1
|
Hing B, Mitchell SB, Filali Y, Eberle M, Hultman I, Matkovich M, Kasturirangan M, Johnson M, Wyche W, Jimenez A, Velamuri R, Ghumman M, Wickramasinghe H, Christian O, Srivastava S, Hultman R. Transcriptomic Evaluation of a Stress Vulnerability Network Using Single-Cell RNA Sequencing in Mouse Prefrontal Cortex. Biol Psychiatry 2024; 96:886-899. [PMID: 38866174 PMCID: PMC11524784 DOI: 10.1016/j.biopsych.2024.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 04/24/2024] [Accepted: 05/27/2024] [Indexed: 06/14/2024]
Abstract
BACKGROUND Increased vulnerability to stress is a major risk factor for several mood disorders, including major depressive disorder. Although cellular and molecular mechanisms associated with depressive behaviors following stress have been identified, little is known about the mechanisms that confer the vulnerability that predisposes individuals to future damage from chronic stress. METHODS We used multisite in vivo neurophysiology in freely behaving male and female C57BL/6 mice (n = 12) to measure electrical brain network activity previously identified as indicating a latent stress vulnerability brain state. We combined this neurophysiological approach with single-cell RNA sequencing of the prefrontal cortex to identify distinct transcriptomic differences between groups of mice with inherent high and low stress vulnerability. RESULTS We identified hundreds of differentially expressed genes (padjusted < .05) across 5 major cell types in animals with high and low stress vulnerability brain network activity. This unique analysis revealed that GABAergic (gamma-aminobutyric acidergic) neuron gene expression contributed most to the network activity of the stress vulnerability brain state. Upregulation of mitochondrial and metabolic pathways also distinguished high and low vulnerability brain states, especially in inhibitory neurons. Importantly, genes that were differentially regulated with vulnerability network activity significantly overlapped (above chance) with those identified by genome-wide association studies as having single nucleotide polymorphisms significantly associated with depression as well as genes more highly expressed in postmortem prefrontal cortex of patients with major depressive disorder. CONCLUSIONS This is the first study to identify cell types and genes involved in a latent stress vulnerability state in the brain.
Collapse
Affiliation(s)
- Benjamin Hing
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa
| | - Sara B Mitchell
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa; Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, Iowa
| | - Yassine Filali
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa; Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, Iowa
| | - Maureen Eberle
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa
| | - Ian Hultman
- Department of Statistics and Actuarial Science, University of Iowa, Iowa City, Iowa
| | - Molly Matkovich
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa
| | | | - Micah Johnson
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa; Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, Iowa
| | - Whitney Wyche
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa
| | - Alli Jimenez
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa
| | - Radha Velamuri
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa
| | - Mahnoor Ghumman
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa
| | - Himali Wickramasinghe
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa
| | - Olivia Christian
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa
| | - Sanvesh Srivastava
- Department of Statistics and Actuarial Science, University of Iowa, Iowa City, Iowa
| | - Rainbo Hultman
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa; Department of Psychiatry, University of Iowa, Iowa City, Iowa.
| |
Collapse
|
2
|
Lagman D, Leon A, Cieminska N, Deng W, Chatzigeorgiou M, Henriet S, Chourrout D. Pax3/7 gene function in Oikopleura dioica supports a neuroepithelial-like origin for its house-making Fol territory. Dev Biol 2024; 516:207-220. [PMID: 39181419 DOI: 10.1016/j.ydbio.2024.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 08/15/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024]
Abstract
Larvacean tunicates feature a spectacular innovation not seen in other animals - the trunk oikoplastic epithelium (OE). This epithelium produces a house, a large and complex extracellular structure used for filtering and concentrating food particles. Previously we identified several homeobox transcription factor genes expressed during early OE patterning. Among these are two Pax3/7 copies that we named pax37A and pax37B. The vertebrate homologs, PAX3 and PAX7 are involved in developmental processes related to neural crest and muscles. In the ascidian tunicate Ciona intestinalis, Pax3/7 plays a role in the development of cells deriving from the neural plate border, including trunk epidermal sensory neurons and tail nerve cord neurons, as well as in the neural tube closure. Here we have investigated the roles of Oikopleura dioica pax37A and pax37B in the development of the OE, by using CRISPR-Cas9 mutant lines and analyzing scRNA-seq data from wild-type animals. We found that pax37B but not pax37A is essential for the differentiation of cell fields that produce the food concentrating filter of the house: the anterior Fol, giant Fol and Nasse cells. Trajectory analysis supported a neuroepithelial-like or a preplacodal ectoderm transcriptional signature in these cells. We propose that the highly specialized secretory epithelial cells of the Fol region either maintained or evolved neuroepithelial features. This is supported by a fragmented gene regulatory network involved in their development that also operates in ascidian epidermal neurons.
Collapse
Affiliation(s)
- David Lagman
- Michael Sars Centre, University of Bergen, Bergen, NO-5020, Norway; Department of Medical Cell Biology, Uppsala University, Uppsala, SE-75123, Sweden.
| | - Anthony Leon
- Michael Sars Centre, University of Bergen, Bergen, NO-5020, Norway
| | - Nadia Cieminska
- Michael Sars Centre, University of Bergen, Bergen, NO-5020, Norway
| | - Wei Deng
- Michael Sars Centre, University of Bergen, Bergen, NO-5020, Norway
| | | | - Simon Henriet
- Michael Sars Centre, University of Bergen, Bergen, NO-5020, Norway
| | - Daniel Chourrout
- Michael Sars Centre, University of Bergen, Bergen, NO-5020, Norway.
| |
Collapse
|
3
|
Gurung R, Masood M, Singh P, Jha P, Sinha A, Ajmeriya S, Sharma M, Dohare R, Haque MM. Uncovering the role of aquaporin and chromobox family members as potential biomarkers in head and neck squamous cell carcinoma via integrative multiomics and in silico approach. J Appl Genet 2024; 65:839-851. [PMID: 38358594 DOI: 10.1007/s13353-024-00843-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/03/2024] [Accepted: 02/06/2024] [Indexed: 02/16/2024]
Abstract
Head and neck squamous cell carcinoma (HNSC) is a diverse group of tumors arising from oral cavity, oropharynx, larynx, and hypopharynx squamous epithelium, posing significant morbidity. Aquaporins (AQPs) are membrane proteins forming water channels, some associated with carcinomas. Chromobox (CBX) family is known to modulate physiological and oncological processes. In our study, we analyzed AQPs and CBXs having significant expression followed by their prognostic and mutational assessment. Next, we performed enrichment and tumor infiltration analysis followed by HPA validation. Lastly, we established a 3-node miRNA-TF-mRNA regulatory network and performed protein-protein docking of the highest-degree subnetwork motif between TF and mRNA. Significant upregulation of CBX3/2 and downregulation of AQP3/5/7 correlated with poor overall survival (OS) in HNSC patients. The most significant pathway, GO-BP, GO-MF, and GO-CC terms associated with AQP3 and CBX3 were passive transport by aquaporins, response to vitamin, glycerol channel activity, and condensed chromosome, centromeric region. AQP3 negatively correlated withCD 4 + T cells, positively withCD 8 + T cells and B cells, and negatively with tumor purity, whereas CBX3 positively correlated withCD 4 + T cells, negatively withCD 8 + T cells and B cells, and positively with tumor purity. Three-node miRNA-TF-mRNA regulatory network revealed a highest-degree subnetwork motif comprising one TF (SMAD3), one miRNA (miR-423-5p), and one mRNA (AQP3). Protein-protein interaction studies suggested a direct interaction between AQP3 and Smad3 proteins. We concluded that AQP3 and CBX3 hold potential as treatment strategies and individual prognostic biomarkers, while further protein-protein interaction studies of AQP3 could offer insights into its interactions with Smad3 proteins.
Collapse
Affiliation(s)
- Rishabh Gurung
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Mohammad Masood
- Department of Biotechnology, Faculty of Life Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Prithvi Singh
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Prakash Jha
- Laboratory of Molecular Modeling and Anticancer Drug Development, Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, New Delhi, 110007, India
| | - Anuradha Sinha
- Department of Preventive Oncology, Homi Bhabha Cancer Hospital and Research Centre, Muzaffarpur, 842004, India
| | - Swati Ajmeriya
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Milin Sharma
- Department of Biotechnology, Faculty of Life Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Ravins Dohare
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India.
| | - Mohammad Mahfuzul Haque
- Department of Biotechnology, Faculty of Life Sciences, Jamia Millia Islamia, New Delhi, 110025, India.
| |
Collapse
|
4
|
Askari M, Mirzaei E, Navapour L, Karimpour M, Rejali L, Sarirchi S, Nazemalhosseini-Mojarad E, Nobili S, Cava C, Sadeghi A, Fatemi N. Integrative Bioinformatics Analysis: Unraveling Variant Signatures and Single-Nucleotide Polymorphism Markers Associated with 5-FU-Based Chemotherapy Resistance in Colorectal Cancer Patients. J Gastrointest Cancer 2024; 55:1607-1619. [PMID: 39240276 DOI: 10.1007/s12029-024-01102-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2024] [Indexed: 09/07/2024]
Abstract
BACKGROUND Drug resistance in colorectal cancer (CRC) is modulated by multiple molecular factors, which can be ascertained through genetic investigation. Single nucleotide polymorphisms (SNPs) within key genes have the potential to impair the efficacy of chemotherapeutic agents such as 5-fluorouracil (5-FU). Therefore, the identification of SNPs linked to drug resistance can significantly contribute to the advancement of tailored therapeutic approaches and the enhancement of treatment outcomes in patients with CRC. MATERIAL AND METHOD To identify dysregulated genes in 5-FU-based chemotherapy responder or non-responder CRC patients, a meta-analysis was performed. Next, the protein-protein interaction (PPI) network of the identified genes was analyzed using the STRING database. The most significant module was chosen for further analysis. In addition, a literature review was conducted to identify drug resistance-related genes. Enrichment analysis was conducted to validate the main module genes and the genes identified from the literature review. The associations between SNPs and drug resistance were investigated, and the consequences of missense variants were assessed using in silico tools. RESULT The meta-analysis identified 796 dysregulated genes. Then, to conduct PPI analysis and enrichment analysis, we were able to discover 23 genes that are intricately involved in the cell cycle pathway. Consequently, these 23 genes were chosen for SNP analysis. By using the dbSNP database and ANNOVAR, we successfully detected and labeled SNPs in these specific genes. Additionally, after careful exclusion of SNPs with allele frequencies below 0.01, we evaluated 6 SNPs from the HDAC1, MCM2, CDK1, BUB1B, CDC14B, and CCNE1 genes using 8 bioinformatics tools. Therefore, these SNPs were identified as potentially harmful by multiple computational tools. Specifically, rs199958833 in CDK1 (Val124Gly) was predicted to be damaging by all tools used. Our analysis strongly indicates that this specific SNP could negatively affect the stability and functionality of the CDK1 protein. CONCLUSION Based on our current understanding, the evaluation of CDK1 polymorphisms in the context of drug resistance in CRC has yet to be undertaken. In this investigation, we showed that rs199958833 variant in the CDK1 gene may favor resistance to 5-FU-based chemotherapy. However, these findings need validation in an independent cohort of patients.
Collapse
Affiliation(s)
- Masomeh Askari
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ebrahim Mirzaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Medical Genetics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Leila Navapour
- Biophysics and Computational Biology Laboratory (BCBL), Department of Biology, College of Sciences, Shiraz University, Shiraz, Iran
| | - Mina Karimpour
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Leili Rejali
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Somayeh Sarirchi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ehsan Nazemalhosseini-Mojarad
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Stefania Nobili
- Department of Neuroscience, Psychology, Drug Research and Child Health-NEUROFARBA-Pharmacology and Toxicology Section, University of Florence, Viale Pieraccini, 6-50139, Florence, Italy
| | - Claudia Cava
- Department of Science, Technology and Society, University School for Advanced Studies IUSS Pavia, Palazzo del Broletto, Piazza Della Vittoria 15, 27100, Pavia, Italy
| | - Amir Sadeghi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nayeralsadat Fatemi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Hagenauer MH, Sannah Y, Hebda-Bauer EK, Rhoads C, O'Connor AM, Flandreau E, Watson SJ, Akil H. Resource: A curated database of brain-related functional gene sets (Brain.GMT). MethodsX 2024; 13:102788. [PMID: 39049932 PMCID: PMC11267058 DOI: 10.1016/j.mex.2024.102788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 05/31/2024] [Indexed: 07/27/2024] Open
Abstract
Transcriptional profiling has become a common tool for investigating the nervous system. During analysis, differential expression results are often compared to functional ontology databases, which contain curated gene sets representing well-studied pathways. This dependence can cause neuroscience studies to be interpreted in terms of functional pathways documented in better studied tissues (e.g., liver) and topics (e.g., cancer), and systematically emphasizes well-studied genes, leaving other findings in the obscurity of the brain "ignorome". To address this issue, we compiled a curated database of 918 gene sets related to nervous system function, tissue, and cell types ("Brain.GMT") that can be used within common analysis pipelines (GSEA, limma, edgeR) to interpret results from three species (rat, mouse, human). Brain.GMT includes brain-related gene sets curated from the Molecular Signatures Database (MSigDB) and extracted from public databases (GeneWeaver, Gemma, DropViz, BrainInABlender, HippoSeq) and published studies containing differential expression results. Although Brain.GMT is still undergoing development and currently only represents a fraction of available brain gene sets, "brain ignorome" genes are already better represented than in traditional Gene Ontology databases. Moreover, Brain.GMT substantially improves the quantity and quality of gene sets identified as enriched with differential expression in neuroscience studies, enhancing interpretation. •We compiled a curated database of 918 gene sets related to nervous system function, tissue, and cell types ("Brain.GMT").•Brain.GMT can be used within common analysis pipelines (GSEA, limma, edgeR) to interpret neuroscience transcriptional profiling results from three species (rat, mouse, human).•Although Brain.GMT is still undergoing development, it substantially improved the interpretation of differential expression results within our initial use cases.
Collapse
Affiliation(s)
- Megan H. Hagenauer
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yusra Sannah
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Cosette Rhoads
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA
- National Institutes of Health, Bethesda, MD 20892, USA
| | - Angela M. O'Connor
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Stanley J. Watson
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Huda Akil
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
6
|
Hsu FM, Mohanty RP, Rubbi L, Thompson M, Pickering H, Reed EF, Greenland JR, Schaenman JM, Pellegrini M. An epigenetic human cytomegalovirus infection score predicts viremia risk in seropositive lung transplant recipients. Epigenetics 2024; 19:2408843. [PMID: 39360678 PMCID: PMC11451273 DOI: 10.1080/15592294.2024.2408843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/28/2024] [Accepted: 09/04/2024] [Indexed: 10/04/2024] Open
Abstract
Cytomegalovirus (CMV) infection and reactivation in solid organ transplant (SOT) recipients increases the risk of viremia, graft failure and death. Clinical studies of CMV serostatus indicate that donor positive recipient negative (D+/R-) patients have greater viremia risk than D-/R-. The majority of patients are R+ having intermediate serologic risk. To characterize the long-term impact of CMV infection and assess viremia risk, we sought to measure the effects of CMV on the recipient immune epigenome. Specifically, we profiled DNA methylation in 156 individuals before lung or kidney transplant. We found that the methylome of CMV positive SOT recipients is hyper-methylated at loci associated with neural development and Polycomb group (PcG) protein binding, and hypo-methylated at regions critical for the maturation of lymphocytes. In addition, we developed a machine learning-based model to predict the recipient CMV serostatus after correcting for cell type composition and ancestry. This CMV episcore measured at baseline in R+ individual stratifies viremia risk accurately in the lung transplant cohort, and along with serostatus the CMV episcore could be a potential biomarker for identifying R+ patients at high viremia risk.
Collapse
Affiliation(s)
- Fei-Man Hsu
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
- Institute for Quantitative and Computational Biosciences – The Collaboratory, University of California Los Angeles, Los Angeles, CA, USA
| | - Rashmi P. Mohanty
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Liudmilla Rubbi
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - Michael Thompson
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - Harry Pickering
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Elaine F. Reed
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - John R. Greenland
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Joanna M. Schaenman
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Matteo Pellegrini
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
- Institute for Quantitative and Computational Biosciences – The Collaboratory, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
7
|
Wang M, Valadez-Ingersoll M, Gilmore TD. Control of nuclear localization of the nucleocapsid protein of SARS-CoV-2. Virology 2024; 600:110232. [PMID: 39265446 DOI: 10.1016/j.virol.2024.110232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/29/2024] [Accepted: 09/04/2024] [Indexed: 09/14/2024]
Abstract
The nucleocapsid (N) protein of coronaviruses is a structural protein that binds viral RNA for assembly into the mature virion, a process that occurs in the cytoplasm. Several coronavirus N proteins also localize to the nucleus. Herein, we identify that two sequences (NLSs) are required for nuclear localization of the SARS-CoV-2 N protein. Deletion or mutation of these two sequences creates an N protein that does not localize to the nucleus in HEK293T cells. Overexpression of both wild-type and NLS-mutated N proteins dysregulate a largely overlapping set of mRNAs in HEK293T cells, suggesting that these N proteins do not have direct nuclear effects on transcription. Consistent with that hypothesis, both N proteins induce nuclear localization of NF-κB p65 and dysregulate a set of previously identified NF-κB-dependent genes. The effects of N on nuclear properties are proposed to alter host cell functions that contribute to viral pathogenesis or replication.
Collapse
Affiliation(s)
- Mengrui Wang
- Department of Biology, Boston University, Boston, MA, 02215, USA
| | | | - Thomas D Gilmore
- Department of Biology, Boston University, Boston, MA, 02215, USA.
| |
Collapse
|
8
|
Saha B, Chakravarty S, Ray S, Saha H, Das K, Ghosh I, Mallick B, Biswas NK, Goswami S. Correlating tissue and plasma‑specific piRNA changes to predict their possible role in pancreatic malignancy and chronic inflammation. Biomed Rep 2024; 21:186. [PMID: 39420923 PMCID: PMC11484194 DOI: 10.3892/br.2024.1874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/13/2024] [Indexed: 10/19/2024] Open
Abstract
The aggressiveness of pancreatic ductal adenocarcinoma is primarily due to lack of effective early detection biomarkers. Circulating non-coding RNAs serve as diagnostic or prognostic biomarkers in multiple types of cancer. Comparison of their expression between diseased tissue and relevant body fluids such as saliva, urine, bile, pancreatic juice, blood etc. may reveal mechanistic involvement of common non-coding RNAs. piwi-interacting RNAs (piRNAs) are a class of non-coding RNAs. The aim of the present study was to investigate plasma and tumour tissue piRNA changes in patients with pancreatic cancer (PC) and explore the possible role in tumorigenesis and pancreatic inflammation. Sequencing of circulating plasma small RNAs from patients with PC and chronic pancreatitis (CP) was performed and differentially expressed piRNAs were compared with those in tissues. Subsequent search for target genes for those piRNAs was performed followed by pathway and cluster analysis. A total of 36 piRNAs were shown to be deregulated in pancreatic tumour tissue and alteration of 11 piRNAs was detected in plasma of patients with PC. piRNAs hsa-piR-23246, hsa-piR-32858 and hsa-piR-9137 may serve a key role in PC development as their expression was correlated in both plasma and tumour tissue. Key piRNA-target interactions interfering with key biological pathways were also characterized. A total of 19 deregulated piRNAs in plasma samples of patients with CP was identified; these targeted genes responsible for chronic inflammation. Therefore, the present study provides a comprehensive description of piRNA alteration in pancreatic malignancy and inflammation; these may be explored for biomarker potential in future.
Collapse
Affiliation(s)
- Barsha Saha
- Biotechnology Research and Innovation Council-National Institute of Biomedical Genomics, Kalyani, Nadia, West Bengal 741251, India
- Regional Centre for Biotechnology, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad 121001, India
| | - Shouvik Chakravarty
- Biotechnology Research and Innovation Council-National Institute of Biomedical Genomics, Kalyani, Nadia, West Bengal 741251, India
- Regional Centre for Biotechnology, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad 121001, India
| | - Sukanta Ray
- Institute of Postgraduate Medical Education & Research, Kolkata 700020, India
| | - Hemabha Saha
- Institute of Postgraduate Medical Education & Research, Kolkata 700020, India
| | - Kshaunish Das
- Institute of Postgraduate Medical Education & Research, Kolkata 700020, India
| | - Indranil Ghosh
- Chittaranjan National Cancer Institute, Kolkata 700026, India
| | | | - Nidhan K. Biswas
- Biotechnology Research and Innovation Council-National Institute of Biomedical Genomics, Kalyani, Nadia, West Bengal 741251, India
| | - Srikanta Goswami
- Biotechnology Research and Innovation Council-National Institute of Biomedical Genomics, Kalyani, Nadia, West Bengal 741251, India
| |
Collapse
|
9
|
Chetta M, Tarsitano M, Rivieccio M, Oro M, Cammarota A, De Marco M, Marzullo L, Rosati A, Bukvic N. A Copernican revolution of multigenic analysis: A retrospective study on clinical exome sequencing in unclear genetic disorders. Comput Struct Biotechnol J 2024; 23:2615-2622. [PMID: 39006921 PMCID: PMC11245952 DOI: 10.1016/j.csbj.2024.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/08/2024] [Accepted: 06/08/2024] [Indexed: 07/16/2024] Open
Abstract
Despite the inevitable shift in medical practice towards a deeper understanding of disease etiology and progression through multigenic analysis, the profound historical impact of Mendelian diseases cannot be overlooked. These diseases, such as cystic fibrosis and thalassemia, are characterized by a single variant in a single gene leading to clinical conditions, and have significantly shaped our medical knowledge and treatments. In this respect, the monogenic approach inevitably results in the underutilization of Next-Generation Sequencing (NGS) data. Herein, a retrospective study was performed to assess the diagnostic value of the clinical exome in 32 probands with specific phenotypic characteristics (patients with autoinflammation and immunological dysregulation, N = 20; patients diagnosed with Hemolytic uremic syndrome N = 9; and patients with Waldenström macroglobulinemia, N = 3). A gene enrichment analysis was performed using the *. VCF file generated by SOPHiA-DDM-v4. This analysis selected a subset of genes containing pathogenic or likely pathogenic variants with autosomal dominant (AD) inheritance. In addition, all variants of uncertain significance (VUS) were included, filtered by AD inheritance mode, the presence of compound heterozygotes, and a minor allele frequency (MAF) cutoff of 0.05 %. The aim of the pipeline described here is based on a perspective shift that focuses on analyzing patients' gene assets, offering new light on the complex interplay between genetics and disease presentation. Integrating this approach into clinical practices could significantly enhance the management of patients with rare genetic disorders.
Collapse
Affiliation(s)
- M. Chetta
- A.O.R.N. A. Cardarelli Hospital’s Laboratory of Medical Genetics and Genomics, Naples, Italy
| | - M. Tarsitano
- A.O.R.N. A. Cardarelli Hospital’s Laboratory of Medical Genetics and Genomics, Naples, Italy
| | - M. Rivieccio
- A.O.R.N. A. Cardarelli Hospital’s Laboratory of Medical Genetics and Genomics, Naples, Italy
| | - M. Oro
- A.O.R.N. A. Cardarelli Hospital’s Laboratory of Medical Genetics and Genomics, Naples, Italy
| | - A.L. Cammarota
- StressBioLab, Department of Medicine, Surgery and Dentistry “Schola Medica Salernitana,” University of Salerno, Baronissi, SA, Italy
| | - M. De Marco
- StressBioLab, Department of Medicine, Surgery and Dentistry “Schola Medica Salernitana,” University of Salerno, Baronissi, SA, Italy
| | - L. Marzullo
- StressBioLab, Department of Medicine, Surgery and Dentistry “Schola Medica Salernitana,” University of Salerno, Baronissi, SA, Italy
| | - A. Rosati
- StressBioLab, Department of Medicine, Surgery and Dentistry “Schola Medica Salernitana,” University of Salerno, Baronissi, SA, Italy
| | - N. Bukvic
- U.O.C Genetica Medica, Azienda Ospedaliero – Universitaria Consorziale Policlinico di Bari, Bari, IT, Italy
| |
Collapse
|
10
|
Zhang Z, Zhang L, Li J, Feng R, Li C, Liu Y, Sun G, Xiao F, Zhang C. Comprehensive analysis of m 6A methylome alterations after azacytidine plus venetoclax treatment for acute myeloid leukemia by nanopore sequencing. Comput Struct Biotechnol J 2024; 23:1144-1153. [PMID: 38510975 PMCID: PMC10950754 DOI: 10.1016/j.csbj.2024.02.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/29/2024] [Accepted: 02/29/2024] [Indexed: 03/22/2024] Open
Abstract
N6 adenosine methylation (m6A), one of the most prevalent internal modifications on mammalian RNAs, regulates RNA transcription, stabilization, and splicing. Growing evidence has focused on the functional role of m6A regulators on acute myeloid leukemia (AML). However, the global m6A levels after azacytidine (AZA) plus venetoclax (VEN) treatment in AML patients remain unclear. In our present study, bone marrow (BM) sample pairs (including pre-treatment [AML] and post-treatment [complete remission (CR)] samples) were harvested from three AML patients who had achieved CR after AZA plus VEN treatment for Nanopore direct RNA sequencing. Notably, the amount of m6A sites and the m6A levels in CR BMs was significantly lower than those in the AML BMs. Such a significant reduction in the m6A levels was also detected in AZA-treated HL-60 cells. Thirteen genes with decreased m6A and expression levels were identified, among which three genes (HPRT1, SNRPC, and ANP32B) were closely related to the prognosis of AML. Finally, we speculated the mechanism via which m6A modifications affected the mRNA stability of these three genes. In conclusion, we illustrated for the first time the global landscape of m6A levels in AZA plus VEN treated AML (CR) patients and revealed that AZA had a significant demethylation effect at the RNA level in AML patients. In addition, we identified new biomarkers for AZA plus VEN-treated AML via Nanopore sequencing technology in RNA epigenetics.
Collapse
Affiliation(s)
- Zaifeng Zhang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/ National Center of Gerontology of National Health Commission, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, 9 DongDan Santiao, Beijing 100730, China
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Lili Zhang
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Jiangtao Li
- Department of Hematology, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Ru Feng
- Department of Hematology, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Chang Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/ National Center of Gerontology of National Health Commission, Beijing, China
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Ye Liu
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/ National Center of Gerontology of National Health Commission, Beijing, China
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Gaoyuan Sun
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Fei Xiao
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/ National Center of Gerontology of National Health Commission, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, 9 DongDan Santiao, Beijing 100730, China
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Chunli Zhang
- Department of Hematology, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
11
|
Anderson EC, Foley HB, Levy JJ, Romano ME, Gui J, Bentz JL, Maldonado LE, Farzan SF, Bastain TM, Marsit CJ, Breton CV, Howe CG. Maternal glucose levels and late pregnancy circulating extracellular vesicle and particle miRNAs in the MADRES pregnancy cohort. Epigenetics 2024; 19:2404198. [PMID: 39292753 DOI: 10.1080/15592294.2024.2404198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/08/2024] [Accepted: 09/04/2024] [Indexed: 09/20/2024] Open
Abstract
Maternal hyperglycemia during pregnancy adversely affects maternal and child outcomes. While mechanisms are not fully understood, maternal circulating miRNAs may play a role. We examined whether continuous glucose levels and hyperglycemia subtypes (gestational diabetes, type 2 diabetes, and glucose intolerance) were associated with circulating miRNAs during late pregnancy. Seven miRNAs (hsa-miR-107, hsa-let-7b-5p, hsa-miR-126-3p, hsa-miR-181a-5p, hsa-miR-374a-5p, hsa-miR-382-5p, and hsa-miR-337-5p) were associated (p < 0.05) with either hyperglycemia or continuous glucose levels prior to multiple testing correction. These miRNAs target genes involved in pathways relevant to maternal and child health, including insulin signaling, placental development, energy balance, and appetite regulation.
Collapse
Affiliation(s)
- Elizabeth C Anderson
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Helen B Foley
- Division of Environmental Health, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Joshua J Levy
- Emerging Diagnostic and Investigative Technologies, Department of Pathology and Laboratory Medicine, Dartmouth Hitchcock Medical Center, Lebanon, NH, USA
- Department of Pathology and Laboratory Medicine and the Department of Computational Biomedicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Megan E Romano
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Jiang Gui
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Jessica L Bentz
- Department of Pathology, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Luis E Maldonado
- Division of Environmental Health, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Shohreh F Farzan
- Division of Environmental Health, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Theresa M Bastain
- Division of Environmental Health, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Carmen J Marsit
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Carrie V Breton
- Division of Environmental Health, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Caitlin G Howe
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| |
Collapse
|
12
|
Scarpa JR, Mincer JS. Chronic pain-induced methylation in the prefrontal cortex targets gene networks associated with cognition and Alzheimer's disease. Neuroscience 2024; 561:65-73. [PMID: 39419469 DOI: 10.1016/j.neuroscience.2024.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/23/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024]
Abstract
Chronic pain is prevalent among aging adults. Epidemiologic evidence has demonstrated that individuals with chronic pain have accelerated memory decline and increased probability of dementia. Neurophysiologic, molecular, and pharmacologic hypotheses have been proposed to explain the relationship between chronic pain and cognitive decline, but there remains currently limited evidence supporting any of these. Here, we integrate multi-omic data across human cohorts and rodent species and demonstrate that methylation in the prefrontal cortex induced by chronic pain specifically targets transcriptional networks associated with cognitive ability, memory, and Alzheimer's disease in humans. We validate this with multiple independent data sets and identify cortical microglia as a likely mechanism by which chronic pain can increase dementia risk. Our analyses support the molecular hypothesis for the role of chronic pain in cognitive decline and identifies several potential therapeutic targets.
Collapse
Affiliation(s)
- Joseph R Scarpa
- Department of Anesthesiology, Weill Cornell Medicine, New York, New York, USA.
| | - Joshua S Mincer
- Department of Anesthesiology and Critical Care Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
13
|
Ramadan WS, Alseksek RK, Mouffak S, Talaat IM, Saber-Ayad MM, Menon V, Ilce BY, El-Awady R. Impact of HDAC6-mediated progesterone receptor expression on the response of breast cancer cells to hormonal therapy. Eur J Pharmacol 2024; 983:177001. [PMID: 39284403 DOI: 10.1016/j.ejphar.2024.177001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/12/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
Modulation of estrogen receptor (ER) and progesterone receptor (PR) expression, as well as their emerging functional crosstalk, remains a potential approach for enhancing the response to hormonal therapy in breast cancer. Aberrant epigenetic alterations induced by histone deacetylases (HDACs) were massively implicated in dysregulating the function of hormone receptors in breast cancer. Although much is known about the regulation of ER signaling by HDAC, the precise role of HDAC in modulating the expression of PR and its impact on the outcomes of hormonal therapy is poorly defined. Here, we demonstrate the involvement of HDAC6 in regulating PR expression in breast cancer cells. The correlation between HDAC6 and hormone receptors was investigated in patients' tissues by immunohistochemistry (n = 80) and publicly available data (n = 3260) from breast cancer patients. We explored the effect of modulating the expression of HDAC6 as well as its catalytic inhibition on the level of hormone receptors by a variety of molecular analyses, including Western blot, immunofluorescence, Real-time PCR, RNA-seq analysis and chromatin immunoprecipitation. Based on our in-silico and immunohistochemistry analyses, HDAC6 levels were negatively correlated with PR status in breast cancer tissues. The downregulation of HDAC6 enhanced the expression of PR-B in hormone receptor-positive and triple-negative breast cancer (TNBC) cells. The selective targeting of HDAC6 by tubacin resulted in the enrichment of the H3K9 acetylation mark at the PGR-B gene promoter region and enhanced the expression of PR-B. Additionally, transcriptomic analysis of tubacin-treated cells revealed enhanced activity of acetyltransferase and growth factor signaling pathways, along with the enrichment of transcription factors involved in the transcriptional activity of ER, underscoring the crucial role of HDAC6 in regulating hormone receptors. Notably, the addition of HDAC6 inhibitor potentiated the effects of anti-ER and anti-PR drugs mainly in TNBC cells. Together, these data highlight the role of HDAC6 in regulating PR expression and provide a promising therapeutic approach for boosting breast cancer sensitivity to hormonal therapy.
Collapse
Affiliation(s)
- Wafaa S Ramadan
- Research Institute for Medical and Health Sciences, University of Sharjah, University City Road, Sharjah, 27272, United Arab Emirates
| | - Rahma K Alseksek
- Research Institute for Medical and Health Sciences, University of Sharjah, University City Road, Sharjah, 27272, United Arab Emirates; College of Pharmacy, University City Road, Sharjah, 27272, United Arab Emirates
| | - Soraya Mouffak
- Research Institute for Medical and Health Sciences, University of Sharjah, University City Road, Sharjah, 27272, United Arab Emirates
| | - Iman M Talaat
- Research Institute for Medical and Health Sciences, University of Sharjah, University City Road, Sharjah, 27272, United Arab Emirates; Clinical Sciences Department, College of Medicine, University of Sharjah, University City Road, Sharjah, 27272, United Arab Emirates; Pathology Department, Faculty of Medicine, Alexandria University, Champollion Street, Alexandria, 21131, Egypt
| | - Maha M Saber-Ayad
- Research Institute for Medical and Health Sciences, University of Sharjah, University City Road, Sharjah, 27272, United Arab Emirates; Clinical Sciences Department, College of Medicine, University of Sharjah, University City Road, Sharjah, 27272, United Arab Emirates
| | - Varsha Menon
- Research Institute for Medical and Health Sciences, University of Sharjah, University City Road, Sharjah, 27272, United Arab Emirates
| | - Burcu Yener Ilce
- Research Institute for Medical and Health Sciences, University of Sharjah, University City Road, Sharjah, 27272, United Arab Emirates
| | - Raafat El-Awady
- Research Institute for Medical and Health Sciences, University of Sharjah, University City Road, Sharjah, 27272, United Arab Emirates; College of Pharmacy, University City Road, Sharjah, 27272, United Arab Emirates.
| |
Collapse
|
14
|
Laub V, Nan E, Elias L, Donaldson IJ, Bentsen M, Rusling LA, Schupp J, Lun JH, Plate KH, Looso M, Langer JD, Günther S, Bobola N, Schulte D. Integrated multi-omics analysis of PBX1 in mouse adult neural stem- and progenitor cells identifies a transcriptional module that functionally links PBX1 to TCF3/4. Nucleic Acids Res 2024; 52:12262-12280. [PMID: 39377397 PMCID: PMC11551771 DOI: 10.1093/nar/gkae864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 08/22/2024] [Accepted: 09/23/2024] [Indexed: 10/09/2024] Open
Abstract
Developmental transcription factors act in networks, but how these networks achieve cell- and tissue specificity is still poorly understood. Here, we explored pre-B cell leukemia homeobox 1 (PBX1) in adult neurogenesis combining genomic, transcriptomic, and proteomic approaches. ChIP-seq analysis uncovered PBX1 binding to numerous genomic sites. Integration of PBX1 ChIP-seq with ATAC-seq data predicted interaction partners, which were subsequently validated by mass spectrometry. Whole transcriptome spatial RNA analysis revealed shared expression dynamics of Pbx1 and interacting factors. Among these were class I bHLH proteins TCF3 and TCF4. RNA-seq following Pbx1, Tcf3 or Tcf4 knockdown identified proliferation- and differentiation associated genes as shared targets, while sphere formation assays following knockdown argued for functional cooperativity of PBX1 and TCF3 in progenitor cell proliferation. Notably, while physiological PBX1-TCF interaction has not yet been described, chromosomal translocation resulting in genomic TCF3::PBX1 fusion characterizes a subtype of acute lymphoblastic leukemia. Introducing Pbx1 into Nalm6 cells, a pre-B cell line expressing TCF3 but lacking PBX1, upregulated the leukemogenic genes BLK and NOTCH3, arguing that functional PBX1-TCF cooperativity likely extends to hematopoiesis. Our study hence uncovers a transcriptional module orchestrating the balance between progenitor cell proliferation and differentiation in adult neurogenesis with potential implications for leukemia etiology.
Collapse
Affiliation(s)
- Vera Laub
- Goethe University, University Hospital Frankfurt, Neurological Institute (Edinger Institute), 60528 Frankfurt am Main, Germany
| | - Elisabeth Nan
- Goethe University, University Hospital Frankfurt, Neurological Institute (Edinger Institute), 60528 Frankfurt am Main, Germany
| | - Lena Elias
- Goethe University, University Hospital Frankfurt, Neurological Institute (Edinger Institute), 60528 Frankfurt am Main, Germany
| | - Ian J Donaldson
- University of Manchester, Faculty of Biology, Medicine and Health, Bioinformatics Core Facility, Manchester, M13 9PT, UK
| | - Mette Bentsen
- Max Planck Institute for Heart and Lung Research, Bioinformatics Core Unit (BCU), 61231 Bad Nauheim, Germany
| | - Leona A Rusling
- Max Planck Institute for Biophysics, Proteomics, and Max Planck Institute for Brain Research, 60438 Frankfurt am Main, Germany
| | - Jonathan Schupp
- Goethe University, University Hospital Frankfurt, Neurological Institute (Edinger Institute), 60528 Frankfurt am Main, Germany
- Goethe University, Frankfurt Cancer Institute, 60528 Frankfurt am Main, Germany
| | - Jennifer H Lun
- Goethe University, University Hospital Frankfurt, Neurological Institute (Edinger Institute), 60528 Frankfurt am Main, Germany
- Goethe University, Frankfurt Cancer Institute, 60528 Frankfurt am Main, Germany
| | - Karl H Plate
- Goethe University, University Hospital Frankfurt, Neurological Institute (Edinger Institute), 60528 Frankfurt am Main, Germany
- Goethe University, Frankfurt Cancer Institute, 60528 Frankfurt am Main, Germany
| | - Mario Looso
- Max Planck Institute for Heart and Lung Research, Bioinformatics Core Unit (BCU), 61231 Bad Nauheim, Germany
| | - Julian D Langer
- Max Planck Institute for Biophysics, Proteomics, and Max Planck Institute for Brain Research, 60438 Frankfurt am Main, Germany
| | - Stefan Günther
- Max Planck Institute for Heart and Lung Research, Bioinformatics and Deep Sequencing Platform, 61231 Bad Nauheim, Germany
| | - Nicoletta Bobola
- University of Manchester, Faculty of Biology, Medicine and Health, Manchester, M13 9PT, UK
| | - Dorothea Schulte
- Goethe University, University Hospital Frankfurt, Neurological Institute (Edinger Institute), 60528 Frankfurt am Main, Germany
| |
Collapse
|
15
|
Burke BI, Ismaeel A, Long DE, Depa LA, Coburn PT, Goh J, Saliu TP, Walton BJ, Vechetti IJ, Peck BD, Valentino TR, Mobley CB, Memetimin H, Wang D, Finlin BS, Kern PA, Peterson CA, McCarthy JJ, Wen Y. Extracellular vesicle transfer of miR-1 to adipose tissue modifies lipolytic pathways following resistance exercise. JCI Insight 2024; 9:e182589. [PMID: 39316445 DOI: 10.1172/jci.insight.182589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 09/18/2024] [Indexed: 09/26/2024] Open
Abstract
Extracellular vesicles (EVs) have emerged as important mediators of intertissue signaling and exercise adaptations. In this human study, we provide evidence that muscle-specific microRNA-1 (miR-1) was transferred to adipose tissue via EVs following an acute bout of resistance exercise. Using a multimodel machine learning automation tool, we discovered muscle primary miR-1 transcript and CD63+ EV count in circulation as top explanatory features for changes in adipose miR-1 levels in response to resistance exercise. RNA-Seq and in-silico prediction of miR-1 target genes identified caveolin 2 (CAV2) and tripartite motif containing 6 (TRIM6) as miR-1 target genes downregulated in the adipose tissue of a subset of participants with the highest increases in miR-1 levels following resistance exercise. Overexpression of miR-1 in differentiated human adipocyte-derived stem cells downregulated these miR-1 targets and enhanced catecholamine-induced lipolysis. These data identify a potential EV-mediated mechanism by which skeletal muscle communicates with adipose tissue and modulates lipolysis via miR-1.
Collapse
Affiliation(s)
- Benjamin I Burke
- Department of Physiology, College of Medicine
- Center for Muscle Biology, College of Health Sciences
| | - Ahmed Ismaeel
- Department of Physiology, College of Medicine
- Center for Muscle Biology, College of Health Sciences
| | | | - Lauren A Depa
- Department of Physiology, College of Medicine
- Center for Muscle Biology, College of Health Sciences
| | - Peyton T Coburn
- Department of Physiology, College of Medicine
- Center for Muscle Biology, College of Health Sciences
| | - Jensen Goh
- Department of Physiology, College of Medicine
- Center for Muscle Biology, College of Health Sciences
| | - Tolulope P Saliu
- Department of Physiology, College of Medicine
- Center for Muscle Biology, College of Health Sciences
| | - Bonnie J Walton
- Department of Physiology, College of Medicine
- Center for Muscle Biology, College of Health Sciences
| | - Ivan J Vechetti
- Department of Physiology, College of Medicine
- Center for Muscle Biology, College of Health Sciences
| | - Bailey D Peck
- Department of Physiology, College of Medicine
- Center for Muscle Biology, College of Health Sciences
| | - Taylor R Valentino
- Department of Physiology, College of Medicine
- Center for Muscle Biology, College of Health Sciences
| | - C Brooks Mobley
- Department of Physiology, College of Medicine
- Center for Muscle Biology, College of Health Sciences
| | - Hasiyet Memetimin
- Division of Endocrinology, Department of Internal Medicine, College of Medicine
| | - Dandan Wang
- Center for Muscle Biology, College of Health Sciences
- Department of Biostatistics, College of Public Health, and
| | - Brian S Finlin
- Division of Endocrinology, Department of Internal Medicine, College of Medicine
| | - Philip A Kern
- Center for Muscle Biology, College of Health Sciences
- Division of Endocrinology, Department of Internal Medicine, College of Medicine
| | | | - John J McCarthy
- Department of Physiology, College of Medicine
- Center for Muscle Biology, College of Health Sciences
| | - Yuan Wen
- Department of Physiology, College of Medicine
- Center for Muscle Biology, College of Health Sciences
- Division of Biomedical Informatics, Department of Internal Medicine, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
16
|
Carvalho EM, Ding EA, Saha A, Garcia DC, Weldy A, Zushin PJH, Stahl A, Aghi MK, Kumar S. Viscoelastic High-Molecular-Weight Hyaluronic Acid Hydrogels Support Rapid Glioblastoma Cell Invasion with Leader-Follower Dynamics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2404885. [PMID: 39508297 DOI: 10.1002/adma.202404885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 09/25/2024] [Indexed: 11/15/2024]
Abstract
Hyaluronic acid (HA), the primary component of brain extracellular matrix, is increasingly used to model neuropathological processes, including glioblastoma (GBM) tumor invasion. While elastic hydrogels based on crosslinked low-molecular-weight (LMW) HA are widely exploited for this purpose and have proven valuable for discovery and screening, brain tissue is both viscoelastic and rich in high-MW (HMW) HA, and it remains unclear how these differences influence invasion. To address this question, hydrogels comprised of either HMW (1.5 MDa) or LMW (60 kDa) HA are introduced, characterized, and applied in GBM invasion studies. Unlike LMW HA hydrogels, HMW HA hydrogels relax stresses quickly, to a similar extent as brain tissue, and to a greater extent than many conventional HA-based scaffolds. GBM cells implanted within HMW HA hydrogels invade much more rapidly than in their LMW HA counterparts and exhibit distinct leader-follower dynamics. Leader cells adopt dendritic morphologies similar to invasive GBM cells observed in vivo. Transcriptomic, pharmacologic, and imaging studies suggest that leader cells exploit hyaluronidase, an enzyme strongly enriched in human GBMs, to prime a path for followers. This study offers new insight into how HA viscoelastic properties drive invasion and argues for the use of highly stress-relaxing materials to model GBM.
Collapse
Affiliation(s)
- Emily M Carvalho
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, 94720, USA
| | - Erika A Ding
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, 94720, USA
| | - Atul Saha
- Department of Neurosurgery, University of California, San Francisco, CA, 94158, USA
| | - Diana Cruz Garcia
- Department of Bioengineering, University of California, Berkeley, CA, 94720, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, 94158, USA
| | - Anna Weldy
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, 94720, USA
| | - Peter-James H Zushin
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, 94720, USA
| | - Andreas Stahl
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, 94720, USA
| | - Manish K Aghi
- Department of Neurosurgery, University of California, San Francisco, CA, 94158, USA
| | - Sanjay Kumar
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, 94720, USA
- Department of Bioengineering, University of California, Berkeley, CA, 94720, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, 94158, USA
| |
Collapse
|
17
|
Moll M, Hecker J, Platig J, Zhang J, Ghosh AJ, Pratte KA, Wang RS, Hill D, Konigsberg IR, Chiles JW, Hersh CP, Castaldi PJ, Glass K, Dy JG, Sin DD, Tal-Singer R, Mouded M, Rennard SI, Anderson GP, Kinney GL, Bowler RP, Curtis JL, McDonald ML, Silverman EK, Hobbs BD, Cho MH. Polygenic and transcriptional risk scores identify chronic obstructive pulmonary disease subtypes in the COPDGene and ECLIPSE cohort studies. EBioMedicine 2024; 110:105429. [PMID: 39509750 DOI: 10.1016/j.ebiom.2024.105429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 10/04/2024] [Accepted: 10/16/2024] [Indexed: 11/15/2024] Open
Abstract
BACKGROUND Genetic variants and gene expression predict risk of chronic obstructive pulmonary disease (COPD), but their effect on COPD heterogeneity is unclear. We aimed to define high-risk COPD subtypes using genetics (polygenic risk score, PRS) and blood gene expression (transcriptional risk score, TRS) and assess differences in clinical and molecular characteristics. METHODS We defined high-risk groups based on PRS and TRS quantiles by maximising differences in protein biomarkers in a COPDGene training set and identified these groups in COPDGene and ECLIPSE test sets. We tested multivariable associations of subgroups with clinical outcomes and compared protein-protein interaction networks and drug repurposing analyses between high-risk groups. FINDINGS We examined two high-risk omics-defined groups in non-overlapping test sets (n = 1133 NHW COPDGene, n = 299 African American (AA) COPDGene, n = 468 ECLIPSE). We defined "high activity" (low PRS, high TRS) and "severe risk" (high PRS, high TRS) subgroups. Participants in both subgroups had lower body-mass index (BMI), lower lung function, and alterations in metabolic, growth, and immune signalling processes compared to a low-risk (low PRS, low TRS) subgroup. "High activity" but not "severe risk" participants had greater prospective FEV1 decline (COPDGene: -51 mL/year; ECLIPSE: -40 mL/year) and proteomic profiles were enriched in gene sets perturbed by treatment with 5-lipoxygenase inhibitors and angiotensin-converting enzyme (ACE) inhibitors. INTERPRETATION Concomitant use of polygenic and transcriptional risk scores identified clinical and molecular heterogeneity amongst high-risk individuals. Proteomic and drug repurposing analysis identified subtype-specific enrichment for therapies and suggest prior drug repurposing failures may be explained by patient selection. FUNDING National Institutes of Health.
Collapse
Affiliation(s)
- Matthew Moll
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA; Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA; Division of Pulmonary, Critical Care, Sleep and Allergy, Veterans Affairs Boston Healthcare System, West Roxbury, MA, 02123, USA; Harvard Medical School, Boston, MA, 02115, USA
| | - Julian Hecker
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA; Harvard Medical School, Boston, MA, 02115, USA
| | - John Platig
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, 22903, USA
| | - Jingzhou Zhang
- The Pulmonary Center, Boston University Medical Center, Boston, MA 02118, USA
| | - Auyon J Ghosh
- Division of Pulmonary, Critical Care, and Sleep Medicine, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Katherine A Pratte
- Department of Biostatistics, National Jewish Health, Denver, CO, 80206, USA
| | - Rui-Sheng Wang
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Davin Hill
- Department of Electrical and Computer Engineering, Northeastern University, Boston, MA, 02115, USA
| | - Iain R Konigsberg
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Joe W Chiles
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Craig P Hersh
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA; Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA; Harvard Medical School, Boston, MA, 02115, USA
| | - Peter J Castaldi
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA; Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35233, USA; Division of General Internal Medicine and Primary Care, Department of Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA; Harvard Medical School, Boston, MA, 02115, USA
| | - Kimberly Glass
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA; Harvard Medical School, Boston, MA, 02115, USA
| | - Jennifer G Dy
- Department of Electrical and Computer Engineering, Northeastern University, Boston, MA, 02115, USA
| | - Don D Sin
- Centre for Heart Lung Innovation, St. Paul's Hospital, and Department of Medicine (Respiratory Division), University of British Columbia, Vancouver, BC, Canada
| | - Ruth Tal-Singer
- Global Allergy and Airways Patient Platform, Vienna, Austria
| | - Majd Mouded
- Novartis Institute for Biomedical Research, Cambridge, MA, USA
| | - Stephen I Rennard
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Nebraska, Omaha, NE, 68198, USA
| | - Gary P Anderson
- Lung Health Research Centre, Department of Biochemistry and Pharmacology, University of Melbourne, Melbourne, Victoria, Australia
| | - Gregory L Kinney
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Russell P Bowler
- Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, CO, 80206, USA
| | - Jeffrey L Curtis
- Division of Pulmonary and Critical Care Medicine, University of Michigan School of Medicine, Ann Arbor, MI, 48109, USA; Medical Service, Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, MI, 48109, USA
| | - Merry-Lynn McDonald
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA; Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, 701, 19th Street S., LHRB 440, Birmingham, AL, 35233, USA; Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Edwin K Silverman
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA; Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA; Harvard Medical School, Boston, MA, 02115, USA
| | | | - Michael H Cho
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA; Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA; Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
18
|
Stover JD, Trone MAR, Weston J, Lewis C, Levis H, Farhang N, Philippi M, Zeidan M, Lawrence B, Bowles RD. Therapeutic CRISPR epigenome editing of inflammatory receptors in the intervertebral disc. Mol Ther 2024; 32:3955-3973. [PMID: 39295148 DOI: 10.1016/j.ymthe.2024.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/07/2024] [Accepted: 09/13/2024] [Indexed: 09/21/2024] Open
Abstract
Low back pain (LBP) ranks among the leading causes of disability worldwide and generates a tremendous socioeconomic cost. Disc degeneration, a leading contributor to LBP, can be characterized by the breakdown of the extracellular matrix of the intervertebral disc (IVD), disc height loss, and inflammation. The inflammatory cytokine tumor necrosis factor α (TNF-α) has multiple signaling pathways, including proinflammatory signaling through tumor necrosis factor receptor 1 superfamily, member 1a (TNFR1 or TNFRSF1A), and has been implicated as a primary mediator of disc degeneration. We tested our ability to regulate the TNFR1 signaling pathway in vivo, utilizing CRISPR epigenome editing to slow the progression of disc degeneration in rats. Sprague-Dawley rats were treated with TNF-α and CRISPR interference (CRISPRi)-based epigenome-editing therapeutics targeting TNFR1, showing decreased behavioral pain in a disc degeneration model. Surprisingly, while treatment with the vectors alone was therapeutic, the TNF-α injection became therapeutic after TNFR1 modulation. These results suggest direct inflammatory receptor modulation as a potent strategy for treating disc degeneration.
Collapse
Affiliation(s)
- Joshua D Stover
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Matthew A R Trone
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Jacob Weston
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Christian Lewis
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Hunter Levis
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Niloofar Farhang
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Matthew Philippi
- Department of Orthopaedics, University of Utah, Salt Lake City, UT 84112, USA
| | - Michelle Zeidan
- Department of Orthopaedics, University of Utah, Salt Lake City, UT 84112, USA
| | - Brandon Lawrence
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA; Department of Orthopaedics, University of Utah, Salt Lake City, UT 84112, USA
| | - Robby D Bowles
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA; Department of Orthopaedics, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
19
|
Leopold M, Mass-Sanchez PB, Krizanac M, Štancl P, Karlić R, Prabutzki P, Parafianczuk V, Schiller J, Asimakopoulos A, Engel KM, Weiskirchen R. How the liver transcriptome and lipid composition influence the progression of nonalcoholic fatty liver disease to hepatocellular carcinoma in a murine model. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1870:159574. [PMID: 39510374 DOI: 10.1016/j.bbalip.2024.159574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/15/2024]
Abstract
The incidence of nonalcoholic fatty liver disease (NAFLD) has been steadily increasing in Western society in recent years and has been recognized as a risk factor for the development of hepatocellular carcinoma (HCC). However, the molecular mechanisms underlying the progression from NAFLD to HCC are still unclear, despite the use of suitable mouse models. To identify the transcriptional and lipid profiles of livers from mice with NAFLD-HCC, we induced both NAFLD and NAFLD-HCC pathologies in C57BL/6J mice and performed RNA-sequencing (RNA-seq) and targeted lipidomic analysis. Our RNA-seq analysis revealed that the transcriptional signature of NAFLD in mice is characterized by changes in inflammatory response and fatty acid metabolism. Moreover, the signature of NAFLD-HCC is characterized by processes typically observed in cancer, such as epithelial to mesenchymal transition, angiogenesis and inflammatory responses. Furthermore, we found that the diet used in this study inhibited cholesterol synthesis in both models. The analysis of lipid composition also showed a significant impact of the provided diet. Therefore, our study supports the idea that a Western diet (WD) affects metabolic processes and hepatic lipid composition. Additionally, the combination of a WD with the administration of a carcinogen drives the progression from NAFLD to HCC.
Collapse
Affiliation(s)
- Marvin Leopold
- Institute for Medical Physics and Biophysics, Leipzig University, Faculty of Medicine, 04107 Leipzig, Germany; Klinik für Neurologie, Sana Klinikum Borna, 04552 Borna, Germany.
| | - Paola Berenice Mass-Sanchez
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, 52074 Aachen, Germany.
| | - Marinela Krizanac
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, 52074 Aachen, Germany.
| | - Paula Štancl
- Bioinformatics Group, Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia.
| | - Rosa Karlić
- Bioinformatics Group, Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia.
| | - Patricia Prabutzki
- Institute for Medical Physics and Biophysics, Leipzig University, Faculty of Medicine, 04107 Leipzig, Germany.
| | - Victoria Parafianczuk
- Institute for Medical Physics and Biophysics, Leipzig University, Faculty of Medicine, 04107 Leipzig, Germany
| | - Jürgen Schiller
- Institute for Medical Physics and Biophysics, Leipzig University, Faculty of Medicine, 04107 Leipzig, Germany.
| | - Anastasia Asimakopoulos
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, 52074 Aachen, Germany
| | - Kathrin M Engel
- Institute for Medical Physics and Biophysics, Leipzig University, Faculty of Medicine, 04107 Leipzig, Germany.
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, 52074 Aachen, Germany.
| |
Collapse
|
20
|
Yu M, Xu J, Dutta R, Trapp B, Pieper AA, Cheng F. Network medicine informed multiomics integration identifies drug targets and repurposable medicines for Amyotrophic Lateral Sclerosis. NPJ Syst Biol Appl 2024; 10:128. [PMID: 39500920 PMCID: PMC11538253 DOI: 10.1038/s41540-024-00449-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 09/29/2024] [Indexed: 11/08/2024] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a devastating, immensely complex neurodegenerative disease by lack of effective treatments. We developed a network medicine methodology via integrating human brain multi-omics data to prioritize drug targets and repurposable treatments for ALS. We leveraged non-coding ALS loci effects from genome-wide associated studies (GWAS) on human brain expression quantitative trait loci (QTL) (eQTL), protein QTL (pQTL), splicing QTL (sQTL), methylation QTL (meQTL), and histone acetylation QTL (haQTL). Using a network-based deep learning framework, we identified 105 putative ALS-associated genes enriched in known ALS pathobiological pathways. Applying network proximity analysis of predicted ALS-associated genes and drug-target networks under the human protein-protein interactome (PPI) model, we identified potential repurposable drugs (i.e., Diazoxide and Gefitinib) for ALS. Subsequent validation established preclinical evidence for top-prioritized drugs. In summary, we presented a network-based multi-omics framework to identify drug targets and repurposable treatments for ALS and other neurodegenerative disease if broadly applied.
Collapse
Affiliation(s)
- Mucen Yu
- Cleveland Clinic Genome Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
- College of Arts and Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Jielin Xu
- Cleveland Clinic Genome Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Ranjan Dutta
- Department of Neuroscience, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, 44195, USA
| | - Bruce Trapp
- Department of Neuroscience, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, 44195, USA
| | - Andrew A Pieper
- Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, 44106, USA
- Department of Psychiatry, Case Western Reserve University, Cleveland, OH, 44106, USA
- Geriatric Psychiatry, GRECC, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, 44106, USA
- Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
- Department of Neurosciences, Case Western Reserve University, School of Medicine, Cleveland, OH, 44106, USA
| | - Feixiong Cheng
- Cleveland Clinic Genome Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, 44195, USA.
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
| |
Collapse
|
21
|
Armstrong Suthahar SS, Nettersheim FS, Alimadadi A, Wang E, Billitti M, Resto-Trujillo N, Roy P, Hedrick CC, Ley K, Orecchioni M. Olfr2-positive macrophages originate from monocytes proliferate in situ and present a pro-inflammatory foamy-like phenotype. Cardiovasc Res 2024; 120:1577-1589. [PMID: 39229899 DOI: 10.1093/cvr/cvae153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/25/2024] [Accepted: 06/13/2024] [Indexed: 09/05/2024] Open
Abstract
AIMS Olfactory receptor 2 (Olfr2) has been identified in a minimum of 30% of vascular macrophages, and its depletion was shown to reduce atherosclerosis progression. Mononuclear phagocytes, including monocytes and macrophages within the vessel wall, are major players in atherosclerosis. Single-cell RNA sequencing studies revealed that atherosclerotic artery walls encompass several monocytes and vascular macrophages, defining at least nine distinct subsets potentially serving diverse functions in disease progression. This study investigates the functional phenotype and ontogeny of Olfr2-expressing vascular macrophages in atherosclerosis. METHODS AND RESULTS Olfr2+ macrophages rapidly increase in Apoe-/- mice's aorta when fed a Western diet (WD). Mass cytometry showed that Olfr2+ cells are clustered within the CD64 high population and enriched for CD11c and Ccr2 markers. Olfr2+ macrophages express many pro-inflammatory cytokines, including Il1b, Il6, Il12, and Il23, and chemokines, including Ccl5, Cx3cl1, Cxcl9, and Ccl22. By extracting differentially expressed genes from bulk RNA sequencing (RNA-seq) of Olfr2+ vs. Olfr2- macrophages, we defined a signature that significantly mapped to single-cell data of plaque myeloid cells, including monocytes, subendothelial MacAir, and Trem2Gpnmb foamy macrophages. By adoptive transfer experiments, we identified that Olfr2 competent monocytes from CD45.1Apoe-/-Olfr2+/+ mice transferred into CD45.2Apoe-/-Olfr2-/- recipient mice fed WD for 12 weeks, accumulate in the atherosclerotic aorta wall already at 72 h, and differentiate in macrophages. Olfr2+ macrophages showed significantly increased BrdU incorporation compared to Olfr2- macrophages. Flow cytometry confirmed that at least 50% of aortic Olfr2+ macrophages are positive for BODIPY staining and have increased expression of both tumour necrosis factor and interleukin 6 compared to Olfr2- macrophages. Gene set enrichment analysis of the Olfr2+ macrophage signature revealed a similar enrichment pattern in human atherosclerotic plaques, particularly within foamy/TREM2hi-Mφ and monocytes. CONCLUSIONS In summary, we conclude that Olfr2+ macrophages in the aorta originate from monocytes and can accumulate at the early stages of disease progression. These cells can undergo differentiation into MacAir and Trem2Gpnmb foamy macrophages, exhibiting proliferative and pro-inflammatory potentials. This dynamic behaviour positions them as key influencers in shaping the myeloid landscape within the atherosclerotic plaque.
Collapse
Affiliation(s)
| | - Felix Sebastian Nettersheim
- Division of Inflammation Biology, La Jolla Institute for Immunology, 9420 Athena Cir, La Jolla, CA 92037, USA
| | - Ahmad Alimadadi
- Division of Inflammation Biology, La Jolla Institute for Immunology, 9420 Athena Cir, La Jolla, CA 92037, USA
- Immunology Center of Georgia, Augusta University, 1410 Laney Walker Blvd, Augusta, GA 30912, USA
| | - Erpei Wang
- Division of Inflammation Biology, La Jolla Institute for Immunology, 9420 Athena Cir, La Jolla, CA 92037, USA
| | - Monica Billitti
- Division of Inflammation Biology, La Jolla Institute for Immunology, 9420 Athena Cir, La Jolla, CA 92037, USA
| | - Natalya Resto-Trujillo
- Immunology Center of Georgia, Augusta University, 1410 Laney Walker Blvd, Augusta, GA 30912, USA
| | - Payel Roy
- Division of Inflammation Biology, La Jolla Institute for Immunology, 9420 Athena Cir, La Jolla, CA 92037, USA
- Immunology Center of Georgia, Augusta University, 1410 Laney Walker Blvd, Augusta, GA 30912, USA
| | - Catherine C Hedrick
- Immunology Center of Georgia, Augusta University, 1410 Laney Walker Blvd, Augusta, GA 30912, USA
- Department of Medicine, Augusta University, 1120 15th St BA 8412, Augusta, GA 30912, USA
| | - Klaus Ley
- Immunology Center of Georgia, Augusta University, 1410 Laney Walker Blvd, Augusta, GA 30912, USA
- Department of Physiology, Augusta University, 1462 Laney Walker Blvd, Augusta, GA 30912, USA
| | - Marco Orecchioni
- Immunology Center of Georgia, Augusta University, 1410 Laney Walker Blvd, Augusta, GA 30912, USA
- Department of Pharmacology & Toxicology, Augusta University, 1459 Laney Walker Blvd, Augusta, GA 30901, USA
| |
Collapse
|
22
|
Kim S, Koppitch K, Parvez RK, Guo J, Achieng M, Schnell J, Lindström NO, McMahon AP. Comparative single-cell analyses identify shared and divergent features of human and mouse kidney development. Dev Cell 2024; 59:2912-2930.e7. [PMID: 39121855 DOI: 10.1016/j.devcel.2024.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 04/02/2024] [Accepted: 07/12/2024] [Indexed: 08/12/2024]
Abstract
The mammalian kidney maintains fluid homeostasis through diverse epithelial cell types generated from nephron and ureteric progenitor cells. To extend a developmental understanding of the kidney's epithelial networks, we compared chromatin organization (single-nuclear assay for transposase-accessible chromatin sequencing [ATAC-seq]; 112,864 nuclei) and gene expression (single-cell/nuclear RNA sequencing [RNA-seq]; 109,477 cells/nuclei) in the developing human (10.6-17.6 weeks; n = 10) and mouse (post-natal day [P]0; n = 10) kidney, supplementing analysis with published mouse datasets from earlier stages. Single-cell/nuclear datasets were analyzed at a species level, and then nephron and ureteric cellular lineages were extracted and integrated into a common, cross-species, multimodal dataset. Comparative computational analyses identified conserved and divergent features of chromatin organization and linked gene activity, identifying species-specific and cell-type-specific regulatory programs. In situ validation of human-enriched gene activity points to human-specific signaling interactions in kidney development. Further, human-specific enhancer regions were linked to kidney diseases through genome-wide association studies (GWASs), highlighting the potential for clinical insight from developmental modeling.
Collapse
Affiliation(s)
- Sunghyun Kim
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Kari Koppitch
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Riana K Parvez
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Jinjin Guo
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - MaryAnne Achieng
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Jack Schnell
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Nils O Lindström
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Andrew P McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
23
|
Manjunath GK, Sharma S, Nashier D, Vasanthaiah S, Jha S, Bage S, Mitra T, Goyal P, Neerathilingam M, Kumar A. Breast cancer genomic analyses reveal genes, mutations, and signaling networks. Funct Integr Genomics 2024; 24:206. [PMID: 39496981 DOI: 10.1007/s10142-024-01484-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 11/06/2024]
Abstract
Breast cancer (BC) is the most commonly diagnosed cancer and the predominant cause of death in women. BC is a complex disorder, and the exploration of several types of BC omic data, highlighting genes, perturbations, signaling and cellular mechanisms, is needed. We collected mutational data from 9,555 BC samples using cBioPortal. We classified 1174 BC genes (mutated ≥ 40 samples) into five tiers (BCtier_I-V) and subjected them to pathway and protein‒protein network analyses using EnrichR and STRING 11, respectively. BCtier_I possesses 12 BC genes with mutational frequencies > 5%, with only 5 genes possessing > 10% frequencies, namely, PIK3CA (35.7%), TP53 (34.3%), GATA3 (11.5%), CDH1 (11.4%) and MUC16 (11%), and the next seven BC genes are KMT2C (8.8%), TTN (8%), MAP3K1 (8%), SYNE1 (7.2%), AHNAK2 (7%), USH2A (5.5%), and RYR2 (5.4%). Our pathway analyses revealed that the five top BC pathways were the PI3K-AKT, TP53, NOTCH, HIPPO, and RAS pathways. We found that BC panels share only seven genes. These findings show that BC arises from genetic disruptions evident in BC signaling and protein networks.
Collapse
Affiliation(s)
- Gowrang Kasaba Manjunath
- Manipal Academy of Higher Education (MAHE), Manipal, 576104, Karnataka, India
- Institute of Bioinformatics, International Technology Park, Whitefield, Bangalore, 560066, Karnataka, India
| | - Srihari Sharma
- Institute of Bioinformatics, International Technology Park, Whitefield, Bangalore, 560066, Karnataka, India
| | - Disha Nashier
- Manipal Academy of Higher Education (MAHE), Manipal, 576104, Karnataka, India
- Institute of Bioinformatics, International Technology Park, Whitefield, Bangalore, 560066, Karnataka, India
| | - Shruthi Vasanthaiah
- Manipal Academy of Higher Education (MAHE), Manipal, 576104, Karnataka, India
- Institute of Bioinformatics, International Technology Park, Whitefield, Bangalore, 560066, Karnataka, India
| | - Spriha Jha
- Institute of Bioinformatics, International Technology Park, Whitefield, Bangalore, 560066, Karnataka, India
| | - Saloni Bage
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Tamoghna Mitra
- Manipal Academy of Higher Education (MAHE), Manipal, 576104, Karnataka, India
- Institute of Bioinformatics, International Technology Park, Whitefield, Bangalore, 560066, Karnataka, India
| | - Pankaj Goyal
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Muniasamy Neerathilingam
- Manipal Academy of Higher Education (MAHE), Manipal, 576104, Karnataka, India
- Institute of Bioinformatics, International Technology Park, Whitefield, Bangalore, 560066, Karnataka, India
| | - Abhishek Kumar
- Manipal Academy of Higher Education (MAHE), Manipal, 576104, Karnataka, India.
- Institute of Bioinformatics, International Technology Park, Whitefield, Bangalore, 560066, Karnataka, India.
| |
Collapse
|
24
|
Gill HK, Yin S, Nerurkar NL, Lawlor JC, Lee C, Huycke TR, Mahadevan L, Tabin CJ. Hox gene activity directs physical forces to differentially shape chick small and large intestinal epithelia. Dev Cell 2024; 59:2834-2849.e9. [PMID: 39116876 PMCID: PMC11537829 DOI: 10.1016/j.devcel.2024.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 04/15/2024] [Accepted: 07/11/2024] [Indexed: 08/10/2024]
Abstract
Hox transcription factors play crucial roles in organizing developmental patterning across metazoa, but how these factors trigger regional morphogenesis has largely remained a mystery. In the developing gut, Hox genes help demarcate identities of intestinal subregions early in embryogenesis, which ultimately leads to their specialization in both form and function. Although the midgut forms villi, the hindgut develops sulci that resolve into heterogeneous outgrowths. Combining mechanical measurements of the embryonic chick intestine and mathematical modeling, we demonstrate that the posterior Hox gene HOXD13 regulates biophysical phenomena that shape the hindgut lumen. We further show that HOXD13 acts through the transforming growth factor β (TGF-β) pathway to thicken, stiffen, and promote isotropic growth of the subepithelial mesenchyme-together, these features lead to hindgut-specific surface buckling. TGF-β, in turn, promotes collagen deposition to affect mesenchymal geometry and growth. We thus identify a cascade of events downstream of positional identity that direct posterior intestinal morphogenesis.
Collapse
Affiliation(s)
- Hasreet K Gill
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Sifan Yin
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Nandan L Nerurkar
- The Fu Foundation School of Engineering and Applied Science, Columbia University, New York, NY 10027, USA
| | - John C Lawlor
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - ChangHee Lee
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Tyler R Huycke
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - L Mahadevan
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Department of Physics, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA.
| | - Clifford J Tabin
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
25
|
Kabiljo J, Theophil A, Homola J, Renner AF, Stürzenbecher N, Ammon D, Zirnbauer R, Stang S, Tran L, Laengle J, Kulu A, Chen A, Fabits M, Atanasova VS, Pusch O, Weninger W, Walczak H, Herndler Brandstetter D, Egger G, Dolznig H, Kusienicka A, Farlik M, Bergmann M. Cancer-associated fibroblasts shape early myeloid cell response to chemotherapy-induced immunogenic signals in next generation tumor organoid cultures. J Immunother Cancer 2024; 12:e009494. [PMID: 39500527 PMCID: PMC11535717 DOI: 10.1136/jitc-2024-009494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Patient-derived colorectal cancer (CRC) organoids (PDOs) solely consisting of malignant cells led to major advances in the understanding of cancer treatments. Yet, a major limitation is the absence of cells from the tumor microenvironment, thereby prohibiting potential investigation of treatment responses on immune and structural cells. Currently there are sparse reports describing the interaction of PDOs, cancer-associated fibroblasts (CAFs) and tumor-associated macrophages (TAMs) in complex primary co-culture assay systems. METHODS Primary PDOs and patient matched CAF cultures were generated from surgical resections. Co-culture systems of PDOs, CAFs and monocytic myeloid cells were set up to recapitulate features seen in patient tumors. Single-cell transcriptomics and flow cytometry was used to show effects of culture systems on TAM populations in the co-culture assays under chemotherapeutic and oncolytic viral treatment. RESULTS In contrast to co-cultures of tumor cells and monocytes, CAF/monocyte co-cultures and CAF/monocyte/tumor cell triple cultures resulted in a partial differentiation into macrophages and a phenotypic switch, characterized by the expression of major immunosuppressive markers comparable to TAMs in CRC. Oxaliplatin and 5-fluorouracil, the standard-of-care chemotherapy for CRC, induced polarization of macrophages to a pro-inflammatory phenotype comparable to the immunogenic effects of treatment with an oncolytic virus. Monitoring phagocytosis as a functional proxy to macrophage activation and subsequent onset of an immune response, revealed that chemotherapy-induced cell death, but not virus-mediated cell death, is necessary to induce phagocytosis of CRC cells. Moreover, CAFs enhanced the phagocytic activity in chemotherapy treated CRC triple cultures. CONCLUSIONS Primary CAF-containing triple cultures successfully model TAM-like phenotypes ex vivo and allow the assessment of their functional and phenotypic changes in response to treatments following a precision medicine approach.
Collapse
Affiliation(s)
- Julijan Kabiljo
- Department of General Surgery, Division of Visceral Surgery, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute Applied Diagnostics, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Anna Theophil
- Department of General Surgery, Division of Visceral Surgery, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute Applied Diagnostics, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Jakob Homola
- Department of General Surgery, Division of Visceral Surgery, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Annalena F Renner
- Department of General Surgery, Division of Visceral Surgery, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Nathalie Stürzenbecher
- Department of General Surgery, Division of Visceral Surgery, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Daphni Ammon
- Department of General Surgery, Division of Visceral Surgery, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Rebecca Zirnbauer
- Department of General Surgery, Division of Visceral Surgery, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Simone Stang
- Center of Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | - Loan Tran
- Ludwig Boltzmann Institute Applied Diagnostics, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Johannes Laengle
- Department of General Surgery, Division of Visceral Surgery, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute Applied Diagnostics, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Askin Kulu
- Department of General Surgery, Division of Visceral Surgery, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Anna Chen
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Markus Fabits
- Department of General Surgery, Division of Visceral Surgery, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Velina S Atanasova
- Center of Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | - Oliver Pusch
- Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Weninger
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Henning Walczak
- Institute for Biochemistry I, Medical Faculty, University of Cologne, Cologne, Germany
- Centre for Cell Death, Cancer, and Inflammation (CCCI), UCL Cancer Institute, University College London, London, UK
| | - Dietmar Herndler Brandstetter
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Gerda Egger
- Ludwig Boltzmann Institute Applied Diagnostics, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Helmut Dolznig
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- Center of Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | - Anna Kusienicka
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Matthias Farlik
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Michael Bergmann
- Department of General Surgery, Division of Visceral Surgery, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute Applied Diagnostics, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
26
|
Ben-Shaanan TL, Knöpper K, Duan L, Liu R, Taglinao H, Xu Y, An J, Plikus MV, Cyster JG. Dermal TRPV1 innervations engage a macrophage- and fibroblast-containing pathway to activate hair growth in mice. Dev Cell 2024; 59:2818-2833.e7. [PMID: 38851191 PMCID: PMC11537826 DOI: 10.1016/j.devcel.2024.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/25/2024] [Accepted: 05/15/2024] [Indexed: 06/10/2024]
Abstract
Pain, detected by nociceptors, is an integral part of injury, yet whether and how it can impact tissue physiology and recovery remain understudied. Here, we applied chemogenetics in mice to locally activate dermal TRPV1 innervations in naive skin and found that it triggered new regenerative cycling by dormant hair follicles (HFs). This was preceded by rapid apoptosis of dermal macrophages, mediated by the neuropeptide calcitonin gene-related peptide (CGRP). TRPV1 activation also triggered a macrophage-dependent induction of osteopontin (Spp1)-expressing dermal fibroblasts. The neuropeptide CGRP and the extracellular matrix protein Spp1 were required for the nociceptor-triggered hair growth. Finally, we showed that epidermal abrasion injury induced Spp1-expressing dermal fibroblasts and hair growth via a TRPV1 neuron and CGRP-dependent mechanism. Collectively, these data demonstrated a role for TRPV1 nociceptors in orchestrating a macrophage and fibroblast-supported mechanism to promote hair growth and enabling the efficient restoration of this mechano- and thermo-protective barrier after wounding.
Collapse
Affiliation(s)
- Tamar L Ben-Shaanan
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA.
| | - Konrad Knöpper
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Lihui Duan
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Ruiqi Liu
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
| | - Hanna Taglinao
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Ying Xu
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jinping An
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Maksim V Plikus
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
| | - Jason G Cyster
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
27
|
Kim BK, Yang MS, Srivastava U, Piparia S, Sharma R, Tiwari A, Kho A, Wong R, Celedón JC, Weiss ST, McGeachie M, Tantisira K. MiR-107 and Its Association With House Dust Mite Sensitisation: Implications for Asthma. Clin Exp Allergy 2024. [PMID: 39489493 DOI: 10.1111/cea.14590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
INTRODUCTION MicroRNAs (miRNAs) have been linked to allergic diseases but their effects on sensitisation to allergens in individuals with asthma are unknown. We aimed to identify miRNAs associated with house dust mite (HDM) sensitisation in childhood asthma. METHODS Serum samples from 1126 children with asthma who participated in the Genetics of Asthma in Costa Rica Study (GACRS) were profiled for 304 miRNAs. We first divided according to HDM sensitisation and then tested whether miRNAs were differentially expressed (DE) between the two groups. Gene enrichment analysis for target genes of the DE miRNAs was then performed to identify potential causal pathways. Replication analysis was performed in the Childhood Asthma Management Program (CAMP), in which expression data of 258 miRNAs in 491 children were available. A mediation analysis was conducted to discern relationships between miRNA and phenotype differences according to HDM sensitisation in GACRS cohort. RESULTS There were 906 (80.5%) and 220 (19.5%) subjects in the GACRS HDM+ and HDM- groups. Compared with HDM- participants, those in the HDM+ group were more likely to be severe in variables including pulmonary function, oral corticosteroid use and blood tests. A total of 17 miRNAs were DE (p < 0.05) between the two groups, with miR-642a-3p, let-7c-5p and miR-107 most significantly associated with HDM sensitisation. In CAMP, there were 39 DE miRNAs, and increased expression of miR-107 in HDM+ children was replicated in this cohort. In both GACRS and CAMP, the cadherin-binding pathway was enriched in an analysis of target genes for DE miRNA. In a mediation analysis, miR-107 showed significant indirect effects on eosinophil count and total IgE that were mediated by HDM sensitisation. CONCLUSION In children with asthma, miR-107 is associated with HDM sensitisation. Furthermore, miR-107 was indirectly associated with total IgE and eosinophil count through HDM sensitisation.
Collapse
Affiliation(s)
- Byung-Keun Kim
- Division of Pediatric Respiratory Medicine, Department of Pediatrics, University of California San Diego, La Jolla, California, USA
- Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Min-Suk Yang
- Division of Pediatric Respiratory Medicine, Department of Pediatrics, University of California San Diego, La Jolla, California, USA
- Department of Internal Medicine, SMG-SNU Boramae Medical Center, Seoul, Korea
| | - Upasna Srivastava
- Division of Pediatric Respiratory Medicine, Department of Pediatrics, University of California San Diego, La Jolla, California, USA
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Shraddha Piparia
- Division of Pediatric Respiratory Medicine, Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Rinku Sharma
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Anshul Tiwari
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Alvin Kho
- Computational Health Informatics Program, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Richard Wong
- Division of Pediatric Respiratory Medicine, Department of Pediatrics, University of California San Diego, La Jolla, California, USA
- Division of Pediatric Respiratory Medicine, Department of Pediatrics, Rady Children's Hospital, San Diego, California, USA
| | - Juan C Celedón
- Division of Pediatric Pulmonary Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Scott T Weiss
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Michael McGeachie
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Kelan Tantisira
- Division of Pediatric Respiratory Medicine, Department of Pediatrics, University of California San Diego, La Jolla, California, USA
- Division of Pediatric Respiratory Medicine, Department of Pediatrics, Rady Children's Hospital, San Diego, California, USA
| |
Collapse
|
28
|
Cesana M, Tufano G, Panariello F, Zampelli N, Soldati C, Mutarelli M, Montefusco S, Grieco G, Sepe LV, Rossi B, Nusco E, Rossignoli G, Panebianco G, Merciai F, Salviati E, Sommella EM, Campiglia P, Martello G, Cacchiarelli D, Medina DL, Ballabio A. TFEB controls syncytiotrophoblast formation and hormone production in placenta. Cell Death Differ 2024; 31:1439-1451. [PMID: 38965447 PMCID: PMC11519894 DOI: 10.1038/s41418-024-01337-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/17/2024] [Accepted: 06/25/2024] [Indexed: 07/06/2024] Open
Abstract
TFEB, a bHLH-leucine zipper transcription factor belonging to the MiT/TFE family, globally modulates cell metabolism by regulating autophagy and lysosomal functions. Remarkably, loss of TFEB in mice causes embryonic lethality due to severe defects in placentation associated with aberrant vascularization and resulting hypoxia. However, the molecular mechanism underlying this phenotype has remained elusive. By integrating in vivo analyses with multi-omics approaches and functional assays, we have uncovered an unprecedented function for TFEB in promoting the formation of a functional syncytiotrophoblast in the placenta. Our findings demonstrate that constitutive loss of TFEB in knock-out mice is associated with defective formation of the syncytiotrophoblast layer. Indeed, using in vitro models of syncytialization, we demonstrated that TFEB translocates into the nucleus during syncytiotrophoblast formation and binds to the promoters of crucial placental genes, including genes encoding fusogenic proteins (Syncytin-1 and Syncytin-2) and enzymes involved in steroidogenic pathways, such as CYP19A1, the rate-limiting enzyme for the synthesis of 17β-Estradiol (E2). Conversely, TFEB depletion impairs both syncytial fusion and endocrine properties of syncytiotrophoblast, as demonstrated by a significant decrease in the secretion of placental hormones and E2 production. Notably, restoration of TFEB expression resets syncytiotrophoblast identity. Our findings identify that TFEB controls placental development and function by orchestrating both the transcriptional program underlying trophoblast fusion and the acquisition of endocrine function, which are crucial for the bioenergetic requirements of embryonic development.
Collapse
Affiliation(s)
- Marcella Cesana
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Naples, Italy.
- Department of Advanced Biomedical Sciences, Federico II University, 80131, Naples, Italy.
| | - Gennaro Tufano
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Naples, Italy
| | - Francesco Panariello
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Naples, Italy
| | - Nicolina Zampelli
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Naples, Italy
| | - Chiara Soldati
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Naples, Italy
| | - Margherita Mutarelli
- National Research Council of Italy (CNR), Institute of Applied Sciences and Intelligent Systems "Eduardo Caianiello", Pozzuoli, Italy
| | - Sandro Montefusco
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Naples, Italy
| | - Giuseppina Grieco
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Naples, Italy
| | - Lucia Vittoria Sepe
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Naples, Italy
| | - Barbara Rossi
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Naples, Italy
| | - Edoardo Nusco
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Naples, Italy
| | | | | | - Fabrizio Merciai
- Department of Pharmacy, University of Salerno, Fisciano, 84084, Salerno, Italy
| | - Emanuela Salviati
- Department of Pharmacy, University of Salerno, Fisciano, 84084, Salerno, Italy
| | | | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, Fisciano, 84084, Salerno, Italy
| | | | - Davide Cacchiarelli
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Naples, Italy
- Department of Translational Medical Sciences, Federico II University, 80131, Naples, Italy
- SSM School for Advanced Studies, Federico II University, Naples, Italy
| | - Diego Luis Medina
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Naples, Italy
- Department of Translational Medical Sciences, Federico II University, 80131, Naples, Italy
| | - Andrea Ballabio
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Naples, Italy.
- Department of Translational Medical Sciences, Federico II University, 80131, Naples, Italy.
- SSM School for Advanced Studies, Federico II University, Naples, Italy.
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA.
| |
Collapse
|
29
|
Akçimen F, Chia R, Saez-Atienzar S, Ruffo P, Rasheed M, Ross JP, Liao C, Ray A, Dion PA, Scholz SW, Rouleau GA, Traynor BJ. Genomic Analysis Identifies Risk Factors in Restless Legs Syndrome. Ann Neurol 2024; 96:994-1005. [PMID: 39078117 PMCID: PMC11496024 DOI: 10.1002/ana.27040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/31/2024]
Abstract
OBJECTIVE Restless legs syndrome (RLS) is a neurological condition that causes uncomfortable sensations in the legs and an irresistible urge to move them, typically during periods of rest. The genetic basis and pathophysiology of RLS are incompletely understood. We sought to identify additional novel genetic risk factors associated with RLS susceptibility. METHODS We performed a whole-genome sequencing and genome-wide association meta-analysis of RLS cases (n = 9,851) and controls (n = 38,957) in 3 population-based biobanks (All of Us, Canadian Longitudinal Study on Aging, and CARTaGENE). RESULTS Genome-wide association analysis identified 9 independent risk loci, of which 8 had been previously reported, and 1 was a novel risk locus (LMX1B, rs35196838, OR 1.14, 95% CI 1.09-1.19, p value = 2.2 × 10-9). Furthermore, a transcriptome-wide association study also identified GLO1 and a previously unreported gene, ELFN1. A genetic correlation analysis revealed significant common variant overlaps between RLS and neuroticism (rg = 0.40, se = 0.08, p value = 5.4 × 10-7), depression (rg = 0.35, se = 0.06, p value = 2.17 × 10-8), and intelligence (rg = -0.20, se = 0.06, p value = 4.0 × 10-4). INTERPRETATION Our study expands the understanding of the genetic architecture of RLS, and highlights the contributions of common variants to this prevalent neurological disorder. ANN NEUROL 2024;96:994-1005.
Collapse
Affiliation(s)
- Fulya Akçimen
- Neuromuscular Diseases Research Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Ruth Chia
- Neuromuscular Diseases Research Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Sara Saez-Atienzar
- Neuromuscular Diseases Research Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Paola Ruffo
- Neuromuscular Diseases Research Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Medical Genetics Laboratory, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Memoona Rasheed
- Neuromuscular Diseases Research Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Jay P. Ross
- Department of Human Genetics, McGill University, Montréal, QC, Canada
- Montreal Neurological Institute-Hospital, McGill University, Montréal, QC, Canada
| | - Calwing Liao
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Anindita Ray
- Neurodegenerative Diseases Research Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Patrick A. Dion
- Montreal Neurological Institute-Hospital, McGill University, Montréal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
| | - Sonja W. Scholz
- Neurodegenerative Diseases Research Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD, USA
| | - Guy A. Rouleau
- Department of Human Genetics, McGill University, Montréal, QC, Canada
- Montreal Neurological Institute-Hospital, McGill University, Montréal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
| | - Bryan J. Traynor
- Neuromuscular Diseases Research Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD, USA
| |
Collapse
|
30
|
Rojas-Rivera D, Beltrán S, Muñoz-Carvajal F, Ahumada-Montalva P, Abarzúa L, Gomez L, Hernandez F, Bergmann CA, Labrador L, Calegaro-Nassif M, Bertrand MJM, Manque PA, Woehlbier U. The autophagy protein RUBCNL/PACER represses RIPK1 kinase-dependent apoptosis and necroptosis. Autophagy 2024; 20:2444-2459. [PMID: 38873940 DOI: 10.1080/15548627.2024.2367923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 06/01/2024] [Accepted: 06/10/2024] [Indexed: 06/15/2024] Open
Abstract
Mesenchymal stem cells (MSCs) are used in cell therapy; nonetheless, their application is limited by their poor survival after transplantation in a proinflammatory microenvironment. Macroautophagy/autophagy activation in MSCs constitutes a stress adaptation pathway, promoting cellular homeostasis. Our proteomics data indicate that RUBCNL/PACER (RUN and cysteine rich domain containing beclin 1 interacting protein like), a positive regulator of autophagy, is also involved in cell death. Hence, we screened MSC survival upon various cell death stimuli under loss or gain of function of RUBCNL. MSCs were protected from TNF (tumor necrosis factor)-induced regulated cell death when RUBCNL was expressed. TNF promotes inflammation by inducing RIPK1 kinase-dependent apoptosis or necroptosis. We determine that MSCs succumb to RIPK1 kinase-dependent apoptosis upon TNF sensing and necroptosis when caspases are inactivated. We show that RUBCNL is a negative regulator of both RIPK1-dependent apoptosis and necroptosis. Furthermore, RUBCNL mutants that lose the ability to regulate autophagy, retain their function in negatively regulating cell death. We also found that RUBCNL forms a complex with RIPK1, which disassembles in response to TNF. In line with this finding, RUBCNL expression limits assembly of RIPK1-TNFRSF1A/TNFR1 complex I, suggesting that complex formation between RUBCNL and RIPK1 represses TNF signaling. These results provide new insights into the crosstalk between the RIPK1-mediated cell death and autophagy machineries and suggest that RUBCNL, due to its functional duality in autophagy and apoptosis/necroptosis, could be targeted to improve the therapeutic efficacy of MSCs. Abbreviations: BAF: bafilomycin A1; CASP3: caspase 3; Caspases: cysteine-aspartic proteases; cCASP3: cleaved CASP3; CQ: chloroquine; CHX: cycloheximide; cPARP: cleaved poly (ADP-ribose) polymerase; DEPs: differential expressed proteins; ETO: etoposide; MEF: mouse embryonic fibroblast; MLKL: mixed lineage kinase domain-like; MSC: mesenchymal stem cell; MTORC1: mechanistic target of rapamycin kinase complex 1; Nec1s: necrostatin 1s; NFKB/NF-kB: nuclear factor of kappa light polypeptide gene enhancer in B cells; PLA: proximity ligation assay; RCD: regulated cell death; RIPK1: receptor (TNFRSF)-interacting serine-threonine kinase 1; RIPK3: receptor-interacting serine-threonine kinase 3; RUBCNL/PACER: RUN and cysteine rich domain containing beclin 1 interacting protein like; siCtrl: small interfering RNA nonsense; siRNA: small interfering RNA; TdT: terminal deoxynucleotidyl transferase; Tm: tunicamycin; TNF: tumor necrosis factor; TNFRSF1A/TNFR1: tumor necrosis factor receptor superfamily, member 1a.
Collapse
Affiliation(s)
- Diego Rojas-Rivera
- Cell Death & Biomedicine Laboratory, Centro de Biomedicina, Universidad Mayor, Santiago, Chile
- VIB Center for Inflammation Research, Universidad Mayor, Ghent, Belgium
| | - Sebastián Beltrán
- Center for Integrative Biology, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
- Programa de Doctorado en Genómica Integrativa, VRI, Facultad de Ciencia, Universidad Mayor, Santiago, Chile
- Escuela de Tecnología Médica, Facultad de Medicina y Ciencias de la Salud, Universidad Mayor, Santiago, Chile
| | | | - Pablo Ahumada-Montalva
- Cell Death & Biomedicine Laboratory, Centro de Biomedicina, Universidad Mayor, Santiago, Chile
- Programa de Doctorado en Neurobiología, VRI, Facultad de Ciencia, Universidad Mayor, Santiago, Chile
| | - Lorena Abarzúa
- Cell Death & Biomedicine Laboratory, Centro de Biomedicina, Universidad Mayor, Santiago, Chile
| | - Laura Gomez
- Center for Integrative Biology, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Fernanda Hernandez
- Center for Integrative Biology, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Cristian A Bergmann
- Center for Integrative Biology, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
- Programa de Doctorado en Genómica Integrativa, VRI, Facultad de Ciencia, Universidad Mayor, Santiago, Chile
| | - Luis Labrador
- Center for Integrative Biology, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
- Programa de Doctorado en Genómica Integrativa, VRI, Facultad de Ciencia, Universidad Mayor, Santiago, Chile
| | - Melissa Calegaro-Nassif
- Laboratorio de Autofagia y Neuroprotección, Centro de Biomedicina, Universidad Mayor, Santiago, Chile
| | - Mathieu J M Bertrand
- VIB Center for Inflammation Research, Universidad Mayor, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Patricio A Manque
- Center for Integrative Biology, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
- Centro de Oncologia de Precision (COP), Escuela de Medicina, Universidad Mayor, Santiago, Chile
| | - Ute Woehlbier
- Center for Integrative Biology, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| |
Collapse
|
31
|
Lucerne KE, Dean CR, Osman A, Meckel KR, Dave YA, Shipman AL, Cazarez DR, Cathomas F, Hofford RS, Kiraly DD. Colony-stimulating factor 2 (CSF2) as a gut microbiome dependent immune factor that alters molecular and behavioral responses to cocaine in male mice. Brain Behav Immun 2024; 122:137-149. [PMID: 39098439 DOI: 10.1016/j.bbi.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/26/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024] Open
Abstract
Cocaine use disorder is a condition that leads to tremendous morbidity and mortality for which there are currently no FDA-approved pharmacotherapies. Previous research has demonstrated an important role for the resident population of bacteria of the large intestine, collectively dubbed the gut microbiome, in modulating brain and behavior in models of cocaine and other substance use disorders. Importantly, previous work has repeatedly shown that depletion of the gut microbiome leads to increased cocaine taking and seeking behaviors in multiple models. While the precise mechanism of these gut-brain signaling pathways in models of cocaine use is not fully clear, and intriguing possibility is through gut microbiome influences on innate immune system function. In this manuscript we identify the cytokine colony stimulating factor 2 (CSF2) as an immune factor that is increased by cocaine in a gut microbiome dependent manner. Peripherally injected CSF2 crosses the blood-brain barrier into the nucleus accumbens, a brain region central to behavioral responses to cocaine. Treatment with peripheral CSF2 reduces acute and sensitized locomotor responses to cocaine as well as reducing cocaine place preference at high doses. On a molecular level, we find that peripheral injections of CSF2 alter the transcriptional response to both acute and repeated cocaine in the nucleus accumbens. Finally, treatment of microbiome depleted mice with CSF2 reverses the behavioral effects of microbiome depletion on the conditioned place preference assay. Taken together, this work identifies an innate immune factor that represents a novel gut-brain signaling cascade in models of cocaine use and lays the foundations for further translational work targeting this pathway.
Collapse
Affiliation(s)
- Kelsey E Lucerne
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Calista R Dean
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Atrium Wake Forest Baptist Health, Winston-Salem, NC 27101, United States
| | - Aya Osman
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Katherine R Meckel
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Yesha A Dave
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Ava L Shipman
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Dannis R Cazarez
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Atrium Wake Forest Baptist Health, Winston-Salem, NC 27101, United States
| | - Flurin Cathomas
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Rebecca S Hofford
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Translational Neuroscience, Wake Forest University School of Medicine, Atrium Wake Forest Baptist Health, Winston-Salem, NC 27101, United States; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Drew D Kiraly
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Translational Neuroscience, Wake Forest University School of Medicine, Atrium Wake Forest Baptist Health, Winston-Salem, NC 27101, United States; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Psychiatry, Wake Forest University School of Medicine, Atrium Wake Forest Baptist Health, Winston-Salem, NC 27101, United States.
| |
Collapse
|
32
|
Tan Q, Xu X, Zhou H, Jia J, Jia Y, Tu H, Zhou D, Wu X. A multi-ancestry cerebral cortex transcriptome-wide association study identifies genes associated with smoking behaviors. Mol Psychiatry 2024; 29:3580-3589. [PMID: 38816585 DOI: 10.1038/s41380-024-02605-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 04/30/2024] [Accepted: 05/09/2024] [Indexed: 06/01/2024]
Abstract
Transcriptome-wide association studies (TWAS) have provided valuable insight in identifying genes that may impact cigarette smoking. Most of previous studies, however, mainly focused on European ancestry. Limited TWAS studies have been conducted across multiple ancestries to explore genes that may impact smoking behaviors. In this study, we used cis-eQTL data of cerebral cortex from multiple ancestries in MetaBrain, including European, East Asian, and African samples, as reference panels to perform multi-ancestry TWAS analyses on ancestry-matched GWASs of four smoking behaviors including smoking initiation, smoking cessation, age of smoking initiation, and number of cigarettes per day in GWAS & Sequencing Consortium of Alcohol and Nicotine use (GSCAN). Multiple-ancestry fine-mapping approach was conducted to identify credible gene sets associated with these four traits. Enrichment and module network analyses were further performed to explore the potential roles of these identified gene sets. A total of 719 unique genes were identified to be associated with at least one of the four smoking traits across ancestries. Among those, 249 genes were further prioritized as putative causal genes in multiple ancestry-based fine-mapping approach. Several well-known smoking-related genes, including PSMA4, IREB2, and CHRNA3, showed high confidence across ancestries. Some novel genes, e.g., TSPAN3 and ANK2, were also identified in the credible sets. The enrichment analysis identified a series of critical pathways related to smoking such as synaptic transmission and glutamate receptor activity. Leveraging the power of the latest multi-ancestry GWAS and eQTL data sources, this study revealed hundreds of genes and relevant biological processes related to smoking behaviors. These findings provide new insights for future functional studies on smoking behaviors.
Collapse
Affiliation(s)
- Qilong Tan
- Department of Big Data in Health Science School of Public Health, Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Hangzhou, 310058, China
| | - Xiaohang Xu
- Department of Big Data in Health Science School of Public Health, Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Hangzhou, 310058, China
| | - Hanyi Zhou
- Department of Big Data in Health Science School of Public Health, Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Hangzhou, 310058, China
| | - Junlin Jia
- Department of Big Data in Health Science School of Public Health, Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Hangzhou, 310058, China
| | - Yubing Jia
- Department of Big Data in Health Science School of Public Health, Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Hangzhou, 310058, China
| | - Huakang Tu
- Department of Big Data in Health Science School of Public Health, Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Hangzhou, 310058, China
- National Institute for Data Science in Health and Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Dan Zhou
- Department of Big Data in Health Science School of Public Health, Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Hangzhou, 310058, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Xifeng Wu
- Department of Big Data in Health Science School of Public Health, Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Hangzhou, 310058, China.
- School of Medicine and Health Science, George Washington University, Washington, DC, USA.
| |
Collapse
|
33
|
Bellver-Sanchis A, Ávila-López PA, Tic I, Valle-García D, Ribalta-Vilella M, Labrador L, Banerjee DR, Guerrero A, Casadesus G, Poulard C, Pallàs M, Griñán-Ferré C. Neuroprotective effects of G9a inhibition through modulation of peroxisome-proliferator activator receptor gamma-dependent pathways by miR-128. Neural Regen Res 2024; 19:2532-2542. [PMID: 38526289 PMCID: PMC11090428 DOI: 10.4103/1673-5374.393102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 12/17/2023] [Accepted: 12/28/2023] [Indexed: 03/26/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202419110-00033/figure1/v/2024-03-08T184507Z/r/image-tiff Dysregulation of G9a, a histone-lysine N-methyltransferase, has been observed in Alzheimer's disease and has been correlated with increased levels of chronic inflammation and oxidative stress. Likewise, microRNAs are involved in many biological processes and diseases playing a key role in pathogenesis, especially in multifactorial diseases such as Alzheimer's disease. Therefore, our aim has been to provide partial insights into the interconnection between G9a, microRNAs, oxidative stress, and neuroinflammation. To better understand the biology of G9a, we compared the global microRNA expression between senescence-accelerated mouse-prone 8 (SAMP8) control mice and SAMP8 treated with G9a inhibitor UNC0642. We found a downregulation of miR-128 after a G9a inhibition treatment, which interestingly binds to the 3' untranslated region (3'-UTR) of peroxisome-proliferator activator receptor γ (PPARG) mRNA. Accordingly, Pparg gene expression levels were higher in the SAMP8 group treated with G9a inhibitor than in the SAMP8 control group. We also observed modulation of oxidative stress responses might be mainly driven Pparg after G9a inhibitor. To confirm these antioxidant effects, we treated primary neuron cell cultures with hydrogen peroxide as an oxidative insult. In this setting, treatment with G9a inhibitor increases both cell survival and antioxidant enzymes. Moreover, up-regulation of PPARγ by G9a inhibitor could also increase the expression of genes involved in DNA damage responses and apoptosis. In addition, we also described that the PPARγ/AMPK axis partially explains the regulation of autophagy markers expression. Finally, PPARγ/GADD45α potentially contributes to enhancing synaptic plasticity and neurogenesis after G9a inhibition. Altogether, we propose that pharmacological inhibition of G9a leads to a neuroprotective effect that could be due, at least in part, by the modulation of PPARγ-dependent pathways by miR-128.
Collapse
Affiliation(s)
- Aina Bellver-Sanchis
- Department of Pharmacology and Therapeutic Chemistry, Institut de Neurociències-Universitat de Barcelona, Barcelona, Spain
| | - Pedro A. Ávila-López
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Iva Tic
- Department of Pharmacology and Therapeutic Chemistry, Institut de Neurociències-Universitat de Barcelona, Barcelona, Spain
| | - David Valle-García
- Institute of Biotechnology, National Autonomous University of Mexico, Cuernavaca, Mexico
| | - Marta Ribalta-Vilella
- Department of Pharmacology and Therapeutic Chemistry, Institut de Neurociències-Universitat de Barcelona, Barcelona, Spain
| | - Luis Labrador
- Department of Pharmacology and Therapeutics, Health Science Center-University of Florida, Gainesville, FL, USA
| | - Deb Ranjan Banerjee
- Department of Chemistry, National Institute of Technology Durgapur, M G Avenue, Durgapur, West Bengal, India
| | - Ana Guerrero
- Department of Pharmacology and Therapeutic Chemistry, Institut de Neurociències-Universitat de Barcelona, Barcelona, Spain
| | - Gemma Casadesus
- Department of Pharmacology and Therapeutics, Health Science Center-University of Florida, Gainesville, FL, USA
| | - Coralie Poulard
- Cancer Research Cancer Lyon, Université de Lyon, Lyon, France
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- CNRS UMR5286, Centre de Recherche en Cancérlogie de Lyon, Lyon, France
| | - Mercè Pallàs
- Department of Pharmacology and Therapeutic Chemistry, Institut de Neurociències-Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Christian Griñán-Ferré
- Department of Pharmacology and Therapeutic Chemistry, Institut de Neurociències-Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
34
|
Górska AM, Santos-García I, Eiriz I, Brüning T, Nyman T, Pahnke J. Evaluation of cerebrospinal fluid (CSF) and interstitial fluid (ISF) mouse proteomes for the validation and description of Alzheimer's disease biomarkers. J Neurosci Methods 2024; 411:110239. [PMID: 39102902 DOI: 10.1016/j.jneumeth.2024.110239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/22/2024] [Accepted: 07/26/2024] [Indexed: 08/07/2024]
Abstract
BACKGROUND Mass spectrometry (MS)-based cerebrospinal fluid (CSF) proteomics is an important method for discovering biomarkers of neurodegenerative diseases. CSF serves as a reservoir for interstitial fluid (ISF), and extensive communication between the two fluid compartments helps to remove waste products from the brain. NEW METHOD We performed proteomic analyses of both CSF and ISF fluid compartments using intracerebral microdialysis to validate and detect novel biomarkers of Alzheimer's disease (AD) in APPtg and C57Bl/6J control mice. RESULTS We identified up to 625 proteins in ISF and 4483 proteins in CSF samples. By comparing the biofluid profiles of APPtg and C57Bl/6J mice, we detected 37 and 108 significantly up- and downregulated candidates, respectively. In ISF, 7 highly regulated proteins, such as Gfap, Aldh1l1, Gstm1, and Txn, have already been implicated in AD progression, whereas in CSF, 9 out of 14 highly regulated proteins, such as Apba2, Syt12, Pgs1 and Vsnl1, have also been validated to be involved in AD pathogenesis. In addition, we also detected new interesting regulated proteins related to the control of synapses and neurotransmission (Kcna2, Cacng3, and Clcn6) whose roles as AD biomarkers should be further investigated. COMPARISON WITH EXISTING METHODS This newly established combined protocol provides better insight into the mutual communication between ISF and CSF as an analysis of tissue or CSF compartments alone. CONCLUSIONS The use of multiple fluid compartments, ISF and CSF, for the detection of their biological communication enables better detection of new promising AD biomarkers.
Collapse
Affiliation(s)
- Anna Maria Górska
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology, Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, Oslo NO-0372, Norway.
| | - Irene Santos-García
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology, Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, Oslo NO-0372, Norway.
| | - Ivan Eiriz
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology, Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, Oslo NO-0372, Norway.
| | - Thomas Brüning
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology, Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, Oslo NO-0372, Norway.
| | - Tuula Nyman
- Proteomics Core Facility, Department of Immunology, Oslo University Hospital (OUS) and University of Oslo (UiO), Faculty of Medicine, Sognsvannsveien 20, Oslo NO-0372, Norway.
| | - Jens Pahnke
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology, Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, Oslo NO-0372, Norway; Institute of Nutritional Medicine (INUM) and Lübeck Institute of Dermatology (LIED), University of Lübeck (UzL) and University Medical Center Schleswig-Holstein (UKSH), Ratzeburger Allee 160, Lübeck D-23538, Germany; Department of Pharmacology, Faculty of Medicine and Life Sciences, University of Latvia, Jelgavas iela 3, Rīga LV-1004, Latvia; School of Neurobiology, Biochemistry and Biophysics, The Georg S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv IL-6997801, Israel.
| |
Collapse
|
35
|
Demoen L, Matthijssens F, Reunes L, Palhais B, Lintermans B, T’Sas S, Fijalkowski I, Taminau J, Akele MZ, Van Belle S, Taghon T, Deforce D, Van Nieuwerburgh F, Berx G, Ntziachristos P, Debyser Z, Durinck K, Pieters T, Goossens S, Van Vlierberghe P. A dual role for PSIP1/LEDGF in T cell acute lymphoblastic leukemia. SCIENCE ADVANCES 2024; 10:eado6765. [PMID: 39485844 PMCID: PMC11529709 DOI: 10.1126/sciadv.ado6765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 09/30/2024] [Indexed: 11/03/2024]
Abstract
T cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological malignancy. Current intensified therapeutic protocols coincide with severe side effects, and no salvage therapy is available for primary therapy-resistant or relapsed patients. This highlights the need to identify new therapeutic targets in T-ALL. PSIP1, dispensable for normal hematopoiesis, is a dependency factor in KMT2A-rearranged myeloid leukemia. Nonetheless, loss-of-function mutations suggest a tumor suppressor role for PSIP1 in T-ALL. Here, we demonstrate that the loss of Psip1 accelerates T-ALL initiation in mice which we correlated with reduced H3K27me3 binding. Contrastingly, loss of PSIP1 impaired cell proliferation in several T-ALL cell lines. In cell lines, PSIP1 down-regulation leads to a reduction of COX20, an assembly factor of the cytochrome c oxidase in the mitochondria, and to a reduction in mitochondrial respiration. This indicates that PSIP1 can exert a dual role in the context of T-ALL, either as a tumor suppressor gene during tumor initiation or as a dependency factor in tumor maintenance.
Collapse
Affiliation(s)
- Lisa Demoen
- Lab of Normal and Malignant Hematopoiesis, Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, 9000 Ghent, Belgium
| | - Filip Matthijssens
- Lab of Normal and Malignant Hematopoiesis, Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, 9000 Ghent, Belgium
| | - Lindy Reunes
- Lab of Normal and Malignant Hematopoiesis, Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, 9000 Ghent, Belgium
| | - Bruno Palhais
- Lab of Normal and Malignant Hematopoiesis, Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, 9000 Ghent, Belgium
| | - Béatrice Lintermans
- Lab of Normal and Malignant Hematopoiesis, Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, 9000 Ghent, Belgium
| | - Sara T’Sas
- Cancer Research Institute Ghent (CRIG), Ghent University, 9000 Ghent, Belgium
- Unit for Translational Research in Oncology, Department of Diagnostic Sciences, Ghent University, 9000 Ghent, Belgium
| | - Igor Fijalkowski
- Cancer Research Institute Ghent (CRIG), Ghent University, 9000 Ghent, Belgium
- Leukemia Therapy Resistance Laboratory, Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Joachim Taminau
- Cancer Research Institute Ghent (CRIG), Ghent University, 9000 Ghent, Belgium
- Department Biomedical Molecular Biology, 9000 Ghent University, Ghent, Belgium
| | - Muluembet Z. Akele
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, Katholieke Universiteit (KU) Leuven, 3000 Leuven, Belgium
| | - Siska Van Belle
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, Katholieke Universiteit (KU) Leuven, 3000 Leuven, Belgium
| | - Tom Taghon
- Cancer Research Institute Ghent (CRIG), Ghent University, 9000 Ghent, Belgium
- T Cell Team Taghon, Department of Diagnostic Sciences, Ghent University, 9000 Ghent, Belgium
| | - Dieter Deforce
- Laboratory of Pharmaceutical Biotechnology, Ghent University, 9000 Ghent, Belgium
| | | | - Geert Berx
- Cancer Research Institute Ghent (CRIG), Ghent University, 9000 Ghent, Belgium
- Department Biomedical Molecular Biology, 9000 Ghent University, Ghent, Belgium
| | - Panagiotis Ntziachristos
- Cancer Research Institute Ghent (CRIG), Ghent University, 9000 Ghent, Belgium
- Leukemia Therapy Resistance Laboratory, Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Zeger Debyser
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, Katholieke Universiteit (KU) Leuven, 3000 Leuven, Belgium
| | - Kaat Durinck
- Cancer Research Institute Ghent (CRIG), Ghent University, 9000 Ghent, Belgium
- Pediatric Precision Oncology Lab, Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Tim Pieters
- Lab of Normal and Malignant Hematopoiesis, Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, 9000 Ghent, Belgium
- Unit for Translational Research in Oncology, Department of Diagnostic Sciences, Ghent University, 9000 Ghent, Belgium
- Leukemia Therapy Resistance Laboratory, Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Steven Goossens
- Cancer Research Institute Ghent (CRIG), Ghent University, 9000 Ghent, Belgium
- Unit for Translational Research in Oncology, Department of Diagnostic Sciences, Ghent University, 9000 Ghent, Belgium
| | - Pieter Van Vlierberghe
- Lab of Normal and Malignant Hematopoiesis, Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
36
|
Hou Y, Sun L, LaFleur MW, Huang L, Lambden C, Thakore PI, Geiger-Schuller K, Kimura K, Yan L, Zang Y, Tang R, Shi J, Barilla R, Deng L, Subramanian A, Wallrapp A, Choi HS, Kye YC, Ashenberg O, Schiebinger G, Doench JG, Chiu IM, Regev A, Sharpe AH, Kuchroo VK. Neuropeptide signalling orchestrates T cell differentiation. Nature 2024; 635:444-452. [PMID: 39415015 DOI: 10.1038/s41586-024-08049-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/13/2024] [Indexed: 10/18/2024]
Abstract
The balance between T helper type 1 (TH1) cells and other TH cells is critical for antiviral and anti-tumour responses1-3, but how this balance is achieved remains poorly understood. Here we dissected the dynamic regulation of TH1 cell differentiation during in vitro polarization, and during in vivo differentiation after acute viral infection. We identified regulators modulating T helper cell differentiation using a unique TH1-TH2 cell dichotomous culture system and systematically validated their regulatory functions through multiple in vitro and in vivo CRISPR screens. We found that RAMP3, a component of the receptor for the neuropeptide CGRP (calcitonin gene-related peptide), has a cell-intrinsic role in TH1 cell fate determination. Extracellular CGRP signalling through the receptor RAMP3-CALCRL restricted the differentiation of TH2 cells, but promoted TH1 cell differentiation through the activation of downstream cAMP response element-binding protein (CREB) and activating transcription factor 3 (ATF3). ATF3 promoted TH1 cell differentiation by inducing the expression of Stat1, a key regulator of TH1 cell differentiation. After viral infection, an interaction between CGRP produced by neurons and RAMP3 expressed on T cells enhanced the anti-viral IFNγ-producing TH1 and CD8+ T cell response, and timely control of acute viral infection. Our research identifies a neuroimmune circuit in which neurons participate in T cell fate determination by producing the neuropeptide CGRP during acute viral infection, which acts on RAMP3-expressing T cells to induce an effective anti-viral TH1 cell response.
Collapse
Affiliation(s)
- Yu Hou
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital and Harvard Medical School, Boston, MA, USA
- Liangzhu Laboratory of Zhejiang University, Zhejiang University School of Medicine, Hangzhou, China
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| | - Linyu Sun
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital and Harvard Medical School, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| | - Martin W LaFleur
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Linglin Huang
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital and Harvard Medical School, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| | - Conner Lambden
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital and Harvard Medical School, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| | | | | | - Kimitoshi Kimura
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital and Harvard Medical School, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| | - Longjun Yan
- Liangzhu Laboratory of Zhejiang University, Zhejiang University School of Medicine, Hangzhou, China
| | - Yue Zang
- Liangzhu Laboratory of Zhejiang University, Zhejiang University School of Medicine, Hangzhou, China
| | - Ruihan Tang
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital and Harvard Medical School, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jingwen Shi
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital and Harvard Medical School, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
- BeiGene (Beijing) Co., Ltd., Beijing, China
| | - Rocky Barilla
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital and Harvard Medical School, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| | - Liwen Deng
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Ayshwarya Subramanian
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital and Harvard Medical School, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| | - Antonia Wallrapp
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital and Harvard Medical School, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| | - Hee Sun Choi
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital and Harvard Medical School, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| | - Yoon-Chul Kye
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital and Harvard Medical School, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| | - Orr Ashenberg
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Geoffrey Schiebinger
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Mathematics, University of British Columbia, Vancouver, British Columbia, Canada
| | - John G Doench
- Genetic Perturbation Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Isaac M Chiu
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Aviv Regev
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Genentech, South San Francisco, CA, USA.
| | - Arlene H Sharpe
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital and Harvard Medical School, Boston, MA, USA.
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| | - Vijay K Kuchroo
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital and Harvard Medical School, Boston, MA, USA.
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
37
|
Mu Y, Wallenius A, Zang G, Zhu S, Rudolfsson S, Aripaka K, Bergh A, Mateus A, Landström M. The TβRI promotes migration and metastasis through thrombospondin 1 and ITGAV in prostate cancer cells. Oncogene 2024; 43:3321-3334. [PMID: 39304722 PMCID: PMC11534692 DOI: 10.1038/s41388-024-03165-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 09/02/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
TGFβ potently modifies the extracellular matrix (ECM), which is thought to favor tumor cell invasion. However, the mechanism whereby the cancer cells employ the ECM proteins to facilitate their motility is largely unknown. In this study we used RNA-seq and proteomic analysis to examine the proteins secreted by castration-resistant prostate cancer (CRPC) cells upon TGFβ treatment and found that thrombospondin 1 (THBS1) was observed to be one of the predominant proteins. The CRISPR Cas9, or siRNA techniques was used to downregulate TGFβ type I receptor (TβRI) to interfere with TGFβ signaling in various cancer cells in vitro. The interaction of ECM proteins with the TβRI in the migratory prostate cancer cells in response to TGFβ1 was demonstrated by several different techniques to reveal that THBS1 mediates cell migration by interacting with integrin subunit alpha V (ITGAV) and TβRI. Deletion of TβRI or THBS1 in cancer cells prevented their migration and invasion. THBS1 belongs to a group of tumorigenic ECM proteins induced via TGFβ signaling in CRPC cells, and high expression of THBS1 in human prostate cancer tissues correlated with the degree of malignancy. TGFβ-induced production of THBS1 through TβRI facilitates the invasion and metastasis of CRPC cells as shown in vivo xenograft animal experiments.
Collapse
Affiliation(s)
- Yabing Mu
- Department of Medical Bioscience, Umeå University, Umeå, Sweden.
| | | | - Guangxiang Zang
- Department of Medical Bioscience, Umeå University, Umeå, Sweden
| | - Shaochun Zhu
- Department of Chemistry, Umeå University, Umeå, Sweden
| | | | - Karthik Aripaka
- Department of Medical Bioscience, Umeå University, Umeå, Sweden
| | - Anders Bergh
- Department of Medical Bioscience, Umeå University, Umeå, Sweden
| | - André Mateus
- Department of Chemistry, Umeå University, Umeå, Sweden
- Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
| | - Maréne Landström
- Department of Medical Bioscience, Umeå University, Umeå, Sweden.
| |
Collapse
|
38
|
Nguyen DD, Hooper WF, Liu W, Chu TR, Geiger H, Shelton JM, Shah M, Goldstein ZR, Winterkorn L, Helland A, Sigouros M, Manohar J, Moyer J, Al Assaad M, Semaan A, Cohen S, Madorsky Rowdo F, Wilkes D, Osman M, Singh RR, Sboner A, Valentine HL, Abbosh P, Tagawa ST, Nanus DM, Nauseef JT, Sternberg CN, Molina AM, Scherr D, Inghirami G, Mosquera JM, Elemento O, Robine N, Faltas BM. The interplay of mutagenesis and ecDNA shapes urothelial cancer evolution. Nature 2024; 635:219-228. [PMID: 39385020 PMCID: PMC11541202 DOI: 10.1038/s41586-024-07955-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/14/2024] [Indexed: 10/11/2024]
Abstract
Advanced urothelial cancer is a frequently lethal disease characterized by marked genetic heterogeneity1. In this study, we investigated the evolution of genomic signatures caused by endogenous and external mutagenic processes and their interplay with complex structural variants (SVs). We superimposed mutational signatures and phylogenetic analyses of matched serial tumours from patients with urothelial cancer to define the evolutionary dynamics of these processes. We show that APOBEC3-induced mutations are clonal and early, whereas chemotherapy induces mutational bursts of hundreds of late subclonal mutations. Using a genome graph computational tool2, we observed frequent high copy-number circular amplicons characteristic of extrachromosomal DNA (ecDNA)-forming SVs. We characterized the distinct temporal patterns of APOBEC3-induced and chemotherapy-induced mutations within ecDNA-forming SVs, gaining new insights into the timing of these mutagenic processes relative to ecDNA biogenesis. We discovered that most CCND1 amplifications in urothelial cancer arise within circular ecDNA-forming SVs. ecDNA-forming SVs persisted and increased in complexity, incorporating additional DNA segments and contributing to the evolution of treatment resistance. Oxford Nanopore Technologies long-read whole-genome sequencing followed by de novo assembly mapped out CCND1 ecDNA structure. Experimental modelling of CCND1 ecDNA confirmed its role as a driver of treatment resistance. Our findings define fundamental mechanisms that drive urothelial cancer evolution and have important therapeutic implications.
Collapse
Affiliation(s)
- Duy D Nguyen
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | | | - Weisi Liu
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | | | | | | | | | | | | | | | - Michael Sigouros
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Jyothi Manohar
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Jenna Moyer
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Majd Al Assaad
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Alissa Semaan
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Sandra Cohen
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Florencia Madorsky Rowdo
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - David Wilkes
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Mohamed Osman
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Rahul R Singh
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Andrea Sboner
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Henkel L Valentine
- Nuclear Dynamics and Cancer program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Phillip Abbosh
- Nuclear Dynamics and Cancer program, Fox Chase Cancer Center, Philadelphia, PA, USA
- Department of Urology, Einstein Healthcare Network, Philadelphia, PA, USA
| | - Scott T Tagawa
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Urology, Weill Cornell Medicine, New York, NY, USA
| | - David M Nanus
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Urology, Weill Cornell Medicine, New York, NY, USA
| | - Jones T Nauseef
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Cora N Sternberg
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Ana M Molina
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Douglas Scherr
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Urology, Weill Cornell Medicine, New York, NY, USA
| | - Giorgio Inghirami
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Juan Miguel Mosquera
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Olivier Elemento
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | | | - Bishoy M Faltas
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA.
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
39
|
Matsuyama K, Yamada S, Sato H, Zhan J, Shoda T. Advances in omics data for eosinophilic esophagitis: moving towards multi-omics analyses. J Gastroenterol 2024; 59:963-978. [PMID: 39297956 PMCID: PMC11496339 DOI: 10.1007/s00535-024-02151-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 09/07/2024] [Indexed: 09/21/2024]
Abstract
Eosinophilic esophagitis (EoE) is a chronic, allergic inflammatory disease of the esophagus characterized by eosinophil accumulation and has a growing global prevalence. EoE significantly impairs quality of life and poses a substantial burden on healthcare resources. Currently, only two FDA-approved medications exist for EoE, highlighting the need for broader research into its management and prevention. Recent advancements in omics technologies, such as genomics, epigenetics, transcriptomics, proteomics, and others, offer new insights into the genetic and immunologic mechanisms underlying EoE. Genomic studies have identified genetic loci and mutations associated with EoE, revealing predispositions that vary by ancestry and indicating EoE's complex genetic basis. Epigenetic studies have uncovered changes in DNA methylation and chromatin structure that affect gene expression, influencing EoE pathology. Transcriptomic analyses have revealed a distinct gene expression profile in EoE, dominated by genes involved in activated type 2 immunity and epithelial barrier function. Proteomic approaches have furthered the understanding of EoE mechanisms, identifying potential new biomarkers and therapeutic targets. However, challenges in integrating diverse omics data persist, largely due to their complexity and the need for advanced computational methods. Machine learning is emerging as a valuable tool for analyzing extensive and intricate datasets, potentially revealing new aspects of EoE pathogenesis. The integration of multi-omics data through sophisticated computational approaches promises significant advancements in our understanding of EoE, improving diagnostics, and enhancing treatment effectiveness. This review synthesizes current omics research and explores future directions for comprehensively understanding the disease mechanisms in EoE.
Collapse
Affiliation(s)
- Kazuhiro Matsuyama
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, 3333 Burnet Avenue, MLC 7028, Cincinnati, OH, 45229, USA
- Department of Computer Science, University of Cincinnati, Cincinnati, USA
| | - Shingo Yamada
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, 3333 Burnet Avenue, MLC 7028, Cincinnati, OH, 45229, USA
| | - Hironori Sato
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, 3333 Burnet Avenue, MLC 7028, Cincinnati, OH, 45229, USA
- Department of Pediatrics, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Justin Zhan
- Department of Computer Science, University of Cincinnati, Cincinnati, USA
| | - Tetsuo Shoda
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, 3333 Burnet Avenue, MLC 7028, Cincinnati, OH, 45229, USA.
| |
Collapse
|
40
|
Mustonen AM, Malinen M, Paakinaho V, Lehenkari P, Palosaari S, Kärjä V, Nieminen P. RNA sequencing analysis reveals distinct gene expression patterns in infrapatellar fat pads of patients with end-stage osteoarthritis or rheumatoid arthritis. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1870:159576. [PMID: 39489461 DOI: 10.1016/j.bbalip.2024.159576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 10/31/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
Osteoarthritis (OA) and autoimmune-driven rheumatoid arthritis (RA) are inflammatory joint diseases that share partly similar symptoms but have different, inadequately understood pathogeneses. Adipose tissues, including intra-articular infrapatellar fat pad (IFP), may contribute to their development. Analysis of differentially expressed genes (DEGs) in IFPs could improve the diagnostics of these conditions and help to develop novel treatment strategies. The aim was to identify potentially crucial genes and pathways discriminating OA and RA IFPs using RNA sequencing analysis. We aimed to distinguish genetically distinct patient groups as a starting point for further translational studies with the eventual goal of personalized medicine. Samples were collected from arthritic knees during total knee arthroplasty of sex- and age-matched OA and seropositive RA patients (n = 5-6/group). Metabolic pathways of interest were investigated by whole transcriptome sequencing, and DEGs were analyzed with univariate tests, hierarchical clustering (HC), and pathway analyses. There was significant interindividual variation in mRNA expression patterns, but distinct subgroups of OA and RA patients emerged that reacted similarly to their disease states based on HC. Compared to OA, RA samples showed 703 genes to be upregulated and 691 genes to be downregulated. Signaling pathway analyses indicated that these DEGs had common pathways in lipid metabolism, fatty acid biosynthesis and degradation, adipocytokine and insulin signaling, inflammatory response, and extracellular matrix organization. The divergent mRNA expression profiles in RA and OA suggest contribution of IFP to the regulation of synovial inflammatory processes and articular cartilage degradation and could provide novel diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Anne-Mari Mustonen
- Institute of Biomedicine, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland; Department of Environmental and Biological Sciences, Faculty of Science, Forestry and Technology, University of Eastern Finland, P.O. Box 111, FI-80101 Joensuu, Finland.
| | - Marjo Malinen
- Department of Forestry and Environmental Engineering, South-Eastern Finland University of Applied Sciences, Paraatikenttä 7, FI-45100 Kouvola, Finland.
| | - Ville Paakinaho
- Institute of Biomedicine, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland.
| | - Petri Lehenkari
- Translational Medicine Research Unit, Faculty of Medicine, University of Oulu, P.O. Box 5000, FI-90014 Oulu, Finland; Medical Research Center, University of Oulu and Oulu University Hospital, P.O. Box 5000, FI-90014 Oulu, Finland; Department of Surgery, Oulu University Hospital, P.O. Box 21, FI-90029 OYS, Finland.
| | - Sanna Palosaari
- Translational Medicine Research Unit, Faculty of Medicine, University of Oulu, P.O. Box 5000, FI-90014 Oulu, Finland; Medical Research Center, University of Oulu and Oulu University Hospital, P.O. Box 5000, FI-90014 Oulu, Finland.
| | - Vesa Kärjä
- Department of Clinical Pathology, Kuopio University Hospital, Puijonlaaksontie 2, FI-70210 Kuopio, Finland.
| | - Petteri Nieminen
- Institute of Biomedicine, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland.
| |
Collapse
|
41
|
Staley HA, Jernigan JE, Bolen ML, Titus AM, Neighbarger N, Cole C, Menees KB, Wallings RL, Tansey MG. Alzheimer's disease-associated protective variant Plcg2-P522R modulates peripheral macrophage function in a sex-dimorphic manner. J Neuroinflammation 2024; 21:280. [PMID: 39487477 PMCID: PMC11529260 DOI: 10.1186/s12974-024-03271-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 10/22/2024] [Indexed: 11/04/2024] Open
Abstract
Genome-wide association studies have identified a protective mutation in the phospholipase C gamma 2 (PLCG2) gene which confers protection against Alzheimer's disease (AD)-associated cognitive decline. Therefore, PLCG2, which is primarily expressed in immune cells, has become a target of interest for potential therapeutic intervention. The protective allele, known as P522R, has been shown to be hyper-morphic in microglia, increasing phagocytosis of amyloid-beta (Aβ), and increasing the release of inflammatory cytokines. However, the effect of this protective mutation on peripheral tissue-resident macrophages, and the extent to which sex modifies this effect, has yet to be assessed. Herein, we show that peripheral macrophages carrying the P522R mutation do indeed show functional differences compared to their wild-type (WT) counterparts, however, these alterations occur in a sex-dependent manner. In macrophages from females, the P522R mutation increases lysosomal protease activity, cytokine secretion, and gene expression associated with cytokine secretion and apoptosis. In contrast, in macrophages from males, the mutation causes decreased phagocytosis and lysosomal protease activity, modest increases in cytokine secretion, and induction of gene expression associated with negative regulation of the immune response. Taken together, these results suggest that the mutation may be conferring different effects dependent on sex and cell type, and highlight the importance of considering sex as a biological variable when assessing the effects of genetic variants and implications for potential immune system-targeted therapies.
Collapse
Affiliation(s)
- Hannah A Staley
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Janna E Jernigan
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - MacKenzie L Bolen
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Ann M Titus
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Noelle Neighbarger
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Cassandra Cole
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Kelly B Menees
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Rebecca L Wallings
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Malú Gámez Tansey
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, USA.
- Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine, Gainesville, FL, USA.
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
- Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, USA.
| |
Collapse
|
42
|
Singh P, Tabassum G, Masood M, Anwar S, Syed MA, Dev K, Hassan MI, Haque MM, Dohare R, Singh IK. Investigating the role of prognostic mitophagy-related genes in non-small cell cancer pathogenesis via multiomics and network-based approach. 3 Biotech 2024; 14:273. [PMID: 39444988 PMCID: PMC11493942 DOI: 10.1007/s13205-024-04127-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024] Open
Abstract
As one of the most prevalent malignancies, lung cancer displays considerable biological variability in both molecular and clinical characteristics. Lung cancer is broadly categorized into small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC) with the latter being most prevalent. The primary histological subtypes of NSCLC are lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC). In the present work, we primarily extracted mRNA count data from a publicly accessible database followed by differentially expressed genes (DEGs) and differentially expressed mitophagy-related genes (DEMRGs) identification in case of both LUAD and LUSC cohorts. Next, we identified important DEMRGs via clustering approach followed by enrichment, survival, and mutational analyses. Lastly, the finalized prognostic biomarker was validated using wet-lab experimentations. Primarily, we obtained 986 and 1714 DEGs across LUAD and LUSC cohorts. Only 7 DEMRGs from both cohorts had significant membership values as indicated by the clustering analysis. Most significant pathway, Gene Ontology (GO)-biological process (BP), GO-molecular function (MF), GO-cellular compartment (CC) terms were macroautophagy, GTP metabolic process, magnesium ion binding, mitochondrial outer membrane. Among all, only TDRKH reported significant overall survival (OS) and 14% amplification across LUAD patients. Lastly, we validated TDRKH via immunohistochemistry (IHC) and semi-quantitative polymerase chain reaction (PCR). In conclusion, our findings advocate for the exploration of TDRKH and their genetic alterations in precision oncology therapeutic approaches for LUAD, emphasizing the potential for target-driven therapy and early diagnostics. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-04127-y.
Collapse
Affiliation(s)
- Prithvi Singh
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025 India
| | - Gulnaz Tabassum
- Department of Biotechnology, Faculty of Life Sciences, Jamia Millia Islamia, New Delhi, 110025 India
| | - Mohammad Masood
- Department of Biotechnology, Faculty of Life Sciences, Jamia Millia Islamia, New Delhi, 110025 India
| | - Saleha Anwar
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025 India
| | - Mansoor Ali Syed
- Department of Biotechnology, Faculty of Life Sciences, Jamia Millia Islamia, New Delhi, 110025 India
| | - Kapil Dev
- Department of Biotechnology, Faculty of Life Sciences, Jamia Millia Islamia, New Delhi, 110025 India
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025 India
| | - Mohammad Mahfuzul Haque
- Department of Biotechnology, Faculty of Life Sciences, Jamia Millia Islamia, New Delhi, 110025 India
| | - Ravins Dohare
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025 India
| | - Indrakant Kumar Singh
- Molecular Biology Research Lab, Department of Zoology & DBC i4 Center, Deshbandhu College, University of Delhi, New Delhi, 110019 India
- Delhi School of Public Health, Institute of Eminence, University of Delhi, New Delhi, 110007 India
| |
Collapse
|
43
|
Boretto C, Muzio G, Autelli R. PPARγ antagonism as a new tool for preventing or overcoming endocrine resistance in luminal A breast cancers. Biomed Pharmacother 2024; 180:117461. [PMID: 39326102 DOI: 10.1016/j.biopha.2024.117461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/10/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024] Open
Abstract
PURPOSE This research investigates the role of PPARγ in the complex molecular events underlying the acquisition of resistance to tamoxifen (Tam) in luminal A breast cancer (BC) cells. Furthermore, it focuses on evaluating the possibility of repurposing Imatinib mesylate, an FDA-approved anticancer agent recently recognized also as a PPARγ antagonist, for the personalized therapy of endocrine-resistant BC with increased PPARγ expression. METHODS Differential gene expression between parental and Tam-resistant MCF7 cells was assessed by RNA-seq followed by bioinformatics analysis and validation by RT-qPCR. PPARγ was downregulated by esiRNAs or inhibited by the antagonist GW9662. Cell viability and proliferation were measured by MTT and colony formation assays. Spheroids were prepared from parental and Tam-resistant MCF7 cells. Other luminal A BC cell lines resistant to Tam were generated. RESULTS In MCF7-TamR cells, PPARγ and several of its target genes were significantly upregulated. Increased PPARγ expression was due to the modulation of its positive/negative transcriptional regulators. Downregulating PPARγ with esiRNAs or GW9662 effectively killed parental and Tam-resistant cells and spheroids. Imatinib revealed to be as effective as GW9662 in restoring Tam susceptibility of these cells. PPARγ overexpression was also observed in the newly-selected Tam-resistant luminal A BC cells, in which GW9662 and Imatinib restored their susceptibility to Tam. CONCLUSION Our findings demonstrate that the overexpression of PPARγ is a frequent occurrence during acquisition of Tam resistance in luminal A BC cells, and that PPARγ antagonism represents an alternative therapeutic approach for the personalized treatment of BC showing dysregulation of this nuclear receptor.
Collapse
Affiliation(s)
- Cecilia Boretto
- Department of Clinical and Biological Sciences, University of Turin, Corso Raffaello 30, Turin 10125, Italy
| | - Giuliana Muzio
- Department of Clinical and Biological Sciences, University of Turin, Corso Raffaello 30, Turin 10125, Italy
| | - Riccardo Autelli
- Department of Clinical and Biological Sciences, University of Turin, Corso Raffaello 30, Turin 10125, Italy.
| |
Collapse
|
44
|
Pommerolle L, Arif M, Behee M, Appolonia CN, Basu A, Wolf KM, Zawatsky CN, Johnson N, Rivellini O, Park JK, Cinar R. Chronic Alcohol Intake Compromises Lung Immunity by Altering Immunometabolism in Humans and Mouse Models. Am J Respir Cell Mol Biol 2024; 71:559-576. [PMID: 39024537 DOI: 10.1165/rcmb.2024-0086oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 07/02/2024] [Indexed: 07/20/2024] Open
Abstract
Chronic alcohol consumption disrupts lung immunity and host defense mechanisms, rendering individuals with alcohol use disorder more susceptible to developing inflammatory lung conditions with poor prognoses. Here, we focused on investigating the molecular and cellular effects of alcohol ingestion on lung immunity in male and female subjects using population-based human lung transcriptomics analysis and an experimental mouse model of chronic alcohol drinking using the National Institute on Alcohol Abuse and Alcoholism alcohol feeding model. Flow cytometry and transcriptomics analyses in lungs revealed a sexually dimorphic effect of chronic alcohol drinking on lung immunity in both human and mouse. Male lungs were more sensitive to chronic alcohol drinking-induced dysregulation of lung immunity compared with female lungs. Furthermore, comparative transcriptomics analysis using lungs and liver samples from matched human and mouse subjects demonstrated that lungs were more sensitive than liver to the effects of alcohol in downregulating immune-related genes and pathways. Furthermore, the transcriptomics analysis provided evidence that immunometabolic change is a central driver in lung alteration by downregulating the immune pathways and upregulating metabolic pathways. Chronic alcohol consumption resulted in reduced mTOR signaling and decreased immune cell populations. The mTOR signaling axis may serve as an upstream regulator of alcohol-induced dysregulation in lung immunity.
Collapse
Affiliation(s)
| | - Muhammad Arif
- Section on Fibrotic Disorders
- Laboratory of Cardiovascular Physiology and Tissue Injury, and
| | | | | | | | | | | | | | - Olivia Rivellini
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland
| | - Joshua K Park
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland
| | | |
Collapse
|
45
|
Huyen VT, Echizen K, Yamagishi R, Kumagai M, Nonaka Y, Kodama T, Ando T, Yano M, Takada N, Takasugi M, Kamachi F, Ohtani N. Regular exercise suppresses steatosis-associated liver cancer development by degrading E2F1 and c-Myc via circadian gene upregulation. Genes Cells 2024; 29:1012-1025. [PMID: 39357875 DOI: 10.1111/gtc.13161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/20/2024] [Accepted: 08/30/2024] [Indexed: 10/04/2024]
Abstract
Regular exercise is believed to suppress cancer progression. However, the precise molecular mechanisms by which exercise prevents cancer development remain unclear. In this study, using a steatosis-associated liver cancer mouse model, we found that regular exercise at a speed of 18 m/min for 20 min daily suppressed liver cancer development. To explore the underlying mechanisms, we examined the gene expression profiles in the livers of the exercise and non-exercise groups. The expressions of circadian genes, such as Per1 and Cry2, were upregulated in the exercise group. As circadian rhythm disruption is known to cause various diseases, including cancer, improving circadian rhythm through exercise could contribute to cancer prevention. We further found that the expression of a series of E2F1 and c-Myc target genes that directly affect the proliferation of cancer cells was downregulated in the exercise group. However, the expression of E2F1 and c-Myc was transcriptionally unchanged but degraded at the post-translational level by exercise. Cry2, which is regulated by the Skp1-Cul1-FBXL3 (SCFFBXL3) ubiquitin ligase complex by binding to FBXL3, can form a complex with E2F1 and c-Myc, which we think is the mechanism to degrade them. Our study revealed a previously unknown mechanism by which exercise prevents cancer development.
Collapse
Affiliation(s)
- Vu Thuong Huyen
- Department of Pathophysiology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
- Department of Pathophysiology, Graduate School of Medicine, Osaka City University, Osaka, Japan
- Department of Pediatrics, Hanoi Medical University, Hanoi, Vietnam
| | - Kanae Echizen
- Department of Pathophysiology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Ryota Yamagishi
- Department of Pathophysiology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Miho Kumagai
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Chiba, Japan
| | - Yoshiki Nonaka
- Department of Pathophysiology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
- Department of Pathophysiology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Takahiro Kodama
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Tatsuya Ando
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Chiba, Japan
| | - Megumu Yano
- Department of Pathophysiology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Naoki Takada
- Department of Pathophysiology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
- Department of Orthopedic Surgery, Osaka Metropolitan University, Graduate School of Medicine, Osaka, Japan
| | - Masaki Takasugi
- Department of Pathophysiology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Fumitaka Kamachi
- Department of Pathophysiology, Graduate School of Medicine, Osaka City University, Osaka, Japan
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Chiba, Japan
| | - Naoko Ohtani
- Department of Pathophysiology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
- Department of Pathophysiology, Graduate School of Medicine, Osaka City University, Osaka, Japan
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Chiba, Japan
| |
Collapse
|
46
|
Zhu D, Arnold M, Samuelson BA, Wu JZ, Mueller A, Sinclair DA, Kane AE. Sex dimorphism and tissue specificity of gene expression changes in aging mice. Biol Sex Differ 2024; 15:89. [PMID: 39482778 PMCID: PMC11529319 DOI: 10.1186/s13293-024-00666-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/22/2024] [Indexed: 11/03/2024] Open
Abstract
BACKGROUND Aging is a complex process that involves all tissues in an organism and shows sex dimorphism. While transcriptional changes in aging have been well characterized, the majority of studies have focused on a single sex and sex differences in gene expression in aging are poorly understood. In this study, we explore sex dimorphism in gene expression in aging mice across three tissues. METHODS We collected gastrocnemius muscle, liver and white adipose tissue from young (6 months, n = 14) and old (24 months, n = 14) female and male C57BL/6NIA mice and performed RNA-seq. To investigate sex dimorphism in aging, we considered two levels of comparisons: (a) differentially expressed genes between females and males in the old age group and (b) comparisons between females and males across the aging process. We utilized differential expression analysis and gene feature selection to investigate candidate genes. Gene set enrichment analysis was performed to identify candidate molecular pathways. Furthermore, we performed a co-expression network analysis and chose the gene module(s) associated with aging independent of sex or tissue-type. RESULTS We identified both tissue-specific and tissue-independent genes associated with sex dimorphism in aged mice. Unique differentially expressed genes between old males and females across tissues were mainly enriched for pathways related to specific tissue function. We found similar results when exploring sex differences in the aging process, with the exception that in the liver genes enriched for lipid metabolism and digestive system were identified in both females and males. Combining enriched pathways across analyses, we identified amino acid metabolism, digestive system, and lipid metabolism as the core mechanisms of sex dimorphism in aging. Although the vast majority of age-related genes were sex and tissue specific, we identified 127 hub genes contributing to aging independent of sex and tissue that were enriched for the immune system and signal transduction. CONCLUSIONS There are clear sex differences in gene expression in aging across liver, muscle and white adipose. Core pathways, including amino acid metabolism, digestive system and lipid metabolism, contribute to sex differences in aging.
Collapse
Affiliation(s)
- Dantong Zhu
- Institute for Systems Biology, Seattle, WA, 98109, USA
| | - Matt Arnold
- Department of Genetics, Paul F. Glenn Center for Biology of Aging Research at Harvard Medical School, Blavatnik Institute, Boston, MA, 02115, USA
| | | | - Judy Z Wu
- Institute for Systems Biology, Seattle, WA, 98109, USA
| | - Amber Mueller
- Department of Genetics, Paul F. Glenn Center for Biology of Aging Research at Harvard Medical School, Blavatnik Institute, Boston, MA, 02115, USA
- Cell Press, Cambridge, MA, 02139, USA
| | - David A Sinclair
- Department of Genetics, Paul F. Glenn Center for Biology of Aging Research at Harvard Medical School, Blavatnik Institute, Boston, MA, 02115, USA
| | - Alice E Kane
- Institute for Systems Biology, Seattle, WA, 98109, USA.
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98115, USA.
| |
Collapse
|
47
|
Wang L, Wu J, Sramek M, Obayomi SMB, Gao P, Li Y, Matveyenko AV, Wei Z. Heterogeneous enhancer states orchestrate β cell responses to metabolic stress. Nat Commun 2024; 15:9361. [PMID: 39472434 PMCID: PMC11522703 DOI: 10.1038/s41467-024-53717-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 10/18/2024] [Indexed: 11/02/2024] Open
Abstract
Obesity-induced β cell dysfunction contributes to the onset of type 2 diabetes. Nevertheless, elucidating epigenetic mechanisms underlying islet dysfunction at single cell level remains challenging. Here we profile single-nuclei RNA along with enhancer marks H3K4me1 or H3K27ac in islets from lean or obese mice. Our study identifies distinct gene signatures and enhancer states correlating with β cell dysfunction trajectory. Intriguingly, while many metabolic stress-induced genes exhibit concordant changes in both H3K4me1 and H3K27ac at their enhancers, expression changes of specific subsets are solely attributable to either H3K4me1 or H3K27ac dynamics. Remarkably, a subset of H3K4me1+H3K27ac- primed enhancers prevalent in lean β cells and occupied by FoxA2 are largely absent after metabolic stress. Lastly, cell-cell communication analysis identified the nerve growth factor (NGF) as protective paracrine signaling for β cells through repressing ER stress. In summary, our findings define the heterogeneous enhancer responses to metabolic challenges in individual β cells.
Collapse
Affiliation(s)
- Liu Wang
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Scottsdale, AZ, USA
| | - Jie Wu
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Scottsdale, AZ, USA
| | - Madeline Sramek
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Scottsdale, AZ, USA
| | - S M Bukola Obayomi
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Scottsdale, AZ, USA
| | - Peidong Gao
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Yan Li
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Aleksey V Matveyenko
- Department of Physiology and Biomedical Engineering and Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Zong Wei
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Scottsdale, AZ, USA.
- Division of Endocrinology, Mayo Clinic, Scottsdale, AZ, USA.
| |
Collapse
|
48
|
Wyler SC, Gahlot S, Bideyan L, Yip C, Dushime J, Chen B, Lee JJ, Tinajero A, Limboy C, Bordash S, Heaselgrave SR, Nguyen TN, Lee S, Bookout A, Lantier L, Fowlkes JL, You YJ, Fujikawa T, Elmquist JK. LCoRL Regulates Growth and Metabolism. Endocrinology 2024; 165:bqae146. [PMID: 39467326 PMCID: PMC11538781 DOI: 10.1210/endocr/bqae146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/18/2024] [Accepted: 10/25/2024] [Indexed: 10/30/2024]
Abstract
Genome-wide association studies (GWAS) in humans and livestock have identified genes associated with metabolic traits. However, the causality of many of these genes on metabolic homeostasis is largely unclear due to a lack of detailed functional analyses. Here we report ligand-dependent corepressor-like (LCoRL) as a metabolic regulator for body weight and glucose homeostasis. Although GWAS data show that LCoRL is strongly associated with body size, glucose homeostasis, and other metabolic traits in humans and livestock, functional investigations had not been performed. We generated Lcorl knockout mice (Lcorl-/-) and characterized the metabolic traits. We found that Lcorl-/- pups are born smaller than the wild-type (WT) littermates before reaching normal weight by 7 to 9 weeks of age. While aging, Lcorl-/- mice remain lean compared to WT mice, which is associated with a decrease in daily food intake. Glucose tolerance and insulin sensitivity are improved in Lcorl-/- mice. Mechanistically, this stunted growth is linked to a reduction of circulating levels of IGF-1. The expression of the genes downstream of GH signaling and the genes involved in glucose and lipid metabolism are altered in the liver of Lcorl-/- mice. Furthermore, Lcorl-/- mice are protected against a high-fat diet challenge and show reduced exercise capacity in an exercise stress test. Collectively, our results are congruent with many of the metabolic parameters linked to the Lcorl locus as reported in GWAS in humans and livestock.
Collapse
Affiliation(s)
- Steven C Wyler
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Surbhi Gahlot
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lara Bideyan
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Cecilia Yip
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jasmine Dushime
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Bandy Chen
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jenny J Lee
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Arely Tinajero
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chelsea Limboy
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Staci Bordash
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Samuel R Heaselgrave
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tammy-Nhu Nguyen
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Syann Lee
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Angie Bookout
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Loise Lantier
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - John L Fowlkes
- Department of Pediatrics and Barnstable Brown Diabetes Center, University of Kentucky, Lexington, KY 40504, USA
| | - Young-Jai You
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Teppei Fujikawa
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Institute of Human Life and Ecology, Osaka Metropolitan University, Osaka 583-8555, Japan
- Peter O’Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Joel K Elmquist
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Peter O’Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
49
|
Kaur Sardarni U, Ambikan AT, Acharya A, Johnson SD, Avedissian SN, Végvári Á, Neogi U, Byrareddy SN. SARS-CoV-2 variants mediated tissue-specific metabolic reprogramming determines the disease pathophysiology in a hamster model. Brain Behav Immun 2024; 123:914-927. [PMID: 39481495 DOI: 10.1016/j.bbi.2024.10.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 09/28/2024] [Accepted: 10/26/2024] [Indexed: 11/02/2024] Open
Abstract
Despite significant effort, a clear understanding of host tissue-specific responses and their implications for immunopathogenicity against the severe acute respiratory syndrome coronavirus2 (SARS-CoV-2) variant infection has remained poorly defined. To shed light on the interaction between tissues and SARS-CoV-2 variants, we sought to characterize the complex relationship among acute multisystem manifestations, dysbiosis of the gut microbiota, and the resulting implications for SARS-CoV-2 variant-specific immunopathogenesis in the Golden Syrian Hamster (GSH) model using multi-omics approaches. Our investigation revealed the presence of increased SARS-CoV-2 genomic RNA in diverse tissues of delta-infected GSH compared to the omicron variant. Multi-omics analyses uncovered distinctive metabolic responses between the delta and omicron variants, with the former demonstrating dysregulation in synaptic transmission proteins associated with neurocognitive disorders. Additionally, delta-infected GSH exhibited an altered fecal microbiota composition, marked by increased inflammation-associated taxa and reduced commensal bacteria compared to the omicron variant. These findings underscore the SARS-CoV-2-mediated tissue insult, characterized by modified host metabolites, neurological protein dysregulation, and gut dysbiosis, highlighting the compromised gut-lung-brain axis during acute infection.
Collapse
Affiliation(s)
- Urvinder Kaur Sardarni
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Anoop T Ambikan
- The Systems Virology Laboratory, Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Campus Flemingsberg, Stockholm, Sweden
| | - Arpan Acharya
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Samuel D Johnson
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sean N Avedissian
- Antiviral Pharmacology Laboratory, Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ákos Végvári
- Division of Chemistry I, Department of Medical Biochemistry & Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Ujjwal Neogi
- The Systems Virology Laboratory, Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Campus Flemingsberg, Stockholm, Sweden.
| | - Siddappa N Byrareddy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
50
|
Wang S, Ilves M, Mäenpää K, Zhao L, El-Nezami H, Karisola P, Alenius H. ZnO Nanoparticles as Potent Inducers of Dermal Immunosuppression in Contact Hypersensitivity in Mice. ACS NANO 2024; 18:29479-29491. [PMID: 39401296 PMCID: PMC11526425 DOI: 10.1021/acsnano.4c04270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 09/27/2024] [Accepted: 10/04/2024] [Indexed: 10/30/2024]
Abstract
Nanosized zinc oxide (nZnO) metal particles are used in skin creams and sunscreens to enhance their texture and optical properties as UV filters. Despite their common use, little is known about the molecular mechanisms of nZnO exposure on damaged skin. We studied the effects of topically applied nZnO particles on allergic skin inflammation in an oxazolone (OXA)-induced contact hypersensitivity (CHS) mouse model. We investigated whether exposure to nZnO during the sensitization or challenge phase would induce immunological changes and modulate transcriptional responses. We followed skin thickness, cellular infiltration, and changes in the local transcriptome up to 28 days after the challenge. The responses peaked at 24 h and were fully resolved by 28 days. Co-exposure to nZnO and hapten did not interfere with the formation of the sensitization process. Conversely, during the hapten challenge, the application of nZnO fully suppressed the development of the CHS response by the inhibition of pro-inflammatory pathways, secretion of pro-inflammatory cytokines, and proliferation of immune cells. In differentiated and stimulated THP-1 cells and the CHS mouse model, we found that nZnO particles and Zn ions contributed to anti-inflammatory responses. The immunosuppressive properties of nZnO in inflamed skin are mediated by impaired IL-1R-, CXCR2-, and LTB4-mediated pathways. nZnO-induced dermal immunosuppression may be beneficial for individuals with contact allergies who use nZnO-containing cosmetic products. Our findings also provide a deeper understanding of the mechanisms of nZnO, which could be considered when developing nanoparticle-containing skin products.
Collapse
Affiliation(s)
- Shuyuan Wang
- School
of Biological Sciences, University of Hong
Kong, Pok Fu Lam Road, 999077 Hong Kong, People’s Republic
of China
- Human
Microbiome Research Program, University
of Helsinki, Haartmaninkatu 3, 00290 Helsinki, Finland
| | - Marit Ilves
- Human
Microbiome Research Program, University
of Helsinki, Haartmaninkatu 3, 00290 Helsinki, Finland
| | - Kuunsäde Mäenpää
- Human
Microbiome Research Program, University
of Helsinki, Haartmaninkatu 3, 00290 Helsinki, Finland
| | - Lan Zhao
- Human
Microbiome Research Program, University
of Helsinki, Haartmaninkatu 3, 00290 Helsinki, Finland
| | - Hani El-Nezami
- School
of Biological Sciences, University of Hong
Kong, Pok Fu Lam Road, 999077 Hong Kong, People’s Republic
of China
- School
of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Piia Karisola
- Human
Microbiome Research Program, University
of Helsinki, Haartmaninkatu 3, 00290 Helsinki, Finland
| | - Harri Alenius
- Human
Microbiome Research Program, University
of Helsinki, Haartmaninkatu 3, 00290 Helsinki, Finland
- Institute
of Environmental Medicine (IMM), Karolinska
Institutet, 171 77 Stockholm, Sweden
| |
Collapse
|