1
|
Pérez JM, Megías D. Use of Microfluidics for Study of FOXO3 Translocation Dynamics. Methods Mol Biol 2025; 2871:155-161. [PMID: 39565586 DOI: 10.1007/978-1-0716-4217-7_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Microfluidics has emerged as a novel tool in the study of cellular dynamics, offering a precise control of cell microenvironment and real-time analysis of intracellular processes. This chapter explores the application of microfluidic technology in the translocation dynamics of the forkhead box O3 (FOXO3) transcription factor. FOXO3 is regulator of cellular homeostasis, apoptosis, and oxidative stress responses. By integrating microfluidic devices with live cell imaging techniques, we achieve fine-tuned manipulation of extracellular conditions, including pharmacological treatments, to observe their effects on FOXO3 localization at single-cell resolution. Microfluidic devices provide a versatile and precise platform for studying dynamic cellular processes such as FOXO3-GFP translocation. This methodology allows for the real-time observation and quantification of protein translocation in response to various stimuli, enhancing our understanding of cellular signaling mechanisms.
Collapse
Affiliation(s)
- Juliana Manosalva Pérez
- Advanced Optical Microscopy Unit, Central Core Facilities, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Diego Megías
- Advanced Optical Microscopy Unit, Central Core Facilities, Instituto de Salud Carlos III (ISCIII), Madrid, Spain.
| |
Collapse
|
2
|
Horie M, Akiyama Y, Katoh H, Taguchi S, Nakamura M, Mizuguchi K, Ito Y, Matsushita T, Ushiku T, Ishikawa S, Goto A, Kume H, Homma Y, Maeda D. APRIL/BAFF upregulation is associated with clonal B-cell expansion in Hunner-type interstitial cystitis. J Pathol 2024; 264:383-395. [PMID: 39360360 DOI: 10.1002/path.6353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/14/2024] [Accepted: 08/22/2024] [Indexed: 10/04/2024]
Abstract
Hunner-type interstitial cystitis (HIC) is a chronic inflammatory disease of the urinary bladder with an unknown etiology. We conducted comprehensive immunogenomic profiling of bladder specimens obtained by biopsy and cystectomy from 37 patients with HIC. Next-generation RNA sequencing demonstrated abundant plasma cell infiltration with frequent light chain restriction in HIC-affected bladder tissue. Subsequent analysis of the B-cell receptor repertoire revealed spatial and temporal expansion of B-cell clones. The extent of B-cell clonal expansion was significantly correlated with the gene expression levels of TNFSF13 and TNFSF13B, which encode APRIL and BAFF, respectively. These findings indicate that APRIL and BAFF are the key regulators of clonal B-cell expansion in HIC and might serve as therapeutic targets in this debilitating disease. © 2024 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Masafumi Horie
- Department of Molecular and Cellular Pathology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Yoshiyuki Akiyama
- Department of Urology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Urology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Hiroto Katoh
- Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Satoru Taguchi
- Department of Urology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masaki Nakamura
- Department of Urology, NTT Medical Center Tokyo, Tokyo, Japan
| | - Keishi Mizuguchi
- Department of Diagnostic Pathology, Kanazawa University Hospital, Kanazawa, Japan
| | - Yukinobu Ito
- Department of Molecular and Cellular Pathology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Takashi Matsushita
- Department of Dermatology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Tetsuo Ushiku
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shumpei Ishikawa
- Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Akiteru Goto
- Department of Cellular and Organ Pathology, Graduate School of Medicine, Akita University, Akita, Japan
| | - Haruki Kume
- Department of Urology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yukio Homma
- Department of Interstitial Cystitis Medicine, Faculty of Medicine, Kyorin University, Tokyo, Japan
| | - Daichi Maeda
- Department of Molecular and Cellular Pathology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
3
|
Dorsey PJ, Lau CL, Chang TC, Doerschuk PC, D'Addio SM. Review of machine learning for lipid nanoparticle formulation and process development. J Pharm Sci 2024; 113:3413-3433. [PMID: 39341497 DOI: 10.1016/j.xphs.2024.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 10/01/2024]
Abstract
Lipid nanoparticles (LNPs) are a subset of pharmaceutical nanoparticulate formulations designed to encapsulate, stabilize, and deliver nucleic acid cargoes in vivo. Applications for LNPs include new interventions for genetic disorders, novel classes of vaccines, and alternate modes of intracellular delivery for therapeutic proteins. In the pharmaceutical industry, establishing a robust formulation and process to achieve target product performance is a critical component of drug development. Fundamental understanding of the processes for making LNPs and their interactions with biological systems have advanced considerably in the wake of the COVID-19 pandemic. Nevertheless, LNP formulation research remains largely empirical and resource intensive due to the multitude of input parameters and the complex physical phenomena that govern the processes of nanoparticle precipitation, self-assembly, structure evolution, and stability. Increasingly, artificial intelligence and machine learning (AI/ML) are being applied to improve the efficiency of research activities through in silico models and predictions, and to drive deeper fundamental understanding of experimental inputs to functional outputs. This review will identify current challenges and opportunities in the development of robust LNP formulations of nucleic acids, review studies that apply machine learning methods to experimental datasets, and provide discussion on associated data science challenges to facilitate collaboration between formulation and data scientists, aiming to accelerate the advancement of AI/ML applied to LNP formulation and process optimization.
Collapse
Affiliation(s)
- Phillip J Dorsey
- Pharmaceutical Sciences & Clinical Supply, MRL, Merck & Co., Inc., Rahway, NJ 07065, USA; University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Christina L Lau
- Cornell University, School of Electrical and Computer Engineering, Ithaca, NY 14853, USA
| | - Ti-Chiun Chang
- Pharmaceutical Sciences & Clinical Supply, MRL, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Peter C Doerschuk
- Cornell University, School of Electrical and Computer Engineering, Ithaca, NY 14853, USA
| | - Suzanne M D'Addio
- Pharmaceutical Sciences & Clinical Supply, MRL, Merck & Co., Inc., Rahway, NJ 07065, USA.
| |
Collapse
|
4
|
Park GT, Park NY, Ryu HH, Sun HH, Hwang JY, Sun YK. Nano-rods in Ni-rich layered cathodes for practical batteries. Chem Soc Rev 2024; 53:11462-11518. [PMID: 39380343 DOI: 10.1039/d3cs01110k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Lithium transition metal oxide layers, Li[Ni1-x-yCox(Mn and/or Al)y]O2, are widely used and mass-produced for current rechargeable battery cathodes. Development of cathode materials has focused on increasing the Ni content by simply controlling the chemical composition, but as the Ni content has almost reached its limit, a new breakthrough is required. In this regard, microstructural modification is rapidly emerging as a prospective approach, namely in the production of nano-rod layered cathode materials. A comprehensive review of the physicochemical properties and electrochemical performances of cathodes bearing the nano-rod microstructure is provided herein. A detailed discussion is regarding the structural stability of the cathode, which should be maximized to suppress microcrack formation, the main cause of capacity fading in Ni-rich cathode materials. In addition, the morphological features required to achieve optimal performance are examined. Following a discussion of the initial nano-rod cathodes, which were based on compositional concentration gradients, the preparation of nano-rod cathodes without the inclusion of a concentration gradient is reviewed, highlighting the importance of the precursor. Subsequently, the challenges and advances associated with the nano-rod structure are discussed, including considerations for synthesizing nano-rod cathodes and surface shielding of the nano-rod structure. It goes on to cover nano-rod cathode materials for next-generation batteries (e.g., all-solid-state, lithium-metal, and sodium-ion batteries), inspiring the battery community and other materials scientists looking for clues to the solution of the challenges that they encounter.
Collapse
Affiliation(s)
- Geon-Tae Park
- Department of Energy Engineering, Hanyang University, Seoul, 04763, South Korea.
| | - Nam-Yung Park
- Department of Energy Engineering, Hanyang University, Seoul, 04763, South Korea.
| | - Hoon-Hee Ryu
- Department of Energy Engineering, Hanyang University, Seoul, 04763, South Korea.
| | - H Hohyun Sun
- Department of Chemical and Biological Engineering, The University of Alabama, Alabama 35487, USA
| | - Jang-Yeon Hwang
- Department of Energy Engineering, Hanyang University, Seoul, 04763, South Korea.
- Department of Battery Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Yang-Kook Sun
- Department of Energy Engineering, Hanyang University, Seoul, 04763, South Korea.
- Department of Battery Engineering, Hanyang University, Seoul, 04763, South Korea
| |
Collapse
|
5
|
Feng G, Bai Y, Huang P, Liu Y, Yang Q, Li B, Yuan Q, Qian N, Zheng B. Charge-neutralized polyethylenimine-lipid nanoparticles for gene transfer to human embryonic stem cells. Bioorg Med Chem 2024; 118:118008. [PMID: 39637443 DOI: 10.1016/j.bmc.2024.118008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/25/2024] [Accepted: 11/14/2024] [Indexed: 12/07/2024]
Abstract
Gene delivery is fundamentally crucial for the genetic manipulation of stem cells. Here, we present a straightforward approach to create a library of charge-neutralized polyethylenimine (PEI)-lipid nanoparticles designed for stem cell transfection. These lipid nanoparticles were formulated using small, branched PEI and lipidic anhydrides. Remarkably, over 15% of the lipid nanoparticles demonstrated high transfection efficiency across various cell types, surpassing the efficiency of both Lipofectamine 2000 and FuGENE HD. A structure-activity analysis indicated that the length and ratio of hydrophobic alkyl substitutions were critical parameters for efficient gene delivery. Notably, the transfection efficiency was higher than that of the original cation PEI. Our optimized PEI-lipid system enabled highly effective plasmid DNA delivery and successfully co-transferred two plasmid DNAs into difficult-to-transfect human embryonic stem cells (hESCs), facilitating optogenetic manipulation within these cells.
Collapse
Affiliation(s)
- Guoqing Feng
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Yang Bai
- Department of Stomatology, Tianjin Medical University General Hospital, Heping District, Tianjin 300052, China; Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China.
| | - Pengyu Huang
- Fujian Provincial Sperm Bank, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, China
| | - Yuan Liu
- Tianjin Anding Hospital, Tianjin 300222, China
| | - Qingbin Yang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Bowen Li
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Qing Yuan
- Department of Urology, The Third Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing 100853, China
| | - Niansong Qian
- Department of Respiratory, the Eighth Medical Center of Chinese PLA General Hospital, Beijing 100853, China.
| | - Bin Zheng
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China; School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
6
|
Dawson JE, Bryant A, Walton B, Bhikot S, Macon S, Ajamu-Johnson A, Jordan T, Langridge PD, Malmi-Kakkada AN. Contact area and tissue growth dynamics shape synthetic juxtacrine signaling patterns. Biophys J 2024:S0006-3495(24)00716-1. [PMID: 39548676 DOI: 10.1016/j.bpj.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/20/2024] [Accepted: 11/07/2024] [Indexed: 11/18/2024] Open
Abstract
Cell-cell communication through direct contact, or juxtacrine signaling, is important in development, disease, and many areas of physiology. Synthetic forms of juxtacrine signaling can be precisely controlled and operate orthogonally to native processes, making them a powerful reductionist tool with which to address fundamental questions in cell-cell communication in vivo. Here, we investigate how cell-cell contact length and tissue growth dynamics affect juxtacrine signal responses through implementing a custom synthetic gene circuit in Drosophila wing imaginal discs alongside mathematical modeling to determine synthetic Notch (synNotch) activation patterns. We find that the area of contact between cells largely determines the extent of synNotch activation, leading to the prediction that the shape of the interface between signal-sending and signal-receiving cells will impact the magnitude of the synNotch response. Notably, synNotch outputs form a graded spatial profile that extends several cell diameters from the signal source, providing evidence that the response to juxtacrine signals can persist in cells as they proliferate away from source cells, or that cells remain able to communicate directly over several cell diameters. Our model suggests that the former mechanism may be sufficient, since it predicts graded outputs without diffusion or long-range cell-cell communication. Overall, we identify that cell-cell contact area together with output synthesis and decay rates likely govern the pattern of synNotch outputs in both space and time during tissue growth, insights that may have broader implications for juxtacrine signaling in general.
Collapse
Affiliation(s)
- Jonathan E Dawson
- Department of Physics and Biophysics, Augusta University, Augusta, Georgia; Department of Engineering and Physics, Whitworth University, Spokane, Washington
| | - Abby Bryant
- Department of Biological Sciences, Augusta University, Augusta, Georgia
| | - Breana Walton
- Department of Biological Sciences, Augusta University, Augusta, Georgia
| | - Simran Bhikot
- Department of Biological Sciences, Augusta University, Augusta, Georgia
| | - Shawn Macon
- Department of Physics and Biophysics, Augusta University, Augusta, Georgia
| | | | - Trevor Jordan
- Department of Biological Sciences, Augusta University, Augusta, Georgia
| | - Paul D Langridge
- Department of Biological Sciences, Augusta University, Augusta, Georgia.
| | | |
Collapse
|
7
|
Campoy-Campos G, Solana-Balaguer J, Guisado-Corcoll A, Chicote-González A, Garcia-Segura P, Pérez-Sisqués L, Torres A, Canal M, Molina-Porcel L, Fernández-Irigoyen J, Santamaria E, de Pouplana L, Alberch J, Martí E, Giralt A, Pérez-Navarro E, Malagelada C. RTP801 interacts with the tRNA ligase complex and dysregulates its RNA ligase activity in Alzheimer's disease. Nucleic Acids Res 2024; 52:11158-11176. [PMID: 39268577 PMCID: PMC11472047 DOI: 10.1093/nar/gkae776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/21/2024] [Accepted: 08/27/2024] [Indexed: 09/17/2024] Open
Abstract
RTP801/REDD1 is a stress-responsive protein overexpressed in neurodegenerative diseases such as Alzheimer's disease (AD) that contributes to cognitive deficits and neuroinflammation. Here, we found that RTP801 interacts with HSPC117, DDX1 and CGI-99, three members of the tRNA ligase complex (tRNA-LC), which ligates the excised exons of intron-containing tRNAs and the mRNA exons of the transcription factor XBP1 during the unfolded protein response (UPR). We also found that RTP801 modulates the mRNA ligase activity of the complex in vitro since RTP801 knockdown promoted XBP1 splicing and the expression of its transcriptional target, SEC24D. Conversely, RTP801 overexpression inhibited the splicing of XBP1. Similarly, in human AD postmortem hippocampal samples, where RTP801 is upregulated, we found that XBP1 splicing was dramatically decreased. In the 5xFAD mouse model of AD, silencing RTP801 expression in hippocampal neurons promoted Xbp1 splicing and prevented the accumulation of intron-containing pre-tRNAs. Finally, the tRNA-enriched fraction obtained from 5xFAD mice promoted abnormal dendritic arborization in cultured hippocampal neurons, and RTP801 silencing in the source neurons prevented this phenotype. Altogether, these results show that elevated RTP801 impairs RNA processing in vitro and in vivo in the context of AD and suggest that RTP801 inhibition could be a promising therapeutic approach.
Collapse
Affiliation(s)
- Genís Campoy-Campos
- Departament de Biomedicina, Institut de Neurociències, Universitat de Barcelona, Barcelona 08036, Catalonia, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid 28029, Spain
| | - Julia Solana-Balaguer
- Departament de Biomedicina, Institut de Neurociències, Universitat de Barcelona, Barcelona 08036, Catalonia, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid 28029, Spain
| | - Anna Guisado-Corcoll
- Departament de Biomedicina, Institut de Neurociències, Universitat de Barcelona, Barcelona 08036, Catalonia, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid 28029, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona 08036 Catalonia, Spain
| | - Almudena Chicote-González
- Departament de Biomedicina, Institut de Neurociències, Universitat de Barcelona, Barcelona 08036, Catalonia, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid 28029, Spain
| | - Pol Garcia-Segura
- Departament de Biomedicina, Institut de Neurociències, Universitat de Barcelona, Barcelona 08036, Catalonia, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid 28029, Spain
| | - Leticia Pérez-Sisqués
- Departament de Biomedicina, Institut de Neurociències, Universitat de Barcelona, Barcelona 08036, Catalonia, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid 28029, Spain
| | - Adrian Gabriel Torres
- Institut de Recerca Biomèdica (IRB Barcelona), Barcelona 08028, Catalonia, Spain
- Barcelona Institute of Science and Technology (BIST), Barcelona 08028, Catalonia, Spain
| | - Mercè Canal
- Departament de Biomedicina, Institut de Neurociències, Universitat de Barcelona, Barcelona 08036, Catalonia, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid 28029, Spain
| | - Laura Molina-Porcel
- Alzheimer’s Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic, Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), University of Barcelona, Barcelona 08036, Catalonia, Spain
- Neurological Tissue Bank, Biobank-Hospital Clínic-FRCB-IDIBAPS, Barcelona 08036, Catalonia, Spain
| | - Joaquín Fernández-Irigoyen
- Proteored-ISCIII, Proteomics Unit, Navarrabiomed, Departamento de Salud, UPNA, IdiSNA, Pamplona 31008, Spain
| | - Enrique Santamaria
- Proteored-ISCIII, Proteomics Unit, Navarrabiomed, Departamento de Salud, UPNA, IdiSNA, Pamplona 31008, Spain
| | - Lluís Ribas de Pouplana
- Institut de Recerca Biomèdica (IRB Barcelona), Barcelona 08028, Catalonia, Spain
- Barcelona Institute of Science and Technology (BIST), Barcelona 08028, Catalonia, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08010, Catalonia, Spain
| | - Jordi Alberch
- Departament de Biomedicina, Institut de Neurociències, Universitat de Barcelona, Barcelona 08036, Catalonia, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid 28029, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona 08036 Catalonia, Spain
- Faculty of Medicine and Health Science, Production and Validation Center of Advanced Therapies (Creatio), Universitat de Barcelona, Barcelona 08036, Catalonia, Spain
| | - Eulàlia Martí
- Departament de Biomedicina, Institut de Neurociències, Universitat de Barcelona, Barcelona 08036, Catalonia, Spain
| | - Albert Giralt
- Departament de Biomedicina, Institut de Neurociències, Universitat de Barcelona, Barcelona 08036, Catalonia, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid 28029, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona 08036 Catalonia, Spain
- Faculty of Medicine and Health Science, Production and Validation Center of Advanced Therapies (Creatio), Universitat de Barcelona, Barcelona 08036, Catalonia, Spain
| | - Esther Pérez-Navarro
- Departament de Biomedicina, Institut de Neurociències, Universitat de Barcelona, Barcelona 08036, Catalonia, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid 28029, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona 08036 Catalonia, Spain
| | - Cristina Malagelada
- Departament de Biomedicina, Institut de Neurociències, Universitat de Barcelona, Barcelona 08036, Catalonia, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid 28029, Spain
| |
Collapse
|
8
|
Hardo G, Li R, Bakshi S. Quantitative microbiology with widefield microscopy: navigating optical artefacts for accurate interpretations. NPJ IMAGING 2024; 2:26. [PMID: 39234390 PMCID: PMC11368818 DOI: 10.1038/s44303-024-00024-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 06/21/2024] [Indexed: 09/06/2024]
Abstract
Time-resolved live-cell imaging using widefield microscopy is instrumental in quantitative microbiology research. It allows researchers to track and measure the size, shape, and content of individual microbial cells over time. However, the small size of microbial cells poses a significant challenge in interpreting image data, as their dimensions approache that of the microscope's depth of field, and they begin to experience significant diffraction effects. As a result, 2D widefield images of microbial cells contain projected 3D information, blurred by the 3D point spread function. In this study, we employed simulations and targeted experiments to investigate the impact of diffraction and projection on our ability to quantify the size and content of microbial cells from 2D microscopic images. This study points to some new and often unconsidered artefacts resulting from the interplay of projection and diffraction effects, within the context of quantitative microbiology. These artefacts introduce substantial errors and biases in size, fluorescence quantification, and even single-molecule counting, making the elimination of these errors a complex task. Awareness of these artefacts is crucial for designing strategies to accurately interpret micrographs of microbes. To address this, we present new experimental designs and machine learning-based analysis methods that account for these effects, resulting in accurate quantification of microbiological processes.
Collapse
Affiliation(s)
- Georgeos Hardo
- Department of Engineering, University of Cambridge, Cambridge, UK
| | - Ruizhe Li
- Department of Engineering, University of Cambridge, Cambridge, UK
| | - Somenath Bakshi
- Department of Engineering, University of Cambridge, Cambridge, UK
| |
Collapse
|
9
|
Hölscher DL, Bülow RD. Decoding pathology: the role of computational pathology in research and diagnostics. Pflugers Arch 2024:10.1007/s00424-024-03002-2. [PMID: 39095655 DOI: 10.1007/s00424-024-03002-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/25/2024] [Accepted: 07/25/2024] [Indexed: 08/04/2024]
Abstract
Traditional histopathology, characterized by manual quantifications and assessments, faces challenges such as low-throughput and inter-observer variability that hinder the introduction of precision medicine in pathology diagnostics and research. The advent of digital pathology allowed the introduction of computational pathology, a discipline that leverages computational methods, especially based on deep learning (DL) techniques, to analyze histopathology specimens. A growing body of research shows impressive performances of DL-based models in pathology for a multitude of tasks, such as mutation prediction, large-scale pathomics analyses, or prognosis prediction. New approaches integrate multimodal data sources and increasingly rely on multi-purpose foundation models. This review provides an introductory overview of advancements in computational pathology and discusses their implications for the future of histopathology in research and diagnostics.
Collapse
Affiliation(s)
- David L Hölscher
- Department for Nephrology and Clinical Immunology, RWTH Aachen University Hospital, Pauwelsstraße 30, 52074, Aachen, Germany
- Institute for Pathology, RWTH Aachen University Hospital, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Roman D Bülow
- Institute for Pathology, RWTH Aachen University Hospital, Pauwelsstraße 30, 52074, Aachen, Germany.
| |
Collapse
|
10
|
Freh M, Reinstädler A, Neumann KD, Neumann U, Panstruga R. The development of pleiotropic phenotypes in powdery mildew-resistant barley and Arabidopsis thaliana mlo mutants is linked to nitrogen availability. PLANT, CELL & ENVIRONMENT 2024; 47:2362-2376. [PMID: 38515393 DOI: 10.1111/pce.14884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/28/2024] [Accepted: 03/03/2024] [Indexed: 03/23/2024]
Abstract
Powdery mildew-resistant barley (Hordeum vulgare) and Arabidopsis thaliana mlo mutant plants exhibit pleiotropic phenotypes such as the spontaneous formation of callose-rich cell wall appositions and early leaf chlorosis and necrosis, indicative of premature leaf senescence. The exogenous factors governing the occurrence of these undesired side effects remain poorly understood. Here, we characterised the formation of these symptoms in detail. Ultrastructural analysis revealed that the callose-rich cell wall depositions spontaneously formed in A. thaliana mlo mutants are indistinguishable from those induced by the bacterial pattern epitope, flagellin 22 (flg22). We further found that increased plant densities during culturing enhance the extent of the leaf senescence syndrome in A. thaliana mlo mutants. Application of a liquid fertiliser rescued the occurrence of leaf chlorosis and necrosis in both A. thaliana and barley mlo mutant plants. Controlled fertilisation experiments uncovered nitrogen as the macronutrient whose deficiency promotes the extent of pleiotropic phenotypes in A. thaliana mlo mutants. Light intensity and temperature had a modulatory impact on the incidence of leaf necrosis in the case of barley mlo mutant plants. Collectively, our data indicate that the development of pleiotropic phenotypes associated with mlo mutants is governed by various exogenous factors.
Collapse
Affiliation(s)
- Matthias Freh
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Aachen, Germany
| | - Anja Reinstädler
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Aachen, Germany
| | - Kira D Neumann
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Aachen, Germany
| | - Ulla Neumann
- Central Microscopy, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Ralph Panstruga
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
11
|
Pinto CM, Schnepper AP, Trindade PHE, Cardoso LH, Fioretto MN, Justulin LA, Zanelli CF, Valente GT. The joint action of yeast eisosomes and membraneless organelles in response to ethanol stress. Heliyon 2024; 10:e31561. [PMID: 38818138 PMCID: PMC11137566 DOI: 10.1016/j.heliyon.2024.e31561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/13/2024] [Accepted: 05/17/2024] [Indexed: 06/01/2024] Open
Abstract
Elevated ethanol concentrations in yeast affect the plasma membrane. The plasma membrane in yeast has many lipid-protein complexes, such as Pma1 (MCP), Can1 (MCC), and the eisosome complex. We investigated the response of eisosomes, MCPs, and membraneless structures to ethanol stress. We found a correlation between ethanol stress and proton flux with quick acidification of the medium. Moreover, ethanol stress influences the symporter expression in stressed cells. We also suggest that acute stress from ethanol leads to increases in eisosome size and SG number: we hypothesized that eisosomes may protect APC symporters and accumulate an mRNA decay protein in ethanol-stressed cells. Our findings suggest that the joint action of these factors may provide a protective effect on cells under ethanol stress.
Collapse
Affiliation(s)
- Camila Moreira Pinto
- Laboratory of Applied Biotechnology. São Paulo State University (UNESP). Botucatu, Brazil
| | | | - Pedro Henrique Esteves Trindade
- Department of Population Health and Pathobiology College of Veterinary Medicine, North Carolina State University (NCSU) Raleigh, USA
| | - Luiz Henrique Cardoso
- Laboratory of Applied Biotechnology. São Paulo State University (UNESP). Botucatu, Brazil
| | - Matheus Naia Fioretto
- Department of Structural and Functional Biology, Institute of Biosciences. São Paulo State University (UNESP). Botucatu, Brazil
| | - Luís Antônio Justulin
- Department of Structural and Functional Biology, Institute of Biosciences. São Paulo State University (UNESP). Botucatu, Brazil
| | | | | |
Collapse
|
12
|
Hartmann JA, Cardoso MR, Talarico MCR, Kenney DJ, Leone MR, Reese DC, Turcinovic J, O'Connell AK, Gertje HP, Marino C, Ojeda PE, De Paula EV, Orsi FA, Velloso LA, Cafiero TR, Connor JH, Ploss A, Hoelzemer A, Carrington M, Barczak AK, Crossland NA, Douam F, Boucau J, Garcia-Beltran WF. Evasion of NKG2D-mediated cytotoxic immunity by sarbecoviruses. Cell 2024; 187:2393-2410.e14. [PMID: 38653235 PMCID: PMC11088510 DOI: 10.1016/j.cell.2024.03.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 01/30/2024] [Accepted: 03/19/2024] [Indexed: 04/25/2024]
Abstract
SARS-CoV-2 and other sarbecoviruses continue to threaten humanity, highlighting the need to characterize common mechanisms of viral immune evasion for pandemic preparedness. Cytotoxic lymphocytes are vital for antiviral immunity and express NKG2D, an activating receptor conserved among mammals that recognizes infection-induced stress ligands (e.g., MIC-A/B). We found that SARS-CoV-2 evades NKG2D recognition by surface downregulation of MIC-A/B via shedding, observed in human lung tissue and COVID-19 patient serum. Systematic testing of SARS-CoV-2 proteins revealed that ORF6, an accessory protein uniquely conserved among sarbecoviruses, was responsible for MIC-A/B downregulation via shedding. Further investigation demonstrated that natural killer (NK) cells efficiently killed SARS-CoV-2-infected cells and limited viral spread. However, inhibition of MIC-A/B shedding with a monoclonal antibody, 7C6, further enhanced NK-cell activity toward SARS-CoV-2-infected cells. Our findings unveil a strategy employed by SARS-CoV-2 to evade cytotoxic immunity, identify the culprit immunevasin shared among sarbecoviruses, and suggest a potential novel antiviral immunotherapy.
Collapse
Affiliation(s)
- Jordan A Hartmann
- Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA; Harvard Medical School, Boston, MA, USA
| | | | | | - Devin J Kenney
- Department of Virology, Immunology, and Microbiology, Chobanian and Avedisian Boston University School of Medicine, Boston, MA, USA; National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | - Madison R Leone
- Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA
| | - Dagny C Reese
- Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Jacquelyn Turcinovic
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | - Aoife K O'Connell
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | - Hans P Gertje
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | - Caitlin Marino
- Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA
| | - Pedro E Ojeda
- Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA
| | - Erich V De Paula
- School of Medical Sciences, University of Campinas, Campinas, SP, Brazil; Hematology and Hemotherapy Center, University of Campinas, Campinas, SP, Brazil
| | - Fernanda A Orsi
- School of Medical Sciences, University of Campinas, Campinas, SP, Brazil; Hematology and Hemotherapy Center, University of Campinas, Campinas, SP, Brazil
| | - Licio Augusto Velloso
- School of Medical Sciences, University of Campinas, Campinas, SP, Brazil; Obesity and Comorbidities Research Center, University of Campinas, Campinas, SP, Brazil
| | - Thomas R Cafiero
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - John H Connor
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | - Alexander Ploss
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Angelique Hoelzemer
- First Department of Medicine, Division of Infectious Diseases, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany; Institute for Infection and Vaccine Development (IIRVD), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany; Research Department Virus Immunology, Leibniz Institute for Virology, Hamburg, Germany
| | - Mary Carrington
- Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA; Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA; Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Amy K Barczak
- Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA; Harvard Medical School, Boston, MA, USA; Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Nicholas A Crossland
- Department of Virology, Immunology, and Microbiology, Chobanian and Avedisian Boston University School of Medicine, Boston, MA, USA; National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA; Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Florian Douam
- Department of Virology, Immunology, and Microbiology, Chobanian and Avedisian Boston University School of Medicine, Boston, MA, USA; National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | - Julie Boucau
- Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA.
| | - Wilfredo F Garcia-Beltran
- Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA; Department of Pathology, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
13
|
Li X, Hernandez I, Koyuncu S, Kis B, Häggblad M, Lidemalm L, Abbas AA, Bendegúz S, Göblös A, Brautigam L, Lucas JJ, Carreras-Puigvert J, Hühn D, Pircs K, Vilchez D, Fernandez-Capetillo O. The anti-leprosy drug clofazimine reduces polyQ toxicity through activation of PPARγ. EBioMedicine 2024; 103:105124. [PMID: 38701619 PMCID: PMC11088276 DOI: 10.1016/j.ebiom.2024.105124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 05/05/2024] Open
Abstract
BACKGROUND PolyQ diseases are autosomal dominant neurodegenerative disorders caused by the expansion of CAG repeats. While of slow progression, these diseases are ultimately fatal and lack effective therapies. METHODS A high-throughput chemical screen was conducted to identify drugs that lower the toxicity of a protein containing the first exon of Huntington's disease (HD) protein huntingtin (HTT) harbouring 94 glutamines (Htt-Q94). Candidate drugs were tested in a wide range of in vitro and in vivo models of polyQ toxicity. FINDINGS The chemical screen identified the anti-leprosy drug clofazimine as a hit, which was subsequently validated in several in vitro models. Computational analyses of transcriptional signatures revealed that the effect of clofazimine was due to the stimulation of mitochondrial biogenesis by peroxisome proliferator-activated receptor gamma (PPARγ). In agreement with this, clofazimine rescued mitochondrial dysfunction triggered by Htt-Q94 expression. Importantly, clofazimine also limited polyQ toxicity in developing zebrafish and neuron-specific worm models of polyQ disease. INTERPRETATION Our results support the potential of repurposing the antimicrobial drug clofazimine for the treatment of polyQ diseases. FUNDING A full list of funding sources can be found in the acknowledgments section.
Collapse
Affiliation(s)
- Xuexin Li
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, S-171 21, Stockholm, Sweden
| | - Ivó Hernandez
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid, 28029, Spain
| | - Seda Koyuncu
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), Faculty of Medicine, University of Cologne and University Hospital Cologne, Cologne, Germany
| | - Balázs Kis
- HCEMM-SU, Neurobiology and Neurodegenerative Diseases Research Group, Budapest, Hungary; Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Maria Häggblad
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, S-171 21, Stockholm, Sweden
| | - Louise Lidemalm
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, S-171 21, Stockholm, Sweden
| | - Anna A Abbas
- HCEMM-SU, Neurobiology and Neurodegenerative Diseases Research Group, Budapest, Hungary; Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Sramkó Bendegúz
- HCEMM-SU, Neurobiology and Neurodegenerative Diseases Research Group, Budapest, Hungary; Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Anikó Göblös
- Centre of Excellence for Interdisciplinary Research, Development and Innovation, University of Szeged, H-6720, Szeged, Hungary
| | - Lars Brautigam
- Zebrafish Core Facility, Karolinska Institute, S-171 21, Stockholm, Sweden
| | - Jose J Lucas
- Center for Molecular Biology, "Severo Ochoa" (CBMSO) CSIC/UAM, Madrid, 28049, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Jordi Carreras-Puigvert
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, S-171 21, Stockholm, Sweden
| | - Daniela Hühn
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, S-171 21, Stockholm, Sweden
| | - Karolina Pircs
- HCEMM-SU, Neurobiology and Neurodegenerative Diseases Research Group, Budapest, Hungary; Institute of Translational Medicine, Semmelweis University, Budapest, Hungary; Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, BMC A11, Lund University, Lund, Sweden
| | - David Vilchez
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), Faculty of Medicine, University of Cologne and University Hospital Cologne, Cologne, Germany
| | - Oscar Fernandez-Capetillo
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, S-171 21, Stockholm, Sweden; Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid, 28029, Spain.
| |
Collapse
|
14
|
Schuster KH, Zalon AJ, DiFranco DM, Putka AF, Stec NR, Jarrah SI, Naeem A, Haque Z, Zhang H, Guan Y, McLoughlin HS. ASOs are an effective treatment for disease-associated oligodendrocyte signatures in premanifest and symptomatic SCA3 mice. Mol Ther 2024; 32:1359-1372. [PMID: 38429929 PMCID: PMC11081874 DOI: 10.1016/j.ymthe.2024.02.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 12/18/2023] [Accepted: 02/27/2024] [Indexed: 03/03/2024] Open
Abstract
Spinocerebellar ataxia type 3 (SCA3) is the most common dominantly inherited ataxia. Currently, no preventive or disease-modifying treatments exist for this progressive neurodegenerative disorder, although efforts using gene silencing approaches are under clinical trial investigation. The disease is caused by a CAG repeat expansion in the mutant gene, ATXN3, producing an enlarged polyglutamine tract in the mutant protein. Similar to other paradigmatic neurodegenerative diseases, studies evaluating the pathogenic mechanism focus primarily on neuronal implications. Consequently, therapeutic interventions often overlook non-neuronal contributions to disease. Our lab recently reported that oligodendrocytes display some of the earliest and most progressive dysfunction in SCA3 mice. Evidence of disease-associated oligodendrocyte signatures has also been reported in other neurodegenerative diseases, including Alzheimer's disease, amyotrophic lateral sclerosis, Parkinson's disease, and Huntington's disease. Here, we assess the effects of anti-ATXN3 antisense oligonucleotide (ASO) treatment on oligodendrocyte dysfunction in premanifest and symptomatic SCA3 mice. We report a severe, but modifiable, deficit in oligodendrocyte maturation caused by the toxic gain-of-function of mutant ATXN3 early in SCA3 disease that is transcriptionally, biochemically, and functionally rescued with anti-ATXN3 ASO. Our results highlight the promising use of an ASO therapy across neurodegenerative diseases that requires glial targeting in addition to affected neuronal populations.
Collapse
Affiliation(s)
- Kristen H Schuster
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Annie J Zalon
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Alexandra F Putka
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA; Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nicholas R Stec
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sabrina I Jarrah
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Arsal Naeem
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Zaid Haque
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hanrui Zhang
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yuanfang Guan
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
15
|
Gan P, Eppert M, De La Cruz N, Lyons H, Shah AM, Veettil RT, Chen K, Pradhan P, Bezprozvannaya S, Xu L, Liu N, Olson EN, Sabari BR. Coactivator condensation drives cardiovascular cell lineage specification. SCIENCE ADVANCES 2024; 10:eadk7160. [PMID: 38489358 PMCID: PMC10942106 DOI: 10.1126/sciadv.adk7160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 02/12/2024] [Indexed: 03/17/2024]
Abstract
During development, cells make switch-like decisions to activate new gene programs specifying cell lineage. The mechanisms underlying these decisive choices remain unclear. Here, we show that the cardiovascular transcriptional coactivator myocardin (MYOCD) activates cell identity genes by concentration-dependent and switch-like formation of transcriptional condensates. MYOCD forms such condensates and activates cell identity genes at critical concentration thresholds achieved during smooth muscle cell and cardiomyocyte differentiation. The carboxyl-terminal disordered region of MYOCD is necessary and sufficient for condensate formation. Disrupting this region's ability to form condensates disrupts gene activation and smooth muscle cell reprogramming. Rescuing condensate formation by replacing this region with disordered regions from functionally unrelated proteins rescues gene activation and smooth muscle cell reprogramming. Our findings demonstrate that MYOCD condensate formation is required for gene activation during cardiovascular differentiation. We propose that the formation of transcriptional condensates at critical concentrations of cell type-specific regulators provides a molecular switch underlying the activation of key cell identity genes during development.
Collapse
Affiliation(s)
- Peiheng Gan
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Mikayla Eppert
- Laboratory of Nuclear Organization, Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Nancy De La Cruz
- Laboratory of Nuclear Organization, Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Heankel Lyons
- Laboratory of Nuclear Organization, Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Akansha M. Shah
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Reshma T. Veettil
- Laboratory of Nuclear Organization, Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kenian Chen
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Prashant Pradhan
- Laboratory of Nuclear Organization, Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Svetlana Bezprozvannaya
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lin Xu
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ning Liu
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Eric N. Olson
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Benjamin R. Sabari
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Laboratory of Nuclear Organization, Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
16
|
Miller SG, Hoh M, Ebmeier CC, Tay JW, Ahn NG. Cooperative polarization of MCAM/CD146 and ERM family proteins in melanoma. Mol Biol Cell 2024; 35:ar31. [PMID: 38117590 PMCID: PMC10916866 DOI: 10.1091/mbc.e23-06-0255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/22/2023] [Accepted: 12/15/2023] [Indexed: 12/22/2023] Open
Abstract
The WRAMP structure is a protein network associated with tail-end actomyosin contractility, membrane retraction, and directional persistence during cell migration. A marker of WRAMP structures is melanoma cell adhesion molecule (MCAM) which dynamically polarizes to the cell rear. However, factors that mediate MCAM polarization are still unknown. In this study, BioID using MCAM as bait identifies the ERM family proteins, moesin, ezrin, and radixin, as WRAMP structure components. We also present a novel image analysis pipeline, Protein Polarity by Percentile ("3P"), which classifies protein polarization using machine learning and facilitates quantitative analysis. Using 3P, we find that depletion of moesin, and to a lesser extent ezrin, decreases the proportion of cells with polarized MCAM. Furthermore, although copolarized MCAM and ERM proteins show high spatial overlap, 3P identifies subpopulations with ERM proteins closer to the cell periphery. Live-cell imaging confirms that MCAM and ERM protein polarization is tightly coordinated, but ERM proteins enrich at the cell edge first. Finally, deletion of a juxtamembrane segment in MCAM previously shown to promote ERM protein interactions impedes MCAM polarization. Our findings highlight the requirement for ERM proteins in recruitment of MCAM to WRAMP structures and an advanced computational tool to characterize protein polarization.
Collapse
Affiliation(s)
- Suzannah G. Miller
- Department of Biochemistry, University of Colorado Boulder, Boulder CO 80303
| | - Maria Hoh
- Department of Biochemistry, University of Colorado Boulder, Boulder CO 80303
| | | | - Jian Wei Tay
- BioFrontiers Institute, University of Colorado Boulder, Boulder CO 80303
| | - Natalie G. Ahn
- Department of Biochemistry, University of Colorado Boulder, Boulder CO 80303
- BioFrontiers Institute, University of Colorado Boulder, Boulder CO 80303
| |
Collapse
|
17
|
Croslow SW, Trinklein TJ, Sweedler JV. Advances in multimodal mass spectrometry for single-cell analysis and imaging enhancement. FEBS Lett 2024; 598:591-601. [PMID: 38243373 PMCID: PMC10963143 DOI: 10.1002/1873-3468.14798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/11/2023] [Accepted: 12/18/2023] [Indexed: 01/21/2024]
Abstract
Multimodal mass spectrometry (MMS) incorporates an imaging modality with probe-based mass spectrometry (MS) to enable precise, targeted data acquisition and provide additional biological and chemical data not available by MS alone. Two categories of MMS are covered; in the first, an imaging modality guides the MS probe to target individual cells and to reduce acquisition time by automatically defining regions of interest. In the second category, imaging and MS data are coupled in the data analysis pipeline to increase the effective spatial resolution using a higher resolution imaging method, correct for tissue deformation, and incorporate fine morphological features in an MS imaging dataset. Recent methodological and computational developments are covered along with their application to single-cell and imaging analyses.
Collapse
Affiliation(s)
- Seth W. Croslow
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Timothy J. Trinklein
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Jonathan V. Sweedler
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
18
|
Atkinson C, McInerney-Leo AM, Proctor M, Lanagan C, Stevenson AJ, Dehkhoda F, Caole M, Maas E, Ainger S, Pritchard AL, Johansson PA, Leo P, Hayward NK, Sturm RA, Duncan EL, Gabrielli B. The ATM Ser49Cys Variant Effects ATM Function as a Regulator of Oncogene-Induced Senescence. Int J Mol Sci 2024; 25:1664. [PMID: 38338943 PMCID: PMC10855307 DOI: 10.3390/ijms25031664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/15/2024] [Accepted: 01/21/2024] [Indexed: 02/12/2024] Open
Abstract
An apical component of the cell cycle checkpoint and DNA damage repair response is the ataxia-telangiectasia mutated (ATM) Ser/Thr protein kinase. A variant of ATM, Ser49Cys (rs1800054; minor allele frequency = 0.011), has been associated with an elevated risk of melanoma development; however, the functional consequence of this variant is not defined. ATM-dependent signalling in response to DNA damage has been assessed in a panel of patient-derived lymphoblastoid lines and primary human melanocytic cell strains heterozygous for the ATM Ser49Cys variant allele. The ATM Ser49Cys allele appears functional for acute p53-dependent signalling in response to DNA damage. Expression of the variant allele did reduce the efficacy of oncogene expression in inducing senescence. These findings demonstrate that the ATM 146C>G Ser49Cys allele has little discernible effect on the acute response to DNA damage but has reduced function observed in the chronic response to oncogene over-expression. Analysis of melanoma, naevus and skin colour genomics and GWAS analyses have demonstrated no association of this variant with any of these outcomes. The modest loss of function detected suggest that the variant may act as a modifier of other variants of ATM/p53-dependent signalling.
Collapse
Affiliation(s)
- Caroline Atkinson
- Mater Research Institute, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Aideen M. McInerney-Leo
- Dermatology Research Centre, Frazer Institute, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Martina Proctor
- Mater Research Institute, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Catherine Lanagan
- Mater Research Institute, The University of Queensland, Brisbane, QLD 4102, Australia
| | | | - Farhad Dehkhoda
- Dermatology Research Centre, Frazer Institute, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Mary Caole
- Mater Research Institute, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Ellie Maas
- Dermatology Research Centre, Frazer Institute, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Stephen Ainger
- Dermatology Research Centre, Frazer Institute, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Antonia L. Pritchard
- Queensland Institute for Medical Research Berghofer, Brisbane, QLD 4006, Australia
| | - Peter A. Johansson
- Queensland Institute for Medical Research Berghofer, Brisbane, QLD 4006, Australia
| | - Paul Leo
- Centre of Genomics and Personalised Health, Queensland University of Technology, Brisbane, QLD 4059, Australia
| | - Nicholas K. Hayward
- Queensland Institute for Medical Research Berghofer, Brisbane, QLD 4006, Australia
| | - Richard A. Sturm
- Dermatology Research Centre, Frazer Institute, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Emma L. Duncan
- Department of Twin Research and Genetic Epidemiology, School of Life Course & Population Sciences, Faculty of Life Sciences and Medicine, King’s College London, London SE1 1UL, UK
| | - Brian Gabrielli
- Mater Research Institute, The University of Queensland, Brisbane, QLD 4102, Australia
| |
Collapse
|
19
|
Bardyn M, Crettaz D, Rappaz B, Hamelin R, Armand F, Tissot JD, Turcatti G, Prudent M. Phosphoproteomics and morphology of stored human red blood cells treated by protein tyrosine phosphatases inhibitor. Blood Adv 2024; 8:1-13. [PMID: 37910801 PMCID: PMC10784683 DOI: 10.1182/bloodadvances.2023009964] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 10/17/2023] [Accepted: 10/24/2023] [Indexed: 11/03/2023] Open
Abstract
ABSTRACT The process of protein phosphorylation is involved in numerous cell functions. In particular, phosphotyrosine (pY) has been reported to play a role in red blood cell (RBC) functions, including the cytoskeleton organization. During their storage before transfusion, RBCs suffer from storage lesions that affect their energy metabolism and morphology. This study investigated the relationship between pY and the storage lesions. To do so, RBCs were treated (in the absence of calcium) with a protein tyrosine phosphatase inhibitor (orthovanadate [OV]) to stimulate phosphorylation and with 3 selective kinase inhibitors (KIs). Erythrocyte membrane proteins were studied by western blot analyses and phosphoproteomics (data are available via ProteomeXchange with identifier PXD039914) and cell morphology by digital holographic microscopy. The increase of pY triggered by OV treatment (inducing a global downregulation of pS and pT) disappeared during the storage. Phosphoproteomic analysis identified 609 phosphoproteins containing 1752 phosphosites, of which 41 pY were upregulated and 2 downregulated by OV. After these phosphorylation processes, the shape of RBCs shifted from discocytes to spherocytes, and the addition of KIs partially inhibited this transition. The KIs modulated either pY or pS and pT via diverse mechanisms related to cell shape, thereby affecting RBC morphology. The capacity of RBCs to maintain their function is central in transfusion medicine, and the presented results contribute to a better understanding of RBC biology.
Collapse
Affiliation(s)
- Manon Bardyn
- Laboratoire de Recherche sur les Produits Sanguins, Transfusion Interrégionale CRS, Epalinges, Switzerland
| | - David Crettaz
- Laboratoire de Recherche sur les Produits Sanguins, Transfusion Interrégionale CRS, Epalinges, Switzerland
| | - Benjamin Rappaz
- Biomolecular Screening Facility, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Romain Hamelin
- Proteomics Core Facility, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Florence Armand
- Proteomics Core Facility, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Jean-Daniel Tissot
- Laboratoire de Recherche sur les Produits Sanguins, Transfusion Interrégionale CRS, Epalinges, Switzerland
| | - Gerardo Turcatti
- Biomolecular Screening Facility, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Michel Prudent
- Laboratoire de Recherche sur les Produits Sanguins, Transfusion Interrégionale CRS, Epalinges, Switzerland
- Center for Research and Innovation in Clinical Pharmaceutical Sciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| |
Collapse
|
20
|
Desroches S, Harris AR. Quantifying cytoskeletal organization from optical microscopy data. Front Cell Dev Biol 2024; 11:1327994. [PMID: 38234685 PMCID: PMC10792062 DOI: 10.3389/fcell.2023.1327994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/07/2023] [Indexed: 01/19/2024] Open
Abstract
The actin cytoskeleton plays a pivotal role in a broad range of physiological processes including directing cell shape and subcellular organization, determining cell mechanical properties, and sensing and transducing mechanical forces. The versatility of the actin cytoskeleton arises from the ability of actin filaments to assemble into higher order structures through their interaction with a vast set of regulatory proteins. Actin filaments assemble into bundles, meshes, and networks, where different combinations of these structures fulfill specific functional roles. Analyzing the organization and abundance of different actin structures from optical microscopy data provides a valuable metric for assessing cell physiological function and changes associated with disease. However, quantitative measurements of the size, abundance, orientation, and distribution of different types of actin structure remains challenging both from an experimental and image analysis perspective. In this review, we summarize image analysis methods for extracting quantitative values that can be used for characterizing the organization of actin structures and provide selected examples. We summarize the potential sample types and metric reported with different approaches as a guide for selecting an image analysis strategy.
Collapse
Affiliation(s)
- Sarah Desroches
- Department of Mechanical and Aerospace Engineering, Carleton University, Ottawa, ON, Canada
- Ottawa-Carleton Institute for Biomedical Engineering Graduate Program, Ottawa, ON, Canada
| | - Andrew R. Harris
- Department of Mechanical and Aerospace Engineering, Carleton University, Ottawa, ON, Canada
| |
Collapse
|
21
|
Zhu X, Chen J, Li W, Xu Y, Shan J, Hong J, Zhao Y, Xu H, Ma J, Shen J, Qian C. Hypoxia-Responsive CAR-T Cells Exhibit Reduced Exhaustion and Enhanced Efficacy in Solid Tumors. Cancer Res 2024; 84:84-100. [PMID: 37874330 DOI: 10.1158/0008-5472.can-23-1038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/26/2023] [Accepted: 10/20/2023] [Indexed: 10/25/2023]
Abstract
Expanding the utility of chimeric antigen receptor (CAR)-T cells in solid tumors requires improving their efficacy and safety. Hypoxia is a feature of most solid tumors that could be used to help CAR-T cells discriminate tumors from normal tissues. In this study, we developed hypoxia-responsive CAR-T cells by engineering the CAR to be under regulation of hypoxia-responsive elements and selected the optimal structure (5H1P-CEA CAR), which can be activated in the tumor hypoxic microenvironment to induce CAR-T cells with high polyfunctionality. Hypoxia-responsive CAR T cells were in a "resting" state with low CAR expression under normoxic conditions. Compared with conventional CAR-T cells, hypoxia-responsive CAR-T cells maintained lower differentiation and displayed enhanced oxidative metabolism and proliferation during cultivation, and they sowed a capacity to alleviate the negative effects of hypoxia on T-cell proliferation and metabolism. Furthermore, 5H1P-CEA CAR-T cells exhibited decreased T-cell exhaustion and improved T-cell phenotype in vivo. In patient-derived xenograft models, hypoxia-responsive CAR-T cells induced more durable antitumor activity than their conventional counterparts. Overall, this study provides an approach to limit CAR expression to the hypoxic tumor microenvironment that could help to enhance CAR T-cell efficacy and safety in solid tumors. SIGNIFICANCE Engineering CAR-T cells to upregulate CAR expression under hypoxic conditions induces metabolic reprogramming, reduces differentiation, and increases proliferation to enhance their antitumor activity, providing a strategy to improve efficacy and safety.
Collapse
Affiliation(s)
- Xiuxiu Zhu
- College of Bioengineering, Chongqing University, Chongqing, China
- Center for Precision Medicine of Cancer, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Jun Chen
- Chongqing Key Laboratory of Gene and Cell Therapy, Chongqing Precision Biotech Co., Ltd., Chongqing, China
- Chongqing New High-End Research and Development Institution, Chongqing Institute of Precision Medicine and Biotechnology Co, Ltd., Chongqing, China
| | - Wuling Li
- Chongqing Key Laboratory of Gene and Cell Therapy, Chongqing Precision Biotech Co., Ltd., Chongqing, China
- Chongqing New High-End Research and Development Institution, Chongqing Institute of Precision Medicine and Biotechnology Co, Ltd., Chongqing, China
| | - Yanmin Xu
- Chongqing Key Laboratory of Gene and Cell Therapy, Chongqing Precision Biotech Co., Ltd., Chongqing, China
- Chongqing New High-End Research and Development Institution, Chongqing Institute of Precision Medicine and Biotechnology Co, Ltd., Chongqing, China
| | - Juanjuan Shan
- Center for Precision Medicine of Cancer, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Juan Hong
- Chongqing Key Laboratory of Gene and Cell Therapy, Chongqing Precision Biotech Co., Ltd., Chongqing, China
- Chongqing New High-End Research and Development Institution, Chongqing Institute of Precision Medicine and Biotechnology Co, Ltd., Chongqing, China
| | - Yongchun Zhao
- Chongqing Key Laboratory of Gene and Cell Therapy, Chongqing Precision Biotech Co., Ltd., Chongqing, China
- Chongqing New High-End Research and Development Institution, Chongqing Institute of Precision Medicine and Biotechnology Co, Ltd., Chongqing, China
| | - Huailong Xu
- Chongqing Key Laboratory of Gene and Cell Therapy, Chongqing Precision Biotech Co., Ltd., Chongqing, China
| | - Jiabin Ma
- Chongqing New High-End Research and Development Institution, Chongqing Institute of Precision Medicine and Biotechnology Co, Ltd., Chongqing, China
| | - Junjie Shen
- Chongqing Key Laboratory of Gene and Cell Therapy, Chongqing Precision Biotech Co., Ltd., Chongqing, China
- Chongqing New High-End Research and Development Institution, Chongqing Institute of Precision Medicine and Biotechnology Co, Ltd., Chongqing, China
| | - Cheng Qian
- College of Bioengineering, Chongqing University, Chongqing, China
- Center for Precision Medicine of Cancer, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| |
Collapse
|
22
|
Faydaver M, El Khatib M, Russo V, Rigamonti M, Raspa M, Di Giacinto O, Berardinelli P, Mauro A, Scavizzi F, Bonaventura F, Mastrorilli V, Valbonetti L, Barboni B. Unraveling the link: locomotor activity exerts a dual role in predicting Achilles tendon healing and boosting regeneration in mice. Front Vet Sci 2023; 10:1281040. [PMID: 38179329 PMCID: PMC10764449 DOI: 10.3389/fvets.2023.1281040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/29/2023] [Indexed: 01/06/2024] Open
Abstract
Introduction Tendon disorders present significant challenges in the realm of musculoskeletal diseases, affecting locomotor activity and causing pain. Current treatments often fall short of achieving complete functional recovery of the tendon. It is crucial to explore, in preclinical research, the pathways governing the loss of tissue homeostasis and its regeneration. In this context, this study aimed to establish a correlation between the unbiased locomotor activity pattern of CRL:CD1 (ICR) mice exposed to uni- or bilateral Achilles tendon (AT) experimental injuries and the key histomorphometric parameters that influence tissue microarchitecture recovery. Methods The study involved the phenotyping of spontaneous and voluntary locomotor activity patterns in male mice using digital ventilated cages (DVC®) with access to running wheels either granted or blocked. The mice underwent non-intrusive 24/7 long-term activity monitoring for the entire study period. This period included 7 days of pre-injury habituation followed by 28 days post-injury. Results and discussion The results revealed significant variations in activity levels based on the type of tendon injury and access to running wheels. Notably, mice with bilateral lesions and unrestricted wheel access exhibited significantly higher activity after surgery. Extracellular matrix (ECM) remodeling, including COL1 deposition and organization, blood vessel remodeling, and metaplasia, as well as cytological tendon parameters, such as cell alignment and angle deviation were enhanced in surgical (bilateral lesion) and husbandry (free access to wheels) groups. Interestingly, correlation matrix analysis uncovered a strong relationship between locomotion and microarchitecture recovery (cell alignment and angle deviation) during tendon healing. Overall, this study highlights the potential of using mice activity metrics obtained from a home-cage monitoring system to predict tendon microarchitecture recovery at both cellular and ECM levels. This provides a scalable experimental setup to address the challenging topic of tendon regeneration using innovative and animal welfare-compliant strategies.
Collapse
Affiliation(s)
- Melisa Faydaver
- Unit of Basic and Applied Biosciences, Department of Biosciences, Agro-Food and Environmental Technologies, University of Teramo, Teramo, Italy
| | - Mohammad El Khatib
- Unit of Basic and Applied Biosciences, Department of Biosciences, Agro-Food and Environmental Technologies, University of Teramo, Teramo, Italy
| | - Valentina Russo
- Unit of Basic and Applied Biosciences, Department of Biosciences, Agro-Food and Environmental Technologies, University of Teramo, Teramo, Italy
| | | | - Marcello Raspa
- National Research Council, Institute of Biochemistry and Cell Biology (CNR-IBBC/EMMA/Infrafrontier/IMPC), International Campus ‘A. Buzzati-Traverso’, Rome, Italy
| | - Oriana Di Giacinto
- Unit of Basic and Applied Biosciences, Department of Biosciences, Agro-Food and Environmental Technologies, University of Teramo, Teramo, Italy
| | - Paolo Berardinelli
- Unit of Basic and Applied Biosciences, Department of Biosciences, Agro-Food and Environmental Technologies, University of Teramo, Teramo, Italy
| | - Annunziata Mauro
- Unit of Basic and Applied Biosciences, Department of Biosciences, Agro-Food and Environmental Technologies, University of Teramo, Teramo, Italy
| | - Ferdinando Scavizzi
- National Research Council, Institute of Biochemistry and Cell Biology (CNR-IBBC/EMMA/Infrafrontier/IMPC), International Campus ‘A. Buzzati-Traverso’, Rome, Italy
| | - Fabrizio Bonaventura
- National Research Council, Institute of Biochemistry and Cell Biology (CNR-IBBC/EMMA/Infrafrontier/IMPC), International Campus ‘A. Buzzati-Traverso’, Rome, Italy
| | | | - Luca Valbonetti
- Unit of Basic and Applied Biosciences, Department of Biosciences, Agro-Food and Environmental Technologies, University of Teramo, Teramo, Italy
| | - Barbara Barboni
- Unit of Basic and Applied Biosciences, Department of Biosciences, Agro-Food and Environmental Technologies, University of Teramo, Teramo, Italy
| |
Collapse
|
23
|
Ikonen L, Pirnes-Karhu S, Pradhan S, Jacobs HT, Szibor M, Suomalainen A. Alternative oxidase causes cell type- and tissue-specific responses in mutator mice. Life Sci Alliance 2023; 6:e202302036. [PMID: 37657934 PMCID: PMC10474302 DOI: 10.26508/lsa.202302036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 09/03/2023] Open
Abstract
Energetic insufficiency, excess production of reactive oxygen species (ROS), and aberrant signaling partially account for the diverse pathology of mitochondrial diseases. Whether interventions affecting ROS, a regulator of stem cell pools, could modify somatic stem cell homeostasis remains unknown. Previous data from mitochondrial DNA mutator mice showed that increased ROS leads to oxidative damage in erythroid progenitors, causing lifespan-limiting anemia. Also unclear is how ROS-targeted interventions affect terminally differentiated tissues. Here, we set out to test in mitochondrial DNA mutator mice how ubiquitous expression of the Ciona intestinalis alternative oxidase (AOX), which attenuates ROS production, affects murine stem cell pools. We found that AOX does not affect neural stem cells but delays the progression of mutator-driven anemia. Furthermore, when combined with the mutator, AOX potentiates mitochondrial stress and inflammatory responses in skeletal muscle. These differential cell type-specific findings demonstrate that AOX expression is not a global panacea for curing mitochondrial dysfunction. ROS attenuation must be carefully studied regarding specific underlying defects before AOX can be safely used in therapy.
Collapse
Affiliation(s)
- Lilli Ikonen
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Sini Pirnes-Karhu
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Swagat Pradhan
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Howard T Jacobs
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Marten Szibor
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Cardiothoracic Surgery, Center for Sepsis Control and Care, Jena University Hospital, Friedrich-Schiller University of Jena, Jena, Germany
| | - Anu Suomalainen
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Helsinki University Hospital, HUSLAB, Helsinki, Finland
| |
Collapse
|
24
|
Cui G, Botuyan MV, Drané P, Hu Q, Bragantini B, Thompson JR, Schuller DJ, Detappe A, Perfetti MT, James LI, Frye SV, Chowdhury D, Mer G. An autoinhibited state of 53BP1 revealed by small molecule antagonists and protein engineering. Nat Commun 2023; 14:6091. [PMID: 37773238 PMCID: PMC10541411 DOI: 10.1038/s41467-023-41821-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 09/20/2023] [Indexed: 10/01/2023] Open
Abstract
The recruitment of 53BP1 to chromatin, mediated by its recognition of histone H4 dimethylated at lysine 20 (H4K20me2), is important for DNA double-strand break repair. Using a series of small molecule antagonists, we demonstrate a conformational equilibrium between an open and a pre-existing lowly populated closed state of 53BP1 in which the H4K20me2 binding surface is buried at the interface between two interacting 53BP1 molecules. In cells, these antagonists inhibit the chromatin recruitment of wild type 53BP1, but do not affect 53BP1 variants unable to access the closed conformation despite preservation of the H4K20me2 binding site. Thus, this inhibition operates by shifting the conformational equilibrium toward the closed state. Our work therefore identifies an auto-associated form of 53BP1-autoinhibited for chromatin binding-that can be stabilized by small molecule ligands encapsulated between two 53BP1 protomers. Such ligands are valuable research tools to study the function of 53BP1 and have the potential to facilitate the development of new drugs for cancer therapy.
Collapse
Affiliation(s)
- Gaofeng Cui
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | | | - Pascal Drané
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Qi Hu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Benoît Bragantini
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | | | - David J Schuller
- Cornell High Energy Synchrotron Source, Cornell University, Ithaca, NY, USA
| | | | - Michael T Perfetti
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lindsey I James
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Stephen V Frye
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Dipanjan Chowdhury
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Georges Mer
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.
- Department of Cancer Biology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
25
|
Egorova TV, Polikarpova AV, Vassilieva SG, Dzhenkova MA, Savchenko IM, Velyaev OA, Shmidt AA, Soldatov VO, Pokrovskii MV, Deykin AV, Bardina MV. CRISPR-Cas9 correction in the DMD mouse model is accompanied by upregulation of Dp71f protein. Mol Ther Methods Clin Dev 2023; 30:161-180. [PMID: 37457303 PMCID: PMC10339130 DOI: 10.1016/j.omtm.2023.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 06/14/2023] [Indexed: 07/18/2023]
Abstract
Duchenne muscular dystrophy (DMD) is a severe hereditary disease caused by a deficiency in the dystrophin protein. The most frequent types of disease-causing mutations in the DMD gene are frameshift deletions of one or more exons. Precision genome editing systems such as CRISPR-Cas9 have shown potential to restore open reading frames in numerous animal studies. Here, we applied an AAV-CRISPR double-cut strategy to correct a mutation in the DMD mouse model with exon 8-34 deletion, encompassing the N-terminal actin-binding domain. We report successful excision of the 100-kb genomic sequence, which includes exons 6 and 7, and partial improvement in cardiorespiratory function. While corrected mRNA was abundant in muscle tissues, only a low level of truncated dystrophin was produced, possibly because of protein instability. Furthermore, CRISPR-Cas9-mediated genome editing upregulated the Dp71f dystrophin isoform on the sarcolemma. Given the previously reported Dp71-associated muscle pathology, our results question the applicability of genome editing strategies for some DMD patients with N-terminal mutations. The safety and efficacy of CRISPR-Cas9 constructs require rigorous investigation in patient-specific animal models.
Collapse
Affiliation(s)
- Tatiana V. Egorova
- Laboratory of Modeling and Therapy of Hereditary Diseases, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
- Marlin Biotech LLC, Sochi 354340, Russia
| | - Anna V. Polikarpova
- Laboratory of Modeling and Therapy of Hereditary Diseases, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
- Marlin Biotech LLC, Sochi 354340, Russia
| | - Svetlana G. Vassilieva
- Laboratory of Modeling and Therapy of Hereditary Diseases, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Marina A. Dzhenkova
- Laboratory of Modeling and Therapy of Hereditary Diseases, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Irina M. Savchenko
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology Russian Academy of Sciences, Moscow 119334, Russia
| | - Oleg A. Velyaev
- Laboratory of Modeling and Therapy of Hereditary Diseases, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Anna A. Shmidt
- Laboratory of Modeling and Therapy of Hereditary Diseases, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology Russian Academy of Sciences, Moscow 119334, Russia
| | - Vladislav O. Soldatov
- Research Institute of Living Systems Pharmacology, Belgorod National Research University, Belgorod 308007, Russia
| | - Mikhail V. Pokrovskii
- Research Institute of Living Systems Pharmacology, Belgorod National Research University, Belgorod 308007, Russia
| | - Alexey V. Deykin
- Marlin Biotech LLC, Sochi 354340, Russia
- Joint Center for Genetic Technologies, Laboratory of Genetic Technologies and Gene Editing for Biomedicine and Veterinary Medicine, Department of Pharmacology and Clinical Pharmacology, Belgorod National Research University, Belgorod 308015, Russia
| | - Maryana V. Bardina
- Laboratory of Modeling and Therapy of Hereditary Diseases, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
- Marlin Biotech LLC, Sochi 354340, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology Russian Academy of Sciences, Moscow 119334, Russia
| |
Collapse
|
26
|
Kramer AC, Carthage J, Berry Y, Gurdziel K, Cook TA, Thummel R. A comparative analysis of gene and protein expression in chronic and acute models of photoreceptor degeneration in adult zebrafish. Front Cell Dev Biol 2023; 11:1233269. [PMID: 37745292 PMCID: PMC10512720 DOI: 10.3389/fcell.2023.1233269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/22/2023] [Indexed: 09/26/2023] Open
Abstract
Background: Adult zebrafish are capable of photoreceptor (PR) regeneration following acute phototoxic lesion (AL). We developed a chronic low light (CLL) exposure model that more accurately reflects chronic PR degeneration observed in many human retinal diseases. Methods: Here, we characterize the morphological and transcriptomic changes associated with acute and chronic models of PR degeneration at 8 time-points over a 28-day window using immunohistochemistry and 3'mRNA-seq. Results: We first observed a differential sensitivity of rod and cone PRs to CLL. Next, we found no evidence for Müller glia (MG) gliosis or regenerative cell-cycle re-entry in the CLL model, which is in contrast to the robust gliosis and proliferative response from resident MG in the AL model. Differential responses of microglia between the models was also observed. Transcriptomic comparisons between the models revealed gene-specific networks of PR regeneration and degeneration, including genes that are activated under conditions of chronic PR stress. Finally, we showed that CLL is at least partially reversible, allowing for rod and cone outer segment outgrowth and replacement of rod cell nuclei via an apparent upregulation of the existing rod neurogenesis mechanism. Discussion: Collectively, these data provide a direct comparison of the morphological and transcriptomic PR degeneration and regeneration models in zebrafish.
Collapse
Affiliation(s)
- Ashley C. Kramer
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Justin Carthage
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Yasmeen Berry
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Katherine Gurdziel
- Genomic Sciences Core, Wayne State University, Detroit, MI, United States
| | - Tiffany A. Cook
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, United States
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, United States
| | - Ryan Thummel
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
27
|
Solana‐Balaguer J, Campoy‐Campos G, Martín‐Flores N, Pérez‐Sisqués L, Sitjà‐Roqueta L, Kucukerden M, Gámez‐Valero A, Coll‐Manzano A, Martí E, Pérez‐Navarro E, Alberch J, Soriano J, Masana M, Malagelada C. Neuron-derived extracellular vesicles contain synaptic proteins, promote spine formation, activate TrkB-mediated signalling and preserve neuronal complexity. J Extracell Vesicles 2023; 12:e12355. [PMID: 37743539 PMCID: PMC10518375 DOI: 10.1002/jev2.12355] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 07/21/2023] [Indexed: 09/26/2023] Open
Abstract
Extracellular vesicles (EVs) play an important role in intercellular communication as carriers of signalling molecules such as bioactive miRNAs, proteins and lipids. EVs are key players in the functioning of the central nervous system (CNS) by influencing synaptic events and modulating recipient neurons. However, the specific role of neuron-to-neuron communication via EVs is still not well understood. Here, we provide evidence that primary neurons uptake neuron-derived EVs in the soma, dendrites, and even in the dendritic spines, and carry synaptic proteins. Neuron-derived EVs increased spine density and promoted the phosphorylation of Akt and ribosomal protein S6 (RPS6), via TrkB-signalling, without impairing the neuronal network activity. Strikingly, EVs exerted a trophic effect on challenged nutrient-deprived neurons. Altogether, our results place EVs in the spotlight for synaptic plasticity modulation as well as a possible therapeutic tool to fight neurodegeneration.
Collapse
Affiliation(s)
- Julia Solana‐Balaguer
- Departament de Biomedicina, Institut de Neurociències (UBneuro)Universitat de BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
| | - Genís Campoy‐Campos
- Departament de Biomedicina, Institut de Neurociències (UBneuro)Universitat de BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
| | - Núria Martín‐Flores
- Departament de Biomedicina, Institut de Neurociències (UBneuro)Universitat de BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
| | - Leticia Pérez‐Sisqués
- Departament de Biomedicina, Institut de Neurociències (UBneuro)Universitat de BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
| | - Laia Sitjà‐Roqueta
- Departament de Biomedicina, Institut de Neurociències (UBneuro)Universitat de BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
| | - Melike Kucukerden
- Departament de Biomedicina, Institut de Neurociències (UBneuro)Universitat de BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
| | - Ana Gámez‐Valero
- Departament de Biomedicina, Institut de Neurociències (UBneuro)Universitat de BarcelonaBarcelonaSpain
- Biomedical Research Networking Center for Epidemiology and Public Health (CIBERESP)MadridSpain
| | - Albert Coll‐Manzano
- Departament de Biomedicina, Institut de Neurociències (UBneuro)Universitat de BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
| | - Eulàlia Martí
- Departament de Biomedicina, Institut de Neurociències (UBneuro)Universitat de BarcelonaBarcelonaSpain
- Biomedical Research Networking Center for Epidemiology and Public Health (CIBERESP)MadridSpain
| | - Esther Pérez‐Navarro
- Departament de Biomedicina, Institut de Neurociències (UBneuro)Universitat de BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
| | - Jordi Alberch
- Departament de Biomedicina, Institut de Neurociències (UBneuro)Universitat de BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
| | - Jordi Soriano
- Departament de Física de la Matèria CondensadaUniversitat de BarcelonaBarcelonaSpain
- Universitat de Barcelona, Institute of Complex Systems (UBICS)Universitat de BarcelonaBarcelonaSpain
| | - Mercè Masana
- Departament de Biomedicina, Institut de Neurociències (UBneuro)Universitat de BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
| | - Cristina Malagelada
- Departament de Biomedicina, Institut de Neurociències (UBneuro)Universitat de BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
| |
Collapse
|
28
|
Hackney CM, Flórez Salcedo P, Mueller E, Koch TL, Kjelgaard LD, Watkins M, Zachariassen LG, Tuelung PS, McArthur JR, Adams DJ, Kristensen AS, Olivera B, Finol-Urdaneta RK, Safavi-Hemami H, Morth JP, Ellgaard L. A previously unrecognized superfamily of macro-conotoxins includes an inhibitor of the sensory neuron calcium channel Cav2.3. PLoS Biol 2023; 21:e3002217. [PMID: 37535677 PMCID: PMC10437998 DOI: 10.1371/journal.pbio.3002217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 08/18/2023] [Accepted: 06/27/2023] [Indexed: 08/05/2023] Open
Abstract
Animal venom peptides represent valuable compounds for biomedical exploration. The venoms of marine cone snails constitute a particularly rich source of peptide toxins, known as conotoxins. Here, we identify the sequence of an unusually large conotoxin, Mu8.1, which defines a new class of conotoxins evolutionarily related to the well-known con-ikot-ikots and 2 additional conotoxin classes not previously described. The crystal structure of recombinant Mu8.1 displays a saposin-like fold and shows structural similarity with con-ikot-ikot. Functional studies demonstrate that Mu8.1 curtails calcium influx in defined classes of murine somatosensory dorsal root ganglion (DRG) neurons. When tested on a variety of recombinantly expressed voltage-gated ion channels, Mu8.1 displayed the highest potency against the R-type (Cav2.3) calcium channel. Ca2+ signals from Mu8.1-sensitive DRG neurons were also inhibited by SNX-482, a known spider peptide modulator of Cav2.3 and voltage-gated K+ (Kv4) channels. Our findings highlight the potential of Mu8.1 as a molecular tool to identify and study neuronal subclasses expressing Cav2.3. Importantly, this multidisciplinary study showcases the potential of uncovering novel structures and bioactivities within the largely unexplored group of macro-conotoxins.
Collapse
Affiliation(s)
- Celeste M. Hackney
- Department of Biology, Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Copenhagen, Denmark
| | - Paula Flórez Salcedo
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, Utah, United States of America
| | - Emilie Mueller
- Enzyme and Protein Chemistry, Section for Protein Chemistry and Enzyme Technology, Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Thomas Lund Koch
- Department of Biochemistry, University of Utah, Salt Lake City, Utah, United States of America
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lau D. Kjelgaard
- Department of Biology, Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Copenhagen, Denmark
| | - Maren Watkins
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, United States of America
| | - Linda G. Zachariassen
- Department of Drug Design & Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | | | - Jeffrey R. McArthur
- Illawarra Health and Medical Research Institute (IHMRI), Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, Australia
| | - David J. Adams
- Illawarra Health and Medical Research Institute (IHMRI), Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, Australia
| | - Anders S. Kristensen
- Department of Drug Design & Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Baldomero Olivera
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, United States of America
| | - Rocio K. Finol-Urdaneta
- Illawarra Health and Medical Research Institute (IHMRI), Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, Australia
- Electrophysiology Facility for Cell Phenotyping and Drug Discovery, Wollongong, Australia
| | - Helena Safavi-Hemami
- Department of Biochemistry, University of Utah, Salt Lake City, Utah, United States of America
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, United States of America
| | - Jens Preben Morth
- Enzyme and Protein Chemistry, Section for Protein Chemistry and Enzyme Technology, Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Lars Ellgaard
- Department of Biology, Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
29
|
Helena GA, Watanabe T, Kato Y, Shiraki N, Kume S. Activation of cAMP (EPAC2) signaling pathway promotes hepatocyte attachment. Sci Rep 2023; 13:12352. [PMID: 37524826 PMCID: PMC10390557 DOI: 10.1038/s41598-023-39712-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 07/29/2023] [Indexed: 08/02/2023] Open
Abstract
Primary Human Hepatocyte (PHH) remains undefeated as the gold standard in hepatic studies. Despite its valuable properties, partial attachment loss due to the extraction process and cryopreservation remained the main hurdle in its application. We hypothesized that we could overcome the loss of PHH cell attachment through thawing protocol adjustment and medium composition. We reported a novel use of a medium designed for iPSC-derived hepatocytes, increasing PHH attachment on the collagen matrix. Delving further into the medium composition, we discovered that removing BSA and exposure to cAMP activators such as IBMX and Forskolin benefit PHH attachment. We found that activating EPAC2, the cAMP downstream effector, by S-220 significantly increased PHH attachment. We also found that EPAC2 activation induced bile canaliculi formation in iPS-derived hepatocytes. Combining these factors in studies involving PHH or iPS-hepatocyte culture provides promising means to improve cell attachment and maintenance of hepatic function.
Collapse
Affiliation(s)
- Grace Aprilia Helena
- School of Life Science and Technology, Tokyo Institute of Technology, 4259-B-25 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
| | - Teruhiko Watanabe
- Life Science Laboratory, Technology and Development Division, Kanto Chemical Co., Inc., 21 Suzukawa, Isehara, Kanagawa, 259-1146, Japan
| | - Yusuke Kato
- School of Life Science and Technology, Tokyo Institute of Technology, 4259-B-25 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
| | - Nobuaki Shiraki
- School of Life Science and Technology, Tokyo Institute of Technology, 4259-B-25 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan.
| | - Shoen Kume
- School of Life Science and Technology, Tokyo Institute of Technology, 4259-B-25 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan.
| |
Collapse
|
30
|
Prasad V, Cerikan B, Stahl Y, Kopp K, Magg V, Acosta-Rivero N, Kim H, Klein K, Funaya C, Haselmann U, Cortese M, Heigwer F, Bageritz J, Bitto D, Jargalsaikhan S, Neufeldt C, Pahmeier F, Boutros M, Yamauchi Y, Ruggieri A, Bartenschlager R. Enhanced SARS-CoV-2 entry via UPR-dependent AMPK-related kinase NUAK2. Mol Cell 2023; 83:2559-2577.e8. [PMID: 37421942 DOI: 10.1016/j.molcel.2023.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 02/14/2023] [Accepted: 06/13/2023] [Indexed: 07/10/2023]
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) remodels the endoplasmic reticulum (ER) to form replication organelles, leading to ER stress and unfolded protein response (UPR). However, the role of specific UPR pathways in infection remains unclear. Here, we found that SARS-CoV-2 infection causes marginal activation of signaling sensor IRE1α leading to its phosphorylation, clustering in the form of dense ER-membrane rearrangements with embedded membrane openings, and XBP1 splicing. By investigating the factors regulated by IRE1α-XBP1 during SARS-CoV-2 infection, we identified stress-activated kinase NUAK2 as a novel host-dependency factor for SARS-CoV-2, HCoV-229E, and MERS-CoV entry. Reducing NUAK2 abundance or kinase activity impaired SARS-CoV-2 particle binding and internalization by decreasing cell surface levels of viral receptors and viral trafficking likely by modulating the actin cytoskeleton. IRE1α-dependent NUAK2 levels were elevated in SARS-CoV-2-infected and bystander non-infected cells, promoting viral spread by maintaining ACE2 cell surface levels and facilitating virion binding to bystander cells.
Collapse
Affiliation(s)
- Vibhu Prasad
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Disease Research, Heidelberg, Germany.
| | - Berati Cerikan
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Disease Research, Heidelberg, Germany
| | - Yannick Stahl
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Disease Research, Heidelberg, Germany
| | - Katja Kopp
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Disease Research, Heidelberg, Germany
| | - Vera Magg
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Disease Research, Heidelberg, Germany
| | - Nelson Acosta-Rivero
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Disease Research, Heidelberg, Germany
| | - Heeyoung Kim
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Disease Research, Heidelberg, Germany
| | - Katja Klein
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, Biomedical Sciences Building, University of Bristol, Bristol, UK
| | - Charlotta Funaya
- Electron Microscopy Core Facility, Heidelberg University, Heidelberg, Germany
| | - Uta Haselmann
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Disease Research, Heidelberg, Germany
| | - Mirko Cortese
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Disease Research, Heidelberg, Germany
| | - Florian Heigwer
- Division of Signaling and Functional Genomics, German Cancer Research Center, and Department of Cell and Molecular Biology, Heidelberg University, Medical Faculty Mannheim, Mannheim, Germany; Department of Biotechnology, Life Science and Engineering, University of Applied Sciences, Bingen am Rhein, Germany
| | - Josephine Bageritz
- Division of Signaling and Functional Genomics, German Cancer Research Center, and Department of Cell and Molecular Biology, Heidelberg University, Medical Faculty Mannheim, Mannheim, Germany
| | - David Bitto
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, Biomedical Sciences Building, University of Bristol, Bristol, UK
| | - Saruul Jargalsaikhan
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Disease Research, Heidelberg, Germany
| | - Christopher Neufeldt
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Disease Research, Heidelberg, Germany
| | - Felix Pahmeier
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Disease Research, Heidelberg, Germany
| | - Michael Boutros
- Division of Signaling and Functional Genomics, German Cancer Research Center, and Department of Cell and Molecular Biology, Heidelberg University, Medical Faculty Mannheim, Mannheim, Germany
| | - Yohei Yamauchi
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, Biomedical Sciences Building, University of Bristol, Bristol, UK; Institute of Pharmaceutical Sciences, ETH Zürich, Zürich, Switzerland
| | - Alessia Ruggieri
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Disease Research, Heidelberg, Germany
| | - Ralf Bartenschlager
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Disease Research, Heidelberg, Germany; Division Virus-Associated Carcinogenesis, German Cancer Research Center, Heidelberg, Germany; German Center for Infection Research, Heidelberg Partner Site, Heidelberg, Germany.
| |
Collapse
|
31
|
Egorova TV, Galkin II, Velyaev OA, Vassilieva SG, Savchenko IM, Loginov VA, Dzhenkova MA, Korshunova DS, Kozlova OS, Ivankov DN, Polikarpova AV. In-Frame Deletion of Dystrophin Exons 8-50 Results in DMD Phenotype. Int J Mol Sci 2023; 24:ijms24119117. [PMID: 37298068 DOI: 10.3390/ijms24119117] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/12/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
Mutations that prevent the production of proteins in the DMD gene cause Duchenne muscular dystrophy. Most frequently, these are deletions leading to reading-frame shift. The "reading-frame rule" states that deletions that preserve ORF result in a milder Becker muscular dystrophy. By removing several exons, new genome editing tools enable reading-frame restoration in DMD with the production of BMD-like dystrophins. However, not every truncated dystrophin with a significant internal loss functions properly. To determine the effectiveness of potential genome editing, each variant should be carefully studied in vitro or in vivo. In this study, we focused on the deletion of exons 8-50 as a potential reading-frame restoration option. Using the CRISPR-Cas9 tool, we created the novel mouse model DMDdel8-50, which has an in-frame deletion in the DMD gene. We compared DMDdel8-50 mice to C57Bl6/CBA background control mice and previously generated DMDdel8-34 KO mice. We discovered that the shortened protein was expressed and correctly localized on the sarcolemma. The truncated protein, on the other hand, was unable to function like a full-length dystrophin and prevent disease progression. On the basis of protein expression, histological examination, and physical assessment of the mice, we concluded that the deletion of exons 8-50 is an exception to the reading-frame rule.
Collapse
Affiliation(s)
- Tatiana V Egorova
- Laboratory of Modeling and Therapy of Hereditary Diseases, Institute of Gene Biology Russian Academy of Sciences, Moscow 119334, Russia
- Marlin Biotech LLC, Sochi 354340, Russia
| | - Ivan I Galkin
- Marlin Biotech LLC, Sochi 354340, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology Russian Academy of Sciences, Moscow 119334, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Oleg A Velyaev
- Laboratory of Modeling and Therapy of Hereditary Diseases, Institute of Gene Biology Russian Academy of Sciences, Moscow 119334, Russia
| | - Svetlana G Vassilieva
- Laboratory of Modeling and Therapy of Hereditary Diseases, Institute of Gene Biology Russian Academy of Sciences, Moscow 119334, Russia
| | - Irina M Savchenko
- Laboratory of Modeling and Therapy of Hereditary Diseases, Institute of Gene Biology Russian Academy of Sciences, Moscow 119334, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology Russian Academy of Sciences, Moscow 119334, Russia
| | - Vyacheslav A Loginov
- Laboratory of Modeling and Therapy of Hereditary Diseases, Institute of Gene Biology Russian Academy of Sciences, Moscow 119334, Russia
| | - Marina A Dzhenkova
- Laboratory of Modeling and Therapy of Hereditary Diseases, Institute of Gene Biology Russian Academy of Sciences, Moscow 119334, Russia
| | - Diana S Korshunova
- Core Facilities, Institute of Gene Biology Russian Academy of Sciences, Moscow 119334, Russia
| | - Olga S Kozlova
- Laboratory of Modeling and Therapy of Hereditary Diseases, Institute of Gene Biology Russian Academy of Sciences, Moscow 119334, Russia
| | - Dmitry N Ivankov
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Anna V Polikarpova
- Laboratory of Modeling and Therapy of Hereditary Diseases, Institute of Gene Biology Russian Academy of Sciences, Moscow 119334, Russia
- Marlin Biotech LLC, Sochi 354340, Russia
| |
Collapse
|
32
|
Hue J, Valinciute Z, Thavaraj S, Veschini L. Multifactorial estimation of clinical outcome in HPV-associated oropharyngeal squamous cell carcinoma via automated image analysis of routine diagnostic H&E slides and neural network modelling. Oral Oncol 2023; 141:106399. [PMID: 37098302 DOI: 10.1016/j.oraloncology.2023.106399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/05/2022] [Accepted: 04/13/2023] [Indexed: 04/27/2023]
Abstract
OBJECTIVE Routine haematoxylin and eosin (H&E) photomicrographs from human papillomavirus-associated oropharyngeal squamous cell carcinomas (HPV + OpSCC) contain a wealth of prognostic information. In this study, we developed a high content image analysis (HCIA) workflow to quantify features of H&E images from HPV + OpSCC patients to identify prognostic features and predict patient outcomes. METHODS First, we have developed an open-source HCIA tool for single-cell segmentation and classification of H&E images. Subsequently, we have used our HCIA tool to analyse a set of 889 images from diagnostic H&E slides in a retrospective cohort of HPV + OpSCC patients with favourable (FO, n = 60) or unfavourable (UO, n = 30) outcomes. We have identified and measured 31 prognostic features which were quantified in each sample and used to train a neural network (NN) model to predict patient outcomes. RESULTS Univariate and multivariate statistical analyses revealed significant differences between FO and UO patients in 31 and 17 variables, respectively (P < 0.05). At the single-image level, the NN model had an overall accuracy of 72.5% and 71.2% in recognising FO and UO patients when applied to test or validation sets, respectively. When considering 10 images per patient, the accuracy of the NN model increased to 86.7% in the test set. CONCLUSION Our open-source H&E analysis workflow and predictive models confirm previously reported prognostic features and identifies novel factors which predict HPV + OpSCC outcomes with promising accuracy. Our work supports the use of machine learning in digital pathology to exploit clinically relevant features in routine diagnostic pathology without additional biomarkers.
Collapse
Affiliation(s)
- Jonas Hue
- Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, United Kingdom.
| | - Zaneta Valinciute
- Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, United Kingdom
| | - Selvam Thavaraj
- Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, United Kingdom
| | - Lorenzo Veschini
- Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, United Kingdom.
| |
Collapse
|
33
|
Müller FA, Stamou M, Englert FH, Frenzel O, Diedrich S, Suter-Dick L, Wambaugh JF, Sturla SJ. In vitro to in vivo extrapolation and high-content imaging for simultaneous characterization of chemically induced liver steatosis and markers of hepatotoxicity. Arch Toxicol 2023; 97:1701-1721. [PMID: 37046073 PMCID: PMC10182956 DOI: 10.1007/s00204-023-03490-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023]
Abstract
Chemically induced steatosis is characterized by lipid accumulation associated with mitochondrial dysfunction, oxidative stress and nucleus distortion. New approach methods integrating in vitro and in silico models are needed to identify chemicals that may induce these cellular events as potential risk factors for steatosis and associated hepatotoxicity. In this study we used high-content imaging for the simultaneous quantification of four cellular markers as sentinels for hepatotoxicity and steatosis in chemically exposed human liver cells in vitro. Furthermore, we evaluated the results with a computational model for the extrapolation of human oral equivalent doses (OED). First, we tested 16 reference chemicals with known capacities to induce cellular alterations in nuclear morphology, lipid accumulation, mitochondrial membrane potential and oxidative stress. Then, using physiologically based pharmacokinetic modeling and reverse dosimetry, OEDs were extrapolated from data of any stimulated individual sentinel response. The extrapolated OEDs were confirmed to be within biologically relevant exposure ranges for the reference chemicals. Next, we tested 14 chemicals found in food, selected from thousands of putative chemicals on the basis of structure-based prediction for nuclear receptor activation. Amongst these, orotic acid had an extrapolated OED overlapping with realistic exposure ranges. Thus, we were able to characterize known steatosis-inducing chemicals as well as data-scarce food-related chemicals, amongst which we confirmed orotic acid to induce hepatotoxicity. This strategy addresses needs of next generation risk assessment and can be used as a first chemical prioritization hazard screening step in a tiered approach to identify chemical risk factors for steatosis and hepatotoxicity-associated events.
Collapse
Affiliation(s)
- Fabrice A Müller
- Department of Health Sciences and Technology, ETH Zurich, Schmelzbergstrasse 9, 8092, Zurich, Switzerland
| | - Marianna Stamou
- Department of Health Sciences and Technology, ETH Zurich, Schmelzbergstrasse 9, 8092, Zurich, Switzerland
| | - Felix H Englert
- Department of Health Sciences and Technology, ETH Zurich, Schmelzbergstrasse 9, 8092, Zurich, Switzerland
| | - Ole Frenzel
- Department of Health Sciences and Technology, ETH Zurich, Schmelzbergstrasse 9, 8092, Zurich, Switzerland
| | - Sabine Diedrich
- Department of Health Sciences and Technology, ETH Zurich, Schmelzbergstrasse 9, 8092, Zurich, Switzerland
| | - Laura Suter-Dick
- School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, 4132, Muttenz, Switzerland
- Swiss Centre for Applied Human Toxicology (SCAHT), 4001, Basel, Switzerland
| | - John F Wambaugh
- Center for Computational Toxicology and Exposure, Office of Research and Development, United States Environmental Protection Agency, Research Triangle Park, Durham, NC, 27711, USA
| | - Shana J Sturla
- Department of Health Sciences and Technology, ETH Zurich, Schmelzbergstrasse 9, 8092, Zurich, Switzerland.
| |
Collapse
|
34
|
Dibble M, Di Cio' S, Luo P, Balkwill F, Gautrot JE. The impact of pericytes on the stability of microvascular networks in response to nanoparticles. Sci Rep 2023; 13:5729. [PMID: 37029151 PMCID: PMC10082022 DOI: 10.1038/s41598-023-31352-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 03/10/2023] [Indexed: 04/09/2023] Open
Abstract
Recapitulating the normal physiology of the microvasculature is pivotal in the development of more complex in-vitro models and organ-on-chip designs. Pericytes are an important component of the vasculature, promoting vessel stability, inhibiting vascular permeability and maintaining the vascular hierarchical architecture. The use of such co-culture for the testing of therapeutics and nanoparticle safety is increasingly considered for the validation of therapeutic strategies. This report presents the use of a microfluidic model for such applications. Interactions between endothelial cells and pericytes are first explored. We identify basal conditions required to form stable and reproducible endothelial networks. We then investigate interactions between endothelial cells and pericytes via direct co-culture. In our system, pericytes prevented vessel hyperplasia and maintained vessel length in prolonged culture (> 10 days). In addition, these vessels displayed barrier function and expression of junction markers associated with vessel maturation, including VE-cadherin, β-catenin and ZO-1. Furthermore, pericytes maintained vessel integrity following stress (nutrient starvation) and prevented vessel regression, in contrast to the striking dissociation of networks in endothelial monocultures. This response was also observed when endothelial/pericyte co-cultures were exposed to high concentrations of moderately toxic cationic nanoparticles used for gene delivery. This study highlights the importance of pericytes in protecting vascular networks from stress and external agents and their importance to the design of advanced in-vitro models, including for the testing of nanotoxicity, to better recapitulate physiological response and avoid false positives.
Collapse
Affiliation(s)
- Matthew Dibble
- School of Engineering and Materials Science, Institute of Bioengineering, Queen Mary, University of London, Mile End Road, London, E1 4NS, UK
- School of Engineering and Materials Science, Queen Mary, University of London, Mile End Road, London, E1 4NS, UK
| | - Stefania Di Cio'
- School of Engineering and Materials Science, Institute of Bioengineering, Queen Mary, University of London, Mile End Road, London, E1 4NS, UK
- School of Engineering and Materials Science, Queen Mary, University of London, Mile End Road, London, E1 4NS, UK
| | - Piaopiao Luo
- School of Engineering and Materials Science, Institute of Bioengineering, Queen Mary, University of London, Mile End Road, London, E1 4NS, UK
- School of Engineering and Materials Science, Queen Mary, University of London, Mile End Road, London, E1 4NS, UK
| | - Frances Balkwill
- School of Engineering and Materials Science, Institute of Bioengineering, Queen Mary, University of London, Mile End Road, London, E1 4NS, UK
- Barts Cancer Institute, Queen Mary, University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Julien E Gautrot
- School of Engineering and Materials Science, Institute of Bioengineering, Queen Mary, University of London, Mile End Road, London, E1 4NS, UK.
- School of Engineering and Materials Science, Queen Mary, University of London, Mile End Road, London, E1 4NS, UK.
| |
Collapse
|
35
|
Kathote G, Ma Q, Angulo G, Chen H, Jakkamsetti V, Dobariya A, Good LB, Posner B, Park JY, Pascual JM. Identification of Glucose Transport Modulators In Vitro and Method for Their Deep Learning Neural Network Behavioral Evaluation in Glucose Transporter 1-Deficient Mice. J Pharmacol Exp Ther 2023; 384:393-405. [PMID: 36635085 DOI: 10.1124/jpet.122.001428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/07/2022] [Accepted: 12/27/2022] [Indexed: 01/14/2023] Open
Abstract
Metabolic flux augmentation via glucose transport activation may be desirable in glucose transporter 1 (Glut1) deficiency syndrome (G1D) and dementia, whereas suppression might prove useful in cancer. Using lung adenocarcinoma cells that predominantly express Glut1 relative to other glucose transporters, we screened 9,646 compounds for effects on the accumulation of an extracellularly applied fluorescent glucose analog. Five drugs currently prescribed for unrelated indications or preclinically characterized robustly enhanced intracellular fluorescence. Additionally identified were 37 novel activating and nine inhibitory compounds lacking previous biologic characterization. Because few glucose-related mechanistic or pharmacological studies were available for these compounds, we developed a method to quantify G1D mouse behavior to infer potential therapeutic value. To this end, we designed a five-track apparatus to record and evaluate spontaneous locomotion videos. We applied this to a G1D mouse model that replicates the ataxia and other manifestations cardinal to the human disorder. Because the first two drugs that we examined in this manner (baclofen and acetazolamide) exerted various impacts on several gait aspects, we used deep learning neural networks to more comprehensively assess drug effects. Using this method, 49 locomotor parameters differentiated G1D from control mice. Thus, we used parameter modifiability to quantify efficacy on gait. We tested this by measuring the effects of saline as control and glucose as G1D therapy. The results indicate that this in vivo approach can estimate preclinical suitability from the perspective of G1D locomotion. This justifies the use of this method to evaluate our drugs or other interventions and sort candidates for further investigation. SIGNIFICANCE STATEMENT: There are few or no activators and few clinical inhibitors of glucose transport. Using Glut1-rich cells exposed to a glucose analog, we identified, in highthroughput fashion, a series of novel modulators. Some were drugs used to modify unrelated processes and some represented large but little studied chemical compound families. To facilitate their preclinical efficacy characterization regardless of potential mechanism of action, we developed a gait testing platform for deep learning neural network analysis of drug impact on Glut1-deficient mouse locomotion.
Collapse
Affiliation(s)
- Gauri Kathote
- Rare Brain Disorders Program, Department of Neurology (G.K., Q.M., G.A., V.J., A.D., L.B.G., J.M.P.), Department of Biochemistry (H.C., B.P.), Department of Pathology (J.Y.P.), Department of Physiology (J.M.P.), Department of Pediatrics (J.M.P.), and Eugene McDermott Center for Human Growth & Development/Center for Human Genetics (J.Y.P., J.M.P.), University of Texas Southwestern Medical Center, Dallas, Texas
| | - Qian Ma
- Rare Brain Disorders Program, Department of Neurology (G.K., Q.M., G.A., V.J., A.D., L.B.G., J.M.P.), Department of Biochemistry (H.C., B.P.), Department of Pathology (J.Y.P.), Department of Physiology (J.M.P.), Department of Pediatrics (J.M.P.), and Eugene McDermott Center for Human Growth & Development/Center for Human Genetics (J.Y.P., J.M.P.), University of Texas Southwestern Medical Center, Dallas, Texas
| | - Gustavo Angulo
- Rare Brain Disorders Program, Department of Neurology (G.K., Q.M., G.A., V.J., A.D., L.B.G., J.M.P.), Department of Biochemistry (H.C., B.P.), Department of Pathology (J.Y.P.), Department of Physiology (J.M.P.), Department of Pediatrics (J.M.P.), and Eugene McDermott Center for Human Growth & Development/Center for Human Genetics (J.Y.P., J.M.P.), University of Texas Southwestern Medical Center, Dallas, Texas
| | - Hong Chen
- Rare Brain Disorders Program, Department of Neurology (G.K., Q.M., G.A., V.J., A.D., L.B.G., J.M.P.), Department of Biochemistry (H.C., B.P.), Department of Pathology (J.Y.P.), Department of Physiology (J.M.P.), Department of Pediatrics (J.M.P.), and Eugene McDermott Center for Human Growth & Development/Center for Human Genetics (J.Y.P., J.M.P.), University of Texas Southwestern Medical Center, Dallas, Texas
| | - Vikram Jakkamsetti
- Rare Brain Disorders Program, Department of Neurology (G.K., Q.M., G.A., V.J., A.D., L.B.G., J.M.P.), Department of Biochemistry (H.C., B.P.), Department of Pathology (J.Y.P.), Department of Physiology (J.M.P.), Department of Pediatrics (J.M.P.), and Eugene McDermott Center for Human Growth & Development/Center for Human Genetics (J.Y.P., J.M.P.), University of Texas Southwestern Medical Center, Dallas, Texas
| | - Aksharkumar Dobariya
- Rare Brain Disorders Program, Department of Neurology (G.K., Q.M., G.A., V.J., A.D., L.B.G., J.M.P.), Department of Biochemistry (H.C., B.P.), Department of Pathology (J.Y.P.), Department of Physiology (J.M.P.), Department of Pediatrics (J.M.P.), and Eugene McDermott Center for Human Growth & Development/Center for Human Genetics (J.Y.P., J.M.P.), University of Texas Southwestern Medical Center, Dallas, Texas
| | - Levi B Good
- Rare Brain Disorders Program, Department of Neurology (G.K., Q.M., G.A., V.J., A.D., L.B.G., J.M.P.), Department of Biochemistry (H.C., B.P.), Department of Pathology (J.Y.P.), Department of Physiology (J.M.P.), Department of Pediatrics (J.M.P.), and Eugene McDermott Center for Human Growth & Development/Center for Human Genetics (J.Y.P., J.M.P.), University of Texas Southwestern Medical Center, Dallas, Texas
| | - Bruce Posner
- Rare Brain Disorders Program, Department of Neurology (G.K., Q.M., G.A., V.J., A.D., L.B.G., J.M.P.), Department of Biochemistry (H.C., B.P.), Department of Pathology (J.Y.P.), Department of Physiology (J.M.P.), Department of Pediatrics (J.M.P.), and Eugene McDermott Center for Human Growth & Development/Center for Human Genetics (J.Y.P., J.M.P.), University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jason Y Park
- Rare Brain Disorders Program, Department of Neurology (G.K., Q.M., G.A., V.J., A.D., L.B.G., J.M.P.), Department of Biochemistry (H.C., B.P.), Department of Pathology (J.Y.P.), Department of Physiology (J.M.P.), Department of Pediatrics (J.M.P.), and Eugene McDermott Center for Human Growth & Development/Center for Human Genetics (J.Y.P., J.M.P.), University of Texas Southwestern Medical Center, Dallas, Texas.
| | - Juan M Pascual
- Rare Brain Disorders Program, Department of Neurology (G.K., Q.M., G.A., V.J., A.D., L.B.G., J.M.P.), Department of Biochemistry (H.C., B.P.), Department of Pathology (J.Y.P.), Department of Physiology (J.M.P.), Department of Pediatrics (J.M.P.), and Eugene McDermott Center for Human Growth & Development/Center for Human Genetics (J.Y.P., J.M.P.), University of Texas Southwestern Medical Center, Dallas, Texas.
| |
Collapse
|
36
|
Conserved reduction of m 6A RNA modifications during aging and neurodegeneration is linked to changes in synaptic transcripts. Proc Natl Acad Sci U S A 2023; 120:e2204933120. [PMID: 36812208 PMCID: PMC9992849 DOI: 10.1073/pnas.2204933120] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
N6-methyladenosine (m6A) regulates mRNA metabolism. While it has been implicated in the development of the mammalian brain and in cognition, the role of m6A in synaptic plasticity, especially during cognitive decline, is not fully understood. In this study, we employed methylated RNA immunoprecipitation sequencing to obtain the m6A epitranscriptome of the hippocampal subregions CA1, CA3, and the dentate gyrus and the anterior cingulate cortex (ACC) in young and aged mice. We observed a decrease in m6A levels in aged animals. Comparative analysis of cingulate cortex (CC) brain tissue from cognitively intact human subjects and Alzheimer's disease (AD) patients showed decreased m6A RNA methylation in AD patients. m6A changes common to brains of aged mice and AD patients were found in transcripts linked to synaptic function including calcium/calmodulin-dependent protein kinase 2 (CAMKII) and AMPA-selective glutamate receptor 1 (Glua1). We used proximity ligation assays to show that reduced m6A levels result in decreased synaptic protein synthesis as exemplified by CAMKII and GLUA1. Moreover, reduced m6A levels impaired synaptic function. Our results suggest that m6A RNA methylation controls synaptic protein synthesis and may play a role in cognitive decline associated with aging and AD.
Collapse
|
37
|
Schuster KH, DiFranco DM, Putka AF, Mato JP, Jarrah SI, Stec NR, Sundararajan VO, McLoughlin HS. Disease-associated oligodendrocyte signatures are spatiotemporally dysregulated in spinocerebellar ataxia type 3. Front Neurosci 2023; 17:1118429. [PMID: 36875652 PMCID: PMC9975394 DOI: 10.3389/fnins.2023.1118429] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/26/2023] [Indexed: 02/17/2023] Open
Abstract
Spinocerebellar ataxia type 3 (SCA3) is a neurodegenerative disease caused by a CAG repeat expansion in the ATXN3 gene. Though the ATXN3 protein is expressed ubiquitously throughout the CNS, regional pathology in SCA3 patients is observed within select neuronal populations and more recently within oligodendrocyte-rich white matter tracts. We have previously recapitulated these white matter abnormalities in an overexpression mouse model of SCA3 and demonstrated that oligodendrocyte maturation impairments are one of the earliest and most progressive changes in SCA3 pathogenesis. Disease-associated oligodendrocyte signatures have recently emerged as significant contributors to several other neurodegenerative diseases, including Alzheimer's disease, Huntington's disease, and Parkinson's disease, but their role in regional vulnerability and disease progression remains unexplored. Here, we are the first to comparatively assess myelination in human tissue in a region-dependent manner. Translating these findings to SCA3 mouse models of disease, we confirmed endogenous expression of mutant Atxn3 leads to regional transcriptional dysregulation of oligodendrocyte maturation markers in Knock-In models of SCA3. We then investigated the spatiotemporal progression of mature oligodendrocyte transcriptional dysregulation in an overexpression SCA3 mouse model and how it relates to the onset of motor impairment. We further determined that regional reduction in mature oligodendrocyte cell counts in SCA3 mice over time parallels the onset and progression of brain atrophy in SCA3 patients. This work emphasizes the prospective contributions of disease-associated oligodendrocyte signatures to regional vulnerability and could inform timepoints and target regions imperative for biomarker assessment and therapeutic intervention in several neurodegenerative diseases.
Collapse
Affiliation(s)
- Kristen H. Schuster
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | | | - Alexandra F. Putka
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, United States
| | - Juan P. Mato
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, United States
| | - Sabrina I. Jarrah
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Nicholas R. Stec
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | | | | |
Collapse
|
38
|
Castellanos-Montiel MJ, Chaineau M, Franco-Flores AK, Haghi G, Carrillo-Valenzuela D, Reintsch WE, Chen CXQ, Durcan TM. An Optimized Workflow to Generate and Characterize iPSC-Derived Motor Neuron (MN) Spheroids. Cells 2023; 12:cells12040545. [PMID: 36831212 PMCID: PMC9954647 DOI: 10.3390/cells12040545] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
A multitude of in vitro models based on induced pluripotent stem cell (iPSC)-derived motor neurons (MNs) have been developed to investigate the underlying causes of selective MN degeneration in motor neuron diseases (MNDs). For instance, spheroids are simple 3D models that have the potential to be generated in large numbers that can be used across different assays. In this study, we generated MN spheroids and developed a workflow to analyze them. To start, the morphological profiling of the spheroids was achieved by developing a pipeline to obtain measurements of their size and shape. Next, we confirmed the expression of different MN markers at the transcript and protein levels by qPCR and immunocytochemistry of tissue-cleared samples, respectively. Finally, we assessed the capacity of the MN spheroids to display functional activity in the form of action potentials and bursts using a microelectrode array approach. Although most of the cells displayed an MN identity, we also characterized the presence of other cell types, namely interneurons and oligodendrocytes, which share the same neural progenitor pool with MNs. In summary, we successfully developed an MN 3D model, and we optimized a workflow that can be applied to perform its morphological, gene expression, protein, and functional profiling over time.
Collapse
|
39
|
Pierozan P, Kosnik M, Karlsson O. High-content analysis shows synergistic effects of low perfluorooctanoic acid (PFOS) and perfluorooctane sulfonic acid (PFOA) mixture concentrations on human breast epithelial cell carcinogenesis. ENVIRONMENT INTERNATIONAL 2023; 172:107746. [PMID: 36731186 DOI: 10.1016/j.envint.2023.107746] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/04/2023] [Accepted: 01/09/2023] [Indexed: 06/18/2023]
Abstract
Perfluoroalkyl substances (PFAS) have been associated with cancer, but the potential underlying mechanisms need to be further elucidated and include studies of PFAS mixtures. This mechanistic study revealed that very low concentrations (500 pM) of the binary PFOS and PFOA mixture induced synergistic effects on human epithelial breast cell (MCF-10A) proliferation. The cell proliferation was mediated by pregnane X receptor (PXR) activation, an increase in cyclin D1 and CDK6/4 levels, decrease in p21 and p53 levels, and by regulation of phosphor-Akt and β-catenin. The PFAS mixture also altered histone modifications, epigenetic mechanisms implicated in tumorigenesis, and promoted cell migration and invasion by reducing the levels of occludin. High-content screening using the cell painting assay, revealed that hundreds of cell features were affected by the PFAS mixture even at the lowest concentration tested (100 pM). The detailed phenotype profiling further demonstrated that the PFAS mixture altered cell morphology, mostly in parameters related to intensity and texture associated with mitochondria, endoplasmic reticulum, and nucleoli. Exposure to higher concentrations (≥50 µM) of the PFOS and PFOA mixture caused cell death through synergistic interactions that induced oxidative stress, DNA/RNA damage, and lipid peroxidation, illustrating the complexity of mixture toxicology. Increased knowledge about mixture-induced effects is important for better understanding of PFAS' possible role in cancer etiology, and may impact the risk assessment of these and other compounds. This study shows the potential of image-based multiplexed fluorescence assays and high-content screening for development of new approach methodologies in toxicology.
Collapse
Affiliation(s)
- Paula Pierozan
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, Stockholm 114 18, Sweden
| | - Marissa Kosnik
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, Stockholm 114 18, Sweden
| | - Oskar Karlsson
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, Stockholm 114 18, Sweden.
| |
Collapse
|
40
|
Kaplan L, Drexler C, Pfaller AM, Brenna S, Wunderlich KA, Dimitracopoulos A, Merl-Pham J, Perez MT, Schlötzer-Schrehardt U, Enzmann V, Samardzija M, Puig B, Fuchs P, Franze K, Hauck SM, Grosche A. Retinal regions shape human and murine Müller cell proteome profile and functionality. Glia 2023; 71:391-414. [PMID: 36334068 DOI: 10.1002/glia.24283] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/29/2022] [Accepted: 10/07/2022] [Indexed: 11/08/2022]
Abstract
The human macula is a highly specialized retinal region with pit-like morphology and rich in cones. How Müller cells, the principal glial cell type in the retina, are adapted to this environment is still poorly understood. We compared proteomic data from cone- and rod-rich retinae from human and mice and identified different expression profiles of cone- and rod-associated Müller cells that converged on pathways representing extracellular matrix and cell adhesion. In particular, epiplakin (EPPK1), which is thought to play a role in intermediate filament organization, was highly expressed in macular Müller cells. Furthermore, EPPK1 knockout in a human Müller cell-derived cell line led to a decrease in traction forces as well as to changes in cell size, shape, and filopodia characteristics. We here identified EPPK1 as a central molecular player in the region-specific architecture of the human retina, which likely enables specific functions under the immense mechanical loads in vivo.
Collapse
Affiliation(s)
- Lew Kaplan
- Department of Physiological Genomics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Corinne Drexler
- Max Perutz Labs, Department of Biochemistry and Cell Biology, University of Vienna, Vienna Biocenter Campus (VBC), Vienna, Austria
- Vienna Biocenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Anna M Pfaller
- Department of Physiological Genomics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Santra Brenna
- Neurology Department, Experimental Research in Stroke and Inflammation (ERSI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kirsten A Wunderlich
- Department of Physiological Genomics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Andrea Dimitracopoulos
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Juliane Merl-Pham
- Research Unit Protein Science and Metabolomics and Proteomics Core, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Maria-Theresa Perez
- Department of Clinical Sciences, Division of Ophthalmology, Lund University, Lund, Sweden
- NanoLund, Nanometer Structure Consortium, Lund University, Lund, Sweden
| | | | - Volker Enzmann
- Department of Ophthalmology, Bern University Hospital, Inselspital, University of Bern, Bern, Switzerland
- Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Marijana Samardzija
- Department of Ophthalmology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Berta Puig
- Neurology Department, Experimental Research in Stroke and Inflammation (ERSI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Peter Fuchs
- Max Perutz Labs, Department of Biochemistry and Cell Biology, University of Vienna, Vienna Biocenter Campus (VBC), Vienna, Austria
| | - Kristian Franze
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Institute of Medical Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
| | - Stefanie M Hauck
- Research Unit Protein Science and Metabolomics and Proteomics Core, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Antje Grosche
- Department of Physiological Genomics, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
41
|
Whole-Transcriptome Sequencing Combined with High-Dimensional Proteomic Technologies Reveals the Potential Value of miR-135b-5p as a Biomarker for Hepatocellular Carcinoma. BIOMED RESEARCH INTERNATIONAL 2023; 2023:6517963. [PMID: 36755690 PMCID: PMC9902149 DOI: 10.1155/2023/6517963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 01/31/2023]
Abstract
Purpose Hepatocellular carcinoma (HCC) is a disease with great heterogeneity and a high mortality rate. It is crucial to identify reliable biomarkers for diagnosis, prognosis, and treatment to improve clinical outcomes in patients with HCC. Alpha-fetoprotein (AFP) is not only a widely used biomarker in clinical practice but also plays a complicated role in HCC, and it has recently been considered to be related to immunotherapy. MicroRNAs (miRNAs) are regarded as key regulators and promising biomarkers of HCC. We investigated the role of an AFP-related miRNA, miR-135b-5p, in HCC progression. Methods Identification of miR-135b-5p was performed based on a cohort of 65 HCC cases and the liver hepatocellular carcinoma cohort of The Cancer Genome Atlas (Asian people only). A combination of whole-transcriptome sequencing and high-dimensional proteomic technologies was used to study the role of miR-135b-5p in HCC. Results Upregulation of miR-135b-5p was detected in patients with HCC with high serum AFP levels (AFP > 400 ng/ml). Elevated miR-135b-5p expression was associated with adverse prognosis. We also identified the relevance between high miR-135b-5p expression and tumor-related pathological characteristics, such as Edmondson grade and vascular invasion. We revealed tyrosine kinase nonreceptor 1 as a potential target of miR-135b-5p. Additionally, the transcriptional start site of miR-135b-5p had potential binding sites for SRY-box transcription factor 9, and the stemness properties of tumor cells were more remarkable in HCC with the upregulation of miR-135b-5p. The molecular characterization of the miR-135b-5p-high group was similar to that of the HCC subclasses containing moderately and poorly differentiated tumors. Finally, gene signatures associated with improved clinical outcomes in immune checkpoint inhibitor therapy were upregulated in the miR-135b-5p-high group. Conclusion miR-135b-5p could be a biomarker for predicting the prognosis and antiprogrammed cell death protein 1 monotherapy response in HCC.
Collapse
|
42
|
Jenster L, Ribeiro LS, Franklin BS, Bertheloot D. Measuring NLR Oligomerization II: Detection of ASC Speck Formation by Confocal Microscopy and Immunofluorescence. Methods Mol Biol 2023; 2696:73-92. [PMID: 37578716 DOI: 10.1007/978-1-0716-3350-2_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Inflammasomes are crucial sentinels of the innate immune system that sense clues of infection, cellular stress, or metabolic imbalances. Upon activation, the inflammasome sensor (e.g., NLRP3) recruits the adaptor protein apoptosis-associated speck-like protein containing a CARD (ASC). ASC rapidly oligomerizes to form a micron-sized structure termed "ASC speck." These are crucial for the activation of caspase-1 and downstream inflammatory signals released following a specific form of lytic cell death called pyroptosis. Hence, due to their considerably large size, ASC specks can be easily visualized by microscopy as a simple upstream readout for inflammasome activation. Here, we provide three detailed protocols for imaging ASC specks: (1) live-cell imaging of macrophage cell lines expressing a fluorescent protein fusion form of ASC, (2) imaging of human primary cells using immunofluorescence staining of endogenous ASC, and (3) visualization and quantification of specks on a single-cell level using imaging flow cytometry.
Collapse
Affiliation(s)
- Lea Jenster
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Lucas S Ribeiro
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Bernardo S Franklin
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Damien Bertheloot
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany.
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany.
| |
Collapse
|
43
|
Schüssele DS, Haller PK, Haas ML, Hunter C, Sporbeck K, Proikas-Cezanne T. Autophagy profiling in single cells with open source CellProfiler-based image analysis. Autophagy 2023; 19:338-351. [PMID: 35435815 PMCID: PMC9809960 DOI: 10.1080/15548627.2022.2065617] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Single cell-based analysis of macroautophagy/autophagy is largely achieved through the use of fluorescence microscopy to detect autophagy-related proteins that associate with autophagic membranes and therefore can be quantified as fluorescent puncta. In this context, an automated analysis of the number and size of recognized puncta is preferable to a manual count, because more reliable results can be generated in a short time. Here we present a method for open source CellProfiler software-based analysis for quantitative autophagy assessments using GFP-tagged WIPI1 (WD repeat domain, phosphoinositide interacting 1) images acquired with Airyscan or confocal laser-scanning microscopy. The CellProfiler protocol is provided as a ready-to-use software pipeline, and the creation of this pipeline is detailed in both text and video formats. In addition, we provide CellProfiler pipelines for endogenous SQSTM1/p62 (sequestosome 1) or intracellular lipid droplet (LD) analysis, suitable to assess forms of selective autophagy. All protocols and software pipelines can be quickly and easily adapted for the use of alternative autophagy markers or cell types, and can also be used for high-throughput purposes.Abbreviations: AF Alexa Fluor ATG autophagy related BafA1 bafilomycin A1 BSA bovine serum albumin DAPI 4,6-diamidino-2-phenylindole DMEM Dulbecco's modified Eagle's medium DMSO dimethyl sulfoxide EDTA ethylenediaminetetraacetic acid EBSS Earle's balanced salt solution FBS fetal bovine serum GFP green fluorescent protein LD lipid droplet LSM laser scanning microscope MAP1LC3B microtubule associated protein 1 light chain 3 beta MTOR mechanistic target of rapamycin kinase PBS phosphate-buffered saline PIK3C3/VPS34 phosphatidylinositol 3-kinase catalytic subunit type 3 SQSTM1 sequestosome 1 TIFF tagged image file format U2OS U-2 OS cell line WIPI WD repeat domain, phosphoinositide interacting.
Collapse
Affiliation(s)
- David S. Schüssele
- Interfaculty Institute of Cell Biology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Patricia K. Haller
- Interfaculty Institute of Cell Biology, Eberhard Karls University Tübingen, Tübingen, Germany,International Max Planck Research School ‘From Molecules to Organisms’, Max Planck Institute for Developmental Biology and Eberhard Karls University Tübingen, Tübingen, Germany
| | - Maximilian L. Haas
- Interfaculty Institute of Cell Biology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Catherine Hunter
- Interfaculty Institute of Cell Biology, Eberhard Karls University Tübingen, Tübingen, Germany,International Max Planck Research School ‘From Molecules to Organisms’, Max Planck Institute for Developmental Biology and Eberhard Karls University Tübingen, Tübingen, Germany
| | - Katharina Sporbeck
- Interfaculty Institute of Cell Biology, Eberhard Karls University Tübingen, Tübingen, Germany,International Max Planck Research School ‘From Molecules to Organisms’, Max Planck Institute for Developmental Biology and Eberhard Karls University Tübingen, Tübingen, Germany
| | - Tassula Proikas-Cezanne
- Interfaculty Institute of Cell Biology, Eberhard Karls University Tübingen, Tübingen, Germany,International Max Planck Research School ‘From Molecules to Organisms’, Max Planck Institute for Developmental Biology and Eberhard Karls University Tübingen, Tübingen, Germany,CONTACT Tassula Proikas-Cezanne Interfaculty Institute of Cell Biology, Eberhard Karls University Tübingen, D-72076Tübingen, Germany
| |
Collapse
|
44
|
Wrobel J, Harris C, Vandekar S. Statistical Analysis of Multiplex Immunofluorescence and Immunohistochemistry Imaging Data. Methods Mol Biol 2023; 2629:141-168. [PMID: 36929077 DOI: 10.1007/978-1-0716-2986-4_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Advances in multiplexed single-cell immunofluorescence (mIF) and multiplex immunohistochemistry (mIHC) imaging technologies have enabled the analysis of cell-to-cell spatial relationships that promise to revolutionize our understanding of tissue-based diseases and autoimmune disorders. Multiplex images are collected as multichannel TIFF files; then denoised, segmented to identify cells and nuclei, normalized across slides with protein markers to correct for batch effects, and phenotyped; and then tissue composition and spatial context at the cellular level are analyzed. This chapter discusses methods and software infrastructure for image processing and statistical analysis of mIF/mIHC data.
Collapse
Affiliation(s)
- Julia Wrobel
- Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Coleman Harris
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Simon Vandekar
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
45
|
Wei X, Tang X, Liu N, Liu Y, Guan G, Liu Y, Wu X, Liu Y, Wang J, Dong H, Wang S, Zheng Y. PyCoCa:A quantifying tool of carbon content in airway macrophage for assessment the internal dose of particles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158103. [PMID: 35988636 DOI: 10.1016/j.scitotenv.2022.158103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/09/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
Given the lack of a comprehensive understanding of the complex metabolism and variable exposure environment, carbon particles in macrophages have become a potentially valuable biomarker to assess the exposure level of atmospheric particles, such as black carbon. However, the tedious and subjective quantification method limits the application of carbon particles as a valid biomarker. Aiming to obtain an accurate carbon particles quantification method, the deep learning and binarization algorithm were implemented to develop a quantitative tool for carbon content in airway macrophage (CCAM), named PyCoCa. Two types of macrophages, normal and foamy appearance, were applied for the development of PyCoCa. In comparison with the traditional methods, PyCoCa significantly improves the identification efficiency for over 100 times. Consistency assessment with the gold standard revealed that PyCoCa exhibits outstanding prediction ability with the Interclass Correlation Coefficient (ICC) values of over 0.80. And a proper fresh dye will enhance the performance of PyCoCa (ICC = 0.89). Subsequent sensitivity analysis confirmed an excellent performance regarding accuracy and robustness of PyCoCa under high/low exposure environments (sensitivity > 0.80). Furthermore, a successful application of our quantitative tool in cohort studies indicates that carbon particles induce macrophage foaming and the foaming decrease the carbon particles internalization in reverse. Our present study provides a robust and efficient tool to accurately quantify the carbon particles loading in macrophage for exposure assessment.
Collapse
Affiliation(s)
- Xiaoran Wei
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Xiaowen Tang
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University, Qingdao 266071, China
| | - Nan Liu
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Yuansheng Liu
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Ge Guan
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Yi Liu
- College of Computer Science and Technology, Ocean University of China, Qingdao, China
| | - Xiaohan Wu
- College of Computer Science and Technology, Ocean University of China, Qingdao, China
| | - Yingjie Liu
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Jingwen Wang
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Hanqi Dong
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Shengke Wang
- College of Computer Science and Technology, Ocean University of China, Qingdao, China.
| | - Yuxin Zheng
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
46
|
Tao Y, Li X, Zhang Y, He L, Lu Q, Wang Y, Pan L, Wang Z, Feng C, Xie Y, Lai Z, Li T, Tang Z, Wang Q, Wang X. TP53-related signature for predicting prognosis and tumor microenvironment characteristics in bladder cancer: A multi-omics study. Front Genet 2022; 13:1057302. [PMID: 36568387 PMCID: PMC9780475 DOI: 10.3389/fgene.2022.1057302] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/21/2022] [Indexed: 12/13/2022] Open
Abstract
Background: The tumor suppressor gene TP53 is frequently mutated or inactivated in bladder cancer (BLCA), which is implicated in the pathogenesis of tumor. However, the cellular mechanisms of TP53 mutations are complicated, yet well-defined, but their clinical prognostic value in the management of BLCA remains controversial. This study aimed to explore the role of TP53 mutation in regulating the tumor microenvironment (TME), elucidate the effects of TP53 activity on BLCA prognosis and immunotherapy response. Methods: A TP53-related signature based on TP53-induced and TP53-repressed genes was used to construct a TP53 activity-related score and classifier. The abundance of different immune cell types was determined using CIBERSORT to estimate immune cell infiltration. Moreover, the heterogeneity of the tumor immune microenvironment between the high and low TP53 score groups was further evaluated using single-cell mass cytometry (CyTOF) and imaging mass cytometry (IMC). Moreover, pathway enrichment analysis was performed to explore the differential biological functions between tumor epithelial cells with high and low TP53 activity scores. Finally, the receptor-ligand interactions between immune cells and tumor epithelial cells harboring distinct TP53 activity were analyzed by single-cell RNA-sequencing. Results: The TP53 activity-related gene signature differentiated well between TP53 functional retention and inactivation in BLCA. BLCA patients with low TP53 scores had worse survival prognosis, more TP53 mutations, higher grade, and stronger lymph node metastasis than those with high TP53 scores. Additionally, CyTOF and IMC analyses revealed that BLCA patients with low TP53 scores exhibited a potent immunosuppressive TME. Consistently, single-cell sequencing results showed that tumor epithelial cells with low TP53 scores were significantly associated with high cell proliferation and stemness abilities and strongly interacted with immunosuppressive receptor-ligand pairs. Conclusion: BLCA patients with low TP53 scores have a worse prognosis and a more immunosuppressive TME. This TP53 activity-related signature can serve as a potential prognostic signature for predicting the immune response, which may facilitate the development of new strategies for immunotherapy in BLCA.
Collapse
Affiliation(s)
- Yuting Tao
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Guangxi Medical University, Nanning, China,Key Laboratory of Biological Molecular Medicine Research, Education Department of Guangxi Zhuang Autonomous Region, Guangxi Medical University, Nanning, China,Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China
| | - Xia Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Guangxi Medical University, Nanning, China,Key Laboratory of Biological Molecular Medicine Research, Education Department of Guangxi Zhuang Autonomous Region, Guangxi Medical University, Nanning, China,Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China
| | - Yushan Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Guangxi Medical University, Nanning, China,Key Laboratory of Biological Molecular Medicine Research, Education Department of Guangxi Zhuang Autonomous Region, Guangxi Medical University, Nanning, China,Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China
| | - Liangyu He
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China,Departments of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Qinchen Lu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Guangxi Medical University, Nanning, China,Key Laboratory of Biological Molecular Medicine Research, Education Department of Guangxi Zhuang Autonomous Region, Guangxi Medical University, Nanning, China,Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China
| | - Yaobang Wang
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China
| | - Lixin Pan
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Guangxi Medical University, Nanning, China,Key Laboratory of Biological Molecular Medicine Research, Education Department of Guangxi Zhuang Autonomous Region, Guangxi Medical University, Nanning, China,Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China
| | - Zhenxing Wang
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China
| | - Chao Feng
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Guangxi Medical University, Nanning, China,Key Laboratory of Biological Molecular Medicine Research, Education Department of Guangxi Zhuang Autonomous Region, Guangxi Medical University, Nanning, China,Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China
| | - Yuanliang Xie
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China,Departments of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China,Department of Urology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Zhiyong Lai
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China
| | - Tianyu Li
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China,Departments of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhong Tang
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China,School of Information and Management, Guangxi Medical University, Nanning, China
| | - Qiuyan Wang
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China,*Correspondence: Qiuyan Wang, ; Xi Wang,
| | - Xi Wang
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China,*Correspondence: Qiuyan Wang, ; Xi Wang,
| |
Collapse
|
47
|
Huang B, Wang Y, Vyas C, Bartolo P. Crystal Growth of 3D Poly(ε-caprolactone) Based Bone Scaffolds and Its Effects on the Physical Properties and Cellular Interactions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 10:e2203183. [PMID: 36394087 PMCID: PMC9811450 DOI: 10.1002/advs.202203183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Extrusion additive manufacturing is widely used to fabricate polymer-based 3D bone scaffolds. However, the insight views of crystal growths, scaffold features and eventually cell-scaffold interactions are still unknown. In this work, melt and solvent extrusion additive manufacturing techniques are used to produce scaffolds considering highly analogous printing conditions. Results show that the scaffolds produced by these two techniques present distinct physiochemical properties, with melt-printed scaffolds showing stronger mechanical properties and solvent-printed scaffolds showing rougher surface, higher degradation rate, and faster stress relaxation. These differences are attributed to the two different crystal growth kinetics, temperature-induced crystallization (TIC) and strain-induced crystallization (SIC), forming large/integrated spherulite-like and a small/fragmented lamella-like crystal regions respectively. The stiffer substrate of melt-printed scaffolds contributes to higher ratio of nuclear Yes-associated protein (YAP) allocation, favoring cell proliferation and differentiation. Faster relaxation and degradation of solvent-printed scaffolds result in dynamic surface, contributing to an early-stage faster osteogenesis differentiation.
Collapse
Affiliation(s)
- Boyang Huang
- Singapore Centre for 3D PrintingSchool of Mechanical and Aerospace EngineeringNanyang Technological UniversitySingapore639798Singapore
| | - Yaxin Wang
- School of MechanicalAerospace and Civil EngineeringUniversity of ManchesterManchesterM13 9PLUK
| | - Cian Vyas
- Singapore Centre for 3D PrintingSchool of Mechanical and Aerospace EngineeringNanyang Technological UniversitySingapore639798Singapore
- School of MechanicalAerospace and Civil EngineeringUniversity of ManchesterManchesterM13 9PLUK
| | - Paulo Bartolo
- Singapore Centre for 3D PrintingSchool of Mechanical and Aerospace EngineeringNanyang Technological UniversitySingapore639798Singapore
- School of MechanicalAerospace and Civil EngineeringUniversity of ManchesterManchesterM13 9PLUK
| |
Collapse
|
48
|
Rathan-Kumar S, Roland JT, Momoh M, Goldstein A, Lapierre LA, Manning E, Mitchell L, Norman J, Kaji I, Goldenring JR. Rab11FIP1-deficient mice develop spontaneous inflammation and show increased susceptibility to colon damage. Am J Physiol Gastrointest Liver Physiol 2022; 323:G239-G254. [PMID: 35819177 PMCID: PMC9423785 DOI: 10.1152/ajpgi.00042.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/23/2022] [Accepted: 06/29/2022] [Indexed: 01/31/2023]
Abstract
The small GTPase, Rab11a, regulates vesicle trafficking and cell polarity in epithelial cells through interaction with Rab11 family-interacting proteins (Rab11-FIPs). We hypothesized that deficiency of Rab11-FIP1 would affect mucosal integrity in the intestine. Global Rab11FIP1 knockout (KO) mice were generated by deletion of the second exon. Pathology of intestinal tissues was analyzed by immunostaining of colonic sections and RNA-sequencing of isolated colonic epithelial cells. A low concentration of dextran sodium sulfate (DSS, 2%) was added to drinking water for 5 days, and injury score was compared between Rab11FIP1 KO, Rab11FIP2 KO, and heterozygous littermates. Rab11FIP1 KO mice showed normal fertility and body weight gain. More frequent lymphoid patches and infiltration of macrophages and neutrophils were identified in Rab11FIP1 KO mice before the development of rectal prolapse compared with control mice. The population of trefoil factor 3 (TFF3)-positive goblet cells was significantly lower, and the ratio of proliferative to nonproliferative cells was higher in Rab11FIP1 KO colons. Transcription signatures indicated that Rab11FIP1 deletion downregulated genes that mediate stress tolerance response, whereas genes mediating the response to infection were significantly upregulated, consistent with the inflammatory responses in the steady state. Lack of Rab11FIP1 also resulted in abnormal accumulation of subapical vesicles in colonocytes and the internalization of transmembrane mucin, MUC13, with Rab14. After DSS treatment, Rab11FIP1 KO mice showed greater body weight loss and more severe mucosal damage than those in heterozygous littermates. These findings suggest that Rab11FIP1 is important for cytoprotection mechanisms and for the maintenance of colonic mucosal integrity.NEW & NOTEWORTHY Although Rab11FIP1 is important in membrane trafficking in epithelial cells, the gastrointestinal phenotype of Rab11FIP1 knockout (KO) mice had never been reported. This study demonstrated that Rab11FIP1 loss induces mistrafficking of Rab14 and MUC13 and decreases in colonic goblet cells, resulting in impaired mucosal integrity.
Collapse
Affiliation(s)
- Sudiksha Rathan-Kumar
- Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Joseph T Roland
- Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Michael Momoh
- Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Anna Goldstein
- Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Lynne A Lapierre
- Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Elizabeth Manning
- Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Louise Mitchell
- Cancer Research UK Beatson Institute, Glasgow, Scotland, United Kingdom
| | - Jim Norman
- Cancer Research UK Beatson Institute, Glasgow, Scotland, United Kingdom
| | - Izumi Kaji
- Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - James R Goldenring
- Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
- Nashville Veterans Affairs Medical Center, Nashville, Tennessee
| |
Collapse
|
49
|
Colombo AR, Hav M, Singh M, Xu A, Gamboa A, Lemos T, Gerdtsson E, Chen D, Houldsworth J, Shaknovich R, Aoki T, Chong L, Takata K, Chavez EA, Steidl C, Hicks J, Kuhn P, Siddiqi I, Merchant A. Single-cell spatial analysis of tumor immune architecture in diffuse large B-cell lymphoma. Blood Adv 2022; 6:4675-4690. [PMID: 35675517 PMCID: PMC9631676 DOI: 10.1182/bloodadvances.2022007493] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/15/2022] [Indexed: 11/20/2022] Open
Abstract
Multiplexed immune cell profiling of the tumor microenvironment (TME) in cancer has improved our understanding of cancer immunology, but complex spatial analyses of tumor-immune interactions in lymphoma are lacking. Here, we used imaging mass cytometry (IMC) on 33 cases of diffuse large B-cell lymphoma (DLBCL) to characterize tumor and immune cell architecture and correlate it to clinicopathological features such as cell of origin, gene mutations, and responsiveness to chemotherapy. To understand the poor response of DLBCL to immune checkpoint inhibitors (ICI), we compared our results to IMC data from Hodgkin lymphoma, a cancer highly responsive to ICI, and observed differences in the expression of PD-L1, PD-1, and TIM-3. We created a spatial classification of tumor cells and identified tumor-centric subregions of immune activation, immune suppression, and immune exclusion within the topology of DLBCL. Finally, the spatial analysis allowed us to identify markers such as CXCR3, which are associated with penetration of immune cells into immune desert regions, with important implications for engineered cellular therapies. This is the first study to integrate tumor mutational profiling, cell of origin classification, and multiplexed immuno-phenotyping of the TME into a spatial analysis of DLBCL at the single-cell level. We demonstrate that, far from being histopathologically monotonous, DLBCL has a complex tumor architecture, and that changes in tumor topology can be correlated with clinically relevant features. This analysis identifies candidate biomarkers and therapeutic targets such as TIM-3, CCR4, and CXCR3 that are relevant for combination treatment strategies in immuno-oncology and cellular therapies.
Collapse
Affiliation(s)
- Anthony R. Colombo
- Department of Population and Public Health Sciences & Division of Biostatistics, Keck School of Medicine of University of Southern California, Los Angeles, CA
- Samuel Oschin Comprehensive Cancer Institute, and
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Monirath Hav
- Samuel Oschin Comprehensive Cancer Institute, and
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Mohan Singh
- USC Michelson Center for Convergent Biosciences and Department of Biological Sciences and
| | - Alexander Xu
- Samuel Oschin Comprehensive Cancer Institute, and
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Alicia Gamboa
- Samuel Oschin Comprehensive Cancer Institute, and
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Tucker Lemos
- Samuel Oschin Comprehensive Cancer Institute, and
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Erik Gerdtsson
- USC Michelson Center for Convergent Biosciences and Department of Biological Sciences and
| | - Denaly Chen
- Department of Medicine, University of Southern California, Los Angeles, CA
| | | | | | - Tomohiro Aoki
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, British Columbia
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia; and
| | - Lauren Chong
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, British Columbia
| | - Katsuyoshi Takata
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, British Columbia
| | - Elizabeth A. Chavez
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, British Columbia
| | - Christian Steidl
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, British Columbia
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia; and
| | - James Hicks
- USC Michelson Center for Convergent Biosciences and Department of Biological Sciences and
| | - Peter Kuhn
- USC Michelson Center for Convergent Biosciences and Department of Biological Sciences and
| | - Imran Siddiqi
- Department of Pathology, University of Southern California, Los Angeles, CA
| | - Akil Merchant
- Samuel Oschin Comprehensive Cancer Institute, and
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| |
Collapse
|
50
|
Schuster KH, Putka AF, McLoughlin HS. Pathogenetic Mechanisms Underlying Spinocerebellar Ataxia Type 3 Are Altered in Primary Oligodendrocyte Culture. Cells 2022; 11:2615. [PMID: 36010688 PMCID: PMC9406561 DOI: 10.3390/cells11162615] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/10/2022] [Accepted: 08/20/2022] [Indexed: 11/18/2022] Open
Abstract
Emerging evidence has implicated non-neuronal cells, particularly oligodendrocytes, in the pathophysiology of many neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, Huntington's disease and Spinocerebellar ataxia type 3 (SCA3). We recently demonstrated that cell-autonomous dysfunction of oligodendrocyte maturation is one of the of the earliest and most robust changes in vulnerable regions of the SCA3 mouse brain. However, the cell- and disease-specific mechanisms that underlie oligodendrocyte dysfunction remain poorly understood and are difficult to isolate in vivo. In this study, we used primary oligodendrocyte cultures to determine how known pathogenic SCA3 mechanisms affect this cell type. We isolated oligodendrocyte progenitor cells from 5- to 7-day-old mice that overexpress human mutant ATXN3 or lack mouse ATXN3 and differentiated them for up to 5 days in vitro. Utilizing immunocytochemistry, we characterized the contributions of ATXN3 toxic gain-of-function and loss-of-function in oligodendrocyte maturation, protein quality pathways, DNA damage signaling, and methylation status. We illustrate the utility of primary oligodendrocyte culture for elucidating cell-specific pathway dysregulation relevant to SCA3. Given recent work demonstrating disease-associated oligodendrocyte signatures in other neurodegenerative diseases, this novel model has broad applicability in revealing mechanistic insights of oligodendrocyte contribution to pathogenesis.
Collapse
Affiliation(s)
| | - Alexandra F. Putka
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | | |
Collapse
|