1
|
Hoffmann S, Berger BT, Lucas LR, Schiele F, Park JE. Discovery of Carbonic Anhydrase 9 as a Novel CLEC2 Ligand in a Cellular Interactome Screen. Cells 2024; 13:2083. [PMID: 39768175 PMCID: PMC11674933 DOI: 10.3390/cells13242083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/13/2024] [Accepted: 12/13/2024] [Indexed: 01/30/2025] Open
Abstract
Membrane proteins, especially extracellular domains, are key therapeutic targets due to their role in cell communication and associations. Yet, their functions and interactions often remain unclear. This study presents a general method to discover interactions of membrane proteins with immune cells and subsequently to deorphanize their respective receptors. We developed a comprehensive recombinant protein library of extracellular domains of human transmembrane proteins and proteins found in the ER-Golgi-lysosomal systems. Using this library, we conducted a flow-cytometric screen that identified several cell surface binding events, including an interaction between carbonic anhydrase 9 (CAH9/CA9/CAIX) and CD14high cells. Further analysis revealed this interaction was indirect and mediated via platelets bound to the monocytes. CA9, best known for its diverse roles in cancer, is a promising therapeutic target. We utilized our library to develop an AlphaLISA high-throughput screening assay, identifying CLEC2 as one robust CA9 binding partner. A five-amino-acid sequence (EDLPT) in CA9, identical to a CLEC2 binding domain in Podoplanin (PDPN), was found to be essential for this interaction. Like PDPN, CA9-induced CLEC2 signaling is mediated via Syk. A Hodgkin's lymphoma cell line (HDLM-2) endogenously expressing CA9 can activate Syk-dependent CLEC2 signaling, providing enticing evidence for a novel function of CA9 in hematological cancers. In conclusion, we identified numerous interactions with monocytes and platelets and validated one, CA9, as an endogenous CLEC2 ligand. We provide a new list of other putative CA9 interaction partners and uncovered CA9-induced CLEC2 activation, providing new insights for CA9-based therapeutic strategies.
Collapse
Affiliation(s)
- Sebastian Hoffmann
- Division of Cancer Immunology and Immune Modulation, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach, Germany (L.R.L.)
| | - Benedict-Tilman Berger
- Division of High-Throughput Biology, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach, Germany; (B.-T.B.); (F.S.)
| | - Liane Rosalie Lucas
- Division of Cancer Immunology and Immune Modulation, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach, Germany (L.R.L.)
| | - Felix Schiele
- Division of High-Throughput Biology, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach, Germany; (B.-T.B.); (F.S.)
- Division of Biotherapeutics Discovery, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach, Germany
| | - John Edward Park
- Division of Cancer Immunology and Immune Modulation, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach, Germany (L.R.L.)
| |
Collapse
|
2
|
Shan X, Rathore S, Kniffen D, Gao L, Nitin, Letef CL, Shi H, Ghosh S, Zandberg W, Xia L, Bergstrom KS. Ablation of Intestinal Epithelial Sialylation Predisposes to Acute and Chronic Intestinal Inflammation in Mice. Cell Mol Gastroenterol Hepatol 2024; 18:101378. [PMID: 38992465 PMCID: PMC11459652 DOI: 10.1016/j.jcmgh.2024.101378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/13/2024]
Abstract
BACKGROUND & AIMS Addition of sialic acids (sialylation) to glycoconjugates is a common capping step of glycosylation. Our study aims to determine the roles of the overall sialylation in intestinal mucosal homeostasis. METHODS Mice with constitutive deletion of intestinal epithelial sialylation (IEC Slc35a1-/- mice) and mice with inducible deletion of sialylation in intestinal epithelium (TM-IEC Slc35a1-/- mice) were generated, which were used to determine the roles of overall sialylation in intestinal mucosal homeostasis by ex vivo and mutiomics studies. RESULTS IEC Slc35a1-/- mice developed mild spontaneous microbiota-dependent colitis. Additionally, 30% of IEC Slc35a1-/- mice had spontaneous tumors in the rectum greater than the age of 12 months. TM-IEC Slc35a1-/- mice were highly susceptible to acute inflammation induced by 1% dextran sulfate sodium versus control animals. Loss of total sialylation was associated with reduced mucus thickness on fecal sections and within colon tissues. TM-IEC Slc35a1-/- mice showed altered microbiota with an increase in Clostridium disporicum, which is associated a global reduction in the abundance of at least 10 unique taxa; however, metabolomic analysis did not show any significant differences in short-chain fatty acid levels. Treatment with 5-fluorouracil led to more severe small intestine mucositis in the IEC Slc35a1-/- mice versus wild-type littermates, which was associated with reduced Lgr5+ cell representation in small intestinal crypts in IEC Slc35a1-/-;Lgr5-GFP mice. CONCLUSIONS Loss of overall sialylation impairs mucus stability and the stem cell niche leading to microbiota-dependent spontaneous colitis and tumorigenesis.
Collapse
Affiliation(s)
- Xindi Shan
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| | - Shipra Rathore
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| | - Darrek Kniffen
- Department of Biology, University of British Columbia, Okanagan Campus, Kelowna, British Columbia, Canada
| | - Liang Gao
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| | - Nitin
- Department of Biology, University of British Columbia, Okanagan Campus, Kelowna, British Columbia, Canada
| | - Clara L Letef
- Department of Biology, University of British Columbia, Okanagan Campus, Kelowna, British Columbia, Canada
| | - Huiping Shi
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| | - Sanjoy Ghosh
- Department of Biology, University of British Columbia, Okanagan Campus, Kelowna, British Columbia, Canada
| | - Wesley Zandberg
- Department of Biology, University of British Columbia, Okanagan Campus, Kelowna, British Columbia, Canada
| | - Lijun Xia
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma; Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma.
| | - Kirk S Bergstrom
- Department of Biology, University of British Columbia, Okanagan Campus, Kelowna, British Columbia, Canada.
| |
Collapse
|
3
|
Deng Y, Ren S, Liu Q, Zhou D, Zhong C, Jin Y, Xie L, Gu J, Xiao C. A high heterozygosity genome assembly of Aedes albopictus enables the discovery of the association of PGANT3 with blood-feeding behavior. BMC Genomics 2024; 25:336. [PMID: 38570743 PMCID: PMC10993458 DOI: 10.1186/s12864-024-10133-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 02/16/2024] [Indexed: 04/05/2024] Open
Abstract
The Asian tiger mosquito, Aedes albopictus, is a global invasive species, notorious for its role in transmitting dangerous human arboviruses such as dengue and Chikungunya. Although hematophagous behavior is repulsive, it is an effective strategy for mosquitoes like Aedes albopictus to transmit viruses, posing a significant risk to human health. However, the fragmented nature of the Ae. albopictus genome assembly has been a significant challenge, hindering in-depth biological and genetic studies of this mosquito. In this research, we have harnessed a variety of technologies and implemented a novel strategy to create a significantly improved genome assembly for Ae. albopictus, designated as AealbF3. This assembly boasts a completeness rate of up to 98.1%, and the duplication rate has been minimized to 1.2%. Furthermore, the fragmented contigs or scaffolds of AealbF3 have been organized into three distinct chromosomes, an arrangement corroborated through syntenic plot analysis, which compared the genetic structure of Ae. albopictus with that of Ae. aegypti. Additionally, the study has revealed a phylogenetic relationship suggesting that the PGANT3 gene is implicated in the hematophagous behavior of Ae. albopictus. This involvement was preliminarily substantiated through RNA interference (RNAi) techniques and behavioral experiment. In summary, the AealbF3 genome assembly will facilitate new biological insights and intervention strategies for combating this formidable vector of disease. The innovative assembly process employed in this study could also serve as a valuable template for the assembly of genomes in other insects characterized by high levels of heterozygosity.
Collapse
Affiliation(s)
- Yuhua Deng
- Institute of Translational Medicine Research, The First People's Hospital of Foshan, #81, North Lingnan Avenue, Foshan, China
| | - Shuyi Ren
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Healthy, Southern Medical University, Guangzhou, China
| | - Qiong Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, China
| | - Dan Zhou
- Department of Breast Surgery, The First People's Hospital of Foshan, #81, North Lingnan Avenue, Foshan, China
| | - Caimei Zhong
- Department of Dermatology, Shunde District Center for Prevention and Cure of Chronic Diseases, Shunde, China
| | - Yabin Jin
- Institute of Translational Medicine Research, The First People's Hospital of Foshan, #81, North Lingnan Avenue, Foshan, China
| | - Lihua Xie
- School of Basic Medical Sciences, Fujian Medical University, No. 1 Xuefu North Road, University Town, Fuzhou, China
| | - Jinbao Gu
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Healthy, Southern Medical University, Guangzhou, China.
| | - Chuanle Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Tianhe District, Guangzhou, China.
| |
Collapse
|
4
|
Li S, Chen M, Wang Z, Abudourexiti W, Zhang L, Ding C, Ding L, Gong J. Ant may well destroy a whole dam: glycans of colonic mucus barrier disintegrated by gut bacteria. Microbiol Res 2024; 281:127599. [PMID: 38219635 DOI: 10.1016/j.micres.2023.127599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/29/2023] [Accepted: 12/30/2023] [Indexed: 01/16/2024]
Abstract
The colonic mucus layer plays a critical role in maintaining the integrity of the colonic mucosal barrier, serving as the primary defense against colonic microorganisms. Predominantly composed of mucin 2 (MUC2), a glycosylation-rich protein, the mucus layer forms a gel-like coating that covers the colonic epithelium surface. This layer provides a habitat for intestinal microorganisms, which can utilize mucin glycans present in the mucus layer as a sustainable source of nutrients. Additionally, metabolites produced by the microbiota during the metabolism of mucus glycans have a profound impact on host health. Under normal conditions, the production and consumption of mucus maintain a dynamic balance. However, several studies have demonstrated that certain factors, such as dietary fiber deficiency, can enhance the metabolism of mucus glycans by gut bacteria, thereby disturbing this balance and weakening the mucus barrier function of the mucus layer. To better understand the occurrence and development of colon-related diseases, it is crucial to investigate the complex metabolic patterns of mucus glycosylation by intestinal microorganisms. Our objective was to comprehensively review these patterns in order to clarify the effects of mucus layer glycan metabolism by intestinal microorganisms on the host.
Collapse
Affiliation(s)
- Song Li
- Department of General Surgery, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, China
| | - Mingfei Chen
- Department of General Surgery, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, China
| | - Zhongyuan Wang
- Department of General Surgery, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, China
| | - Waresi Abudourexiti
- Department of General Surgery, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, China
| | - Liang Zhang
- Department of Gastrointestinal Surgery, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical College, Jiangsu, China
| | - Chao Ding
- Department of General Surgery, Affiliated Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China.
| | - Lin Ding
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China; Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China.
| | - Jianfeng Gong
- Department of General Surgery, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, China.
| |
Collapse
|
5
|
Zhao L, Qiu Z, Yang Z, Xu L, Pearce TM, Wu Q, Yang K, Li F, Saulnier O, Fei F, Yu H, Gimple RC, Varadharajan V, Liu J, Hendrikse LD, Fong V, Wang W, Zhang J, Lv D, Lee D, Lehrich BM, Jin C, Ouyang L, Dixit D, Wu H, Wang X, Sloan AE, Wang X, Huan T, Mark Brown J, Goldman SA, Taylor MD, Zhou S, Rich JN. Lymphatic endothelial-like cells promote glioblastoma stem cell growth through cytokine-driven cholesterol metabolism. NATURE CANCER 2024; 5:147-166. [PMID: 38172338 DOI: 10.1038/s43018-023-00658-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/26/2023] [Indexed: 01/05/2024]
Abstract
Glioblastoma is the most lethal primary brain tumor with glioblastoma stem cells (GSCs) atop a cellular hierarchy. GSCs often reside in a perivascular niche, where they receive maintenance cues from endothelial cells, but the role of heterogeneous endothelial cell populations remains unresolved. Here, we show that lymphatic endothelial-like cells (LECs), while previously unrecognized in brain parenchyma, are present in glioblastomas and promote growth of CCR7-positive GSCs through CCL21 secretion. Disruption of CCL21-CCR7 paracrine communication between LECs and GSCs inhibited GSC proliferation and growth. LEC-derived CCL21 induced KAT5-mediated acetylation of HMGCS1 on K273 in GSCs to enhance HMGCS1 protein stability. HMGCS1 promoted cholesterol synthesis in GSCs, favorable for tumor growth. Expression of the CCL21-CCR7 axis correlated with KAT5 expression and HMGCS1K273 acetylation in glioblastoma specimens, informing patient outcome. Collectively, glioblastomas contain previously unrecognized LECs that promote the molecular crosstalk between endothelial and tumor cells, offering potentially alternative therapeutic strategies.
Collapse
Affiliation(s)
- Linjie Zhao
- University of Pittsburgh Medical Center, Hillman Cancer Center, Pittsburgh, PA, USA
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Zhixin Qiu
- University of Pittsburgh Medical Center, Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Anesthesiology, Zhongshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Zhengnan Yang
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of the Ministry of Education, and State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, and Collaborative Innovation Center, Chengdu, China
| | - Lian Xu
- Department of Pathology, West China Second Hospital, Sichuan University, Chengdu, China
| | - Thomas M Pearce
- Department of Pathology, Division of Neuropathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Qiulian Wu
- University of Pittsburgh Medical Center, Hillman Cancer Center, Pittsburgh, PA, USA
| | - Kailin Yang
- Department of Radiation Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, USA
| | - FuLong Li
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Olivier Saulnier
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Fan Fei
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Huaxu Yu
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ryan C Gimple
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Venkateshwari Varadharajan
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland Clinic, Cleveland, OH, USA
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Juxiu Liu
- Division of Obstetrics, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu, China
| | - Liam D Hendrikse
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Vernon Fong
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Wei Wang
- Department of Gynecology, Huzhou Maternity & Child Health Care Hospital, Huzhou, China
| | - Jiao Zhang
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Deguan Lv
- University of Pittsburgh Medical Center, Hillman Cancer Center, Pittsburgh, PA, USA
| | - Derrick Lee
- University of Pittsburgh Medical Center, Hillman Cancer Center, Pittsburgh, PA, USA
| | - Brandon M Lehrich
- University of Pittsburgh Medical Center, Hillman Cancer Center, Pittsburgh, PA, USA
| | - Chunyu Jin
- Howard Hughes Medical Institute, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Liang Ouyang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Deobrat Dixit
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Haoxing Wu
- Huaxi MR Research Center, Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Xiang Wang
- Division of Obstetrics, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu, China
| | - Andrew E Sloan
- Department of Neurosurgery, Case Western Reserve University, Cleveland, OH, USA
| | - Xiuxing Wang
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Tao Huan
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - J Mark Brown
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute Cleveland Clinic, Cleveland, OH, USA
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Steven A Goldman
- University of Rochester Medical Center, Rochester, NY, USA
- University of Copenhagen, Copenhagen, Denmark
| | - Michael D Taylor
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Division of Neurosurgery, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Shengtao Zhou
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of the Ministry of Education, and State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, and Collaborative Innovation Center, Chengdu, China.
| | - Jeremy N Rich
- University of Pittsburgh Medical Center, Hillman Cancer Center, Pittsburgh, PA, USA.
- Department of Neurology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
| |
Collapse
|
6
|
Li Z, Wang C, Zhang X, Xu X, Wang M, Dong L. Crosstalk between septic shock and venous thromboembolism: a bioinformatics and immunoassay analysis. Front Cell Infect Microbiol 2023; 13:1235269. [PMID: 38029239 PMCID: PMC10666789 DOI: 10.3389/fcimb.2023.1235269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Background Herein, we applied bioinformatics methods to analyze the crosstalk between septic shock (SS) and venous thromboembolism (VTE), focusing on the correlation with immune infiltrating cells. Methods Expression data were obtained from the Gene Expression Omnibus (GEO) database, including blood samples from SS patients (datasets GSE64457, GSE95233, and GSE57065) and VTE patients (GSE19151). We used the R package "limma" for differential expression analysis (p value<0.05,∣logFC∣≥1). Venn plots were generated to identify intersected differential genes between SS and VTE and conducted Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) Enrichment analysis. The protein-protein interaction (PPI) network of intersected genes was constructed by Cytoscape software. The xCell analysis identified immune cells with significant changes in VTE and SS and correlated them with significant molecular pathways of crosstalk. Finally, we validated the mRNA expression of crosstalk genes by qPCR, while Matrix Metalloprotein-9 (MMP-9) protein levels were assessed through Western blotting (WB) and Immunohistochemistry (IHC) in human umbilical vein endothelial cells (HUVECs) and mice. Results In the present study, we conducted a comparison between 88 patients with septic shock and 55 control subjects. Additionally, we compared 70 patients with venous thromboembolism to 63 control subjects. Twelve intersected genes and their corresponding three important molecular pathways were obtained: Metabolic, Estrogen, and FOXO signaling pathways. The resulting PPI network has 194 nodes and 388 edges. The immune microenvironment analysis of the two diseases showed that the infiltration levels of M2 macrophages and Class-switched memory B cells were correlated with the enrichment scores of metabolic, estrogen, and FOXO signaling pathways. Finally, qPCR confirmed that the expression of MMP9, S100A12, ARG1, SLPI, and ANXA3 mRNA in the SS with VTE group was significantly elevated. WB and IHC experiments revealed that MMP9 protein was significantly elevated in the experimental group. Conclusion Metabolic, estrogen, and FOXO pathways play important roles in both SS and VTE and are related to the immune cell microenvironment of M2 macrophages and Class-switched memory B cells. MMP9 shows promise as a biomarker for diagnosing sepsis with venous thrombosis and a potential molecular target for treating this patient population.
Collapse
Affiliation(s)
- Zhishu Li
- Department of Respiratory and Critical Care Medicine, Guangyuan Central Hospital, Guangyuan, China
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Chaolan Wang
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Xu Zhang
- Department of Respiratory and Critical Care Medicine, Guangyuan Central Hospital, Guangyuan, China
| | - Xiaolin Xu
- School of Statistics, Renmin University of China, Bejing, China
| | - Meng Wang
- Department of Respiratory and Critical Care Medicine, Guangyuan Central Hospital, Guangyuan, China
| | - Lixia Dong
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
7
|
Jiang J, Li W, Zhou L, Liu D, Wang Y, An J, Qiao S, Xie Z. Platelet ITGA2B inhibits caspase-8 and Rip3/Mlkl-dependent platelet death though PTPN6 during sepsis. iScience 2023; 26:107414. [PMID: 37554440 PMCID: PMC10404729 DOI: 10.1016/j.isci.2023.107414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/04/2023] [Accepted: 07/14/2023] [Indexed: 08/10/2023] Open
Abstract
Platelets play an important role in the pathogenesis of sepsis and platelet transfusion is a therapeutic option for sepsis patients, although the exact mechanisms have not been elucidated so far. ITGA2B encodes the αIIb protein in platelets, and its upregulation in sepsis is associated with increased mortality rate. Here, we generated a Itga2b (Q887X) knockin mouse, which significantly reduced ITGA2B expression of platelet and megakaryocyte. The decrease of ITGA2B level aggravated the death of septic mice. We analyzed the transcriptomic profiles of the platelets using RNA sequencing. Our findings suggest that ITGA2B upregulates PTPN6 in megakaryocytes via the transcription factors Nfkb1 and Rel. Furthermore, PTPN6 inhibits platelet apoptosis and necroptosis during sepsis by targeting the Ripk1/Ripk3/Mlkl and caspase-8 pathways. This prevents Kupffer cells from rapidly clearing activated platelets, and eventually maintains vascular integrity during sepsis. Our findings indicate a new function of ITGA2B in the regulation of platelet death during sepsis.
Collapse
Affiliation(s)
- Jiang Jiang
- Department of Nuclear Medicine, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Wei Li
- Institute of Clinical Medicine Research, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, China
| | - Lu Zhou
- Hematology Department, Affiliated Hospital of Nantong University, Nantong, China
| | - Dengping Liu
- Suzhou Center for Disease Control and Prevention, Suzhou, China
| | - Yuanyuan Wang
- Department of Intensive Care Unit, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, China
| | - Jianzhong An
- Institute of Clinical Medicine Research, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, China
| | - Shigang Qiao
- Institute of Clinical Medicine Research, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, China
- Faculty of Anesthesiology, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, China
| | - Zhanli Xie
- Institute of Clinical Medicine Research, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, China
| |
Collapse
|
8
|
Ma W, Deng Y, Xu Z, Liu X, Chapla DG, Moremen KW, Wen L, Li T. Integrated Chemoenzymatic Approach to Streamline the Assembly of Complex Glycopeptides in the Liquid Phase. J Am Chem Soc 2022; 144:9057-9065. [PMID: 35544340 DOI: 10.1021/jacs.2c01819] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Glycosylation of proteins is a complicated post-translational modification. Despite the significant progress in glycoproteomics, accurate functions of glycoproteins are still ambiguous owing to the difficulty in obtaining homogeneous glycopeptides or glycoproteins. Here, we describe a streamlined chemoenzymatic method to prepare complex glycopeptides by integrating hydrophobic tag-supported chemical synthesis and enzymatic glycosylations. The hydrophobic tag is utilized to facilitate peptide chain elongation in the liquid phase and expeditious product separation. After removal of the tag, a series of glycans are installed on the peptides via efficient glycosyltransferase-catalyzed reactions. The general applicability and robustness of this approach are exemplified by efficient preparation of 16 well-defined SARS-CoV-2 O-glycopeptides, 4 complex MUC1 glycopeptides, and a 31-mer glycosylated glucagon-like peptide-1. Our developed approach will open up a new range of easy access to various complex glycopeptides of biological importance.
Collapse
Affiliation(s)
- Wenjing Ma
- Shanghai Institute of Materia Medica, CAS, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaqi Deng
- Shanghai Institute of Materia Medica, CAS, Shanghai 201203, China
| | - Zhuojia Xu
- Shanghai Institute of Materia Medica, CAS, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xingbang Liu
- Shanghai Institute of Materia Medica, CAS, Shanghai 201203, China
| | - Digantkumar G Chapla
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, United States
| | - Kelley W Moremen
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, United States
| | - Liuqing Wen
- Shanghai Institute of Materia Medica, CAS, Shanghai 201203, China
| | - Tiehai Li
- Shanghai Institute of Materia Medica, CAS, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Bergstrom K, Xia L. The barrier and beyond: Roles of intestinal mucus and mucin-type O-glycosylation in resistance and tolerance defense strategies guiding host-microbe symbiosis. Gut Microbes 2022; 14:2052699. [PMID: 35380912 PMCID: PMC8986245 DOI: 10.1080/19490976.2022.2052699] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Over the past two decades, our appreciation of the gut mucus has moved from a static lubricant to a dynamic and essential component of the gut ecosystem that not only mediates the interface between host tissues and vast microbiota, but regulates how this ecosystem functions to promote mutualistic symbioses and protect from microbe-driven diseases. By delving into the complex chemistry and biology of the mucus, combined with innovative in vivo and ex vivo approaches, recent studies have revealed novel insights into the formation and function of the mucus system, the O-glycans that make up this system, and how they mediate two major host-defense strategies - resistance and tolerance - to reduce damage caused by indigenous microbes and opportunistic pathogens. This current review summarizes these findings by highlighting the emerging roles of mucus and mucin-type O-glycans in influencing host and microbial physiology with an emphasis on host defense strategies against bacteria in the gastrointestinal tract.
Collapse
Affiliation(s)
- Kirk Bergstrom
- Department of Biology, University of British Columbia, Okanagan Campus, 3333 University Way, Kelowna, British ColumbiaV1V 1V7, Canada,Kirk Bergstrom Department of Biology, University of British Columbia, 3333 University Way, Kelowna, B.C. Canada
| | - Lijun Xia
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, OK, Oklahoma73104, USA,Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, OK, Oklahoma73104, USA,CONTACT Lijun Xia Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, OK, Oklahoma73104, USA
| |
Collapse
|
10
|
Curcumin-Based Inhibitors of Thrombosis and Cancer Metastasis Promoting Factor CLEC 2 from Traditional Medicinal Species Curcuma longa. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:9344838. [PMID: 35082906 PMCID: PMC8786508 DOI: 10.1155/2022/9344838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 11/30/2021] [Indexed: 11/17/2022]
Abstract
The CLEC-2 receptor protein belongs to the C-type lectin superfamily of transmembrane receptors that have one or more C-type lectin-like domains. CLEC-2 is a physiological binding receptor of podoplanin (PDPN), which is expressed on specific tumour cell types and involved in tumour cell-induced platelet aggregation and tumour metastasis. CLEC-2 and podoplanin-expressing tumour cells interact to increase angiogenesis, tumour development, and metastasis. CLEC-2 is a hemi-immunoreceptor tyrosine-based activation motif (hemi-ITAM) receptor located on platelets and a subset of dendritic cells that are expressed constitutively. This molecule is secreted by activated platelets around tumours and has been shown to inhibit platelet aggregation and tumour metastasis in colon carcinoma by binding to the surface of tumour cells. Pharmacokinetic studies were carried using a DrugLiTo, and molecular docking was performed using AutoDock Tools 1.5.6 (ADT). Twenty-nine bioactive compounds were included in the study, and four of them, namely, piperine, dihydrocurcumin, bisdemethoxycurcumin, and demothoxycurcumin, showed potential antagonist properties against the target. The resultant best bioactive was compared with commercially available standard drugs. Further, validation of respective compounds with an intensive molecular dynamics simulation was performed using Schrödinger software. To the best of our knowledge, this is the first report on major bioactive found on clove as natural antagonists for CLEC-2 computationally. To further validate the bioactive and delimit the screening process of potential drugs against CLEC-2, in vitro and in vivo studies are needed to prove their efficacy.
Collapse
|
11
|
Zeng J, Aryal RP, Stavenhagen K, Luo C, Liu R, Wang X, Chen J, Li H, Matsumoto Y, Wang Y, Wang J, Ju T, Cummings RD. Cosmc deficiency causes spontaneous autoimmunity by breaking B cell tolerance. SCIENCE ADVANCES 2021; 7:eabg9118. [PMID: 34613773 PMCID: PMC8494437 DOI: 10.1126/sciadv.abg9118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 08/17/2021] [Indexed: 05/12/2023]
Abstract
Factors regulating the induction and development of B cell–mediated autoimmunity are not well understood. Here, we report that targeted deletion in murine B cells of X-linked Cosmc, encoding the chaperone required for expression of core 1 O-glycans, causes the spontaneous development of autoimmune pathologies due to a breakdown of B cell tolerance. BC-CosmcKO mice display multiple phenotypic abnormalities, including severe weight loss, ocular manifestations, lymphadenopathy, and increased female-associated mortality. Disruption of B cell tolerance in BC-CosmcKO mice is manifested as elevated self-reactive IgM and IgG autoantibodies. Cosmc-deficient B cells exhibit enhanced basal activation and responsiveness to stimuli. There is also an elevated frequency of spontaneous germinal center B cells in BC-CosmcKO mice. Mechanistically, loss of Cosmc confers enhanced B cell receptor (BCR) signaling through diminished BCR internalization. The results demonstrate that Cosmc, through control of core 1 O-glycans, is a previously unidentified immune checkpoint gene in maintaining B cell tolerance.
Collapse
Affiliation(s)
- Junwei Zeng
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Rajindra P. Aryal
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Kathrin Stavenhagen
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Chi Luo
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Renyan Liu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Xiaohui Wang
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, USA
| | - Jiaxuan Chen
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Hao Li
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Yasuyuki Matsumoto
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Yingchun Wang
- Department of Biochemistry, Emory University, Atlanta, GA, USA
| | - Jianmei Wang
- Department of Biochemistry, Emory University, Atlanta, GA, USA
| | - Tongzhong Ju
- Department of Biochemistry, Emory University, Atlanta, GA, USA
| | - Richard D. Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
12
|
Martin-Almedina S, Mortimer PS, Ostergaard P. Development and physiological functions of the lymphatic system: insights from human genetic studies of primary lymphedema. Physiol Rev 2021; 101:1809-1871. [PMID: 33507128 DOI: 10.1152/physrev.00006.2020] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Primary lymphedema is a long-term (chronic) condition characterized by tissue lymph retention and swelling that can affect any part of the body, although it usually develops in the arms or legs. Due to the relevant contribution of the lymphatic system to human physiology, while this review mainly focuses on the clinical and physiological aspects related to the regulation of fluid homeostasis and edema, clinicians need to know that the impact of lymphatic dysfunction with a genetic origin can be wide ranging. Lymphatic dysfunction can affect immune function so leading to infection; it can influence cancer development and spread, and it can determine fat transport so impacting on nutrition and obesity. Genetic studies and the development of imaging techniques for the assessment of lymphatic function have enabled the recognition of primary lymphedema as a heterogenic condition in terms of genetic causes and disease mechanisms. In this review, the known biological functions of several genes crucial to the development and function of the lymphatic system are used as a basis for understanding normal lymphatic biology. The disease conditions originating from mutations in these genes are discussed together with a detailed clinical description of the phenotype and the up-to-date knowledge in terms of disease mechanisms acquired from in vitro and in vivo research models.
Collapse
Affiliation(s)
- Silvia Martin-Almedina
- Molecular and Clinical Sciences Institute, St. George's University of London, London, United Kingdom
| | - Peter S Mortimer
- Molecular and Clinical Sciences Institute, St. George's University of London, London, United Kingdom
- Dermatology and Lymphovascular Medicine, St. George's Universities NHS Foundation Trust, London, United Kingdom
| | - Pia Ostergaard
- Molecular and Clinical Sciences Institute, St. George's University of London, London, United Kingdom
| |
Collapse
|
13
|
Hoover C, Kondo Y, Shao B, McDaniel MJ, Lee R, McGee S, Whiteheart S, Bergmeier W, McEver RP, Xia L. Heightened activation of embryonic megakaryocytes causes aneurysms in the developing brain of mice lacking podoplanin. Blood 2021; 137:2756-2769. [PMID: 33619517 PMCID: PMC8138551 DOI: 10.1182/blood.2020010310] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/06/2021] [Indexed: 12/29/2022] Open
Abstract
During early embryonic development in mammals, including humans and mice, megakaryocytes (Mks) first originate from primitive hematopoiesis in the yolk sac. These embryonic Mks (eMks) circulate in the vasculature with unclear function. Herein, we report that podoplanin (PDPN), the ligand of C-type lectin-like receptor (CLEC-2) on Mks/platelets, is temporarily expressed in neural tissue during midgestation in mice. Loss of PDPN or CLEC-2 resulted in aneurysms and spontaneous hemorrhage, specifically in the lower diencephalon during midgestation. Surprisingly, more eMks/platelets had enhanced granule release and localized to the lower diencephalon in mutant mouse embryos than in wild-type littermates before hemorrhage. We found that PDPN counteracted the collagen-1-induced secretion of angiopoietin-1 from fetal Mks, which coincided with enhanced TIE-2 activation in aneurysm-like sprouts of PDPN-deficient embryos. Blocking platelet activation prevented the PDPN-deficient embryo from developing vascular defects. Our data reveal a new role for PDPN in regulating eMk function during midgestation.
Collapse
MESH Headings
- Aneurysm, Ruptured/embryology
- Aneurysm, Ruptured/etiology
- Angiopoietin-1/metabolism
- Animals
- Brain/blood supply
- Brain/embryology
- Cells, Cultured
- Cerebral Hemorrhage/embryology
- Cerebral Hemorrhage/etiology
- Collagen/pharmacology
- Diencephalon/blood supply
- Diencephalon/embryology
- Gene Expression Regulation, Developmental
- Gestational Age
- Intracranial Aneurysm/embryology
- Intracranial Aneurysm/etiology
- Intracranial Aneurysm/genetics
- Intracranial Aneurysm/pathology
- Lectins, C-Type/deficiency
- Lectins, C-Type/genetics
- Lectins, C-Type/physiology
- Megakaryocytes/metabolism
- Megakaryocytes/pathology
- Membrane Glycoproteins/deficiency
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/physiology
- Mice
- Mice, Knockout
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/physiopathology
- Neovascularization, Physiologic/physiology
- Platelet Activation
- Platelet Aggregation/drug effects
- Platelet Aggregation Inhibitors/pharmacology
- Receptor, TIE-2/metabolism
Collapse
Affiliation(s)
- Christopher Hoover
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Yuji Kondo
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Bojing Shao
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Michael J McDaniel
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Robert Lee
- Department of Biochemistry and Biophysics-UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC; and
| | - Samuel McGee
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Sidney Whiteheart
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY
| | - Wolfgang Bergmeier
- Department of Biochemistry and Biophysics-UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC; and
| | - Rodger P McEver
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Lijun Xia
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| |
Collapse
|
14
|
Ma X, Li Y, Kondo Y, Shi H, Han J, Jiang Y, Bai X, Archer-Hartmann SA, Azadi P, Ruan C, Fu J, Xia L. Slc35a1 deficiency causes thrombocytopenia due to impaired megakaryocytopoiesis and excessive platelet clearance in the liver. Haematologica 2021; 106:759-769. [PMID: 32303557 PMCID: PMC7927894 DOI: 10.3324/haematol.2019.225987] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Indexed: 12/27/2022] Open
Abstract
Sialic acid is a common terminal residue of glycans on proteins and
acidic sphingolipids such as gangliosides and has important biological
functions. The sialylation process is controlled by more than 20 different
sialyltransferases, many of which exhibit overlapping functions.
Thus, it is difficult to determine the overall biological function of sialylation
by targeted deletion of individual sialyltransferases. To address this
issue, we established a mouse line with the Slc35a1 gene flanked by loxP
sites. Slc35a1 encodes the cytidine-5’-monophosphate (CMP)-sialic acid
transporter that transports CMP-sialic acid from the cytoplasm into the
Golgi apparatus for sialylation. Here we report our study regarding the role
of sialylation on megakaryocytes and platelets using a mouse line with significantly
reduced sialylation in megakaryocytes and platelets (Plt Slc35a1–
/–). The major phenotype of Plt Slc35a1–/– mice was thrombocytopenia. The
number of bone marrow megakaryocytes in Plt Slc35a1–/– mice was
reduced, and megakaryocyte maturation was also impaired. In addition, an
increased number of desialylated platelets was cleared by Küpffer cells in
the liver of Plt Slc35a1–/– mice. This study provides new insights into the
role of sialylation in platelet homeostasis and the mechanisms of thrombocytopenia
in diseases associated with platelet desialylation, such as
immune thrombocytopenia and a rare congenital disorder of glycosylation
(CDG), SLC35A1-CDG, which is caused by SLC35A1 mutations.
Collapse
Affiliation(s)
- Xiaolin Ma
- Jiangsu Institute of Hematology, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, China,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China,Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yun Li
- Jiangsu Institute of Hematology, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, China,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Yuji Kondo
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Huiping Shi
- Jiangsu Institute of Hematology, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, China,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China,Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Jingjing Han
- Jiangsu Institute of Hematology, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, China,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Yizhi Jiang
- Jiangsu Institute of Hematology, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, China,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Xia Bai
- Jiangsu Institute of Hematology, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, China,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China,State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | | | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Changgeng Ruan
- Jiangsu Institute of Hematology, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, China,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China,State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Jianxin Fu
- Jiangsu Institute of Hematology, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, China,Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA,Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lijun Xia
- Jiangsu Institute of Hematology, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, China,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China,Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| |
Collapse
|
15
|
Mucin-Type O-GalNAc Glycosylation in Health and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1325:25-60. [PMID: 34495529 DOI: 10.1007/978-3-030-70115-4_2] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mucin-type GalNAc O-glycosylation is one of the most abundant and unique post-translational modifications. The combination of proteome-wide mapping of GalNAc O-glycosylation sites and genetic studies with knockout animals and genome-wide analyses in humans have been instrumental in our understanding of GalNAc O-glycosylation. Combined, such studies have revealed well-defined functions of O-glycans at single sites in proteins, including the regulation of pro-protein processing and proteolytic cleavage, as well as modulation of receptor functions and ligand binding. In addition to isolated O-glycans, multiple clustered O-glycans have an important function in mammalian biology by providing structural support and stability of mucins essential for protecting our inner epithelial surfaces, especially in the airways and gastrointestinal tract. Here the many O-glycans also provide binding sites for both endogenous and pathogen-derived carbohydrate-binding proteins regulating critical developmental programs and helping maintain epithelial homeostasis with commensal organisms. Finally, O-glycan changes have been identified in several diseases, most notably in cancer and inflammation, where the disease-specific changes can be used for glycan-targeted therapies. This chapter will review the biosynthesis, the biology, and the translational perspectives of GalNAc O-glycans.
Collapse
|
16
|
Mehta AY, Veeraiah RKH, Dutta S, Goth CK, Hanes MS, Gao C, Stavenhagen K, Kardish R, Matsumoto Y, Heimburg-Molinaro J, Boyce M, Pohl NLB, Cummings RD. Parallel Glyco-SPOT Synthesis of Glycopeptide Libraries. Cell Chem Biol 2020; 27:1207-1219.e9. [PMID: 32610041 PMCID: PMC7556346 DOI: 10.1016/j.chembiol.2020.06.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/27/2020] [Accepted: 06/12/2020] [Indexed: 12/13/2022]
Abstract
Glycan recognition is typically studied using free glycans, but glycopeptide presentations represent more physiological conditions for glycoproteins. To facilitate studies of glycopeptide recognition, we developed Glyco-SPOT synthesis, which enables the parallel production of diverse glycopeptide libraries at microgram scales. The method uses a closed system for prolonged reactions required for coupling Fmoc-protected glycoamino acids, including O-, N-, and S-linked glycosides, and release conditions to prevent side reactions. To optimize reaction conditions and sample reaction progress, we devised a biopsy testing method. We demonstrate the efficient utilization of such microscale glycopeptide libraries to determine the specificity of glycan-recognizing antibodies (e.g., CTD110.6) using microarrays, enzyme specificity on-array and in-solution (e.g., ST6GalNAc1, GCNT1, and T-synthase), and binding kinetics using fluorescence polarization. We demonstrated that the glycosylation on these peptides can be expanded using glycosyltransferases both in-solution and on-array. This technology will promote the discovery of biological functions of peptide modifications by glycans.
Collapse
Affiliation(s)
- Akul Y Mehta
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, National Center for Functional Glycomics, CLS 11087 - 3 Blackfan Circle, Boston, MA 02115, USA
| | - Ravi Kumar H Veeraiah
- Department of Chemistry, Indiana University, 120A Simon Hall, 212 South Hawthorne Drive, Bloomington, IN 47405, USA
| | - Sucharita Dutta
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, National Center for Functional Glycomics, CLS 11087 - 3 Blackfan Circle, Boston, MA 02115, USA
| | - Christoffer K Goth
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, National Center for Functional Glycomics, CLS 11087 - 3 Blackfan Circle, Boston, MA 02115, USA
| | - Melinda S Hanes
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, National Center for Functional Glycomics, CLS 11087 - 3 Blackfan Circle, Boston, MA 02115, USA
| | - Chao Gao
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, National Center for Functional Glycomics, CLS 11087 - 3 Blackfan Circle, Boston, MA 02115, USA
| | - Kathrin Stavenhagen
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, National Center for Functional Glycomics, CLS 11087 - 3 Blackfan Circle, Boston, MA 02115, USA
| | - Robert Kardish
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, National Center for Functional Glycomics, CLS 11087 - 3 Blackfan Circle, Boston, MA 02115, USA
| | - Yasuyuki Matsumoto
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, National Center for Functional Glycomics, CLS 11087 - 3 Blackfan Circle, Boston, MA 02115, USA
| | - Jamie Heimburg-Molinaro
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, National Center for Functional Glycomics, CLS 11087 - 3 Blackfan Circle, Boston, MA 02115, USA
| | - Michael Boyce
- Department of Biochemistry and Program in Cell and Molecular Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Nicola L B Pohl
- Department of Chemistry, Indiana University, 120A Simon Hall, 212 South Hawthorne Drive, Bloomington, IN 47405, USA.
| | - Richard D Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, National Center for Functional Glycomics, CLS 11087 - 3 Blackfan Circle, Boston, MA 02115, USA.
| |
Collapse
|
17
|
Park GW, Lee JW, Lee HK, Shin JH, Kim JY, Yoo JS. Classification of Mucin-Type O-Glycopeptides Using Higher-Energy Collisional Dissociation in Mass Spectrometry. Anal Chem 2020; 92:9772-9781. [PMID: 32584546 DOI: 10.1021/acs.analchem.0c01218] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Changes in mucin-type O-glycosylation of human proteins affect protein function, immune response, and cancer progression. Since O-glycoproteins are characterized by the microheterogeneity of diverse O-glycans with no conserved sequence and the macroheterogeneity of multiple glycosylation sites on serine and/or threonine in human proteins, the assessment of different mucin types, such as Tn-antigen, core 1, and core 2, and their extended core types in O-glycopeptides, is extremely challenging. Here, we present an O-GlycoProteome Analyzer (O-GPA) that automatically classifies mucin-type O-glycosylation using higher-energy collisional dissociation (HCD) in mass spectrometry. First, we estimated the number of GlcNAc residues using the intensity ratio of GlcNAc-specific fragment ions (HexNAc-CH6O3 and HexNAc-2H2O) over GalNAc-specific fragment ions (HexNAc-C2H6O3 and HexNAc-C2H4O2) in the HCD spectrum. Furthermore, we classified the different mucin types of O-glycopeptides from characteristic B2 (HexNAc2) or Y2α (PEP + HexNAc2), and Y2β (PEP + HexNAcHex) fragment ions, along with the number of GlcNAc. Furthermore, O-GPA automatically determined single or multiple O-glycosylation, regardless of the mucin types. The mucin type of O-glycopeptides from human urine and plasma was confirmed with an overall accuracy of 96%. We found 97 core 1, 56 core 2, 13 extended core 1, and 12 extended core 2 glycopeptides from urine; and 22 core 1, 13 core 2, 7 extended core 1, 1 extended core 2, and 1 Tn-antigen from plasma. Our strategy can be used to successfully characterize specific mucin types of O-glycoproteins in human biological samples.
Collapse
Affiliation(s)
- Gun Wook Park
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, Ochang-eup 28119, Republic of Korea
| | - Ji Won Lee
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, Ochang-eup 28119, Republic of Korea.,Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Hyun Kyoung Lee
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, Ochang-eup 28119, Republic of Korea.,Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Jong Hwan Shin
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, Ochang-eup 28119, Republic of Korea
| | - Jin Young Kim
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, Ochang-eup 28119, Republic of Korea
| | - Jong Shin Yoo
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, Ochang-eup 28119, Republic of Korea.,Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, 34134, Republic of Korea
| |
Collapse
|
18
|
Zhou Q, Wang Z, Zeng H, Zhang H, Liu Z, Huang Q, Wang J, Chang Y, Bai Q, Liu L, Zhu Y, Xu L, Dai B, Guo J, Xia Y, Wang Y, Xu J. Identification and validation of poor prognosis immunoevasive subtype of muscle-invasive bladder cancer with tumor-infiltrating podoplanin + cell abundance. Oncoimmunology 2020; 9:1747333. [PMID: 33457092 PMCID: PMC7759386 DOI: 10.1080/2162402x.2020.1747333] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The choice of chemo- or immuno-therapy for muscle-invasive bladder cancer (MIBC) patients remains contentious. Podoplanin is newly identified as an immune checkpoint which intrigues us to explore the clinical significance and immunoregulatory role of tumor-infiltrating podoplanin+ cells (PDPN+ cells) in MIBC. A retrospective analysis of 259 MIBC patients from Zhongshan Hospital (n = 141) and Shanghai Cancer Center (n = 118) was conducted. A total of 406 MIBC patients from TCGA database were enrolled to investigate the relationship between PDPN and molecular characterization. We found that tumor-infiltrating PDPN+ cell abundance indicated an inferior overall survival and recurrence-free survival. pT2 MIBC patients with PDPN+ cell low infiltration could benefit more from adjuvant chemotherapy (ACT). Increased PDPN+ cell infiltration was associated with diminished GZMB and TNF-α expression while correlated with expanded PD-1, PD-L1, LAG-3 and TIM-3 expression and tumor-promoting regulatory T cell and M2 macrophage infiltration. Tumors with high PDPN mRNA expression mainly presented luminal-infiltrated and basal-squamous subtypes (2017 TCGA classification) or stroma-rich and Ba/Sq subtypes (consensus classification). Elevated PDPN mRNA expression was associated with less FGFR3 activation signature and more T-cell-inflamed signature and EGFR activation signature. In conclusion, tumor-infiltrating PDPN+ cells could be applied as an independent prognosticator for clinical outcome and a predictive biomarker for suboptimal ACT responsiveness, which was also associated with immunosuppressive contexture infiltration. Intratumoral PDPN expression had a correlation with MIBC molecular classification and therapy-related signatures. The novel immune checkpoint PDPN should be considered as a possible immunotherapeutic target for MIBC.
Collapse
Affiliation(s)
- Quan Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Zewei Wang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Han Zeng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Hongyu Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Zhaopei Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Qiuren Huang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jiajun Wang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuan Chang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Qi Bai
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Li Liu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yu Zhu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Le Xu
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bo Dai
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Jianming Guo
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yu Xia
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yiwei Wang
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiejie Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
19
|
Haining EJ, Lowe KL, Wichaiyo S, Kataru RP, Nagy Z, Kavanagh DP, Lax S, Di Y, Nieswandt B, Ho-Tin-Noé B, Mehrara BJ, Senis YA, Rayes J, Watson SP. Lymphatic blood filling in CLEC-2-deficient mouse models. Platelets 2020; 32:352-367. [PMID: 32129691 PMCID: PMC8443399 DOI: 10.1080/09537104.2020.1734784] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
C-type lectin-like receptor 2 (CLEC-2) is considered as a potential drug target in settings of wound healing, inflammation, and infection. A potential barrier to this is evidence that CLEC-2 and its ligand podoplanin play a critical role in preventing lymphatic vessel blood filling in mice throughout life. In this study, this aspect of CLEC-2/podoplanin function is investigated in more detail using new and established mouse models of CLEC-2 and podoplanin deficiency, and models of acute and chronic vascular remodeling. We report that CLEC-2 expression on platelets is not required to maintain a barrier between the blood and lymphatic systems in unchallenged mice, post-development. However, under certain conditions of chronic vascular remodeling, such as during tumorigenesis, deficiency in CLEC-2 can lead to lymphatic vessel blood filling. These data provide a new understanding of the function of CLEC-2 in adult mice and confirm the essential nature of CLEC-2-driven platelet activation in vascular developmental programs. This work expands our understanding of how lymphatic blood filling is prevented by CLEC-2-dependent platelet function and provides a context for the development of safe targeting strategies for CLEC-2 and podoplanin.
Collapse
Affiliation(s)
- Elizabeth J Haining
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Kate L Lowe
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Surasak Wichaiyo
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.,Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Raghu P Kataru
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Zoltan Nagy
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Dean Pj Kavanagh
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Sian Lax
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Ying Di
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Bernhard Nieswandt
- Rudolf Virchow Center for Experimental Biomedicine and Institute of Experimental Biomedicine, University of Würzburg and University Hospital of Würzburg, Würzburg, Germany
| | - Benoît Ho-Tin-Noé
- Institut National de la Santé et de la Recherche Médicale, UMR_S1148, Université Paris Diderot, Sorbonne Paris Cité, Hôpital Bichat, Paris, France
| | - Babak J Mehrara
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yotis A Senis
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Julie Rayes
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.,Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, The Midlands, UK
| | - Steve P Watson
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.,Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, The Midlands, UK
| |
Collapse
|
20
|
Donati Y, Blaskovic S, Ruchonnet-Métrailler I, Lascano Maillard J, Barazzone-Argiroffo C. Simultaneous isolation of endothelial and alveolar epithelial type I and type II cells during mouse lung development in the absence of a transgenic reporter. Am J Physiol Lung Cell Mol Physiol 2020; 318:L619-L630. [PMID: 32022591 DOI: 10.1152/ajplung.00227.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Mouse lung developmental maturation and final alveolarization phase begin at birth. During this dynamic process, alveolar cells modify their morphology and anchorage to the extracellular matrix. In particular, alveolar epithelial cell (AEC) type I undergo cytoplasmic flattening and folding to ensure alveoli lining. We developed FACS conditions for simultaneous isolation of alveolar epithelial and endothelial cells in the absence of specific reporters during the early and middle alveolar phase. We evidenced for the first time a pool of extractable epithelial cell populations expressing high levels of podoplanin at postnatal day (pnd)2, and we confirmed by RT-qPCR that these cells are already differentiated but still immature AEC type I. Maturation causes a decrease in isolation yields, reflecting the morphological changes that these cell populations are undergoing. Moreover, we find that major histocompatibility complex II (MHCII), reported as a good marker of AEC type II, is poorly expressed at pnd2 but highly present at pnd8. Combined experiments using LysoTracker and MHCII demonstrate the de novo acquisition of MCHII in AEC type II during lung alveolarization. The lung endothelial populations exhibit FACS signatures from vascular and lymphatic compartments. They can be concomitantly followed throughout alveolar development and were obtained with a noticeable increased yield at the last studied time point (pnd16). Our results provide new insights into early lung alveolar cell isolation feasibility and represent a valuable tool for pure AEC type I preparation as well as further in vitro two- and three-dimensional studies.
Collapse
Affiliation(s)
- Yves Donati
- Department of Pediatrics, Gynecology, and Obstetrics, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Sanja Blaskovic
- Department of Pediatrics, Gynecology, and Obstetrics, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Isabelle Ruchonnet-Métrailler
- Department of Pediatrics, Gynecology, and Obstetrics, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | | - Constance Barazzone-Argiroffo
- Department of Pediatrics, Gynecology, and Obstetrics, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
21
|
Fuseya S, Suzuki R, Okada R, Hagiwara K, Sato T, Narimatsu H, Yokoi H, Kasahara M, Usui T, Morito N, Yamagata K, Kudo T, Takahashi S. Mice lacking core 1-derived O-glycan in podocytes develop transient proteinuria, resulting in focal segmental glomerulosclerosis. Biochem Biophys Res Commun 2020; 523:1007-1013. [PMID: 31973821 DOI: 10.1016/j.bbrc.2020.01.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 01/05/2020] [Indexed: 12/25/2022]
Abstract
The glomerular filtration barrier is composed of podocytes, glomerular basement membrane, and endothelial cells. Disruption of these structures causes several glomerular injuries, such as focal segmental glomerulosclerosis (FSGS). The surface of podocyte apical membranes is coated by negatively charged sialic acids on core 1-derived mucin-type O-glycans. Here, we aimed to investigate the physiological role of core 1-derived O-glycans in the podocytes using adult mice lacking podocyte-specific core 1-derived O-glycans (iPod-Cos). iPod-Cos mice exhibited early and transient proteinuria with foot process effacements and developed typical FSGS-like disease symptoms. To identify the key molecules responsible for the FSGS-like phenotype, we focused on podocalyxin and podoplanin, which possess mucin-type O-glycans. Expression and localization of podocalyxin did not change in iPod-Cos glomeruli. Besides, western blot analysis revealed significantly lower levels of intact podocalyxin in isolated glomeruli of iPod-Cos mice, and high levels of processed forms in iPod-Cos glomeruli, as compared to that in control glomeruli. Conversely, podoplanin mRNA, and protein levels were lower in iPod-Cos mice than in control mice. These results demonstrated that core 1-derived O-glycan on podocytes is required for normal glomerular filtration and may contribute to the stable expression of podocalyxin and podoplanin.
Collapse
Affiliation(s)
- Sayaka Fuseya
- Laboratory Animal Resource Center in Transborder Medical Research Center, Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Japan; Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Japan
| | - Riku Suzuki
- Laboratory Animal Resource Center in Transborder Medical Research Center, Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Japan; Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Japan
| | - Risa Okada
- Laboratory Animal Resource Center in Transborder Medical Research Center, Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Japan
| | - Kozue Hagiwara
- Biotechnology Research Institute for Drug Discovery, Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology, Japan
| | - Takashi Sato
- Biotechnology Research Institute for Drug Discovery, Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology, Japan
| | - Hisashi Narimatsu
- Biotechnology Research Institute for Drug Discovery, Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology, Japan
| | - Hideki Yokoi
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Japan
| | - Masato Kasahara
- Department of Clinical Research, Nara Medical University Hospital, Japan
| | - Toshiaki Usui
- Laboratory Animal Resource Center in Transborder Medical Research Center, Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Japan; Department of Nephrology, Faculty of Medicine, University of Tsukuba, Japan
| | - Naoki Morito
- Department of Nephrology, Faculty of Medicine, University of Tsukuba, Japan
| | - Kunihiro Yamagata
- Department of Nephrology, Faculty of Medicine, University of Tsukuba, Japan
| | - Takashi Kudo
- Laboratory Animal Resource Center in Transborder Medical Research Center, Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Japan.
| | - Satoru Takahashi
- Laboratory Animal Resource Center in Transborder Medical Research Center, Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Japan.
| |
Collapse
|
22
|
Stotter BR, Talbot BE, Capen DE, Artelt N, Zeng J, Matsumoto Y, Endlich N, Cummings RD, Schlondorff JS. Cosmc-dependent mucin-type O-linked glycosylation is essential for podocyte function. Am J Physiol Renal Physiol 2020; 318:F518-F530. [PMID: 31904283 DOI: 10.1152/ajprenal.00399.2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Mucin-type O-linked glycosylation, a posttranslational modification affecting the stability and biophysical characteristics of proteins, requires C1GalT1 (T synthase) and its obligate, X-linked chaperone Cosmc. Hypomorphic C1GalT1 mutations cause renal failure via not yet established mechanisms. We hypothesize that impaired Cosmc-dependent O-glycosylation in podocytes is sufficient to cause disease. Podocyte-specific Cosmc knockout mice were generated and phenotyped to test this hypothesis. Female heterozygous mice displaying mosaic inactivation of Cosmc in podocytes due to random X-linked inactivation were also examined. Mice with podocyte-specific Cosmc deletion develop profound albuminuria, foot process effacement, glomerular sclerosis, progressive renal failure, and impaired survival. Glomerular transcriptome analysis reveals early changes in cell adhesion, extracellular matrix organization, and chemokine-mediated signaling pathways, coupled with podocyte loss. Expression of the O-glycoprotein podoplanin was lost, while Tn antigen, representing immature O-glycans, was most abundantly found on podocalyxin. In contrast to hemizygous male and homozygous female animals, heterozygous female mosaic animals developed only mild albuminuria, focal foot process effacement, and nonprogressive kidney disease. Ultrastructurally, Cosmc-deficient podocytes formed Tn antigen-positive foot processes interdigitating with those of normal podocytes but not with other Cosmc-deficient cells. This suggests a cell nonautonomous mechanism for mucin-type O-glycoproteins in maintaining podocyte function. In summary, our findings demonstrated an essential and likely cell nonautonomous role for mucin-type O-glycosylation for podocyte function.
Collapse
Affiliation(s)
- Brian R Stotter
- Division of Nephrology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts.,Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Brianna E Talbot
- Division of Nephrology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Diane E Capen
- Center for Systems Biology/Program in Membrane Biology, Massachusetts General Hospital, Boston, Massachusetts
| | - Nadine Artelt
- Institute for Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Junwei Zeng
- National Center for Functional Glycomics, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Yasuyuki Matsumoto
- National Center for Functional Glycomics, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Nicole Endlich
- Institute for Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Richard D Cummings
- National Center for Functional Glycomics, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Johannes S Schlondorff
- Division of Nephrology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
23
|
Liu F, Cui Y, Yang F, Xu Z, Da LT, Zhang Y. Inhibition of polypeptide N-acetyl-α-galactosaminyltransferases is an underlying mechanism of dietary polyphenols preventing colorectal tumorigenesis. Bioorg Med Chem 2019; 27:3372-3382. [PMID: 31227364 DOI: 10.1016/j.bmc.2019.06.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/05/2019] [Accepted: 06/10/2019] [Indexed: 12/16/2022]
Abstract
Ellagitannin-derived ellagic acid (EA) and colonic metabolite urolithins are functional dietary ingredients for cancer prevention, but the underlying mechanism need elucidation. Mucin-type O-glycosylation, initiated by polypeptide N-acetyl-α-galactosaminyltransferases (ppGalNAc-Ts), fine-tunes multiple biological processes and is closely associated with cancer progression. Herein, we aim to explore how specific tannin-based polyphenols affect tumor behavior of colorectal cancer cells (CRC) by modulating O-glycosylation. Utilizing HPLC-based enzyme assay, we find urolithin D (UroD), EA and gallic acid (GA) potently inhibit ppGalNAc-Ts. In particular, UroD inhibits ppGalNAc-T2 through a peptide/protein-competitive manner with nanomolar affinity. Computational simulations combined with site-directed mutagenesis further support the inhibitors' mode of action. Moreover, lectin analysis and metabolic labelling reveal that UroD can reduce cell O-glycans but not N-glycans. Transwell experiments prove that UroD inhibits migration and invasion of CRC cells. Our work proves that specific tannin-based polyphenols can potently inhibit ppGalNAc-Ts activity to reduce cell O-glycosylation and lead to lowering the migration and invasion of CRC cells, suggesting that disturbance of mucin-type O-glycosylation is an important mechanism for the function of dietary polyphenols.
Collapse
Affiliation(s)
- Feng Liu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yalu Cui
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Fang Yang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zhijue Xu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Lin-Tai Da
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yan Zhang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
24
|
Podoplanin in Inflammation and Cancer. Int J Mol Sci 2019; 20:ijms20030707. [PMID: 30736372 PMCID: PMC6386838 DOI: 10.3390/ijms20030707] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 02/07/2023] Open
Abstract
Podoplanin is a small cell-surface mucin-like glycoprotein that plays a crucial role in the development of the alveoli, heart, and lymphatic vascular system. Emerging evidence indicates that it is also involved in the control of mammary stem-cell activity and biogenesis of platelets in the bone marrow, and exerts an important function in the immune response. Podoplanin expression is upregulated in different cell types, including fibroblasts, macrophages, T helper cells, and epithelial cells, during inflammation and cancer, where it plays important roles. Podoplanin is implicated in chronic inflammatory diseases, such as psoriasis, multiple sclerosis, and rheumatoid arthritis, promotes inflammation-driven and cancer-associated thrombosis, and stimulates cancer cell invasion and metastasis through a variety of strategies. To accomplish its biological functions, podoplanin must interact with other proteins located in the same cell or in neighbor cells. The binding of podoplanin to its ligands leads to modulation of signaling pathways that regulate proliferation, contractility, migration, epithelial⁻mesenchymal transition, and remodeling of the extracellular matrix. In this review, we describe the diverse roles of podoplanin in inflammation and cancer, depict the protein ligands of podoplanin identified so far, and discuss the mechanistic basis for the involvement of podoplanin in all these processes.
Collapse
|
25
|
Alderfer L, Wei A, Hanjaya-Putra D. Lymphatic Tissue Engineering and Regeneration. J Biol Eng 2018; 12:32. [PMID: 30564284 PMCID: PMC6296077 DOI: 10.1186/s13036-018-0122-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 11/19/2018] [Indexed: 12/22/2022] Open
Abstract
The lymphatic system is a major circulatory system within the body, responsible for the transport of interstitial fluid, waste products, immune cells, and proteins. Compared to other physiological systems, the molecular mechanisms and underlying disease pathology largely remain to be understood which has hindered advancements in therapeutic options for lymphatic disorders. Dysfunction of the lymphatic system is associated with a wide range of disease phenotypes and has also been speculated as a route to rescue healthy phenotypes in areas including cardiovascular disease, metabolic syndrome, and neurological conditions. This review will discuss lymphatic system functions and structure, cell sources for regenerating lymphatic vessels, current approaches for engineering lymphatic vessels, and specific therapeutic areas that would benefit from advances in lymphatic tissue engineering and regeneration.
Collapse
Affiliation(s)
- Laura Alderfer
- Department of Aerospace and Mechanical Engineering, Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN 46556 USA
| | - Alicia Wei
- Department of Aerospace and Mechanical Engineering, Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN 46556 USA
| | - Donny Hanjaya-Putra
- Department of Aerospace and Mechanical Engineering, Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN 46556 USA
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46656 USA
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556 USA
- Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, IN 46556 USA
- Advanced Diagnostics and Therapeutics, University of Notre Dame, Notre Dame, IN 46556 USA
- Center for Nanoscience and Technology (NDnano), University of Notre Dame, Notre Dame, IN 46556 USA
| |
Collapse
|
26
|
Preparation of Anti-Human Podoplanin Monoclonal Antibody and its application in Immunohistochemical Diagnosis. Sci Rep 2018; 8:10162. [PMID: 29976954 PMCID: PMC6033854 DOI: 10.1038/s41598-018-28549-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 06/19/2018] [Indexed: 11/25/2022] Open
Abstract
Podoplanin (PDPN), a 38 kDa transmembrane sialoglycoprotein from human, is expressed in lymphatic endothelial cells but not in vascular endothelial cells, and has been considered as a specific marker of lymph. In this study, the gene encoding the extracellular part of PDPN (ePDPN) was synthesized and used to expressed fusion protein ePDPN-His and GST-ePDPN, respectively, in E.coli. The purified GST-ePDPN fusion protein was mixed with QuickAntibody-Mouse5W adjuvant to immune mice, and the antiserum titer was determined by indirect ELISA. A stable cell line named 5B3 generating anti-PDPN monoclonal antibody (mAb) was obtained by hybridoma technology. The isotype of 5B3 cell line was IgG2b, and the chromosome number was 102 ± 4. The 5B3 mAb was purified successfully from ascites fluid through Protein G column, and its affinity constant was 2.94 × 108 L/mol. Besides, excellent specificity of the 5B3 mAb was further demonstrated in ELISA, western blot and immunohistochemistry experiments, suggesting that 5B3 mAb displays similar application value to D2-40, a commercial available antibody. Hence, the current study provides conclusive guidelines for preparation of other mAbs and their applications in immunohistochemistry diagnosis.
Collapse
|
27
|
Pap A, Klement E, Hunyadi-Gulyas E, Darula Z, Medzihradszky KF. Status Report on the High-Throughput Characterization of Complex Intact O-Glycopeptide Mixtures. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:1210-1220. [PMID: 29730764 DOI: 10.1007/s13361-018-1945-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 03/09/2018] [Accepted: 03/09/2018] [Indexed: 06/08/2023]
Abstract
A very complex mixture of intact, human N- and O-glycopeptides, enriched from the tryptic digest of urinary proteins of three healthy donors using a two-step lectin affinity enrichment, was analyzed by LC-MS/MS, leading to approximately 45,000 glycopeptide EThcD spectra. Two search engines, Byonic and Protein Prospector, were used for the interpretation of the data, and N- and O-linked glycopeptides were assigned from separate searches. The identification rate was very low in all searches, even when results were combined. Thus, we investigated the reasons why was it so, to help to improve the identification success rate. Focusing on O-linked glycopeptides, we noticed that in EThcD, larger glycan oxonium ions better survive the activation than those in HCD. These fragments, combined with reducing terminal Y ions, provide important information about the glycan(s) present, so we investigated whether filtering the peaklists for glycan oxonium ions indicating the presence of a tetra- or hexasaccharide structure would help to reveal all molecules containing such glycans. Our study showed that intact glycans frequently do not survive even mild supplemental activation, meaning one cannot rely on these oxonium ions exclusively. We found that ETD efficiency is still a limiting factor, and for highly glycosylated peptides, the only information revealed in EThcD was related to the glycan structures. The limited overlap of results delivered by the two search engines draws attention to the fact that automated data interpretation of O-linked glycopeptides is not even close to being solved. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Adam Pap
- Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Eva Klement
- Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Eva Hunyadi-Gulyas
- Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Zsuzsanna Darula
- Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary.
| | | |
Collapse
|
28
|
Itoh K, Akimoto Y, Kondo S, Ichimiya T, Aoki K, Tiemeyer M, Nishihara S. Glucuronylated core 1 glycans are required for precise localization of neuromuscular junctions and normal formation of basement membranes on Drosophila muscles. Dev Biol 2018; 436:108-124. [PMID: 29499182 DOI: 10.1016/j.ydbio.2018.02.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 02/21/2018] [Accepted: 02/25/2018] [Indexed: 01/27/2023]
Abstract
T antigen (Galβ1-3GalNAcα1-Ser/Thr) is an evolutionary-conserved mucin-type core 1 glycan structure in animals synthesized by core 1 β1,3-galactosyltransferase 1 (C1GalT1). Previous studies showed that T antigen produced by Drosophila C1GalT1 (dC1GalT1) was expressed in various tissues and dC1GalT1 loss in larvae led to various defects, including decreased number of circulating hemocytes, hyper-differentiation of hematopoietic stem cells in lymph glands, malformation of the central nervous system, mislocalization of neuromuscular junction (NMJ) boutons, and ultrastructural abnormalities in NMJs and muscle cells. Although glucuronylated T antigen (GlcAβ1-3Galβ1-3GalNAcα1-Ser/Thr) has been identified in Drosophila, the physiological function of this structure has not yet been clarified. In this study, for the first time, we unraveled biological roles of glucuronylated T antigen. Our data show that in Drosophila, glucuronylation of T antigen is predominantly carried out by Drosophila β1,3-glucuronyltransferase-P (dGlcAT-P). We created dGlcAT-P null mutants and found that mutant larvae showed lower expression of glucuronylated T antigen on the muscles and at NMJs. Furthermore, mislocalization of NMJ boutons and a partial loss of the basement membrane components collagen IV (Col IV) and nidogen (Ndg) at the muscle 6/7 boundary were observed. Those two phenotypes were correlated and identical to previously described phenotypes in dC1GalT1 mutant larvae. In addition, dGlcAT-P null mutants exhibited fewer NMJ branches on muscles 6/7. Moreover, ultrastructural analysis revealed that basement membranes that lacked Col IV and Ndg were significantly deformed. We also found that the loss of dGlcAT-P expression caused ultrastructural defects in NMJ boutons. Finally, we showed a genetic interaction between dGlcAT-P and dC1GalT1. Therefore, these results demonstrate that glucuronylated core 1 glycans synthesized by dGlcAT-P are key modulators of NMJ bouton localization, basement membrane formation, and NMJ arborization on larval muscles.
Collapse
Affiliation(s)
- Kazuyoshi Itoh
- Laboratory of Cell Biology, Department of Bioinformatics, Graduate School of Engineering, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo 192-8577, Japan
| | - Yoshihiro Akimoto
- Department of Anatomy, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo 181-8611, Japan
| | - Shu Kondo
- Invertebrate Genetics Laboratory, National Institute of Genetics and Department of Genetics, The Graduate University for Advanced Studies, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | - Tomomi Ichimiya
- Laboratory of Cell Biology, Department of Bioinformatics, Graduate School of Engineering, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo 192-8577, Japan
| | - Kazuhiro Aoki
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
| | - Michael Tiemeyer
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
| | - Shoko Nishihara
- Laboratory of Cell Biology, Department of Bioinformatics, Graduate School of Engineering, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo 192-8577, Japan.
| |
Collapse
|
29
|
Zhao X, Pan Y, Ren W, Shen F, Xu M, Yu M, Fu J, Xia L, Ruan C, Zhao Y. Plasma soluble podoplanin is a novel marker for the diagnosis of tumor occurrence and metastasis. Cancer Sci 2018; 109:403-411. [PMID: 29266546 PMCID: PMC5797814 DOI: 10.1111/cas.13475] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 11/30/2017] [Accepted: 12/04/2017] [Indexed: 01/07/2023] Open
Abstract
Podoplanin (PDPN) is expressed on many tumors and is involved in tumor metastasis. The objective of the present study was to develop an ELISA for determining soluble PDPN (sPDPN) levels as a potential novel tumor marker in plasma of patients with cancers for detection of tumor occurrence and metastasis. Mouse monoclonal antibodies (mAb) against human PDPN were developed and characterized. Two anti-PDPN mAb, SZ-163 and SZ-168, were used in a sandwich ELISA to detect plasma sPDPN in patients with cancers and in normal individuals. The levels of sPDPN were detected in patients with adenocarcinoma (87 cases, 31.09 ± 5.48 ng/ml), squamous cell carcinoma (86 cases, 6.91 ± 0.59 ng/ml), lung cancer (45 cases, 26.10 ± 7.62 ng/ml), gastric cancer (38 cases, 23.71 ± 6.90 ng/ml) and rectal cancer (27 cases, 32.98 ± 9.88 ng/ml), which were significantly higher than those in normal individuals (99 cases, 1.31 ± 0.13 ng/ml) (P < .0001). Moreover, the sPDPN levels in patients with metastatic cancers were higher (192 cases, 30.35 ± 3.63 ng/ml) than those in non-metastatic cancer patients (92 cases, 6.28 ± 0.77 ng/ml) (P < .0001). The post-treatment sPDPN levels of cancer patients (n = 156) (4.47 ± 0.35 ng/ml) were significantly lower compared with those seen pre-treatment (n = 128) (43.74 ± 4.97 ng/ml) (P < .0001). These results showed that an ELISA method was successfully established for quantitation of plasma sPDPN and plasma sPDPN levels correlate significantly with tumor occurrence and metastasis.
Collapse
Affiliation(s)
- Xingpeng Zhao
- Jiangsu Institute of HematologyKey Laboratory of Thrombosis and Hemostasis of the Ministry of HealthThe First Affiliated Hospital of Soochow UniversitySuzhouChina
- Collaborative Innovation Center of HematologySoochow UniversitySuzhouChina
| | - Yanfang Pan
- Zhejiang Provincial Center for Disease Control and PreventionHangzhou CityZhejiangChina
- State Key Laboratory of Bio‐organic and Natural Products ChemistryShanghai Institute of Organic ChemistryChinese Academy of SciencesShanghaiChina
| | - Weihua Ren
- Clinical Laboratory CenterLuoyang Central Hospital Affiliated to Zhengzhou UniversityLuoyangChina
| | - Fei Shen
- Jiangsu Institute of HematologyKey Laboratory of Thrombosis and Hemostasis of the Ministry of HealthThe First Affiliated Hospital of Soochow UniversitySuzhouChina
- Collaborative Innovation Center of HematologySoochow UniversitySuzhouChina
| | - Mengqiao Xu
- Jiangsu Institute of HematologyKey Laboratory of Thrombosis and Hemostasis of the Ministry of HealthThe First Affiliated Hospital of Soochow UniversitySuzhouChina
- Collaborative Innovation Center of HematologySoochow UniversitySuzhouChina
| | - Min Yu
- Zhejiang Provincial Center for Disease Control and PreventionHangzhou CityZhejiangChina
| | - Jianxin Fu
- Jiangsu Institute of HematologyKey Laboratory of Thrombosis and Hemostasis of the Ministry of HealthThe First Affiliated Hospital of Soochow UniversitySuzhouChina
- Collaborative Innovation Center of HematologySoochow UniversitySuzhouChina
| | - Lijun Xia
- Jiangsu Institute of HematologyKey Laboratory of Thrombosis and Hemostasis of the Ministry of HealthThe First Affiliated Hospital of Soochow UniversitySuzhouChina
- Collaborative Innovation Center of HematologySoochow UniversitySuzhouChina
- Cardiovascular Biology Research ProgramOklahoma Medical Research FoundationOklahoma CityOKUSA
| | - Changgeng Ruan
- Jiangsu Institute of HematologyKey Laboratory of Thrombosis and Hemostasis of the Ministry of HealthThe First Affiliated Hospital of Soochow UniversitySuzhouChina
- Collaborative Innovation Center of HematologySoochow UniversitySuzhouChina
| | - Yiming Zhao
- Jiangsu Institute of HematologyKey Laboratory of Thrombosis and Hemostasis of the Ministry of HealthThe First Affiliated Hospital of Soochow UniversitySuzhouChina
- Collaborative Innovation Center of HematologySoochow UniversitySuzhouChina
| |
Collapse
|
30
|
Darula Z, Medzihradszky KF. Analysis of Mammalian O-Glycopeptides-We Have Made a Good Start, but There is a Long Way to Go. Mol Cell Proteomics 2018; 17:2-17. [PMID: 29162637 PMCID: PMC5750848 DOI: 10.1074/mcp.mr117.000126] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Indexed: 12/18/2022] Open
Abstract
Glycosylation is perhaps the most common post-translational modification. Recently there has been growing interest in cataloging the glycan structures, glycoproteins, and specific sites modified and deciphering the biological functions of glycosylation. Although the results are piling up for N-glycosylation, O-glycosylation is seriously trailing behind. In our review we reiterate the difficulties researchers have to overcome in order to characterize O-glycosylation. We describe how an ingenious cell engineering method delivered exciting results, and what could we gain from "wild-type" samples. Although we refer to the biological role(s) of O-glycosylation, we do not provide a complete inventory on this topic.
Collapse
Affiliation(s)
- Zsuzsanna Darula
- From the ‡Laboratory of Proteomics Research, Biological Research Centre, Hungarian Academy of Sciences, H-6726, 62 Temesvari krt, Szeged, Hungary
| | - Katalin F Medzihradszky
- From the ‡Laboratory of Proteomics Research, Biological Research Centre, Hungarian Academy of Sciences, H-6726, 62 Temesvari krt, Szeged, Hungary;
- §Department of Pharmaceutical Chemistry, School of Pharmacy, University of California San Francisco, Genentech Hall, N472A, MC 2240, 600 16th Street, San Francisco, California 94158-2517
| |
Collapse
|
31
|
Liu F, Xu K, Xu Z, de Las Rivas M, Wang C, Li X, Lu J, Zhou Y, Delso I, Merino P, Hurtado-Guerrero R, Zhang Y, Wu F. The small molecule luteolin inhibits N-acetyl-α-galactosaminyltransferases and reduces mucin-type O-glycosylation of amyloid precursor protein. J Biol Chem 2017; 292:21304-21319. [PMID: 29061849 PMCID: PMC5766936 DOI: 10.1074/jbc.m117.814202] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 10/20/2017] [Indexed: 12/29/2022] Open
Abstract
Mucin-type O-glycosylation is the most abundant type of O-glycosylation. It is initiated by the members of the polypeptide N-acetyl-α-galactosaminyltransferase (ppGalNAc-T) family and closely associated with both physiological and pathological conditions, such as coronary artery disease or Alzheimer's disease. The lack of direct and selective inhibitors of ppGalNAc-Ts has largely impeded research progress in understanding the molecular events in mucin-type O-glycosylation. Here, we report that a small molecule, the plant flavonoid luteolin, selectively inhibits ppGalNAc-Ts in vitro and in cells. We found that luteolin inhibits ppGalNAc-T2 in a peptide/protein-competitive manner but not promiscuously (e.g. via aggregation-based activity). X-ray structural analysis revealed that luteolin binds to the PXP motif-binding site found in most protein substrates, which was further validated by comparing the interactions of luteolin with wild-type enzyme and with mutants using 1H NMR-based binding experiments. Functional studies disclosed that luteolin at least partially reduced production of β-amyloid protein by selectively inhibiting the activity of ppGalNAc-T isoforms. In conclusion, our study provides key structural and functional details on luteolin inhibiting ppGalNAc-T activity, opening up the way for further optimization of more potent and specific ppGalNAc-T inhibitors. Moreover, our findings may inform future investigations into site-specific O-GalNAc glycosylation and into the molecular mechanism of luteolin-mediated ppGalNAc-T inhibition.
Collapse
Affiliation(s)
- Feng Liu
- From the Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Kai Xu
- From the Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- the Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Zhijue Xu
- From the Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Matilde de Las Rivas
- the Instituto de Biocomputación y Fisica de Sistemas Complejos (BIFI), BIFI-IQFR (CSIC) Joint Unit, Universidad de Zaragoza, 50009, Zaragoza, Spain
| | - Congrong Wang
- From the Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- the School of Basic Medical Sciences, Shanghai University of Medicine and Health Sciences, 279 Zhouzhu Road, Shanghai 201318, China
| | - Xing Li
- From the Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jishun Lu
- From the Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yueyang Zhou
- From the Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Ignacio Delso
- the Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Universidad de Zaragoza, CSIC, E-50009 Zaragoza, Aragón, Spain
| | - Pedro Merino
- the Instituto de Biocomputación y Fisica de Sistemas Complejos (BIFI), BIFI-IQFR (CSIC) Joint Unit, Universidad de Zaragoza, 50009, Zaragoza, Spain
| | - Ramon Hurtado-Guerrero
- the Instituto de Biocomputación y Fisica de Sistemas Complejos (BIFI), BIFI-IQFR (CSIC) Joint Unit, Universidad de Zaragoza, 50009, Zaragoza, Spain,
- the Fundación ARAID, 50018 Zaragoza, Spain, and
| | - Yan Zhang
- From the Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China,
| | - Fang Wu
- From the Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China,
| |
Collapse
|
32
|
Incomplete clearance of apoptotic cells by core 1-derived O-glycan-deficient resident peritoneal macrophages. Biochem Biophys Res Commun 2017; 495:2017-2023. [PMID: 29247646 DOI: 10.1016/j.bbrc.2017.12.066] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 12/12/2017] [Indexed: 01/17/2023]
Abstract
The core 1 β1,3-galactosyltransferase-specific molecular chaperon (Cosmc) is essential for the synthesis of the core 1 structure of mucin-type O-glycans. To clarify the physiological role of core 1-derived O-glycans in macrophages, we exploited the LysM-Cre transgene to generate a conditional Cosmc mutant allele (conditional Cosmc knockout; cKO) in myeloid cells. cKO mice developed normally with no gross phenotypic abnormalities or abnormal peripheral blood counts. Resident peritoneal macrophages (rpMacs) of cKO mice exhibited impaired engulfment of apoptotic cells but showed normal macrophage differentiation and counts. T-cell immunoglobulin and mucin domain-containing molecule 4 (Tim4) is a phosphatidylserine (PS) receptor expressed on rpMacs and possesses a heavily O-glycosylated domain. Tim4 tethers apoptotic cells through PS binding. Expression of the Tim4 transcript was unchanged in cKO rpMacs, whereas flow cytometric, Western and dot blot analyses revealed that Tim4 protein expression in cKO rpMacs was significantly lower than that in wild-type (WT) rpMacs. Moreover, the expression levels of other efferocytosis-related molecules, Mertk, Itgav and Itgb3, were normal in rpMacs. In addition, hypoglycosylated Tim4-FLAG fusion protein sufficiently recognized PS. These results demonstrated that core 1-derived O-glycan is required for Tim4-dependent normal efferocytosis and may contribute to the stable expression of the Tim4 glycoprotein.
Collapse
|
33
|
Li Y, Zhong C, Liu D, Yu W, Chen W, Wang Y, Shi S, Yuan Y. Evidence for Kaposi Sarcoma Originating from Mesenchymal Stem Cell through KSHV-induced Mesenchymal-to-Endothelial Transition. Cancer Res 2017; 78:230-245. [PMID: 29066510 DOI: 10.1158/0008-5472.can-17-1961] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/13/2017] [Accepted: 10/18/2017] [Indexed: 12/22/2022]
Abstract
The major transmission route for Kaposi sarcoma-associated herpesvirus (KSHV) infection is the oral cavity through saliva. Kaposi sarcoma (KS) frequently occurs in the oral cavity in HIV-positive individuals and is often the first presenting sign of AIDS. However, the oral target cells for KSHV infection and the cellular origin of Kaposi sarcoma remain unknown. Here we present clinical and experimental evidences that Kaposi sarcoma spindle cells may originate from virally modified oral mesenchymal stem cells (MSC). AIDS-KS spindle cells expressed neuroectodermal stem cell marker (Nestin) and oral MSC marker CD29, suggesting an oral/craniofacial MSC lineage of AIDS-associated Kaposi sarcoma. Furthermore, oral MSCs were highly susceptible to KSHV infection, and infection promoted multilineage differentiation and mesenchymal-to-endothelial transition (MEndT). KSHV infection of oral MSCs resulted in expression of a large number of cytokines, a characteristic of Kaposi sarcoma, and upregulation of Kaposi sarcoma signature and MEndT-associated genes. These results suggest that Kaposi sarcoma may originate from pluripotent MSC and KSHV infection transforms MSC to Kaposi sarcoma-like cells through MEndT.Significance: These findings indicate that Kaposi sarcomas, which arise frequently in AIDS patients, originate from neural crest-derived mesenchymal stem cells, with possible implications for improving the clnical treatment of this malignancy. Cancer Res; 78(1); 230-45. ©2017 AACR.
Collapse
Affiliation(s)
- Yuqing Li
- Institute of Human Virology and Ministry of Education Key Laboratory of Tropical Disease Control, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Canrong Zhong
- Institute of Human Virology and Ministry of Education Key Laboratory of Tropical Disease Control, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Dawei Liu
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wenjing Yu
- Department of Anatomy and Cell Biology, University of Pennsylvania School of Dental Medicine, Philadelphia, Pennsylvania
| | - Weikang Chen
- Institute of Human Virology and Ministry of Education Key Laboratory of Tropical Disease Control, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yan Wang
- Institute of Human Virology and Ministry of Education Key Laboratory of Tropical Disease Control, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Songtao Shi
- Department of Anatomy and Cell Biology, University of Pennsylvania School of Dental Medicine, Philadelphia, Pennsylvania
| | - Yan Yuan
- Institute of Human Virology and Ministry of Education Key Laboratory of Tropical Disease Control, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China. .,Department of Microbiology, University of Pennsylvania School of Dental Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
34
|
Song K, Fu J, Song J, Herzog BH, Bergstrom K, Kondo Y, McDaniel JM, McGee S, Silasi-Mansat R, Lupu F, Chen H, Bagavant H, Xia L. Loss of mucin-type O-glycans impairs the integrity of the glomerular filtration barrier in the mouse kidney. J Biol Chem 2017; 292:16491-16497. [PMID: 28842487 DOI: 10.1074/jbc.m117.798512] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 08/14/2017] [Indexed: 12/14/2022] Open
Abstract
The kidney's filtration activity is essential for removing toxins and waste products from the body. The vascular endothelial cells of the glomerulus are fenestrated, flattened, and surrounded by podocytes, specialized cells that support glomerular endothelial cells. Mucin-type core 1-derived O-glycans (O-glycans) are highly expressed on both glomerular capillary endothelial cells and their supporting podocytes, but their biological role is unclear. Biosynthesis of core 1-derived O-glycans is catalyzed by the glycosyltransferase core 1 β1,3-galactosyltransferase (C1galt1). Here we report that neonatal or adult mice with inducible deletion of C1galt1 (iC1galt1-/-) exhibit spontaneous proteinuria and rapidly progressing glomerulosclerosis. Ultrastructural analysis of the glomerular filtration barrier components revealed that loss of O-glycans results in altered podocyte foot processes. Further analysis indicated that O-glycan is essential for the normal signaling function of podocalyxin, a podocyte foot process-associated glycoprotein. Our results reveal a new function of O-glycosylation in the integrity of the glomerular filtration barrier.
Collapse
Affiliation(s)
- Kai Song
- From the Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104.,the Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Jianxin Fu
- From the Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104
| | - Jianhua Song
- From the Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104
| | - Brett H Herzog
- From the Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104
| | - Kirk Bergstrom
- From the Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104
| | - Yuji Kondo
- From the Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104
| | - J Michael McDaniel
- From the Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104
| | - Samuel McGee
- From the Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104
| | - Robert Silasi-Mansat
- From the Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104
| | - Florea Lupu
- From the Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104
| | - Hong Chen
- the Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Harini Bagavant
- the Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104
| | - Lijun Xia
- From the Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, .,the Jiangsu Institute of Hematology, Collaborative Innovation Center of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China, and.,the Department of Molecular Biology and Biochemistry, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma 73104
| |
Collapse
|
35
|
Sialylation on O-glycans protects platelets from clearance by liver Kupffer cells. Proc Natl Acad Sci U S A 2017; 114:8360-8365. [PMID: 28716912 DOI: 10.1073/pnas.1707662114] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Most platelet membrane proteins are modified by mucin-type core 1-derived glycans (O-glycans). However, the biological importance of O-glycans in platelet clearance is unclear. Here, we generated mice with a hematopoietic cell-specific loss of O-glycans (HC C1galt1-/- ). These mice lack O-glycans on platelets and exhibit reduced peripheral platelet numbers. Platelets from HC C1galt1-/- mice show reduced levels of α-2,3-linked sialic acids and increased accumulation in the liver relative to wild-type platelets. The preferential accumulation of HC C1galt1-/- platelets in the liver was reduced in mice lacking the hepatic asialoglycoprotein receptor [Ashwell-Morell receptor (AMR)]. However, we found that Kupffer cells are the primary cells phagocytosing HC C1galt1-/- platelets in the liver. Our results demonstrate that hepatic AMR promotes preferential adherence to and phagocytosis of desialylated and/or HC C1galt1-/- platelets by the Kupffer cell through its C-type lectin receptor CLEC4F. These findings provide insights into an essential role for core 1 O-glycosylation of platelets in their clearance in the liver.
Collapse
|
36
|
Emerging roles of podoplanin in vascular development and homeostasis. Front Med 2016; 9:421-30. [PMID: 26498027 DOI: 10.1007/s11684-015-0424-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 08/24/2015] [Indexed: 02/03/2023]
Abstract
Podoplanin (PDPN) is a mucin-type O-glycoprotein expressed in diverse cell types, such as lymphatic endothelial cells (LECs) in the vascular system and fibroblastic reticular cells (FRCs) in lymph nodes. PDPN on LECs or FRCs activates CLEC-2 in platelets, triggering platelet activation and/or aggregation through downstream signaling events, including activation of Syk kinase. This mechanism is required to initiate and maintain separation of blood and lymphatic vessels and to stabilize high endothelial venule integrity within lymphnodes. In the vascular system, normal expression of PDPN at the LEC surface requires transcriptional activation of Pdpn by Prox1 and modification of PDPN with core 1-derived O-glycans. This review provides a comprehensive overview of the roles of PDPN in vascular development and lymphoid organ maintenance and discusses the mechanisms that regulate PDPN expression related to its function.
Collapse
|
37
|
Xu Y, Pang W, Lu J, Shan A, Zhang Y. Polypeptide N-Acetylgalactosaminyltransferase 13 Contributes to Neurogenesis via Stabilizing the Mucin-type O-Glycoprotein Podoplanin. J Biol Chem 2016; 291:23477-23488. [PMID: 27629416 DOI: 10.1074/jbc.m116.743955] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Indexed: 01/28/2023] Open
Abstract
Mucin-type O-glycosylation is initiated by an evolutionarily conserved family of polypeptide N-acetylgalactosaminyltransferases (ppGalNAc-Ts). Previously, it was reported that ppGalNAc-T13 is restrictively expressed at a high level in the brain. Here we provide evidence for the critical role of ppGalNAc-T13 in neural differentiation. In detail, we show that the expression of ppGalNAc-T13 was dramatically up-regulated during early neurogenesis in mouse embryonic brains. Similar changes were also observed in cell models of neuronal differentiation by using either primary mouse cortical neural precursor cells or murine embryonal carcinoma P19 cells. Knockout of ppGalNAc-T13 in P19 cells suppressed not only neural induction but also neuronal differentiation. These effects are at least partly mediated by the mucin-type O-glycoprotein podoplanin (PDPN), as knockdown of PDPN led to a similar inhibition of neuronal differentiation and PDPN was significantly reduced at the posttranscriptional level after ppGalNAc-T13 knockout. Further data demonstrate that PDPN acts as a substrate of ppGalNAc-T13 and that the ppGalNAc-T13-mediated O-glycosylation on PDPN is important for its stability. Taken together, this study suggests that ppGalNAc-T13 contributes to neuronal differentiation through glycosylating and stabilizing PDPN, which provides insights into the regulatory roles of O-glycosylation in mammalian neural development.
Collapse
Affiliation(s)
- Yingjiao Xu
- From the Ministry of Education Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China
| | - Wenjie Pang
- From the Ministry of Education Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China
| | - Jishun Lu
- From the Ministry of Education Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China
| | - Aidong Shan
- From the Ministry of Education Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China
| | - Yan Zhang
- From the Ministry of Education Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China
| |
Collapse
|
38
|
Tsai CH, Tzeng SF, Chao TK, Tsai CY, Yang YC, Lee MT, Hwang JJ, Chou YC, Tsai MH, Cha TL, Hsiao PW. Metastatic Progression of Prostate Cancer Is Mediated by Autonomous Binding of Galectin-4-O-Glycan to Cancer Cells. Cancer Res 2016; 76:5756-5767. [PMID: 27485450 DOI: 10.1158/0008-5472.can-16-0641] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 07/17/2016] [Indexed: 11/16/2022]
Abstract
Metastatic prostate cancer continues to pose a difficult therapeutic challenge. Prostate cancer progression is associated with aberrant O-glycosylation of cancer cell surface receptors, but the functional impact of such events is uncertain. Here we report spontaneous metastasis of human prostate cancer xenografts that express high levels of galectin-4 along with genetic signatures of EGFR-HER2 signaling and O-glycosylation. Galectin-4 expression in clinical specimens of prostate cancer correlated with poor patient survival. Galectin-4 binding to multiple receptor tyrosine kinases stimulated their autophosphorylation, activated expression of pERK, pAkt, fibronectin, and Twist1, and lowered expression of E-cadherin, thereby facilitating epithelial-mesenchymal transition, invasion, and metastasis. In vivo investigations established that galectin-4 expression enabled prostate cancer cells to repopulate tumors in orthotopic and heterotopic tissues. Notably, these effects of galectin-4 relied upon O-glycosylation mediated by C1GALT1, a galactosyltransferase implicated in other cancers. Parallel changes in galectin-4 and O-glycosylation triggered aberrant receptor signaling and more aggressive invasive character in prostate cancer cells, which through better survival in the circulation also contributed to the bulk cell progeny of distal tumors. Our findings establish galectin-4 and C1GALT1-mediated glycosylation in a signaling axis that is activated during prostate cancer progression, with implications for therapeutic targeting of advanced metastatic disease. Cancer Res; 76(19); 5756-67. ©2016 AACR.
Collapse
Affiliation(s)
- Chin-Hsien Tsai
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan. Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Sheue-Fen Tzeng
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan. Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Tai-Kuang Chao
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chia-Yun Tsai
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Yu-Chih Yang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Ming-Ting Lee
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Jiuan-Jiuan Hwang
- Institute of Physiology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yu-Ching Chou
- School of Public Health, National Defense Medical Center, Taipei, Taiwan
| | - Mong-Hsun Tsai
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan. Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Tai-Lung Cha
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan. Division of Urology, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Pei-Wen Hsiao
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan. Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
39
|
Pathological lymphangiogenesis is modulated by galectin-8-dependent crosstalk between podoplanin and integrin-associated VEGFR-3. Nat Commun 2016; 7:11302. [PMID: 27066737 PMCID: PMC4832077 DOI: 10.1038/ncomms11302] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 03/10/2016] [Indexed: 02/06/2023] Open
Abstract
Lymphangiogenesis plays a pivotal role in diverse pathological conditions. Here, we demonstrate that a carbohydrate-binding protein, galectin-8, promotes pathological lymphangiogenesis. Galectin-8 is markedly upregulated in inflamed human and mouse corneas, and galectin-8 inhibitors reduce inflammatory lymphangiogenesis. In the mouse model of corneal allogeneic transplantation, galectin-8-induced lymphangiogenesis is associated with an increased rate of corneal graft rejection. Further, in the murine model of herpes simplex virus keratitis, corneal pathology and lymphangiogenesis are ameliorated in Lgals8(-/-) mice. Mechanistically, VEGF-C-induced lymphangiogenesis is significantly reduced in the Lgals8(-/-) and Pdpn(-/-) mice; likewise, galectin-8-induced lymphangiogenesis is reduced in Pdpn(-/-) mice. Interestingly, knockdown of VEGFR-3 does not affect galectin-8-mediated lymphatic endothelial cell (LEC) sprouting. Instead, inhibiting integrins α1β1 and α5β1 curtails both galectin-8- and VEGF-C-mediated LEC sprouting. Together, this study uncovers a unique molecular mechanism of lymphangiogenesis in which galectin-8-dependent crosstalk among VEGF-C, podoplanin and integrin pathways plays a key role.
Collapse
|
40
|
Ploutarchou P, Melo P, Day AJ, Milner CM, Williams SA. Molecular analysis of the cumulus matrix: insights from mice with O-glycan-deficient oocytes. Reproduction 2016; 149:533-43. [PMID: 25855670 PMCID: PMC4397614 DOI: 10.1530/rep-14-0503] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
During follicle development, oocytes secrete factors that influence the development of granulosa and cumulus cells (CCs). In response to oocyte and somatic cell signals, CCs produce extracellular matrix (ECM) molecules resulting in cumulus expansion, which is essential for ovulation, fertilisation, and is predictive of oocyte quality. The cumulus ECM is largely made up of hyaluronan (HA), TNF-stimulated gene-6 (TSG-6, also known as TNFAIP6), pentraxin-3 (PTX3), and the heavy chains (HCs) of serum-derived inter-α-inhibitor proteins. In contrast to other in vivo models where modified expansion impairs fertility, the cumulus mass of C1galt1 Mutants, which have oocyte-specific deletion of core 1-derived O-glycans, is modified without impairing fertility. In this report, we used C1galt1 Mutant (C1galt1FF:ZP3Cre) and Control (C1galt1FF) mice to investigate how cumulus expansion is affected by oocyte-specific deletion of core 1-derived O-glycans without adversely affecting oocyte quality. Mutant cumulus–oocyte complexes (COCs) are smaller than Controls, with fewer CCs. Interestingly, the CCs in Mutant mice are functionally normal as each cell produced normal levels of the ECM molecules HA, TSG-6, and PTX3. However, HC levels were elevated in Mutant COCs. These data reveal that oocyte glycoproteins carrying core 1-derived O-glycans have a regulatory role in COC development. In addition, our study of Controls indicates that a functional COC can form provided all essential components are present above a minimum threshold level, and thus some variation in ECM composition does not adversely affect oocyte development, ovulation or fertilisation. These data have important implications for IVF and the use of cumulus expansion as a criterion for oocyte assessment.
Collapse
Affiliation(s)
- Panayiota Ploutarchou
- Nuffield Department of Obstetrics and GynaecologyWomen's Centre, Level 3, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UKFaculty of Life SciencesUniversity of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UKWellcome Trust Centre for Cell-Matrix ResearchFaculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Pedro Melo
- Nuffield Department of Obstetrics and GynaecologyWomen's Centre, Level 3, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UKFaculty of Life SciencesUniversity of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UKWellcome Trust Centre for Cell-Matrix ResearchFaculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Anthony J Day
- Nuffield Department of Obstetrics and GynaecologyWomen's Centre, Level 3, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UKFaculty of Life SciencesUniversity of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UKWellcome Trust Centre for Cell-Matrix ResearchFaculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK Nuffield Department of Obstetrics and GynaecologyWomen's Centre, Level 3, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UKFaculty of Life SciencesUniversity of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UKWellcome Trust Centre for Cell-Matrix ResearchFaculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Caroline M Milner
- Nuffield Department of Obstetrics and GynaecologyWomen's Centre, Level 3, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UKFaculty of Life SciencesUniversity of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UKWellcome Trust Centre for Cell-Matrix ResearchFaculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Suzannah A Williams
- Nuffield Department of Obstetrics and GynaecologyWomen's Centre, Level 3, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UKFaculty of Life SciencesUniversity of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UKWellcome Trust Centre for Cell-Matrix ResearchFaculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
41
|
Nakamura-Ishizu A, Takubo K, Kobayashi H, Suzuki-Inoue K, Suda T. CLEC-2 in megakaryocytes is critical for maintenance of hematopoietic stem cells in the bone marrow. J Exp Med 2015; 212:2133-46. [PMID: 26552707 PMCID: PMC4647260 DOI: 10.1084/jem.20150057] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 10/02/2015] [Indexed: 12/24/2022] Open
Abstract
Nakamura-Ishizu et al. report that megakaryocytes function as a niche to maintain HSC quiescence through CLEC-2–mediated production of Thpo and other key regulators of HSC function. These findings could enable manipulation of HSCs for clinical application. Hematopoietic stem cells (HSCs) depend on the bone marrow (BM) niche for their maintenance, proliferation, and differentiation. The BM niche is composed of nonhematopoietic and mature hematopoietic cells, including megakaryocytes (Mks). Thrombopoietin (Thpo) is a crucial cytokine produced by BM niche cells. However, the cellular source of Thpo, upon which HSCs primarily depend, is unclear. Moreover, no specific molecular pathway for the regulation of Thpo production in the BM has been identified. Here, we demonstrate that the membrane protein C-type lectin-like receptor-2 (CLEC-2) mediates the production of Thpo and other factors in Mks. Mice conditionally deleted for CLEC-2 in Mks (Clec2MkΔ/Δ) produced lower levels of Thpo in Mks. CLEC-2–deficient Mks showed down-regulation of CLEC-2–related signaling molecules Syk, Lcp2, and Plcg2. Knockdown of these molecules in cultured Mks decreased expression of Thpo. Clec2MkΔ/Δ mice exhibited reduced BM HSC quiescence and repopulation potential, along with extramedullary hematopoiesis. The low level of Thpo production may account for the decline in HSC potential in Clec2MkΔ/Δ mice, as administration of recombinant Thpo to Clec2MkΔ/Δ mice restored stem cell potential. Our study identifies CLEC-2 signaling as a novel molecular mechanism mediating the production of Thpo and other factors for the maintenance of HSCs.
Collapse
Affiliation(s)
- Ayako Nakamura-Ishizu
- Cancer Science Institute, National University of Singapore, Singapore 117599 The Sakaguchi Laboratory, Department of Cell Differentiation, Keio University, Shinjuku-ku, Tokyo 160-8582, Japan International Research Center for Medical Sciences (IRCMS), Kumamoto University, Chuo-ku, Kumamoto City 860-0811, Japan
| | - Keiyo Takubo
- The Sakaguchi Laboratory, Department of Cell Differentiation, Keio University, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Hiroshi Kobayashi
- The Sakaguchi Laboratory, Department of Cell Differentiation, Keio University, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Katsue Suzuki-Inoue
- Department of Clinical and Laboratory Medicine, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Toshio Suda
- Cancer Science Institute, National University of Singapore, Singapore 117599 The Sakaguchi Laboratory, Department of Cell Differentiation, Keio University, Shinjuku-ku, Tokyo 160-8582, Japan International Research Center for Medical Sciences (IRCMS), Kumamoto University, Chuo-ku, Kumamoto City 860-0811, Japan
| |
Collapse
|
42
|
Korsaga-Somé N, Maruani A, Abdo I, Favrais G, Lorette G. Phénomène de Kasabach-Merritt (PKM) aggravé par des transfusions répétées de plaquettes. Ann Dermatol Venereol 2015; 142:578-80. [DOI: 10.1016/j.annder.2015.04.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 01/21/2015] [Accepted: 04/09/2015] [Indexed: 10/23/2022]
|
43
|
Navarro-Núñez L, Pollitt AY, Lowe K, Latif A, Nash GB, Watson SP. Platelet adhesion to podoplanin under flow is mediated by the receptor CLEC-2 and stabilised by Src/Syk-dependent platelet signalling. Thromb Haemost 2015; 113:1109-20. [PMID: 25694214 PMCID: PMC4990172 DOI: 10.1160/th14-09-0762] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 01/06/2015] [Indexed: 12/31/2022]
Abstract
Platelet-specific deletion of CLEC-2, which signals through Src and Syk kinases, or global deletion of its ligand podoplanin results in blood-filled lymphatics during mouse development. Platelet-specific Syk deficiency phenocopies this defect, indicating that platelet activation is required for lymphatic development. In the present study, we investigated whether CLEC-2-podoplanin interactions could support platelet arrest from blood flow and whether platelet signalling is required for stable platelet adhesion to lymphatic endothelial cells (LECs) and recombinant podoplanin under flow. Perfusion of human or mouse blood over human LEC monolayers led to platelet adhesion and aggregation. Following αIIbβ3 blockade, individual platelets still adhered. Platelet binding occurred at venous but not arterial shear rates. There was no adhesion using CLEC-2-deficient blood or to vascular endothelial cells (which lack podoplanin). Perfusion of human blood over human Fc-podoplanin (hFcPDPN) in the presence of monoclonal antibody IV.3 to block FcγRIIA receptors led to platelet arrest at similar shear rates to those used on LECs. Src and Syk inhibitors significantly reduced global adhesion of human or mouse platelets to LECs and hFcPDPN. A similar result was seen using Syk-deficient mouse platelets. Reduced platelet adhesion was due to a decrease in the stability of binding. In conclusion, our data reveal that CLEC-2 is an adhesive receptor that supports platelet arrest to podoplanin under venous shear. Src/Syk-dependent signalling stabilises platelet adhesion to podoplanin, providing a possible molecular mechanism contributing to the lymphatic defects of Syk-deficient mice.
Collapse
Affiliation(s)
- Leyre Navarro-Núñez
- Leyre Navarro-Núñez, Centre for Cardiovascular Sciences, Institute for Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, B15 2TT, United Kingdom, Tel.: +44 1214158678; Fax: +44 1214158817, E-mail:
| | | | | | | | | | - Steve P Watson
- Steve P. Watson, Centre for Cardiovascular Sciences, Institute for Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, B15 2TT, United Kingdom, Tel.: +44 1214158678; Fax: +44 1214158817, E-mail: s.
| |
Collapse
|