitochondrial components into the cytosol or the extracellular space, the bacteria-like molecular motifs of mitochondria can elicit pro-inflammatory responses by the innate immune system. Moreover, antibodies can target mitochondria in autoimmune diseases, suggesting an interplay between the adaptive immune system and mitochondria. In this Review, we discuss the roles of mitochondria in rheumatic diseases such as systemic lupus erythematosus, antiphospholipid syndrome and rheumatoid arthritis. An understanding of the different contributions of mitochondria to distinct rheumatic diseases or manifestations could permit the development of novel therapeutic strategies and the use of mitochondria-derived biomarkers to inform pathogenesis.
Collapse
Affiliation(s)
- Yann L C Becker
- Centre de Recherche ARThrite-Arthrite, Recherche et Traitements, Université Laval, Québec, QC, Canada
- Centre de Recherche du CHU de Québec-Université Laval, Axe Maladies infectieuses et immunitaires, Québec, QC, Canada
- Département de microbiologie et immunologie, Université Laval, Québec, QC, Canada
| | - Bhargavi Duvvuri
- Division of Rheumatology, University of Washington, Seattle, WA, USA
| | - Paul R Fortin
- Centre de Recherche ARThrite-Arthrite, Recherche et Traitements, Université Laval, Québec, QC, Canada
- Centre de Recherche du CHU de Québec-Université Laval, Axe Maladies infectieuses et immunitaires, Québec, QC, Canada
- Division of Rheumatology, Department of Medicine, CHU de Québec-Université Laval, Québec, QC, Canada
| | - Christian Lood
- Division of Rheumatology, University of Washington, Seattle, WA, USA.
| | - Eric Boilard
- Centre de Recherche ARThrite-Arthrite, Recherche et Traitements, Université Laval, Québec, QC, Canada.
- Centre de Recherche du CHU de Québec-Université Laval, Axe Maladies infectieuses et immunitaires, Québec, QC, Canada.
- Département de microbiologie et immunologie, Université Laval, Québec, QC, Canada.
| |
Collapse
|
9
|
Schaunaman N, Dimasuay KG, Cervantes D, Li L, Numata M, Kraft M, Chu HW. Tollip Inhibits IL-33 Release and Inflammation in Influenza A Virus-Infected Mouse Airways. J Innate Immun 2022; 15:67-77. [PMID: 35760043 PMCID: PMC10643888 DOI: 10.1159/000525315] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 05/25/2022] [Indexed: 11/19/2022] Open
Abstract
Respiratory influenza A virus (IAV) infection continues to pose significant challenges in healthcare of human diseases including asthma. IAV infection in mice was shown to increase IL-33, a key cytokine in driving airway inflammation in asthma, but how IL-33 is regulated during viral infection remains unclear. We previously found that a genetic mutation in Toll-interacting protein (Tollip) was linked to less airway epithelial Tollip expression, increased neutrophil chemokines, and lower lung function in asthma patients. As Tollip is involved in maintaining mitochondrial function, and mitochondrial stress may contribute to extracellular ATP release and IL-33 secretion, we hypothesized that Tollip downregulates IL-33 secretion via inhibiting ATP release during IAV infection. Wild-type and Tollip knockout (KO) mice were infected with IAV and treated with either an ATP converter apyrase or an IL-33 decoy receptor soluble ST2 (sST2). KO mice significantly lost more body weight and had increased extracellular ATP, IL-33 release, and neutrophilic inflammation. Apyrase treatment reduced extracellular ATP levels, IL-33 release, and neutrophilic inflammation in Tollip KO mice. Excessive lung neutrophilic inflammation in IAV-infected Tollip KO mice was reduced by sST2, which was coupled with less IL-33 release. Our data suggest that Tollip inhibits IAV infection, potentially by inhibiting extracellular ATP release and reducing IL-33 activation and lung inflammation. In addition, sST2 may serve as a potential therapeutic approach to mitigate respiratory viral infection in human subjects with Tollip deficiency.
Collapse
Affiliation(s)
| | | | - Diana Cervantes
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
| | - Liwu Li
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Mari Numata
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
| | - Monica Kraft
- Department of Medicine, University of Arizona College of Medicine, Tucson, Arizona, USA
| | - Hong Wei Chu
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
| |
Collapse
|
10
|
Cong H, Gao J, Wang Q, Du M, Li H, Li Q, Li J, Liang Y, Zhao D, Yang H, Gan Y, Tu H. Increased Expression of Mitochondrial UQCRC1 in Pancreatic Cancer Impairs Antitumor Immunity of Natural Killer Cells via Elevating Extracellular ATP. Front Oncol 2022; 12:872017. [PMID: 35769718 PMCID: PMC9234308 DOI: 10.3389/fonc.2022.872017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/13/2022] [Indexed: 11/13/2022] Open
Abstract
Pancreatic cancer (PC) is one of the most lethal malignancies characterized by a highly immunosuppressive tumor microenvironment (TME). Previously, we have reported that ubiquinol-cytochrome c reductase core protein I (UQCRC1), a key component of mitochondrial complex III, is generally upregulated in PC and produces extracellular ATP (eATP) to promote PC progression. Here, we sought to investigate whether the oncogenic property of UQCRC1 is generated through its effects on natural killer (NK) cells in the TME. We found that UQCRC1 overexpression in PC cells inhibited cytotoxicity of NK cells, as well as the infiltration of NK cells toward PC, whereas knockdown of UQCRC1 enhanced the cytotoxicity and chemotaxis of NK cells. Adoptive NK cell therapy in the subcutaneous mouse model and CIBERSORTx analysis with human PC specimens confirmed UQCRC1 elicited immunosuppressive effects on NK cells. Such UQCRC1-induced impairment of NK cells was mediated by eATP and its metabolite adenosine via P2Y11R and A2AR, respectively. Mechanistically, we found the UQCRC1/eATP axis reduced the expression of chemokine CCL5 in cancer cells and altered the balance of activating receptor DNAM-1 and inhibitory receptor CD96 on NK-92MI cells, resulting in decreased chemotaxis and exhausted phenotype of NK-92MI cells. Taken together, our study provides the evidence to support a novel mechanism by which energy metabolism change in cancer cells remodels the TME and impedes NK cell surveillance. It also suggests that targeting UQCRC1 may be a potential combined strategy for PC immunotherapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Yu Gan
- *Correspondence: Hong Tu, ; Yu Gan,
| | - Hong Tu
- *Correspondence: Hong Tu, ; Yu Gan,
| |
Collapse
|
11
|
Min T, Xie X, Ren K, Sun T, Wang H, Dang C, Zhang H. Therapeutic Effects of Cold Atmospheric Plasma on Solid Tumor. Front Med (Lausanne) 2022; 9:884887. [PMID: 35646968 PMCID: PMC9139675 DOI: 10.3389/fmed.2022.884887] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 04/13/2022] [Indexed: 12/14/2022] Open
Abstract
Cancer is a devastating disease, and there is no particularly effective treatment at present. Recently, a new treatment, cold atmospheric plasma (CAP), has been proposed. At present, CAP is confirmed to have selective killing effect on tumor by many studies in vitro and in vivo. A targeted literature search was carried out on the study of cold atmospheric plasma. Through analysis and screening, a narrative review approach was selected to describe therapeutic effects of cold atmospheric plasma on solid tumor. According to the recent studies on plasma, some hypothetical therapeutic schemes of CAP are proposed in this paper. The killing mechanism of CAP on solid tumor is expounded in terms of the selectivity of CAP to tumor, the effects of CAP on cells, tumor microenvironment (TME) and immune system. CAP has many effects on solid tumors, and these effects are dose-dependent. The effects of optimal doses of CAP on solid tumors include killing tumor cells, inhibiting non-malignant cells and ECM in TME, affecting the communication between tumor cells, and inducing immunogenic death of tumor cells. In addition, several promising research directions of CAP are proposed in this review, which provide guidance for future research.
Collapse
Affiliation(s)
- Tianhao Min
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xin Xie
- Department of Nuclear Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Kaijie Ren
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Tuanhe Sun
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Haonan Wang
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Chengxue Dang
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- *Correspondence: Chengxue Dang
| | - Hao Zhang
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Hao Zhang
| |
Collapse
|
12
|
UDP/P2Y6 contributes to enhancing LPS-induced acute lung injury by regulating neutrophil migration. Cell Immunol 2022; 376:104530. [DOI: 10.1016/j.cellimm.2022.104530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 03/24/2022] [Accepted: 04/17/2022] [Indexed: 11/23/2022]
|
13
|
Sun D, Ko M, Shao H, Kaplan HJ. Adenosine receptor ligation tips the uveitogenic Th1 and Th17 balance towards the latter in experimental autoimmune uveitis-induced mouse. CURRENT RESEARCH IN IMMUNOLOGY 2021; 2:93-103. [PMID: 34825178 PMCID: PMC8612466 DOI: 10.1016/j.crimmu.2021.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Various pathological conditions are accompanied by release of adenosine triphosphate (ATP) from the intracellular to the extracellular compartment, where it degrades into adenosine and modulates immune responses. Previous studies concluded that both ATP and its degradation product adenosine are important immune-regulatory molecules; ATP acted as a danger signal that promotes immune responses, but adenosine's effect was inhibitory. We show that adenosine receptor ligation plays an important role in balancing Th1 and Th17 pathogenic T cell responses in experimental autoimmune uveitis (EAU). While its effect on Th1 responses is inhibitory, its effect on Th17 responses is enhancing, thereby impacting the balance between Th1 and Th17 responses. Mechanistic studies showed that this effect is mediated via several immune cells, among which γδ T cell activation and dendritic cell differentiation are prominent; adenosine- and γδ-mediated immunoregulation synergistically impact each other's effect. Adenosine receptor ligation augments the activation of γδ T cells, which is an important promoter for Th17 responses and has a strong effect on dendritic cell (DC) differentiation, tipping the balance from generation of DCs that stimulate Th1 responses to those that stimulate Th17 responses. The knowledge acquired in this study should improve our understanding of the immune-regulatory effect of extracellular ATP-adenosine metabolism and improve treatment for autoimmune diseases caused by both Th1-and Th17-type pathogenic T cells.
Collapse
Affiliation(s)
- Deming Sun
- Doheny Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90033, United States
- Corresponding author. Department of Ophthalmology, University of California Los Angeles, Los Angeles, CA90033, USA.
| | - Minhee Ko
- Doheny Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90033, United States
| | - Hui Shao
- Department of Ophthalmology and Visual Sciences, Kentucky Lions Eye Center, University of Louisville, Louisville, KY, 40202, United States
| | - Henry J. Kaplan
- Saint Louis University (SLU) Eye Institute, SLU School of Medicine, Saint Louis, MO, 63104, United States
| |
Collapse
|
14
|
Alvarez CL, Troncoso MF, Espelt MV. Extracellular ATP and adenosine in tumor microenvironment: Roles in epithelial-mesenchymal transition, cell migration, and invasion. J Cell Physiol 2021; 237:389-400. [PMID: 34514618 DOI: 10.1002/jcp.30580] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 12/11/2022]
Abstract
Under nonpathological conditions, the extracellular nucleotide concentration remains constant and low (nM range) because of a close balance between ATP release and ATP consumption. This balance is completely altered in cancer disease. Adenine and uridine nucleotides are found in the extracellular space of tumors in high millimolar (mM) concentrations acting as extracellular signaling molecules. In general, although uridine nucleotides may be involved in different tumor cell responses, purinergic signaling in cancer is preferentially focused on adenine nucleotides and nucleosides. Extracellular ATP can bind to specific receptors (P receptors) triggering different responses, or it can be hydrolyzed by ectoenzymes bound to cell membranes to render the final product adenosine. The latter pathway plays an important role in the increase of adenosine in tumor microenvironment. In this study, we will focus on extracellular ATP and adenosine, their effects acting as ligands of specific receptors, activating ectoenzymes, and promoting epithelial-mesenchymal transition, migration, and invasion in cancer cells. Finding the roles that these nucleotides play in tumor microenvironment may be important to design new intervention strategies in cancer therapies.
Collapse
Affiliation(s)
- Cora L Alvarez
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Universidad de Buenos Aires, Buenos Aires, Argentina.,CONICET-Universidad de Buenos Aires, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB) "Prof. Alejandro C. Paladini", Buenos Aires, Argentina
| | - María F Troncoso
- CONICET-Universidad de Buenos Aires, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB) "Prof. Alejandro C. Paladini", Buenos Aires, Argentina.,Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María V Espelt
- CONICET-Universidad de Buenos Aires, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB) "Prof. Alejandro C. Paladini", Buenos Aires, Argentina.,Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
15
|
Ko MK, Shao H, Kaplan HJ, Sun D. Timing Effect of Adenosine-Directed Immunomodulation on Mouse Experimental Autoimmune Uveitis. THE JOURNAL OF IMMUNOLOGY 2021; 207:153-161. [PMID: 34127521 DOI: 10.4049/jimmunol.2100182] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/13/2021] [Indexed: 01/09/2023]
Abstract
Adenosine is an important regulatory molecule of the immune response. We have previously reported that treatment of experimental autoimmune uveitis (EAU)-prone mice with an adenosine-degrading enzyme (adenosine deaminase) prohibited EAU development by inhibiting Th17 pathogenic T cell responses. To further validate that the targeting of adenosine or adenosine receptors effectively modulates Th17 responses, we investigated the effect of adenosine receptor antagonists. In this study, we show that the A2AR antagonist SCH 58261 (SCH) effectively modulates aberrant Th17 responses in induced EAU. However, timing of the treatment is important. Whereas SCH inhibits EAU when administered during the active disease stage, it did not do so if administered during quiescent disease stages, thus implying that the existing immune status influences the therapeutic effect. Mechanistic studies showed that inhibition of γδ T cell activation is crucially involved in adenosine-based treatment. Adenosine is an important costimulator of γδ T cell activation, which is essential for promoting Th17 responses. During ongoing disease stages, adenosine synergizes with existing high levels of cytokines, leading to augmented γδ T cell activation and Th17 responses, but in quiescent disease stages, when existing cytokine levels are low, adenosine does not enhance γδ T cell activation. Our results demonstrated that blockade of the synergistic effect between adenosine and inflammatory cytokines at active disease stages can ameliorate high-degree γδ T cell activation and, thus, suppress Th17 pathogenic T cell responses.
Collapse
Affiliation(s)
- Minhee K Ko
- Doheny Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Hui Shao
- Department of Ophthalmology and Visual Sciences, Kentucky Lions Eye Center, University of Louisville, Louisville, KY; and
| | - Henry J Kaplan
- Saint Louis University Eye Institute, Saint Louis University School of Medicine, Saint Louis University, St. Louis, MO
| | - Deming Sun
- Doheny Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA;
| |
Collapse
|
16
|
Keenan BP, Fong L. Conditional Cancer Immunotherapy as a Safer Way to Step on the Gas. Cancer Discov 2021; 11:20-22. [PMID: 34003781 DOI: 10.1158/2159-8290.cd-20-1328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this issue, Kamata-Sakurai and colleagues describe an agonist antibody to CD137 (4-1BB) that takes on an active conformation in environments with high ATP concentrations, characteristic of tumors. This represents a novel advancement in developing immunotherapies that can be administered systemically, but act locally to induce antitumor immune responses without the usual attendant toxicities.See related article by Kamata-Sakurai et al., p. 158.
Collapse
Affiliation(s)
- Bridget P Keenan
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, California
| | - Lawrence Fong
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, California.
| |
Collapse
|
17
|
Hirayama Y, Anzai N, Koizumi S. Mechanisms underlying sensitization of P2X7 receptors in astrocytes for induction of ischemic tolerance. Glia 2021; 69:2100-2110. [PMID: 34076906 DOI: 10.1002/glia.23998] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/22/2021] [Accepted: 03/15/2021] [Indexed: 11/08/2022]
Abstract
We previously showed that noninvasive mild ischemia (preconditioning; PC) induced ischemic tolerance by upregulation of P2X7 receptors in astrocytes via a hypoxia inducible factor-1α (HIF-1α)-dependent mechanism. The P2X7 receptor is known as a low-sensitivity P2 receptor that requires a high extracellular ATP (eATP) concentration for activation. PC increased the eATP level but was not sufficient to activate P2X7 receptors. Here, we show that astrocytes possess an elaborate mechanism for activation of P2X7 receptors, thus contributing to ischemic tolerance. Nicotinamide adenine dinucleotide (NAD+ ) was shown to increase the sensitivity of P2X7 receptors to eATP via ecto-ADP-ribosyltransferase 2 (ARTC2)-catalyzed ADP-ribosylation in peripheral immune cells. Although ARTC2-positive signals were mostly absent in the naïve brain, they were selectively increased in astrocytes by PC. The spatiotemporal pattern of PC-evoked ARTC2 was well associated with that of P2X7 receptors. In the in vitro experiments, NAD+ increased the sensitivity of P2X7 receptors to ATP, and at higher concentrations, NAD+ itself activated P2X7 receptors without eATP in cultured astrocytes. In the in vivo experiments using middle cerebral artery occlusion model mice, the PC-evoked increase in HIF-1α in astrocytes was abolished by the ARTC2 inhibitor S + 16a. S + 16a also abolished PC-evoked ischemic tolerance. Taken together, the results suggested that P2X7 receptors can be sensitized to ATP by NAD+ /ARTC2-catalyzed ADP-ribosylation, which allows astrocytes to drive P2X7 receptor-mediated ischemic tolerance even though PC only slightly increases the amount of eATP.
Collapse
Affiliation(s)
- Yuri Hirayama
- Department of Pharmacology, Chiba University Graduate School of Medicine, Chiba, Japan.,Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Naohiko Anzai
- Department of Pharmacology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Schuichi Koizumi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan.,GLIA Center, University of Yamanashi, Yamanashi, Japan
| |
Collapse
|
18
|
Doleski PH, Cabral FL, Adefegha SA, Jantsch MH, Ebone RS, Leal DBR, Schetinger MRC. Distinct kinetics for nucleotide hydrolysis in lymphocytes isolated from blood, spleen and cervical lymph nodes: Characterization of ectonucleotidase activity. Cell Biochem Funct 2021; 39:511-520. [PMID: 33783015 DOI: 10.1002/cbf.3616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 11/10/2020] [Accepted: 11/15/2020] [Indexed: 11/08/2022]
Abstract
Ectonucleotidases are a plasma membrane-bound enzyme that hydrolyses extracellular adenosine triphosphate (eATP) and adenosine diphosphate (eADP) to adenosine monophosphate (AMP). It regulates normal function of lymphocytes, acts as an inflammatory marker and represents a molecular target for new therapeutics. Thus, this study sought to isolate lymphocytes from blood (BL), spleen (SL) and cervical lymph node (CLL), and characterize the eATP and eADP enzymatic hydrolysis in Wistar rats. The hydrolysis of the nucleotides occurred primarily at pH 8.0, 37°C in the presence of Ca2+ or Mg2+ . Chevillard-plot showed the hydrolysis of eATP and eADP at the same active site. The inhibitors of some classical ATDPases did not cause any significant change on enzymatic activity. Inhibitors of E-NTPDase (-1, -2, -3 isoforms) and E-NPP-1 decrease the enzyme activity in all resident lymphocytes. Furthermore, kinetic parameters (Vmax and Km) revealed that SL had significantly (P < .001) higher enzymatic activity when compared to BL and CLL. In conclusion, this study standardized kinetic values for eATP and eADP hydrolysis for resident lymphocytes isolated from BL, SL and CLL.
Collapse
Affiliation(s)
- Pedro H Doleski
- Department of Biochemistry and Molecular Biology, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Fernanda L Cabral
- Department of Microbiology and Parasitology, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Stephen A Adefegha
- Department of Biochemistry and Molecular Biology, Universidade Federal de Santa Maria, Santa Maria, Brazil.,Department of Biochemistry, Federal University of Technology, Akure, Nigeria
| | - Matheus H Jantsch
- Department of Biochemistry and Molecular Biology, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Renan S Ebone
- Department of Biochemistry and Molecular Biology, Universidade Federal de Santa Maria, Santa Maria, Brazil.,Department of Microbiology and Parasitology, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Daniela B R Leal
- Department of Biochemistry and Molecular Biology, Universidade Federal de Santa Maria, Santa Maria, Brazil.,Department of Microbiology and Parasitology, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Maria R C Schetinger
- Department of Biochemistry and Molecular Biology, Universidade Federal de Santa Maria, Santa Maria, Brazil
| |
Collapse
|
19
|
Gruenbacher G, Gander H, Dobler G, Rahm A, Klaver D, Thurnher M. The human G protein-coupled ATP receptor P2Y 11 is a target for anti-inflammatory strategies. Br J Pharmacol 2021; 178:1541-1555. [PMID: 33463722 PMCID: PMC9328440 DOI: 10.1111/bph.15379] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 12/21/2020] [Accepted: 01/06/2021] [Indexed: 12/24/2022] Open
Abstract
Background and Purpose The ATP receptor P2Y11, which couples to Gq and Gs proteins, senses cell stress and promotes cytoprotective responses. P2Y11 receptors are upregulated during differentiation of M2 macrophages. However, it is unclear whether and how P2Y11 receptors contribute to the anti‐inflammatory properties of M2 macrophages. Experimental Approach Transcriptome and secretome profiling of ectopic P2Y11 receptors was used to analyse their signalling and function. Findings were validated in human monocyte‐derived M2 macrophages. The suramin analogue NF340 and P2Y11 receptor‐knockout cells confirmed that agonist‐mediated responses were specific to P2Y11 receptor stimulation. Key Results Temporal transcriptome profiling of P2Y11 receptor stimulation showed a strong and tightly controlled response of IL‐1 receptors, including activation of the IL‐1 receptor target genes, IL6 and IL8. Secretome profiling confirmed the presence of IL‐6 and IL‐8 proteins and additionally identified soluble tumour necrosis factor receptor 1 and 2 (sTNFR1 and sTNFR2) as targets of P2Y11 receptor activation. Raised levels of intracellular cAMP in M2 macrophages, after inhibition of phosphodiesterases (PDE), especially PDE4, strongly increased P2Y11 receptor‐induced release of sTNFR2 through ectodomain shedding mediated by TNF‐α converting enzyme (TACE/ADAM17). Both IL‐1α and IL‐1ß synergistically enhanced P2Y11 receptor‐ induced IL‐6 and IL‐8 secretion and release of sTNFR2. During lipopolysaccharide‐induced activation of TLR4, which shares the downstream signalling pathway with IL‐1 receptors, P2Y11 receptors specifically prevented secretion of TNF‐α. Conclusions and Implications Targeting P2Y11 receptors activates IL‐1 receptor signalling to promote sTNFR2 release and suppress TLR4 signalling to prevent TNF‐α secretion, thus facilitating resolution of inflammation.
Collapse
Affiliation(s)
- Georg Gruenbacher
- Immunotherapy Unit, Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Hubert Gander
- Immunotherapy Unit, Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Gabriele Dobler
- Immunotherapy Unit, Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Andrea Rahm
- Immunotherapy Unit, Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Dominik Klaver
- Immunotherapy Unit, Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Martin Thurnher
- Immunotherapy Unit, Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
20
|
Lopez V, Schäkel L, Schuh HJM, Schmidt MS, Mirza S, Renn C, Pelletier J, Lee SY, Sévigny J, Alban S, Bendas G, Müller CE. Sulfated Polysaccharides from Macroalgae Are Potent Dual Inhibitors of Human ATP-Hydrolyzing Ectonucleotidases NPP1 and CD39. Mar Drugs 2021; 19:md19020051. [PMID: 33499103 PMCID: PMC7911304 DOI: 10.3390/md19020051] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 12/25/2022] Open
Abstract
Extracellular ATP mediates proinflammatory and antiproliferative effects via activation of P2 nucleotide receptors. In contrast, its metabolite, the nucleoside adenosine, is strongly immunosuppressive and enhances tumor proliferation and metastasis. The conversion of ATP to adenosine is catalyzed by ectonucleotidases, which are expressed on immune cells and typically upregulated on tumor cells. In the present study, we identified sulfopolysaccharides from brown and red sea algae to act as potent dual inhibitors of the main ATP-hydrolyzing ectoenzymes, ectonucleotide pyrophosphatase/phosphodiesterase-1 (NPP1) and ecto-nucleoside triphosphate diphosphohydrolase-1 (NTPDase1, CD39), showing nano- to picomolar potency and displaying a non-competitive mechanism of inhibition. We showed that one of the sulfopolysaccharides tested as a representative example reduced adenosine formation at the surface of the human glioblastoma cell line U87 in a concentration-dependent manner. These natural products represent the most potent inhibitors of extracellular ATP hydrolysis known to date and have potential as novel therapeutics for the immunotherapy of cancer.
Collapse
Affiliation(s)
- Vittoria Lopez
- Pharmaceutical & Medicinal Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany; (V.L.); (L.S.); (S.M.); (C.R.); (S.-Y.L.)
- PharmaCenter Bonn, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Laura Schäkel
- Pharmaceutical & Medicinal Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany; (V.L.); (L.S.); (S.M.); (C.R.); (S.-Y.L.)
- PharmaCenter Bonn, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - H. J. Maximilian Schuh
- Pharmaceutical & Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany; (H.J.M.S.); (M.S.S.); (G.B.)
| | - Michael S. Schmidt
- Pharmaceutical & Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany; (H.J.M.S.); (M.S.S.); (G.B.)
| | - Salahuddin Mirza
- Pharmaceutical & Medicinal Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany; (V.L.); (L.S.); (S.M.); (C.R.); (S.-Y.L.)
- PharmaCenter Bonn, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Christian Renn
- Pharmaceutical & Medicinal Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany; (V.L.); (L.S.); (S.M.); (C.R.); (S.-Y.L.)
- PharmaCenter Bonn, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Julie Pelletier
- Centre de Recherche du CHU de Québec—Université Laval, Québec City, QC G1V 4G2, Canada; (J.P.); (J.S.)
| | - Sang-Yong Lee
- Pharmaceutical & Medicinal Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany; (V.L.); (L.S.); (S.M.); (C.R.); (S.-Y.L.)
- PharmaCenter Bonn, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Jean Sévigny
- Centre de Recherche du CHU de Québec—Université Laval, Québec City, QC G1V 4G2, Canada; (J.P.); (J.S.)
- Départment de Microbiologie-Infectiologie et d’Immunologie, Faculté de Médecine, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Susanne Alban
- Pharmaceutical Institute, Christian-Albrechts-University of Kiel, Gutenbergstraße 76, 24118 Kiel, Germany;
| | - Gerd Bendas
- Pharmaceutical & Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany; (H.J.M.S.); (M.S.S.); (G.B.)
| | - Christa E. Müller
- Pharmaceutical & Medicinal Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany; (V.L.); (L.S.); (S.M.); (C.R.); (S.-Y.L.)
- PharmaCenter Bonn, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
- Correspondence: ; Tel.: +49-228-73-2301; Fax: +49-228-73-2567
| |
Collapse
|
21
|
Bayati F, Mohammadi M, Valadi M, Jamshidi S, Foma AM, Sharif-Paghaleh E. The Therapeutic Potential of Regulatory T Cells: Challenges and Opportunities. Front Immunol 2021; 11:585819. [PMID: 33519807 PMCID: PMC7844143 DOI: 10.3389/fimmu.2020.585819] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 11/27/2020] [Indexed: 12/22/2022] Open
Abstract
Regulatory T cells (Tregs) are an immunosuppressive subgroup of CD4+ T cells which are identified by the expression of forkhead box protein P3 (Foxp3). The modulation capacity of these immune cells holds an important role in both transplantation and the development of autoimmune diseases. These cells are the main mediators of self-tolerance and are essential for avoiding excessive immune reactions. Tregs play a key role in the induction of peripheral tolerance that can prevent autoimmunity, by protecting self-reactive lymphocytes from the immune reaction. In contrast to autoimmune responses, tumor cells exploit Tregs in order to prevent immune cell recognition and anti-tumor immune response during the carcinogenesis process. Recently, numerous studies have focused on unraveling the biological functions and principles of Tregs and their primary suppressive mechanisms. Due to the promising and outstanding results, Tregs have been widely investigated as an alternative tool in preventing graft rejection and treating autoimmune diseases. On the other hand, targeting Tregs for the purpose of improving cancer immunotherapy is being intensively evaluated as a desirable and effective method. The purpose of this review is to point out the characteristic function and therapeutic potential of Tregs in regulatory immune mechanisms in transplantation tolerance, autoimmune diseases, cancer therapy, and also to discuss that how the manipulation of these mechanisms may increase the therapeutic options.
Collapse
Affiliation(s)
- Fatemeh Bayati
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Research & Development Department, Aryogen Pharmed, Karaj, Iran
| | - Mahsa Mohammadi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| | - Maryam Valadi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeid Jamshidi
- Research & Development Department, Aryogen Pharmed, Karaj, Iran
| | - Arron Munggela Foma
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ehsan Sharif-Paghaleh
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| |
Collapse
|
22
|
Shevchenko M, Servuli E, Albakova Z, Kanevskiy L, Sapozhnikov A. The Role of Heat Shock Protein 70 kDa in Asthma. J Asthma Allergy 2021; 13:757-772. [PMID: 33447061 PMCID: PMC7801907 DOI: 10.2147/jaa.s288886] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 12/12/2020] [Indexed: 01/16/2023] Open
Abstract
Asthma is a complex chronic disorder of the airways, affecting immune and structural cells and inducing both protein and tissue remodeling. Heat shock proteins 70 kDa (HSP70s) are highly conserved members of the stress-induced family, possessing precisely described chaperone activity. There is growing evidence of a tight relationship between inflammatory diseases of different origins and the elevation of local HSP70 expression and secretion. Although extracellular HSP70 does not serve as a common marker of asthma, elevated HSP70 levels have been detected in the peripheral blood serum and sputum of patients with asthma, as well as in the bronchoalveolar lavage fluid of mice with induced allergic airway inflammation. Possessing diverse immunomodulating properties, extracellular HSP70 can manifest different activities in airway inflammatory processes and asthma, acting either as a pro-inflammatory trigger, or an anti-inflammatory agent. This review will discuss the effects and possible mechanisms concerning HSP70 implication in airway inflammation regulation in asthma. We examine ATPase and chaperone activities of HSP70 as potential modulators of immune responses in asthma. Given the crucial role of a chronic inflammatory response in asthma, understanding the effects of HSP70 on immune and structural cells may reveal new perspectives for the therapeutic control of inflammation.
Collapse
Affiliation(s)
- Marina Shevchenko
- Department of Immunology, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Ekaterina Servuli
- Department of Immunology, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Department of Experimental Physiology, Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Zarema Albakova
- Department of Immunology, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Department of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Leonid Kanevskiy
- Department of Immunology, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Alexander Sapozhnikov
- Department of Immunology, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Department of Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
23
|
Cao X, Ye X, Zhang S, Wang L, Xu Y, Peng S, Zhou Y, Peng Y, Li J, Zhang X, Han X, Huang WY, Jia W, Ye J. ADP Induces Blood Glucose Through Direct and Indirect Mechanisms in Promotion of Hepatic Gluconeogenesis by Elevation of NADH. Front Endocrinol (Lausanne) 2021; 12:663530. [PMID: 33986729 PMCID: PMC8111448 DOI: 10.3389/fendo.2021.663530] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/29/2021] [Indexed: 11/13/2022] Open
Abstract
Extracellular ADP, a derivative of ATP, interacts with the purinergic receptors in the cell membrane to regulate cellular activities. This signaling pathway remains unknown in the regulation of blood glucose in vivo. We investigated the acute activity of ADP in mice through a peritoneal injection. In the lean mice, in response to the ADP treatment, the blood glucose was elevated, and pyruvate tolerance was impaired. Hepatic gluconeogenesis was enhanced with elevated expression of glucogenic genes (G6pase and Pck1) in the liver. An elevation was observed in NADH, cAMP, AMP, GMP and citrate in the liver tissue in the targeted metabolomics assay. In the primary hepatocytes, ADP activated the cAMP/PKA/CREB signaling pathway, which was blocked by the antagonist (2211) of the ADP receptor P2Y13. In the circulation, gluconeogenic hormones including glucagon and corticosterone were elevated by ADP. Insulin and thyroid hormones (T3 and T4) were not altered in the blood. In the diet-induced obese (DIO) mice, NADH was elevated in the liver tissue to match the hepatic insulin resistance. Insulin resistance was intensified by ADP for further impairment in insulin tolerance. These data suggest that ADP induced the blood glucose through direct and indirect actions in liver. One of the potential pathways involves activation of the P2Y13/cAMP/PKA/CREB signaling pathway in hepatocytes and the indirect pathway may involve induction of the gluconeogenic hormones. NADH is a signal for gluconeogenesis in the liver of both DIO mice and lean mice.
Collapse
Affiliation(s)
- Xinyu Cao
- Shanghai Diabetes Institute, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Xiaotong Ye
- Shanghai Diabetes Institute, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Shuang Zhang
- Core Facility Center of the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Li Wang
- Shanghai Diabetes Institute, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Yanhong Xu
- Shanghai Diabetes Institute, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Shiqiao Peng
- Shanghai Diabetes Institute, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Yang Zhou
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Yue Peng
- Shanghai Diabetes Institute, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- College of Physical Education, Jiangxi Normal University, Nanchang City, China
| | - Junhua Li
- Shanghai Diabetes Institute, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Xiaoying Zhang
- Shanghai Diabetes Institute, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Xiao Han
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China
| | - Wen-ying Huang
- College of Physical Education, Jiangxi Normal University, Nanchang City, China
| | - Weiping Jia
- Shanghai Diabetes Institute, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Jianping Ye
- Shanghai Diabetes Institute, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- *Correspondence: Jianping Ye,
| |
Collapse
|
24
|
He S, Chen XX, Ge W, Yang S, Chen JT, Niu JW, Xia L, Chen GH. Are Anti-Inflammatory Cytokines Associated with Cognitive Impairment in Patients with Insomnia Comorbid with Depression? A Pilot Study. Nat Sci Sleep 2021; 13:989-1000. [PMID: 34234602 PMCID: PMC8254552 DOI: 10.2147/nss.s312272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/15/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND To distinguish insomnia comorbid with depression (ICD) from chronic insomnia disorder (CID) by exploring the relationship between serum levels of frequently overlooked anti-inflammatory cytokines and cognitive function. METHODS A total of 42 ICD patients, 63 CID patients, and 42 healthy control subjects were enrolled in the study. The Pittsburgh Sleep Quality Index and Hamilton Depression Rating Scale were used to assess sleep quality and depression severity, respectively. The Chinese-Beijing version of Montreal Cognitive Assessment scale (MoCA-C) and Nine-Box Maze Test (NBMT) were used to assess cognitive function. Serum levels of anti-inflammatory interleukins (IL-1RA, IL-4, IL-5, IL-10, IL-13, and IL-28A), transforming growth factor (TGF)-β1, granulocyte-macrophage colony-stimulating factor, interferon-γ, and the chemokine regulated upon activation, normal T cell expressed and secreted (RANTES) were measured by enzyme-linked immunosorbent assay. RESULTS The ICD group had significantly more errors in the spatial reference task (H=2.55, Ps=0.03) and spatial working memory task (H=5.67, Ps<0.01) of the NBMT, as well as lower levels of IL-1RA (H=-2.85, Ps=0.01), IL-4 (H=-3.28, Ps<0.01), IL-5 (H=-3.35, Ps<0.01), IL-10 (H=-4.46, Ps<0.01), and IL-28A (H=-2.75, Ps=0.02) than control subjects. Compared with the CID group, the ICD group had significantly more errors in the spatial reference memory task (H=-2.84, Ps=0.01) of the NBMT, and lower levels of IL-5 (H=3.41, Ps<0.01), IL-10 (H=5.30, Ps<0.01), IL-13 (H=3.89, Ps<0.01), and GM-CSF (H=2.72, Ps=0.02). A partial correlation analysis showed that the level of one or more of IL-4, IL-5, IL-10, IL-13, and TGF-β1 was positively correlated with cognitive function (MoCA-C score and/or performance in spatial memory task) in ICD patients. CONCLUSION ICD is a distinct condition that can be distinguished from CID based on immune dysfunction and specific types of cognitive dysfunction.
Collapse
Affiliation(s)
- Shuo He
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei (Chaohu), 238000, People's Republic of China
| | - Xi-Xi Chen
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People's Republic of China
| | - Wei Ge
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei (Chaohu), 238000, People's Republic of China
| | - Shuai Yang
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei (Chaohu), 238000, People's Republic of China
| | - Jun-Tao Chen
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei (Chaohu), 238000, People's Republic of China
| | - Jing-Wen Niu
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei (Chaohu), 238000, People's Republic of China
| | - Lan Xia
- Department of Neurology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, People's Republic of China
| | - Gui-Hai Chen
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei (Chaohu), 238000, People's Republic of China
| |
Collapse
|
25
|
Monaghan MLT, Bailey MA, Unwin RJ. Purinergic signalling in the kidney: In physiology and disease. Biochem Pharmacol 2020; 187:114389. [PMID: 33359067 DOI: 10.1016/j.bcp.2020.114389] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 02/06/2023]
Abstract
Historically, the control of renal vascular and tubular function has, for the most part, concentrated on neural and endocrine regulation. However, in addition to these extrinsic factors, it is now appreciated that several complex humoral control systems exist within the kidney that can act in an autocrine and/or paracrine fashion. These paracrine systems complement neuroendocrine regulation by dynamically fine-tuning renal vascular and tubular function to buffer rapid changes in nephron perfusion and flow rate of tubular fluid. One of the most pervasive is the extracellular nucleotide/P2 receptor system, which is central to many of the intrinsic regulatory feedback loops within the kidney such as renal haemodynamic autoregulation and tubuloglomerular feedback (TGF). Although physiological actions of extracellular adenine nucleotides were reported almost 100 years ago, the conceptual framework for purinergic regulation of renal function owes much to the work of Geoffrey Burnstock. In this review, we reflect on our >20-year collaboration with Professor Burnstock and highlight the research that is still unlocking the potential of the renal purinergic system to understand and treat kidney disease.
Collapse
Affiliation(s)
- Marie-Louise T Monaghan
- British Heart Foundation Centre for Cardiovascular Science, The University of Edinburgh, United Kingdom
| | - Matthew A Bailey
- British Heart Foundation Centre for Cardiovascular Science, The University of Edinburgh, United Kingdom
| | - Robert J Unwin
- The Department of Renal Medicine, University College London, United Kingdom.
| |
Collapse
|
26
|
Schäkel L, Schmies CC, Idris RM, Luo X, Lee SY, Lopez V, Mirza S, Vu TH, Pelletier J, Sévigny J, Namasivayam V, Müller CE. Nucleotide Analog ARL67156 as a Lead Structure for the Development of CD39 and Dual CD39/CD73 Ectonucleotidase Inhibitors. Front Pharmacol 2020; 11:1294. [PMID: 33013365 PMCID: PMC7508162 DOI: 10.3389/fphar.2020.01294] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 08/04/2020] [Indexed: 12/21/2022] Open
Abstract
Nucleoside triphosphate diphosphohydrolase1 (NTPDase1, CD39) inhibitors have potential as novel drugs for the (immuno)therapy of cancer. They increase the extracellular concentration of immunostimulatory ATP and reduce the formation of AMP, which can be further hydrolyzed by ecto-5'-nucleotidase (CD73) to immunosuppressive, cancer-promoting adenosine. In the present study, we synthesized analogs and derivatives of the standard CD39 inhibitor ARL67156, a nucleotide analog which displays a competitive mechanism of inhibition. Structure-activity relationships were analyzed at the human enzyme with respect to substituents in the N 6- and C8-position of the adenine core, and modifications of the triphosph(on)ate chain. Capillary electrophoresis coupled to laser-induced fluorescence detection employing a fluorescent-labeled ATP derivative was employed to determine the compounds' potency. Selected inhibitors were additionally evaluated in an orthogonal, malachite green assay versus the natural substrate ATP. The most potent CD39 inhibitors of the present series were ARL67156 and its derivatives 31 and 33 with Ki values of around 1 µM. Selectivity studies showed that all three nucleotide analogs additionally blocked CD73 acting as dual-target inhibitors. Docking studies provided plausible binding modes to both targets. The present study provides a full characterization of the frequently applied CD39 inhibitor ARL67156, presents structure-activity relationships, and provides a basis for future optimization towards selective CD39 and dual CD39/CD73 inhibitors.
Collapse
Affiliation(s)
- Laura Schäkel
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn, Germany
| | - Constanze C Schmies
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn, Germany
| | - Riham M Idris
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn, Germany
| | - Xihuan Luo
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn, Germany
| | - Sang-Yong Lee
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn, Germany
| | - Vittoria Lopez
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn, Germany
| | - Salahuddin Mirza
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn, Germany
| | - The Hung Vu
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn, Germany
| | - Julie Pelletier
- Centre de Recherche du CHU de Québec - Université Laval, Québec City, QC, Canada
| | - Jean Sévigny
- Centre de Recherche du CHU de Québec - Université Laval, Québec City, QC, Canada.,Départment de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médecine, Université Laval, Quebec City, QC, Canada
| | - Vigneshwaran Namasivayam
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn, Germany
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn, Germany
| |
Collapse
|
27
|
Zhang C, Yan Y, He H, Wang L, Zhang N, Zhang J, Huang H, Wu N, Ren H, Qian M, Liu M, Du B. IFN-stimulated P2Y13 protects mice from viral infection by suppressing the cAMP/EPAC1 signaling pathway. J Mol Cell Biol 2020; 11:395-407. [PMID: 30137373 PMCID: PMC7107496 DOI: 10.1093/jmcb/mjy045] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 05/16/2018] [Accepted: 08/20/2018] [Indexed: 12/11/2022] Open
Abstract
Among the most important sensors of extracellular danger signals, purinergic receptors have been demonstrated to play crucial roles in host defense against infection. However, the function of P2 receptors in viral infection has been little explored. Here we demonstrated that P2Y13 and its ligand ADP play an important role in protecting hosts from viral infections. First, we demonstrate that P2Y13, as a typical interferon-stimulated gene, is induced together with extracellular ADP during viral infection. Most importantly, extracellular ADP restricts the replication of different kinds of viruses, including vesicular stomatitis virus, Newcastle disease virus, herpes simplex virus 1, and murine leukemia virus. This kind of protection is dependent on P2Y13 but not P2Y1 or P2Y12, which are also considered as receptors for ADP. Furthermore, cyclic adenosine monophosphate and EPAC1 are downregulated by extracellular ADP through the P2Y13-coupled Gi alpha subunit. Accordingly, inhibition or deletion of EPAC1 significantly eliminates ADP/P2Y13-mediated antiviral activities. Taken together, our results show that P2Y13 and ADP play pivotal roles in the clearance of invaded virus and have the potential as antiviral targets.
Collapse
Affiliation(s)
- Chengfei Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Yan Yan
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Hongwang He
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Li Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Na Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Jie Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Hongjun Huang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Nannan Wu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Hua Ren
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Min Qian
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Mingyao Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Bing Du
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| |
Collapse
|
28
|
Dunn PJ, Salm EJ, Tomita S. ABC transporters control ATP release through cholesterol-dependent volume-regulated anion channel activity. J Biol Chem 2020; 295:5192-5203. [PMID: 31988241 PMCID: PMC7170513 DOI: 10.1074/jbc.ra119.010699] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 01/10/2020] [Indexed: 12/16/2022] Open
Abstract
Purinergic signaling by extracellular ATP regulates a variety of cellular events and is implicated in both normal physiology and pathophysiology. Several molecules have been associated with the release of ATP and other small molecules, but their precise contributions have been difficult to assess because of their complexity and heterogeneity. Here, we report on the results of a gain-of-function screen for modulators of hypotonicity-induced ATP release using HEK-293 cells and murine cerebellar granule neurons, along with bioluminescence, calcium FLIPR, and short hairpin RNA-based gene-silencing assays. This screen utilized the most extensive genome-wide ORF collection to date, covering 90% of human, nonredundant, protein-encoding genes. We identified two ABCG1 (ABC subfamily G member 1) variants, which regulate cellular cholesterol, as modulators of hypotonicity-induced ATP release. We found that cholesterol levels control volume-regulated anion channel-dependent ATP release. These findings reveal novel mechanisms for the regulation of ATP release and volume-regulated anion channel activity and provide critical links among cellular status, cholesterol, and purinergic signaling.
Collapse
Affiliation(s)
- Patrick J Dunn
- Department of Cellular and Molecular Physiology, Department of Neuroscience, Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale Kavli Institute, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Elizabeth J Salm
- Department of Cellular and Molecular Physiology, Department of Neuroscience, Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale Kavli Institute, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Susumu Tomita
- Department of Cellular and Molecular Physiology, Department of Neuroscience, Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale Kavli Institute, Yale University School of Medicine, New Haven, Connecticut 06520.
| |
Collapse
|
29
|
Li S, Hao G, Feng Y, Li J, Wang N, Sun J. Functional characterization of two ecto-nucleoside triphosphate diphosphohydrolase 2 genes in Japanese flounder (Paralichthys olivaceus) head kidney macrophages. FISH & SHELLFISH IMMUNOLOGY 2020; 99:535-547. [PMID: 32084539 DOI: 10.1016/j.fsi.2020.02.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 02/09/2020] [Accepted: 02/18/2020] [Indexed: 06/10/2023]
Abstract
Ecto-nucleoside triphosphate diphosphohydrolases (ENTPDases) are pivotal regulators of extracellular ATP-mediated purinergic immune signaling. ENTPDase2 is a member of the cell surface-bound ecto-nucleoside triphosphate diphosphohydrolase (ENTPDase) protein family that hydrolyzes extracellular nucleoside 5'-triphosphates and nucleoside 5'-diphosphates. However, the immune relevance of ENTPDase2 in fish has not been elucidated. In the present study, from a comparative immunological perspective, we functionally characterized two ENTPDase2 transcript variants (namely ENTPDase2 and ENTPDase2a) from Japanese flounder (Paralichthys olivaceus). Sequence analysis indicates that the deduced Japanese flounder ENTPDase2 and ENTPDase2a proteins possess two conserved transmembrane domains and five apyrase conserved regions that are present in ENTPDase family proteins. However, these proteins only share 54% amino acid sequence identity. Tissue expression analysis revealed that both ENTPDase2 and ENTPDase2a mRNA transcripts are ubiquitously expressed in all examined Japanese flounder tissues, whereas ENTPDase2 is dominantly expressed in blood and ENTPDase2a is abundantly expressed in muscle. Immune challenge experiments showed that ENTPDase2 and ENTPDase2a were significantly upregulated by both inflammatory stimulation and Edwardsiella tarda infection. In addition, the expression of ENTPDase2 and ENTPDase2a was modulated by extracellular ATP (eATP) stimulation in a dose-dependent manner. Furthermore, immunolocalization and functional studies demonstrated that both ENTPDase2 and ENTPDase2a are functional glycosylated plasma membrane proteins. However, ENTPDase2a exhibits greater activity in the hydrolysis of eATP than ENTPDase2 and ENTPDase1 proteins. Finally, knockdown of the ENTPDase2 gene by small interfering RNA significantly upregulated the expression of eATP-induced proinflammatory cytokines IL-1beta, TNF-alpha and G-CSF in Japanese flounder head kidney macrophages, while knockdown of ENTPDase2a only upregulated eATP-induced IL-1beta expression. Taken together, our findings suggest that the two functional Japanese flounder ENTPDase2 isoforms play an essential role in the downregulation of eATP-induced proinflammatory cytokine expression in fish by degrading the available ATP levels in the extracellular milieu.
Collapse
Affiliation(s)
- Shuo Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin, 300387, China.
| | - Gaixiang Hao
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin, 300387, China
| | - Yu Feng
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin, 300387, China
| | - Jiafang Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin, 300387, China
| | - Nan Wang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin, 300387, China
| | - Jinsheng Sun
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin, 300387, China.
| |
Collapse
|
30
|
Gu X, Yang Y, Li T, Chen Z, Fu T, Pan J, Ou J, Yang Z. ATP mediates the interaction between human blastocyst and endometrium. Cell Prolif 2020; 53:e12737. [PMID: 31821660 PMCID: PMC7046473 DOI: 10.1111/cpr.12737] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/14/2019] [Accepted: 11/13/2019] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVE Embryo implantation needs a reciprocal interaction between competent embryo and receptive endometrium. Adenosine triphosphate (ATP) produced by stressed or injured cells acts as an important signalling molecule. This study aims to investigate whether adenosine triphosphate (ATP) plays an important role in the dialogue of human blastocyst-endometrium. MATERIALS AND METHODS The concentration of lactate was analysed in culture medium from human embryos collected from in vitro fertilization patients. Extracellular ATP was measured by ATP Bioluminescent Assay Kit. Ishikawa cells and T-HESCs were treated with ATP, ATP receptor antagonist, ATP hydrolysis enzyme or inhibitors of ATP metabolic enzymes. The levels of gene expression were evaluated by real-time PCR and immunoassay. RESULTS We showed that injured human endometrial epithelial cells could rapidly release ATP into the extracellular environment as an important signalling molecule. In addition, blastocyst-derived lactate induces the release of non-lytic ATP from human endometrial receptive epithelial cells via connexins. Extracellular ATP stimulates the secretion of IL8 from epithelial cells to promote the process of in vitro decidualization. Extracellular ATP could also directly promote the decidualization of human endometrial stromal cells via P2Y-purinoceptors. More importantly, the supernatants of injured epithelial cells clearly induce the decidualization of stromal cells in time-dependent manner. CONCLUSION Our results suggest that ATP should play an important role in human blastocyst-endometrium dialogue for the initiation of decidualization.
Collapse
Affiliation(s)
- Xiao‐Wei Gu
- College of Veterinary MedicineSouth China Agricultural UniversityGuangzhouChina
| | - Yan Yang
- College of Veterinary MedicineSouth China Agricultural UniversityGuangzhouChina
| | - Tao Li
- Center for Reproductive MedicineThe Third Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouChina
| | - Zi‐Cong Chen
- College of Veterinary MedicineSouth China Agricultural UniversityGuangzhouChina
| | - Tao Fu
- College of Veterinary MedicineSouth China Agricultural UniversityGuangzhouChina
| | - Ji‐Min Pan
- College of Veterinary MedicineSouth China Agricultural UniversityGuangzhouChina
| | - Jian‐Ping Ou
- Center for Reproductive MedicineThe Third Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouChina
| | - Zeng‐Ming Yang
- College of Veterinary MedicineSouth China Agricultural UniversityGuangzhouChina
| |
Collapse
|
31
|
Li S, Chen X, Li J, Li X, Zhang T, Hao G, Sun J. Extracellular ATP is a potent signaling molecule in the activation of the Japanese flounder ( Paralichthys olivaceus) innate immune responses. Innate Immun 2020; 26:413-423. [PMID: 31914841 PMCID: PMC7903527 DOI: 10.1177/1753425918804635] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Innate immunity is the first line of defense against pathogen infections. Extracellular ATP (eATP) is one of the most studied danger-associated molecular pattern molecules that can activate host innate immune responses through binding with and activating purinergic receptors on the plasma membrane. The detailed actions of eATP on fish innate immunity, however, remain poorly understood. In this study, we investigated bacterial pathogen-induced ATP release in head kidney cells of the Japanese flounder Paralichthys olivaceus. We also examined the actions of eATP on pro-inflammatory cytokine and immune-related gene expression, the activity of induced NO synthase (iNOS), and the production of reactive oxygen species (ROS) and NO in Japanese flounder immune cells. We demonstrate that ATP is dynamically released from Japanese flounder head kidney cells into the extracellular milieu during immune challenge by formalin-inactivated Edwardsiella tarda and Vibrio anguillarum. In addition, we show that eATP administration results in profound up-regulation of pro-inflammatory cytokine gene expression, iNOS activity, and inflammatory mediator production, including ROS and NO, in Japanese flounder immune cells. Altogether, our findings demonstrate that eATP is a potent signaling molecule for the activation of innate immune responses in fish.
Collapse
Affiliation(s)
- Shuo Li
- Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, China
| | - Xiaoli Chen
- Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, China
| | - Jiafang Li
- Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, China
| | - Xuejing Li
- Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, China
| | - Tianxu Zhang
- Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, China
| | - Gaixiang Hao
- Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, China
| | - Jinsheng Sun
- Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, China
| |
Collapse
|
32
|
Siamantouras E, Price GW, Potter JA, Hills CE, Squires PE. Purinergic receptor (P2X7) activation reduces cell-cell adhesion between tubular epithelial cells of the proximal kidney. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 22:102108. [PMID: 31655201 DOI: 10.1016/j.nano.2019.102108] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 10/06/2019] [Accepted: 10/07/2019] [Indexed: 02/06/2023]
Abstract
Loss of epithelial (E)-cadherin mediated cell-cell adhesion impairs gap junction formation and facilitates hemichannel-mediated ATP release in the diabetic kidney. Linked to inflammation and fibrosis, we hypothesized that local increases in inter-cellular ATP activate P2X7 receptors on neighboring epithelial cells of the proximal tubule, to further impair cell-cell adhesion and ultimately exacerbate tubular injury. Immunoblotting confirmed changes in E-cadherin expression in human kidney cells treated with non-hydrolysable ATPγS ± the P2X7 antagonist, A438079. Atomic force microscopy based single-cell force spectroscopy quantified maximum unbinding force, tether rupture events, and work of detachment. Confocal microscopy assessed cytoskeletal reorganization. Our studies confirmed that ATPγS downregulated E-cadherin expression in proximal kidney cells, loss of which was paralleled by a reduction in intercellular ligation forces, decreased tether rupture events and cytoskeletal remodeling. Co-incubation with A438079 restored loss of adhesion, suggesting that elevated extracellular ATP mediates tubular injury through P2X7 induced loss of E-cadherin mediated adhesion.
Collapse
Affiliation(s)
| | - Gareth W Price
- Joseph Banks Laboratories, School of Life Sciences, Green Lane, University of Lincoln, UK
| | - Joe A Potter
- Joseph Banks Laboratories, School of Life Sciences, Green Lane, University of Lincoln, UK
| | - Claire E Hills
- Joseph Banks Laboratories, School of Life Sciences, Green Lane, University of Lincoln, UK
| | - Paul E Squires
- Joseph Banks Laboratories, School of Life Sciences, Green Lane, University of Lincoln, UK.
| |
Collapse
|
33
|
Li S, Wang N, Feng Y, Li J, Geng X, Sun J. Functional characterization of purinergic receptor P2Y 14 in the Japanese flounder (Paralichthys olivaceus) head kidney macrophages. FISH & SHELLFISH IMMUNOLOGY 2019; 93:200-207. [PMID: 31326587 DOI: 10.1016/j.fsi.2019.07.053] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 07/15/2019] [Accepted: 07/18/2019] [Indexed: 06/10/2023]
Abstract
Extracellular nucleotides and nucleotide sugars are important danger-associated signaling molecules that play critical roles in regulation of immune responses in mammals through activation of purinergic receptors located on the cell surface. However, the immunological role of extracellular UDP-glucose-activated P2Y14 receptor (P2Y14R) in fish still remains unknown. In this study, we identified and characterized a P2Y14R paralog in the Japanese flounder (Paralichthys olivaceus). The mRNA transcripts of P2Y14R are detected in all examined Japanese flounder tissues. Compared with the UDP-activated P2Y6 receptor, however, P2Y14R gene is highly expressed in Japanese flounder head kidney macrophages (HKMs). In addition, P2Y14R is significantly upregulated following inflammatory stimulation with LPS and poly (I:C) in the HKMs, suggesting a role of P2Y14R in response to inflammation in fish. Furthermore, activation of P2Y14 receptor with its potent and selective agonist MRS 2905 resulted in a decreased expression of LPS-induced pro-inflammatory cytokine IL-1beta gene in the HKMs. In contrast, inhibition of P2Y14 receptor activity or down-regulation of the endogenous expression of P2Y14R by small interfering RNA significantly upregulates the LPS-induced pro-inflammatory cytokine IL-1beta gene expression in the HKMs, demonstrating that P2Y14R is involved in inflammation regulation in fish. Moreover, stimulation of the Japanese flounder HKMs with UDP-glucose evoked a rapid increase of extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation in a dose- and time-dependent manner, indicating the involvement of P2Y14R in activation of ERK1/2 signaling in fish immune cells. Taken together, we demonstrated that the inducible P2Y14R plays an important role in regulation of fish innate immunity.
Collapse
Affiliation(s)
- Shuo Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin, 300387, China.
| | - Nan Wang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin, 300387, China
| | - Yu Feng
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin, 300387, China
| | - Jiafang Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin, 300387, China
| | - Xuyun Geng
- Tianjin Fisheries Research Institute, 442 South Jiefang Road, Hexi District, Tianjin, 300221, China
| | - Jinsheng Sun
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin, 300387, China.
| |
Collapse
|
34
|
Fodor P, White B, Khan R. Inflammation-The role of ATP in pre-eclampsia. Microcirculation 2019; 27:e12585. [PMID: 31424615 DOI: 10.1111/micc.12585] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 02/23/2019] [Accepted: 08/15/2019] [Indexed: 12/20/2022]
Abstract
Sterile inflammation may be initiated by molecules in the host organism that signal "damage" or "danger" also known as danger-associated molecular pattern (DAMPs). In pre-eclampsia (PE), a variety of DAMPs may be involved in the etiology or exacerbation of the disorder. Adenosine 5'-triphosphate (ATP) is a key intracellular energy molecule as well as a ligand for purinergic receptors. In humans, under physiological conditions, extracellular ATP (eATP) levels are distinctly low, but can rise to several hundred fold when cells become injured, stressed, or even necrotic. This often initiates a sterile inflammatory response with eATP acting as a DAMP. Extracellular ATP and its derivative nucleotides synthetized by endonucleotidases exhibit many of their effects through purinergic receptors, via inflammatory cascades and the production of proinflammatory molecules. This is clearly seen in the P2X7 gated receptor, which is linked to release of cytokines of the interleukin-1 family. Considering its fundamental role in innate immunity, an imbalance of P2X7 receptor activation may lead to deleterious effects in the coordination of placental vessel tone via the synthesis of various proinflammatory cytokines. This review explores the implication of DAMPs, specifically ATP and uric acid in the inflammation associated with PE.
Collapse
Affiliation(s)
- Paul Fodor
- Division of Medical Science and Graduate Entry Medicine, School of Medicine, University of Nottingham, Medical School, Royal Derby Hospital Centre, Derby, UK
| | - Benjamin White
- Division of Medical Science and Graduate Entry Medicine, School of Medicine, University of Nottingham, Medical School, Royal Derby Hospital Centre, Derby, UK
| | - Raheela Khan
- Division of Medical Science and Graduate Entry Medicine, School of Medicine, University of Nottingham, Medical School, Royal Derby Hospital Centre, Derby, UK
| |
Collapse
|
35
|
Schneider E, Rissiek A, Winzer R, Puig B, Rissiek B, Haag F, Mittrücker HW, Magnus T, Tolosa E. Generation and Function of Non-cell-bound CD73 in Inflammation. Front Immunol 2019; 10:1729. [PMID: 31404305 PMCID: PMC6676417 DOI: 10.3389/fimmu.2019.01729] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 07/09/2019] [Indexed: 12/13/2022] Open
Abstract
Extracellular adenine nucleotides participate in cell-to-cell communication and modulate the immune response. The concerted action of ectonucleotidases CD39 and CD73 plays a major role in the local production of anti-inflammatory adenosine, but both ectonucleotidases are rarely co-expressed by human T cells. The expression of CD39 on T cells increases upon T cell activation and is high at sites of inflammation. CD73, in contrast, disappears from the cellular membrane after activation. The possibility that CD73 could act in trans would resolve the conundrum of both enzymes being co-expressed for the degradation of ATP and the generation of adenosine. An enzymatically active soluble form of CD73 has been reported, and AMPase activity has been detected in body fluids of patients with inflammation and cancer. It is not yet clear how CD73, a glycosylphosphatidylinositol (GPI)-anchored protein, is released from the cell membrane, but plausible mechanisms include cleavage by metalloproteinases and shedding mediated by cell-associated phospholipases. Importantly, like many other GPI-anchored proteins, CD73 at the cell membrane is preferentially localized in detergent-resistant domains or lipid rafts, which often contribute to extracellular vesicles (EVs). Indeed, CD73-containing vesicles of different size and origin and with immunomodulatory function have been found in the tumor microenvironment. The occurrence of CD73 as non-cell-bound molecule widens the range of action of this enzyme at sites of inflammation. In this review, we will discuss the generation of non-cell-bound CD73 and its physiological role in inflammation.
Collapse
Affiliation(s)
- Enja Schneider
- Department of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anne Rissiek
- Department of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Riekje Winzer
- Department of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Berta Puig
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Björn Rissiek
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Friedrich Haag
- Department of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hans-Willi Mittrücker
- Department of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tim Magnus
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eva Tolosa
- Department of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
36
|
Qu C, Zhang S, Li Y, Wang Y, Peppelenbosch MP, Pan Q. Mitochondria in the biology, pathogenesis, and treatment of hepatitis virus infections. Rev Med Virol 2019; 29:e2075. [PMID: 31322806 PMCID: PMC6771966 DOI: 10.1002/rmv.2075] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/18/2019] [Accepted: 06/19/2019] [Indexed: 12/19/2022]
Abstract
Hepatitis virus infections affect a large proportion of the global population. The host responds rapidly to viral infection by orchestrating a variety of cellular machineries, in particular, the mitochondrial compartment. Mitochondria actively regulate viral infections through modulation of the cellular innate immunity and reprogramming of metabolism. In turn, hepatitis viruses are able to modulate the morphodynamics and functions of mitochondria, but the mode of actions are distinct with respect to different types of hepatitis viruses. The resulting mutual interactions between viruses and mitochondria partially explain the clinical presentation of viral hepatitis, influence the response to antiviral treatment, and offer rational avenues for novel therapy. In this review, we aim to consider in depth the multifaceted interactions of mitochondria with hepatitis virus infections and emphasize the implications for understanding pathogenesis and advancing therapeutic development.
Collapse
Affiliation(s)
- Changbo Qu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China.,The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, China.,Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Shaoshi Zhang
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Yang Li
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Yijin Wang
- Department of Pathology and Hepatology, Beijing 302 Hospital, Beijing, China
| | - Maikel P Peppelenbosch
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Qiuwei Pan
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
37
|
Franco M, Pérez-Méndez O, Kulthinee S, Navar LG. Integration of purinergic and angiotensin II receptor function in renal vascular responses and renal injury in angiotensin II-dependent hypertension. Purinergic Signal 2019; 15:277-285. [PMID: 31183668 PMCID: PMC6635571 DOI: 10.1007/s11302-019-09662-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 05/30/2019] [Indexed: 12/24/2022] Open
Abstract
Glomerular arteriolar vasoconstriction and tubulointerstitial injury are observed before glomerular damage occurs in models of hypertension. High interstitial ATP concentrations, caused by the increase in arterial pressure, alter renal mechanisms involved in the long-term control of blood pressure, autoregulation of glomerular filtration rate and blood flow, tubuloglomerular feedback (TGF) responses, and sodium excretion. Elevated ATP concentrations and augmented expression of P2X receptors have been demonstrated under a genetic background or induction of hypertension with vasoconstrictor peptides. In addition to the alterations of the microcirculation in the hypertensive kidney, the vascular actions of elevated intrarenal angiotensin II levels may be mitigated by the administration of broad purinergic P2 antagonists or specific P2Y12, P2X1, and P2X7 receptor antagonists. Furthermore, the prevention of tubulointerstitial infiltration with immunosuppressor compounds reduces the development of salt-sensitive hypertension, indicating that tubulointerstitial inflammation is essential for the development and maintenance of hypertension. Inflammatory cells also express abundant purinergic receptors, and their activation by ATP induces cytokine and growth factor release that in turn contributes to augment tubulointerstitial inflammation. Collectively, the evidence suggests a pathophysiological activation of purinergic P2 receptors in angiotensin-dependent hypertension. Coexistent increases in intrarenal angiotensin II and activates Ang II AT1 receptors, which interacts with over-activated purinergic receptors in a complex manner, suggesting convergence of their post-receptor signaling processes.
Collapse
Affiliation(s)
- Martha Franco
- Department of Nephrology, Renal Pathophysiology Laboratory, Instituto Nacional de Cardiología “Ignacio Chávez”, Juan Badiano No.1, 14080 Mexico City, DF Mexico
| | - Oscar Pérez-Méndez
- Department Molecular Biology, Instituto Nacional de Cardiología “Ignacio Chávez”, Mexico City, Mexico
| | - Supaporn Kulthinee
- Department of Physiology and Hypertension and Renal Center, Tulane University School of Medicine, New Orleans, LA USA
- Department of Cardiovascular and Thoracic Technology, Chulabhorn International College of Medicine, Thammasat University, Rangsit, Pathum Thani Thailand
| | - L. Gabriel Navar
- Department of Physiology and Hypertension and Renal Center, Tulane University School of Medicine, New Orleans, LA USA
| |
Collapse
|
38
|
Li X, Liang D, Shao H, Born WK, Kaplan HJ, Sun D. Adenosine receptor activation in the Th17 autoimmune responses of experimental autoimmune uveitis. Cell Immunol 2019; 339:24-28. [DOI: 10.1016/j.cellimm.2018.09.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/07/2018] [Accepted: 09/18/2018] [Indexed: 01/16/2023]
|
39
|
Yu Y, Feng S, Wei S, Zhong Y, Yi G, Chen H, Liang L, Chen H, Lu X. Extracellular ATP activates P2X7R-NF-κB (p65) pathway to promote the maturation of bone marrow-derived dendritic cells of mice. Cytokine 2019; 119:175-181. [PMID: 30952064 DOI: 10.1016/j.cyto.2019.03.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 03/27/2019] [Accepted: 03/28/2019] [Indexed: 12/23/2022]
Abstract
The maturation state of dendritic cell (DC) plays an important role in immune activities. Previously we had found that NF-κB (p65) pathway could promote DC maturation and subsequent immune effects. But the upstream mechanism of this pathway was still unclear. Extracellular adenosine triphosphate (ATP) activating its receptor P2X7R has recently been considered as the fourth signal to activate T lymphocytes. Here we aimed to find out the connection between P2X7R and NF-κB (p65) pathway in DC maturation. Results showed that the expression of P2X7R and the intracellular ATP levels were increased along with the maturation of DC. P2X7R agonist stimulated the morphological changes of DCs into the appearance of mature DCs, and promoted the expression of NF-κB (p65), as well as the release of IFN-γ and IL-12. Whereas, P2X7R inhibitor had the opposite influences. Co-immunoprecipitation assay confirmed the binding of P2X7R and NF-κB (p65). Our study suggested that extracellular ATP could promote DC maturation and release of inflammatory cytokines through the binding of P2X7R and NF-κB (p65). This is the first study to show the P2X7R-NF-κB (p65) pathway in DC. Interference with this pathway may be able to regulate immune responses in areas like infectious diseases, inflammation, transplantation, tumor and autoimmune diseases. In addition, intracellular ATP level could be a new indicator of the maturation state of DC.
Collapse
Affiliation(s)
- Ying Yu
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Songfu Feng
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Shiyu Wei
- Department of Ophthalmology, Liuzhou General Hospital, Liuzhou 545006, China
| | - Yanyan Zhong
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Guoguo Yi
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Haiyan Chen
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Lifang Liang
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Hui Chen
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Xiaohe Lu
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| |
Collapse
|
40
|
Sueyoshi K, Ledderose C, Shen Y, Lee AH, Shapiro NI, Junger WG. Lipopolysaccharide suppresses T cells by generating extracellular ATP that impairs their mitochondrial function via P2Y11 receptors. J Biol Chem 2019; 294:6283-6293. [PMID: 30787105 DOI: 10.1074/jbc.ra118.007188] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/10/2019] [Indexed: 12/20/2022] Open
Abstract
T cell suppression contributes to immune dysfunction in sepsis. However, the underlying mechanisms are not well-defined. Here, we show that exposure of human peripheral blood mononuclear cells to bacterial lipopolysaccharide (LPS) can rapidly and dose-dependently suppress interleukin-2 (IL-2) production and T cell proliferation. We also report that these effects depend on monocytes. LPS did not prevent the interaction of monocytes with T cells, nor did it induce programmed cell death protein 1 (PD-1) signaling that causes T cell suppression. Instead, we found that LPS stimulation of monocytes led to the accumulation of extracellular ATP that impaired mitochondrial function, cell migration, IL-2 production, and T cell proliferation. Mechanistically, LPS-induced ATP accumulation exerted these suppressive effects on T cells by activating the purinergic receptor P2Y11 on the cell surface of T cells. T cell functions could be partially restored by enzymatic removal of extracellular ATP or pharmacological blocking of P2Y11 receptors. Plasma samples obtained from sepsis patients had similar suppressive effects on T cells from healthy subjects. Our findings suggest that LPS and ATP accumulation in the circulation of sepsis patients suppresses T cells by promoting inappropriate P2Y11 receptor stimulation that impairs T cell metabolism and functions. We conclude that inhibition of LPS-induced ATP release, removal of excessive extracellular ATP, or P2Y11 receptor antagonists may be potential therapeutic strategies to prevent T cell suppression and restore host immune function in sepsis.
Collapse
Affiliation(s)
| | | | | | | | - Nathan I Shapiro
- Emergency Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215 and
| | - Wolfgang G Junger
- From the Departments of Surgery and .,the Ludwig Boltzmann Institute for Traumatology, Vienna A-1200, Austria
| |
Collapse
|
41
|
Becker LV, Passos DF, Leal DBR, Morsch VM, Schetinger MRC. ATP signaling and NTPDase in Systemic Lupus Erythematosus (SLE). Immunobiology 2019; 224:419-426. [PMID: 30803848 DOI: 10.1016/j.imbio.2019.02.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 02/05/2019] [Indexed: 12/11/2022]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune and inflammatory disease with periods of exacerbation and remission. SLE is characterized by the irreversible breakdown of immunological self-tolerance, where there is deregulation of multiple aspects of the immune system. SLE immune dysfunction is characterized by activation of autoreactive T lymphocytes, and hyperactivity of B lymphocytes with consequent production of several autoantibodies. ATP is a purinergic mediator released into the extracellular space in response to cell and tissue damage which operates as a danger signal to modulate immune and inflammatory responses. ATP binds to P2 receptors and its levels are regulated by NTPDase (CD39). SLE patients exhibit increased levels of ATP which binds to P2X receptors resulting in activation of the inflammasome and consequent release of IL-1β and IL-18, cytokines associated with disease pathogenesis. CD39 is upregulated in SLE representing an important immunoregulatory mechanism by controlling inflammation and favoring the production of adenosine. The aim of this review is to clarify the effects of ATP on the modulation of the inflammatory process and immune responses via P2 receptors as well as the role of NTPDase in the immunopathogenesis of SLE.
Collapse
Affiliation(s)
- Lara Vargas Becker
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Av. Roraima, 97105-900, Santa Maria, RS, Brazil.
| | - Daniela Ferreira Passos
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Av. Roraima, 97105-900, Santa Maria, RS, Brazil
| | - Daniela Bitencourt Rosa Leal
- Departamento de Microbiologia e Parasitologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Av. Roraima, 97105-900, Santa Maria, RS, Brazil
| | - Vera Maria Morsch
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Av. Roraima, 97105-900, Santa Maria, RS, Brazil
| | - Maria Rosa Chitolina Schetinger
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Av. Roraima, 97105-900, Santa Maria, RS, Brazil.
| |
Collapse
|
42
|
Activity and expression of E-NTPDase is altered in peripheral lymphocytes of systemic lupus erythematosus patients. Clin Chim Acta 2018; 488:90-97. [PMID: 30409763 DOI: 10.1016/j.cca.2018.10.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 09/26/2018] [Accepted: 10/24/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND Systemic lupus erythematosus (SLE) is an inflammatory autoimmune disease, where there is irreversible breakdown of immunological self-tolerance. Extracellular adenosine triphosphate (ATP) and adenosine are signaling molecules that play an important part in the immune response. During inflammation and the immune response, a group of enzymes control these molecules, including ectonucleoside triphosphate diphosphohydrolase (E-NTPDase), E-5'-nucleotidase, and ecto-adenosine deaminase (E-ADA). We determined the activity and expression of E-NTPDase, the expression of E-5'-nucleotidase, the activity of E-ADA in lymphocytes and serum of SLE patients. METHODS This study involved 35 patients with SLE and 30 healthy subjects as a control group. E-NTPDase activity and expression were increased in lymphocytes from SLE patients (31% and 37% for activity and expression, respectively) compared with the control group. RESULTS An approximately 42% increase in E-ADA activity in lymphocytes was observed in SLE patients compared with the control group, in serum the ADA activity was decreased by 57% in SLE patients. Expression of E-5'-nucleotidase was not changed in SLE patients. CONCLUSIONS E-NTPDase and E-ADA perform key functions in the modulation of the immune and inflammatory response in SLE.
Collapse
|
43
|
Soh KY, Loh JMS, Proft T. Orthologues of Streptococcus pyogenes nuclease A (SpnA) and Streptococcal 5'-nucleotidase A (S5nA) found in Streptococcus iniae. J Biochem 2018; 164:165-171. [PMID: 29659850 DOI: 10.1093/jb/mvy039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 03/27/2018] [Indexed: 02/06/2023] Open
Abstract
Streptococcus pyogenes nuclease A (SpnA) and streptococcal 5' nucleosidase A (S5nA) are two recently described virulence factors from the human pathogen S. pyogenes. In vitro studies have shown that SpnA is a nuclease that cleaves ssDNA and dsDNA, including the DNA backbone of neutrophil extracellular traps. S5nA was shown to hydrolyse AMP and ADP, but not ATP, to generate the immunomodulatory molecule adenosine. S5nA also generates the macrophage-toxic deoxyadenosine from dAMP. However, detailed in vivo studies of the two enzymes have been hampered by difficulties with using current animal models for this exclusive human pathogen. Here we report the identification of two novel enzymes from the fish pathogen Streptococcus iniae that show similarities to SpnA and S5nA in amino acid sequence, protein domain structure and biochemical properties. We propose that SpnAi and S5nAi are orthologues of the S. pyogenes enzymes, providing a rationale to analyse the in vivo function of the two enzymes using a S. iniae-zebrafish infection model.
Collapse
Affiliation(s)
- Kar Yan Soh
- Department of Molecular Medicine & Pathology, School of Medical Sciences
| | - Jacelyn Mei San Loh
- Department of Molecular Medicine & Pathology, School of Medical Sciences.,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Thomas Proft
- Department of Molecular Medicine & Pathology, School of Medical Sciences.,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
44
|
Pak J, Lee JH, Pak N, Pak Y, Park KS, Jeon JH, Jeong BC, Lee SH. Cartilage Regeneration in Humans with Adipose Tissue-Derived Stem Cells and Adipose Stromal Vascular Fraction Cells: Updated Status. Int J Mol Sci 2018; 19:ijms19072146. [PMID: 30041472 PMCID: PMC6073159 DOI: 10.3390/ijms19072146] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 07/18/2018] [Accepted: 07/21/2018] [Indexed: 02/07/2023] Open
Abstract
Adipose tissue-derived stem cells (ASCs) in the form of stromal vascular fraction (SVF) and cultured expansion have been applied in clinical settings in some countries to treat osteoarthritis (OA) of knees, one of the most common debilitating, incurable disorders. Since the first report of successful cartilage-like tissue regeneration with autologous adipose SVF containing ASCs, there has been a gradual increase in the number of publications confirming such results. Thus far, most of the reports have been limited to treatments of OA of knees. Recently, successful applications of adipose SVF in treating OA of ankles and hips have been reported. In addition, several groups have reported modified methods of applying adipose SVF, such as combining bone marrow stimulation with adipose SVF or adding additional extracellular matrix (ECM) in treating OA. Here, we present an updated, systematic review of clinical effectiveness and safety in treating OA of knees, ankles, and one hip since 2016 using ASCs in the form of adipose SVF or in cultured expansion, along with a description and suggestion of potential biological mechanisms of cartilage regeneration.
Collapse
Affiliation(s)
- Jaewoo Pak
- Mipro Medical Clinic, 32-3 Chungdamdong, Gangnamgu, Seoul 06068, Korea.
| | - Jung Hun Lee
- National Leading Research Laboratory, Department of Biological Sciences, Myongji University, 116 Myongjiro, Yongin, Gyeonggido 17058, Korea.
| | - Natalie Pak
- Mipro Medical Clinic, 32-3 Chungdamdong, Gangnamgu, Seoul 06068, Korea.
| | - Yoon Pak
- First Medical Center, 11841 South St., Cerritos, CA 90703, USA.
| | - Kwang Seung Park
- National Leading Research Laboratory, Department of Biological Sciences, Myongji University, 116 Myongjiro, Yongin, Gyeonggido 17058, Korea.
| | - Jeong Ho Jeon
- National Leading Research Laboratory, Department of Biological Sciences, Myongji University, 116 Myongjiro, Yongin, Gyeonggido 17058, Korea.
| | - Byeong Chul Jeong
- National Leading Research Laboratory, Department of Biological Sciences, Myongji University, 116 Myongjiro, Yongin, Gyeonggido 17058, Korea.
| | - Sang Hee Lee
- National Leading Research Laboratory, Department of Biological Sciences, Myongji University, 116 Myongjiro, Yongin, Gyeonggido 17058, Korea.
| |
Collapse
|
45
|
Seydoux E, Liang H, Dubois Cauwelaert N, Archer M, Rintala ND, Kramer R, Carter D, Fox CB, Orr MT. Effective Combination Adjuvants Engage Both TLR and Inflammasome Pathways To Promote Potent Adaptive Immune Responses. THE JOURNAL OF IMMUNOLOGY 2018; 201:98-112. [PMID: 29769270 DOI: 10.4049/jimmunol.1701604] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 04/24/2018] [Indexed: 11/19/2022]
Abstract
The involvement of innate receptors that recognize pathogen- and danger-associated molecular patterns is critical to programming an effective adaptive immune response to vaccination. The synthetic TLR4 agonist glucopyranosyl lipid adjuvant (GLA) synergizes with the squalene oil-in-water emulsion (SE) formulation to induce strong adaptive responses. Although TLR4 signaling through MyD88 and TIR domain-containing adapter inducing IFN-β are essential for GLA-SE activity, the mechanisms underlying the synergistic activity of GLA and SE are not fully understood. In this article, we demonstrate that the inflammasome activation and the subsequent release of IL-1β are central effectors of the action of GLA-SE, as infiltration of innate cells into the draining lymph nodes and production of IFN-γ are reduced in ASC-/- animals. Importantly, the early proliferation of Ag-specific CD4+ T cells was completely ablated after immunization in ASC-/- animals. Moreover, numbers of Ag-specific CD4+ T and B cells as well as production of IFN-γ, TNF-α, and IL-2 and Ab titers were considerably reduced in ASC-/-, NLRP3-/-, and IL-1R-/- mice compared with wild-type mice and were completely ablated in TLR4-/- animals. Also, extracellular ATP, a known trigger of the inflammasome, augments Ag-specific CD4+ T cell responses, as hydrolyzing it with apyrase diminished adaptive responses induced by GLA-SE. These data thus demonstrate that GLA-SE adjuvanticity acts through TLR4 signaling and NLRP3 inflammasome activation to promote robust Th1 and B cell responses to vaccine Ags. The findings suggest that engagement of both TLR and inflammasome activators may be a general paradigm for induction of robust CD4 T cell immunity with combination adjuvants such as GLA-SE.
Collapse
Affiliation(s)
- Emilie Seydoux
- Infectious Disease Research Institute, Seattle, WA 98102; and
| | - Hong Liang
- Infectious Disease Research Institute, Seattle, WA 98102; and
| | | | - Michelle Archer
- Infectious Disease Research Institute, Seattle, WA 98102; and
| | | | - Ryan Kramer
- Infectious Disease Research Institute, Seattle, WA 98102; and
| | - Darrick Carter
- Infectious Disease Research Institute, Seattle, WA 98102; and.,Department of Global Health, University of Washington, Seattle, WA 98195
| | - Christopher B Fox
- Infectious Disease Research Institute, Seattle, WA 98102; and.,Department of Global Health, University of Washington, Seattle, WA 98195
| | - Mark T Orr
- Infectious Disease Research Institute, Seattle, WA 98102; and .,Department of Global Health, University of Washington, Seattle, WA 98195
| |
Collapse
|
46
|
β-Nicotinamide Adenine Dinucleotide (β-NAD) Inhibits ATP-Dependent IL-1β Release from Human Monocytic Cells. Int J Mol Sci 2018; 19:ijms19041126. [PMID: 29642561 PMCID: PMC5979475 DOI: 10.3390/ijms19041126] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 03/29/2018] [Accepted: 04/05/2018] [Indexed: 01/05/2023] Open
Abstract
While interleukin-1β (IL-1β) is a potent pro-inflammatory cytokine essential for host defense, high systemic levels cause life-threatening inflammatory syndromes. ATP, a stimulus of IL-1β maturation, is released from damaged cells along with β-nicotinamide adenine dinucleotide (β-NAD). Here, we tested the hypothesis that β-NAD controls ATP-signaling and, hence, IL-1β release. Lipopolysaccharide-primed monocytic U937 cells and primary human mononuclear leukocytes were stimulated with 2'(3')-O-(4-benzoyl-benzoyl)ATP trieethylammonium salt (BzATP), a P2X7 receptor agonist, in the presence or absence of β-NAD. IL-1β was measured in cell culture supernatants. The roles of P2Y receptors, nicotinic acetylcholine receptors (nAChRs), and Ca2+-independent phospholipase A2 (iPLA2β, PLA2G6) were investigated using specific inhibitors and gene-silencing. Exogenous β-NAD signaled via P2Y receptors and dose-dependently (IC50 = 15 µM) suppressed the BzATP-induced IL-1β release. Signaling involved iPLA2β, release of a soluble mediator, and nAChR subunit α9. Patch-clamp experiments revealed that β-NAD inhibited BzATP-induced ion currents. In conclusion, we describe a novel triple membrane-passing signaling cascade triggered by extracellular β-NAD that suppresses ATP-induced release of IL-1β by monocytic cells. This cascade links activation of P2Y receptors to non-canonical metabotropic functions of nAChRs that inhibit P2X7 receptor function. The biomedical relevance of this mechanism might be the control of trauma-associated systemic inflammation.
Collapse
|
47
|
Li S, Hao G, Xu Y, Wang N, Li J, Geng X, Sun J. Functional characterization of purinergic P2Y 2 and P2Y 12 receptors involved in Japanese flounder (Paralichthys olivaceus) innate immune responses. FISH & SHELLFISH IMMUNOLOGY 2018; 75:208-215. [PMID: 29432865 DOI: 10.1016/j.fsi.2018.02.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 01/27/2018] [Accepted: 02/08/2018] [Indexed: 06/08/2023]
Abstract
G-protein-coupled P2Y receptors activated by extracellular nucleotides play important roles under different physiological and pathophysiological conditions in mammals. To investigate the immunological relevance of P2Y receptors in fish, we identified and characterized the P2Y2 and P2Y12 receptors in Japanese flounder Paralichthys olivaceus. The P. olivaceus P2Y2 and P2Y12 receptors harbor seven transmembrane domains but share only 24% sequence identity. Real-time PCR analysis revealed the constitutive but unequal mRNA expression pattern of P2Y2R and P2Y12R in normal Japanese flounder tissues with the dominant expression of P2Y2R in head kidney and blood and P2Y12R in hepatopancreas. In addition, the expression of P2Y2 and P2Y12 receptors was markedly modulated by PAMPs stimulation and Edwardsiella tarda infection. Furthermore, blockage of P2Y12R potently increased ADP-activated pro-inflammatory cytokine IL-1beta gene expression in the head kidney macrophages (HKMs). Moreover, inhibition of P2Y2 and P2Y12 receptor activity with their respective potent antagonists significantly altered some of the LPS-induced pro-inflammatory cytokine gene expression in the HKMs. However, blockade of P2Y12R did not affect the poly(I:C)-induced pro-inflammatory cytokine gene expression examined in the HKMs. Collectively, we have for the first time reported the role of purinergic P2Y2 and P2Y12 receptors in fish innate immunity. Our findings have also addressed the importance of extracellular ATP and its metabolites in fish innate immune responses.
Collapse
Affiliation(s)
- Shuo Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin 300387, China.
| | - Gaixiang Hao
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin 300387, China
| | - Yaqi Xu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin 300387, China
| | - Nan Wang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin 300387, China
| | - Jiafang Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin 300387, China
| | - Xuyun Geng
- Tianjin Center for Control and Prevention of Aquatic Animal Infectious Disease, 442 South Jiefang Road, Hexi District, Tianjin 300221, China
| | - Jinsheng Sun
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin 300387, China.
| |
Collapse
|
48
|
Shi JP, Wang SY, Chen LL, Zhang XY, Zhao YH, Du B, Jiang WZ, Qian M, Ren H. P2Y6 contributes to ovalbumin-induced allergic asthma by enhancing mast cell function in mice. Oncotarget 2018; 7:60906-60918. [PMID: 27590515 PMCID: PMC5308625 DOI: 10.18632/oncotarget.11758] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 08/25/2016] [Indexed: 11/25/2022] Open
Abstract
Extracelluar nucleotides have been identified as regulatory factors in asthmatic pathogenesis by activating purinergic receptors. This research aimed to investigate the function of the purinergic receptor P2Y6 in mediating airway inflammation in allergic asthma. Wild-type (WT) and P2Y6-deficient mice were stimulated with ovalbumin (OVA) to construct asthmatic mouse models. Overexpression of P2Y6 and uridine 5'-diphosphate (UDP)-releasing were demonstrated in lung tissues in ovalbumin-induced asthmatic mice. The release of the cytokine IL-4, mast cell invasion, and the airway remodeling phenotypes were more severe following the application of UDP in asthmatic mice. However, P2Y6 deficiency reduced these asthmatic pathogeneticsymptoms markedly in a mouse model. In vitro, we found that P2Y6 in purified mast cells enhanced the functions of mast cells in the inflammatory response in the asthmatic process by triggering their capability for migration, cytokine secretion and granule release. Moreover, P2Y6 stimulated the function of mast cells through activation of the AKT signaling pathway. Our data provides evidence that P2Y6 contributes to allergic airway inflammation and remodeling by enhancing the functions of mast cells in ovalbumin-induced asthmatic mice.
Collapse
Affiliation(s)
- Jue-Ping Shi
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, P.R.China
| | - Shao-Ying Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, P.R.China
| | - Li-Li Chen
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, P.R.China
| | - Xiao-Yu Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, P.R.China
| | - Yi-Han Zhao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, P.R.China
| | - Bing Du
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, P.R.China
| | - Wen-Zheng Jiang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, P.R.China
| | - Min Qian
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, P.R.China
| | - Hua Ren
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, P.R.China
| |
Collapse
|
49
|
Hetmann A, Wujak M, Bolibok P, Zięba W, Wiśniewski M, Roszek K. Novel biocatalytic systems for maintaining the nucleotide balance based on adenylate kinase immobilized on carbon nanostructures. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 88:130-139. [PMID: 29636128 DOI: 10.1016/j.msec.2018.03.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 11/28/2017] [Accepted: 03/13/2018] [Indexed: 11/25/2022]
Abstract
In this study graphene oxide (GO), carbon quantum dots (CQD) and carbon nanoonions (CNO) have been characterized and applied for the first time as a matrix for recombinant adenylate kinase (AK, EC 2.7.4.3) immobilization. AK is an enzyme fulfilling a key role in metabolic processes. This phosphotransferase catalyzes the interconversion of adenine nucleotides (ATP, ADP and AMP) and thereby participates in nucleotide homeostasis, monitors a cellular energy charge as well as acts as a component of purinergic signaling system. The AK activity in all obtained biocatalytic systems was higher as compared to the free enzyme. We have found that the immobilization on carbon nanostructures increased both activity and stability of AK. Moreover, the biocatalytic systems consisting of AK immobilized on carbon nanostructures can be easily and efficiently lyophilized without risk of desorption or decrease in the catalytic activity of the investigated enzyme. The positive action of AK-GO biocatalytic system in maintaining the nucleotide balance in in vitro cell culture was proved.
Collapse
Affiliation(s)
- Anna Hetmann
- Department of Biochemistry, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University in Toruń, 1 Lwowska St., 87-100 Toruń, Poland.
| | - Magdalena Wujak
- Department of Biochemistry, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University in Toruń, 1 Lwowska St., 87-100 Toruń, Poland
| | - Paulina Bolibok
- Faculty of Chemistry, Physicochemistry of Carbon Materials Research Group, Nicolaus Copernicus University in Toruń, 7 Gagarin St., 87-100 Toruń, Poland
| | - Wojciech Zięba
- Faculty of Chemistry, Physicochemistry of Carbon Materials Research Group, Nicolaus Copernicus University in Toruń, 7 Gagarin St., 87-100 Toruń, Poland
| | - Marek Wiśniewski
- Faculty of Chemistry, Physicochemistry of Carbon Materials Research Group, Nicolaus Copernicus University in Toruń, 7 Gagarin St., 87-100 Toruń, Poland; INVEST-TECH R&D Center, 32-34 Płaska St., 87-100 Toruń, Poland
| | - Katarzyna Roszek
- Department of Biochemistry, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University in Toruń, 1 Lwowska St., 87-100 Toruń, Poland
| |
Collapse
|
50
|
Salem M, Tremblay A, Pelletier J, Robaye B, Sévigny J. P2Y 6 Receptors Regulate CXCL10 Expression and Secretion in Mouse Intestinal Epithelial Cells. Front Pharmacol 2018. [PMID: 29541027 PMCID: PMC5835513 DOI: 10.3389/fphar.2018.00149] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In this study, we investigated the role of extracellular nucleotides in chemokine (KC, MIP-2, MCP-1, and CXCL10) expression and secretion by murine primary intestinal epithelial cells (IECs) with a focus on P2Y6 receptors. qRT-PCR experiments showed that P2Y6 was the dominant nucleotide receptor expressed in mouse IEC. In addition, the P2Y6 ligand UDP induced expression and secretion of CXCL10. For the other studies, we took advantage of mice deficient in P2Y6 (P2ry6-/-). Similar expression levels of P2Y1, P2Y2, P2X2, P2X4, and A2A were detected in P2ry6-/- and WT IEC. Agonists of TLR3 (poly(I:C)), TLR4 (LPS), P2Y1, and P2Y2 increased the expression and secretion of CXCL10 more prominently in P2ry6-/- IEC than in WT IEC. CXCL10 expression and secretion induced by poly(I:C) in both P2ry6-/- and WT IEC were inhibited by general P2 antagonists (suramin and Reactive-Blue-2), by apyrase, and by specific antagonists of P2Y1, P2Y2, P2Y6 (only in WT), and P2X4. Neither adenosine nor an A2A antagonist had an effect on CXCL10 expression and secretion. Macrophage chemotaxis was induced by the supernatant of poly(I:C)-treated IEC which was consistent with the level of CXCL10 secreted. Finally, the non-nucleotide agonist FGF2 induced MMP9 mRNA expression also at a higher level in P2ry6-/- IEC than in WT IEC. In conclusion, extracellular nucleotides regulate CXCL10 expression and secretion by IEC. In the absence of P2Y6, these effects are modulated by other P2 receptors also present on IEC. These data suggest that the presence of P2Y6 regulates chemokine secretion and may also regulate IEC homeostasis.
Collapse
Affiliation(s)
- Mabrouka Salem
- Département de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médecine, Université Laval, Québec City, QC, Canada.,Centre de Recherche du CHU de Québec - Université Laval, Québec City, QC, Canada
| | - Alain Tremblay
- Centre de Recherche du CHU de Québec - Université Laval, Québec City, QC, Canada
| | - Julie Pelletier
- Centre de Recherche du CHU de Québec - Université Laval, Québec City, QC, Canada
| | - Bernard Robaye
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire, Université Libre de Bruxelles, Gosselies, Belgium
| | - Jean Sévigny
- Département de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médecine, Université Laval, Québec City, QC, Canada.,Centre de Recherche du CHU de Québec - Université Laval, Québec City, QC, Canada
| |
Collapse
|