1
|
Jha PK, Valekunja UK, Reddy AB. An integrative analysis of cell-specific transcriptomics and nuclear proteomics of sleep-deprived mouse cerebral cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.24.611806. [PMID: 39386443 PMCID: PMC11463534 DOI: 10.1101/2024.09.24.611806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Sleep regulation follows a homeostatic pattern. The mammalian cerebral cortex is the repository of homeostatic sleep drive and neurons and astrocytes of the cortex are principal responders of sleep need. The molecular mechanisms by which these two cell types respond to sleep loss are not yet clearly understood. By combining cell-type specific transcriptomics and nuclear proteomics we investigated how sleep loss affects the cellular composition and molecular profiles of these two cell types in a focused approach. The results indicate that sleep deprivation regulates gene expression and nuclear protein abundance in a cell-type-specific manner. Our integrated multi-omics analysis suggests that this distinction arises because neurons and astrocytes employ different gene regulatory strategies under accumulated sleep pressure. These findings provide a comprehensive view of the effects of sleep deprivation on gene regulation in neurons and astrocytes.
Collapse
Affiliation(s)
- Pawan K. Jha
- Department of Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Chronobiology and Sleep Institute (CSI), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Utham K. Valekunja
- Department of Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Chronobiology and Sleep Institute (CSI), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Akhilesh B. Reddy
- Department of Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Chronobiology and Sleep Institute (CSI), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
2
|
Davinelli S, Medoro A, Savino R, Scapagnini G. Sleep and Oxidative Stress: Current Perspectives on the Role of NRF2. Cell Mol Neurobiol 2024; 44:52. [PMID: 38916679 PMCID: PMC11199221 DOI: 10.1007/s10571-024-01487-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/15/2024] [Indexed: 06/26/2024]
Abstract
Sleep is a fundamental conserved physiological state across evolution, suggesting vital biological functions that are yet to be fully clarified. However, our understanding of the neural and molecular basis of sleep regulation has increased rapidly in recent years. Among various processes implicated in controlling sleep homeostasis, a bidirectional relationship between sleep and oxidative stress has recently emerged. One proposed function of sleep may be the mitigation of oxidative stress in both brain and peripheral tissues, contributing to the clearance of reactive species that accumulate during wakefulness. Conversely, reactive species, such as reactive oxygen species (ROS) and reactive nitrogen species (RNS), at physiological levels, may act as signaling agents to regulate redox-sensitive transcriptional factors, enzymes, and other effectors involved in the regulation of sleep. As a primary sensor of intracellular oxidation, the transcription factor NRF2 is emerging as an indispensable component to maintain cellular redox homeostasis during sleep. Indeed, a number of studies have revealed an association between NRF2 dysfunction and the most common sleep conditions, including sleep loss, obstructive sleep apnea, and circadian sleep disturbances. This review examines the evidence of the intricate link between oxidative stress and NRF2 function in the context of sleep, and highlights the potential of NRF2 modulators to alleviate sleep disturbances.
Collapse
Affiliation(s)
- Sergio Davinelli
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Via F. De Sanctis, s.n.c., 86100, Campobasso, Italy.
| | - Alessandro Medoro
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Via F. De Sanctis, s.n.c., 86100, Campobasso, Italy
| | - Rosa Savino
- Department of Woman and Child, Neuropsychiatry for Child and Adolescent Unit, General Hospital "Riuniti" of Foggia, Viale Pinto Luigi, 1, 71122, Foggia, Italy
| | - Giovanni Scapagnini
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Via F. De Sanctis, s.n.c., 86100, Campobasso, Italy
| |
Collapse
|
3
|
Bose K, Agrawal R, Sairam T, Mil J, Butler MP, Dhandapany PS. Sleep fragmentation induces heart failure in a hypertrophic cardiomyopathy mouse model by altering redox metabolism. iScience 2024; 27:109075. [PMID: 38361607 PMCID: PMC10867644 DOI: 10.1016/j.isci.2024.109075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/11/2023] [Accepted: 01/26/2024] [Indexed: 02/17/2024] Open
Abstract
Sleep fragmentation (SF) disrupts normal biological rhythms and has major impacts on cardiovascular health; however, it has never been shown to be a risk factor involved in the transition from cardiac hypertrophy to heart failure (HF). We now demonstrate devastating effects of SF on hypertrophic cardiomyopathy (HCM). We generated a transgenic mouse model harboring a patient-specific myosin binding protein C3 (MYBPC3) variant displaying HCM, and measured the progression of pathophysiology in the presence and absence of SF. SF induces mitochondrial damage, sarcomere disarray, and apoptosis in HCM mice; these changes result in a transition of hypertrophy to an HF phenotype by chiefly targeting redox metabolic pathways. Our findings for the first time show that SF is a risk factor for HF transition and have important implications in clinical settings where HCM patients with sleep disorders have worse prognosis, and strategic intervention with regularized sleep patterns might help such patients.
Collapse
Affiliation(s)
- Karthikeyan Bose
- The Knight Cardiovascular Institute and Departments of Medicine, Molecular, and Medical Genetics, Oregon Health and Science University, Portland, OR 97239, USA
| | - Radhika Agrawal
- Cardiovascular Development and Disease Mechanisms, Institute for Stem Cell Science and Regenerative Medicine, Bangalore (DBT-inStem), Bangalore, India
| | - Thiagarajan Sairam
- Cardiovascular Development and Disease Mechanisms, Institute for Stem Cell Science and Regenerative Medicine, Bangalore (DBT-inStem), Bangalore, India
| | - Jessenya Mil
- The Knight Cardiovascular Institute and Departments of Medicine, Molecular, and Medical Genetics, Oregon Health and Science University, Portland, OR 97239, USA
| | - Matthew P. Butler
- Oregon Institute of Occupational Health Sciences, and Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR 97239, USA
| | - Perundurai S. Dhandapany
- The Knight Cardiovascular Institute and Departments of Medicine, Molecular, and Medical Genetics, Oregon Health and Science University, Portland, OR 97239, USA
- Cardiovascular Development and Disease Mechanisms, Institute for Stem Cell Science and Regenerative Medicine, Bangalore (DBT-inStem), Bangalore, India
| |
Collapse
|
4
|
Surme S, Ergun C, Gul S, Akyel YK, Gul ZM, Ozcan O, Ipek OS, Akarlar BA, Ozlu N, Taskin AC, Turkay M, Gören AC, Baris I, Ozturk N, Guzel M, Aydin C, Okyar A, Kavakli IH. TW68, cryptochromes stabilizer, regulates fasting blood glucose levels in diabetic ob/ob and high fat-diet-induced obese mice. Biochem Pharmacol 2023; 218:115896. [PMID: 37898388 DOI: 10.1016/j.bcp.2023.115896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 10/30/2023]
Abstract
Cryptochromes (CRYs), transcriptional repressors of the circadian clock in mammals, inhibit cAMP production when glucagon activates G-protein coupled receptors. Therefore, molecules that modulate CRYs have the potential to regulate gluconeogenesis. In this study, we discovered a new molecule called TW68 that interacts with the primary pockets of mammalian CRY1/2, leading to reduced ubiquitination levels and increased stability. In cell-based circadian rhythm assays using U2OS Bmal1-dLuc cells, TW68 extended the period length of the circadian rhythm. Additionally, TW68 decreased the transcriptional levels of two genes, Phosphoenolpyruvate carboxykinase 1 (PCK1) and Glucose-6-phosphatase (G6PC), which play crucial roles in glucose biosynthesis during glucagon-induced gluconeogenesis in HepG2 cells. Oral administration of TW68 in mice showed good tolerance, a good pharmacokinetic profile, and remarkable bioavailability. Finally, when administered to fasting diabetic animals from ob/ob and HFD-fed obese mice, TW68 reduced blood glucose levels by enhancing CRY stabilization and subsequently decreasing the transcriptional levels of Pck1 and G6pc. These findings collectively demonstrate the antidiabetic efficacy of TW68 in vivo, suggesting its therapeutic potential for controlling fasting glucose levels in the treatment of type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Saliha Surme
- Department of Molecular Biology and Genetics, Koc University, Rumelifeneri Yolu, Istanbul, Türkiye
| | - Cagla Ergun
- Department of Chemical and Biological Engineering, Koc University, Rumelifeneri Yolu, Istanbul, Türkiye
| | - Seref Gul
- Istanbul University, Department of Biology, Biotechnology Division, TR-34116 Beyazit-İstanbul, Türkiye; Current address: Bezmialem Vakif University, Institute of Life Sciences and Biotechnology, Beykoz, Istanbul, Türkiye
| | - Yasemin Kubra Akyel
- Istanbul Medipol University, School of Medicine, Department of Medical Pharmacology, İstanbul, Türkiye; Istanbul University, Faculty of Pharmacy Department of Pharmacology, TR-34116 Beyazit-İstanbul, Türkiye
| | - Zeynep Melis Gul
- Department of Molecular Biology and Genetics, Koc University, Rumelifeneri Yolu, Istanbul, Türkiye
| | - Onur Ozcan
- Department of Molecular Biology and Genetics, Koc University, Rumelifeneri Yolu, Istanbul, Türkiye
| | - Ozgecan Savlug Ipek
- Istanbul Medipol University, Regenerative and Restorative Medicine Research Center (REMER), Kavacik Campus, Kavacik-Beykoz/İstanbul 34810, Türkiye
| | - Busra Aytul Akarlar
- Department of Molecular Biology and Genetics, Koc University, Rumelifeneri Yolu, Istanbul, Türkiye
| | - Nurhan Ozlu
- Department of Molecular Biology and Genetics, Koc University, Rumelifeneri Yolu, Istanbul, Türkiye
| | - Ali Cihan Taskin
- Department of Laboratory Animal Science, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Türkiye
| | - Metin Turkay
- Department of Industrial Engineering, Koc University, Rumelifeneri Yolu, İstanbul, Türkiye
| | - Ahmet Ceyhan Gören
- Gebze Technical University, Department of Chemistry, Gebze, Kocaeli, Türkiye
| | - Ibrahim Baris
- Department of Molecular Biology and Genetics, Koc University, Rumelifeneri Yolu, Istanbul, Türkiye
| | - Nuri Ozturk
- Gebze Technical University, Department of Molecular Biology and Genetics, Gebze, Kocaeli, Türkiye
| | - Mustafa Guzel
- Istanbul Medipol University, Regenerative and Restorative Medicine Research Center (REMER), Kavacik Campus, Kavacik-Beykoz/İstanbul 34810, Türkiye
| | - Cihan Aydin
- Department of Molecular Biology and Genetics, Istanbul Medeniyet University, Istanbul, Türkiye
| | - Alper Okyar
- Istanbul University, Faculty of Pharmacy Department of Pharmacology, TR-34116 Beyazit-İstanbul, Türkiye
| | - Ibrahim Halil Kavakli
- Department of Molecular Biology and Genetics, Koc University, Rumelifeneri Yolu, Istanbul, Türkiye; Department of Chemical and Biological Engineering, Koc University, Rumelifeneri Yolu, Istanbul, Türkiye.
| |
Collapse
|
5
|
Vaquer-Alicea A, Yu J, Liu H, Lucey BP. Plasma and cerebrospinal fluid proteomic signatures of acutely sleep-deprived humans: an exploratory study. SLEEP ADVANCES : A JOURNAL OF THE SLEEP RESEARCH SOCIETY 2023; 4:zpad047. [PMID: 38046221 PMCID: PMC10691441 DOI: 10.1093/sleepadvances/zpad047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/06/2023] [Indexed: 12/05/2023]
Abstract
Study Objectives Acute sleep deprivation affects both central and peripheral biological processes. Prior research has mainly focused on specific proteins or biological pathways that are dysregulated in the setting of sustained wakefulness. This exploratory study aimed to provide a comprehensive view of the biological processes and proteins impacted by acute sleep deprivation in both plasma and cerebrospinal fluid (CSF). Methods We collected plasma and CSF from human participants during one night of sleep deprivation and controlled normal sleep conditions. One thousand and three hundred proteins were measured at hour 0 and hour 24 using a high-scale aptamer-based proteomics platform (SOMAscan) and a systematic biological database tool (Metascape) was used to reveal altered biological pathways. Results Acute sleep deprivation decreased the number of upregulated and downregulated biological pathways and proteins in plasma but increased upregulated and downregulated biological pathways and proteins in CSF. Predominantly affected proteins and pathways were associated with immune response, inflammation, phosphorylation, membrane signaling, cell-cell adhesion, and extracellular matrix organization. Conclusions The identified modifications across biofluids add to evidence that acute sleep deprivation has important impacts on biological pathways and proteins that can negatively affect human health. As a hypothesis-driving study, these findings may help with the exploration of novel mechanisms that mediate sleep loss and associated conditions, drive the discovery of new sleep loss biomarkers, and ultimately aid in the identification of new targets for intervention to human diseases.
Collapse
Affiliation(s)
- Ana Vaquer-Alicea
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| | - Jinsheng Yu
- Department of Genetics, Washington University School of Medicine, St Louis, MO, USA
| | - Haiyan Liu
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| | - Brendan P Lucey
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| |
Collapse
|
6
|
Sengupta A, Tudor JC, Cusmano D, Baur JA, Abel T, Weljie AM. Sleep deprivation and aging are metabolically linked across tissues. Sleep 2023; 46:zsad246. [PMID: 37738102 PMCID: PMC11502955 DOI: 10.1093/sleep/zsad246] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/21/2023] [Indexed: 09/24/2023] Open
Abstract
STUDY OBJECTIVES Insufficient sleep is a concerning hallmark of modern society because sleep deprivation (SD) is a risk factor for neurodegenerative and cardiometabolic disorders. SD imparts an aging-like effect on learning and memory, although little is known about possible common molecular underpinnings of SD and aging. Here, we examine this question by profiling metabolic features across different tissues after acute SD in young adult and aged mice. METHODS Young adult and aged mice were subjected to acute SD for 5 hours. Blood plasma, hippocampus, and liver samples were subjected to UPLC-MS/MS-based metabolic profiling. RESULTS SD preferentially impacts peripheral plasma and liver profiles (e.g. ketone body metabolism) whereas the hippocampus is more impacted by aging. We further demonstrate that aged animals exhibit SD-like metabolic features at baseline. Hepatic alterations include parallel changes in nicotinamide metabolism between aging and SD in young animals. Overall, metabolism in young adult animals is more impacted by SD, which in turn induces aging-like features. A set of nine metabolites was classified (79% correct) based on age and sleep status across all four groups. CONCLUSIONS Our metabolic observations demonstrate striking parallels to previous observations in studies of learning and memory and define a molecular metabolic signature of sleep loss and aging.
Collapse
Affiliation(s)
- Arjun Sengupta
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jennifer C Tudor
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
- Current affiliation: Department of Biology, Saint Joseph’s University, Philadelphia, PA, USA
| | - Danielle Cusmano
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Joseph A Baur
- Department of Physiology and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ted Abel
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
- Current Affiliation: Iowa Neuroscience Institute, Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, 2312 PBDB, Iowa City, IA, USA
| | - Aalim M Weljie
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
7
|
Sharma B, Roy A, Sengupta T, Vishwakarma LC, Singh A, Netam R, Nag TC, Akhtar N, Mallick HN. Acute sleep deprivation induces synaptic remodeling at the soleus muscle neuromuscular junction in rats. Sleep 2023; 46:zsac229. [PMID: 36130235 DOI: 10.1093/sleep/zsac229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 08/03/2022] [Indexed: 07/26/2023] Open
Abstract
Sleep is important for cognitive and physical performance. Sleep deprivation not only affects neural functions but also results in muscular fatigue. A good night's sleep reverses these functional derangements caused by sleep deprivation. The role of sleep in brain function has been extensively studied. However, its role in neuromuscular junction (NMJ) or skeletal muscle morphology is sparsely addressed although skeletal muscle atonia and suspended thermoregulation during rapid eye movement sleep possibly provide a conducive environment for the muscle to rest and repair; somewhat similar to slow-wave sleep for synaptic downscaling. In the present study, we have investigated the effect of 24 h sleep deprivation on the NMJ morphology and neurochemistry using electron microscopy and immunohistochemistry in the rat soleus muscle. Acute sleep deprivation altered synaptic ultra-structure viz. mitochondria, synaptic vesicle, synaptic proteins, basal lamina, and junctional folds needed for neuromuscular transmission. Further acute sleep deprivation showed the depletion of the neurotransmitter acetylcholine and the overactivity of its degrading enzyme acetylcholine esterase at the NMJ. The impact of sleep deprivation on synaptic homeostasis in the brain has been extensively reported recently. The present evidence from our studies shows new information on the role of sleep on the NMJ homeostasis and its functioning.
Collapse
Affiliation(s)
- Binney Sharma
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, India
| | - Avishek Roy
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, India
| | - Trina Sengupta
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, India
- Department of Physiology, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | | | - Anuraag Singh
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Ritesh Netam
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, India
| | - Tapas Chandra Nag
- Department of Physiology, Faculty of Medicine & Health Sciences, SGT University, Gurugram, Haryana, India
| | - Nasreen Akhtar
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, India
| | - Hruda Nanda Mallick
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, India
- Department of Physiology, Faculty of Medicine & Health Sciences, SGT University, Gurugram, Haryana, India
| |
Collapse
|
8
|
Gerstner JR, Flores CC, Lefton M, Rogers B, Davis CJ. FABP7: a glial integrator of sleep, circadian rhythms, plasticity, and metabolic function. Front Syst Neurosci 2023; 17:1212213. [PMID: 37404868 PMCID: PMC10315501 DOI: 10.3389/fnsys.2023.1212213] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/02/2023] [Indexed: 07/06/2023] Open
Abstract
Sleep and circadian rhythms are observed broadly throughout animal phyla and influence neural plasticity and cognitive function. However, the few phylogenetically conserved cellular and molecular pathways that are implicated in these processes are largely focused on neuronal cells. Research on these topics has traditionally segregated sleep homeostatic behavior from circadian rest-activity rhythms. Here we posit an alternative perspective, whereby mechanisms underlying the integration of sleep and circadian rhythms that affect behavioral state, plasticity, and cognition reside within glial cells. The brain-type fatty acid binding protein, FABP7, is part of a larger family of lipid chaperone proteins that regulate the subcellular trafficking of fatty acids for a wide range of cellular functions, including gene expression, growth, survival, inflammation, and metabolism. FABP7 is enriched in glial cells of the central nervous system and has been shown to be a clock-controlled gene implicated in sleep/wake regulation and cognitive processing. FABP7 is known to affect gene transcription, cellular outgrowth, and its subcellular localization in the fine perisynaptic astrocytic processes (PAPs) varies based on time-of-day. Future studies determining the effects of FABP7 on behavioral state- and circadian-dependent plasticity and cognitive processes, in addition to functional consequences on cellular and molecular mechanisms related to neural-glial interactions, lipid storage, and blood brain barrier integrity will be important for our knowledge of basic sleep function. Given the comorbidity of sleep disturbance with neurological disorders, these studies will also be important for our understanding of the etiology and pathophysiology of how these diseases affect or are affected by sleep.
Collapse
Affiliation(s)
- Jason R. Gerstner
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
- Steve Gleason Institute for Neuroscience, Spokane, WA, United States
- Sleep and Performance Research Center, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - Carlos C. Flores
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - Micah Lefton
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - Brooke Rogers
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - Christopher J. Davis
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
- Steve Gleason Institute for Neuroscience, Spokane, WA, United States
- Sleep and Performance Research Center, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| |
Collapse
|
9
|
Kawano T, Kashiwagi M, Kanuka M, Chen CK, Yasugaki S, Hatori S, Miyazaki S, Tanaka K, Fujita H, Nakajima T, Yanagisawa M, Nakagawa Y, Hayashi Y. ER proteostasis regulators cell-non-autonomously control sleep. Cell Rep 2023; 42:112267. [PMID: 36924492 DOI: 10.1016/j.celrep.2023.112267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 01/17/2023] [Accepted: 02/28/2023] [Indexed: 03/17/2023] Open
Abstract
Sleep is regulated by peripheral tissues under fatigue. The molecular pathways in peripheral cells that trigger systemic sleep-related signals, however, are unclear. Here, a forward genetic screen in C. elegans identifies 3 genes that strongly affect sleep amount: sel-1, sel-11, and mars-1. sel-1 and sel-11 encode endoplasmic reticulum (ER)-associated degradation components, whereas mars-1 encodes methionyl-tRNA synthetase. We find that these machineries function in non-neuronal tissues and that the ER unfolded protein response components inositol-requiring enzyme 1 (IRE1)/XBP1 and protein kinase R-like ER kinase (PERK)/eukaryotic initiation factor-2α (eIF2α)/activating transcription factor-4 (ATF4) participate in non-neuronal sleep regulation, partly by reducing global translation. Neuronal epidermal growth factor receptor (EGFR) signaling is also required. Mouse studies suggest that this mechanism is conserved in mammals. Considering that prolonged wakefulness increases ER proteostasis stress in peripheral tissues, our results suggest that peripheral ER proteostasis factors control sleep homeostasis. Moreover, based on our results, peripheral tissues likely cope with ER stress not only by the well-established cell-autonomous mechanisms but also by promoting the individual's sleep.
Collapse
Affiliation(s)
- Taizo Kawano
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba 305-8575, Japan
| | - Mitsuaki Kashiwagi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba 305-8575, Japan; Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Mika Kanuka
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba 305-8575, Japan
| | - Chung-Kuan Chen
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba 305-8575, Japan; Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Shinnosuke Yasugaki
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba 305-8575, Japan; Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Sena Hatori
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba 305-8575, Japan; PhD Program in Humanics, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Shinichi Miyazaki
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba 305-8575, Japan; PhD Program in Humanics, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Kaeko Tanaka
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba 305-8575, Japan
| | - Hidetoshi Fujita
- Department of Biomedical Engineering, Osaka Institute of Technology, Osaka 535-8585, Japan
| | - Toshiro Nakajima
- Institute of Medical Science, Tokyo Medical University, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Masashi Yanagisawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba 305-8575, Japan; Life Science Center, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba 305-8575, Japan; Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yoshimi Nakagawa
- Department of Complex Biosystem Research, Institute of Natural Medicine, University of Toyama, Toyama, Toyama 930-0194, Japan
| | - Yu Hayashi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba 305-8575, Japan; Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
10
|
Taylor L, Von Lendenfeld F, Ashton A, Sanghani H, Di Pretoro S, Usselmann L, Veretennikova M, Dallmann R, McKeating JA, Vasudevan S, Jagannath A. Sleep and circadian rhythm disruption alters the lung transcriptome to predispose to viral infection. iScience 2023; 26:105877. [PMID: 36590897 PMCID: PMC9788990 DOI: 10.1016/j.isci.2022.105877] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 10/11/2022] [Accepted: 12/21/2022] [Indexed: 12/26/2022] Open
Abstract
Sleep and circadian rhythm disruption (SCRD), as encountered during shift work, increases the risk of respiratory viral infection including SARS-CoV-2. However, the mechanism(s) underpinning higher rates of respiratory viral infection following SCRD remain poorly characterized. To address this, we investigated the effects of acute sleep deprivation on the mouse lung transcriptome. Here we show that sleep deprivation profoundly alters the transcriptional landscape of the lung, causing the suppression of both innate and adaptive immune systems, disrupting the circadian clock, and activating genes implicated in SARS-CoV-2 replication, thereby generating a lung environment that could promote viral infection and associated disease pathogenesis. Our study provides a mechanistic explanation of how SCRD increases the risk of respiratory viral infections including SARS-CoV-2 and highlights possible therapeutic avenues for the prevention and treatment of respiratory viral infection.
Collapse
Affiliation(s)
- Lewis Taylor
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, New Biochemistry Building, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Felix Von Lendenfeld
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, New Biochemistry Building, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Anna Ashton
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, New Biochemistry Building, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Harshmeena Sanghani
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Simona Di Pretoro
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, New Biochemistry Building, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Laura Usselmann
- Division of Biomedical Sciences, Warwick Medical School, Interdisciplinary Biomedical Research Building, Gibbet Hill Campus, University of Warwick, Coventry CV4 7AL, UK
| | - Maria Veretennikova
- Zeeman Institute for Systems Biology & Infectious Disease Epidemiology Research, Department of Mathematics, Mathematical Sciences Building, University of Warwick, Coventry CV4 7AL, UK
| | - Robert Dallmann
- Division of Biomedical Sciences, Warwick Medical School, Interdisciplinary Biomedical Research Building, Gibbet Hill Campus, University of Warwick, Coventry CV4 7AL, UK
| | - Jane A. McKeating
- Nuffield Department of Medicine, University of Oxford, Old Road Campus, Oxford OX3 7BN, UK
- Chinese Academy of Medical Sciences (CAMS) Oxford Institute (COI), University of Oxford, Old Road Campus, Oxford OX3 7BN, UK
| | - Sridhar Vasudevan
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Aarti Jagannath
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, New Biochemistry Building, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| |
Collapse
|
11
|
Li Y, Haynes P, Zhang SL, Yue Z, Sehgal A. Ecdysone acts through cortex glia to regulate sleep in Drosophila. eLife 2023; 12:e81723. [PMID: 36719183 PMCID: PMC9928426 DOI: 10.7554/elife.81723] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 01/30/2023] [Indexed: 02/01/2023] Open
Abstract
Steroid hormones are attractive candidates for transmitting long-range signals to affect behavior. These lipid-soluble molecules derived from dietary cholesterol easily penetrate the brain and act through nuclear hormone receptors (NHRs) that function as transcription factors. To determine the extent to which NHRs affect sleep:wake cycles, we knocked down each of the 18 highly conserved NHRs found in Drosophila adults and report that the ecdysone receptor (EcR) and its direct downstream NHR Eip75B (E75) act in glia to regulate the rhythm and amount of sleep. Given that ecdysone synthesis genes have little to no expression in the fly brain, ecdysone appears to act as a long-distance signal and our data suggest that it enters the brain more at night. Anti-EcR staining localizes to the cortex glia in the brain and functional screening of glial subtypes revealed that EcR functions in adult cortex glia to affect sleep. Cortex glia are implicated in lipid metabolism, which appears to be relevant for actions of ecdysone as ecdysone treatment mobilizes lipid droplets (LDs), and knockdown of glial EcR results in more LDs. In addition, sleep-promoting effects of exogenous ecdysone are diminished in lsd-2 mutant flies, which are lean and deficient in lipid accumulation. We propose that ecdysone is a systemic secreted factor that modulates sleep by stimulating lipid metabolism in cortex glia.
Collapse
Affiliation(s)
- Yongjun Li
- Howard Hughes Medical Institute and Chronobiology and Sleep Institute, Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaUnited States
- Department of Biology, University of PennsylvaniaPhiladelphiaUnited States
| | - Paula Haynes
- Howard Hughes Medical Institute and Chronobiology and Sleep Institute, Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaUnited States
- Department of Pharmacology, Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaUnited States
| | - Shirley L Zhang
- Howard Hughes Medical Institute and Chronobiology and Sleep Institute, Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaUnited States
| | - Zhifeng Yue
- Howard Hughes Medical Institute and Chronobiology and Sleep Institute, Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaUnited States
| | - Amita Sehgal
- Howard Hughes Medical Institute and Chronobiology and Sleep Institute, Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaUnited States
| |
Collapse
|
12
|
Unfavorable left ventricular remodeling due to experience of chronic sleep restriction after myocardial infarction: The role of matrix metalloproteinases & oxidative stress. Cardiovasc Pathol 2023; 62:107460. [PMID: 35917906 DOI: 10.1016/j.carpath.2022.107460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 12/13/2022] Open
Abstract
Disturbed sleep or sleep loss due to vocational or lifestyle changes following MI is a common problem that may affect many physiological processes involved in left ventricle (LV) remodeling. Herein, we proposed that experience of sleep disruption and/or restriction after myocardial infarction (MI) may aggravate cardiac extracellular matrix remodeling and induce apoptosis in the cardiomyocytes. MI was induced in adult male rats by permanent ligation of the left anterior descending coronary artery. Twenty-four hours after surgery, some animals experienced chronic sleep restriction (CSR) for 6 days. Serum levels of CK-MB, PAB, and TNF-α were evaluated at days 1, 8, and 21 postsurgery. Twenty-one days after surgery, hemodynamic parameters and expression of MMP-2, MMP-9, TIMP-1, and TNF-α, as well as myocardial fibrosis and apoptosis in the noninfarcted area of the LV were assessed. Our results showed a clear decrease in serum concentrations of CK-MB, PAB and TNF-α at day 21 postsurgery in the MI group as compared to MI+SR animals in which these markers remained at high levels. CSR following MI deteriorated LV hemodynamic indexes and also impaired the balance between MMPs and TIMP-1. Further, it yielded an increase in oxidant and inflammatory state which caused deleterious fibrotic and apoptotic effects on cardiomycytes. Our data suggest post-MI sleep loss may cause adverse LV remodeling due to increased inflammatory reactions as well as oxidative burden and/or anti-oxidative insufficiency that in turn impede the balance between MMPs and their inhibitors.
Collapse
|
13
|
Li M, Han Q, Pan Z, Wang K, Xie J, Zheng B, Lv J. Effectiveness of Multidomain Dormitory Environment and Roommate Intervention for Improving Sleep Quality of Medical College Students: A Cluster Randomised Controlled Trial in China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15337. [PMID: 36430060 PMCID: PMC9691206 DOI: 10.3390/ijerph192215337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
Medical students are vulnerable to sleep disorders, which could be further exaggerated by poor dormitory environment and roommate behaviour. However, there is little evidence of whether dormitory environment intervention is effective in improving the sleep quality of medical college students in developing countries. The present study aimed to evaluate the effects of a comprehensive multidomain intervention on dormitory environment and roommate behaviour among medical college students in China. In this cluster randomised controlled trial, a total of 106 dormitories (364 students) were randomly allocated into an intervention group (55 dormitories, 193 students) and a control group (51 dormitories, 171 students). The intervention group received a three-month intervention with multiple components to improve or adapt to sleep environments in dormitories; the control group received no intervention. Primary and secondary outcomes were measured at study enrolment and three months later for both groups. The linear mixed-effects models showed that, compared with the control group, the intervention was associated with a significantly decreased Pittsburgh Sleep Quality Index (β = -0.67, p = 0.012), and a marginally significant effect on reducing roommates' influence on sleep schedule (β = -0.21, p = 0.066). Students in the intervention group rated "making dormitory sleep rules" and "wearing eye masks" as the most effective intervention measures. These findings could contribute to the limited body of scientific evidence about sleep intervention in Chinese medical students and highlight the importance of dormitory sleep environments in maintaining sleep quality.
Collapse
Affiliation(s)
- Man Li
- Sun Yat-sen University Cancer Center, No. 651 Dongfeng East Road, Yuexiu District, Guangzhou 510060, China
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Qing Han
- Department of Social Policy and Intervention, University of Oxford, Oxford OX1 2ER, UK
| | - Ziqi Pan
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Kailu Wang
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing 100191, China
- Centre for Health Systems and Policy Research, JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Junqing Xie
- Centre for Statistics in Medicine and National Institute for Health and Care Research Biomedical Research Centre Oxford, NDORMS, University of Oxford, Oxford OX3 7LD, UK
| | - Bang Zheng
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing 100191, China
- Department of Non-Communicable Disease Epidemiology, London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK
| | - Jun Lv
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing 100191, China
- Peking University Center for Public Health and Epidemic Preparedness & Response, Peking University, No. 38 Xueyuan Road, Haidian District, Beijing 100191, China
| |
Collapse
|
14
|
Recovery Sleep Immediately after Prolonged Sleep Deprivation Stimulates the Transcription of Integrated Stress Response-Related Genes in the Liver of Male Rats. Clocks Sleep 2022; 4:623-632. [PMID: 36412581 PMCID: PMC9680379 DOI: 10.3390/clockssleep4040048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 11/11/2022] Open
Abstract
Sleep loss induces performance impairment and fatigue. The reactivation of human herpesvirus-6, which is related to the phosphorylation of eukaryotic translation initiation factor 2α (eIF2α), is one candidate for use as an objective biomarker of fatigue. Phosphorylated eIF2α is a key regulator in integrated stress response (ISR), an intracellular stress response system. However, the relation between sleep/sleep loss and ISR is unclear. The purpose of the current study was to evaluate the effect of prolonged sleep deprivation and recovery sleep on ISR-related gene expression in rat liver. Eight-week-old male Sprague-Dawley rats were subjected to a 96-hour sleep deprivation using a flowerpot technique. The rats were sacrificed, and the liver was collected immediately or 6 or 72 h after the end of the sleep deprivation. RT-qPCR was used to analyze the expression levels of ISR-related gene transcripts in the rat liver. The transcript levels of the Atf3, Ddit3, Hmox-1, and Ppp15a1r genes were markedly increased early in the recovery sleep period after the termination of sleep deprivation. These results indicate that both activation and inactivation of ISRs in the rat liver occur simultaneously in the early phase of recovery sleep.
Collapse
|
15
|
Hollis HC, Francis JN, Anafi RC. Multi-tissue transcriptional changes and core circadian clock disruption following intensive care. Front Physiol 2022; 13:942704. [PMID: 36045754 PMCID: PMC9420996 DOI: 10.3389/fphys.2022.942704] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Objective: Both critical illness and current care have been hypothesized to upset daily rhythms and impair molecular circadian function. However, the influence of critical illness on clock function in different tissues and on circadian output genes are unknown. Here we evaluate the effect of critical care and illness on transcription, focusing on the functional organization of the core circadian oscillator. Methods: We downloaded RNAseq count data from the Genotype-Tissue Expression (GTEx) project. Treating mechanical ventilation as a marker for intensive care, we stratified samples into acute death (AD) and intensive care (IC) groups based on the documented Hardy Death Scale. We restricted our analysis to the 25 tissues with >50 samples in each group. Using the edgeR package and controlling for collection center, gender, and age, we identified transcripts differentially expressed between the AD and IC groups. Overrepresentation and enrichment methods were used to identify gene sets modulated by intensive care across tissues. For each tissue, we then calculated the delta clock correlation distance (ΔCCD), a comparative measure of the functional organization of the core circadian oscillator, in the both the AD and IC groups. The statistical significance of the ΔCCD was assessed by permutation, modifying a pre-existing R package to control for confounding variables. Results: Intensive care, as marked by ventilation, significantly modulated the expression of thousands of genes. Transcripts that were modulated in ≥75% of tissues were enriched for genes involved in mitochondrial energetics, cellular stress, metabolism, and notably circadian regulation. Transcripts that were more markedly affected, in ≥10 tissues, were enriched for inflammation, complement and immune pathways. Oscillator organization, as assessed by ΔCCD, was significantly reduced in the intensive care group in 11/25 tissues. Conclusion: Our findings support the hypothesis that patients in intensive care have impaired molecular circadian rhythms. Tissues involved in metabolism and energetics demonstrated the most marked changes in oscillator organization. In adipose tissue, there was a significant overlap between transcripts previously established to be modulated by sleep deprivation and fasting with those modulated by critical care. This work suggests that intensive care protocols that restore sleep/wake and nutritional rhythms may be of benefit.
Collapse
Affiliation(s)
- Henry C. Hollis
- School of Biomedical Engineering and Health Systems, Drexel University, Philadelphia, PA, United States
| | - Julian N. Francis
- Department of Mathematics, Howard University, Washington, DC, United States
| | - Ron C. Anafi
- Division of Sleep Medicine and Chronobiology and Sleep Institute, University of Pennsylvania, Philadelphia, PA, United States,*Correspondence: Ron C. Anafi,
| |
Collapse
|
16
|
Alachkar A, Lee J, Asthana K, Vakil Monfared R, Chen J, Alhassen S, Samad M, Wood M, Mayer EA, Baldi P. The hidden link between circadian entropy and mental health disorders. Transl Psychiatry 2022; 12:281. [PMID: 35835742 PMCID: PMC9283542 DOI: 10.1038/s41398-022-02028-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/12/2022] [Accepted: 06/16/2022] [Indexed: 12/22/2022] Open
Abstract
The high overlapping nature of various features across multiple mental health disorders suggests the existence of common psychopathology factor(s) (p-factors) that mediate similar phenotypic presentations across distinct but relatable disorders. In this perspective, we argue that circadian rhythm disruption (CRD) is a common underlying p-factor that bridges across mental health disorders within their age and sex contexts. We present and analyze evidence from the literature for the critical roles circadian rhythmicity plays in regulating mental, emotional, and behavioral functions throughout the lifespan. A review of the literature shows that coarse CRD, such as sleep disruption, is prevalent in all mental health disorders at the level of etiological and pathophysiological mechanisms and clinical phenotypical manifestations. Finally, we discuss the subtle interplay of CRD with sex in relation to these disorders across different stages of life. Our perspective highlights the need to shift investigations towards molecular levels, for instance, by using spatiotemporal circadian "omic" studies in animal models to identify the complex and causal relationships between CRD and mental health disorders.
Collapse
Affiliation(s)
- Amal Alachkar
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California, Irvine, CA, USA. .,Institute for Genomics and Bioinformatics, University of California, Irvine, CA, USA. .,Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA, USA.
| | - Justine Lee
- grid.266093.80000 0001 0668 7243Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California, Irvine, CA USA
| | - Kalyani Asthana
- grid.266093.80000 0001 0668 7243Department of Computer Science, School of Information and Computer Sciences, University of California, Irvine, CA USA
| | - Roudabeh Vakil Monfared
- grid.266093.80000 0001 0668 7243Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California, Irvine, CA USA
| | - Jiaqi Chen
- grid.266093.80000 0001 0668 7243Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California, Irvine, CA USA
| | - Sammy Alhassen
- grid.266093.80000 0001 0668 7243Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California, Irvine, CA USA
| | - Muntaha Samad
- grid.266093.80000 0001 0668 7243Institute for Genomics and Bioinformatics, University of California, Irvine, CA USA ,grid.266093.80000 0001 0668 7243Department of Computer Science, School of Information and Computer Sciences, University of California, Irvine, CA USA
| | - Marcelo Wood
- grid.266093.80000 0001 0668 7243Institute for Genomics and Bioinformatics, University of California, Irvine, CA USA ,grid.266093.80000 0001 0668 7243Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA USA ,grid.266093.80000 0001 0668 7243Department of Neurobiology and Behavior, School of Biological Sciences, University of California, Irvine, CA USA
| | - Emeran A. Mayer
- grid.266093.80000 0001 0668 7243Institute for Genomics and Bioinformatics, University of California, Irvine, CA USA ,grid.19006.3e0000 0000 9632 6718G. Oppenheimer Center of Neurobiology of Stress & Resilience and Goldman Luskin Microbiome Center, Vatche and Tamar Manoukian Division of Digestive Diseases, University of California, Los Angeles, CA USA
| | - Pierre Baldi
- Institute for Genomics and Bioinformatics, University of California, Irvine, CA, USA. .,Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA, USA. .,Department of Computer Science, School of Information and Computer Sciences, University of California, Irvine, CA, USA.
| |
Collapse
|
17
|
Ke P, Zheng C, Liu F, Wu L, Tang Y, Wu Y, Lv D, Chen H, Qian L, Wu X, Zeng K. Relationship between circadian genes and memory impairment caused by sleep deprivation. PeerJ 2022; 10:e13165. [PMID: 35341046 PMCID: PMC8944342 DOI: 10.7717/peerj.13165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 03/04/2022] [Indexed: 01/12/2023] Open
Abstract
Background Sleep deprivation (SD)-induced cognitive impairment is highly prevalent worldwide and has attracted widespread attention. The temporal and spatial oscillations of circadian genes are severely disturbed after SD, leading to a progressive loss of their physiological rhythms, which in turn affects memory function. However, there is a lack of research on the role of circadian genes and memory function after SD. Therefore, the present study aims to investigate the relationship between circadian genes and memory function and provide potential therapeutic insights into the mechanism of SD-induced memory impairment. Methods Gene expression profiles of GSE33302 and GSE9442 from the Gene Expression Omnibus (GEO) were applied to identify differentially expressed genes (DEGs). Subsequently, both datasets were subjected to Gene Set Enrichment Analysis (GSEA) to determine the overall gene changes in the hippocampus and brain after SD. A Gene Oncology (GO) analysis and Protein-Protein Interaction (PPI) analysis were employed to explore the genes related to circadian rhythm, with their relationship and importance determined through a correlation analysis and a receiver operating characteristic curve (ROC), respectively. The water maze experiments detected behavioral changes related to memory function in SD rats. The expression of circadian genes in several critical organs such as the brain, heart, liver, and lungs and their correlation with memory function was investigated using several microarrays. Finally, changes in the hippocampal immune environment after SD were analyzed using the CIBERSORT in R software. Results The quality of the two datasets was very good. After SD, changes were seen primarily in genes related to memory impairment and immune function. Genes related to circadian rhythm were highly correlated with engagement in muscle structure development and circadian rhythm. Seven circadian genes showed their potential therapeutic value in SD. Water maze experiments confirmed that SD exacerbates memory impairment-related behaviors, including prolonged escape latencies and reduced numbers of rats crossing the platform. The expression of circadian genes was verified, while some genes were also significant in the heart, liver, and lungs. All seven circadian genes were also associated with memory markers in SD. The contents of four immune cells in the hippocampal immune environment changed after SD. Seven circadian genes were related to multiple immune cells. Conclusions In the present study, we found that SD leads to memory impairment accompanied by changes in circadian rhythm-related genes. Seven circadian genes play crucial roles in memory impairment after SD. Naïve B cells and follicular helper T cells are closely related to SD. These findings provide new insights into the treatment of memory impairment caused by SD.
Collapse
Affiliation(s)
- Peng Ke
- Department of Anesthesiology, Anesthesiology Research Institute, the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China,Department of Anesthesiology, Shengli Clinical Medical College, Fujian Medical University, Fuzhou, Fujian, China
| | - Chengjie Zheng
- Department of Anesthesiology, Shengli Clinical Medical College, Fujian Medical University, Fuzhou, Fujian, China
| | - Feng Liu
- Department of Anesthesiology, Shengli Clinical Medical College, Fujian Medical University, Fuzhou, Fujian, China
| | - LinJie Wu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yijie Tang
- Department of Anesthesiology, Shengli Clinical Medical College, Fujian Medical University, Fuzhou, Fujian, China
| | - Yanqin Wu
- Department of Anesthesiology, Shengli Clinical Medical College, Fujian Medical University, Fuzhou, Fujian, China
| | - Dongdong Lv
- Department of Anesthesiology, Shengli Clinical Medical College, Fujian Medical University, Fuzhou, Fujian, China
| | - Huangli Chen
- Department of Anesthesiology, Shengli Clinical Medical College, Fujian Medical University, Fuzhou, Fujian, China
| | - Lin Qian
- Department of Anesthesiology, Shengli Clinical Medical College, Fujian Medical University, Fuzhou, Fujian, China
| | - Xiaodan Wu
- Department of Anesthesiology, Shengli Clinical Medical College, Fujian Medical University, Fuzhou, Fujian, China
| | - Kai Zeng
- Department of Anesthesiology, Anesthesiology Research Institute, the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
18
|
Ren CY, Liu PP, Li J, Li YQ, Zhang LJ, Chen GH, Dong FY, Hu D, Zhang M. Changes in telomere length and serum neurofilament light chain levels in female patients with chronic insomnia disorder. J Clin Sleep Med 2022; 18:383-392. [PMID: 34319229 PMCID: PMC8805003 DOI: 10.5664/jcsm.9574] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
STUDY OBJECTIVES The aims of this study were to explore changes in the telomere length (relative telomere repeat copy/single-copy gene [T/S ratio]) and serum neurofilament light chain (sNfL) levels in female patients with chronic insomnia disorder (CID), examine their relationships with emotional abnormalities and cognitive impairment, and determine whether these 2 indicators were independently associated with sleep quality. METHODS The CID group contained 80 patients diagnosed with CID, and 51 individuals constituted a healthy control group. Participants completed sleep, emotion, and cognition assessments. Telomere length was detected through quantitative real-time polymerase chain reaction. Enzyme-linked immunosorbent assay was used to determine sNfL concentrations. RESULTS Relative to the healthy control group, the CID group had elevated Pittsburgh Sleep Quality Index, Hamilton Anxiety Scale-14, and Hamilton Depression Rating Scale-17 scores and reduced Montreal Cognitive Assessment scale scores, a decreased T/S ratio, and an increased sNfL concentration. Subgroup analysis according to various CID-associated sleep factors showed that poor sleep performance corresponded to a lower T/S ratio. Higher anxiety levels and more cognitive dysfunction correlated with shorter telomere lengths. The T/S ratio negatively correlated with age, whereas the sNfL concentration positively correlated with age in the CID group. The Pittsburgh Sleep Quality Index score negatively correlated with the T/S ratio but did not correlate with sNfL levels. Multiple linear regression analysis showed that the T/S ratio had a negative and independent effect on Pittsburgh Sleep Quality Index scores. CONCLUSIONS The CID group had shorter telomeres and higher sNfL concentrations, and reduced telomere length independently affected sleep quality. CITATION Ren C-Y, Liu P-P, Li J, et al. Changes in telomere length and serum neurofilament light chain levels in female patients with chronic insomnia disorder. J Clin Sleep Med. 2022;18(2):383-392.
Collapse
Affiliation(s)
- Chong-Yang Ren
- Department of General Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, P. R. China
| | - Pei-Pei Liu
- Department of Neurology, Fu Yang Fifth People’s Hospital, Fuyang, P.R. China
| | - Jing Li
- Department of Neurology, The First Affiliated Hospital of Anhui University of Science and Technology (The First People’s Hospital of Huainan City), Huainan, P.R. China
| | - Ya-Qiang Li
- Department of Neurology, The First Affiliated Hospital of Anhui University of Science and Technology (The First People’s Hospital of Huainan City), Huainan, P.R. China
| | - Li-jun Zhang
- School of Medicine, Anhui University of Science and Technology, Huainan, P.R. China,Key Laboratory of Industrial Dust Prevention and Control and Occupational Safety and Health of the Ministry of Education, Anhui University of Science and Technology, Huainan, P.R. China
| | - Gui-Hai Chen
- Department of Neurology (Sleep Disorder), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Chaohu, P.R. China
| | - Fang-yi Dong
- Department of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China;,Address correspondence to: Mei Zhang, MD; ; Dong Hu, PhD; ; and Fang-yi Dong, PhD;
| | - Dong Hu
- School of Medicine, Anhui University of Science and Technology, Huainan, P.R. China,Key Laboratory of Industrial Dust Prevention and Control and Occupational Safety and Health of the Ministry of Education, Anhui University of Science and Technology, Huainan, P.R. China,Address correspondence to: Mei Zhang, MD; ; Dong Hu, PhD; ; and Fang-yi Dong, PhD;
| | - Mei Zhang
- Department of Neurology, The First Affiliated Hospital of Anhui University of Science and Technology (The First People’s Hospital of Huainan City), Huainan, P.R. China,School of Medicine, Anhui University of Science and Technology, Huainan, P.R. China,Key Laboratory of Industrial Dust Prevention and Control and Occupational Safety and Health of the Ministry of Education, Anhui University of Science and Technology, Huainan, P.R. China,Address correspondence to: Mei Zhang, MD; ; Dong Hu, PhD; ; and Fang-yi Dong, PhD;
| |
Collapse
|
19
|
Bryant AJ, Ebrahimi E, Nguyen A, Wolff CA, Gumz ML, Liu AC, Esser KA. A wrinkle in time: circadian biology in pulmonary vascular health and disease. Am J Physiol Lung Cell Mol Physiol 2022; 322:L84-L101. [PMID: 34850650 PMCID: PMC8759967 DOI: 10.1152/ajplung.00037.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
An often overlooked element of pulmonary vascular disease is time. Cellular responses to time, which are regulated directly by the core circadian clock, have only recently been elucidated. Despite an extensive collection of data regarding the role of rhythmic contribution to disease pathogenesis (such as systemic hypertension, coronary artery, and renal disease), the roles of key circadian transcription factors in pulmonary hypertension remain understudied. This is despite a large degree of overlap in the pulmonary hypertension and circadian rhythm fields, not only including shared signaling pathways, but also cell-specific effects of the core clock that are known to result in both protective and adverse lung vessel changes. Therefore, the goal of this review is to summarize the current dialogue regarding common pathways in circadian biology, with a specific emphasis on its implications in the progression of pulmonary hypertension. In this work, we emphasize specific proteins involved in the regulation of the core molecular clock while noting the circadian cell-specific changes relevant to vascular remodeling. Finally, we apply this knowledge to the optimization of medical therapy, with a focus on sleep hygiene and the role of chronopharmacology in patients with this disease. In dissecting the unique relationship between time and cellular biology, we aim to provide valuable insight into the practical implications of considering time as a therapeutic variable. Armed with this information, physicians will be positioned to more efficiently use the full four dimensions of patient care, resulting in improved morbidity and mortality of pulmonary hypertension patients.
Collapse
Affiliation(s)
- Andrew J. Bryant
- 1Department of Medicine, University of Florida College of Medicine, Gainesville, Florida
| | - Elnaz Ebrahimi
- 1Department of Medicine, University of Florida College of Medicine, Gainesville, Florida
| | - Amy Nguyen
- 1Department of Medicine, University of Florida College of Medicine, Gainesville, Florida
| | - Christopher A. Wolff
- 2Department of Physiology, University of Florida College of Medicine, Gainesville, Florida
| | - Michelle L. Gumz
- 2Department of Physiology, University of Florida College of Medicine, Gainesville, Florida
| | - Andrew C. Liu
- 2Department of Physiology, University of Florida College of Medicine, Gainesville, Florida
| | - Karyn A. Esser
- 2Department of Physiology, University of Florida College of Medicine, Gainesville, Florida
| |
Collapse
|
20
|
Crislip GR, Johnston JG, Douma LG, Costello HM, Juffre A, Boyd K, Li W, Maugans CC, Gutierrez-Monreal M, Esser KA, Bryant AJ, Liu AC, Gumz ML. Circadian Rhythm Effects on the Molecular Regulation of Physiological Systems. Compr Physiol 2021; 12:2769-2798. [PMID: 34964116 PMCID: PMC11514412 DOI: 10.1002/cphy.c210011] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Nearly every system within the body contains an intrinsic cellular circadian clock. The circadian clock contributes to the regulation of a variety of homeostatic processes in mammals through the regulation of gene expression. Circadian disruption of physiological systems is associated with pathophysiological disorders. Here, we review the current understanding of the molecular mechanisms contributing to the known circadian rhythms in physiological function. This article focuses on what is known in humans, along with discoveries made with cell and rodent models. In particular, the impact of circadian clock components in metabolic, cardiovascular, endocrine, musculoskeletal, immune, and central nervous systems are discussed. © 2021 American Physiological Society. Compr Physiol 11:1-30, 2021.
Collapse
Affiliation(s)
- G. Ryan Crislip
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation
| | - Jermaine G. Johnston
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation
| | | | - Hannah M. Costello
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation
| | | | - Kyla Boyd
- Department of Biochemistry and Molecular Biology
| | - Wendy Li
- Department of Biochemistry and Molecular Biology
| | | | | | - Karyn A. Esser
- Department of Physiology and Functional Genomics
- Myology Institute
| | | | - Andrew C. Liu
- Department of Physiology and Functional Genomics
- Myology Institute
| | - Michelle L. Gumz
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation
- Department of Biochemistry and Molecular Biology
- Department of Physiology and Functional Genomics
- Center for Integrative Cardiovascular and Metabolic Disease
| |
Collapse
|
21
|
Bjørkum AA, Carrasco Duran A, Frode B, Sinha Roy D, Rosendahl K, Birkeland E, Stuhr L. Human blood serum proteome changes after 6 hours of sleep deprivation at night. SLEEP SCIENCE AND PRACTICE 2021. [DOI: 10.1186/s41606-021-00066-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Abstract
Background
The aim of this study was to discover significantly changed proteins in human blood serum after loss of 6 h sleep at night. Furthermore, to reveal affected biological process- and molecular function categories that might be clinically relevant, by exploring systems biological databases.
Methods
Eight females were recruited by volunteer request. Peripheral venous whole blood was sampled at 04:00 am, after 6 h of sleep and after 6 h of sleep deprivation. We used within-subjects design (all subjects were their own control). Blood serum from each subject was depleted before protein digestion by trypsin and iTRAQ labeling. Labled peptides were analyzed by mass spectrometry (LTQ OritrapVelos Elite) connected to a LC system (Dionex Ultimate NCR-3000RS).
Results
We identified 725 proteins in human blood serum. 34 proteins were significantly differentially expressed after 6 h of sleep deprivation at night. Out of 34 proteins, 14 proteins were up-regulated, and 20 proteins were down-regulated. We emphasized the functionality of the 16 proteins commonly differentiated in all 8 subjects and the relation to pathological conditions. In addition, we discussed Histone H4 (H4) and protein S100-A6/Calcyclin (S10A6) that were upregulated more than 1.5-fold. Finally, we discussed affected biological process- and molecular function categories.
Conclusions
Overall, our study suggest that acute sleep deprivation, at least in females, affects several known biological processes- and molecular function categories and associates to proteins that also are changed under pathological conditions like impaired coagulation, oxidative stress, immune suppression, neurodegenerative related disorder, and cancer. Data are available via ProteomeXchange with identifier PXD021004.
Collapse
|
22
|
Oxidative stress and the differential expression of traits associated with mating effort in humans. EVOL HUM BEHAV 2021. [DOI: 10.1016/j.evolhumbehav.2021.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
23
|
Poljsak B, Kovač V, Levec T, Milisav I. Nature Versus Nurture: What Can be Learned from the Oldest-Old's Claims About Longevity? Rejuvenation Res 2021; 24:262-273. [PMID: 33544039 DOI: 10.1089/rej.2020.2379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Beneficial genetic or environmental factors that influence the length and quality of life can be evaluated while studying supercentenarians. The oldest-old can withstand serious/fatal illnesses more than their peers and/or their aging rate is decreased. Supercentenarians are an interesting group of individuals whose lifestyle is not particularly healthy according to the common guidelines, namely some of them seem to have similar harmful behaviors, but still manage to stay healthier for longer, and while eventually dying from the same degenerative diseases as the general population, they develop symptoms 20-30 years later. As there are not many supercentenarians by definition, it is worthwhile to diligently collect their data to enable future meta-analyses on larger samples; much can be learned from supercentenarians' habits and lifestyle choices about the aging process. Contributions of genetics, lifestyle choices, and epigenetics to their extended life span are discussed here.
Collapse
Affiliation(s)
- Borut Poljsak
- Laboratory of Oxidative Stress Research, Faculty of Health Sciences, University of Ljubljana, Ljubljana, Slovenia
| | - Vito Kovač
- Laboratory of Oxidative Stress Research, Faculty of Health Sciences, University of Ljubljana, Ljubljana, Slovenia
| | - Tina Levec
- Faculty of Health Sciences, University of Ljubljana, Chair of Public Health, Ljubljana, Slovenia
| | - Irina Milisav
- Laboratory of Oxidative Stress Research, Faculty of Health Sciences, University of Ljubljana, Ljubljana, Slovenia.,Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
24
|
Sharma B, Sengupta T, Chandra Vishwakarma L, Akhtar N, Mallick HN. Muscle temperature is least altered during total sleep deprivation in rats. J Therm Biol 2021; 98:102910. [PMID: 34016337 DOI: 10.1016/j.jtherbio.2021.102910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/11/2021] [Accepted: 03/11/2021] [Indexed: 11/27/2022]
Abstract
It has often been said that the brain is mostly benefitted from sleep. To understand the importance of sleep, extensive studies on other organs are too required. One such unexplored area is the understanding of muscle physiology during the sleep-wake cycle. Changes in muscle tone with different sleep phases are evident from the rapid eye movement sleep muscle atonia. There is variation in brain and body temperature during sleep stages, the brain temperature being higher during rapid eye movement sleep than slow-wave sleep. However, the change in muscle temperature with different sleep stages is not known. In this study, we have implanted pre-calibrated K-type thermocouples in the hypothalamus and the dorsal nuchal muscle, and a peritoneal transmitter to monitor the hypothalamic, muscle, and body temperature respectively in rats during 24 h sleep-wake cycle. The changes in muscle, body, and hypothalamic temperature during total sleep deprivation were also monitored. During normal sleep-wake stages, the temperature in the decreasing order was that of the hypothalamus, body, and muscle. Total sleep deprivation by gentle handling caused a significant increase in hypothalamic and body temperature, while there was least change in the muscle temperature. The circadian rhythm of the hypothalamic and body temperature in the sleep-deprived rats was disrupted, while the same was preserved in the muscle temperature. The results of our study show that muscle atonia during rapid eye movement sleep is a physiologically regulated thermally quiescent muscle state offering a conducive environment for muscle rest and repair.
Collapse
Affiliation(s)
- Binney Sharma
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, 110029, India.
| | - Trina Sengupta
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, 110029, India; Department of Physiology, All India Institute of Medical Sciences, Jodhpur, 342005, India.
| | - Lal Chandra Vishwakarma
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, 110029, India.
| | - Nasreen Akhtar
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, 110029, India.
| | - Hruda Nanda Mallick
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, 110029, India; Department of Physiology, Faculty of Medicine & Health Sciences, SGT University, Gurgaon, Haryana, 122505, India.
| |
Collapse
|
25
|
Li ZH, Ma PK, Huang YF, Zhang Z, Zheng W, Chen JH, Guo CE, Chen N, Bi XN, Zhang YJ. Jiaotai Pill () Alleviates Insomnia through Regulating Monoamine and Organic Cation Transporters in Rats. Chin J Integr Med 2021; 27:183-191. [PMID: 33420587 DOI: 10.1007/s11655-021-3284-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2020] [Indexed: 10/22/2022]
Abstract
OBJECTIVE To reveal the effect and mechanism of Jiaotai Pill (, JTP) on insomniac rats. METHODS The insomniac model was established by intraperitoneal injection of p-chlorophenylalanine (PCPA). In behavioral experiments, rats were divided into control, insomniac model, JTP [3.3 g/(kg•d)], and diazepam [4 mg/(kg•d)] groups. The treatment effect of JTP was evaluated by weight measurement (increasement of body weight), open field test (number of crossings) and forced swimming test (immobility time). A high performance liquid chromatography-electrochemical detection (HPLC-ECD) method was built to determine the concentration of monoamine transmitters in hypothalamus and peripheral organs from normal, model, JTP, citalopram [30 mg/(kg•d)], maprotiline [40 mg/(kg•d)] and bupropion [40 mg/(kg•d)] groups. Expressions of serotonin transporter (SERT), dopamine transporter (DAT), and norepinephrine transporter (NET) were analyzed by quantitative polymerase chain reaction (qPCR) and Western blot in normal, model and JTP groups. A high performance liquid chromatography-electrospray ionization mass spectrometry (HPLC-ESI-MS/MS) method was established to determine the pharmacokinetics, urine cumulative excretion of metformin in vivo, and tissue slice uptake in vitro, which were applied to assess the activity of organic cation transporters (OCTs) in hypothalamus and peripheral organs. RESULTS Compared with the insomniac model group, the body weight and spontaneous locomotor were increased, and the immobility time was decreased after treatment with JTP (P<0.01). Both serotonin and dopamine contents in hypothalamus and peripheral organs were increased (P<0.01). The norepinephrine content was increased in peripheral organs and decreased in hypothalamus (P<0.05 or P<0.01). At the same time, SERT, DAT, OCT1, OCT2, and OCT3 were down-regulated in hypothalamus and peripheral organs (P<0.05). NET was down-regulated in peripheral organs and up-regulated in hypothalamus (P<0.05 or P<0.01). Moreover, the activity of OCTs in hypothalamus and peripheral organs was inhibited (P<0.05). CONCLUSION JTP alleviates insomnia through regulation of monoaminergic system and OCTs in hypothalamus and peripheral organs.
Collapse
Affiliation(s)
- Zhi-Hui Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Peng-Kai Ma
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | | | - Zhe Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Wei Zheng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Jian-Hua Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Chang-E Guo
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Ning Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Xin-Ning Bi
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Yu-Jie Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.
| |
Collapse
|
26
|
Guo X, Gao X, Keenan BT, Zhu J, Sarantopoulou D, Lian J, Galante RJ, Grant GR, Pack AI. RNA-seq analysis of galaninergic neurons from ventrolateral preoptic nucleus identifies expression changes between sleep and wake. BMC Genomics 2020; 21:633. [PMID: 32928100 PMCID: PMC7491139 DOI: 10.1186/s12864-020-07050-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 09/03/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Previous studies show that galanin neurons in ventrolateral preoptic nucleus (VLPO-Gal) are essential for sleep regulation. Here, we explored the transcriptional regulation of the VLPO-Gal neurons in sleep by comparing their transcriptional responses between sleeping mice and those kept awake, sacrificed at the same diurnal time. RESULTS RNA-sequencing (RNA-seq) analysis was performed on eGFP(+) galanin neurons isolated using laser captured microdissection (LCM) from VLPO. Expression of Gal was assessed in our LCM eGFP(+) neurons via real time qPCR and showed marked enrichment when compared to LCM eGFP(-) cells and to bulk VLPO samples. Gene set enrichment analysis utilizing data from a recent single-cell RNA-seq study of the preoptic area demonstrated that our VLPO-Gal samples were highly enriched with galanin-expressing inhibitory neurons, but not galanin-expressing excitatory neurons. A total of 263 genes were differentially expressed between sleep and wake in VLPO-Gal neurons. When comparing differentially expressed genes in VLPO-Gal neurons to differentially expressed genes in a wake-active neuronal region (the medial prefrontal cortex), evidence indicates that both systemic and cell-specific mechanisms contribute to the transcriptional regulation in VLPO-Gal neurons. In both wake-active and sleep-active neurons, ER stress pathways are activated by wake and cold-inducible RNA-binding proteins are activated by sleep. In contrast, expression of DNA repair genes is increased in VLPO-Gal during wakefulness, but increased in wake-active cells during sleep. CONCLUSION Our study identified transcriptomic responses of the galanin neurons in the ventrolateral preoptic nucleus during sleep and sleep deprivation. Data indicate that VLPO contains mainly sleep-active inhibitory galaninergic neurons. The VLPO galanin neurons show responses to sleep and wake similar to wake-active regions, indicating these responses, such as ER stress and cold-inducible RNA-binding proteins, are systemic affecting all neuronal populations. Region-specific differences in sleep/wake responses were also identified, in particular DNA repair. Our study expands knowledge about the transcriptional response of a distinct group of neurons essential for sleep.
Collapse
Affiliation(s)
- Xiaofeng Guo
- Division of Sleep Medicine/Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, 19104, USA
| | - Xiaoling Gao
- Department of Respiratory and Critical Care Medicine, Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Brendan T Keenan
- Division of Sleep Medicine/Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, 19104, USA
| | - Jingxu Zhu
- Division of Sleep Medicine/Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, 19104, USA
| | - Dimitra Sarantopoulou
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, 19104, USA
- Present address at National Institute on Aging, National Institutes of Health, Baltimore, 21224, USA
| | - Jie Lian
- Division of Sleep Medicine/Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, 19104, USA
| | - Raymond J Galante
- Division of Sleep Medicine/Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, 19104, USA
| | - Gregory R Grant
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, 19104, USA
- Department of Genetics, University of Pennsylvania, Philadelphia, 19104, USA
| | - Allan I Pack
- Division of Sleep Medicine/Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, 19104, USA.
| |
Collapse
|
27
|
Malik DM, Paschos GK, Sehgal A, Weljie AM. Circadian and Sleep Metabolomics Across Species. J Mol Biol 2020; 432:3578-3610. [PMID: 32376454 PMCID: PMC7781158 DOI: 10.1016/j.jmb.2020.04.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 04/28/2020] [Accepted: 04/28/2020] [Indexed: 02/06/2023]
Abstract
Under normal circadian function, metabolic control is temporally coordinated across tissues and behaviors with a 24-h period. However, circadian disruption results in negative consequences for metabolic homeostasis including energy or redox imbalances. Yet, circadian disruption has become increasingly prevalent within today's society due to many factors including sleep loss. Metabolic consequences of both have been revealed by metabolomics analyses of circadian biology and sleep. Specifically, two primary analytical platforms, mass spectrometry and nuclear magnetic resonance spectroscopy, have been used to study molecular clock and sleep influences on overall metabolic rhythmicity. For example, human studies have demonstrated the prevalence of metabolic rhythms in human biology, as well as pan-metabolome consequences of sleep disruption. However, human studies are limited to peripheral metabolic readouts primarily through minimally invasive procedures. For further tissue- and organism-specific investigations, a number of model systems have been studied, based upon the conserved nature of both the molecular clock and sleep across species. Here we summarize human studies as well as key findings from metabolomics studies using mice, Drosophila, and zebrafish. While informative, a limitation in existing literature is a lack of interpretation regarding dynamic synthesis or catabolism within metabolite pools. To this extent, future work incorporating isotope tracers, specific metabolite reporters, and single-cell metabolomics may provide a means of exploring dynamic activity in pathways of interest.
Collapse
Affiliation(s)
- Dania M Malik
- Pharmacology Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Georgios K Paschos
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Amita Sehgal
- Penn Chronobiology, University of Pennsylvania, Philadelphia, PA 19104, USA; Howard Hughes Medical Institute, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA
| | - Aalim M Weljie
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
28
|
Jåbekk P, Jensen RM, Sandell MB, Haugen E, Katralen LM, Bjorvatn B. A randomized controlled pilot trial of sleep health education on body composition changes following 10 weeks' resistance exercise. J Sports Med Phys Fitness 2020; 60:743-748. [DOI: 10.23736/s0022-4707.20.10136-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
29
|
Soares AC, Fonseca DA. Cardiovascular diseases: a therapeutic perspective around the clock. Drug Discov Today 2020; 25:1086-1098. [PMID: 32320853 DOI: 10.1016/j.drudis.2020.04.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 04/05/2020] [Accepted: 04/09/2020] [Indexed: 01/21/2023]
Abstract
Biological rhythms are a ubiquitous feature of life. Most bodily functions, including physiological, biochemical, and behavioral processes, are coupled by the circadian rhythm. In the cardiovascular system, circadian fluctuations regulate several functions, namely heart rate, blood pressure, cardiac contractility, and metabolism. In fact, current lifestyles impose external timing constraints that clash with our internal circadian physiology, often increasing the risk of cardiovascular disease (CVD). Still, the mechanisms of dysregulation are not fully understood because this is a growing area of research. In this review, we explore the modulatory role of the circadian rhythms on cardiovascular function and disease as well as the role of chronotherapy in the context of CVD and how such an approach could improve existing therapies and assist in the development of new ones.
Collapse
Affiliation(s)
| | - Diogo A Fonseca
- Laboratory of Pharmacology and Pharmaceutical Care, Faculty of Pharmacy, University of Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Portugal; CIBB Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal.
| |
Collapse
|
30
|
Haspel JA, Anafi R, Brown MK, Cermakian N, Depner C, Desplats P, Gelman AE, Haack M, Jelic S, Kim BS, Laposky AD, Lee YC, Mongodin E, Prather AA, Prendergast BJ, Reardon C, Shaw AC, Sengupta S, Szentirmai É, Thakkar M, Walker WE, Solt LA. Perfect timing: circadian rhythms, sleep, and immunity - an NIH workshop summary. JCI Insight 2020; 5:131487. [PMID: 31941836 PMCID: PMC7030790 DOI: 10.1172/jci.insight.131487] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Recent discoveries demonstrate a critical role for circadian rhythms and sleep in immune system homeostasis. Both innate and adaptive immune responses - ranging from leukocyte mobilization, trafficking, and chemotaxis to cytokine release and T cell differentiation -are mediated in a time of day-dependent manner. The National Institutes of Health (NIH) recently sponsored an interdisciplinary workshop, "Sleep Insufficiency, Circadian Misalignment, and the Immune Response," to highlight new research linking sleep and circadian biology to immune function and to identify areas of high translational potential. This Review summarizes topics discussed and highlights immediate opportunities for delineating clinically relevant connections among biological rhythms, sleep, and immune regulation.
Collapse
Affiliation(s)
- Jeffrey A. Haspel
- Division of Pulmonary, Critical Care and Sleep Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Ron Anafi
- Center for Sleep and Circadian Neurobiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Marishka K. Brown
- National Center on Sleep Disorders Research, Division of Lung Diseases, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Nicolas Cermakian
- Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada
| | - Christopher Depner
- Sleep and Chronobiology Laboratory, Department of Integrative Physiology, University of Colorado, Boulder, Colorado, USA
| | - Paula Desplats
- Department of Neurosciences and
- Department of Pathology, UCSD, La Jolla, California, USA
| | - Andrew E. Gelman
- Department of Surgery, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Monika Haack
- Human Sleep and Inflammatory Systems Laboratory, Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Sanja Jelic
- Division of Pulmonary, Allergy, and Critical Care Medicine, Columbia University School of Medicine, New York, New York, USA
| | - Brian S. Kim
- Center for the Study of Itch
- Department of Medicine
- Department of Anesthesiology
- Department of Pathology, and
- Department of Immunology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Aaron D. Laposky
- National Center on Sleep Disorders Research, Division of Lung Diseases, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Yvonne C. Lee
- Division of Rheumatology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Emmanuel Mongodin
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Aric A. Prather
- Department of Psychiatry, UCSF, San Francisco, California, USA
| | - Brian J. Prendergast
- Department of Psychology and Committee on Neurobiology, University of Chicago, Chicago, Illinois, USA
| | - Colin Reardon
- Department, of Anatomy, Physiology, and Cell Biology, UCD School of Veterinary Medicine, Davis, California, USA
| | - Albert C. Shaw
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Shaon Sengupta
- Division of Neonatology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Éva Szentirmai
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University, Spokane, Washington, USA
| | - Mahesh Thakkar
- Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri, USA
- Department of Neurology, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Wendy E. Walker
- Center of Emphasis in Infectious Diseases, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Health Sciences Center, Texas Tech University, El Paso, Texas, USA
| | - Laura A. Solt
- Department of Immunology and Microbiology, Scripps Research Institute, Jupiter, Florida, USA
| |
Collapse
|
31
|
Laing EE, Möller-Levet CS, Dijk DJ, Archer SN. Identifying and validating blood mRNA biomarkers for acute and chronic insufficient sleep in humans: a machine learning approach. Sleep 2019; 42:5106128. [PMID: 30247731 PMCID: PMC6335875 DOI: 10.1093/sleep/zsy186] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Indexed: 12/18/2022] Open
Abstract
Acute and chronic insufficient sleep are associated with adverse health outcomes and risk of accidents. There is therefore a need for biomarkers to monitor sleep debt status. None are currently available. We applied elastic net and ridge regression to transcriptome samples collected in 36 healthy young adults during acute total sleep deprivation and following 1 week of either chronic insufficient (<6 hr) or sufficient sleep (~8.6 hr) to identify panels of mRNA biomarkers of sleep debt status. The size of identified panels ranged from 9 to 74 biomarkers. Panel performance, assessed by leave-one-subject-out cross-validation and independent validation, varied between sleep debt conditions. Using between-subject assessments based on one blood sample, the accuracy of classifying "acute sleep loss" was 92%, but only 57% for classifying "chronic sleep insufficiency." A reasonable accuracy for classifying "chronic sleep insufficiency" could only be achieved by a within-subject comparison of blood samples. Biomarkers for sleep debt status showed little overlap with previously identified biomarkers for circadian phase. Biomarkers for acute and chronic sleep loss also showed little overlap but were associated with common functions related to the cellular stress response, such as heat shock protein activity, the unfolded protein response, protein ubiquitination and endoplasmic reticulum-associated protein degradation, and apoptosis. This characteristic response of whole blood to sleep loss can further aid our understanding of how sleep insufficiencies negatively affect health. Further development of these novel biomarkers for research and clinical practice requires validation in other protocols and age groups.
Collapse
Affiliation(s)
- Emma E Laing
- Department of Microbial Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Carla S Möller-Levet
- Bioinformatics Core Facility, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Derk-Jan Dijk
- Surrey Sleep Research Centre, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Simon N Archer
- Surrey Sleep Research Centre, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| |
Collapse
|
32
|
Hor CN, Yeung J, Jan M, Emmenegger Y, Hubbard J, Xenarios I, Naef F, Franken P. Sleep-wake-driven and circadian contributions to daily rhythms in gene expression and chromatin accessibility in the murine cortex. Proc Natl Acad Sci U S A 2019; 116:25773-25783. [PMID: 31776259 PMCID: PMC6925978 DOI: 10.1073/pnas.1910590116] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The timing and duration of sleep results from the interaction between a homeostatic sleep-wake-driven process and a periodic circadian process, and involves changes in gene regulation and expression. Unraveling the contributions of both processes and their interaction to transcriptional and epigenomic regulatory dynamics requires sampling over time under conditions of unperturbed and perturbed sleep. We profiled mRNA expression and chromatin accessibility in the cerebral cortex of mice over a 3-d period, including a 6-h sleep deprivation (SD) on day 2. We used mathematical modeling to integrate time series of mRNA expression data with sleep-wake history, which established that a large proportion of rhythmic genes are governed by the homeostatic process with varying degrees of interaction with the circadian process, sometimes working in opposition. Remarkably, SD caused long-term effects on gene-expression dynamics, outlasting phenotypic recovery, most strikingly illustrated by a damped oscillation of most core clock genes, including Arntl/Bmal1, suggesting that enforced wakefulness directly impacts the molecular clock machinery. Chromatin accessibility proved highly plastic and dynamically affected by SD. Dynamics in distal regions, rather than promoters, correlated with mRNA expression, implying that changes in expression result from constitutively accessible promoters under the influence of enhancers or repressors. Serum response factor (SRF) was predicted as a transcriptional regulator driving immediate response, suggesting that SRF activity mirrors the build-up and release of sleep pressure. Our results demonstrate that a single, short SD has long-term aftereffects at the genomic regulatory level and highlights the importance of the sleep-wake distribution to diurnal rhythmicity and circadian processes.
Collapse
Affiliation(s)
- Charlotte N Hor
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Jake Yeung
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Maxime Jan
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
- Vital-IT Systems Biology Division, Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland
| | - Yann Emmenegger
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Jeffrey Hubbard
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Ioannis Xenarios
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Felix Naef
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Paul Franken
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland;
| |
Collapse
|
33
|
Abstract
During sleep, animals do not eat, reproduce or forage. Sleeping animals are vulnerable to predation. Yet, the persistence of sleep despite evolutionary pressures, and the deleterious effects of sleep deprivation, indicate that sleep serves a function or functions that cannot easily be bypassed. Recent research demonstrates sleep to be phylogenetically far more pervasive than previously appreciated; it is possible that the very first animals slept. Here, we give an overview of sleep across various species, with the aim of determining its original purpose. Sleep exists in animals without cephalized nervous systems and can be influenced by non-neuronal signals, including those associated with metabolic rhythms. Together, these observations support the notion that sleep serves metabolic functions in neural and non-neural tissues.
Collapse
Affiliation(s)
- Ron C Anafi
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Center for Sleep and Circadian Neurobiology and the Program for Chronobiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Matthew S Kayser
- Center for Sleep and Circadian Neurobiology and the Program for Chronobiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Psychiatry and Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David M Raizen
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. .,Center for Sleep and Circadian Neurobiology and the Program for Chronobiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. .,Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
34
|
Guo X, Keenan BT, Sarantopoulou D, Lim DC, Lian J, Grant GR, Pack AI. Age attenuates the transcriptional changes that occur with sleep in the medial prefrontal cortex. Aging Cell 2019; 18:e13021. [PMID: 31549781 PMCID: PMC6826131 DOI: 10.1111/acel.13021] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/13/2019] [Accepted: 07/14/2019] [Indexed: 12/29/2022] Open
Abstract
Sleep abnormalities are common with aging. Studies show that sleep plays important roles in brain functions, and loss of sleep is associated with increased risks for neurological diseases. Here, we used RNA sequencing to explore effects of age on transcriptome changes between sleep and sleep deprivation (SD) in medial prefrontal cortex and found that transcriptional changes with sleep are attenuated in old. In particular, old mice showed a 30% reduction in the number of genes significantly altered between sleep/wake and, in general, had smaller magnitudes of changes in differentially expressed genes compared to young mice. Gene ontology analysis revealed differential age effects on certain pathways. Compared to young mice, many of the wake‐active functions were similarly induced by SD in old mice, whereas many of the sleep‐active pathways were attenuated in old mice. We found similar magnitude of changes in synaptic homeostasis genes (Fos, Arc, and Bdnf) induced by SD, suggesting intact synaptic upscaling on the transcript level during extended wakefulness with aging. However, sleep‐activated processes, such as DNA repair, synaptogenesis, and axon guidance, were sensitive to the effect of aging. Old mice expressed elevated levels of immune response genes when compared to young mice, and enrichment analysis using cell‐type‐specific markers indicated upregulation of microglia and oligodendrocyte genes in old mice. Moreover, gene sets of the two cell types showed age‐specific sleep/wake regulation. Ultimately, this study enhances understanding of the transcriptional changes with sleep and aging, providing potential molecular targets for future studies of age‐related sleep abnormalities and neurological disorders.
Collapse
Affiliation(s)
- Xiaofeng Guo
- Division of Sleep Medicine Department of Medicine University of Pennsylvania Philadelphia Pennsylvania
| | - Brendan T. Keenan
- Division of Sleep Medicine Department of Medicine University of Pennsylvania Philadelphia Pennsylvania
| | - Dimitra Sarantopoulou
- Institute for Translational Medicine and Therapeutics University of Pennsylvania Philadelphia Pennsylvania
| | - Diane C. Lim
- Division of Sleep Medicine Department of Medicine University of Pennsylvania Philadelphia Pennsylvania
| | - Jie Lian
- Division of Sleep Medicine Department of Medicine University of Pennsylvania Philadelphia Pennsylvania
| | - Gregory R. Grant
- Institute for Translational Medicine and Therapeutics University of Pennsylvania Philadelphia Pennsylvania
- Department of Genetics University of Pennsylvania Philadelphia Pennsylvania
| | - Allan I. Pack
- Division of Sleep Medicine Department of Medicine University of Pennsylvania Philadelphia Pennsylvania
| |
Collapse
|
35
|
Noordam R, Bos MM, Wang H, Winkler TW, Bentley AR, Kilpeläinen TO, de Vries PS, Sung YJ, Schwander K, Cade BE, Manning A, Aschard H, Brown MR, Chen H, Franceschini N, Musani SK, Richard M, Vojinovic D, Aslibekyan S, Bartz TM, de las Fuentes L, Feitosa M, Horimoto AR, Ilkov M, Kho M, Kraja A, Li C, Lim E, Liu Y, Mook-Kanamori DO, Rankinen T, Tajuddin SM, van der Spek A, Wang Z, Marten J, Laville V, Alver M, Evangelou E, Graff ME, He M, Kühnel B, Lyytikäinen LP, Marques-Vidal P, Nolte IM, Palmer ND, Rauramaa R, Shu XO, Snieder H, Weiss S, Wen W, Yanek LR, Adolfo C, Ballantyne C, Bielak L, Biermasz NR, Boerwinkle E, Dimou N, Eiriksdottir G, Gao C, Gharib SA, Gottlieb DJ, Haba-Rubio J, Harris TB, Heikkinen S, Heinzer R, Hixson JE, Homuth G, Ikram MA, Komulainen P, Krieger JE, Lee J, Liu J, Lohman KK, Luik AI, Mägi R, Martin LW, Meitinger T, Metspalu A, Milaneschi Y, Nalls MA, O'Connell J, Peters A, Peyser P, Raitakari OT, Reiner AP, Rensen PCN, Rice TK, Rich SS, Roenneberg T, Rotter JI, Schreiner PJ, Shikany J, Sidney SS, Sims M, Sitlani CM, Sofer T, Strauch K, Swertz MA, Taylor KD, Uitterlinden AG, van Duijn CM, Völzke H, Waldenberger M, Wallance RB, van Dijk KW, Yu C, Zonderman AB, Becker DM, Elliott P, Esko T, Gieger C, Grabe HJ, Lakka TA, Lehtimäki T, North KE, Penninx BWJH, Vollenweider P, Wagenknecht LE, Wu T, Xiang YB, Zheng W, Arnett DK, Bouchard C, Evans MK, Gudnason V, Kardia S, Kelly TN, Kritchevsky SB, Loos RJF, Pereira AC, Province M, Psaty BM, Rotimi C, Zhu X, Amin N, Cupples LA, Fornage M, Fox EF, Guo X, Gauderman WJ, Rice K, Kooperberg C, Munroe PB, Liu CT, Morrison AC, Rao DC, van Heemst D, Redline S. Multi-ancestry sleep-by-SNP interaction analysis in 126,926 individuals reveals lipid loci stratified by sleep duration. Nat Commun 2019; 10:5121. [PMID: 31719535 PMCID: PMC6851116 DOI: 10.1038/s41467-019-12958-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 10/04/2019] [Indexed: 12/12/2022] Open
Abstract
Both short and long sleep are associated with an adverse lipid profile, likely through different biological pathways. To elucidate the biology of sleep-associated adverse lipid profile, we conduct multi-ancestry genome-wide sleep-SNP interaction analyses on three lipid traits (HDL-c, LDL-c and triglycerides). In the total study sample (discovery + replication) of 126,926 individuals from 5 different ancestry groups, when considering either long or short total sleep time interactions in joint analyses, we identify 49 previously unreported lipid loci, and 10 additional previously unreported lipid loci in a restricted sample of European-ancestry cohorts. In addition, we identify new gene-sleep interactions for known lipid loci such as LPL and PCSK9. The previously unreported lipid loci have a modest explained variance in lipid levels: most notable, gene-short-sleep interactions explain 4.25% of the variance in triglyceride level. Collectively, these findings contribute to our understanding of the biological mechanisms involved in sleep-associated adverse lipid profiles.
Collapse
Affiliation(s)
- Raymond Noordam
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, The Netherlands.
| | - Maxime M Bos
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Heming Wang
- Division of Sleep and Circadian Disorders, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| | - Thomas W Winkler
- Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany
| | - Amy R Bentley
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tuomas O Kilpeläinen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2200, Denmark
- Department of Environmental Medicine and Public Health, The Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Paul S de Vries
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Yun Ju Sung
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
| | - Karen Schwander
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
| | - Brian E Cade
- Division of Sleep and Circadian Disorders, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| | - Alisa Manning
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Hugues Aschard
- Department of Epidemiology, Harvard School of Public Health, Boston, MA, USA
- Centre de Bioinformatique, Biostatistique et Biologie Intégrative (C3BI), Institut Pasteur, Paris, France
| | - Michael R Brown
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Han Chen
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Center for Precision Health, School of Public Health & School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Nora Franceschini
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Solomon K Musani
- Jackson Heart Study, Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Melissa Richard
- Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Dina Vojinovic
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Stella Aslibekyan
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Traci M Bartz
- Cardiovascular Health Research Unit, Biostatistics and Medicine, University of Washington, Seattle, WA, USA
| | - Lisa de las Fuentes
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Mary Feitosa
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Andrea R Horimoto
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, SP, Brazil
| | | | - Minjung Kho
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Aldi Kraja
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Changwei Li
- Epidemiology and Biostatistics, University of Georgia at Athens College of Public Health, Athens, GA, USA
| | - Elise Lim
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Yongmei Liu
- Public Health Sciences, Epidemiology and Prevention, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Dennis O Mook-Kanamori
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, Netherlands
- Department of Public Health and Primary Care, Leiden University Medical Center, Leiden, Netherlands
| | - Tuomo Rankinen
- Human Genomics Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Salman M Tajuddin
- Health Disparities Research Section, Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Ashley van der Spek
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Zhe Wang
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jonathan Marten
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Vincent Laville
- Centre de Bioinformatique, Biostatistique et Biologie Intégrative (C3BI), Institut Pasteur, Paris, France
| | - Maris Alver
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
- Department of Biotechnology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Evangelos Evangelou
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, Greece
| | - Maria E Graff
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Meian He
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Brigitte Kühnel
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Leo-Pekka Lyytikäinen
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Pedro Marques-Vidal
- Medicine, Internal Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Ilja M Nolte
- University of Groningen, University Medical Center Groningen, Department of Epidemiology, Groningen, The Netherlands
| | | | - Rainer Rauramaa
- Foundation for Research in Health Exercise and Nutrition, Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Harold Snieder
- University of Groningen, University Medical Center Groningen, Department of Epidemiology, Groningen, The Netherlands
| | - Stefan Weiss
- Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Wanqing Wen
- Division of Epidemiology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Lisa R Yanek
- Division of General Internal Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Correa Adolfo
- Jackson Heart Study, Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Christie Ballantyne
- Section of Cardiovascular Research, Baylor College of Medicine, Houston, TX, USA
- Houston Methodist Debakey Heart and Vascular Center, Houston, TX, USA
| | - Larry Bielak
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Nienke R Biermasz
- Department of Internal Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden, The Netherlands
| | - Eric Boerwinkle
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Niki Dimou
- Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, Greece
| | | | - Chuan Gao
- Molecular Genetics and Genomics Program, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Sina A Gharib
- Computational Medicine Core, Center for Lung Biology, UW Medicine Sleep Center, Medicine, University of Washington, Seattle, WA, USA
| | - Daniel J Gottlieb
- Division of Sleep and Circadian Disorders, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- VA Boston Healthcare System, Boston, MA, USA
| | - José Haba-Rubio
- Medicine, Sleep Laboratory, Lausanne University Hospital, Lausanne, Switzerland
| | - Tamara B Harris
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Sami Heikkinen
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, Kuopio, Finland
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio Campus, Finland
| | - Raphaël Heinzer
- Medicine, Sleep Laboratory, Lausanne University Hospital, Lausanne, Switzerland
| | - James E Hixson
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Georg Homuth
- Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Pirjo Komulainen
- Foundation for Research in Health Exercise and Nutrition, Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
| | - Jose E Krieger
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, SP, Brazil
| | - Jiwon Lee
- Division of Sleep and Circadian Disorders, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| | - Jingmin Liu
- Fred Hutchinson Cancer Research Center, University of Washington School of Public Health, Seattle, WA, USA
| | - Kurt K Lohman
- Public Health Sciences, Biostatistical Sciences, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Annemarie I Luik
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Reedik Mägi
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Lisa W Martin
- Cardiology, School of Medicine and Health Sciences, George Washington University, Washington, D.C., USA
| | - Thomas Meitinger
- Institute of Human Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Andres Metspalu
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
- Department of Biotechnology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Yuri Milaneschi
- Cardiology, School of Medicine and Health Sciences, George Washington University, Washington, D.C., USA
| | - Mike A Nalls
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
- Data Tecnica International, Glen Echo, MD, USA
| | - Jeff O'Connell
- Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD, USA
- Program for Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Neuherberg, Germany
| | - Patricia Peyser
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Olli T Raitakari
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland
- University of Turku, Turku, Finland
| | - Alex P Reiner
- Fred Hutchinson Cancer Research Center, University of Washington School of Public Health, Seattle, WA, USA
| | - Patrick C N Rensen
- Department of Internal Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden, The Netherlands
| | - Treva K Rice
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Till Roenneberg
- Institute of Medical Psychology, Ludwig-Maximilians-Universitat Munchen, Munich, Germany
| | - Jerome I Rotter
- Genomic Outcomes, Department of Pediatrics, Institute for Translational Genomics and Population Sciences, LABioMed at Harbor-UCLA Medical Center, Torrance, CC, USA
| | - Pamela J Schreiner
- Division of Epidemiology & Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - James Shikany
- Division of Preventive Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Stephen S Sidney
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Mario Sims
- Jackson Heart Study, Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Colleen M Sitlani
- Cardiovascular Health Research Unit, Medicine, University of Washington, Seattle, WA, USA
| | - Tamar Sofer
- Division of Sleep and Circadian Disorders, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
- Institute of Human Genetics, Technische Universität München, Munich, Germany
| | - Konstantin Strauch
- Institute of Genetic Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute for Medical Informatics Biometry and Epidemiology, Ludwig-Maximilians-Universitat Munchen, Munich, Germany
| | - Morris A Swertz
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - Kent D Taylor
- Genomic Outcomes, Department of Pediatrics, Institute for Translational Genomics and Population Sciences, LABioMed at Harbor-UCLA Medical Center, Torrance, CC, USA
| | - André G Uitterlinden
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Cornelia M van Duijn
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Henry Völzke
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Melanie Waldenberger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Neuherberg, Germany
| | - Robert B Wallance
- Department of Epidemiology, University of Iowa College of Public Health, Iowa City, IA, USA
| | - Ko Willems van Dijk
- Department of Internal Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden, The Netherlands
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Caizheng Yu
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Alan B Zonderman
- Behavioral Epidemiology Section, Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Diane M Becker
- Division of General Internal Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Paul Elliott
- Department of Biotechnology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
- MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
- National Institute of Health Research Imperial College London Biomedical Research Centre, London, UK
- UK-DRI Dementia Research Institute at Imperial College London, London, UK
| | - Tõnu Esko
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
- Broad Institute of the Massachusetts Institute of Technology and Harvard University, Boston, MA, USA
| | - Christian Gieger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Hans J Grabe
- Department Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
| | - Timo A Lakka
- Foundation for Research in Health Exercise and Nutrition, Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio Campus, Finland
- Department of Clinical Phsiology and Nuclear Medicine, Kuopia University Hospital, Kuopio, Finland
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Kari E North
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Brenda W J H Penninx
- Department of Psychiatry, Amsterdam Neuroscience and Amsterdam Public Health Research Institute, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
| | - Peter Vollenweider
- Medicine, Internal Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Lynne E Wagenknecht
- Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Tangchun Wu
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong-Bing Xiang
- SKLORG & Department of Epidemiology, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, P. R. China
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Donna K Arnett
- Dean's Office, University of Kentucky College of Public Health, Lexington, KS, USA
| | - Claude Bouchard
- Human Genomics Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Michele K Evans
- Health Disparities Research Section, Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Vilmundur Gudnason
- Icelandic Heart Association, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Sharon Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Tanika N Kelly
- Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA
| | - Stephen B Kritchevsky
- Sticht Center for Healthy Aging and Rehabilitation, Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Ruth J F Loos
- The Charles Bronfman Institute for Personalized Medicine, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Mindich Child Health Development Institute, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alexandre C Pereira
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, SP, Brazil
| | - Mike Province
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Epidemiology, Medicine and Health Services, University of Washington, Seattle, WA, USA
- Kaiser Permanente Washington, Health Research Institute, Seattle, WA, USA
| | - Charles Rotimi
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Xiaofeng Zhu
- Department of Population Quantitative and Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Najaf Amin
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - L Adrienne Cupples
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- NHLBI Framingham Heart Study, Framingham, MA, USA
| | - Myriam Fornage
- Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Ervin F Fox
- Cardiology, Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Xiuqing Guo
- Genomic Outcomes, Department of Pediatrics, Institute for Translational Genomics and Population Sciences, LABioMed at Harbor-UCLA Medical Center, Torrance, CC, USA
| | - W James Gauderman
- Biostatistics, Preventive Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kenneth Rice
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Charles Kooperberg
- Fred Hutchinson Cancer Research Center, University of Washington School of Public Health, Seattle, WA, USA
| | - Patricia B Munroe
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- NIHR Barts Cardiovascular Biomedical Research Centre, Queen Mary University of London, London, London, UK
| | - Ching-Ti Liu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Alanna C Morrison
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Dabeeru C Rao
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
| | - Diana van Heemst
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Susan Redline
- Division of Sleep and Circadian Disorders, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA.
- Division of Pulmonary Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
36
|
Injury, Sleep, and Functional Outcome in Hospital Patients With Traumatic Brain Injury. J Neurosci Nurs 2019; 51:134-141. [PMID: 30964844 DOI: 10.1097/jnn.0000000000000441] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PROBLEM Uninterrupted nighttime sleep is associated with better cognition and functional outcomes in healthy adults, but the relationship between sleep and functional outcome in individuals hospitalized with severe traumatic brain injury (TBI) remains to be clarified. OBJECTIVE The aims of this study were to (1) describe nighttime rest-activity variables-wake bouts (counts), total wake time (minutes), and sleep efficiency (SE) (percentage; time asleep/time in bed)-in people on a neuroscience step-down unit (NSDU) post-TBI and (2) describe the association between injury and nighttime rest-activity on post-TBI functional outcome (using Functional Independence Measure [FIM] at discharge from inpatient care). METHODS This study is a cross-sectional, descriptive pilot study. We recruited participants from the NSDU (n = 17 [age: mean (SD), 63.4 (17.9)]; 82% male, 94% white) who wore wrist actigraphy (source of nighttime rest-activity variables) for up to 5 nights. For injury variables, we used Glasgow Coma Scale (GCS) score and Injury Severity Score (ISS). We used Spearman ρ and regression to measure associations. RESULTS Glasgow Coma Scale mean (SD) score was 8.8 (4.9), ISS mean (SD) score was 23.6 (6.7), and FIM mean (SD) score was 48 (14.5). Averages of nighttime rest-activity variables (8 PM-7 AM) were as follows: SE, 73% (SD, 16); wake bouts, 41 counts (SD, 18); total wake time, 74 minutes (SD, 47). Correlations showed significance between FIM and GCS (P = .005) and between SE and GCS (P = .015). GCS was the only statistically significant variable associated with FIM (P = .013); we eliminated other variables from the model as nonsignificant (P > .10). Sleep efficiency and FIM association was nonsignificant (P = .40). In a separate model (ISS, GCS, and SE [dependent variable]), GCS was significant (P = .04), but ISS was not (P = .25). CONCLUSION Patients with severe TBI on the NSDU have poor actigraphic sleep at night. GCS has a stronger association to functional outcome than nighttime rest-activity variables.
Collapse
|
37
|
Lane JM, Jones SE, Dashti HS, Wood AR, Aragam KG, van Hees VT, Strand LB, Winsvold BS, Wang H, Bowden J, Song Y, Patel K, Anderson SG, Beaumont RN, Bechtold DA, Cade BE, Haas M, Kathiresan S, Little MA, Luik AI, Loudon AS, Purcell S, Richmond RC, Scheer FAJL, Schormair B, Tyrrell J, Winkelman JW, Winkelmann J, Hveem K, Zhao C, Nielsen JB, Willer CJ, Redline S, Spiegelhalder K, Kyle SD, Ray DW, Zwart JA, Brumpton B, Frayling TM, Lawlor DA, Rutter MK, Weedon MN, Saxena R. Biological and clinical insights from genetics of insomnia symptoms. Nat Genet 2019; 51:387-393. [PMID: 30804566 PMCID: PMC6415688 DOI: 10.1038/s41588-019-0361-7] [Citation(s) in RCA: 213] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 01/25/2019] [Indexed: 11/09/2022]
Abstract
Insomnia is a common disorder linked with adverse long-term medical and psychiatric outcomes. The underlying pathophysiological processes and causal relationships of insomnia with disease are poorly understood. Here we identified 57 loci for self-reported insomnia symptoms in the UK Biobank (n = 453,379) and confirmed their effects on self-reported insomnia symptoms in the HUNT Study (n = 14,923 cases and 47,610 controls), physician-diagnosed insomnia in the Partners Biobank (n = 2,217 cases and 14,240 controls), and accelerometer-derived measures of sleep efficiency and sleep duration in the UK Biobank (n = 83,726). Our results suggest enrichment of genes involved in ubiquitin-mediated proteolysis and of genes expressed in multiple brain regions, skeletal muscle, and adrenal glands. Evidence of shared genetic factors was found between frequent insomnia symptoms and restless legs syndrome, aging, and cardiometabolic, behavioral, psychiatric, and reproductive traits. Evidence was found for a possible causal link between insomnia symptoms and coronary artery disease, depressive symptoms, and subjective well-being.
Collapse
Affiliation(s)
- Jacqueline M Lane
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute, Cambridge, MA, USA
| | - Samuel E Jones
- Genetics of Complex Traits, University of Exeter Medical School, Exeter, UK
| | - Hassan S Dashti
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute, Cambridge, MA, USA
| | - Andrew R Wood
- Genetics of Complex Traits, University of Exeter Medical School, Exeter, UK
| | - Krishna G Aragam
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute, Cambridge, MA, USA
- Cardiology Division, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | | | - Linn B Strand
- K.G. Jebsen Centre for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - Bendik S Winsvold
- K.G. Jebsen Centre for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- FORMI and Department of Neurology, Oslo University Hospital, Oslo, Norway
- Division of Clinical Neuroscience, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Heming Wang
- Broad Institute, Cambridge, MA, USA
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA, USA
- Division of Sleep Medicine, Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Jack Bowden
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Yanwei Song
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute, Cambridge, MA, USA
- College of Science, Northeastern University, Boston, MA, USA
| | - Krunal Patel
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- College of Science, Northeastern University, Boston, MA, USA
| | - Simon G Anderson
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Farr Institute of Health Informatics Research, University College London, London, UK
| | - Robin N Beaumont
- Genetics of Complex Traits, University of Exeter Medical School, Exeter, UK
| | - David A Bechtold
- Division of Endocrinology, Diabetes & Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Brian E Cade
- Broad Institute, Cambridge, MA, USA
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA, USA
- Division of Sleep Medicine, Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Mary Haas
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute, Cambridge, MA, USA
| | - Sekar Kathiresan
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute, Cambridge, MA, USA
- Cardiology Division, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Max A Little
- Department of Mathematics, Aston University, Birmingham, UK
- Media Lab, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Annemarie I Luik
- Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Andrew S Loudon
- Division of Endocrinology, Diabetes & Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Shaun Purcell
- Department of Psychiatry, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Rebecca C Richmond
- School of Social and Community Medicine, University of Bristol, Bristol, UK
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Frank A J L Scheer
- Broad Institute, Cambridge, MA, USA
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA, USA
- Division of Sleep Medicine, Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Barbara Schormair
- Institute of Neurogenomics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Jessica Tyrrell
- Genetics of Complex Traits, University of Exeter Medical School, Exeter, UK
| | - John W Winkelman
- Departments of Psychiatry and Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Juliane Winkelmann
- Institute of Neurogenomics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Cluster for Systems Neurology (SyNergy), Munich, Germany
- Institute of Human Genetics, Technische Universität München, Munich, Germany
- Neurogenetics, Technische Universität München, Munich, Germany
| | - Kristian Hveem
- K.G. Jebsen Centre for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - Chen Zhao
- Institute of Neurogenomics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Jonas B Nielsen
- FORMI and Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Cristen J Willer
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Susan Redline
- Departments of Medicine, Brigham and Women's Hospital and Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Kai Spiegelhalder
- Clinic for Psychiatry and Psychotherapy, Medical Centre-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Simon D Kyle
- Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - David W Ray
- Division of Endocrinology, Diabetes & Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, OX37LE/NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK
| | - John-Anker Zwart
- K.G. Jebsen Centre for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- Division of Clinical Neuroscience, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Ben Brumpton
- K.G. Jebsen Centre for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
- Department of Thoracic and Occupational Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Timothy M Frayling
- Genetics of Complex Traits, University of Exeter Medical School, Exeter, UK
| | - Deborah A Lawlor
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Martin K Rutter
- Division of Endocrinology, Diabetes & Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Manchester Diabetes Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Michael N Weedon
- Genetics of Complex Traits, University of Exeter Medical School, Exeter, UK
| | - Richa Saxena
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Broad Institute, Cambridge, MA, USA.
| |
Collapse
|
38
|
Fuller PM, Eikermann M. Genomic consequences of sleep restriction: the devil is in the details. Anaesthesia 2019; 74:417-419. [PMID: 30383307 DOI: 10.1111/anae.14479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2018] [Indexed: 11/28/2022]
Affiliation(s)
- P M Fuller
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA.,Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - M Eikermann
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
39
|
Liu H, Chen A. Roles of sleep deprivation in cardiovascular dysfunctions. Life Sci 2019; 219:231-237. [PMID: 30630005 DOI: 10.1016/j.lfs.2019.01.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 12/14/2018] [Accepted: 01/06/2019] [Indexed: 01/09/2023]
Abstract
It is widely recognized that inadequate sleep is associated with multiple acute and chronic diseases and results in increased mortality and morbidity for cardiovascular diseases. In recent years, there has been increasing interest in sleep related investigations. Emerging evidence indicates that sleep deprivation changes the biological phenotypes of DNA, RNA and protein levels, but the underlying mechanisms are not clear. We summarized the current research on the detrimental roles of sleep deprivation on the heart and elucidated the underlying mechanisms of sleep deficiency to improve our understanding of sleep deprivation and the emerging strategies to target this process for therapeutic benefit.
Collapse
Affiliation(s)
- Haiqiong Liu
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, NO. 253, Gongye Avenue, 510282 Guangzhou, China; Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, NO. 253, Gongye Avenue, 510282 Guangzhou, China; Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, China; Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, NO. 253, Gongye Avenue, 510282 Guangzhou, China
| | - Aihua Chen
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, NO. 253, Gongye Avenue, 510282 Guangzhou, China; Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, NO. 253, Gongye Avenue, 510282 Guangzhou, China; Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, China; Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, NO. 253, Gongye Avenue, 510282 Guangzhou, China.
| |
Collapse
|
40
|
Ly S, Pack AI, Naidoo N. The neurobiological basis of sleep: Insights from Drosophila. Neurosci Biobehav Rev 2018; 87:67-86. [PMID: 29391183 PMCID: PMC5845852 DOI: 10.1016/j.neubiorev.2018.01.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/22/2018] [Accepted: 01/24/2018] [Indexed: 12/12/2022]
Abstract
Sleep is a biological enigma that has raised numerous questions about the inner workings of the brain. The fundamental question of why our nervous systems have evolved to require sleep remains a topic of ongoing scientific deliberation. This question is largely being addressed by research using animal models of sleep. Drosophila melanogaster, also known as the common fruit fly, exhibits a sleep state that shares common features with many other species. Drosophila sleep studies have unearthed an immense wealth of knowledge about the neuroscience of sleep. Given the breadth of findings published on Drosophila sleep, it is important to consider how all of this information might come together to generate a more holistic understanding of sleep. This review provides a comprehensive summary of the neurobiology of Drosophila sleep and explores the broader insights and implications of how sleep is regulated across species and why it is necessary for the brain.
Collapse
Affiliation(s)
- Sarah Ly
- Center for Sleep and Circadian Neurobiology, 125 South 31st St., Philadelphia, PA, 19104-3403, United States.
| | - Allan I Pack
- Center for Sleep and Circadian Neurobiology, 125 South 31st St., Philadelphia, PA, 19104-3403, United States; Division of Sleep Medicine/Department of Medicine, University of Pennsylvania Perelman School of Medicine, 125 South 31st St., Philadelphia, PA, 19104-3403, United States
| | - Nirinjini Naidoo
- Center for Sleep and Circadian Neurobiology, 125 South 31st St., Philadelphia, PA, 19104-3403, United States; Division of Sleep Medicine/Department of Medicine, University of Pennsylvania Perelman School of Medicine, 125 South 31st St., Philadelphia, PA, 19104-3403, United States.
| |
Collapse
|
41
|
Huang H, Zhu Y, Eliot MN, Knopik VS, McGeary JE, Carskadon MA, Hart AC. Combining Human Epigenetics and Sleep Studies in Caenorhabditis elegans: A Cross-Species Approach for Finding Conserved Genes Regulating Sleep. Sleep 2018; 40:3738764. [PMID: 28431118 DOI: 10.1093/sleep/zsx063] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Study Objectives We aimed to test a combined approach to identify conserved genes regulating sleep and to explore the association between DNA methylation and sleep length. Methods We identified candidate genes associated with shorter versus longer sleep duration in college students based on DNA methylation using Illumina Infinium HumanMethylation450 BeadChip arrays. Orthologous genes in Caenorhabditis elegans were identified, and we examined whether their loss of function affected C. elegans sleep. For genes whose perturbation affected C. elegans sleep, we subsequently undertook a small pilot study to re-examine DNA methylation in an independent set of human participants with shorter versus longer sleep durations. Results Eighty-seven out of 485,577 CpG sites had significant differential methylation in young adults with shorter versus longer sleep duration, corresponding to 52 candidate genes. We identified 34 C. elegans orthologs, including NPY/flp-18 and flp-21, which are known to affect sleep. Loss of five additional genes alters developmentally timed C. elegans sleep (B4GALT6/bre-4, DOCK180/ced-5, GNB2L1/rack-1, PTPRN2/ida-1, ZFYVE28/lst-2). For one of these genes, ZFYVE28 (also known as hLst2), the pilot replication study again found decreased DNA methylation associated with shorter sleep duration at the same two CpG sites in the first intron of ZFYVE28. Conclusions Using an approach that combines human epigenetics and C. elegans sleep studies, we identified five genes that play previously unidentified roles in C. elegans sleep. We suggest sleep duration in humans may be associated with differential DNA methylation at specific sites and that the conserved genes identified here likely play roles in C. elegans sleep and in other species.
Collapse
Affiliation(s)
- Huiyan Huang
- Department of Neuroscience, Brown University, Providence, RI
| | - Yong Zhu
- Department of Environmental Health Sciences, Yale University School of Public Health, New Haven, CT
| | - Melissa N Eliot
- Department of Epidemiology, Brown University, Providence, RI
| | - Valerie S Knopik
- Division of Behavioral Genetics, Department of Psychiatry, Rhode Island Hospital, Providence, RI.,Department of Psychiatry and Human Behavior, Brown University, Providence, RI
| | - John E McGeary
- Division of Behavioral Genetics, Department of Psychiatry, Rhode Island Hospital, Providence, RI.,Department of Psychiatry and Human Behavior, Brown University, Providence, RI.,Providence Veterans Affairs Medical Center, Providence, RI
| | - Mary A Carskadon
- Department of Psychiatry and Human Behavior, Brown University, Providence, RI.,E.P. Bradley Hospital Sleep Research Laboratory, Providence, RI.,Center for Sleep Research, University of South Australia, Adelaide, Australia
| | - Anne C Hart
- Department of Neuroscience, Brown University, Providence, RI
| |
Collapse
|
42
|
O'Callaghan EK, Green EW, Franken P, Mongrain V. Omics Approaches in Sleep-Wake Regulation. Handb Exp Pharmacol 2018; 253:59-81. [PMID: 29796779 DOI: 10.1007/164_2018_125] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Although sleep seems an obvious and simple behaviour, it is extremely complex involving numerous interactions both at the neuronal and the molecular levels. While we have gained detailed insight into the molecules and neuronal networks responsible for the circadian organization of sleep and wakefulness, the molecular underpinnings of the homeostatic aspect of sleep regulation are still unknown and the focus of a considerable research effort. In the last 20 years, the development of techniques allowing the simultaneous measurement of hundreds to thousands of molecular targets (i.e. 'omics' approaches) has enabled the unbiased study of the molecular pathways regulated by and regulating sleep. In this chapter, we will review how the different omics approaches, including transcriptomics, epigenomics, proteomics, and metabolomics, have advanced sleep research. We present relevant data in the framework of the two-process model in which circadian and homeostatic processes interact to regulate sleep. The integration of the different omics levels, known as 'systems genetics', will eventually lead to a better understanding of how information flows from the genome, to molecules, to networks, and finally to sleep both in health and disease.
Collapse
Affiliation(s)
- Emma K O'Callaghan
- Center for Advanced Research in Sleep Medicine and Research Center, Hôpital du Sacré-Coeur de Montréal, Montreal, QC, Canada.,Department of Neuroscience, Université de Montréal, Montreal, QC, Canada
| | - Edward W Green
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Paul Franken
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Valérie Mongrain
- Center for Advanced Research in Sleep Medicine and Research Center, Hôpital du Sacré-Coeur de Montréal, Montreal, QC, Canada. .,Department of Neuroscience, Université de Montréal, Montreal, QC, Canada.
| |
Collapse
|
43
|
Abstract
Despite decades of intense study, the functions of sleep are still shrouded in mystery. The difficulty in understanding these functions can be at least partly attributed to the varied manifestations of sleep in different animals. Daily sleep duration can range from 4-20 hrs among mammals, and sleep can manifest throughout the brain, or it can alternate over time between cerebral hemispheres, depending on the species. Ecological factors are likely to have shaped these and other sleep behaviors during evolution by altering the properties of conserved arousal circuits in the brain. Nonetheless, core functions of sleep are likely to have arisen early and to have persisted to the present day in diverse organisms. This review will discuss the evolutionary forces that may be responsible for phylogenetic differences in sleep and the potential core functions that sleep fulfills.
Collapse
Affiliation(s)
- William J Joiner
- Department of Pharmacology, University of California San Diego, La Jolla, CA 92093-0636, USA; Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, CA 92093-0636, USA; Neurosciences Graduate Program, University of California San Diego, La Jolla, CA 92093-0636, USA; Center for Circadian Biology, University of California San Diego, La Jolla, CA 92093-0636, USA.
| |
Collapse
|
44
|
Sanders J, Scholz M, Merutka I, Biron D. Distinct unfolded protein responses mitigate or mediate effects of nonlethal deprivation of C. elegans sleep in different tissues. BMC Biol 2017; 15:67. [PMID: 28844202 PMCID: PMC5572162 DOI: 10.1186/s12915-017-0407-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 07/24/2017] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Disrupting sleep during development leads to lasting deficits in chordates and arthropods. To address lasting impacts of sleep deprivation in Caenorhabditis elegans, we established a nonlethal deprivation protocol. RESULTS Deprivation triggered protective insulin-like signaling and two unfolded protein responses (UPRs): the mitochondrial (UPRmt) and the endoplasmic reticulum (UPRER) responses. While the latter is known to be triggered by sleep deprivation in rodent and insect brains, the former was not strongly associated with sleep deprivation previously. We show that deprivation results in a feeding defect when the UPRmt is deficient and in UPRER-dependent germ cell apoptosis. In addition, when the UPRER is deficient, deprivation causes excess twitching in vulval muscles, mirroring a trend caused by loss of egg-laying command neurons. CONCLUSIONS These data show that nonlethal deprivation of C. elegans sleep causes proteotoxic stress. Unless mitigated, distinct types of deprivation-induced proteotoxicity can lead to anatomically and genetically separable lasting defects. The relative importance of different UPRs post-deprivation likely reflects functional, developmental, and genetic differences between the respective tissues and circuits.
Collapse
Affiliation(s)
- Jarred Sanders
- Genetics, Genomics, and Systems Biology, The University of Chicago, Chicago, IL, 60637, USA.
| | - Monika Scholz
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA
| | - Ilaria Merutka
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA
| | - David Biron
- Genetics, Genomics, and Systems Biology, The University of Chicago, Chicago, IL, 60637, USA.,Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA.,Department of Physics, The University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
45
|
Nikonova EV, Gilliland JDA, Tanis KQ, Podtelezhnikov AA, Rigby AM, Galante RJ, Finney EM, Stone DJ, Renger JJ, Pack AI, Winrow CJ. Transcriptional Profiling of Cholinergic Neurons From Basal Forebrain Identifies Changes in Expression of Genes Between Sleep and Wake. Sleep 2017; 40:3608773. [PMID: 28419375 PMCID: PMC6075396 DOI: 10.1093/sleep/zsx059] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Study objective To assess differences in gene expression in cholinergic basal forebrain cells between sleeping and sleep-deprived mice sacrificed at the same time of day. Methods Tg(ChAT-eGFP)86Gsat mice expressing enhanced green fluorescent protein (eGFP) under control of the choline acetyltransferase (Chat) promoter were utilized to guide laser capture of cholinergic cells in basal forebrain. Messenger RNA expression levels in these cells were profiled using microarrays. Gene expression in eGFP(+) neurons was compared (1) to that in eGFP(-) neurons and to adjacent white matter, (2) between 7:00 am (lights on) and 7:00 pm (lights off), (3) between sleep-deprived and sleeping animals at 0, 3, 6, and 9 hours from lights on. Results There was a marked enrichment of ChAT and other markers of cholinergic neurons in eGFP(+) cells. Comparison of gene expression in these eGFP(+) neurons between 7:00 am and 7:00 pm revealed expected differences in the expression of clock genes (Arntl2, Per1, Per2, Dbp, Nr1d1) as well as mGluR3. Comparison of expression between spontaneous sleep and sleep-deprived groups sacrificed at the same time of day revealed a number of transcripts (n = 55) that had higher expression in sleep deprivation compared to sleep. Genes upregulated in sleep deprivation predominantly were from the protein folding pathway (25 transcripts, including chaperones). Among 42 transcripts upregulated in sleep was the cold-inducible RNA-binding protein. Conclusions Cholinergic cell signatures were characterized. Whether the identified genes are changing as a consequence of differences in behavioral state or as part of the molecular regulatory mechanism remains to be determined.
Collapse
Affiliation(s)
- Elena V Nikonova
- Genetics and Pharmacogenomics, Merck Research Laboratories, Merck & Co., Inc., West Point, PA
| | - Jason DA Gilliland
- Center for Sleep and Circadian Neurobiology, University of Pennsylvania, Philadelphia, PA
| | - Keith Q Tanis
- Genetics and Pharmacogenomics, Merck Research Laboratories, Merck & Co., Inc., West Point, PA
| | - Alexei A Podtelezhnikov
- Genetics and Pharmacogenomics, Merck Research Laboratories, Merck & Co., Inc., West Point, PA
| | - Alison M Rigby
- Department of Neuroscience, Merck & Co., Inc., West Point, PA
| | - Raymond J Galante
- Center for Sleep and Circadian Neurobiology, University of Pennsylvania, Philadelphia, PA
| | - Eva M Finney
- Genetics and Pharmacogenomics, Merck Research Laboratories, Merck & Co., Inc., West Point, PA
| | - David J Stone
- Genetics and Pharmacogenomics, Merck Research Laboratories, Merck & Co., Inc., West Point, PA
| | - John J Renger
- Department of Neuroscience, Merck & Co., Inc., West Point, PA
| | - Allan I Pack
- Center for Sleep and Circadian Neurobiology, University of Pennsylvania, Philadelphia, PA
| | | |
Collapse
|
46
|
Forssell-Aronsson E, Quinlan RA. THE IMPACT OF CIRCADIAN RHYTHMS ON MEDICAL IMAGING AND RADIOTHERAPY REGIMES FOR THE PAEDIATRIC PATIENT. RADIATION PROTECTION DOSIMETRY 2017; 173:16-20. [PMID: 27885090 DOI: 10.1093/rpd/ncw328] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Daily rhythmic changes are found in cellular events in cell cycle, DNA repair, apoptosis and angiogenesis in both normal and tumour tissue, as well as in enzymatic activity and drug metabolism. In this paper, we hypothesize that circadian rhythms need to be considered in radiation protection and optimization in personalized medicine, especially for paediatric care. The sensitivity of the eye lens to ionizing radiation makes the case for limiting damage to the lens epithelium by planning medical radio-imaging procedures for the afternoon, rather than the morning. Equally, the tumour and normal tissue response to radiotherapy is also subject to diurnal variation enabling optimization of time of treatment.
Collapse
Affiliation(s)
- E Forssell-Aronsson
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center,Sahlgrenska Academy at University of Gothenburg, Sahlgrenska University Hospital, SE 413 45 Gothenburg, Sweden
| | - R A Quinlan
- Department of Biosciences, University of Durham, Mountjoy Science Site, Durham DH1 3LE, UK
| |
Collapse
|
47
|
Aghajani M, Faghihi M, Imani A, Vaez Mahdavi MR, Shakoori A, Rastegar T, Parsa H, Mehrabi S, Moradi F, Kazemi Moghaddam E. Post-infarct sleep disruption and its relation to cardiac remodeling in a rat model of myocardial infarction. Chronobiol Int 2017; 34:587-600. [PMID: 28156163 DOI: 10.1080/07420528.2017.1281823] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Sleep disruption after myocardial infarction (MI) by affecting ubiquitin-proteasome system (UPS) is thought to contribute to myocardial remodeling and progressive worsening of cardiac function. The aim of current study was to test the hypothesis about the increased risk of developing heart failure due to experience of sleep restriction (SR) after MI. Male Wistar rats (n = 40) were randomly assigned to four experimental groups: (1) Sham, (2) MI, (3) MI and SR (MI + SR) (4) Sham and SR (Sham + SR). MI was induced by permanent ligation of left anterior descending coronary artery. Twenty-four hours after surgery, animals were subjected to chronic SR paradigm. Blood sampling was performed at days 1, 8 and 21 after MI for determination of serum levels of creatine kinase-MB (CK-MB), corticosterone, malondialdehyde (MDA) and nitric oxide (NO). Finally, at 21 days after MI, echocardiographic parameters and expression of MuRF1, MaFBx, A20, eNOS, iNOS and NF-kB in the heart were evaluated. We used H&E staining to detect myocardial hypertrophy. We found out that post infarct SR increased corticosterone levels. Our results highlighted deteriorating effects of post-MI SR on NO production, oxidative stress, and echocardiographic indexes (p < 0.05). Moreover, its detrimental effects on myocardial damage were confirmed by overexpression of MuRF1, MaFBx, iNOS and NF-kB (p < 0.001) in left ventricle and downregulation of A20 and eNOS (p < 0.05). Furthermore, histological examination revealed that experience of SR after MI increased myocardial diameter as compared to Sham subjects (p < 0.05). Our data suggest that SR after MI leads to an enlargement of the heart within 21 days, marked by an increase in oxidative stress and NO production as well as an imbalance in UPS that ultimately results in cardiac dysfunction and heart failure.
Collapse
Affiliation(s)
- Marjan Aghajani
- a Physiology Department , Faculty of Medicine, Tehran University of Medical Sciences , Tehran , Iran
| | - Mahdieh Faghihi
- a Physiology Department , Faculty of Medicine, Tehran University of Medical Sciences , Tehran , Iran
| | - Alireza Imani
- a Physiology Department , Faculty of Medicine, Tehran University of Medical Sciences , Tehran , Iran.,b Occupational Sleep Research Center, Tehran University of Medical Sciences , Tehran , Iran
| | - Mohammad Reza Vaez Mahdavi
- c Traditional Medicine Clinical Trial Research Center, Shahed University , Tehran , Iran.,d Department of Physiology , Medical Faculty, Shahed University , Tehran , Iran
| | - Abbas Shakoori
- e Genetic Department , Faculty of Medicine, Tehran University of Medical Sciences , Tehran , Iran
| | - Tayebeh Rastegar
- f Anatomy Department , Faculty of Medicine, Tehran University of Medical Sciences , Tehran , Iran
| | - Hoda Parsa
- a Physiology Department , Faculty of Medicine, Tehran University of Medical Sciences , Tehran , Iran
| | - Saman Mehrabi
- e Genetic Department , Faculty of Medicine, Tehran University of Medical Sciences , Tehran , Iran
| | - Fatemeh Moradi
- a Physiology Department , Faculty of Medicine, Tehran University of Medical Sciences , Tehran , Iran
| | - Ehsan Kazemi Moghaddam
- g Shiraz Burn and Wound Healing Research Center, Amir-al-momenin Burn Hospital, Shiraz University of Medical Sciences , Iran.,h Department of Microbiology , Medical Faculty, Shahed University , Tehran , Iran
| |
Collapse
|
48
|
Hall MH, Mulukutla S, Kline CE, Samuelsson LB, Taylor BJ, Thayer JF, Krafty RT, Frank E, Kupfer DJ. Objective Sleep Duration Is Prospectively Associated With Endothelial Health. Sleep 2017; 40:2845957. [PMID: 28364470 PMCID: PMC6084747 DOI: 10.1093/sleep/zsw003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2017] [Indexed: 01/25/2023] Open
Abstract
Study Objectives The mechanisms linking short sleep duration to cardiovascular disease (CVD) are poorly understood. Emerging evidence suggests that endothelial dysregulation may lie along the causal pathway linking sleep duration to cardiovascular risk, although current evidence in humans is based on cross-sectional studies. Our objective was to evaluate the prospective association between objectively assessed sleep duration and clinical indices of endothelial health. Methods A total of 141 medically healthy adults underwent an overnight laboratory sleep study when they were between the ages of 21 and 60 years. Total sleep time was objectively assessed by polysomnography at study entry. Endothelial health, including brachial artery diameter (BAD) and flow-mediated dilation (FMD), was measured 18.9 ± 4.6 years later. Medical health and psychiatric status were assessed at both time points. Approximately half of the sample had a lifetime history of major depressive disorder. Results In univariate analyses, shorter sleep duration was associated with increased BAD (β = -0.24, p = .004) and decreased FMD (β = 0.17, p = .042). BAD, but not FMD, remained significantly associated with sleep duration after adjusting for sex, age, body mass index (BMI), smoking, diabetes, hypertension, and lifetime history of major depressive disorder (MDD) at T2. The association between sleep duration and BAD was stronger than the association between BAD and an aggregate measure of CVD risk including three or more of the following risk factors: male sex, age ≥ 65 years, smoker, BMI ≥ 30, diabetes, hypertension, and MDD. Conclusions Objectively assessed short sleep duration was prospectively associated with increased BAD over a 12- to 30-year period.
Collapse
Affiliation(s)
- Martica H Hall
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Suresh Mulukutla
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Christopher E Kline
- Department of Health and Physical Activity, University of Pittsburgh, Pittsburgh, PA
| | | | - Briana J Taylor
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA
| | - Julian F Thayer
- Department of Psychology, Ohio State University, Columbus, OH
| | - Robert T Krafty
- Department of Biostatistics, University of Pittsburgh School of Public Health, Pittsburgh, PA
| | - Ellen Frank
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - David J Kupfer
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA
| |
Collapse
|
49
|
Yuan R, Wang J, Guo LL. The Effect of Sleep Deprivation on Coronary Heart Disease. ACTA ACUST UNITED AC 2016; 31:247-253. [DOI: 10.1016/s1001-9294(17)30008-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
50
|
Kolbe I, Husse J, Salinas G, Lingner T, Astiz M, Oster H. The SCN Clock Governs Circadian Transcription Rhythms in Murine Epididymal White Adipose Tissue. J Biol Rhythms 2016; 31:577-587. [PMID: 27650461 DOI: 10.1177/0748730416666170] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The circadian master pacemaker in the suprachiasmatic nucleus (SCN) orchestrates peripheral clocks in various organs and synchronizes them with external time, including those in adipose tissue, which displays circadian oscillations in various metabolic and endocrine outputs. Because our knowledge about the instructive role of the SCN clock on peripheral tissue function is based mainly on SCN lesion studies, we here used an alternative strategy employing the Cre/ loxP system to functionally delete the SCN clock in mice. We performed whole-genome microarray hybridizations of murine epididymal white adipose tissue (eWAT) RNA preparations to characterize the role of the SCN clock in eWAT circadian transcriptome regulation. Most of the rhythmic transcripts in control animals were not rhythmic in SCN mutants, but a significant number of transcripts were rhythmic only in mutant eWAT. Core clock genes were rhythmic in both groups, but as was reported before for other tissues, rhythms were dampened and phase advanced in mutant animals. In SCN-mutant mice, eWAT lost the rhythm of metabolic pathway-related transcripts, while transcripts gaining rhythms in SCN-mutant mice were associated with various immune functions. These data reveal a complex interaction of SCN-derived and local circadian signals in the regulation of adipose transcriptome programs.
Collapse
Affiliation(s)
- Isa Kolbe
- Chronophysiology Group, Medical Department 1, University of Lübeck, Lübeck, Germany
| | - Jana Husse
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Gabriela Salinas
- Microarray and Deep-Sequencing Core Facility, Institute Developmental Biochemistry, University Medical Center, Göttingen, Germany
| | - Thomas Lingner
- Microarray and Deep-Sequencing Core Facility, Institute Developmental Biochemistry, University Medical Center, Göttingen, Germany
| | - Mariana Astiz
- Chronophysiology Group, Medical Department 1, University of Lübeck, Lübeck, Germany
| | - Henrik Oster
- Chronophysiology Group, Medical Department 1, University of Lübeck, Lübeck, Germany
| |
Collapse
|