1
|
Wangkahart E, Wang T, Secombes CJ. Characterization of two novel MCSFR paralogues in rainbow trout Oncorhynchus mykiss: New insights into the molecular mechanism underlying macrophage differentiation and modulation in fish. FISH & SHELLFISH IMMUNOLOGY 2025; 156:110036. [PMID: 39571632 DOI: 10.1016/j.fsi.2024.110036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/14/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024]
Abstract
Colony-stimulating factor-1 (CSF-1) receptor, also known as macrophage colony-stimulating factor (MCSF) receptor, belongs to the type III protein tyrosine kinase receptor family. MCSF and IL-34 play essential roles in both innate and adaptive immune systems in vertebrates through their shared receptor MCSFR. While the functional study of MCSFR in mammals has been well-demonstrated, its role in fish remains limited. Therefore, this report aims to identify and study the expression of the MCSFR genes in rainbow trout Oncorhynchus mykiss, where four paralogues were found present at different genomic loci, two identified for the first time in this study. The deduced protein structure of these MCSFRs reveals five immunoglobulin (Ig)-like domains, a transmembrane domain and a conserved intracellular domain containing a glycine-rich motif (Gly-x-Gly-x-x-Gly), similar to other species. Phylogenetic and synteny analyses demonstrate that MCSFR are present throughout vertebrates, with two forms present in teleost fish more generally (type I and type II MCSFR), existing as pairs of genes (MCSFR1a/MCSFR1b, MCSFR2a/MCSFR2b) in trout. The MCSFR genes are widely expressed, with higher transcript levels observed in immune tissues such as the spleen, blood and head kidney. The paralogues showed marked differences in expression modulation. Following Yersinia ruckeri infection, MCSFR2a was highly induced but after stimulation of RTS-11 cells, a trout monocyte/macrophage-like cell line, with Y. ruckeri flagellin both MCSFR1b and MCSFR2a were induced. However, none of the different paralogues of MCSFR were induced by proinflammatory cytokines (trout rTNF-α, rIL-6 and rIFN-γ). This study adds to our knowledge of the molecules/pathways present in fish that drive macrophage regulation and activation, and emphasizes the complexity present with multiple ligands and receptors involved.
Collapse
Affiliation(s)
- Eakapol Wangkahart
- Laboratory of Fish Immunology and Nutrigenomics, Applied Animal and Aquatic Sciences Research Unit, Division of Fisheries, Faculty of Technology, Mahasarakham University, Khamriang Sub-District, Kantarawichai, Mahasarakham, 44150, Thailand; Scottish Fish Immunology Research Centre, School of Biological Sciences, The University of Aberdeen, Aberdeen AB24 2TZ United Kingdom.
| | - Tiehui Wang
- Scottish Fish Immunology Research Centre, School of Biological Sciences, The University of Aberdeen, Aberdeen AB24 2TZ United Kingdom
| | - Christopher J Secombes
- Scottish Fish Immunology Research Centre, School of Biological Sciences, The University of Aberdeen, Aberdeen AB24 2TZ United Kingdom
| |
Collapse
|
2
|
El Gamal SA, Adawy RS, Zaki VH, Zahran E. Host-pathogen interaction unveiled by immune, oxidative stress, and cytokine expression analysis to experimental Saprolegnia parasitica infection in Nile tilapia. Sci Rep 2023; 13:9888. [PMID: 37337042 PMCID: PMC10279727 DOI: 10.1038/s41598-023-36892-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/12/2023] [Indexed: 06/21/2023] Open
Abstract
The present study evaluated the pathogenicity, immunological, and oxidant/antioxidant responses against Saprolegnia parasitica (S. parasitica) infection in Nile tilapia (Oreochromis niloticus). Three groups of Nile tilapia were assigned as the control group (no zoospores exposure). The other two groups were challenged by Saprolegnia zoospores; one was used for sampling, and the other for mortality monitoring. The study lasted 3 weeks and was sampled at three point times at 1, 2, and 3 weeks. Results showed that S. parasitica zoospores were pathogenic to Nile tilapia, causing a cumulative mortality rate of 86.6%. Immunoglobulin M and C- reactive protein (IgM and CRP) levels showed a similar trend being significantly (P < 0.05, P < 0.001) higher in the infected group at weeks 1, 2, and 3, respectively, compared to the control group. Oxidant and antioxidant parameters in gills revealed that Malondialdehyde (MDA) level was significantly higher in the infected group compared to the control group. While catalase, glutathione peroxidase, and superoxide dismutase (CAT, GSH, and SOD) levels were significantly decreased in the infected group compared to the control group. Compared to the control, the tumor necrosis factor-α (TNF-α) gene was firmly upregulated in gill tissue at all-time points, particularly at day 14 post-infection. Meanwhile, Interleukin 1-β (IL-1 β) gene was significantly upregulated only at days 7 and 14 post-infection compared to control. Histopathological examination revealed destructive and degenerative changes in both skin and gills of experimentally infected Nile tilapia. Our findings suggest that Nile tilapia-S. parasitica infection model was successful in better understanding of pathogenicity and host (fish)-pathogen (oomycete) interactions, where the induced oxidative stress and upregulation of particular immune biomarkers in response to S. parasitica infection may play a crucial role in fish defense against oomycetes in fish.
Collapse
Affiliation(s)
- Samar A El Gamal
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
- Department of Fish Diseases, Animal Health Research Institute (AHRI), Mansoura branch, Agriculture Research Center (ARC), Giza , Egypt
| | - Rawia Saad Adawy
- Department of Fish Diseases, Animal Health Research Institute (AHRI), Mansoura branch, Agriculture Research Center (ARC), Giza , Egypt
| | - Viola Hassan Zaki
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Eman Zahran
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt.
| |
Collapse
|
3
|
Porter D, Naseer S, Peggs D, McGurk C, Martin SAM. Deciphering the Immunostimulatory Effects of β-Glucan on a Rainbow Trout ( Oncorhynchus mykiss) Macrophage-like Cell Line (RTS11) by Whole Transcriptome Analysis. Genes (Basel) 2023; 14:1261. [PMID: 37372441 DOI: 10.3390/genes14061261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/17/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
β-glucans are a commonly used immunostimulant/prebiotic in many aquaculture applications for boosting the immune status in fish. However, the method of action as an immunostimulant has not been fully deciphered. To determine the immunomodulatory effects of β-glucans on the innate immune response, we stimulated the rainbow trout spleen macrophage-like cell line (RTS11) with β-1,3/1,6-glucans for 4 h. This study uses a whole transcriptomic approach to analyse the immunomodulatory properties of β-glucans. Several proinflammatory pathways were found to be enriched after stimulation, demonstrating the immunomodulatory effects of β-glucan supplementation. Several pathways relating to responses to bacteria were also found to be enriched. This study clearly demonstrates the immunomodulatory effects of the supplementation of β-glucans within an aquaculture setting and further validates the use of cell lines as predictive models to interpret the responses caused by dietary intervention.
Collapse
Affiliation(s)
- Dean Porter
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| | - Shahmir Naseer
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| | - David Peggs
- Skretting Aquaculture Innovation, Sjøhagen 3, 4016 Stavanger, Norway
| | - Charles McGurk
- Skretting Aquaculture Innovation, Sjøhagen 3, 4016 Stavanger, Norway
| | - Samuel Allen Moore Martin
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| |
Collapse
|
4
|
Goldstein M, Vallejos-Vidal E, Wong-Benito V, Barraza-Rojas F, Tort L, Reyes-Lopez FE, Imarai M. Effects of artificial photoperiods on antigen-dependent immune responses in rainbow trout (Oncorhynchus mykiss). FISH & SHELLFISH IMMUNOLOGY 2023; 137:108759. [PMID: 37088347 DOI: 10.1016/j.fsi.2023.108759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/13/2023] [Accepted: 04/19/2023] [Indexed: 05/03/2023]
Abstract
In this study, we investigated the effects of the artificial photoperiods that mimic summer (16L:8D) and winter (8L:16D) solstices, equinoxes (12L:12D), and the artificial 24-h light regimen (24L:0D) on the leukocyte populations and the T helper and regulatory type responses on rainbow trout (Oncorhynchus mykiss). Using flow cytometry analysis, we found that photoperiod induces changes in head kidney leukocyte subsets. The lymphoid subset increased in the 16L:8D summer solstice regime. The analysis using antibodies against B and T cells showed the increase of CD4-1+ T lymphocytes and other unidentified lymphoid cells, with no changes in the B cells. To investigate the modulatory influence of the photoperiod on the fish T cell response, we quantified in the head kidney the transcript levels of genes involved in the Th1 type response (t-bet, ifn-ƴ, il-12p35, il-12p40c), Th2 type response (gata3, il-4/13a), Th17 response (ror-ƴt, il-17a/f), T regulatory response (foxp3α, il-10a, tgf-β1), and the T cell growth factor il-2. The results showed that the seasonal photoperiod alone has a limited influence on the expression of these genes, as the only difference was observed in il-14/13a and il-10a transcripts of fish kept on the 16L:8D regimen. In addition, the 24L:0D treatment used in aquaculture produces a reduction of il-14/13a and il-17a/f. We also evaluated the effect of photoperiod in the presence of an antigenic stimulus. Thus, in fish immunized with the recombinant viral protein 1 (rVP1) of infectious pancreatic necrosis virus (IPNV), the photoperiod had a striking influence on the type of adaptive immune response. Each photoperiod fosters a unique immune signature of antigenic response. A classical type 1 response is observed in fish subjected to the 16D:8L photoperiod. In contrast, fish in the 12L:12D photoperiod showed only the upregulation of il-12p40c. Furthermore, none of the cytokines were increased in fish maintained on the artificial 24L:0D regimen, and a decrease in the master transcription factors (t-bet, ror-ƴt, and foxp3α) was observed. Thus, fish on the 12L:12D and 24L:0D photoperiod appear hyporesponsive regarding the T cell response. Altogether, this study showed that photoperiods modify the magnitude and quality of the T-helper response in rainbow trout and thus impact essential mechanisms for the generation of immune memory and protection against microorganisms.
Collapse
Affiliation(s)
- Merari Goldstein
- Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, Avenida Libertador Bernardo O'Higgins 3363, Edificio de Investigación Eduardo Morales, 9170002 Estación Central, Santiago, Chile.
| | - Eva Vallejos-Vidal
- Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, Avenida Libertador Bernardo O'Higgins 3363, Edificio de Investigación Eduardo Morales, 9170002 Estación Central, Santiago, Chile; Núcleo de Investigación Aplicada en Ciencias Veterinarias y Agronómicas, Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Santiago, Chile.
| | - Valentina Wong-Benito
- Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, Avenida Libertador Bernardo O'Higgins 3363, Edificio de Investigación Eduardo Morales, 9170002 Estación Central, Santiago, Chile.
| | - Felipe Barraza-Rojas
- Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, Avenida Libertador Bernardo O'Higgins 3363, Edificio de Investigación Eduardo Morales, 9170002 Estación Central, Santiago, Chile.
| | - Lluis Tort
- Department of Cell Biology, Physiology, and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Felipe E Reyes-Lopez
- Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, Avenida Libertador Bernardo O'Higgins 3363, Edificio de Investigación Eduardo Morales, 9170002 Estación Central, Santiago, Chile.
| | - Mónica Imarai
- Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, Avenida Libertador Bernardo O'Higgins 3363, Edificio de Investigación Eduardo Morales, 9170002 Estación Central, Santiago, Chile; Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.
| |
Collapse
|
5
|
Porter D, Peggs D, McGurk C, Martin SAM. Gut Associated Lymphoid Tissue (GALT) primary cells and stable cell lines as predictive models for intestinal health in rainbow trout (Oncorhynchus mykiss). Front Immunol 2022; 13:1023235. [PMID: 36341406 PMCID: PMC9632348 DOI: 10.3389/fimmu.2022.1023235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/30/2022] [Indexed: 11/26/2022] Open
Abstract
The use of functional feeds for farmed fish is now regarded as a key factor in improving fish health and performance against infectious disease. However, the mechanisms by which these nutritional components modulate the immune response are not fully understood. The present study was undertaken to identify the suitability of both primary gut-associated lymphoid tissue (GALT) leucocyte cells and established rainbow trout cell lines as potential alternative methods to test functional feed ingredients prior to full fish feeding trials that can take months to complete. In addition to the primary GALT culture cells, the two rainbow cell lines RTS11 and RTgutGC which are from macrophage and gut epithelial cells, respectively. The cells were stimulated with a variety of pathogen associated molecular patterns (PAMPs) (PHA and Poly I:C) and recombinant rainbow trout IL-1β (rIL-1β), a proinflammatory cytokine, additionally two forms of β-glucan, a prebiotic commonly used aquafeeds were used as stimulants. From this, the suitability of cell models as a health screen for functional feeds was assessed. GALT leucocytes were deemed most effective to act as a health screen over the 4hr time point demonstrating responses to Poly I:C, PHA, and rIL-1β. RTS11 and RTgutGC also responded to the stimulants but did not give a strong T-cell response, most likely reflecting the nature of the cell type as opposed to the mixed cell populations from the primary GALT cell cultures. When stimulated with both forms of β-glucan, GALT leucocytes demonstrated a strong proinflammatory and T-cell response.
Collapse
Affiliation(s)
- D. Porter
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - David Peggs
- Skretting Aquaculture Innovation, Stavanger, Norway
| | - C. McGurk
- Skretting Aquaculture Innovation, Stavanger, Norway
| | - Samuel A. M. Martin
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
- *Correspondence: Samuel A. M. Martin,
| |
Collapse
|
6
|
Sayed RKA, Zaccone G, Capillo G, Albano M, Mokhtar DM. Structural and Functional Aspects of the Spleen in Molly Fish Poecilia sphenops (Valenciennes, 1846): Synergistic Interactions of Stem Cells, Neurons, and Immune Cells. BIOLOGY 2022; 11:biology11050779. [PMID: 35625510 PMCID: PMC9138448 DOI: 10.3390/biology11050779] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 12/20/2022]
Abstract
In fish, the spleen is the prime secondary lymphoid organ. It has a role in the induction of adaptive immune responses, in addition to its significance in the elimination of immune complexes. This study was conducted on 18 randomly obtained adult molly fish (Poecilia sphenops) of both sexes using histological, immunohistochemical, and ultrastructural studies to highlight the cellular components of the spleen and their potential role in the immune system. The spleen of molly fish was characterized by the presence of well-distinct melanomacrophage centers, and other basic structures present in higher vertebrates including red and white pulps, blood vessels, and ellipsoids. Some mitotic cells could also be identified in the red pulp. Mast cells with characteristic metachromatic granules could be seen among the splenic cells. Rodlet cells were randomly distributed in the spleen and were also observed around the ellipsoids. The white pulp of the spleen expressed APG5. The expressions were well distinct in the melanomacrophages, leukocytes, and macrophages. Myostatin was expressed in leukocytes and epithelial reticular cells. IL-1β showed immunoreactivity in monocytes and macrophages around the ellipsoids. NF-κB and TGF-β were expressed in macrophages and epithelial reticular cells. Nrf2 expression was detected in stem cells and rodlet cells. Sox-9 had a higher expression in epithelial reticular cells and stem cells. The high frequency of immune cells in the spleen confirmed its role in the regulation of both innate and adaptive immunity, cell proliferation, and apoptosis.
Collapse
Affiliation(s)
- Ramy K. A. Sayed
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Sohag University, Sohag 82524, Egypt;
| | - Giacomo Zaccone
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (G.Z.); (G.C.)
| | - Gioele Capillo
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (G.Z.); (G.C.)
- Institute for Marine Biological Resources and Biotechnology (IRBIM), National Research Council (CNR), Section of Messina, 98100 Messina, Italy
| | - Marco Albano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
- Correspondence: ; Tel.: +39-38-8119-3816
| | - Doaa M. Mokhtar
- Department of Cell and Tissues, Faculty of Veterinary Medicine, Assuit University, Assiut 71526, Egypt;
| |
Collapse
|
7
|
Functional and Molecular Immune Response of Rainbow Trout (Oncorhynchus mykiss) Following Challenge with Yersinia ruckeri. Int J Mol Sci 2022; 23:ijms23063096. [PMID: 35328519 PMCID: PMC8948951 DOI: 10.3390/ijms23063096] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/07/2022] [Accepted: 03/10/2022] [Indexed: 12/21/2022] Open
Abstract
Currently, aquaculture production of rainbow trout (Oncorhynchus mykiss) is a multibillion dollar industry; nevertheless, the development of this sector has not been exempt from pitfalls related to the recurrent presence of pathogens of bacterial origin. This is the case of Yersinia ruckeri, the etiologic agent of the infectious pathology known as Enteric Red Mouth Disease (ERM), causing serious economic losses that can be as high as 30–70% of production. Although several studies have been performed regarding pathogen features and virulence factors, more information is needed about the host defense mechanism activation after infection. Given this perspective, this study aimed to evaluate rainbow trout’s short-term innate immune response against infection with Y. ruckeri. A series of factors linked to the innate immune response were evaluated, including determination of hematological parameters, oxidative stress biomarkers, and analysis of the expression of immune-related genes. Results showed a significant decrease in several hematological parameters (white blood cell count, hematocrit, neutrophils, monocytes, lymphocytes, and thrombocytes) and oxidative stress indicators (SOD) between the control and infected groups. In addition, there were significant differences in the level of gene expression between infected individuals and the control group. Most of these genes (il-1β, il-8, il-10, tnf-α1, tnf-α2, socs3, mmp-9, cath, hsp-70, saa, fer, pcb) were upregulated within the first 24 h following infection. Results from this study showed more insights into the short-term immune response of rainbow trout to infection with Y. ruckeri, which may be useful for the establishment of biomarkers that may be used for the early detection of ERM.
Collapse
|
8
|
Gnanagobal H, Cao T, Hossain A, Dang M, Hall JR, Kumar S, Van Cuong D, Boyce D, Santander J. Lumpfish ( Cyclopterus lumpus) Is Susceptible to Renibacterium salmoninarum Infection and Induces Cell-Mediated Immunity in the Chronic Stage. Front Immunol 2021; 12:733266. [PMID: 34880856 PMCID: PMC8645940 DOI: 10.3389/fimmu.2021.733266] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/19/2021] [Indexed: 02/02/2023] Open
Abstract
Renibacterium salmoninarum is a Gram-positive, intracellular pathogen that causes Bacterial Kidney Disease (BKD) in several fish species in freshwater and seawater. Lumpfish (Cyclopterus lumpus) is utilized as a cleaner fish to biocontrol sea lice infestation in Atlantic salmon (Salmo salar) farms. Atlantic salmon is susceptible to R. salmoninarum, and it can transfer the infection to other fish species. Although BKD outbreaks have not been reported in lumpfish, its susceptibility and immune response to R. salmoninarum is unknown. In this study, we evaluated the susceptibility and immune response of lumpfish to R. salmoninarum infection. Groups of lumpfish were intraperitoneally (i.p.) injected with either R. salmoninarum (1×107, 1×108, or 1×109 cells dose-1) or PBS (control). R. salmoninarum infection kinetics and mortality were followed for 98 days post-infection (dpi). Transcript expression levels of 33 immune-relevant genes were measured in head kidney (n = 6) of fish infected with 1×109 cells/dose and compared to the control at 28 and 98 dpi. Infected lumpfish displayed characteristic clinical signs of BKD. Lumpfish infected with high, medium, and low doses had a survival rate of 65%, 93%, and 95%, respectively. Mortality in the high-dose infected group stabilized after 50 dpi, but R. salmoninarum persisted in the fish tissues until 98 dpi. Cytokines (il1β, il8a, il8b), pattern recognition receptors (tlr5a), interferon-induced effectors (rsad2, mxa, mxb, mxc), and iron regulation (hamp) and acute phase reactant (saa5) related genes were up-regulated at 28 dpi. In contrast, cell-mediated adaptive immunity-related genes (cd4a, cd4b, ly6g6f, cd8a, cd74) were down-regulated at 28 dpi, revealing the immune suppressive nature of R. salmoninarum. However, significant upregulation of cd74 at 98 dpi suggests induction of cell-mediated immune response. This study showed that R. salmoninarum infected lumpfish in a similar fashion to salmonid fish species and caused a chronic infection, enhancing cell-mediated adaptive immune response.
Collapse
Affiliation(s)
- Hajarooba Gnanagobal
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada.,Department of Bio-systems Technology, Faculty of Technology, University of Jaffna, Kilinochchi, Sri Lanka
| | - Trung Cao
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Ahmed Hossain
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - My Dang
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Jennifer R Hall
- Aquatic Research Cluster, CREAIT Network, Ocean Sciences Centre, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Surendra Kumar
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada.,Ocean Frontier Institute, Ocean Sciences Centre, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Doan Van Cuong
- Southern Monitoring Center for Aquaculture Environment and Epidemic (MCE), Research Institute for Aquaculture No. 2, Ho Chi Minh City, Vietnam
| | - Danny Boyce
- The Dr. Joe Brown Aquatic Research Building (JBARB), Ocean Sciences Centre, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Javier Santander
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
9
|
Hu Y, Alnabulsi A, Alnabulsi A, Scott C, Tafalla C, Secombes CJ, Wang T. Characterisation and analysis of IFN-gamma producing cells in rainbow trout Oncorhynchus mykiss. FISH & SHELLFISH IMMUNOLOGY 2021; 117:328-338. [PMID: 34343543 DOI: 10.1016/j.fsi.2021.07.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
IFN-γ is one of the key cytokines involved in Th1 immune responses. It is produced mainly by T cells and NK cells, which drive both innate and adaptive responses to promote protection against infections. IFN-γ orthologues have been discovered to be functionally conserved in fish, suggesting that type I immunity is present in early vertebrates. However, few studies have looked at IFN-γ protein expression in fish and its role in cell mediated immunity due to a lack of relevant tools. In this study, four monoclonal antibodies (mAbs) V27, N2, VAB3 and V91 raised against short salmonid IFN-γ peptides were developed and characterised to monitor IFN-γ expression. The results show that the IFN-γ mAbs specifically react to their peptide immunogens, recognise E. coli produced recombinant IFN-γ protein and rainbow trout IFN-γ produced in transfected HEK 293 cells. The mAb VAB3 was used further, to detect IFN-γ at the cellular level after in vitro and in vivo stimulation. In flow cytometry, a basal level of 3-5% IFN-γ secreting cells were detected in peripheral blood leucocytes (PBL), which increased significantly when stimulated in vitro with PAMPs (Aeromonas salmonicida bacterin), a mitogen (PHA) and recombinant cytokine (IL-2). Similarly, after injection of live bacteria (Aeromonas salmonicida) or poly I:C the number of IFN-γ+ cells increased in the lymphoid population of PBL, as well as in the myeloid population after infection, with the myeloid cells increasing substantially after both treatments. Immunohistochemistry was used to visualise the IFN-γ+ cells in spleen and head kidney following vaccination, which increased in intensity of staining and number relative to tissue from saline-injected control fish. These results show that several types of cells can produce IFN-γ in trout, and that they increase following infection or vaccination, and likely contribute to immune protection. Hence monitoring IFN-γ producing cells/protein secretion may be an important means to assess the effectiveness of Th1 responses and cell mediated immunity in fish.
Collapse
Affiliation(s)
- Yehfang Hu
- Scottish Fish Immunology Research Centre, University of Aberdeen, Aberdeen, UK
| | | | | | - Callum Scott
- Scottish Fish Immunology Research Centre, University of Aberdeen, Aberdeen, UK
| | | | | | - Tiehui Wang
- Scottish Fish Immunology Research Centre, University of Aberdeen, Aberdeen, UK.
| |
Collapse
|
10
|
Santibañez A, Paine D, Parra M, Muñoz C, Valdes N, Zapata C, Vargas R, Gonzalez A, Tello M. Oral Administration of Lactococcus lactis Producing Interferon Type II, Enhances the Immune Response Against Bacterial Pathogens in Rainbow Trout. Front Immunol 2021; 12:696803. [PMID: 34248997 PMCID: PMC8268009 DOI: 10.3389/fimmu.2021.696803] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 06/08/2021] [Indexed: 11/13/2022] Open
Abstract
Lactic acid bacteria are a powerful vehicle for releasing of cytokines and immunostimulant peptides at the gastrointestinal level after oral administration. However, its therapeutic application against pathogens that affect rainbow trout and Atlantic salmon has been little explored. Type II interferon in Atlantic salmon activates the antiviral response, protecting against viral infection, but its role against bacterial infection has not been tested in vivo. In this work, through the design of a recombinant lactic acid bacterium capable of producing Interferon gamma from Atlantic salmon, we explore its role against bacterial infection and the ability to stimulate systemic immune response after oral administration of the recombinant probiotic. Recombinant interferon was active in vitro, mainly stimulating IL-6 expression in SHK-1 cells. In vivo, oral administration of the recombinant probiotic produced an increase in IL-6, IFNγ and IL-12 in the spleen and kidney, in addition to stimulating the activity of lysozyme in serum. The challenge trials indicated that the administration of the IFNγ-producing probiotic doubled the survival in fish infected with F. psychrophilum. In conclusion, our results showed that the oral administration of lactic acid bacteria producing IFNγ managed to stimulate the immune response at a systemic level, conferring protection against pathogens, showing a biotechnological potential for its application in aquaculture.
Collapse
Affiliation(s)
- Alvaro Santibañez
- Departamento de Biología, Laboratorio de Metagenómica Bacteriana, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
- Consorcio Tecnológico de Sanidad Acuícola, Ictio Biotechnologies S.A., Santiago, Chile
| | - Diego Paine
- Departamento de Biología, Laboratorio de Metagenómica Bacteriana, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
- Consorcio Tecnológico de Sanidad Acuícola, Ictio Biotechnologies S.A., Santiago, Chile
| | - Mick Parra
- Departamento de Biología, Laboratorio de Metagenómica Bacteriana, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
- Consorcio Tecnológico de Sanidad Acuícola, Ictio Biotechnologies S.A., Santiago, Chile
| | - Carlos Muñoz
- Departamento de Biología, Laboratorio de Metagenómica Bacteriana, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
- Consorcio Tecnológico de Sanidad Acuícola, Ictio Biotechnologies S.A., Santiago, Chile
| | - Natalia Valdes
- Departamento de Biología, Laboratorio de Metagenómica Bacteriana, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
- Consorcio Tecnológico de Sanidad Acuícola, Ictio Biotechnologies S.A., Santiago, Chile
| | - Claudia Zapata
- Departamento de Biología, Laboratorio de Metagenómica Bacteriana, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
- Consorcio Tecnológico de Sanidad Acuícola, Ictio Biotechnologies S.A., Santiago, Chile
| | - Rodrigo Vargas
- Departamento de Biología, Laboratorio de Metagenómica Bacteriana, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Alex Gonzalez
- Laboratorio de Microbiología Ambiental y Extremófilos, Departamento de Ciencias Biológicas, Universidad de los Lagos, Osorno, Chile
| | - Mario Tello
- Departamento de Biología, Laboratorio de Metagenómica Bacteriana, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
- Consorcio Tecnológico de Sanidad Acuícola, Ictio Biotechnologies S.A., Santiago, Chile
- IctioBiotic SpA, Santiago, Chile
| |
Collapse
|
11
|
Wang H, Lin X, Pu X. NOD-like receptors mediate inflammatory lung injury during plateau hypoxia exposure. J Physiol Anthropol 2020; 39:32. [PMID: 33028417 PMCID: PMC7542964 DOI: 10.1186/s40101-020-00242-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/28/2020] [Indexed: 11/18/2022] Open
Abstract
Background The lung is an important target organ for hypoxia treatment, and hypoxia can induce several diseases in the body. Methods We performed transcriptome sequencing for the lungs of rats exposed to plateau hypoxia at 0 day and 28 days. Sequencing libraries were constructed, and enrichment analysis of the differentially expressed genes (DEGs) was implemented using the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). Subsequently, experimental validation was executed by quantitative real-time PCR (qRT-PCR) and western blot. Results The results showed that the nucleotide-binding oligomerization domain (NOD)-like receptor (NLR) signaling pathway that was involved in immunity may play a crucial function in lung injury caused by plateau hypoxia. And the expressions of NOD1, NOD2, IL-1β, TNF-α, IL-6, and IL-18 were higher at 28 days of exposure to plateau hypoxia than that at 0 day. Similarly, CARD9, MYD88, p38 MAPK, and NF-κB p65, which are related to the NF-κB and MAPK signaling pathways, also demonstrated increased expression at 28 days exposure to plateau hypoxia than at 0 day. Conclusions Our study suggested that the NFκBp65 and p38 MAPK signaling pathways may be activated in the lungs of rats during plateau hypoxia. Upregulated expression of NFκBp65 and p38 MAPK can promote the transcription of downstream inflammatory factors, thereby aggravating the occurrence and development of lung tissue remodeling.
Collapse
Affiliation(s)
- Haiyan Wang
- College of Medicine, Qinghai University, Xining, 810001, Qinghai Province, China
| | - Xue Lin
- College of Medicine, Qinghai University, Xining, 810001, Qinghai Province, China
| | - Xiaoyan Pu
- College of Medicine, Qinghai University, Xining, 810001, Qinghai Province, China. .,Qinghai Normal University, Xining, 810007, Qinghai Province, China.
| |
Collapse
|
12
|
Brunner SR, Varga JFA, Dixon B. Antimicrobial Peptides of Salmonid Fish: From Form to Function. BIOLOGY 2020; 9:E233. [PMID: 32824728 PMCID: PMC7464209 DOI: 10.3390/biology9080233] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/11/2020] [Accepted: 08/13/2020] [Indexed: 02/06/2023]
Abstract
Antimicrobial peptides (AMPs) are small, usually cationic, and amphiphilic molecules that play a crucial role in molecular and cellular host defense against pathogens, tissue damage, and infection. AMPs are present in all metazoans and several have been discovered in teleosts. Some teleosts, such as salmonids, have undergone whole genome duplication events and retained a diverse AMP repertoire. Salmonid AMPs have also been shown to possess diverse and potent antibacterial, antiviral, and antiparasitic activity and are induced by a variety of factors, including dietary components and specific molecules also known as pathogen-associated molecular patterns (PAMPs), which may activate downstream signals to initiate transcription of AMP genes. Moreover, a multitude of cell lines have been established from various salmonid species, making it possible to study host-pathogen interactions in vitro, and several of these cell lines have been shown to express various AMPs. In this review, the structure, function, transcriptional regulation, and immunomodulatory role of salmonid AMPs are highlighted in health and disease. It is important to characterize and understand how salmonid AMPs function as this may lead to a better understanding of host-pathogen interactions with implications for aquaculture and medicine.
Collapse
Affiliation(s)
- Sascha R. Brunner
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada; (S.R.B.); (J.F.A.V.)
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Joseph F. A. Varga
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada; (S.R.B.); (J.F.A.V.)
| | - Brian Dixon
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada; (S.R.B.); (J.F.A.V.)
| |
Collapse
|
13
|
Zanuzzo FS, Beemelmanns A, Hall JR, Rise ML, Gamperl AK. The Innate Immune Response of Atlantic Salmon ( Salmo salar) Is Not Negatively Affected by High Temperature and Moderate Hypoxia. Front Immunol 2020; 11:1009. [PMID: 32536921 PMCID: PMC7268921 DOI: 10.3389/fimmu.2020.01009] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 04/28/2020] [Indexed: 12/12/2022] Open
Abstract
Climate change is predicted to increase water temperatures and decrease oxygen levels in freshwater and marine environments, however, there is conflicting information regarding the extent to which these conditions may impact the immune defenses of fish. In this study, Atlantic salmon were exposed to: (1) normoxia (100–110% air saturation) at 12°C; (2) an incremental temperature increase (1°C per week from 12 to 20°C), and then held at 20°C for an additional 4 weeks; and (3) “2” with the addition of moderate hypoxia (~65–75% air saturation). These conditions realistically reflect what farmed salmon in some locations are currently facing, and future conditions in Atlantic Canada and Europe, during the summer months. The salmon were sampled for the measurement of head kidney constitutive anti-bacterial and anti-viral transcript expression levels, and blood parameters of humoral immune function. Thereafter, they were injected with either the multi-valent vaccine Forte V II (contains both bacterial and viral antigens) or PBS (phosphate-buffer-saline), and the head kidney and blood of these fish were sampled at 6, 12, 24, and 48 h post-injection (HPI). Our results showed that: (1) neither high temperature, nor high temperature + moderate hypoxia, adversely affected respiratory burst, complement activity or lysozyme concentration; (2) the constitutive transcript expression levels of the anti-bacterial genes il1β, il8-a, cox2, hamp-a, stlr5-a, and irf7-b were up-regulated by high temperature; (3) while high temperature hastened the peak in transcript expression levels of most anti-bacterial genes by 6–12 h following V II injection, it did not affect the magnitude of changes in transcript expression; (4) anti-viral (viperin-b, mx-b, and isg15-a) transcript expression levels were either unaffected, or downregulated, by acclimation temperature or V II injection over the 48 HPI; and (5) hypoxia, in addition to high temperature, did not impact immune transcript expression. In conclusion, temperatures up to 20°C, and moderate hypoxia, do not impair the capacity of the Atlantic salmon's innate immune system to respond to bacterial antigens. These findings are surprising, and highlight the salmon's capacity to mount robust innate immune responses (i.e., similar to control fish under optimal conditions) under conditions approaching their upper thermal limit.
Collapse
Affiliation(s)
- Fábio S Zanuzzo
- Department of Ocean Sciences, Memorial University, St. John's, NL, Canada
| | - Anne Beemelmanns
- Department of Ocean Sciences, Memorial University, St. John's, NL, Canada
| | - Jennifer R Hall
- Aquatic Research Cluster, CREAIT Network, Ocean Sciences Centre, Memorial University, St. John's, NL, Canada
| | - Matthew L Rise
- Department of Ocean Sciences, Memorial University, St. John's, NL, Canada
| | - Anthony K Gamperl
- Department of Ocean Sciences, Memorial University, St. John's, NL, Canada
| |
Collapse
|
14
|
Lulijwa R, Alfaro AC, Merien F, Meyer J, Young T. Advances in salmonid fish immunology: A review of methods and techniques for lymphoid tissue and peripheral blood leucocyte isolation and application. FISH & SHELLFISH IMMUNOLOGY 2019; 95:44-80. [PMID: 31604150 DOI: 10.1016/j.fsi.2019.10.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/29/2019] [Accepted: 10/01/2019] [Indexed: 06/10/2023]
Abstract
Evaluating studies over the past almost 40 years, this review outlines the current knowledge and research gaps in the use of isolated leucocytes in salmonid immunology understanding. This contribution focuses on the techniques used to isolate salmonid immune cells and popular immunological assays. The paper also analyses the use of leucocytes to demonstrate immunomodulation following dietary manipulation, exposure to physical and chemical stressors, effects of pathogens and parasites, vaccine design and application strategies assessment. We also present findings on development of fish immune cell lines and their potential uses in aquaculture immunology. The review recovered 114 studies, where discontinuous density gradient centrifugation (DDGC) with Percoll density gradient was the most popular leucocyte isolation method. Fish head kidney (HK) and peripheral blood (PB) were the main sources of leucocytes, from rainbow trout (Oncorhynchus mykiss) and Atlantic salmon (Salmo salar). Phagocytosis and respiratory burst were the most popular immunological assays. Studies used isolated leucocytes to demonstrate that dietary manipulations enhance fish immunity, while chemical and physical stressors suppress immunity. In addition, parasites, and microbial pathogens depress fish innate immunity and induce pro-inflammatory cytokine gene transcripts production, while vaccines enhance immunity. This review found 10 developed salmonid cell lines, mainly from S. salar and O. mykiss HK tissue, which require fish euthanisation to isolate. In the face of high costs involved with density gradient reagents, the application of hypotonic lysis in conjunction with mico-volume blood methods can potentially reduce research costs, time, and using nonlethal and ethically flexible approaches. Since the targeted literature review for this study retrieved no metabolomics study of leucocytes, indicates that this approach, together with traditional technics and novel flow cytometry could help open new opportunities for in vitro studies in aquaculture immunology and vaccinology.
Collapse
Affiliation(s)
- Ronald Lulijwa
- Aquaculture Biotechnology Research Group, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand; National Agricultural Research Organisation (NARO), Rwebitaba Zonal Agricultural Research and Development Institute (Rwebitaba-ZARDI), P. O. Box 96, Fort Portal, Uganda
| | - Andrea C Alfaro
- Aquaculture Biotechnology Research Group, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand.
| | - Fabrice Merien
- Aquaculture Biotechnology Research Group, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand; AUT-Roche Diagnostics Laboratory, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand
| | - Jill Meyer
- Aquaculture Biotechnology Research Group, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand; AUT-Roche Diagnostics Laboratory, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand
| | - Tim Young
- Aquaculture Biotechnology Research Group, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand; The Centre for Biomedical and Chemical Sciences, School of Science, Auckland University of Technology, New Zealand
| |
Collapse
|
15
|
Pereiro P, Figueras A, Novoa B. Insights into teleost interferon-gamma biology: An update. FISH & SHELLFISH IMMUNOLOGY 2019; 90:150-164. [PMID: 31028897 DOI: 10.1016/j.fsi.2019.04.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/20/2019] [Accepted: 04/02/2019] [Indexed: 06/09/2023]
Abstract
Interferon-gamma (IFN-ϒ) is probably one of the most relevant cytokines orchestrating the immune response in vertebrates. Although the activities mediated by this molecule are well known in mammals, several aspects of the IFN-ϒ system in teleosts remain a riddle to scientists. Numerous studies support a potentially similar role of the fish IFN-ϒ signalling pathway in some well-described immunological processes induced by this cytokine in mammals. Nevertheless, the existence in some teleost species of duplicated ifng genes and an additional gene derived from ifng known as interferon-γ-related (ifngrel), among other things, raises new interesting questions about the mode of action of these various molecules in fish. Moreover, certain IFN-ϒ-mediated activities recently observed in mammals are still fully unknown in fish. Another attractive but mainly unexplored curious property of IFN-ϒ in vertebrates is its potential dual role depending on the type of pathogen. In addition, some aspects mediated by this molecule could favour the resolution of a bacterial infection but be harmful in the context of a viral disease, and vice versa. This review collects old and new aspects of IFN-ϒ research in teleosts and discusses new questions and pathways of investigation based on recent discoveries in mammals.
Collapse
Affiliation(s)
- Patricia Pereiro
- Instituto de Investigaciones Marinas (IIM), CSIC, Vigo, Spain; Laboratory of Biotechnology and Aquatic Genomics, Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, Concepción, Chile
| | | | - Beatriz Novoa
- Instituto de Investigaciones Marinas (IIM), CSIC, Vigo, Spain.
| |
Collapse
|
16
|
Acosta J, Roa F, González-Chavarría I, Astuya A, Maura R, Montesino R, Muñoz C, Camacho F, Saavedra P, Valenzuela A, Sánchez O, Toledo JR. In vitro immunomodulatory activities of peptides derived from Salmo salar NK-lysin and cathelicidin in fish cells. FISH & SHELLFISH IMMUNOLOGY 2019; 88:587-594. [PMID: 30885741 DOI: 10.1016/j.fsi.2019.03.034] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 03/11/2019] [Accepted: 03/14/2019] [Indexed: 06/09/2023]
Abstract
Antimicrobial peptides (AMPs) are amphipathic peptides, which play an important role in innate defence. These peptides are gene-encoded and either constitutively expressed and/or upregulated during an infection. NK-lysins are AMPs with a three-dimensional globular structure. They are larger molecules, which comprise 74-78 amino acid residues and six conserved cysteine residues forming three disulphide bonds. Cathelicidins are a family of antimicrobial peptides that act as important components of the innate immune system with a broad spectrum of antimicrobial activity and immunomodulatory properties. Although they are widely studied in mammals, little is known about their immunomodulatory function. In the present study, we identified and characterized for the first time four NK-lysin-like transcripts from Atlantic salmon (Salmo salar) based on EST reported sequences. In vitro, NK-lysin derived peptides were able to induce the expression of IL-1β and IL-8 in Salmo salar head kidney leukocytes. We also tested Salmo salar cathelicidin 1 derived peptide in a similar assay, showing its ability to induce the expression of IFN-γ. These results indicate that NK-lysin and cathelicidin 1 derived peptides are able to modulated immune response, suggesting their potential use to enhance immune response in fish.
Collapse
Affiliation(s)
- Jannel Acosta
- Biotechnology and Biopharmaceutical Laboratory, Pathophysiology Department, School of Biological Sciences, Universidad de Concepción, Victor Lamas 1290, P.O. Box 160-C, Concepción, Chile.
| | - Francisco Roa
- Biotechnology and Biopharmaceutical Laboratory, Pathophysiology Department, School of Biological Sciences, Universidad de Concepción, Victor Lamas 1290, P.O. Box 160-C, Concepción, Chile
| | - Iván González-Chavarría
- Biotechnology and Biopharmaceutical Laboratory, Pathophysiology Department, School of Biological Sciences, Universidad de Concepción, Victor Lamas 1290, P.O. Box 160-C, Concepción, Chile
| | - Allison Astuya
- Laboratory of Cell Culture and Marine Genomics, Department of Oceanography and COPAS Sur-Austral, Faculty of Natural and Oceanographic Sciences, Universidad de Concepción, Victor Lamas 1290, P.O. Box 160-C, Concepción, Chile
| | - Rafael Maura
- Biotechnology and Biopharmaceutical Laboratory, Pathophysiology Department, School of Biological Sciences, Universidad de Concepción, Victor Lamas 1290, P.O. Box 160-C, Concepción, Chile
| | - Raquel Montesino
- Biotechnology and Biopharmaceutical Laboratory, Pathophysiology Department, School of Biological Sciences, Universidad de Concepción, Victor Lamas 1290, P.O. Box 160-C, Concepción, Chile
| | - Carolina Muñoz
- Biotechnology and Biopharmaceutical Laboratory, Pathophysiology Department, School of Biological Sciences, Universidad de Concepción, Victor Lamas 1290, P.O. Box 160-C, Concepción, Chile
| | - Frank Camacho
- Recombinant Biopharmaceuticals Laboratory, Pharmacology Department, School of Biological Sciences, Universidad de Concepción, Victor Lamas 1290, P.O. Box 160-C, Concepción, Chile
| | - Paulina Saavedra
- Biotechnology and Biopharmaceutical Laboratory, Pathophysiology Department, School of Biological Sciences, Universidad de Concepción, Victor Lamas 1290, P.O. Box 160-C, Concepción, Chile
| | - Ariel Valenzuela
- Laboratory of Fish Culture and Aquatic Pathology, Department of Oceanography, Faculty of Natural and Oceanographic Sciences, Universidad de Concepción, Victor Lamas 1290, P.O. Box 160-C, Concepción, Chile
| | - Oliberto Sánchez
- Recombinant Biopharmaceuticals Laboratory, Pharmacology Department, School of Biological Sciences, Universidad de Concepción, Victor Lamas 1290, P.O. Box 160-C, Concepción, Chile
| | - Jorge R Toledo
- Biotechnology and Biopharmaceutical Laboratory, Pathophysiology Department, School of Biological Sciences, Universidad de Concepción, Victor Lamas 1290, P.O. Box 160-C, Concepción, Chile
| |
Collapse
|
17
|
Major Histocompatibility Complex (MHC) Genes and Disease Resistance in Fish. Cells 2019; 8:cells8040378. [PMID: 31027287 PMCID: PMC6523485 DOI: 10.3390/cells8040378] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/12/2019] [Accepted: 04/23/2019] [Indexed: 12/20/2022] Open
Abstract
Fascinating about classical major histocompatibility complex (MHC) molecules is their polymorphism. The present study is a review and discussion of the fish MHC situation. The basic pattern of MHC variation in fish is similar to mammals, with MHC class I versus class II, and polymorphic classical versus nonpolymorphic nonclassical. However, in many or all teleost fishes, important differences with mammalian or human MHC were observed: (1) The allelic/haplotype diversification levels of classical MHC class I tend to be much higher than in mammals and involve structural positions within but also outside the peptide binding groove; (2) Teleost fish classical MHC class I and class II loci are not linked. The present article summarizes previous studies that performed quantitative trait loci (QTL) analysis for mapping differences in teleost fish disease resistance, and discusses them from MHC point of view. Overall, those QTL studies suggest the possible importance of genomic regions including classical MHC class II and nonclassical MHC class I genes, whereas similar observations were not made for the genomic regions with the highly diversified classical MHC class I alleles. It must be concluded that despite decades of knowing MHC polymorphism in jawed vertebrate species including fish, firm conclusions (as opposed to appealing hypotheses) on the reasons for MHC polymorphism cannot be made, and that the types of polymorphism observed in fish may not be explained by disease-resistance models alone.
Collapse
|
18
|
Jiang J, Zhao W, Xiong Q, Wang K, He Y, Wang J, Chen D, Geng Y, Huang X, Ouyang P, Lai W. Immune responses of channel catfish following the stimulation of three recombinant flagellins of Yersinia ruckeri in vitro and in vivo. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 73:61-71. [PMID: 28235583 DOI: 10.1016/j.dci.2017.02.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 02/20/2017] [Accepted: 02/20/2017] [Indexed: 06/06/2023]
Abstract
Innate immunity is initiated depending on the recognition of certain protein receptors termed pattern recognition receptors (PRRs) of pathogen-associated molecular patterns (PAMPs) to protect the host from various invading pathogens. As one of the most powerful PAMPs, flagellin is the major structural component of the flagellum that provides the main force for bacterial motility in flagellated microorganisms. The genome of the Y. ruckeri strain SC09 contains three flagellin genes, which encode the flagellins FlaA, FlaB and FlaC, respectively. In this study, we produced the three full-length recombinant flagellins-i.e., rFlaA, rFlaB and rFlaC-from the Y. ruckeri strain SC09 for the first time and then compared the host cell responses to rFlaA, rFlaB and rFlaC using channel catfish cultured head kidney monocytes/macrophages in vitro. Moreover, the time-dependent modulation of the nine genes expression of primary kidneys injected with rFlaC was also detected by qPCR. We found that rFlaA, rFlaB and rFlaC all can stimulate the production of some pro-inflammatory cytokines, such as IL1-β1, TNFα, IL8, iNOS1 and Hepcidin. In addition, the expression of TLR5M, TLR5S, NF-κB and MHC II β was all increased after channel catfish cultured head kidney monocytes/macrophages were stimulated by the three recombinant flagellins. Importantly, rFlaC stimulated the highest expression of all the genes mentioned above compared with that of rFlaB and rFlaA and enhanced the expression of the nine above-mentioned genes in vivo. Our study lays the foundation for the effect of flagellin on immune responses, suggesting that flagellin may be a useful immune adjuvant or stimulant in the aquaculture field.
Collapse
Affiliation(s)
- Jie Jiang
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Wuyi Zhao
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Quanxin Xiong
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Kaiyu Wang
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Yang He
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Jun Wang
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Defang Chen
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Yi Geng
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Xiaoli Huang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Ping Ouyang
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Weimin Lai
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| |
Collapse
|
19
|
Álvarez CA, Ramírez-Cepeda F, Santana P, Torres E, Cortés J, Guzmán F, Schmitt P, Mercado L. Insights into the diversity of NOD-like receptors: Identification and expression analysis of NLRC3, NLRC5 and NLRX1 in rainbow trout. Mol Immunol 2017; 87:102-113. [DOI: 10.1016/j.molimm.2017.03.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 03/08/2017] [Accepted: 03/08/2017] [Indexed: 12/21/2022]
|
20
|
Kaneshige N, Jirapongpairoj W, Hirono I, Kondo H. Temperature-dependent regulation of gene expression in Japanese flounder Paralichthys olivaceus kidney after Edwardsiella tarda formalin-killed cells. FISH & SHELLFISH IMMUNOLOGY 2016; 59:298-304. [PMID: 27815208 DOI: 10.1016/j.fsi.2016.10.048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 10/28/2016] [Accepted: 10/30/2016] [Indexed: 06/06/2023]
Abstract
Temperature affects the activities of the immune system and the susceptibility of fish to pathogens. To investigate the modulation of temperature on immune related gene expression in formalin-killed cells (FKC) of Edwardsiella tarda-injected Japanese flounder Paralichthys olivaceus, fish reared at 15 or 22 °C were injected with FKC of E. tarda. The up-regulation of immune related genes was detected in FKC-injected fish at both temperatures by qPCR. The mRNA expression of IFNγ was highly up-regulated at 6 h post injection (hpi) in FKC-injected fish at 15 °C, whereas at 22 °C, strong up-regulation of the gene was detected at 3 hpi The mRNA expression level of IRF1 was detected from 3 hpi to day 14 post injection in fish reared at 15 °C, but the gene was up-regulated from 3 to 6 hpi in fish reared at 22 °C. Comprehensive gene expression profiling showed that immune related genes are differentially expressed between 15 and 22 °C. Genes involved in the IFNγ signaling pathway were up-regulated at 22 °C but not at 15 °C. These results demonstrate that gene(s) involved in IFNγ signaling pathway in Japanese flounder stimulated with FKC of E. tarda are regulated by temperature.
Collapse
Affiliation(s)
- Norie Kaneshige
- Laboratory of Genome Science, Graduate School of Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-ku, Tokyo 108-8477, Japan
| | - Walissara Jirapongpairoj
- Laboratory of Genome Science, Graduate School of Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-ku, Tokyo 108-8477, Japan
| | - Ikuo Hirono
- Laboratory of Genome Science, Graduate School of Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-ku, Tokyo 108-8477, Japan
| | - Hidehiro Kondo
- Laboratory of Genome Science, Graduate School of Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-ku, Tokyo 108-8477, Japan.
| |
Collapse
|
21
|
Cortés J, Alvarez C, Santana P, Torres E, Mercado L. Indoleamine 2,3-dioxygenase: First evidence of expression in rainbow trout (Oncorhynchus mykiss). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 65:73-78. [PMID: 27370975 DOI: 10.1016/j.dci.2016.06.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 06/26/2016] [Accepted: 06/26/2016] [Indexed: 06/06/2023]
Abstract
The role of enzymes as active antimicrobial agents of the innate immunity in teleost fish is proposed in diverse works. Secretion of Indoleamine 2,3-dioxygenase (IDO) has been described in higher vertebrates; it degrades l-tryptophan in extracellular environments associated mainly with mucosal organs. The effect of IDO on decreasing amino acid concentration may inhibit the growth of potential pathogens. In fish the study of this molecule is still. Here we report the identification of an Onchorhyncus mykiss IDO homologue (OmIDO). IDO was cloned, sequenced, and the primary structure shows conservation of key functional sites. The constitutive expression is altered when the fish is challenged with LPS as a pathogen-associated molecular pattern (PAMPs). Up-regulation of IDO was shown preferentially in the fish's mucosal cells. In order to obtain evidence of a possible regulation mechanism, an in vitro cell model was used for to show that OmIDO is induced by rIFN. These study has identified a Indoleamine 2,3-dyoxigenase in O. mykiss will contribute to expands our knowledge of the function this protein in fish immune response. These findings allow to propose the use of OmIDO as a molecular indicator of strength of the animal's immune response and wellbeing.
Collapse
Affiliation(s)
- Jimena Cortés
- Grupo de Marcadores Inmunológicos, Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile.
| | - Claudio Alvarez
- Grupo de Marcadores Inmunológicos, Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile; Programa de Doctorado en Biotecnología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile; Universidad Técnica Federico Santa María, Valparaíso, Chile.
| | - Paula Santana
- Grupo de Marcadores Inmunológicos, Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile.
| | - Elisa Torres
- Grupo de Marcadores Inmunológicos, Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile.
| | - Luis Mercado
- Grupo de Marcadores Inmunológicos, Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile.
| |
Collapse
|
22
|
Ahn DH, Kang S, Park H. Transcriptome analysis of immune response genes induced by pathogen agonists in the Antarctic bullhead notothen Notothenia coriiceps. FISH & SHELLFISH IMMUNOLOGY 2016; 55:315-322. [PMID: 27276114 DOI: 10.1016/j.fsi.2016.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 05/17/2016] [Accepted: 06/04/2016] [Indexed: 06/06/2023]
Abstract
Fish are a representative population of lower vertebrates that serve as an essential link to early vertebrate evolution, and this has fueled academic interest in studying ancient vertebrate immune defense mechanisms in teleosts. Notothenia coriiceps, a typical Antarctic notothenioid teleost, has evolved to adapt to the cold and thermally stable Antarctic sea. In this study, we examined adaptive signaling pathways and immune responses to bacterial and viral pathogenic exposure in N. coriiceps. Using RNA sequencing, we investigated transcriptional differences in the liver tissues of N. coriiceps challenged with two pathogen-mimicking agonists, a bacterial ligand (heat-killed Escherichia coli, HKEB) and a viral ligand (polyinosinic:polycytidylic acid, Poly I:C). We found that 567 unique genes were up-regulated two-fold in the HKEB-exposed group, whereas 392 unique genes, including 124 immune-relevant genes, were up-regulated two-fold in the Poly I:C-exposed group. A KEGG pathway analysis of the 124 immune-relevant genes revealed that they exhibited major features of antigen processing and presentation bacterial ligand exposure, but they were down-regulated after viral ligand exposure. A quantitative real time RT-PCR analysis revealed that TNFα and TNF2, major inducers of apoptosis, were highly up-regulated after exposure to the viral ligand but not the bacterial ligand. The results suggest that the bacterial and viral ligands up-regulate inducers of different immune mechanisms in N. coriiceps liver tissue. N. coriiceps has an immune response defense strategy that uses antigen presentation against bacterial infection, but it may use a different defense, such as TNF-mediated apoptosis, against viral infection. The specific immune responses of N. coriiceps may be adaptations to the Antarctic environment and pathogens. These results will help define the characteristics of Antarctic fish and increase our understanding of their immune response mechanisms.
Collapse
Affiliation(s)
- Do-Hwan Ahn
- Division of Polar Life Sciences, Korea Polar Research Institute, Yeonsu-gu, Incheon, 21990, South Korea
| | - Seunghyun Kang
- Division of Polar Life Sciences, Korea Polar Research Institute, Yeonsu-gu, Incheon, 21990, South Korea
| | - Hyun Park
- Division of Polar Life Sciences, Korea Polar Research Institute, Yeonsu-gu, Incheon, 21990, South Korea; Polar Sciences, University of Science & Technology, Yuseong-gu, Daejeon, 34113, South Korea.
| |
Collapse
|
23
|
Zou J, Secombes CJ. The Function of Fish Cytokines. BIOLOGY 2016; 5:biology5020023. [PMID: 27231948 PMCID: PMC4929537 DOI: 10.3390/biology5020023] [Citation(s) in RCA: 305] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 04/28/2016] [Accepted: 05/17/2016] [Indexed: 12/14/2022]
Abstract
What is known about the biological activity of fish cytokines is reviewed. Most of the functional studies performed to date have been in teleost fish, and have focused on the induced effects of cytokine recombinant proteins, or have used loss- and gain-of-function experiments in zebrafish. Such studies begin to tell us about the role of these molecules in the regulation of fish immune responses and whether they are similar or divergent to the well-characterised functions of mammalian cytokines. This knowledge will aid our ability to determine and modulate the pathways leading to protective immunity, to improve fish health in aquaculture.
Collapse
Affiliation(s)
- Jun Zou
- Scottish Fish Immunology Research Centre, University of Aberdeen, Zoology Building, Tillydrone Avenue, Aberdeen AB24 2TZ, UK.
| | - Christopher J Secombes
- Scottish Fish Immunology Research Centre, University of Aberdeen, Zoology Building, Tillydrone Avenue, Aberdeen AB24 2TZ, UK.
| |
Collapse
|
24
|
Robledo D, Taggart JB, Ireland JH, McAndrew BJ, Starkey WG, Haley CS, Hamilton A, Guy DR, Mota-Velasco JC, Gheyas AA, Tinch AE, Verner-Jeffreys DW, Paley RK, Rimmer GSE, Tew IJ, Bishop SC, Bron JE, Houston RD. Gene expression comparison of resistant and susceptible Atlantic salmon fry challenged with Infectious Pancreatic Necrosis virus reveals a marked contrast in immune response. BMC Genomics 2016; 17:279. [PMID: 27066778 PMCID: PMC4827185 DOI: 10.1186/s12864-016-2600-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 03/22/2016] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Infectious Pancreatic Necrosis (IPN) is a highly contagious birnavirus disease of farmed salmonid fish, which often causes high levels of morbidity and mortality. A large host genetic component to resistance has been previously described for Atlantic salmon (Salmo salar L.), which mediates high mortality rates in some families and zero mortality in others. However, the molecular and immunological basis for this resistance is not yet fully known. This manuscript describes a global comparison of the gene expression profiles of resistant and susceptible Atlantic salmon fry following challenge with the IPN virus. RESULTS Salmon fry from two IPNV-resistant and two IPNV-susceptible full sibling families were challenged with the virus and sampled at 1 day, 7 days and 20 days post-challenge. Significant viral titre was observed in both resistant and susceptible fish at all timepoints, although generally at higher levels in susceptible fish. Gene expression profiles combined with gene ontology and pathway analyses demonstrated that while a clear immune response was observed in both resistant and susceptible fish, there were striking differences between the two phenotypes. The susceptible fish showed marked up-regulation of genes related to cytokine activity and inflammatory response that evidently failed to protect against the virus. In contrast, the resistant fish demonstrated a less pronounced immune response including up-regulation of genes relating to the M2 macrophage system. CONCLUSIONS While only the susceptible phenotype shows appreciable mortality levels, both resistant and susceptible fish can become infected with IPNV. Susceptible fish are characterized by a much larger, yet ineffective, immune response, largely related to cytokine and inflammatory systems. Resistant fish demonstrate a more moderate, putative macrophage-mediated inflammatory response, which may contribute to their survival.
Collapse
Affiliation(s)
- Diego Robledo
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, UK.,Departamento de Genética, Facultad de Biología, Universidad de Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - John B Taggart
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Jacqueline H Ireland
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Brendan J McAndrew
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - William G Starkey
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Chris S Haley
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Alastair Hamilton
- Landcatch Natural Selection Ltd., 15 Beta Centre, Stirling University Innovation Park, Stirling, FK9 4NF, UK
| | - Derrick R Guy
- Landcatch Natural Selection Ltd., 15 Beta Centre, Stirling University Innovation Park, Stirling, FK9 4NF, UK
| | - Jose C Mota-Velasco
- Landcatch Natural Selection Ltd., 15 Beta Centre, Stirling University Innovation Park, Stirling, FK9 4NF, UK
| | - Almas A Gheyas
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, UK.,Landcatch Natural Selection Ltd., 15 Beta Centre, Stirling University Innovation Park, Stirling, FK9 4NF, UK
| | - Alan E Tinch
- Landcatch Natural Selection Ltd., 15 Beta Centre, Stirling University Innovation Park, Stirling, FK9 4NF, UK
| | | | - Richard K Paley
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Weymouth, DT4 8UB, UK
| | - Georgina S E Rimmer
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Weymouth, DT4 8UB, UK
| | - Ian J Tew
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Weymouth, DT4 8UB, UK
| | - Stephen C Bishop
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - James E Bron
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Ross D Houston
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, UK.
| |
Collapse
|
25
|
Morimoto T, Biswas G, Kono T, Sakai M, Hikima JI. Immune responses in the Japanese pufferfish (Takifugu rubripes) head kidney cells stimulated with particulate silica. FISH & SHELLFISH IMMUNOLOGY 2016; 49:84-90. [PMID: 26702561 DOI: 10.1016/j.fsi.2015.12.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 12/12/2015] [Accepted: 12/12/2015] [Indexed: 06/05/2023]
Abstract
Studies on immune response to crystal silica in mammals indicate immune stimulation effect of environmental parameters including silica or asbestos, but there is no information on this aspect in lower vertebrates. Therefore, we examined expression of cytokine genes related to innate immunity in the Japanese pufferfish, Fugu (Takifugu rubripes) head kidney (HK) cells stimulated with particulate silica at 10 and 50 μg mL(-1). Expression of eleven cytokine genes was analyzed by the multiplex RT-PCR method (GenomeLab Genetic Analysis System, GeXPS; Beckman Coulter Inc.). Additionally, to confirm functionality of activated inflammatory immunity, we assessed phagocytic activity. Expression of NLR family genes as potential sensor molecules of inflammasome and inflammasome-associated genes (ASC and caspase-1) was also confirmed in HK cells by quantitative real-time PCR (qRT-PCR). As a result, an increased gene expression of pro-inflammatory cytokines (IL-6, IL-17A/F3, TNF-α, TNF-β and IFN-γ) and other cytokines (IL-4/13A, IL-4/13B, Type I-IFN) was recorded in particulate silica stimulated HK cells. Moreover, phagocytic activity showed a tendency to significantly increase in stimulated monocyte of HK cells after 6 h. Expression of NLR-C9 and NLR-C12 genes significantly increased in silica-stimulated HK cells. The particulate silica also significantly induced expression of inflammosome-associated genes, which may relate to the induced NLR-Cs.
Collapse
Affiliation(s)
- Takashi Morimoto
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki 889-2192, Japan
| | - Gouranga Biswas
- Interdisciplinary Graduate School of Agriculture and Engineering, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki 889-2192, Japan
| | - Tomoya Kono
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki 889-2192, Japan
| | - Masahiro Sakai
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki 889-2192, Japan
| | - Jun-Ichi Hikima
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki 889-2192, Japan.
| |
Collapse
|
26
|
Bo YX, Song XH, Wu K, Hu B, Sun BY, Liu ZJ, Fu JG. Characterization of interleukin-1β as a proinflammatory cytokine in grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2015; 46:584-595. [PMID: 26235982 DOI: 10.1016/j.fsi.2015.07.024] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 06/25/2015] [Accepted: 07/27/2015] [Indexed: 06/04/2023]
Abstract
Interleukin-1β (IL-1β) is a well-characterized cytokine that plays key roles in cellular responses to infection, inflammation, and immunological challenges in mammals. In this study, we identified and analyzed a grass carp (Ctenopharyngodon idella) ortholog of IL-1β (gcIL-1β), examined its expression patterns in various tissues in both healthy and lipopolysaccharide (LPS)-stimulated specimens, and evaluated its proinflammatory activities. The gcIL-1β gene consists of seven exons and six introns. The full-length cDNA sequence contains an open reading frame of 813 nucleotides. The deduced amino acid sequence exhibits a characteristic IL-1 signature but lacks the typical IL-1β converting enzyme cleavage site that is conserved in mammals. In the phylogenetic tree, IL-1βs from grass carp and other members of the Cyprinidae family clustered into a single group. Expression pattern analysis revealed that gcIL-1β is constitutively expressed in all 11 tissues examined, and LPS stimulation leads to significant up-regulation in muscle, liver, intestine, skin, trunk kidney, head kidney, and gill. Recombinant grass carp IL-1β (rgcIL-1β) was generated prokaryotically as a fusion protein of Trx-rgcIL-1β. An anti-rgcIL-1β polyclonal antibody (rgcIL-1β pAb) was raised in mice against the purified Trx-rgcIL-1β. Western blot analysis confirmed that rgcIL-1β pAb reacted specifically with gcIL-1β in C. idella kidney (CIK) cells. Quantitative real-time PCR data indicated that intestinal mRNA expression levels of endogenous IL-1β, IL-1R2, and TNF-α were significantly up-regulated following Trx-rgcIL-1β exposure. The inhibitory activities of rgcIL-1β pAb against the inflammatory response were confirmed in a model of Aeromonas hydrophila-induced intestinal inflammation. Our immunohistochemical study revealed that the degree and intensity of inflammatory cell infiltration are fully consistent with the observed mRNA expression patterns of these key inflammatory genes. Taken together, these data suggest that gcIL-1β plays a critical role in the proinflammatory response in the grass carp intestine.
Collapse
Affiliation(s)
- Yun-Xuan Bo
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xue-Hong Song
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu 215123, China.
| | - Kang Wu
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Bo Hu
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Bing-Yao Sun
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Zhao-Jun Liu
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jian-Gui Fu
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
27
|
Heidari Z, Bickerdike R, Tinsley J, Zou J, Wang TY, Chen TY, Martin SA. Regulatory factors controlling muscle mass: Competition between innate immune function and anabolic signals in regulation of atrogin-1 in Atlantic salmon. Mol Immunol 2015; 67:341-9. [DOI: 10.1016/j.molimm.2015.06.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 06/19/2015] [Accepted: 06/21/2015] [Indexed: 12/12/2022]
|
28
|
Sensors of Infection: Viral Nucleic Acid PRRs in Fish. BIOLOGY 2015; 4:460-93. [PMID: 26184332 PMCID: PMC4588145 DOI: 10.3390/biology4030460] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 06/19/2015] [Accepted: 06/19/2015] [Indexed: 12/25/2022]
Abstract
Viruses produce nucleic acids during their replication, either during genomic replication or transcription. These nucleic acids are present in the cytoplasm or endosome of an infected cell, or in the extracellular space to be sensed by neighboring cells during lytic infections. Cells have mechanisms of sensing virus-generated nucleic acids; these nucleic acids act as flags to the cell, indicating an infection requiring defense mechanisms. The viral nucleic acids are called pathogen-associated molecular patterns (PAMPs) and the sensors that bind them are called pattern recognition receptors (PRRs). This review article focuses on the most recent findings regarding nucleic acids PRRs in fish, including: Toll-like receptors (TLRs), RIG-I-like receptors (RLRs), cytoplasmic DNA sensors (CDSs) and class A scavenger receptors (SR-As). It also discusses what is currently known of the downstream signaling molecules for each PRR family and the resulting antiviral response, either type I interferons (IFNs) or pro-inflammatory cytokine production. The review highlights what is known but also defines what still requires elucidation in this economically important animal. Understanding innate immune systems to virus infections will aid in the development of better antiviral therapies and vaccines for the future.
Collapse
|
29
|
Monte MM, Wang T, Collet B, Zou J, Secombes CJ. Molecular characterisation of four class 2 cytokine receptor family members in rainbow trout, Oncorhynchus mykiss. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 48:43-54. [PMID: 25195068 DOI: 10.1016/j.dci.2014.08.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 08/29/2014] [Accepted: 08/30/2014] [Indexed: 06/03/2023]
Abstract
The interleukin (IL)-10 cytokine family includes IL-10, IL-19, IL-20, IL-22, IL-24, IL-26 and the lambda/type III interferons. They are highly pleiotropic and mediate a variety of activities, including immune suppression and antibacterial immunity. To exert their functions they signal through a heterodimeric receptor composed of a subunit with a long intracellular domain (R1 type receptors; IL-10R1, IL-20R1 or IL-22R1) and a subunit with a short intracellular domain (R2 type receptors; IL-10R2 or IL-20R2). In this study we report the identification of three R1 type receptors (named IL-10R1/CRFB7, IL-20R1a/CRFB8a and IL-20R1b/CRFB8b) and one R2 type receptor (named IL-10R2/CRFB4) in rainbow trout. The nomenclature of the receptors was supported by homology analysis, conserved motifs and phylogenetic tree analysis, confirming they belong to the piscine class 2 cytokine receptor family. For instance, they all displayed the presence of characteristic features, such as conserved fibronectin type-III domains. Expression analysis in tissues collected from healthy fish revealed different patterns of expression for each receptor, suggesting their potential involvement in different types of immune responses. When studying the modulation of the genes in cell lines and primary cultures, a greater effect was observed in the cell lines, where the expression of most receptors was affected by incubation with microbial mimics (LPS and PolyI:C) or the pro-inflammatory cytokine rIFN-γ. In addition, expression of the four receptors was modulated by viral infection, suggesting a potential involvement of such receptors and their ligands in antiviral defence.
Collapse
Affiliation(s)
- Milena M Monte
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, Scotland, UK.
| | - Tiehui Wang
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, Scotland, UK
| | - Bertrand Collet
- Marine Scotland Science, 375 Victoria Road, Aberdeen AB11 9DB, Scotland, UK
| | - Jun Zou
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, Scotland, UK
| | - Chris J Secombes
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, Scotland, UK
| |
Collapse
|
30
|
Bilen S, Biswas G, Otsuyama S, Kono T, Sakai M, Hikima JI. Inflammatory responses in the Japanese pufferfish (Takifugu rubripes) head kidney cells stimulated with an inflammasome-inducing agent, nigericin. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 46:222-230. [PMID: 24768998 DOI: 10.1016/j.dci.2014.04.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 04/15/2014] [Accepted: 04/15/2014] [Indexed: 06/03/2023]
Abstract
A cytosolic receptor complex called inflammasome is responsible for mounting inflammatory response by releasing pro-inflammatory cytokines, interleukin (IL)-1β and IL-18. However, inflammatory cascades mediated by the inflammasome are unknown in a lower vertebrate like fish. Therefore, in an in vitro experiment, in order to obtain a preliminary information, we conducted transcriptomic analysis of 18 cytokines including pro-inflammatory cytokines in the Japanese pufferfish (Takifugu rubripes) head kidney (HK) cells stimulated with an inflammasome-inducing agent, nigericin, and a combination of nigericin and LPS by a multiplex RT-PCR assay (GenomeLab Genetic Analysis System, GeXPS; Beckman Coulter Inc.). Furthermore, expression of IL-1β, IL-6, IL-18, nuclear factor (NF)-κB, nucleotide-binding oligomerization domain 2 (NOD2) and NOD-like receptor X1 (NLRX1) genes was examined in HK cells by a quantitative real-time PCR. Additionally, to confirm functionality of activated inflammatory immunity, we also assessed phagocytic activity, superoxide anion production (NBT assay) and lysozyme activity in the nigericin-stimulated HK cells. An increased gene expression of pro-inflammatory cytokines (IL-1β and IL-18), NF-κB and NOD2 was recorded in nigericin and combined nigericin+LPS- stimulated HK cells. Enhanced cellular (phagocytic activity and NBT assay) and humoral (lysozyme activity) immune parameters in the stimulated cells confirmed induction of inflammatory response. Results suggested probable activation of inflammasome components for processing of the inflammatory cytokines in the Japanese pufferfish.
Collapse
Affiliation(s)
- Soner Bilen
- Kastamonu University, Faculty of Fisheries, Department of Basic Sciences, Kastamonu 37200, Turkey
| | - Gouranga Biswas
- Interdisciplinary Graduate School of Agriculture and Engineering, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki 889-2192, Japan
| | - Shohei Otsuyama
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki 889-2192, Japan
| | - Tomoya Kono
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki 889-2192, Japan
| | - Masahiro Sakai
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki 889-2192, Japan
| | - Jun-ichi Hikima
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki 889-2192, Japan.
| |
Collapse
|
31
|
Dirscherl H, McConnell SC, Yoder JA, de Jong JLO. The MHC class I genes of zebrafish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 46:11-23. [PMID: 24631581 PMCID: PMC4031684 DOI: 10.1016/j.dci.2014.02.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 02/26/2014] [Accepted: 02/28/2014] [Indexed: 05/17/2023]
Abstract
Major histocompatibility complex (MHC) molecules play a central role in the immune response and in the recognition of non-self. Found in all jawed vertebrate species, including zebrafish and other teleosts, MHC genes are considered the most polymorphic of all genes. In this review we focus on the multi-faceted diversity of zebrafish MHC class I genes, which are classified into three sequence lineages: U, Z, and L. We examine the polygenic, polymorphic, and haplotypic diversity of the zebrafish MHC class I genes, discussing known and postulated functional differences between the different class I lineages. In addition, we provide the first comprehensive nomenclature for the L lineage genes in zebrafish, encompassing at least 15 genes, and characterize their sequence properties. Finally, we discuss how recent findings have shed new light on the remarkably diverse MHC loci of this species.
Collapse
Affiliation(s)
- Hayley Dirscherl
- Department of Molecular Biomedical Sciences, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27607, USA; The Joint Biomedical Engineering Graduate Program, University of North Carolina-North Carolina State University, Raleigh, NC, USA
| | - Sean C McConnell
- Section of Hematology-Oncology and Stem Cell Transplant, Department of Pediatrics, The University of Chicago, KCBD 5120, Chicago, IL 60637, USA
| | - Jeffrey A Yoder
- Department of Molecular Biomedical Sciences, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27607, USA; Center for Comparative Medicine and Translational Research, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27607, USA.
| | - Jill L O de Jong
- Section of Hematology-Oncology and Stem Cell Transplant, Department of Pediatrics, The University of Chicago, KCBD 5120, Chicago, IL 60637, USA.
| |
Collapse
|
32
|
Sever L, Vo NTK, Bols NC, Dixon B. Expression of tapasin in rainbow trout tissues and cell lines and up regulation in a monocyte/macrophage cell line (RTS11) by a viral mimic and viral infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 44:86-93. [PMID: 24321527 DOI: 10.1016/j.dci.2013.11.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Revised: 11/26/2013] [Accepted: 11/27/2013] [Indexed: 06/03/2023]
Abstract
Tapasin is a transmembrane glycoprotein that acts as a bridge between the transporter associated with antigen processing and the MHC class I receptor in mammals. Through the development of antibody against trout tapasin, this report demonstrates the detection of trout tapasin as a N-glycosylated 48 kDa protein. Tissue and cell line distribution revealed that tapasin protein is expressed mainly in immune system organs and in rainbow trout epithelial cell lines from gill (RTgill-W1), liver (RTL-W1), and intestine (RTgutGC). An additional 20 kDa band was observed in tissues and cell lines, and appeared to be most prominent in RTgutGC but was absent in peripheral blood leukocytes. Tapasin 48 kDa protein was most strongly expressed in RTS11 (monocyte/macrophage cell line) and its regulation following dsRNA stimulation was explored. Upon poly I:C treatment and Chum Salmon Reovirus (CSV) infection, tapasin protein expression was upregulated up to 3.5 fold and 3 fold respectively, in parallel with increased expression of the glycosylated MH class I heavy chain, whereas the expression of the 20 kDa form remained unchanged. Overall this work demonstrates the induction of tapasin protein by dsRNA stimulation, which implies its possible conserved regulation during viral infection in teleost cells.
Collapse
Affiliation(s)
- Lital Sever
- Department of Biology, University of Waterloo, 200 University Ave W., Waterloo, Ontario N2L 3G1, Canada
| | - Nguyen T K Vo
- Department of Biology, University of Waterloo, 200 University Ave W., Waterloo, Ontario N2L 3G1, Canada
| | - Niels C Bols
- Department of Biology, University of Waterloo, 200 University Ave W., Waterloo, Ontario N2L 3G1, Canada
| | - Brian Dixon
- Department of Biology, University of Waterloo, 200 University Ave W., Waterloo, Ontario N2L 3G1, Canada.
| |
Collapse
|
33
|
Sever L, Vo NTK, Lumsden J, Bols NC, Dixon B. Induction of rainbow trout MH class I and accessory proteins by viral haemorrhagic septicaemia virus. Mol Immunol 2014; 59:154-62. [PMID: 24607971 DOI: 10.1016/j.molimm.2014.02.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 01/13/2014] [Accepted: 02/08/2014] [Indexed: 01/23/2023]
Abstract
Major histocompatibility (MH) class I receptors are glycoproteins which play a critical role during responses to intracellular pathogens by presenting endogenous peptides to cytotoxic T cell lymphocytes (CD8+). To date, little is known about MH class I regulation at the protein level during viral infections in fish. In this study, we characterised the MH class I pathway response to polyinosinic-polycytidylic acid (poly I:C) and upon infection with viral haemorrhagic septicemia virus (VHSV) genotype IVa using the rainbow trout monocyte/macrophage cell line RTS11. A 14-day challenge with VHSV IVa at 14°C demonstrated enhanced expression of the class I heavy chain, β2 microglobulin (β2M) and tapasin, while the expression of other accessory molecules ERp57 and calreticulin remained unchanged. However, when infection occurred at 2°C no change in expression levels of any of these molecules was observed. β2M accumulated in the media of RTS11 over time, however the β2M concentrations were 2 fold higher in cultures infected with VHSV 14 days post infection. Strikingly, when cells were maintained at 2°C the secretion of β2M was significantly reduced in both infected and non-infected cultures. These results indicate that VHSV infection alters the kinetics of β2M release as well as the expression of MH class I and suggests that cellular immunity against VHSV can be compromised at low temperatures which may increase host susceptibility to this virus during the winter.
Collapse
Affiliation(s)
- Lital Sever
- Department of Biology, University of Waterloo, 200 University Ave W., Waterloo, ON, Canada N2L 3G1; Department of Pathobiology University of Guelph, 50 Stone Road E., Guelph, ON, Canada N1G 2W1
| | - Nguyen T K Vo
- Department of Biology, University of Waterloo, 200 University Ave W., Waterloo, ON, Canada N2L 3G1; Department of Pathobiology University of Guelph, 50 Stone Road E., Guelph, ON, Canada N1G 2W1
| | - John Lumsden
- Department of Biology, University of Waterloo, 200 University Ave W., Waterloo, ON, Canada N2L 3G1; Department of Pathobiology University of Guelph, 50 Stone Road E., Guelph, ON, Canada N1G 2W1
| | - Niels C Bols
- Department of Biology, University of Waterloo, 200 University Ave W., Waterloo, ON, Canada N2L 3G1; Department of Pathobiology University of Guelph, 50 Stone Road E., Guelph, ON, Canada N1G 2W1
| | - Brian Dixon
- Department of Biology, University of Waterloo, 200 University Ave W., Waterloo, ON, Canada N2L 3G1; Department of Pathobiology University of Guelph, 50 Stone Road E., Guelph, ON, Canada N1G 2W1.
| |
Collapse
|
34
|
Wang T, Secombes CJ. The cytokine networks of adaptive immunity in fish. FISH & SHELLFISH IMMUNOLOGY 2013; 35:1703-1718. [PMID: 24036335 DOI: 10.1016/j.fsi.2013.08.030] [Citation(s) in RCA: 213] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 08/30/2013] [Accepted: 08/31/2013] [Indexed: 05/28/2023]
Abstract
Cytokines, produced at the site of entry of a pathogen, drive inflammatory signals that regulate the capacity of resident and newly arrived phagocytes to destroy the invading pathogen. They also regulate antigen presenting cells (APCs), and their migration to lymph nodes to initiate the adaptive immune response. When naive CD4+ T cells recognize a foreign antigen-derived peptide presented in the context of major histocompatibility complex class II on APCs, they undergo massive proliferation and differentiation into at least four different T-helper (Th) cell subsets (Th1, Th2, Th17, and induced T-regulatory (iTreg) cells in mammals. Each cell subset expresses a unique set of signature cytokines. The profile and magnitude of cytokines produced in response to invasion of a foreign organism or to other danger signals by activated CD4+ T cells themselves, and/or other cell types during the course of differentiation, define to a large extent whether subsequent immune responses will have beneficial or detrimental effects to the host. The major players of the cytokine network of adaptive immunity in fish are described in this review with a focus on the salmonid cytokine network. We highlight the molecular, and increasing cellular, evidence for the existence of T-helper cells in fish. Whether these cells will match exactly to the mammalian paradigm remains to be seen, but the early evidence suggests that there will be many similarities to known subsets. Alternative or additional Th populations may also exist in fish, perhaps influenced by the types of pathogen encountered by a particular species and/or fish group. These Th cells are crucial for eliciting disease resistance post-vaccination, and hopefully will help resolve some of the difficulties in producing efficacious vaccines to certain fish diseases.
Collapse
Affiliation(s)
- Tiehui Wang
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK.
| | | |
Collapse
|
35
|
Pooley NJ, Tacchi L, Secombes CJ, Martin SAM. Inflammatory responses in primary muscle cell cultures in Atlantic salmon (Salmo salar). BMC Genomics 2013; 14:747. [PMID: 24180744 PMCID: PMC3819742 DOI: 10.1186/1471-2164-14-747] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 10/26/2013] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND The relationship between fish health and muscle growth is critical for continued expansion of the aquaculture industry. The effect of immune stimulation on the expression of genes related to the energy balance of fish is poorly understood. In mammals immune stimulation results in major transcriptional changes in muscle, potentially to allow a reallocation of amino acids for use in the immune response and energy homeostasis. The aim of this study was to investigate the effects of immune stimulation on fish muscle gene expression. RESULTS Atlantic salmon (Salmo salar) primary muscle cell cultures were stimulated with recombinant (r)IL-1β, a major proinflammatory cytokine, for 24 h in order to simulate an acute immune response. The transcriptomic response was determined by RNA hybridization to a 4 × 44 K Agilent Atlantic salmon microarray platform. The rIL-1β stimulation induced the expression of genes related to both the innate and adaptive immune systems. In addition there were highly significant changes in the expression of genes related to regulation of the cell cycle, growth/structural proteins, proteolysis and lipid metabolism. Of interest were a number of IGF binding proteins that were differentially expressed, which may demonstrate cross talk between the growth and immune systems. CONCLUSION We show rIL-1β modulates the expression of not only immune related genes, but also that of genes involved in processes related to growth and metabolism. Co-stimulation of muscle cells with both rIGF-I and rIL-1β demonstrates cross talk between these pathways providing potential avenues for further research. This study highlights the potential negative effects of inflammation on muscle protein deposition and growth in fish and extends our understanding of energy allocation in ectothermic animals.
Collapse
Affiliation(s)
- Nicholas J Pooley
- Institute of Biological and Environmental Sciences, University of Aberdeen, Tillydrone Avenue, Aberdeen AB24 2TZ, UK
| | - Luca Tacchi
- Institute of Biological and Environmental Sciences, University of Aberdeen, Tillydrone Avenue, Aberdeen AB24 2TZ, UK
- Current address: Centre for Evolutionary and Theoretical Immunology, University of New Mexico, Albuquerque, NM 87131-0001, USA
| | - Christopher J Secombes
- Institute of Biological and Environmental Sciences, University of Aberdeen, Tillydrone Avenue, Aberdeen AB24 2TZ, UK
| | - Samuel AM Martin
- Institute of Biological and Environmental Sciences, University of Aberdeen, Tillydrone Avenue, Aberdeen AB24 2TZ, UK
| |
Collapse
|
36
|
Lee PT, Zou J, Holland JW, Martin SAM, Kanellos T, Secombes CJ. Identification and characterization of TLR7, TLR8a2, TLR8b1 and TLR8b2 genes in Atlantic salmon (Salmo salar). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 41:295-305. [PMID: 23747412 DOI: 10.1016/j.dci.2013.05.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 05/15/2013] [Accepted: 05/15/2013] [Indexed: 06/02/2023]
Abstract
Mammalian Toll-like receptor (TLR) 7 and 8 are responsible for recognizing viral single-stranded RNA (ssRNA) and are activated by anti-viral imidazoquinoline compounds, leading to a series of defensive mechanisms being launched to protect the host against viruses. In this study, we identified two TLR7 (with one probably a pseudogene) and three TLR8 genes, namely TLR8a2, TLR8b1 and TLR8b2 from Atlantic salmon (Salmo salar) whole-genome shotgun (WGS) contigs. Bioinformatics analysis showed that salmon TLR7 and TLR8a2 are closely related to the corresponding trout orthologs, however, salmon TLR8b1 and TLR8b2 share the highest amino acid sequence similarity to zebrafish TLR8b and formed a subfamily of the piscine TLR8 molecules in phylogenetic tree analysis. A conserved gene synteny was found with the salmon TLR7/8a members as seen in other vertebrate loci. Deduced domain organisation of salmon TLR7 and TLR8 molecules showed similar structural features, with equal numbers of leucine-rich repeats (LRRs) and insertion motifs. Individual TLR molecules were expressed in a similar pattern between parr and post-smolts, with a high expression level in immune tissues. Promoter analysis predicted several transcription factor binding sites in the TLR8a1/2 and TLR8b1 5' flanking regions, namely C/EBP, AP-1, STAT, NFκB, and IRF family, suggesting cytokine regulation of the genes. Hence, three recombinant cytokines, type I IFN, IFNγ and IL-1β were used to study the regulation of the salmon TLR gene expression levels in primary head kidney cells and the Salmon Head Kidney-1 (SHK-1) cell line. Salmon TLR7 and TLR8a1 gene expression was more sensitive to type I IFN and IFNγ treatment in primary head kidney cells and SHK-1 cells respectively, with no significant up-regulation of TLR8a2 and TLR8b2 by any of the treatments. On the other hand, salmon TLR8a1 and TLR8b1 were most sensitive to IL-1β treatment in SHK-1 cells and primary head kidney cells, respectively. TLR8b2 was undetectable in SHK-1 cells under these same conditions.
Collapse
Affiliation(s)
- P T Lee
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| | | | | | | | | | | |
Collapse
|
37
|
Álvarez CA, Santana PA, Guzmán F, Marshall S, Mercado L. Detection of the hepcidin prepropeptide and mature peptide in liver of rainbow trout. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 41:77-81. [PMID: 23603124 DOI: 10.1016/j.dci.2013.04.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 03/27/2013] [Accepted: 04/03/2013] [Indexed: 06/02/2023]
Abstract
Hepcidin is a small, cationic peptide which displays antimicrobial activities and iron regulatory function. Originally identified in mammals, this peptide is also present in fish. Hepcidin mRNA is predominantly expressed in liver and is regulated by iron and pathogen infection. In this work, we characterized the expression of trout hepcidin at protein level using rabbit antisera. Results showed that the prepropeptide of hepcidin can be detected by Western Blot in liver tissue from trout injected with iron or lipopolysaccharide. The mature hepcidin peptide was detected at the ionized state 5+(m/z 577.2) by HPLC-ESI-MS in acid extracts from liver tissue. Moreover, hepcidin peptide was located in trout liver imprints by immunofluorescence. These results showed that hepcidin peptide is up-regulated by iron and bacterial components in the trout liver. This up-regulation could be a potential indicator of disease susceptibility, suggesting that hepcidin regulates iron homeostasis in salmonids.
Collapse
Affiliation(s)
- Claudio A Álvarez
- Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile.
| | | | | | | | | |
Collapse
|
38
|
Lu XJ, Hang XY, Yin L, He YQ, Chen J, Shi YH, Li CH. Sequencing of the first ayu (Plecoglossus altivelis) macrophage transcriptome and microarray development for investigation the effect of LECT2 on macrophages. FISH & SHELLFISH IMMUNOLOGY 2013; 34:497-504. [PMID: 23257205 DOI: 10.1016/j.fsi.2012.11.047] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 11/26/2012] [Accepted: 11/27/2012] [Indexed: 06/01/2023]
Abstract
Macrophages play an important role in first-line host defense of innate immune in fishes. However, it is difficult to investigate cellular mechanism of immune response in fish species with little genomic information available. Here we present the first use of RNA-Sequencing to study the macrophage transcriptome of ayu, Plecoglossus altivelis, which is an economically important fish in East Asia. De novo assembly generated 49,808 non-redundant consensus sequences, among which 23,490 transcripts found respective coding sequences. 15,707 transcripts are predicted to be involved in known metabolic or signaling pathways. The sequences were then used to develop a microarray for measurement the effect of recombinant LECT2 on ayu macrophages. LECT2 altered expression of a variety of genes mainly implicated in actin cytoskeleton, pattern recognition receptors and cytokines. Meanwhile, LECT2 enhanced phagocytosis, bacterial killing, and respiratory burst in ayu macrophages, which supported the thought derived from the microarray data that LECT2 activates macrophages. In conclusion, our results contribute to understanding the specific regulation mechanism of LECT2 in macrophage activation, and the combination of transcriptome analysis and microarray assay is a good method for screening a special tissue or cell response to a stimulus or pathogen in non-model fish species.
Collapse
Affiliation(s)
- Xin-Jiang Lu
- School of Marine Sciences, Ningbo University, Ningbo City, Zhejiang Province 315211, China
| | | | | | | | | | | | | |
Collapse
|
39
|
Heinecke RD, Buchmann K. Inflammatory response of rainbow trout Oncorhynchus mykiss (Walbaum, 1792) larvae against Ichthyophthirius multifiliis. FISH & SHELLFISH IMMUNOLOGY 2013; 34:521-528. [PMID: 23261502 DOI: 10.1016/j.fsi.2012.11.036] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 11/26/2012] [Accepted: 11/27/2012] [Indexed: 06/01/2023]
Abstract
At hatching, the immune system of the rainbow trout larva is not fully developed. The larva emerges from the egg and is exposed to the aquatic freshwater environment containing pathogenic organisms. At this early stage, protection from disease causing organisms is thought to depend on innate immune mechanisms. Here, we studied the ability of young post-hatch rainbow trout larvae to respond immunologically to an infection with Ichthyophthirius multifiliis and also report on the localization of 5 different immune relevant molecules in the tissue of infected and uninfected larvae. Quantitative RT-PCR (qPCR) was used to analyze the genetic regulation of IL-1β, IL-8, IL-6, TNF-α, iNOS, SAA, cathelicidin-2, hepcidin, IL-10, IL-22, IgM and IgT. Also, a panel of 5 monoclonal antibodies was used to investigate the presence and localization of the proteins CD8, SAA, MHCII, IgM and IgT. At 10 days (84 degree days) post-hatching, larvae were infected with I. multifiliis and sampled for qPCR at 3, 6, 12, 24, 48 and 72 h post-infection (p.i.). At 72 h p.i. samples were taken for antibody staining. The first of the examined genes to be up-regulated was IL-1β. Subsequently, IL-8 and cathelicidin-2 were up-regulated and later TNF-α, hepcidin, IL-6, iNOS and SAA. Immunohistochemical staining showed presence of CD8 and MHCII in the thymus of both infected and non-infected larvae. Staining of MHCII and SAA was seen at sites of parasite localization and weak staining of SAA was seen in the liver of infected larvae. Staining of IgT was seen at site of infection in the gills which may be one of the earliest adaptive factors seen. No positive staining was seen for IgM. The study illustrates that rainbow trout larvae as young as 10 days (84 degree days) post-hatch are able to regulate important immune relevant cytokines, chemokines and acute phase proteins in response to infection with a skin parasitizing protozoan parasite.
Collapse
Affiliation(s)
- Rasmus D Heinecke
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark.
| | | |
Collapse
|
40
|
Kono T, Takayama H, Nagamine R, Korenaga H, Sakai M. Establishment of a multiplex RT-PCR assay for the rapid detection of fish cytokines. Vet Immunol Immunopathol 2012; 151:90-101. [PMID: 23237907 DOI: 10.1016/j.vetimm.2012.10.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 10/19/2012] [Accepted: 10/30/2012] [Indexed: 02/07/2023]
Abstract
To monitor the expression of cytokine genes in Japanese pufferfish, a novel platform for quantitative multiplexed analysis was developed. This custom-designed multiplex RT-PCR assay was used to analyze the expression profiles of 19 cytokine genes, including pro-inflammatory (IL-1β, IL-6, IL-17A/F3, IL-18, TNF-α, TNF-N), anti-inflammatory (IL-4/13A, IL-4/13B, IL-10), T-cell proliferation/differentiation (IL-2, IL-15, IL-21, TGF-β1), B-cell activation/differentiation (IL-7, IL-6, IL-4/13A, IL-4/13B), NK cell stimulation (IL-12p35 and IL-12p40), induction of anti-viral activity (I-IFN-1 and IFN-γ), and monocyte/macrophage progenitor cell proliferation (M-CSF1b) cytokines in head kidney cells under immune stimulatory conditions. The expression profiles were dissimilar in the unstimulated control and immune-stimulated cells. Moreover, increased expression profile was observed due to different stimulations for IL-1β, IL-6, IL-10, IL-12p35, IL-12p40, IL-21, TNF-α, TNF-N, I-IFN-1 and IFN-γ genes. These results suggest that cytokine genes could be used as biomarkers to know the immune status of fish. The constructed multiplex RT-PCR assay will enhance understanding on immune regulation by cytokines in fish.
Collapse
Affiliation(s)
- Tomoya Kono
- Interdisciplinary Research Organization, University of Miyazaki, 1-1 Gakuen kibanadai-nishi, Miyazaki 889-2192, Japan.
| | | | | | | | | |
Collapse
|
41
|
Haugland GT, Jordal AEO, Wergeland HI. Characterization of small, mononuclear blood cells from salmon having high phagocytic capacity and ability to differentiate into dendritic like cells. PLoS One 2012; 7:e49260. [PMID: 23166624 PMCID: PMC3498127 DOI: 10.1371/journal.pone.0049260] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 10/04/2012] [Indexed: 12/16/2022] Open
Abstract
Phagocytes are the principal component of the innate immune system, playing a key role in the clearance of foreign particles that include potential pathogens. In vertebrates, both neutrophils and mononuclear cells like monocytes, macrophages and dendritic cells are all professional phagocytes. In teleosts, B-lymphocytes also have potent phagocytic ability. We have isolated a population of small (<5 µm), mononuclear blood cells from Atlantic salmon (Salmo salar L.) not previously characterized. In order to identify them, we have performed morphological, gene expression, flow cytometry, cytochemical, ultrastructural and functional analyses. Interestingly, they highly express the gene encoding CD83, the most characteristic cell surface marker for dendritic cells in mammals, and MHC class II limited to professional antigen presenting cells. They did not express genes nor did they have cell markers for B-cells, T-cells, monocytes/macrophages or neutrophils as shown by qRT-PCR, flow cytometry and immunoblotting. A remarkable feature of these cells is their potent phagocytic capacity. Their oxygen-independent killing mechanism, as shown by intense acid phosphatase staining, is supported by lack of respiratory burst and myeloperoxidase activity and the acid phosphatase's sensitivity to tartrate. They show a high level of morphological plasticity, as, upon stimulation with mitogens, they change morphology and obtain branching protrusions similarly to dendritic cells. We suggest, based on our findings, that the small, round cells described here are progenitor cells with potential to differentiate into dendritic like cells, although we can not exclude the possibility that they represent a novel cell type.
Collapse
Affiliation(s)
- Gyri T Haugland
- Department of Biology, University of Bergen, Bergen High-Technology Centre, Bergen, Norway.
| | | | | |
Collapse
|
42
|
de Bruijn I, Belmonte R, Anderson VL, Saraiva M, Wang T, van West P, Secombes CJ. Immune gene expression in trout cell lines infected with the fish pathogenic oomycete Saprolegnia parasitica. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2012; 38:44-54. [PMID: 22522286 DOI: 10.1016/j.dci.2012.03.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 03/30/2012] [Accepted: 03/30/2012] [Indexed: 05/31/2023]
Abstract
The oomycete Saprolegnia parasitica causes significant losses in the aquaculture industry, mainly affecting salmon, trout and catfish. Since the ban of malachite green, effective control measures are currently not available prompting a re-evaluation of the potential for immunological intervention. In this study, the immune response of salmonid cells is investigated at the transcript level, by analysis of a large set of immune response genes in four different rainbow trout cell lines (RTG-2, RTGill, RTL and RTS11) upon infection with S. parasitica. Proinflammatory cytokine transcripts were induced in all four cell lines, including IL-1β1, IL-8, IL-11, TNF-α2, as well as other components of the innate defences, including COX-2, the acute phase protein serum amyloid A and C-type lectin CD209a and CD209b. However, differences between the four cell lines were found. For example, the fold change of induction was much higher in the epithelial RTL and macrophage-like RTS11 cell lines compared to the fibroblast cell lines RTG-2 and RTGill. Several antimicrobial peptides (AMPs) were also up-regulated in response to Saprolegnia infection, including hepcidin and cathelicidin 1 (rtCATH1) and 2 (rtCATH2). An rtCATH2 peptide was synthesised and tested for activity and whilst it showed no killing activity for zoospores, it was able to delay sporulation of S. parasitica. These results demonstrate that particular immune genes are up-regulated in response to S. parasitica infection and that AMPs may play a crucial role in the first line of defence against oomycetes in fish.
Collapse
Affiliation(s)
- Irene de Bruijn
- Aberdeen Oomycete Laboratory, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, UK
| | | | | | | | | | | | | |
Collapse
|
43
|
Roles of inflammatory caspases during processing of zebrafish interleukin-1β in Francisella noatunensis infection. Infect Immun 2012; 80:2878-85. [PMID: 22689811 DOI: 10.1128/iai.00543-12] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The interleukin-1 family of cytokines are essential for the control of pathogenic microbes but are also responsible for devastating autoimmune pathologies. Consequently, tight regulation of inflammatory processes is essential for maintaining homeostasis. In mammals, interleukin-1 beta (IL-1β) is primarily regulated at two levels, transcription and processing. The main pathway for processing IL-1β is the inflammasome, a multiprotein complex that forms in the cytosol and which results in the activation of inflammatory caspase (caspase 1) and the subsequent cleavage and secretion of active IL-1β. Although zebrafish encode orthologs of IL-1β and inflammatory caspases, the processing of IL-1β by activated caspase(s) has never been examined. Here, we demonstrate that in response to infection with the fish-specific bacterial pathogen Francisella noatunensis, primary leukocytes from adult zebrafish display caspase-1-like activity that results in IL-1β processing. Addition of caspase 1 or pancaspase inhibitors considerably abrogates IL-1β processing. As in mammals, this processing event is concurrent with the secretion of cleaved IL-1β into the culture medium. Furthermore, two putative zebrafish inflammatory caspase orthologs, caspase A and caspase B, are both able to cleave IL-1β, but with different specificities. These results represent the first demonstration of processing and secretion of zebrafish IL-1β in response to a pathogen, contributing to our understanding of the evolutionary processes governing the regulation of inflammation.
Collapse
|
44
|
Morrison RN, Young ND, Nowak BF. Description of an Atlantic salmon (Salmo salar L.) type II interleukin-1 receptor cDNA and analysis of interleukin-1 receptor expression in amoebic gill disease-affected fish. FISH & SHELLFISH IMMUNOLOGY 2012; 32:1185-1190. [PMID: 22433573 DOI: 10.1016/j.fsi.2012.03.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 02/29/2012] [Accepted: 03/05/2012] [Indexed: 05/31/2023]
Abstract
Previously, we showed that IL-1β transcription is induced in the gills of amoebic gill disease (AGD)-affected fish in an AGD lesion-restricted fashion. However, in this environment, there is very little evidence of inflammation on histopathological or transcriptional levels and we hypothesised that aberrant signalling may occur. As a first step in investigating this issue, we cloned and sequenced the Atlantic salmon IL-1 receptor type II (IL-1RII) mRNA, and then examined the expression of both the IL-1RI (IL-1 receptor-like protein) and II during Neoparamoeba perurans infection. In gill lesions from AGD-affected fish, a step-wise temporal increase in the relative expression of IL-1β coincided with a significant reduction in IL-1RI, whereas the IL-1RII mRNA remained unchanged. Down-regulation of IL-1RI could explain the paucity of inflammation in affected tissue, although simultaneous up-regulation of IL-1β-inducible transcripts indicated that this is not due to a complete blockage of the IL-1RI pathway. Rather, it appears that IL-1RI transcription is reduced and this rate limits the effects of chronic IL-1β over-expression.
Collapse
Affiliation(s)
- R N Morrison
- National Centre for Marine Conservation and Resource Sustainability, University of Tasmania, Launceston 7250, Australia.
| | | | | |
Collapse
|
45
|
Functional identification of dendritic cells in the teleost model, rainbow trout (Oncorhynchus mykiss). PLoS One 2012; 7:e33196. [PMID: 22427987 PMCID: PMC3299753 DOI: 10.1371/journal.pone.0033196] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 02/06/2012] [Indexed: 01/08/2023] Open
Abstract
Dendritic cells are specialized antigen presenting cells that bridge innate and adaptive immunity in mammals. This link between the ancient innate immune system and the more evolutionarily recent adaptive immune system is of particular interest in fish, the oldest vertebrates to have both innate and adaptive immunity. It is unknown whether dendritic cells co-evolved with the adaptive response, or if the connection between innate and adaptive immunity relied on a fundamentally different cell type early in evolution. We approached this question using the teleost model organism, rainbow trout (Oncorhynchus mykiss), with the aim of identifying dendritic cells based on their ability to stimulate naïve T cells. Adapting mammalian protocols for the generation of dendritic cells, we established a method of culturing highly motile, non-adherent cells from trout hematopoietic tissue that had irregular membrane processes and expressed surface MHCII. When side-by-side mixed leukocyte reactions were performed, these cells stimulated greater proliferation than B cells or macrophages, demonstrating their specialized ability to present antigen and therefore their functional homology to mammalian dendritic cells. Trout dendritic cells were then further analyzed to determine if they exhibited other features of mammalian dendritic cells. Trout dendritic cells were found to have many of the hallmarks of mammalian DCs including tree-like morphology, the expression of dendritic cell markers, the ability to phagocytose small particles, activation by toll-like receptor-ligands, and the ability to migrate in vivo. As in mammals, trout dendritic cells could be isolated directly from the spleen, or larger numbers could be derived from hematopoietic tissue and peripheral blood mononuclear cells in vitro.
Collapse
|
46
|
Tacchi L, Casadei E, Bickerdike R, Secombes CJ, Martin SA. Cloning and expression analysis of the Mitochondrial Ubiquitin Ligase Activator of NF-κB (MULAN) in Atlantic salmon (Salmo salar). Mol Immunol 2011; 49:558-65. [DOI: 10.1016/j.molimm.2011.10.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 10/10/2011] [Accepted: 10/13/2011] [Indexed: 12/27/2022]
|
47
|
Secombes CJ, Wang T, Bird S. The interleukins of fish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2011; 35:1336-1345. [PMID: 21605591 DOI: 10.1016/j.dci.2011.05.001] [Citation(s) in RCA: 211] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Revised: 04/10/2011] [Accepted: 05/05/2011] [Indexed: 05/28/2023]
Abstract
Interleukins are a subgroup of cytokines, molecules involved in the intercellular regulation of the immune system. The term interleukin was first coined in 1979 to refer to molecules that signal between different leucocyte types, although not exclusively restricted to leucocyte communication. Whilst it is now known that interleukins are produced by a wide variety of cell types, nevertheless many are synthesised by CD4(+) T helper cells, macrophages/monocytes and endothelial cells. The nomenclature is relatively straightforward, with interleukin 1 the first discovered and interleukin 2 the second, etc. However, whilst 35 interleukins are currently described in mammals, several are in fact terms referring to subfamilies of more molecules, as with the IL-1 family where 11 members (IL-1F1-IL-1F11) are present, and the IL-17 family where 6 members (IL-17A-IL-17F) are present. So the total is much higher and splice variants and allelic variation increase this diversity further. This review will focus on what is known about interleukins in fish, and will refer to the major subfamilies rather than try to work through 35 descriptions in a row. It is clear that many direct homologues of molecules known in mammals are present in fish, but that not all are present and some novel interleukins exist that may have arisen from fish specific gene duplication events.
Collapse
Affiliation(s)
- C J Secombes
- Scottish Fish Immunology Research Centre, University of Aberdeen, Zoology Building, Tillydrone Avenue, Aberdeen AB24 2TZ, Scotland, UK.
| | | | | |
Collapse
|
48
|
Zou J, Secombes CJ. Teleost fish interferons and their role in immunity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2011; 35:1376-1387. [PMID: 21781984 DOI: 10.1016/j.dci.2011.07.001] [Citation(s) in RCA: 278] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 05/24/2011] [Accepted: 07/05/2011] [Indexed: 05/31/2023]
Abstract
Interferons (IFNs) are the hallmark of the vertebrate antiviral system. Two of the three IFN families identified in higher vertebrates are now known to be important for antiviral defence in teleost fish. Based on the cysteine patterns, the fish type I IFN family can be divided into two subfamilies, which possibly interact with distinct receptors for signalling. The fish type II IFN family consists of two members, IFN-γ with similar functions to mammalian IFN-γ and a teleost specific IFN-γ related (IFN-γrel) molecule whose functions are not fully elucidated. These two type II IFNs also appear to bind to distinct receptors to exert their functions. It has become clear that fish IFN responses are mediated by the host pattern recognition receptors and an array of transcription factors including the IFN regulatory factors, the Jak/Stat proteins and the suppressor of cytokine signalling (SOCS) molecules.
Collapse
Affiliation(s)
- Jun Zou
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK.
| | | |
Collapse
|
49
|
Verrier ER, Langevin C, Benmansour A, Boudinot P. Early antiviral response and virus-induced genes in fish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2011; 35:1204-1214. [PMID: 21414349 DOI: 10.1016/j.dci.2011.03.012] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 12/21/2010] [Accepted: 03/06/2011] [Indexed: 05/30/2023]
Abstract
In fish as in mammals, virus infections induce changes in the expression of many host genes. Studies conducted during the last fifteen years revealed a major contribution of the interferon system in fish antiviral response. This review describes the screening methods applied to compare the impact of virus infections on the transcriptome in different fish species. These approaches identified a "core" set of genes that are strongly induced in most viral infections. The "core" interferon-induced genes (ISGs) are generally conserved in vertebrates, some of them inhibiting a wide range of viruses in mammals. A selection of ISGs -PKR, vig-1/viperin, Mx, ISG15 and finTRIMs - is further analyzed here to illustrate the diversity and complexity of the mechanisms involved in establishing an antiviral state. Most of the ISG-based pathways remain to be directly determined in fish. Fish ISGs are often duplicated and the functional specialization of multigenic families will be of particular interest for future studies.
Collapse
Affiliation(s)
- Eloi R Verrier
- INRA, Fish Infection and Immunity, Molecular Virology and Immunology, Domaine de Vilvert, 78352 Jouy en Josas, France
| | | | | | | |
Collapse
|
50
|
Boltaña S, Roher N, Goetz FW, Mackenzie SA. PAMPs, PRRs and the genomics of gram negative bacterial recognition in fish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2011; 35:1195-1203. [PMID: 21453721 DOI: 10.1016/j.dci.2011.02.010] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 01/12/2011] [Accepted: 02/25/2011] [Indexed: 05/30/2023]
Abstract
Understanding the mechanisms that underpin pathogen recognition and subsequent orchestration of the immune response in fish is an area of significant importance for both basic research and management of health in aquaculture. In recent years much attention has been given to the identification of pattern recognition receptors (PRRs) in fish, however, characterisation of interactions with specific pathogen-associated molecular patterns (PAMPs) is still incomplete. Microarray studies have significantly contributed to functional studies and early descriptions of PAMP-PRR driven activation of specific response cassettes in the genome have been obtained although much is left to be done. In this review we will address gram negative (G-negative) bacterial recognition in fish addressing contributing factors such as structure-function relationships between G-negative PAMPs, current knowledge of fish PRRs and the input achieved by microarray-based studies ranging from in vivo infection studies to directed in vitro PAMP-cell studies. Finally we revisit the endotoxic recognition paradigm in fish and suggest a series of future perspectives that could contribute toward the further elucidation of G-negative bacterial recognition across the highly diverse group of vertebrates that encompass the fishes.
Collapse
Affiliation(s)
- Sebastian Boltaña
- Institute of Biotechnology and Biomedicine, Dep. Biologia Cel·lular, Immunologia i Fisiologia Animal, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | | | | | | |
Collapse
|