1
|
Osborne AJ, Bierzynska A, Colby E, Andag U, Kalra PA, Radresa O, Skroblin P, Taal MW, Welsh GI, Saleem MA, Campbell C. Multivariate canonical correlation analysis identifies additional genetic variants for chronic kidney disease. NPJ Syst Biol Appl 2024; 10:28. [PMID: 38459044 PMCID: PMC10924093 DOI: 10.1038/s41540-024-00350-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 02/20/2024] [Indexed: 03/10/2024] Open
Abstract
Chronic kidney diseases (CKD) have genetic associations with kidney function. Univariate genome-wide association studies (GWAS) have identified single nucleotide polymorphisms (SNPs) associated with estimated glomerular filtration rate (eGFR) and blood urea nitrogen (BUN), two complementary kidney function markers. However, it is unknown whether additional SNPs for kidney function can be identified by multivariate statistical analysis. To address this, we applied canonical correlation analysis (CCA), a multivariate method, to two individual-level CKD genotype datasets, and metaCCA to two published GWAS summary statistics datasets. We identified SNPs previously associated with kidney function by published univariate GWASs with high replication rates, validating the metaCCA method. We then extended discovery and identified previously unreported lead SNPs for both kidney function markers, jointly. These showed expression quantitative trait loci (eQTL) colocalisation with genes having significant differential expression between CKD and healthy individuals. Several of these identified lead missense SNPs were predicted to have a functional impact, including in SLC14A2. We also identified previously unreported lead SNPs that showed significant correlation with both kidney function markers, jointly, in the European ancestry CKDGen, National Unified Renal Translational Research Enterprise (NURTuRE)-CKD and Salford Kidney Study (SKS) datasets. Of these, rs3094060 colocalised with FLOT1 gene expression and was significantly more common in CKD cases in both NURTURE-CKD and SKS, than in the general population. Overall, by using multivariate analysis by CCA, we identified additional SNPs and genes for both kidney function and CKD, that can be prioritised for further CKD analyses.
Collapse
Affiliation(s)
- Amy J Osborne
- Intelligent Systems Laboratory, University of Bristol, Bristol, BS8 1TW, UK.
| | - Agnieszka Bierzynska
- Bristol Renal, University of Bristol and Bristol Royal Hospital for Children, Bristol, BS1 3NY, UK
| | - Elizabeth Colby
- Bristol Renal, University of Bristol and Bristol Royal Hospital for Children, Bristol, BS1 3NY, UK
| | - Uwe Andag
- Department of Metabolic and Renal Diseases, Evotec International GmbH, Marie-Curie-Strasse 7, 37079, Göttingen, Germany
| | - Philip A Kalra
- Department of Renal Medicine, Salford Royal Hospital, Northern Care Alliance NHS Foundation Trust, Stott Lane, Salford, M6 8HD, UK
| | - Olivier Radresa
- Department of Metabolic and Renal Diseases, Evotec International GmbH, Marie-Curie-Strasse 7, 37079, Göttingen, Germany
| | - Philipp Skroblin
- Department of Metabolic and Renal Diseases, Evotec International GmbH, Marie-Curie-Strasse 7, 37079, Göttingen, Germany
| | - Maarten W Taal
- Centre for Kidney Research and Innovation, University of Nottingham, Derby, UK
| | - Gavin I Welsh
- Bristol Renal, University of Bristol and Bristol Royal Hospital for Children, Bristol, BS1 3NY, UK
| | - Moin A Saleem
- Bristol Renal, University of Bristol and Bristol Royal Hospital for Children, Bristol, BS1 3NY, UK
| | - Colin Campbell
- Intelligent Systems Laboratory, University of Bristol, Bristol, BS8 1TW, UK.
| |
Collapse
|
2
|
Abstract
Sequential expression of claudins, a family of tight junction proteins, along the nephron mirrors the sequential expression of ion channels and transporters. Only by the interplay of transcellular and paracellular transport can the kidney efficiently maintain electrolyte and water homeostasis in an organism. Although channel and transporter defects have long been known to perturb homeostasis, the contribution of individual tight junction proteins has been less clear. Over the past two decades, the regulation and dysregulation of claudins have been intensively studied in the gastrointestinal tract. Claudin expression patterns have, for instance, been found to be affected in infection and inflammation, or in cancer. In the kidney, a deeper understanding of the causes as well as the effects of claudin expression alterations is only just emerging. Little is known about hormonal control of the paracellular pathway along the nephron, effects of cytokines on renal claudin expression or relevance of changes in paracellular permeability to the outcome in any of the major kidney diseases. By summarizing current findings on the role of specific claudins in maintaining electrolyte and water homeostasis, this Review aims to stimulate investigations on claudins as prognostic markers or as druggable targets in kidney disease.
Collapse
Affiliation(s)
- Luca Meoli
- Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, Rheumatology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Dorothee Günzel
- Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, Rheumatology, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
3
|
Cañadas-Garre M, Kunzmann AT, Anderson K, Brennan EP, Doyle R, Patterson CC, Godson C, Maxwell AP, McKnight AJ. Albuminuria-Related Genetic Biomarkers: Replication and Predictive Evaluation in Individuals with and without Diabetes from the UK Biobank. Int J Mol Sci 2023; 24:11209. [PMID: 37446387 PMCID: PMC10342310 DOI: 10.3390/ijms241311209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/26/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
Increased albuminuria indicates underlying glomerular pathology and is associated with worse renal disease outcomes, especially in diabetic kidney disease. Many single nucleotide polymorphisms (SNPs), associated with albuminuria, could be potentially useful to construct polygenic risk scores (PRSs) for kidney disease. We investigated the diagnostic accuracy of SNPs, previously associated with albuminuria-related traits, on albuminuria and renal injury in the UK Biobank population, with a particular interest in diabetes. Multivariable logistic regression was used to evaluate the influence of 91 SNPs on urine albumin-to-creatinine ratio (UACR)-related traits and kidney damage (any pathology indicating renal injury), stratifying by diabetes. Weighted PRSs for microalbuminuria and UACR from previous studies were used to calculate the area under the receiver operating characteristic curve (AUROC). CUBN-rs1801239 and DDR1-rs116772905 were associated with all the UACR-derived phenotypes, in both the overall and non-diabetic cohorts, but not with kidney damage. Several SNPs demonstrated different effects in individuals with diabetes compared to those without. SNPs did not improve the AUROC over currently used clinical variables. Many SNPs are associated with UACR or renal injury, suggesting a role in kidney dysfunction, dependent on the presence of diabetes in some cases. However, individual SNPs or PRSs did not improve the diagnostic accuracy for albuminuria or renal injury compared to standard clinical variables.
Collapse
Affiliation(s)
- Marisa Cañadas-Garre
- Molecular Epidemiology and Public Health Research Group, Centre for Public Health, Queen’s University Belfast, Institute for Clinical Sciences A, Royal Victoria Hospital, Belfast BT12 6BA, UK
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada-Andalusian Regional Government, PTS Granada, Avenida de la Ilustración 114, 18016 Granada, Spain
- Hematology Department, Hospital Universitario Virgen de las Nieves, Avenida de las Fuerzas Armadas 2, 18014 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Avenida de Madrid, 15, 18012 Granada, Spain
| | - Andrew T. Kunzmann
- Cancer Epidemiology Research Group, Centre for Public Health, Queen’s University Belfast, Institute for Clinical Sciences A, Royal Victoria Hospital, Belfast BT12 6BA, UK
| | - Kerry Anderson
- Molecular Epidemiology and Public Health Research Group, Centre for Public Health, Queen’s University Belfast, Institute for Clinical Sciences A, Royal Victoria Hospital, Belfast BT12 6BA, UK
| | - Eoin P. Brennan
- UCD Diabetes Complications Research Centre, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Ross Doyle
- UCD Diabetes Complications Research Centre, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, D04 V1W8 Dublin, Ireland
- School of Medicine, University College Dublin, Health Sciences Centre, Belfield, D04 V1W8 Dublin, Ireland
- Mater Misericordiae University Hospital, Eccles St., D07 R2WY Dublin, Ireland
| | - Christopher C. Patterson
- Molecular Epidemiology and Public Health Research Group, Centre for Public Health, Queen’s University Belfast, Institute for Clinical Sciences A, Royal Victoria Hospital, Belfast BT12 6BA, UK
| | - Catherine Godson
- UCD Diabetes Complications Research Centre, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, D04 V1W8 Dublin, Ireland
- School of Medicine, University College Dublin, Health Sciences Centre, Belfield, D04 V1W8 Dublin, Ireland
| | - Alexander P. Maxwell
- Molecular Epidemiology and Public Health Research Group, Centre for Public Health, Queen’s University Belfast, Institute for Clinical Sciences A, Royal Victoria Hospital, Belfast BT12 6BA, UK
- Regional Nephrology Unit, Level 11, Belfast City Hospital, Lisburn Road, Belfast BT9 7AB, UK
| | - Amy Jayne McKnight
- Molecular Epidemiology and Public Health Research Group, Centre for Public Health, Queen’s University Belfast, Institute for Clinical Sciences A, Royal Victoria Hospital, Belfast BT12 6BA, UK
| |
Collapse
|
4
|
Maxwell TJ, Franks PW, Kahn SE, Knowler WC, Mather KJ, Florez JC, Jablonski KA. Quantitative trait loci, G×E and G×G for glycemic traits: response to metformin and placebo in the Diabetes Prevention Program (DPP). J Hum Genet 2022; 67:465-473. [PMID: 35260800 PMCID: PMC10102970 DOI: 10.1038/s10038-022-01027-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 11/09/2022]
Abstract
The complex genetic architecture of type-2-diabetes (T2D) includes gene-by-environment (G×E) and gene-by-gene (G×G) interactions. To identify G×E and G×G, we screened markers for patterns indicative of interactions (relationship loci [rQTL] and variance heterogeneity loci [vQTL]). rQTL exist when the correlation between multiple traits varies by genotype and vQTL occur when the variance of a trait differs by genotype (potentially flagging G×G and G×E). In the metformin and placebo arms of the DPP (n = 1762) we screened 280,965 exomic and intergenic SNPs, for rQTL and vQTL patterns in association with year one changes from baseline in glycemia and related traits (insulinogenic index [IGI], insulin sensitivity index [ISI], fasting glucose and fasting insulin). Significant (p < 1.8 × 10-7) rQTL and vQTL generated a priori hypotheses of individual G×E tests for a SNP × metformin treatment interaction and secondarily for G×G screens. Several rQTL and vQTL identified led to 6 nominally significant (p < 0.05) metformin treatment × SNP interactions (4 for IGI, one insulin, and one glucose) and 12G×G interactions (all IGI) that exceeded experiment-wide significance (p < 4.1 × 10-9). Some loci are directly associated with incident diabetes, and others are rQTL and modify a trait's relationship with diabetes (2 diabetes/glucose, 2 diabetes/insulin, 1 diabetes/IGI). rs3197999, an ISI/insulin rQTL, is a possible gene damaging missense mutation in MST1, is associated with ulcerative colitis, sclerosing cholangitis, Crohn's disease, BMI and coronary artery disease. This study demonstrates evidence for context-dependent effects (G×G & G×E) and the complexity of these T2D-related traits.
Collapse
Affiliation(s)
- Taylor J Maxwell
- Computational Biology Institute, The George Washington University, Ashburn, VA, USA.
| | - Paul W Franks
- Genetic & Molecular Epidemiology Unit, Lund University Diabetes Center, Lund, Sweden
| | - Steven E Kahn
- VA Puget Sound Health Care System and University of Washington, Seattle, WA, USA
| | - William C Knowler
- National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, AZ, USA
| | - Kieren J Mather
- Center for Diabetes and Metabolic Diseases & Division of Endocrinology & Metabolism, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jose C Florez
- Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Programs in Metabolism and Medical & Population Genetics, Broad Institute, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Kathleen A Jablonski
- The Biostatistics Center, The Milken Institute of Public Health, The George Washington University, Rockville, MD, USA
| | | |
Collapse
|
5
|
Mohamed SA, Fernadez-Tajes J, Franks PW, Bennet L. GWAS in people of Middle Eastern descent reveals a locus protective of kidney function-a cross-sectional study. BMC Med 2022; 20:76. [PMID: 35227251 PMCID: PMC8886846 DOI: 10.1186/s12916-022-02267-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 01/18/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Type 2 diabetes is one of the leading causes of chronic kidney failure, which increases globally and represents a significant threat to public health. People from the Middle East represent one of the largest immigrant groups in Europe today. Despite poor glucose regulation and high risk for early-onset insulin-deficient type 2 diabetes, they have better kidney function and lower rates of all-cause and cardiovascular-specific mortality compared with people of European ancestry. Here, we assessed the genetic basis of estimated glomerular filtration rate (eGFR) and other metabolic traits in people of Iraqi ancestry living in southern Sweden. METHODS Genome-wide association study (GWAS) analyses were performed in 1201 Iraqi-born residents of the city of Malmö for eGFR and ten other metabolic traits using linear mixed-models to account for family structure. RESULTS The strongest association signal was detected for eGFR in CST9 (rs13037490; P value = 2.4 × 10-13), a locus previously associated with cystatin C-based eGFR; importantly, the effect (major) allele here contrasts the effect (minor) allele in other populations, suggesting favorable selection at this locus. Additional novel genome-wide significant loci for eGFR (ERBB4), fasting glucose (CAMTA1, NDUFA10, TRIO, WWC1, TRAPPC9, SH3GL2, ABCC11), quantitative insulin-sensitivity check index (METTL16), and HbA1C (CAMTA1, ME1, PAK1, RORA) were identified. CONCLUSIONS The genetic effects discovered here may help explain why people from the Middle East have better kidney function than those of European descent. Genetic predisposition to preserved kidney function may also underlie the observed survival benefits in Middle Eastern immigrants with type 2 diabetes.
Collapse
Affiliation(s)
- Siham A Mohamed
- Lund University Diabetes Center, Lund University, Malmö, Sweden.,Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Juan Fernadez-Tajes
- Lund University Diabetes Center, Lund University, Malmö, Sweden.,Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Paul W Franks
- Lund University Diabetes Center, Lund University, Malmö, Sweden. .,Department of Clinical Sciences, Lund University, Malmö, Sweden.
| | - Louise Bennet
- Department of Clinical Sciences, Lund University, Malmö, Sweden. .,Clinical Research and Trial Center, Lund University Hospital, Lund, Sweden.
| |
Collapse
|
6
|
Jiao H, Zhang M, Zhang Y, Wang Y, Li WD. Pathway Association Studies Reveal Gene Loci and Pathway Networks that Associated With Plasma Cystatin C Levels. Front Genet 2021; 12:711155. [PMID: 34899825 PMCID: PMC8656399 DOI: 10.3389/fgene.2021.711155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 11/09/2021] [Indexed: 01/09/2023] Open
Abstract
As a marker for glomerular filtration, plasma cystatin C level is used to evaluate kidney function. To decipher genetic factors that control the plasma cystatin C level, we performed genome-wide association and pathway association studies using United Kingdom Biobank data. One hundred fifteen loci yielded p values less than 1 × 10−100, three genes (clusters) showed the most significant associations, including the CST8-CST9 cluster on chromosome 20, the SH2B3-ATXN2 gene region on chromosome 12, and the SHROOM3-CCDC158 gene region on chromosome 4. In pathway association studies, forty significant pathways had FDR (false discovery rate) and or FWER (family-wise error rate) ≤ 0.001: spermatogenesis, leukocyte trans-endothelial migration, cell adhesion, glycoprotein, membrane lipid, steroid metabolic process, and insulin signaling pathways were among the most significant pathways that associated with the plasma cystatin C levels. We also performed Genome-wide association studies for eGFR, top associated genes were largely overlapped with those for cystatin C.
Collapse
Affiliation(s)
- Hongxiao Jiao
- Research Center of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Miaomiao Zhang
- Department of Genetics, College of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yuan Zhang
- Department of Genetics, College of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.,College of Public Health, Tianjin Medical University, Tianjin, China
| | - Yaogang Wang
- College of Public Health, Tianjin Medical University, Tianjin, China
| | - Wei-Dong Li
- Department of Genetics, College of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| |
Collapse
|
7
|
Lindström NO, Sealfon R, Chen X, Parvez RK, Ransick A, De Sena Brandine G, Guo J, Hill B, Tran T, Kim AD, Zhou J, Tadych A, Watters A, Wong A, Lovero E, Grubbs BH, Thornton ME, McMahon JA, Smith AD, Ruffins SW, Armit C, Troyanskaya OG, McMahon AP. Spatial transcriptional mapping of the human nephrogenic program. Dev Cell 2021; 56:2381-2398.e6. [PMID: 34428401 PMCID: PMC8396064 DOI: 10.1016/j.devcel.2021.07.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 05/06/2021] [Accepted: 07/27/2021] [Indexed: 12/11/2022]
Abstract
Congenital abnormalities of the kidney and urinary tract are among the most common birth defects, affecting 3% of newborns. The human kidney forms around a million nephrons from a pool of nephron progenitors over a 30-week period of development. To establish a framework for human nephrogenesis, we spatially resolved a stereotypical process by which equipotent nephron progenitors generate a nephron anlage, then applied data-driven approaches to construct three-dimensional protein maps on anatomical models of the nephrogenic program. Single-cell RNA sequencing identified progenitor states, which were spatially mapped to the nephron anatomy, enabling the generation of functional gene networks predicting interactions within and between nephron cell types. Network mining identified known developmental disease genes and predicted targets of interest. The spatially resolved nephrogenic program made available through the Human Nephrogenesis Atlas (https://sckidney.flatironinstitute.org/) will facilitate an understanding of kidney development and disease and enhance efforts to generate new kidney structures.
Collapse
Affiliation(s)
- Nils O Lindström
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| | - Rachel Sealfon
- Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, NY, USA; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Xi Chen
- Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, NY, USA; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Riana K Parvez
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Andrew Ransick
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Guilherme De Sena Brandine
- Molecular and Computational Biology, Division of Biological Sciences, University of Southern, Los Angeles, CA 90089, USA
| | - Jinjin Guo
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Bill Hill
- MRC Human Genetics Unit, MRC Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Tracy Tran
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Albert D Kim
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jian Zhou
- Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, NY, USA; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Alicja Tadych
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Aaron Watters
- Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, NY, USA
| | - Aaron Wong
- Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, NY, USA
| | - Elizabeth Lovero
- Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, NY, USA
| | - Brendan H Grubbs
- Maternal Fetal Medicine Division, Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Matthew E Thornton
- Maternal Fetal Medicine Division, Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jill A McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Andrew D Smith
- Molecular and Computational Biology, Division of Biological Sciences, University of Southern, Los Angeles, CA 90089, USA
| | - Seth W Ruffins
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Chris Armit
- MRC Human Genetics Unit, MRC Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK; BGI Hong Kong, 26/F, Kings Wing Plaza 2, 1 On Kwan Street, Shek Mun, NT, Hong Kong
| | - Olga G Troyanskaya
- Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, NY, USA; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA; Department of Computer Science, Princeton University, Princeton, NJ, USA.
| | - Andrew P McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
8
|
Remuzzi A, Remuzzi G. Insights into Glomerular Filtration and Albuminuria. N Engl J Med 2021; 385:478. [PMID: 34320300 DOI: 10.1056/nejmc2108129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Martinez-Arroyo O, Selma-Soriano E, Ortega A, Cortes R, Redon J. Small Rab GTPases in Intracellular Vesicle Trafficking: The Case of Rab3A/Raphillin-3A Complex in the Kidney. Int J Mol Sci 2021; 22:7679. [PMID: 34299299 PMCID: PMC8303874 DOI: 10.3390/ijms22147679] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 12/12/2022] Open
Abstract
Small Rab GTPases, the largest group of small monomeric GTPases, regulate vesicle trafficking in cells, which are integral to many cellular processes. Their role in neurological diseases, such as cancer and inflammation have been extensively studied, but their implication in kidney disease has not been researched in depth. Rab3a and its effector Rabphillin-3A (Rph3A) expression have been demonstrated to be present in the podocytes of normal kidneys of mice rats and humans, around vesicles contained in the foot processes, and they are overexpressed in diseases with proteinuria. In addition, the Rab3A knockout mice model induced profound cytoskeletal changes in podocytes of high glucose fed animals. Likewise, RphA interference in the Drosophila model produced structural and functional damage in nephrocytes with reduction in filtration capacities and nephrocyte number. Changes in the structure of cardiac fiber in the same RphA-interference model, open the question if Rab3A dysfunction would produce simultaneous damage in the heart and kidney cells, an attractive field that will require attention in the future.
Collapse
Affiliation(s)
- Olga Martinez-Arroyo
- Cardiometabolic and Renal Risk Research Group, INCLIVA Biomedical Research Institute, 46010 Valencia, Spain; (O.M.-A.); (R.C.)
| | - Estela Selma-Soriano
- Physiopathology of Cellular and Organic Oxidative Stress Group, University of Valencia, 46100 Valencia, Spain;
| | - Ana Ortega
- Cardiometabolic and Renal Risk Research Group, INCLIVA Biomedical Research Institute, 46010 Valencia, Spain; (O.M.-A.); (R.C.)
| | - Raquel Cortes
- Cardiometabolic and Renal Risk Research Group, INCLIVA Biomedical Research Institute, 46010 Valencia, Spain; (O.M.-A.); (R.C.)
| | - Josep Redon
- Cardiometabolic and Renal Risk Research Group, INCLIVA Biomedical Research Institute, 46010 Valencia, Spain; (O.M.-A.); (R.C.)
- CIBERObn, Carlos III Institute, 28029 Madrid, Spain
| |
Collapse
|
10
|
Effect of longevity genetic variants on the molecular aging rate. GeroScience 2021; 43:1237-1251. [PMID: 33948810 DOI: 10.1007/s11357-021-00376-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/20/2021] [Indexed: 12/18/2022] Open
Abstract
We conducted a genome-wide association study of 1320 centenarians from the New England Centenarian Study (median age = 104 years) and 2899 unrelated controls using >9 M genetic variants imputed to the HRC panel of ~65,000 haplotypes. The genetic variants with the most significant associations were correlated to 4131 proteins that were profiled in the serum of a subset of 224 study participants using a SOMAscan array. The genetic associations were replicated in a genome-wide association study of 480 centenarians and ~800 controls of Ashkenazi Jewish descent. The proteomic associations were replicated in a proteomic scan of approximately 1000 Ashkenazi Jewish participants from a third cohort. The analysis replicated a protein signature associated with APOE genotypes and confirmed strong overexpression of BIRC2 (p < 5E-16) and under-expression of APOB in carriers of the APOE2 allele (p < 0.05). The analysis also discovered and replicated associations between longevity variants and slower changes of protein biomarkers of aging, including a novel protein signature of rs2184061 (CDKN2A/CDKN2B in chromosome 9) that suggests a genetic regulation of GDF15. The analyses showed that longevity variants correlate with proteome signatures that could be manipulated to discover healthy-aging targets.
Collapse
|
11
|
Batai K, Cui Z, Arora A, Shah-Williams E, Hernandez W, Ruden M, Hollowell CMP, Hooker SE, Bathina M, Murphy AB, Bonilla C, Kittles RA. Genetic loci associated with skin pigmentation in African Americans and their effects on vitamin D deficiency. PLoS Genet 2021; 17:e1009319. [PMID: 33600456 PMCID: PMC7891745 DOI: 10.1371/journal.pgen.1009319] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 12/21/2020] [Indexed: 01/08/2023] Open
Abstract
A recent genome-wide association study (GWAS) in African descent populations identified novel loci associated with skin pigmentation. However, how genomic variations affect skin pigmentation and how these skin pigmentation gene variants affect serum 25(OH) vitamin D variation has not been explored in African Americans (AAs). In order to further understand genetic factors that affect human skin pigmentation and serum 25(OH)D variation, we performed a GWAS for skin pigmentation with 395 AAs and a replication study with 681 AAs. Then, we tested if the identified variants are associated with serum 25(OH) D concentrations in a subset of AAs (n = 591). Skin pigmentation, Melanin Index (M-Index), was measured using a narrow-band reflectometer. Multiple regression analysis was performed to identify variants associated with M-Index and to assess their role in serum 25(OH)D variation adjusting for population stratification and relevant confounding variables. A variant near the SLC24A5 gene (rs2675345) showed the strongest signal of association with M-Index (P = 4.0 x 10-30 in the pooled dataset). Variants in SLC24A5, SLC45A2 and OCA2 together account for a large proportion of skin pigmentation variance (11%). The effects of these variants on M-Index was modified by sex (P for interaction = 0.009). However, West African Ancestry (WAA) also accounts for a large proportion of M-Index variance (23%). M-Index also varies among AAs with high WAA and high Genetic Score calculated from top variants associated with M-Index, suggesting that other unknown genomic factors related to WAA are likely contributing to skin pigmentation variation. M-Index was not associated with serum 25(OH)D concentrations, but the Genetic Score was significantly associated with vitamin D deficiency (serum 25(OH)D levels less than 12 ng/mL) (OR, 1.30; 95% CI, 1.04-1.64). The findings support the hypothesis suggesting that skin pigmentation evolved responding to increased demand for subcutaneous vitamin D synthesis in high latitude environments.
Collapse
Affiliation(s)
- Ken Batai
- Department of Urology, University of Arizona, Tucson, Arizona, United States of America
| | - Zuxi Cui
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Amit Arora
- Department of Epidemiology and Biostatistics, University of Arizona, Tucson, Arizona, United States of America
| | - Ebony Shah-Williams
- Department of Medical and Molecular Genetics, Indiana University, Indianapolis, Indiana United States of America
| | - Wenndy Hernandez
- Department of Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - Maria Ruden
- Department of Surgery, Cook County Health and Hospitals System, Chicago, Illinois, United States of America
| | - Courtney M. P. Hollowell
- Department of Surgery, Cook County Health and Hospitals System, Chicago, Illinois, United States of America
| | - Stanley E. Hooker
- Division of Health Equities, Department of Population Sciences, City of Hope Comprehensive Cancer Center, Duarte, California, United States of America
| | - Madhavi Bathina
- Division of Health Equities, Department of Population Sciences, City of Hope Comprehensive Cancer Center, Duarte, California, United States of America
| | - Adam B. Murphy
- Department of Urology, Northwestern University, Chicago, Illinois, United States of America
| | - Carolina Bonilla
- Departamento de Medicina Preventiva, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Rick A. Kittles
- Division of Health Equities, Department of Population Sciences, City of Hope Comprehensive Cancer Center, Duarte, California, United States of America
- * E-mail:
| |
Collapse
|
12
|
Ahmed MM, Tazyeen S, Alam A, Farooqui A, Ali R, Imam N, Tamkeen N, Ali S, Malik MZ, Ishrat R. Deciphering key genes in cardio-renal syndrome using network analysis. Bioinformation 2021; 17:86-100. [PMID: 34393423 PMCID: PMC8340714 DOI: 10.6026/97320630017086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/31/2020] [Accepted: 01/26/2021] [Indexed: 12/23/2022] Open
Abstract
Cardio-renal syndrome (CRS) is a rapidly recognized clinical entity which refers to the inextricably connection between heart and renal impairment, whereby abnormality to one organ directly promotes deterioration of the other one. Biological markers help to gain insight into the pathological processes for early diagnosis with higher accuracy of CRS using known clinical findings. Therefore, it is of interest to identify target genes in associated pathways implicated linked to CRS. Hence, 119 CRS genes were extracted from the literature to construct the PPIN network. We used the MCODE tool to generate modules from network so as to select the top 10 modules from 23 available modules. The modules were further analyzed to identify 12 essential genes in the network. These biomarkers are potential emerging tools for understanding the pathophysiologic mechanisms for the early diagnosis of CRS. Ontological analysis shows that they are rich in MF protease binding and endo-peptidase inhibitor activity. Thus, this data help increase our knowledge on CRS to improve clinical management of the disease.
Collapse
Affiliation(s)
- Mohd Murshad Ahmed
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi-110025, India
| | - Safia Tazyeen
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi-110025, India
| | - Aftab Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi-110025, India
| | - Anam Farooqui
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi-110025, India
| | - Rafat Ali
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi-110025, India
| | - Nikhat Imam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi-110025, India
| | - Naaila Tamkeen
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi-110025, India
| | - Shahnawaz Ali
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi-110025, India
| | - Md Zubbair Malik
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi-1100067, India
| | - Romana Ishrat
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi-110025, India
| |
Collapse
|
13
|
Selma-Soriano E, Llamusi B, Fernández-Costa JM, Ozimski LL, Artero R, Redón J. Rabphilin involvement in filtration and molecular uptake in Drosophila nephrocytes suggests a similar role in human podocytes. Dis Model Mech 2020; 13:dmm041509. [PMID: 32680845 PMCID: PMC7522021 DOI: 10.1242/dmm.041509] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 07/07/2020] [Indexed: 02/04/2023] Open
Abstract
Drosophila nephrocytes share functional, structural and molecular similarities with human podocytes. It is known that podocytes express the rabphilin 3A (RPH3A)-RAB3A complex, and its expression is altered in mouse and human proteinuric disease. Furthermore, we previously identified a polymorphism that suggested a role for RPH3A protein in the development of urinary albumin excretion. As endocytosis and vesicle trafficking are fundamental pathways for nephrocytes, the objective of this study was to assess the role of the RPH3A orthologue in Drosophila, Rabphilin (Rph), in the structure and function of nephrocytes. We confirmed that Rph is required for the correct function of the endocytic pathway in pericardial Drosophila nephrocytes. Knockdown of Rph reduced the expression of the cubilin and stick and stones genes, which encode proteins that are involved in protein uptake and filtration. We also found that reduced Rph expression resulted in a disappearance of the labyrinthine channel structure and a reduction in the number of endosomes, which ultimately leads to changes in the number and volume of nephrocytes. Finally, we demonstrated that the administration of retinoic acid to IR-Rph nephrocytes rescued some altered aspects, such as filtration and molecular uptake, as well as the maintenance of cell fate. According to our data, Rph is crucial for nephrocyte filtration and reabsorption, and it is required for the maintenance of the ultrastructure, integrity and differentiation of the nephrocyte.
Collapse
Affiliation(s)
- Estela Selma-Soriano
- Translational Genomics Group, Incliva Health Research Institute, 46010 Valencia, Spain
- Interdisciplinary Research Structure for Biotechnology and Biomedicine (ERI BIOTECMED), University of Valencia, 46100 Valencia, Spain
- CIPF-INCLIVA Joint Unit, 46010 Valencia, Spain
| | - Beatriz Llamusi
- Translational Genomics Group, Incliva Health Research Institute, 46010 Valencia, Spain
- Interdisciplinary Research Structure for Biotechnology and Biomedicine (ERI BIOTECMED), University of Valencia, 46100 Valencia, Spain
- CIPF-INCLIVA Joint Unit, 46010 Valencia, Spain
| | - Juan Manuel Fernández-Costa
- Translational Genomics Group, Incliva Health Research Institute, 46010 Valencia, Spain
- Interdisciplinary Research Structure for Biotechnology and Biomedicine (ERI BIOTECMED), University of Valencia, 46100 Valencia, Spain
- CIPF-INCLIVA Joint Unit, 46010 Valencia, Spain
| | - Lauren Louise Ozimski
- Translational Genomics Group, Incliva Health Research Institute, 46010 Valencia, Spain
- Interdisciplinary Research Structure for Biotechnology and Biomedicine (ERI BIOTECMED), University of Valencia, 46100 Valencia, Spain
- CIPF-INCLIVA Joint Unit, 46010 Valencia, Spain
| | - Rubén Artero
- Translational Genomics Group, Incliva Health Research Institute, 46010 Valencia, Spain
- Interdisciplinary Research Structure for Biotechnology and Biomedicine (ERI BIOTECMED), University of Valencia, 46100 Valencia, Spain
- CIPF-INCLIVA Joint Unit, 46010 Valencia, Spain
| | - Josep Redón
- Hypertension Unit, Hospital Clínico Universitario, 46010 Valencia, Spain
| |
Collapse
|
14
|
Okuda H, Okamoto K, Abe M, Ishizawa K, Makino S, Tanabe O, Sugawara J, Hozawa A, Tanno K, Sasaki M, Tamiya G, Yamamoto M, Ito S, Ishii T. Genome-wide association study identifies new loci for albuminuria in the Japanese population. Clin Exp Nephrol 2020; 24:1-9. [PMID: 32277301 PMCID: PMC7994224 DOI: 10.1007/s10157-020-01884-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 03/25/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND Urinary albumin excretion (UAE) is a risk factor for cardiovascular diseases, metabolic syndrome, chronic kidney disease, etc. Only a few genome-wide association studies (GWAS) for UAE have been conducted in the European population, but not in the Asian population. Here we conducted GWAS and identified several candidate genes harboring single nucleotide polymorphisms (SNPs) responsible for UAE in the Japanese population. METHODS We conducted GWAS for UAE in 7805 individuals of Asian ancestry from health-survey data collected by Tohoku Medical Megabank Organization (ToMMo) and Iwate Tohoku Medical Megabank Organization (IMM). The SNP genotype data were obtained with a SNP microarray. After imputation using a haplotype panel consisting of 2000 genome sequencing, 4,962,728 SNP markers were used for the GWAS. RESULTS Eighteen SNPs at 14 loci (GRM7, EXOC1/NMU, LPA, STEAP1B/RAPGEF5, SEMA3D, PRKAG2, TRIQK, SERTM1, TPT1-AS1, OR5AU1, TSHR, FMN1/RYR3, COPRS, and BRD1) were associated with UAE in the Japanese individuals. A locus with particularly strong associations was observed on TSHR, chromosome 14 [rs116622332 (p = 3.99 × 10-10)]. CONCLUSION In this study, we successfully identified UAE-associated variant loci in the Japanese population. Further study is required to confirm this association.
Collapse
Affiliation(s)
- Hiroshi Okuda
- Department of Education and Support for Regional Medicine, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan.,Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8573, Japan.,Department of Nephrology, Endocrinology and Vascular Medicine, Graduate School of Medicine, Tohoku University, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Koji Okamoto
- Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8573, Japan. .,Department of Nephrology, Endocrinology and Vascular Medicine, Graduate School of Medicine, Tohoku University, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan.
| | - Michiaki Abe
- Department of Education and Support for Regional Medicine, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan.,Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8573, Japan.,Department of Nephrology, Endocrinology and Vascular Medicine, Graduate School of Medicine, Tohoku University, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Kota Ishizawa
- Department of Education and Support for Regional Medicine, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan.,Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8573, Japan
| | - Satoshi Makino
- Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8573, Japan
| | - Osamu Tanabe
- Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8573, Japan.,Radiation Effects Research Foundation, 5-2 Hijiyama Park, Minami-ku, Hiroshima, Hiroshima, 732-0815, Japan
| | - Junichi Sugawara
- Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8573, Japan
| | - Atsushi Hozawa
- Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8573, Japan
| | - Kozo Tanno
- Iwate Tohoku Medical Megabank Organization, Iwate Medical University, 1-1-1 Idaidori, Yahaba-cho, Shiwa-gun, Iwate, 028-3694, Japan
| | - Makoto Sasaki
- Iwate Tohoku Medical Megabank Organization, Iwate Medical University, 1-1-1 Idaidori, Yahaba-cho, Shiwa-gun, Iwate, 028-3694, Japan
| | - Gen Tamiya
- Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8573, Japan.,RIKEN Center for Advanced Intelligence Project Nihonbashi, 1-chome Mitsui Bldg. 15F, 1-4-1 Nihonbashi, Chuo-ku, Tokyo, 103-0027, Japan
| | - Masayuki Yamamoto
- Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8573, Japan
| | - Sadayoshi Ito
- Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8573, Japan.,Department of Nephrology, Endocrinology and Vascular Medicine, Graduate School of Medicine, Tohoku University, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Tadashi Ishii
- Department of Education and Support for Regional Medicine, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan.,Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8573, Japan
| |
Collapse
|
15
|
Dissecting the Genetic Architecture of Cystatin C in Diversity Outbred Mice. G3-GENES GENOMES GENETICS 2020; 10:2529-2541. [PMID: 32467129 PMCID: PMC7341122 DOI: 10.1534/g3.120.401275] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Plasma concentration of Cystatin C (CysC) level is a biomarker of glomerular filtration rate in the kidney. We use a Systems Genetics approach to investigate the genetic determinants of plasma CysC concentration. To do so we perform Quantitative Trait Loci (QTL) and expression QTL (eQTL) analysis of 120 Diversity Outbred (DO) female mice, 56 weeks of age. We performed network analysis of kidney gene expression to determine if the gene modules with common functions are associated with kidney biomarkers of chronic kidney diseases. Our data demonstrates that plasma concentrations and kidney mRNA levels of CysC are associated with genetic variation and are transcriptionally coregulated by immune genes. Specifically, Type-I interferon signaling genes are coexpressed with Cst3 mRNA levels and associated with CysC concentrations in plasma. Our findings demonstrate the complex control of CysC by genetic polymorphisms and inflammatory pathways.
Collapse
|
16
|
Martinez-Arroyo O, Ortega A, Perez-Hernandez J, Chaves FJ, Redon J, Cortes R. The Rab-Rabphilin system in injured human podocytes stressed by glucose overload and angiotensin II. Am J Physiol Renal Physiol 2020; 319:F178-F191. [PMID: 32567349 PMCID: PMC7473899 DOI: 10.1152/ajprenal.00077.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Kidney injury in hypertension and diabetes entails, among in other structures, damage in a key cell of the glomerular filtration barrier, the podocyte. Podocytes are polarized and highly differentiated cells in which vesicular transport, partly driven by Rab GTPases, is a relevant process. The aim of the present study was to analyze Rab GTPases of the Rab-Rabphilin system in human immortalized podocytes and the impact of high glucose and angiotensin II. Furthermore, alterations of the system in urine cell pellets from patients with hypertension and diabetes were studied. Apoptosis was analyzed in podocytes, and mRNA level quantification, Western blot analysis, and immunofluorescence were developed to quantify podocyte-specific molecules and Rab-Rabphilin components (Rab3A, Rab27A, and Rabphilin3A). Quantitative RT-PCR was performed on urinary cell pellet from patients. The results showed that differentiated cells had reduced protein levels of the Rab-rabphillin system compared with undifferentiated cells. After glucose overload and angiotensin II treatment, apoptosis was increased and podocyte-specific proteins were reduced. Rab3A and Rab27A protein levels were increased under glucose overload, and Rabphilin3A decreased. Furthermore, this system exhibited higher levels under stress conditions in a manner of angiotensin II dose and time treatment. Immunofluorescence imaging indicated different expression patterns of podocyte markers and Rab27A under treatments. Finally, Rab3A and Rab27A were increased in patient urine pellets and showed a direct relationship with albuminuria. Collectively, these results suggest that the Rab-Rabphilin system could be involved in the alterations observed in injured podocytes and that a mechanism may be activated to reduce damage through the vesicular transport enhancement directed by this system.
Collapse
Affiliation(s)
- Olga Martinez-Arroyo
- Cardiometabolic and Renal Risk Research Group, INCLIVA Biomedical Research Institute, Valencia, Spain
| | - Ana Ortega
- Cardiometabolic and Renal Risk Research Group, INCLIVA Biomedical Research Institute, Valencia, Spain
| | - Javier Perez-Hernandez
- Cardiometabolic and Renal Risk Research Group, INCLIVA Biomedical Research Institute, Valencia, Spain
| | - Felipe J Chaves
- Genomics and Diabetes Unit, INCLIVA Biomedical Research Institute, Valencia, Spain.,CIBER of Diabetes and Associated Metabolic Diseases, Institute of Health Carlos III, Minister of Health, Barcelona, Spain
| | - Josep Redon
- Cardiometabolic and Renal Risk Research Group, INCLIVA Biomedical Research Institute, Valencia, Spain.,Internal Medicine Unit, Hospital Clínico Universitario, Valencia, Spain.,CIBER of Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, Minister of Health, Madrid, Spain
| | - Raquel Cortes
- Cardiometabolic and Renal Risk Research Group, INCLIVA Biomedical Research Institute, Valencia, Spain
| |
Collapse
|
17
|
Trifu S, Popescu A, Dragoi AM, Trifu AI. THYROID HORMONES AS A THIRD LINE OF AUGMENTATION MEDICATION IN TREATMENT-RESISTANT DEPRESSION. ACTA ENDOCRINOLOGICA-BUCHAREST 2020; 16:256-261. [PMID: 33029246 DOI: 10.4183/aeb.2020.256] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Introduction Clinical or subclinical hypothyroidism dictates the severity of depressive episodes and more frequently overlaps psychotic phenomenology. There are also major depressive episodes resistant to treatment in patients with euthyroidism, in which supplementation of antidepressant medication with thyroid hormones is beneficial. Material Systematization of meta-analyses from perspectives: hypothyroidism and depression, autoimmune and depression pathology, gestational and puerperal pathology in association with hormonal and dispositional changes, presentation of therapeutic schemes. Results Hypothyroidism is more commonly comorbid with major depression in women. It associates the need for hospitalizations, psychotic phenomenology, resistance to treatment, somatic comorbidities. Autoimmune pathology is associated with depression and requires thorough investigation. A possible genetic candidate for thyroid dysfunction is the DIO1 gene. FT4 may be a predictor, but the combination of FT4 + TBG measured during the prenatal period has a higher prognostic power for a future depressive episode. Conclusion The article presents psychiatric medication schemes that combine antidepressants and antipsychotics of various classes with other enhancers, an important role going back to step three, which includes thyroid hormones, mainly T3. The doses used are smaller than the amount of endogenous production of T3 daily, with a small risk of inducing clinical hyperthyroidism.
Collapse
Affiliation(s)
- S Trifu
- "Carol Davila" University of Medicine and Pharmacy - Neurosciences, Bucharest, Romania
| | - A Popescu
- "Alex. Obregia" Clinical Hospital for Psychiatry - Psychiatry, Bucharest, Romania
| | - A M Dragoi
- "Alex. Obregia" Clinical Hospital for Psychiatry - Psychiatry, Bucharest, Romania
| | - A I Trifu
- Medical Military Institute - General Medicine, Bucharest, Romania
| |
Collapse
|
18
|
Drury ER, Friedman DJ, Pollak MR, Ix JH, Kuller LH, Tracy RP, Mukamal KJ. APOL1 gene variants and kidney disease in whites: the cardiovascular health study. Nephrol Dial Transplant 2019; 34:2155-2156. [PMID: 31580460 PMCID: PMC6887933 DOI: 10.1093/ndt/gfz186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Indexed: 11/12/2022] Open
Affiliation(s)
- Erika R Drury
- Department of Medicine, Division of Nephrology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - David J Friedman
- Department of Medicine, Division of Nephrology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Martin R Pollak
- Department of Medicine, Division of Nephrology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Joachim H Ix
- Department of Medicine, Division of Nephrology-Hypertension, University of California, San Diego, San Diego, CA, USA
| | - Lewis H Kuller
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Russell P Tracy
- Department of Pathology and Lab Medicine, University of Vermont, Burlington, VT, USA
| | - Kenneth J Mukamal
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| |
Collapse
|
19
|
Laskar RS, Muller DC, Li P, Machiela MJ, Ye Y, Gaborieau V, Foll M, Hofmann JN, Colli L, Sampson JN, Wang Z, Bacq-Daian D, Boland A, Abedi-Ardekani B, Durand G, Le Calvez-Kelm F, Robinot N, Blanche H, Prokhortchouk E, Skryabin KG, Burdett L, Yeager M, Radojevic-Skodric S, Savic S, Foretova L, Holcatova I, Janout V, Mates D, Rascu S, Mukeria A, Zaridze D, Bencko V, Cybulski C, Fabianova E, Jinga V, Lissowska J, Lubinski J, Navratilova M, Rudnai P, Świątkowska B, Benhamou S, Cancel-Tassin G, Cussenot O, Trichopoulou A, Riboli E, Overvad K, Panico S, Ljungberg B, Sitaram RT, Giles GG, Milne RL, Severi G, Bruinsma F, Fletcher T, Koppova K, Larsson SC, Wolk A, Banks RE, Selby PJ, Easton DF, Pharoah P, Andreotti G, Beane Freeman LE, Koutros S, Albanes D, Männistö S, Weinstein S, Clark PE, Edwards TL, Lipworth L, Carol H, Freedman ML, Pomerantz MM, Cho E, Kraft P, Preston MA, Wilson KM, Michael Gaziano J, Sesso HD, Black A, Freedman ND, Huang WY, Anema JG, Kahnoski RJ, Lane BR, Noyes SL, Petillo D, Teh BT, Peters U, White E, Anderson GL, Johnson L, Luo J, Chow WH, Moore LE, Choueiri TK, Wood C, Johansson M, McKay JD, Brown KM, Rothman N, Lathrop MG, Deleuze JF, Wu X, Brennan P, Chanock SJ, Purdue MP, Scelo G. Sex specific associations in genome wide association analysis of renal cell carcinoma. Eur J Hum Genet 2019; 27:1589-1598. [PMID: 31231134 PMCID: PMC6777615 DOI: 10.1038/s41431-019-0455-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/21/2019] [Accepted: 05/28/2019] [Indexed: 12/15/2022] Open
Abstract
Renal cell carcinoma (RCC) has an undisputed genetic component and a stable 2:1 male to female sex ratio in its incidence across populations, suggesting possible sexual dimorphism in its genetic susceptibility. We conducted the first sex-specific genome-wide association analysis of RCC for men (3227 cases, 4916 controls) and women (1992 cases, 3095 controls) of European ancestry from two RCC genome-wide scans and replicated the top findings using an additional series of men (2261 cases, 5852 controls) and women (1399 cases, 1575 controls) from two independent cohorts of European origin. Our study confirmed sex-specific associations for two known RCC risk loci at 14q24.2 (DPF3) and 2p21(EPAS1). We also identified two additional suggestive male-specific loci at 6q24.3 (SAMD5, male odds ratio (ORmale) = 0.83 [95% CI = 0.78-0.89], Pmale = 1.71 × 10-8 compared with female odds ratio (ORfemale) = 0.98 [95% CI = 0.90-1.07], Pfemale = 0.68) and 12q23.3 (intergenic, ORmale = 0.75 [95% CI = 0.68-0.83], Pmale = 1.59 × 10-8 compared with ORfemale = 0.93 [95% CI = 0.82-1.06], Pfemale = 0.21) that attained genome-wide significance in the joint meta-analysis. Herein, we provide evidence of sex-specific associations in RCC genetic susceptibility and advocate the necessity of larger genetic and genomic studies to unravel the endogenous causes of sex bias in sexually dimorphic traits and diseases like RCC.
Collapse
Affiliation(s)
- Ruhina S Laskar
- International Agency for Research on Cancer (IARC), Lyon, France
| | - David C Muller
- Faculty of Medicine, School of Public Health, Imperial College London, London, UK
| | - Peng Li
- Max Planck Institute for Demographic Research, Rostock, Germany
| | - Mitchell J Machiela
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department Health and Human Services, Bethesda, MD, USA
| | - Yuanqing Ye
- Department of Epidemiology, Division of Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Matthieu Foll
- International Agency for Research on Cancer (IARC), Lyon, France
| | - Jonathan N Hofmann
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department Health and Human Services, Bethesda, MD, USA
| | - Leandro Colli
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department Health and Human Services, Bethesda, MD, USA
| | - Joshua N Sampson
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department Health and Human Services, Bethesda, MD, USA
| | - Zhaoming Wang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Delphine Bacq-Daian
- Centre National de Recherche en Génomique Humaine, , Institut de biologie François Jacob, CEA, Evry, France
| | - Anne Boland
- Centre National de Recherche en Génomique Humaine, , Institut de biologie François Jacob, CEA, Evry, France
| | | | - Geoffroy Durand
- International Agency for Research on Cancer (IARC), Lyon, France
| | | | | | - Helene Blanche
- Fondation Jean Dausset-Centre d'Etude du Polymorphisme Humain, Paris, France
| | - Egor Prokhortchouk
- Center 'Bioengineering' of the Russian Academy of Sciences, Moscow, Russian Federation
- Kurchatov Scientific Center, Moscow, Russian Federation
| | - Konstantin G Skryabin
- Center 'Bioengineering' of the Russian Academy of Sciences, Moscow, Russian Federation
- Kurchatov Scientific Center, Moscow, Russian Federation
| | - Laurie Burdett
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department Health and Human Services, Bethesda, MD, USA
| | - Meredith Yeager
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department Health and Human Services, Bethesda, MD, USA
| | | | - Slavisa Savic
- Department of Urology, University Hospital "Dr D. Misovic" Clinical Center, Belgrade, Serbia
| | - Lenka Foretova
- Department of Cancer Epidemiology and Genetics, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Ivana Holcatova
- 2nd Faculty of Medicine, Institute of Public Health and Preventive Medicine, Charles University, Prague, Czech Republic
| | - Vladimir Janout
- Department of Preventive Medicine, Faculty of Medicine, Palacky University, Olomouc, Czech Republic
- Faculty of Health Sciences, Palacky University, Olomouc, Czech Republic
| | - Dana Mates
- National Institute of Public Health, Bucharest, Romania
| | - Stefan Rascu
- Carol Davila University of Medicine and Pharmacy, Th. Burghele Hospital, Bucharest, Romania
| | - Anush Mukeria
- Russian N.N. Blokhin Cancer Research Centre, Moscow, Russian Federation
| | - David Zaridze
- Russian N.N. Blokhin Cancer Research Centre, Moscow, Russian Federation
| | - Vladimir Bencko
- First Faculty of Medicine, Institute of Hygiene and Epidemiology, Charles University, Prague, Czech Republic
| | - Cezary Cybulski
- International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Eleonora Fabianova
- Regional Authority of Public Health in BanskaBystrica, BanskaBystrica, Slovakia
| | - Viorel Jinga
- Carol Davila University of Medicine and Pharmacy, Th. Burghele Hospital, Bucharest, Romania
| | - Jolanta Lissowska
- The M Sklodowska-Curie Cancer Center and Institute of Oncology, Warsaw, Poland
| | - Jan Lubinski
- International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Marie Navratilova
- Department of Cancer Epidemiology and Genetics, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Peter Rudnai
- National Public Health Institute, Budapest, Hungary
| | - Beata Świątkowska
- Department of Epidemiology, Nofer Institute of Occupational Medicine, Lodz, Poland
| | - Simone Benhamou
- INSERM U946, Paris, France
- CNRS UMR8200, Institute Gustave Roussy, Villejuif, France
| | - Geraldine Cancel-Tassin
- Sorbonne Université, GRC no. 5, ONCOTYPE-URO, AP-HP, Tenon Hospital, Paris, France
- CeRePP, Paris, France
| | - Olivier Cussenot
- Sorbonne Université, GRC no. 5, ONCOTYPE-URO, AP-HP, Tenon Hospital, Paris, France
- CeRePP, Paris, France
| | | | - Elio Riboli
- Faculty of Medicine, School of Public Health, Imperial College London, London, UK
| | - Kim Overvad
- Department of Public Health, Section for Epidemiology, Aarhus University, Aarhus C, Denmark
| | - Salvatore Panico
- Dipartimento di Medicina Clinica e Chirurgia, Federico II University, Naples, Italy
| | - Borje Ljungberg
- Department of Surgical and Perioperative Sciences, Urology and Andrology, Umeå University, Umeå, Sweden
| | - Raviprakash T Sitaram
- Department of Surgical and Perioperative Sciences, Urology and Andrology, Umeå University, Umeå, Sweden
| | - Graham G Giles
- Cancer Epidemiology & Intelligence Division, Cancer Council of Victoria, 615 St Kilda Road, Melbourne, VIC, 3004, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville Victoria, 3010, Australia
| | - Roger L Milne
- Cancer Epidemiology & Intelligence Division, Cancer Council of Victoria, 615 St Kilda Road, Melbourne, VIC, 3004, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville Victoria, 3010, Australia
| | - Gianluca Severi
- Cancer Epidemiology & Intelligence Division, Cancer Council of Victoria, 615 St Kilda Road, Melbourne, VIC, 3004, Australia
- Inserm U1018, Center for Research in Epidemiology and Population Health (CESP), Facultés de Medicine, Université Paris-Saclay, Université Paris-Sud, UVSQ, Gustave Roussy, 114 rue Edouard Vaillant, 94805, Villejuif Cedex, France
| | - Fiona Bruinsma
- Cancer Epidemiology & Intelligence Division, Cancer Council of Victoria, 615 St Kilda Road, Melbourne, VIC, 3004, Australia
| | - Tony Fletcher
- London School of Hygiene and Tropical Medicine, University of London, London, UK
| | - Kvetoslava Koppova
- Regional Authority of Public Health in BanskaBystrica, BanskaBystrica, Slovakia
| | - Susanna C Larsson
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Alicja Wolk
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Rosamonde E Banks
- Leeds Institute of Cancer and Pathology, University of Leeds, Cancer Research Building, St James's University Hospital, Leeds, UK
| | - Peter J Selby
- Leeds Institute of Cancer and Pathology, University of Leeds, Cancer Research Building, St James's University Hospital, Leeds, UK
| | - Douglas F Easton
- Department of Oncology, University of Cambridge, Cambridge, UK
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Paul Pharoah
- Department of Oncology, University of Cambridge, Cambridge, UK
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Gabriella Andreotti
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department Health and Human Services, Bethesda, MD, USA
| | - Laura E Beane Freeman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department Health and Human Services, Bethesda, MD, USA
| | - Stella Koutros
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department Health and Human Services, Bethesda, MD, USA
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department Health and Human Services, Bethesda, MD, USA
| | - Satu Männistö
- National Institute for Health and Welfare, Helsinki, Finland
| | - Stephanie Weinstein
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department Health and Human Services, Bethesda, MD, USA
| | | | | | | | | | | | | | | | - Peter Kraft
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Mark A Preston
- Brigham and Women's Hospital and VA Boston, Boston, MA, USA
| | | | | | - Howard D Sesso
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Amanda Black
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department Health and Human Services, Bethesda, MD, USA
| | - Neal D Freedman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department Health and Human Services, Bethesda, MD, USA
| | - Wen-Yi Huang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department Health and Human Services, Bethesda, MD, USA
| | - John G Anema
- Division of Urology, Spectrum Health, Grand Rapids, MI, USA
| | | | - Brian R Lane
- Division of Urology, Spectrum Health, Grand Rapids, MI, USA
- College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
| | - Sabrina L Noyes
- Van Andel Research Institute, Center for Cancer Genomics and Quantitative Biology, Grand Rapids, MI, USA
| | - David Petillo
- Van Andel Research Institute, Center for Cancer Genomics and Quantitative Biology, Grand Rapids, MI, USA
| | - Bin Tean Teh
- Van Andel Research Institute, Center for Cancer Genomics and Quantitative Biology, Grand Rapids, MI, USA
| | - Ulrike Peters
- Cancer Prevention Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Emily White
- Cancer Prevention Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | - Lisa Johnson
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Juhua Luo
- Department of Epidemiology and Biostatistics, School of Public Health Indiana University Bloomington, Bloomington, IN, USA
| | - Wong-Ho Chow
- Department of Epidemiology, Division of Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lee E Moore
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department Health and Human Services, Bethesda, MD, USA
| | | | - Christopher Wood
- Department of Epidemiology, Division of Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - James D McKay
- International Agency for Research on Cancer (IARC), Lyon, France
| | - Kevin M Brown
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department Health and Human Services, Bethesda, MD, USA
| | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department Health and Human Services, Bethesda, MD, USA
| | - Mark G Lathrop
- McGill University and Genome Quebec Innovation Centre, Montreal, Quebec, Canada
| | - Jean-Francois Deleuze
- Centre National de Recherche en Génomique Humaine, , Institut de biologie François Jacob, CEA, Evry, France
- Fondation Jean Dausset-Centre d'Etude du Polymorphisme Humain, Paris, France
| | - Xifeng Wu
- Department of Epidemiology, Division of Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Paul Brennan
- International Agency for Research on Cancer (IARC), Lyon, France
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department Health and Human Services, Bethesda, MD, USA
| | - Mark P Purdue
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department Health and Human Services, Bethesda, MD, USA
| | - Ghislaine Scelo
- International Agency for Research on Cancer (IARC), Lyon, France.
| |
Collapse
|
20
|
Lorenzo-Betancor O, Blackburn PR, Edwards E, Vázquez-do-Campo R, Klee EW, Labbé C, Hodges K, Glover P, Sigafoos AN, Soto AI, Walton RL, Doxsey S, Bober MB, Jennings S, Clark KJ, Asmann Y, Miller D, Freeman WD, Meschia J, Ross OA. PCNT point mutations and familial intracranial aneurysms. Neurology 2018; 91:e2170-e2181. [PMID: 30413633 DOI: 10.1212/wnl.0000000000006614] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 08/20/2018] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE To identify novel genes involved in the etiology of intracranial aneurysms (IAs) or subarachnoid hemorrhages (SAHs) using whole-exome sequencing. METHODS We performed whole-exome sequencing in 13 individuals from 3 families with an autosomal dominant IA/SAH inheritance pattern to look for candidate genes for disease. In addition, we sequenced PCNT exon 38 in a further 161 idiopathic patients with IA/SAH to find additional carriers of potential pathogenic variants. RESULTS We identified 2 different variants in exon 38 from the PCNT gene shared between affected members from 2 different families with either IA or SAH (p.R2728C and p.V2811L). One hundred sixty-four samples with either SAH or IA were Sanger sequenced for the PCNT exon 38. Five additional missense mutations were identified. We also found a second p.V2811L carrier in a family with a history of neurovascular diseases. CONCLUSION The PCNT gene encodes a protein that is involved in the process of microtubule nucleation and organization in interphase and mitosis. Biallelic loss-of-function mutations in PCNT cause a form of primordial dwarfism (microcephalic osteodysplastic primordial dwarfism type II), and ≈50% of these patients will develop neurovascular abnormalities, including IAs and SAHs. In addition, a complete Pcnt knockout mouse model (Pcnt -/-) published previously showed general vascular abnormalities, including intracranial hemorrhage. The variants in our families lie in the highly conserved PCNT protein-protein interaction domain, making PCNT a highly plausible candidate gene in cerebrovascular disease.
Collapse
Affiliation(s)
- Oswaldo Lorenzo-Betancor
- From the Department of Neuroscience (O.L.-B., C.L., K.H., P.G., A.I.S., R.L.W., O.A.R.), Center for Individualized Medicine (P.R.B., J.M.), Department of Health Sciences Research (P.R.B., Y.A.), Department of Neurology (E.E., R.V.-d-C., W.D.F., J.M.), Clinical Research Internship Study Program (P.G.), Department of Neurosurgery (D.M., W.D.F.), and Department of Clinical Genomics (O.A.R.), Mayo Clinic, Jacksonville, FL; Center for Individualized Medicine (E.W.K.), Department of Health Sciences Research (E.W.K.), Department of Laboratory Medicine and Pathology (E.W.K.), Department of Clinical Genomics (E.W.K.), and Department of Biochemistry and Molecular Biology (A.N.S., K.J.C.), Mayo Clinic, Rochester, MN; Department of Biology (K.H., O.A.R.), Basic Research Internship in Neuroscience and Cancer, University of North Florida, Jacksonville; Program in Molecular Medicine (S.D.), University of Massachusetts Medical School, Worcester; Division of Genetics (M.B.B.), Department of Pediatrics, Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE; and Section of Clinical Genetics & Genetic Counseling (S.J.), St. Christopher's Hospital for Children, Philadelphia, PA
| | - Patrick R Blackburn
- From the Department of Neuroscience (O.L.-B., C.L., K.H., P.G., A.I.S., R.L.W., O.A.R.), Center for Individualized Medicine (P.R.B., J.M.), Department of Health Sciences Research (P.R.B., Y.A.), Department of Neurology (E.E., R.V.-d-C., W.D.F., J.M.), Clinical Research Internship Study Program (P.G.), Department of Neurosurgery (D.M., W.D.F.), and Department of Clinical Genomics (O.A.R.), Mayo Clinic, Jacksonville, FL; Center for Individualized Medicine (E.W.K.), Department of Health Sciences Research (E.W.K.), Department of Laboratory Medicine and Pathology (E.W.K.), Department of Clinical Genomics (E.W.K.), and Department of Biochemistry and Molecular Biology (A.N.S., K.J.C.), Mayo Clinic, Rochester, MN; Department of Biology (K.H., O.A.R.), Basic Research Internship in Neuroscience and Cancer, University of North Florida, Jacksonville; Program in Molecular Medicine (S.D.), University of Massachusetts Medical School, Worcester; Division of Genetics (M.B.B.), Department of Pediatrics, Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE; and Section of Clinical Genetics & Genetic Counseling (S.J.), St. Christopher's Hospital for Children, Philadelphia, PA
| | - Emily Edwards
- From the Department of Neuroscience (O.L.-B., C.L., K.H., P.G., A.I.S., R.L.W., O.A.R.), Center for Individualized Medicine (P.R.B., J.M.), Department of Health Sciences Research (P.R.B., Y.A.), Department of Neurology (E.E., R.V.-d-C., W.D.F., J.M.), Clinical Research Internship Study Program (P.G.), Department of Neurosurgery (D.M., W.D.F.), and Department of Clinical Genomics (O.A.R.), Mayo Clinic, Jacksonville, FL; Center for Individualized Medicine (E.W.K.), Department of Health Sciences Research (E.W.K.), Department of Laboratory Medicine and Pathology (E.W.K.), Department of Clinical Genomics (E.W.K.), and Department of Biochemistry and Molecular Biology (A.N.S., K.J.C.), Mayo Clinic, Rochester, MN; Department of Biology (K.H., O.A.R.), Basic Research Internship in Neuroscience and Cancer, University of North Florida, Jacksonville; Program in Molecular Medicine (S.D.), University of Massachusetts Medical School, Worcester; Division of Genetics (M.B.B.), Department of Pediatrics, Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE; and Section of Clinical Genetics & Genetic Counseling (S.J.), St. Christopher's Hospital for Children, Philadelphia, PA
| | - Rocío Vázquez-do-Campo
- From the Department of Neuroscience (O.L.-B., C.L., K.H., P.G., A.I.S., R.L.W., O.A.R.), Center for Individualized Medicine (P.R.B., J.M.), Department of Health Sciences Research (P.R.B., Y.A.), Department of Neurology (E.E., R.V.-d-C., W.D.F., J.M.), Clinical Research Internship Study Program (P.G.), Department of Neurosurgery (D.M., W.D.F.), and Department of Clinical Genomics (O.A.R.), Mayo Clinic, Jacksonville, FL; Center for Individualized Medicine (E.W.K.), Department of Health Sciences Research (E.W.K.), Department of Laboratory Medicine and Pathology (E.W.K.), Department of Clinical Genomics (E.W.K.), and Department of Biochemistry and Molecular Biology (A.N.S., K.J.C.), Mayo Clinic, Rochester, MN; Department of Biology (K.H., O.A.R.), Basic Research Internship in Neuroscience and Cancer, University of North Florida, Jacksonville; Program in Molecular Medicine (S.D.), University of Massachusetts Medical School, Worcester; Division of Genetics (M.B.B.), Department of Pediatrics, Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE; and Section of Clinical Genetics & Genetic Counseling (S.J.), St. Christopher's Hospital for Children, Philadelphia, PA
| | - Eric W Klee
- From the Department of Neuroscience (O.L.-B., C.L., K.H., P.G., A.I.S., R.L.W., O.A.R.), Center for Individualized Medicine (P.R.B., J.M.), Department of Health Sciences Research (P.R.B., Y.A.), Department of Neurology (E.E., R.V.-d-C., W.D.F., J.M.), Clinical Research Internship Study Program (P.G.), Department of Neurosurgery (D.M., W.D.F.), and Department of Clinical Genomics (O.A.R.), Mayo Clinic, Jacksonville, FL; Center for Individualized Medicine (E.W.K.), Department of Health Sciences Research (E.W.K.), Department of Laboratory Medicine and Pathology (E.W.K.), Department of Clinical Genomics (E.W.K.), and Department of Biochemistry and Molecular Biology (A.N.S., K.J.C.), Mayo Clinic, Rochester, MN; Department of Biology (K.H., O.A.R.), Basic Research Internship in Neuroscience and Cancer, University of North Florida, Jacksonville; Program in Molecular Medicine (S.D.), University of Massachusetts Medical School, Worcester; Division of Genetics (M.B.B.), Department of Pediatrics, Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE; and Section of Clinical Genetics & Genetic Counseling (S.J.), St. Christopher's Hospital for Children, Philadelphia, PA
| | - Catherine Labbé
- From the Department of Neuroscience (O.L.-B., C.L., K.H., P.G., A.I.S., R.L.W., O.A.R.), Center for Individualized Medicine (P.R.B., J.M.), Department of Health Sciences Research (P.R.B., Y.A.), Department of Neurology (E.E., R.V.-d-C., W.D.F., J.M.), Clinical Research Internship Study Program (P.G.), Department of Neurosurgery (D.M., W.D.F.), and Department of Clinical Genomics (O.A.R.), Mayo Clinic, Jacksonville, FL; Center for Individualized Medicine (E.W.K.), Department of Health Sciences Research (E.W.K.), Department of Laboratory Medicine and Pathology (E.W.K.), Department of Clinical Genomics (E.W.K.), and Department of Biochemistry and Molecular Biology (A.N.S., K.J.C.), Mayo Clinic, Rochester, MN; Department of Biology (K.H., O.A.R.), Basic Research Internship in Neuroscience and Cancer, University of North Florida, Jacksonville; Program in Molecular Medicine (S.D.), University of Massachusetts Medical School, Worcester; Division of Genetics (M.B.B.), Department of Pediatrics, Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE; and Section of Clinical Genetics & Genetic Counseling (S.J.), St. Christopher's Hospital for Children, Philadelphia, PA
| | - Kyndall Hodges
- From the Department of Neuroscience (O.L.-B., C.L., K.H., P.G., A.I.S., R.L.W., O.A.R.), Center for Individualized Medicine (P.R.B., J.M.), Department of Health Sciences Research (P.R.B., Y.A.), Department of Neurology (E.E., R.V.-d-C., W.D.F., J.M.), Clinical Research Internship Study Program (P.G.), Department of Neurosurgery (D.M., W.D.F.), and Department of Clinical Genomics (O.A.R.), Mayo Clinic, Jacksonville, FL; Center for Individualized Medicine (E.W.K.), Department of Health Sciences Research (E.W.K.), Department of Laboratory Medicine and Pathology (E.W.K.), Department of Clinical Genomics (E.W.K.), and Department of Biochemistry and Molecular Biology (A.N.S., K.J.C.), Mayo Clinic, Rochester, MN; Department of Biology (K.H., O.A.R.), Basic Research Internship in Neuroscience and Cancer, University of North Florida, Jacksonville; Program in Molecular Medicine (S.D.), University of Massachusetts Medical School, Worcester; Division of Genetics (M.B.B.), Department of Pediatrics, Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE; and Section of Clinical Genetics & Genetic Counseling (S.J.), St. Christopher's Hospital for Children, Philadelphia, PA
| | - Patrick Glover
- From the Department of Neuroscience (O.L.-B., C.L., K.H., P.G., A.I.S., R.L.W., O.A.R.), Center for Individualized Medicine (P.R.B., J.M.), Department of Health Sciences Research (P.R.B., Y.A.), Department of Neurology (E.E., R.V.-d-C., W.D.F., J.M.), Clinical Research Internship Study Program (P.G.), Department of Neurosurgery (D.M., W.D.F.), and Department of Clinical Genomics (O.A.R.), Mayo Clinic, Jacksonville, FL; Center for Individualized Medicine (E.W.K.), Department of Health Sciences Research (E.W.K.), Department of Laboratory Medicine and Pathology (E.W.K.), Department of Clinical Genomics (E.W.K.), and Department of Biochemistry and Molecular Biology (A.N.S., K.J.C.), Mayo Clinic, Rochester, MN; Department of Biology (K.H., O.A.R.), Basic Research Internship in Neuroscience and Cancer, University of North Florida, Jacksonville; Program in Molecular Medicine (S.D.), University of Massachusetts Medical School, Worcester; Division of Genetics (M.B.B.), Department of Pediatrics, Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE; and Section of Clinical Genetics & Genetic Counseling (S.J.), St. Christopher's Hospital for Children, Philadelphia, PA
| | - Ashley N Sigafoos
- From the Department of Neuroscience (O.L.-B., C.L., K.H., P.G., A.I.S., R.L.W., O.A.R.), Center for Individualized Medicine (P.R.B., J.M.), Department of Health Sciences Research (P.R.B., Y.A.), Department of Neurology (E.E., R.V.-d-C., W.D.F., J.M.), Clinical Research Internship Study Program (P.G.), Department of Neurosurgery (D.M., W.D.F.), and Department of Clinical Genomics (O.A.R.), Mayo Clinic, Jacksonville, FL; Center for Individualized Medicine (E.W.K.), Department of Health Sciences Research (E.W.K.), Department of Laboratory Medicine and Pathology (E.W.K.), Department of Clinical Genomics (E.W.K.), and Department of Biochemistry and Molecular Biology (A.N.S., K.J.C.), Mayo Clinic, Rochester, MN; Department of Biology (K.H., O.A.R.), Basic Research Internship in Neuroscience and Cancer, University of North Florida, Jacksonville; Program in Molecular Medicine (S.D.), University of Massachusetts Medical School, Worcester; Division of Genetics (M.B.B.), Department of Pediatrics, Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE; and Section of Clinical Genetics & Genetic Counseling (S.J.), St. Christopher's Hospital for Children, Philadelphia, PA
| | - Alexandra I Soto
- From the Department of Neuroscience (O.L.-B., C.L., K.H., P.G., A.I.S., R.L.W., O.A.R.), Center for Individualized Medicine (P.R.B., J.M.), Department of Health Sciences Research (P.R.B., Y.A.), Department of Neurology (E.E., R.V.-d-C., W.D.F., J.M.), Clinical Research Internship Study Program (P.G.), Department of Neurosurgery (D.M., W.D.F.), and Department of Clinical Genomics (O.A.R.), Mayo Clinic, Jacksonville, FL; Center for Individualized Medicine (E.W.K.), Department of Health Sciences Research (E.W.K.), Department of Laboratory Medicine and Pathology (E.W.K.), Department of Clinical Genomics (E.W.K.), and Department of Biochemistry and Molecular Biology (A.N.S., K.J.C.), Mayo Clinic, Rochester, MN; Department of Biology (K.H., O.A.R.), Basic Research Internship in Neuroscience and Cancer, University of North Florida, Jacksonville; Program in Molecular Medicine (S.D.), University of Massachusetts Medical School, Worcester; Division of Genetics (M.B.B.), Department of Pediatrics, Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE; and Section of Clinical Genetics & Genetic Counseling (S.J.), St. Christopher's Hospital for Children, Philadelphia, PA
| | - Ronald L Walton
- From the Department of Neuroscience (O.L.-B., C.L., K.H., P.G., A.I.S., R.L.W., O.A.R.), Center for Individualized Medicine (P.R.B., J.M.), Department of Health Sciences Research (P.R.B., Y.A.), Department of Neurology (E.E., R.V.-d-C., W.D.F., J.M.), Clinical Research Internship Study Program (P.G.), Department of Neurosurgery (D.M., W.D.F.), and Department of Clinical Genomics (O.A.R.), Mayo Clinic, Jacksonville, FL; Center for Individualized Medicine (E.W.K.), Department of Health Sciences Research (E.W.K.), Department of Laboratory Medicine and Pathology (E.W.K.), Department of Clinical Genomics (E.W.K.), and Department of Biochemistry and Molecular Biology (A.N.S., K.J.C.), Mayo Clinic, Rochester, MN; Department of Biology (K.H., O.A.R.), Basic Research Internship in Neuroscience and Cancer, University of North Florida, Jacksonville; Program in Molecular Medicine (S.D.), University of Massachusetts Medical School, Worcester; Division of Genetics (M.B.B.), Department of Pediatrics, Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE; and Section of Clinical Genetics & Genetic Counseling (S.J.), St. Christopher's Hospital for Children, Philadelphia, PA
| | - Stephen Doxsey
- From the Department of Neuroscience (O.L.-B., C.L., K.H., P.G., A.I.S., R.L.W., O.A.R.), Center for Individualized Medicine (P.R.B., J.M.), Department of Health Sciences Research (P.R.B., Y.A.), Department of Neurology (E.E., R.V.-d-C., W.D.F., J.M.), Clinical Research Internship Study Program (P.G.), Department of Neurosurgery (D.M., W.D.F.), and Department of Clinical Genomics (O.A.R.), Mayo Clinic, Jacksonville, FL; Center for Individualized Medicine (E.W.K.), Department of Health Sciences Research (E.W.K.), Department of Laboratory Medicine and Pathology (E.W.K.), Department of Clinical Genomics (E.W.K.), and Department of Biochemistry and Molecular Biology (A.N.S., K.J.C.), Mayo Clinic, Rochester, MN; Department of Biology (K.H., O.A.R.), Basic Research Internship in Neuroscience and Cancer, University of North Florida, Jacksonville; Program in Molecular Medicine (S.D.), University of Massachusetts Medical School, Worcester; Division of Genetics (M.B.B.), Department of Pediatrics, Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE; and Section of Clinical Genetics & Genetic Counseling (S.J.), St. Christopher's Hospital for Children, Philadelphia, PA
| | - Michael B Bober
- From the Department of Neuroscience (O.L.-B., C.L., K.H., P.G., A.I.S., R.L.W., O.A.R.), Center for Individualized Medicine (P.R.B., J.M.), Department of Health Sciences Research (P.R.B., Y.A.), Department of Neurology (E.E., R.V.-d-C., W.D.F., J.M.), Clinical Research Internship Study Program (P.G.), Department of Neurosurgery (D.M., W.D.F.), and Department of Clinical Genomics (O.A.R.), Mayo Clinic, Jacksonville, FL; Center for Individualized Medicine (E.W.K.), Department of Health Sciences Research (E.W.K.), Department of Laboratory Medicine and Pathology (E.W.K.), Department of Clinical Genomics (E.W.K.), and Department of Biochemistry and Molecular Biology (A.N.S., K.J.C.), Mayo Clinic, Rochester, MN; Department of Biology (K.H., O.A.R.), Basic Research Internship in Neuroscience and Cancer, University of North Florida, Jacksonville; Program in Molecular Medicine (S.D.), University of Massachusetts Medical School, Worcester; Division of Genetics (M.B.B.), Department of Pediatrics, Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE; and Section of Clinical Genetics & Genetic Counseling (S.J.), St. Christopher's Hospital for Children, Philadelphia, PA
| | - Sarah Jennings
- From the Department of Neuroscience (O.L.-B., C.L., K.H., P.G., A.I.S., R.L.W., O.A.R.), Center for Individualized Medicine (P.R.B., J.M.), Department of Health Sciences Research (P.R.B., Y.A.), Department of Neurology (E.E., R.V.-d-C., W.D.F., J.M.), Clinical Research Internship Study Program (P.G.), Department of Neurosurgery (D.M., W.D.F.), and Department of Clinical Genomics (O.A.R.), Mayo Clinic, Jacksonville, FL; Center for Individualized Medicine (E.W.K.), Department of Health Sciences Research (E.W.K.), Department of Laboratory Medicine and Pathology (E.W.K.), Department of Clinical Genomics (E.W.K.), and Department of Biochemistry and Molecular Biology (A.N.S., K.J.C.), Mayo Clinic, Rochester, MN; Department of Biology (K.H., O.A.R.), Basic Research Internship in Neuroscience and Cancer, University of North Florida, Jacksonville; Program in Molecular Medicine (S.D.), University of Massachusetts Medical School, Worcester; Division of Genetics (M.B.B.), Department of Pediatrics, Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE; and Section of Clinical Genetics & Genetic Counseling (S.J.), St. Christopher's Hospital for Children, Philadelphia, PA
| | - Karl J Clark
- From the Department of Neuroscience (O.L.-B., C.L., K.H., P.G., A.I.S., R.L.W., O.A.R.), Center for Individualized Medicine (P.R.B., J.M.), Department of Health Sciences Research (P.R.B., Y.A.), Department of Neurology (E.E., R.V.-d-C., W.D.F., J.M.), Clinical Research Internship Study Program (P.G.), Department of Neurosurgery (D.M., W.D.F.), and Department of Clinical Genomics (O.A.R.), Mayo Clinic, Jacksonville, FL; Center for Individualized Medicine (E.W.K.), Department of Health Sciences Research (E.W.K.), Department of Laboratory Medicine and Pathology (E.W.K.), Department of Clinical Genomics (E.W.K.), and Department of Biochemistry and Molecular Biology (A.N.S., K.J.C.), Mayo Clinic, Rochester, MN; Department of Biology (K.H., O.A.R.), Basic Research Internship in Neuroscience and Cancer, University of North Florida, Jacksonville; Program in Molecular Medicine (S.D.), University of Massachusetts Medical School, Worcester; Division of Genetics (M.B.B.), Department of Pediatrics, Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE; and Section of Clinical Genetics & Genetic Counseling (S.J.), St. Christopher's Hospital for Children, Philadelphia, PA
| | - Yan Asmann
- From the Department of Neuroscience (O.L.-B., C.L., K.H., P.G., A.I.S., R.L.W., O.A.R.), Center for Individualized Medicine (P.R.B., J.M.), Department of Health Sciences Research (P.R.B., Y.A.), Department of Neurology (E.E., R.V.-d-C., W.D.F., J.M.), Clinical Research Internship Study Program (P.G.), Department of Neurosurgery (D.M., W.D.F.), and Department of Clinical Genomics (O.A.R.), Mayo Clinic, Jacksonville, FL; Center for Individualized Medicine (E.W.K.), Department of Health Sciences Research (E.W.K.), Department of Laboratory Medicine and Pathology (E.W.K.), Department of Clinical Genomics (E.W.K.), and Department of Biochemistry and Molecular Biology (A.N.S., K.J.C.), Mayo Clinic, Rochester, MN; Department of Biology (K.H., O.A.R.), Basic Research Internship in Neuroscience and Cancer, University of North Florida, Jacksonville; Program in Molecular Medicine (S.D.), University of Massachusetts Medical School, Worcester; Division of Genetics (M.B.B.), Department of Pediatrics, Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE; and Section of Clinical Genetics & Genetic Counseling (S.J.), St. Christopher's Hospital for Children, Philadelphia, PA
| | - David Miller
- From the Department of Neuroscience (O.L.-B., C.L., K.H., P.G., A.I.S., R.L.W., O.A.R.), Center for Individualized Medicine (P.R.B., J.M.), Department of Health Sciences Research (P.R.B., Y.A.), Department of Neurology (E.E., R.V.-d-C., W.D.F., J.M.), Clinical Research Internship Study Program (P.G.), Department of Neurosurgery (D.M., W.D.F.), and Department of Clinical Genomics (O.A.R.), Mayo Clinic, Jacksonville, FL; Center for Individualized Medicine (E.W.K.), Department of Health Sciences Research (E.W.K.), Department of Laboratory Medicine and Pathology (E.W.K.), Department of Clinical Genomics (E.W.K.), and Department of Biochemistry and Molecular Biology (A.N.S., K.J.C.), Mayo Clinic, Rochester, MN; Department of Biology (K.H., O.A.R.), Basic Research Internship in Neuroscience and Cancer, University of North Florida, Jacksonville; Program in Molecular Medicine (S.D.), University of Massachusetts Medical School, Worcester; Division of Genetics (M.B.B.), Department of Pediatrics, Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE; and Section of Clinical Genetics & Genetic Counseling (S.J.), St. Christopher's Hospital for Children, Philadelphia, PA
| | - William D Freeman
- From the Department of Neuroscience (O.L.-B., C.L., K.H., P.G., A.I.S., R.L.W., O.A.R.), Center for Individualized Medicine (P.R.B., J.M.), Department of Health Sciences Research (P.R.B., Y.A.), Department of Neurology (E.E., R.V.-d-C., W.D.F., J.M.), Clinical Research Internship Study Program (P.G.), Department of Neurosurgery (D.M., W.D.F.), and Department of Clinical Genomics (O.A.R.), Mayo Clinic, Jacksonville, FL; Center for Individualized Medicine (E.W.K.), Department of Health Sciences Research (E.W.K.), Department of Laboratory Medicine and Pathology (E.W.K.), Department of Clinical Genomics (E.W.K.), and Department of Biochemistry and Molecular Biology (A.N.S., K.J.C.), Mayo Clinic, Rochester, MN; Department of Biology (K.H., O.A.R.), Basic Research Internship in Neuroscience and Cancer, University of North Florida, Jacksonville; Program in Molecular Medicine (S.D.), University of Massachusetts Medical School, Worcester; Division of Genetics (M.B.B.), Department of Pediatrics, Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE; and Section of Clinical Genetics & Genetic Counseling (S.J.), St. Christopher's Hospital for Children, Philadelphia, PA
| | - James Meschia
- From the Department of Neuroscience (O.L.-B., C.L., K.H., P.G., A.I.S., R.L.W., O.A.R.), Center for Individualized Medicine (P.R.B., J.M.), Department of Health Sciences Research (P.R.B., Y.A.), Department of Neurology (E.E., R.V.-d-C., W.D.F., J.M.), Clinical Research Internship Study Program (P.G.), Department of Neurosurgery (D.M., W.D.F.), and Department of Clinical Genomics (O.A.R.), Mayo Clinic, Jacksonville, FL; Center for Individualized Medicine (E.W.K.), Department of Health Sciences Research (E.W.K.), Department of Laboratory Medicine and Pathology (E.W.K.), Department of Clinical Genomics (E.W.K.), and Department of Biochemistry and Molecular Biology (A.N.S., K.J.C.), Mayo Clinic, Rochester, MN; Department of Biology (K.H., O.A.R.), Basic Research Internship in Neuroscience and Cancer, University of North Florida, Jacksonville; Program in Molecular Medicine (S.D.), University of Massachusetts Medical School, Worcester; Division of Genetics (M.B.B.), Department of Pediatrics, Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE; and Section of Clinical Genetics & Genetic Counseling (S.J.), St. Christopher's Hospital for Children, Philadelphia, PA.
| | - Owen A Ross
- From the Department of Neuroscience (O.L.-B., C.L., K.H., P.G., A.I.S., R.L.W., O.A.R.), Center for Individualized Medicine (P.R.B., J.M.), Department of Health Sciences Research (P.R.B., Y.A.), Department of Neurology (E.E., R.V.-d-C., W.D.F., J.M.), Clinical Research Internship Study Program (P.G.), Department of Neurosurgery (D.M., W.D.F.), and Department of Clinical Genomics (O.A.R.), Mayo Clinic, Jacksonville, FL; Center for Individualized Medicine (E.W.K.), Department of Health Sciences Research (E.W.K.), Department of Laboratory Medicine and Pathology (E.W.K.), Department of Clinical Genomics (E.W.K.), and Department of Biochemistry and Molecular Biology (A.N.S., K.J.C.), Mayo Clinic, Rochester, MN; Department of Biology (K.H., O.A.R.), Basic Research Internship in Neuroscience and Cancer, University of North Florida, Jacksonville; Program in Molecular Medicine (S.D.), University of Massachusetts Medical School, Worcester; Division of Genetics (M.B.B.), Department of Pediatrics, Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE; and Section of Clinical Genetics & Genetic Counseling (S.J.), St. Christopher's Hospital for Children, Philadelphia, PA.
| |
Collapse
|
21
|
Kwon WS, Kim TS, Nahm CH, Moon Y, Kim JJ. Aberrant cystatin-C expression in blood from patients with breast cancer is a suitable marker for monitoring tumor burden. Oncol Lett 2018; 16:5583-5590. [PMID: 30344712 PMCID: PMC6176264 DOI: 10.3892/ol.2018.9380] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 03/30/2017] [Indexed: 01/05/2023] Open
Abstract
The present study was performed to evaluate the efficacy of circulating cystatin-C as a tumor monitoring biomarker at different clinical time points in patients with breast cancer over a long-term follow-up period. In addition, the secretory rate of circulating cystatin-C from cancer tissue was investigated by comparing the blood and tissue expression levels of cystatin-C. Blood samples from healthy volunteers (40 males and 40 females) were obtained at yearly health examinations if laboratory and imaging abnormalities were not detected. Blood samples from 34 patients with breast cancer were obtained at 205 different time points of clinical progression. Blood levels of cystatin-C were measured using ELISA and the tissue levels were measured using immunohistochemistry. No age-associated effect was observed in male and female blood cystatin-C levels. The positivity rate was 46% in patients (38/83) and 40% in samples collected at different time points (82/205). Blood cystatin-C levels were lowest following surgery compared with patients with systemic metastasis (P<0.001). The sensitivity, specificity and accuracy rates of ELISA were 53.6, 63.6 and 53.9%, respectively. The concordance rate between blood and tissue expression was 38%. The main reason for discordance between tissue and serum expression of cytostatin-C came from low serum positivity in samples showing tissue cytostatin-C (3/11, 27%). The specificity between cytostatin-C and CA-125 was highest in tumor absence state. In conclusion, elevated blood levels of cystatin-C were observed in 40% of breast cancer cases and were tumor-volume dependent. However, the concordance rate between tissue and blood was quite low, suggesting tumor heterogeneity of cystatin-C expression or co-acting pathway activation, such as cathepsin D. As one-third of breast cancer tissues express cystatin-C without cancer antigen 15-3 elevation, cystatin-C may represent a good tumor-monitoring marker in breast cancer.
Collapse
Affiliation(s)
- Woo Sun Kwon
- Song-Dang Institute for Cancer Research, Cancer Metastasis Research Center, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Tae Soo Kim
- Song-Dang Institute for Cancer Research, Cancer Metastasis Research Center, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Chung Hyun Nahm
- Department of Laboratory Medicine, Inha University College of Medicine, Incheon 22332, Republic of Korea
| | - Yeonsook Moon
- Department of Laboratory Medicine, Inha University College of Medicine, Incheon 22332, Republic of Korea
| | - Jin Ju Kim
- Department of Laboratory Medicine, Inha University College of Medicine, Incheon 22332, Republic of Korea
| |
Collapse
|
22
|
Polymorphisms in the 3'-UTR of SCD5 gene are associated with hepatocellular carcinoma in Korean population. Mol Biol Rep 2018; 45:1705-1714. [PMID: 30168096 DOI: 10.1007/s11033-018-4313-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 08/17/2018] [Indexed: 12/28/2022]
Abstract
The purpose of the study was to assess the relationship between polymorphisms of the SCD5 and MMP1 gene and hepatocellular carcinoma (HCC). The gene polymorphisms with a minor allele frequency (MAF) > 0.05 were selected eight SNPs (rs6840, rs1065403, rs3821974, and rs3733230 in 3'-UTR; rs4693472, rs3733227, rs1848067, and rs6535374 in intron region) of SCD5 gene and two SNPs (rs1799750 and rs1144393 in promoter region) of MMP1 gene. The genotype of SCD5 and MMP1 gene SNPs were determined by direct sequencing and pyrosequencing, respectively. One hundred sixty-two patients with HCC and two hundred twenty-five control subjects were recruited in Korean male population. In terms of genotype frequencies, SCD5 genotype TC, GA, AG, and CG of rs6840, rs1065403, rs3821974, and rs3733230, respectively were higher in control group than HCC. In addition, these genotype decreased the risk (rs6840; OR 0.55, 95% CI 0.31-0.99; rs1065403; OR 0.46, 95% CI 0.26-0.83; rs3821974; OR 0.56, 95% CI 0.31-0.99; rs3733230; OR 0.62, 95% CI 0.34-1.12) of HCC, which may work as a prevention of HCC. At least one minor allele carrier of SCD5 gene polymorphisms were related to decreased risk of HCC for AFP cut-point levels > 200 or > 400 ng/ml, respectively. Our results indicate that polymorphisms in the 3'-UTR of the SCD5 gene may associated with HCC in the Korean male population.
Collapse
|
23
|
Takahashi Y, Sasaki H, Okawara S, Sasaki N. Genetic loci for resistance to podocyte injury caused by the tensin2 gene deficiency in mice. BMC Genet 2018; 19:24. [PMID: 29636014 PMCID: PMC5894168 DOI: 10.1186/s12863-018-0611-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 04/03/2018] [Indexed: 12/26/2022] Open
Abstract
Background Tensin2 is a focal adhesion-localized multidomain protein expressed in various tissues, and its dysfunction leads to alterations in podocytes. However, these podocyte-related manifestations are dependent on murine strain. Tensin2 dysfunction results in susceptible strains developing podocyte foot process effacement and massive albuminuria, whereas podocytes in resistant strains remain almost intact. In our previous studies, quantitative trait loci analysis and congenic analysis using resistant C57BL/6J and susceptible ICGN mice identified a modifier locus associated with podocyte injury caused by tensin2 dysfunction on chromosome 2. However, the effect of this modifier locus on chromosome 2 is insufficient to explain the resistance of C57BL/6J mice to tensin2 dysfunction, indicating the existence of other modifier genes. Results Whereas previous studies focused on the severity of chronic kidney disease, the present study focused on podocyte injury. We performed a genome-wide linkage analysis of backcrosses between two tensin2-deficient mouse strains, B6.ICGN-Tns2nph and FVB.ICGN-Tns2nph, and detected a novel major modifier locus on chromosome 10. The combined effect of the C57BL/6J alleles of the two loci on chromosomes 2 and 10 reduced the urinary albumin excretion caused by tensin2 dysfunction to a level comparable to that of C57BL/6J mice. Conclusions These data indicate that the resistance to podocyte injury caused by tensin2 dysfunction is mainly produced by the effects of the modifier genes on the two loci. The identification of these modifier genes is expected to help elucidate the mechanism underlying podocyte injury. Electronic supplementary material The online version of this article (10.1186/s12863-018-0611-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yuki Takahashi
- Laboratory of Laboratory Animal Science and Medicine, School of Veterinary Medicine, Kitasato University, 35-1, Higashi-23, Towada, Aomori, 034-8628, Japan
| | - Hayato Sasaki
- Laboratory of Laboratory Animal Science and Medicine, School of Veterinary Medicine, Kitasato University, 35-1, Higashi-23, Towada, Aomori, 034-8628, Japan.
| | - Shiori Okawara
- Laboratory of Laboratory Animal Science and Medicine, School of Veterinary Medicine, Kitasato University, 35-1, Higashi-23, Towada, Aomori, 034-8628, Japan
| | - Nobuya Sasaki
- Laboratory of Laboratory Animal Science and Medicine, School of Veterinary Medicine, Kitasato University, 35-1, Higashi-23, Towada, Aomori, 034-8628, Japan
| |
Collapse
|
24
|
Lee J, Lee Y, Park B, Won S, Han JS, Heo NJ. Genome-wide association analysis identifies multiple loci associated with kidney disease-related traits in Korean populations. PLoS One 2018; 13:e0194044. [PMID: 29558500 PMCID: PMC5860731 DOI: 10.1371/journal.pone.0194044] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 02/25/2018] [Indexed: 12/19/2022] Open
Abstract
Chronic kidney disease (CKD) is an important social health problem characterized by a decrease in the kidney glomerular filtration rate (GFR). In this study, we analyzed genome-wide association studies for kidney disease-related traits using data from a Korean adult health screening cohort comprising 7,064 participants. Kidney disease-related traits analyzed include blood urea nitrogen (BUN), serum creatinine, estimated GFR, and uric acid levels. We detected two genetic loci (SLC14A2 and an intergenic region) and 8 single nucleotide polymorphisms (SNPs) associated with BUN, 3 genetic loci (BCAS3, C17orf82, ALDH2) and 6 SNPs associated with serum creatinine, 3 genetic loci (BCAS3, C17orf82/TBX2, LRP2) and 7 SNPs associated with GFR, and 14 genetic loci (3 in ABCG2/PKD2, 2 in SLC2A9, 3 in intergenic regions on chromosome 4; OTUB1, NRXN2/SLC22A12, CDC42BPG, RPS6KA4, SLC22A9, and MAP4K2 on chromosome 11) and 84 SNPs associated with uric acid levels. By comparing significant genetic loci associated with serum creatinine levels and GFR, rs9895661 in BCAS3 and rs757608 in C17orf82 were simultaneously associated with both traits. The SNPs rs11710227 in intergenic regions on chromosome 3 showing significant association with BUN is newly discovered. Genetic variations of multiple gene loci are associated with kidney disease-related traits, and differences in associations between kidney disease-related traits and genetic variation are dependent on the population. The meanings of the mutations identified in this study will need to be reaffirmed in other population groups in the future.
Collapse
Affiliation(s)
- Jeonghwan Lee
- Department of Internal Medicine, Hallym University Hangang Sacred Heart Hospital, Seoul, Korea
| | - Young Lee
- Veterans Medical Research Institute, Veterans Health Service Medical Center, Seoul, Korea
| | - Boram Park
- Department of Public Health Science, Seoul National University, Seoul, Korea
| | - Sungho Won
- Department of Public Health Science, Seoul National University, Seoul, Korea
- Interdisciplinary Program of Bioinformatics, Seoul National University, Seoul, Korea
- Institute of Health and Environment, Seoul National University, Seoul, Korea
| | - Jin Suk Han
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Nam Ju Heo
- Division of Nephrology, Department of Internal Medicine, Healthcare System Gangnam Center, Seoul National University Hospital, Seoul, Korea
- * E-mail:
| |
Collapse
|
25
|
Guo X, Zhang Y, Du J, Yang H, Ma Y, Li J, Yan M, Jin T, Liu X. Association analysis of ANK3 gene variants with schizophrenia in a northern Chinese Han population. Oncotarget 2018; 7:85888-85894. [PMID: 27811378 PMCID: PMC5349882 DOI: 10.18632/oncotarget.13043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 10/28/2016] [Indexed: 12/21/2022] Open
Abstract
Schizophrenia is a chronic, severely debilitating mental disorder. Many studies have suggested that genetic factors play an important role in the onset and development of schizophrenia. In our study, we conducted a case-control study in a northern Chinese Han population of 499 schizophrenia patients and 500 controls to investigate the effect of variant genotypes of 13 SNPs in ANK3 on schizophrenia risk. Odds ratios (OR) and 95% confidence intervals (CI) were estimated using the chi-squared test, genetic model analysis, and haplotype analysis. Four ANK3 SNPs were associated with schizophrenia risk. The minor allele of rs958852 in ANK3 was associated with a 0.75-fold reduction in schizophrenia risk in an allelic model. In the genetic model, rs958852 was associated with a reduced schizophrenia risk, and rs10994336, rs10994338 and rs4948418 were associated with an increased schizophrenia risk (rs10994336, OR = 2.00, 95%CI: 1.01–3.94, p = 0.047; rs10994338, OR = 1.99, 95%CI: 1.01–3.93, p = 0.047; rs4948418, OR = 2.00, 95%CI: 1.01–3.94, p = 0.047). In addition, haplotype “TTC” of ANK3 was associated with a 0.73-fold reduced schizophrenia risk (95%CI: 0.54–0.99; p = 0.044). To our knowledge, this is the first to report of an association between ANK3 rs10994336, rs10994338, rs4948418 and rs958852 and schizophrenia risk in a northern Chinese Han population.
Collapse
Affiliation(s)
- Xiaojuan Guo
- Xi'an Mental Health Center, Xi'an, Shaanxi 710061, China
| | - Yani Zhang
- Xi'an Mental Health Center, Xi'an, Shaanxi 710061, China
| | - Jieli Du
- Inner Mongolia Medical University Hohhot 010010, Inner Mongolia, China
| | - Hua Yang
- School of Life Sciences, Northwest University, Xi'an 710069, China
| | - Yini Ma
- School of Life Sciences, Northwest University, Xi'an 710069, China
| | - Jingjie Li
- School of Life Sciences, Northwest University, Xi'an 710069, China
| | - Mengdan Yan
- School of Life Sciences, Northwest University, Xi'an 710069, China
| | - Tianbo Jin
- School of Life Sciences, Northwest University, Xi'an 710069, China.,Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi 712082, China.,Key Laboratory of High Altitude Environment and Genes Related to Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi 712082, China.,Key Laboratory for Basic Life Science Research of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi 712082, China
| | - Xianyang Liu
- Xi'an Mental Health Center, Xi'an, Shaanxi 710061, China
| |
Collapse
|
26
|
Devuyst O, Pattaro C. The UMOD Locus: Insights into the Pathogenesis and Prognosis of Kidney Disease. J Am Soc Nephrol 2017; 29:713-726. [PMID: 29180396 DOI: 10.1681/asn.2017070716] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The identification of genetic factors associated with kidney disease has the potential to provide critical insights into disease mechanisms. Genome-wide association studies have uncovered genomic regions associated with renal function metrics and risk of CKD. UMOD is among the most outstanding loci associated with CKD in the general population, because it has a large effect on eGFR and CKD risk that is consistent across different ethnic groups. The relevance of UMOD for CKD is clear, because the encoded protein, uromodulin (Tamm-Horsfall protein), is exclusively produced by the kidney tubule and has specific biochemical properties that mediate important functions in the kidney and urine. Rare mutations in UMOD are the major cause of autosomal dominant tubulointerstitial kidney disease, a condition that leads to CKD and ESRD. In this brief review, we use the UMOD paradigm to describe how population genetic studies can yield insight into the pathogenesis and prognosis of kidney diseases.
Collapse
Affiliation(s)
- Olivier Devuyst
- Institute of Physiology, University of Zurich, Zurich, Switzerland; and
| | - Cristian Pattaro
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| |
Collapse
|
27
|
Pattaro C. Genome-wide association studies of albuminuria: towards genetic stratification in diabetes? J Nephrol 2017; 31:475-487. [PMID: 28918587 DOI: 10.1007/s40620-017-0437-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Accepted: 09/02/2017] [Indexed: 12/16/2022]
Abstract
Genome-wide association studies (GWAS) have been very successful in unraveling the polygenic structure of several complex diseases and traits. In the case of albuminuria, despite the large sample size achieved by some studies, results look sparse with a limited number of loci reported so far. This review searched for GWAS studies of albumin excretion, albuminuria, and proteinuria. The resulting picture sets elements of uniqueness for albuminuria GWAS with respect to other complex traits. So far, very few loci associated with albuminuria have been validated by means of genome-wide significant evidence or formal replication. With rare exceptions, the validated loci are ethnicity specific. Within a given ethnicity, variants are common and have relatively large effects, especially in the presence of diabetes. In most cases, the identified variants were functional and a biological involvement of the target genes in renal damage was established. Recently reported variants associated with albuminuria in diabetes may be potentially combined into a genetic risk score, making it possible to rank diabetic patients by increasing risk of albuminuria. Validation of this model is required. To expand the understanding of the biological basis of albumin excretion regulation, future initiatives should achieve larger sample sizes and favor a transethnic study design.
Collapse
Affiliation(s)
- Cristian Pattaro
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Via Galvani 31, 39100, Bolzano, Italy.
| |
Collapse
|
28
|
van der Laan SW, Fall T, Soumaré A, Teumer A, Sedaghat S, Baumert J, Zabaneh D, van Setten J, Isgum I, Galesloot TE, Arpegård J, Amouyel P, Trompet S, Waldenberger M, Dörr M, Magnusson PK, Giedraitis V, Larsson A, Morris AP, Felix JF, Morrison AC, Franceschini N, Bis JC, Kavousi M, O'Donnell C, Drenos F, Tragante V, Munroe PB, Malik R, Dichgans M, Worrall BB, Erdmann J, Nelson CP, Samani NJ, Schunkert H, Marchini J, Patel RS, Hingorani AD, Lind L, Pedersen NL, de Graaf J, Kiemeney LALM, Baumeister SE, Franco OH, Hofman A, Uitterlinden AG, Koenig W, Meisinger C, Peters A, Thorand B, Jukema JW, Eriksen BO, Toft I, Wilsgaard T, Onland-Moret NC, van der Schouw YT, Debette S, Kumari M, Svensson P, van der Harst P, Kivimaki M, Keating BJ, Sattar N, Dehghan A, Reiner AP, Ingelsson E, den Ruijter HM, de Bakker PIW, Pasterkamp G, Ärnlöv J, Holmes MV, Asselbergs FW. Cystatin C and Cardiovascular Disease: A Mendelian Randomization Study. J Am Coll Cardiol 2017; 68:934-45. [PMID: 27561768 PMCID: PMC5451109 DOI: 10.1016/j.jacc.2016.05.092] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 05/12/2016] [Accepted: 05/18/2016] [Indexed: 01/09/2023]
Abstract
BACKGROUND Epidemiological studies show that high circulating cystatin C is associated with risk of cardiovascular disease (CVD), independent of creatinine-based renal function measurements. It is unclear whether this relationship is causal, arises from residual confounding, and/or is a consequence of reverse causation. OBJECTIVES The aim of this study was to use Mendelian randomization to investigate whether cystatin C is causally related to CVD in the general population. METHODS We incorporated participant data from 16 prospective cohorts (n = 76,481) with 37,126 measures of cystatin C and added genetic data from 43 studies (n = 252,216) with 63,292 CVD events. We used the common variant rs911119 in CST3 as an instrumental variable to investigate the causal role of cystatin C in CVD, including coronary heart disease, ischemic stroke, and heart failure. RESULTS Cystatin C concentrations were associated with CVD risk after adjusting for age, sex, and traditional risk factors (relative risk: 1.82 per doubling of cystatin C; 95% confidence interval [CI]: 1.56 to 2.13; p = 2.12 × 10−14). The minor allele of rs911119 was associated with decreased serum cystatin C (6.13% per allele; 95% CI: 5.75 to 6.50; p = 5.95 × 10−211), explaining 2.8% of the observed variation in cystatin C. Mendelian randomization analysis did not provide evidence for a causal role of cystatin C, with a causal relative risk for CVD of 1.00 per doubling cystatin C (95% CI: 0.82 to 1.22; p = 0.994), which was statistically different from the observational estimate (p = 1.6 × 10−5). A causal effect of cystatin C was not detected for any individual component of CVD. CONCLUSIONS Mendelian randomization analyses did not support a causal role of cystatin C in the etiology of CVD. As such, therapeutics targeted at lowering circulating cystatin C are unlikely to be effective in preventing CVD.
Collapse
Affiliation(s)
- Sander W van der Laan
- Laboratory of Experimental Cardiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, the Netherlands.
| | - Tove Fall
- Department of Medical Sciences, Cardiovascular Epidemiology, Uppsala University, Uppsala, Sweden
| | - Aicha Soumaré
- INSERM U1219 Team Vintage, University of Bordeaux, Bordeaux, France
| | - Alexander Teumer
- Department SHIP-KEF, Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany; Deutsches Zentrum für Herz- und Kreislaufforschung (DZHK, German Centre for Cardiovascular Research) partner site, Greifswald, Germany
| | - Sanaz Sedaghat
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Jens Baumert
- Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Delilah Zabaneh
- Department of Genetics, Environment and Evolution, University College London, London, United Kingdom; Genetics Institute, University College London, London, United Kingdom
| | - Jessica van Setten
- Laboratory of Experimental Cardiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Ivana Isgum
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Tessel E Galesloot
- Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Johannes Arpegård
- Department of Emergency Medicine, Karolinska University Hospital-Solna, Stockholm, Sweden; Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Philippe Amouyel
- INSERM, University of Lille, Lille, France; Institut Pasteur de Lille, Lille, France
| | - Stella Trompet
- Department of Cardiology C5-P, Leiden University Medical Center, Leiden, the Netherlands; Department of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, the Netherlands
| | - Melanie Waldenberger
- Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; Research Unit of Molecular Epidemiology Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Marcus Dörr
- Deutsches Zentrum für Herz- und Kreislaufforschung (DZHK, German Centre for Cardiovascular Research) partner site, Greifswald, Germany; Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany
| | - Patrik K Magnusson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | | | - Anders Larsson
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Andrew P Morris
- Department of Biostatistics, University of Liverpool, Liverpool, United Kingdom; Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Janine F Felix
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Alanna C Morrison
- Department of Epidemiology, Human Genetics, and Environmental Sciences, University of Texas Health Science Center, Houston, Texas
| | - Nora Franceschini
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina
| | - Joshua C Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, Washington
| | - Maryam Kavousi
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Christopher O'Donnell
- Department of Cardiology, Boston Veterans Administration Healthcare, West Roxbury, Massachusetts; National Heart, Lung, and Blood Institute Framingham Heart Study, Framingham, Massachusetts
| | - Fotios Drenos
- Centre for Cardiovascular Genetics, Institute of Cardiovascular Sciences; University College London, London, United Kingdom; MRC Integrative Epidemiology Unit, School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom
| | - Vinicius Tragante
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Patricia B Munroe
- National Institute for Health Research Cardiovascular Biomedical Research Unit, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Rainer Malik
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Martin Dichgans
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-University Munich, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Bradford B Worrall
- Departments of Neurology and Health Evaluation Sciences, University of Virginia, Charlottesville, Virginia
| | - Jeanette Erdmann
- Institute for Integrative and Experimental Genomics, University of Lübeck, Lübeck, Germany
| | - Christopher P Nelson
- Department of Cardiovascular Sciences, University of Leicester, British Heart Foundation Cardiovascular Research Centre, Glenfield Hospital, Leicester, United Kingdom; National Institute for Health Research Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, United Kingdom
| | - Nilesh J Samani
- Department of Cardiovascular Sciences, University of Leicester, British Heart Foundation Cardiovascular Research Centre, Glenfield Hospital, Leicester, United Kingdom; National Institute for Health Research Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, United Kingdom
| | - Heribert Schunkert
- Deutsches Herzzentrum München, Technische Universität München, Munich, Germany; DZHK, German Centre for Cardiovascular Research, partner site Munich Heart Alliance, Munich, Germany
| | - Jonathan Marchini
- Department of Statistics, University of Oxford, Oxford, United Kingdom
| | - Riyaz S Patel
- The Genetic Epidemiology Research Group, Institute of Cardiovascular Science, University College London, London, United Kingdom; Bart's Heart Centre, London, United Kingdom; Farr Institute of Health Informatics, University College London, London, United Kingdom
| | - Aroon D Hingorani
- The Genetic Epidemiology Research Group, Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - Lars Lind
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Nancy L Pedersen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Jacqueline de Graaf
- Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Lambertus A L M Kiemeney
- Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Sebastian E Baumeister
- Department SHIP-KEF, Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany; Institute for Epidemiology and Preventive Medicine, University of Regensburg, Regensburg, Germany
| | - Oscar H Franco
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Albert Hofman
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - André G Uitterlinden
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Wolfgang Koenig
- Deutsches Zentrum für Herz- und Kreislaufforschung (DZHK, German Centre for Cardiovascular Research) partner site, Greifswald, Germany; Deutsches Herzzentrum München, Technische Universität München, Munich, Germany; Department of Internal Medicine II-Cardiology, University of Ulm Medical Center, Ulm, Germany
| | - Christa Meisinger
- Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Annette Peters
- Deutsches Zentrum für Herz- und Kreislaufforschung (DZHK, German Centre for Cardiovascular Research) partner site, Greifswald, Germany; Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Barbara Thorand
- Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - J Wouter Jukema
- Department of Cardiology C5-P, Leiden University Medical Center, Leiden, the Netherlands; Durrer Center for Cardiogenetic Research, ICIN-Netherlands Heart Institute, Utrecht, the Netherlands
| | - Bjørn Odvar Eriksen
- Metabolic and Renal Research Group, UiT The Arctic University of Norway, Tromsø, Norway; Section of Nephrology, University Hospital of North Norway, Tromsø, Norway
| | - Ingrid Toft
- Section of Nephrology, University Hospital of North Norway, Tromsø, Norway
| | - Tom Wilsgaard
- Department of Community Medicine, UiT The Arctic University of Norway, Tromsø, Norway
| | - N Charlotte Onland-Moret
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Yvonne T van der Schouw
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | - Meena Kumari
- Biological and Social Epidemiology, Institute for Social and Economic Research, University of Essex, Essex, United Kingdom
| | - Per Svensson
- Department of Emergency Medicine, Karolinska University Hospital-Solna, Stockholm, Sweden; Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Pim van der Harst
- Durrer Center for Cardiogenetic Research, ICIN-Netherlands Heart Institute, Utrecht, the Netherlands; Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Mika Kivimaki
- Department of Epidemiology and Public Health, University College London, London, United Kingdom
| | - Brendan J Keating
- Department of Surgery, Division of Transplantation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - Abbas Dehghan
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Alex P Reiner
- Department of Epidemiology, University of Washington, Seattle, Washington
| | - Erik Ingelsson
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden; Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California
| | - Hester M den Ruijter
- Laboratory of Experimental Cardiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Paul I W de Bakker
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands; Department of Medical Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Gerard Pasterkamp
- Laboratory of Experimental Cardiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, the Netherlands; Laboratory of Clinical Chemistry and Hematology, Division of Laboratories and Pharmacy, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Johan Ärnlöv
- Department of Medical Sciences, Cardiovascular Epidemiology, Uppsala University, Uppsala, Sweden
| | - Michael V Holmes
- Clinical Trial Service Unit & Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom.
| | - Folkert W Asselbergs
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht, the Netherlands; Durrer Center for Cardiogenetic Research, ICIN-Netherlands Heart Institute, Utrecht, the Netherlands; Institute of Cardiovascular Science, Faculty of Population Health Sciences, University College London, London, United Kingdom.
| |
Collapse
|
29
|
Christensen CH, Barry KH, Andreotti G, Alavanja MCR, Cook MB, Kelly SP, Burdett LA, Yeager M, Beane Freeman LE, Berndt SI, Koutros S. Sex Steroid Hormone Single-Nucleotide Polymorphisms, Pesticide Use, and the Risk of Prostate Cancer: A Nested Case-Control Study within the Agricultural Health Study. Front Oncol 2016; 6:237. [PMID: 27917368 PMCID: PMC5116569 DOI: 10.3389/fonc.2016.00237] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/25/2016] [Indexed: 12/17/2022] Open
Abstract
Experimental and epidemiologic investigations suggest that certain pesticides may alter sex steroid hormone synthesis, metabolism or regulation, and the risk of hormone-related cancers. Here, we evaluated whether single-nucleotide polymorphisms (SNPs) involved in hormone homeostasis alter the effect of pesticide exposure on prostate cancer risk. We evaluated pesticide-SNP interactions between 39 pesticides and SNPs with respect to prostate cancer among 776 cases and 1,444 controls nested in the Agricultural Health Study cohort. In these interactions, we included candidate SNPs involved in hormone synthesis, metabolism or regulation (N = 1,100), as well as SNPs associated with circulating sex steroid concentrations, as identified by genome-wide association studies (N = 17). Unconditional logistic regression was used to estimate odds ratios (ORs) and 95% confidence intervals (CIs). Multiplicative SNP-pesticide interactions were calculated using a likelihood ratio test. We translated p-values for interaction into q-values, which reflected the false discovery rate, to account for multiple comparisons. We observed a significant interaction, which was robust to multiple comparison testing, between the herbicide dicamba and rs8192166 in the testosterone metabolizing gene SRD5A1 (p-interaction = 4.0 × 10-5; q-value = 0.03), such that men with two copies of the wild-type genotype CC had a reduced risk of prostate cancer associated with low use of dicamba (OR = 0.62 95% CI: 0.41, 0.93) and high use of dicamba (OR = 0.44, 95% CI: 0.29, 0.68), compared to those who reported no use of dicamba; in contrast, there was no significant association between dicamba and prostate cancer among those carrying one or two copies of the variant T allele at rs8192166. In addition, interactions between two organophosphate insecticides and SNPs related to estradiol metabolism were observed to result in an increased risk of prostate cancer. While replication is needed, these data suggest both agonistic and antagonistic effects on circulating hormones, due to the combination of exposure to pesticides and genetic susceptibility, may impact prostate cancer risk.
Collapse
Affiliation(s)
- Carol H Christensen
- Office of Science, Center for Tobacco Products, Food and Drug Administration, Document Control Center , Silver Spring, MD , USA
| | - Kathryn Hughes Barry
- Occupational and Environmental Epidemiology Branch, Department of Health and Human Services, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA; Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, USA; Program in Oncology, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
| | - Gabriella Andreotti
- Occupational and Environmental Epidemiology Branch, Department of Health and Human Services, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health , Rockville, MD , USA
| | - Michael C R Alavanja
- Occupational and Environmental Epidemiology Branch, Department of Health and Human Services, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health , Rockville, MD , USA
| | - Michael B Cook
- Metabolic Epidemiology Branch, Department of Health and Human Services, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health , Rockville, MD , USA
| | - Scott P Kelly
- Metabolic Epidemiology Branch, Department of Health and Human Services, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health , Rockville, MD , USA
| | - Laurie A Burdett
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., National Cancer Institute-Frederick , Frederick, MD , USA
| | - Meredith Yeager
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., National Cancer Institute-Frederick , Frederick, MD , USA
| | - Laura E Beane Freeman
- Occupational and Environmental Epidemiology Branch, Department of Health and Human Services, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health , Rockville, MD , USA
| | - Sonja I Berndt
- Occupational and Environmental Epidemiology Branch, Department of Health and Human Services, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health , Rockville, MD , USA
| | - Stella Koutros
- Occupational and Environmental Epidemiology Branch, Department of Health and Human Services, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health , Rockville, MD , USA
| |
Collapse
|
30
|
Duffy DL, McDonald SP, Hayhurst B, Panagiotopoulos S, Smith TJ, Wang XL, Wilcken DE, Duarte NL, Mathews J, Hoy WE. Familial aggregation of albuminuria and arterial hypertension in an Aboriginal Australian community and the contribution of variants in ACE and TP53. BMC Nephrol 2016; 17:183. [PMID: 27871254 PMCID: PMC5117595 DOI: 10.1186/s12882-016-0396-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 11/09/2016] [Indexed: 12/19/2022] Open
Abstract
Background Aboriginal Australians are at high risk of cardiovascular, metabolic and renal diseases, resulting in a marked reduction in life expectancy when compared to the rest of the Australian population. This is partly due to recognized environmental and lifestyle risk factors, but a contribution of genetic susceptibility is also likely. Methods Using results from a comprehensive survey of one community (N = 1350 examined individuals), we have tested for familial aggregation of plasma glucose, arterial blood pressure, albuminuria (measured as urinary albumin to creatinine ratio, UACR) and estimated glomerular filtration rate (eGFR), and quantified the contribution of variation at four candidate genes (ACE; TP53; ENOS3; MTHFR). Results In the subsample of 357 individuals with complete genotype and phenotype data we showed that both UACR (h2 = 64%) and blood pressure (sBP h2 = 29%, dBP, h2 = 11%) were significantly heritable. The ACE insertion-deletion (P = 0.0009) and TP53 codon72 polymorphisms (P = 0.003) together contributed approximately 15% of the total heritability of UACR, with an effect of ACE genotype on BP also clearly evident. Conclusions While the effects of the ACE insertion-deletion on risk of renal disease (especially in the setting of diabetes) are well recognized, this is only the second study to implicate p53 genotype as a risk factor for albuminuria - the other being an earlier study we performed in a different Aboriginal community (McDonald et al., J Am Soc Nephrol 13: 677-83, 2002). We conclude that there are significant genetic contributions to the high prevalence of chronic diseases observed in this population. Electronic supplementary material The online version of this article (doi:10.1186/s12882-016-0396-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- David L Duffy
- Genetic Epidemiology Laboratory, QIMR Berghofer Institute of Medical Research, 300 Herston Rd, Brisbane, 4006, Australia
| | | | - Beverley Hayhurst
- Cradle Coast Authority, Tasmania, Formerly Menzies School of Health Research, Darwin, Australia
| | | | - Trudy J Smith
- Menzies School of Health Research, Darwin, Australia
| | - Xing L Wang
- Department of Genetics, Southwest Foundation for Biomedical Research, San Antonio, Texas, Australia
| | - David E Wilcken
- Cardiovascular Genetics Department, Prince of Wales Hospital, Sydney, Australia
| | - Natalia L Duarte
- Cardiovascular Genetics Department, Prince of Wales Hospital, Sydney, Australia
| | - John Mathews
- Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Australia
| | - Wendy E Hoy
- Centre for Chronic Disease, The University of Queensland School of Medicine, Brisbane, Australia.,Centre for Chronic Disease, Central Clinical School, Royal Brisbane Hospital, Queensland, 4029, Australia
| |
Collapse
|
31
|
Liu WB, Han F, Jiang X, Chen HQ, Zhao H, Liu Y, Li YH, Huang C, Cao J, Liu JY. TMEM196 acts as a novel functional tumour suppressor inactivated by DNA methylation and is a potential prognostic biomarker in lung cancer. Oncotarget 2016; 6:21225-39. [PMID: 26056045 PMCID: PMC4673261 DOI: 10.18632/oncotarget.4237] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Accepted: 05/12/2015] [Indexed: 12/31/2022] Open
Abstract
Epigenetic silencing of tumour suppressors contributes to the development and progression of lung cancer. We recently found that TMEM196 was hypermethylated in lung cancer. This study aimed to clarify its epigenetic regulation, possible roles and clinical significance. TMEM196 methylation correlated with loss of protein expression in chemical-induced rat lung pathologic lesions and human lung cancer tissues and cell lines. 5-aza-2′-deoxycytidine restored TMEM196 expression. Moreover, TMEM196 hypermethylation was detected in 61.2% of primary lung tumours and found to be associated with poor differentiation and pathological stage of lung cancer. Functional studies showed that ectopic re-expression of TMEM196 in lung cancer cells inhibited cell proliferation, clonogenicity, cell motility and tumour formation. However, TMEM196 knockdown increased cell proliferation and inhibited apoptosis and cell-cycle arrest. These effects were associated with upregulation of p21 and Bax, and downregulation of cyclin D1, c-myc, CD44 and β-catenin. Kaplan–Meier survival curves showed that TMEM196 downregulation was significantly associated with shortened survival in lung cancer patients. Multivariate analysis showed that patients with TMEM196 expression had a better overall survival. Our results revealed for the first time that TMEM196 acts as a novel functional tumour suppressor inactivated by DNA methylation and is an independent prognostic factor of lung cancer.
Collapse
Affiliation(s)
- Wen-bin Liu
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, P. R. China
| | - Fei Han
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, P. R. China
| | - Xiao Jiang
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, P. R. China
| | - Hong-qiang Chen
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, P. R. China
| | - Huan Zhao
- Department of Internal Neurology, Southwest Hospital, Third Military Medical University, Chongqing, P. R. China
| | - Yong Liu
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, P. R. China
| | - Yong-hong Li
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, P. R. China
| | - Chuanshu Huang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York, USA
| | - Jia Cao
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, P. R. China
| | - Jin-yi Liu
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, P. R. China
| |
Collapse
|
32
|
Accogli A, Pacetti M, Fiaschi P, Pavanello M, Piatelli G, Nuzzi D, Baldi M, Tassano E, Severino MS, Allegri A, Capra V. Association of achondroplasia with sagittal synostosis and scaphocephaly in two patients, an underestimated condition? Am J Med Genet A 2016; 167A:646-52. [PMID: 25691418 DOI: 10.1002/ajmg.a.36933] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 12/07/2014] [Indexed: 12/25/2022]
Abstract
We report on two patients with an unusual combination of achondroplasia and surgically treated sagittal synostosis and scaphocephaly. The most common achondroplasia mutation, p.Gly380Arg in fibroblast growth factor receptor 3 (FGFR3), was detected in both patients. Molecular genetic testing of FGFR1, FGFR2, FGFR3 and TWIST1 genes failed to detect any additional mutations. There are several reports of achondroplasia with associated craniosynostosis, but no other cases of scaphocephaly in children with achondroplasia have been described. Recently it has been demonstrated that FGFR3 mutations affect not only endochondral ossification but also membranous ossification, providing new explanations for the craniofacial hallmarks in achondroplasia. Our report suggests that the association of isolated scaphocephaly and other craniosynostoses with achondroplasia may be under recognized.
Collapse
Affiliation(s)
- Andrea Accogli
- Universit, à, di Genova, Genova, Italy; Istituto Giannina Gaslini, Genova, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Deming Y, Xia J, Cai Y, Lord J, Del-Aguila JL, Fernandez MV, Carrell D, Black K, Budde J, Ma S, Saef B, Howells B, Bertelsen S, Bailey M, Ridge PG, Holtzman D, Morris JC, Bales K, Pickering EH, Lee JM, Heitsch L, Kauwe J, Goate A, Piccio L, Cruchaga C. Genetic studies of plasma analytes identify novel potential biomarkers for several complex traits. Sci Rep 2016; 6:18092. [PMID: 36647296 PMCID: PMC4698720 DOI: 10.1038/srep18092] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 11/11/2015] [Indexed: 01/23/2023] Open
Abstract
Genome-wide association studies of 146 plasma protein levels in 818 individuals revealed 56 genome-wide significant associations (28 novel) with 47 analytes. Loci associated with plasma levels of 39 proteins tested have been previously associated with various complex traits such as heart disease, inflammatory bowel disease, Type 2 diabetes and multiple sclerosis. These data suggest that these plasma protein levels may constitute informative endophenotypes for these complex traits. We found three potential pleiotropic genes: ABO for plasma SELE and ACE levels, FUT2 for CA19-9 and CEA plasma levels and APOE for ApoE and CRP levels. We also found multiple independent signals in loci associated with plasma levels of ApoH, CA19-9, FetuinA, IL6r and LPa. Our study highlights the power of biological traits for genetic studies to identify genetic variants influencing clinically relevant traits, potential pleiotropic effects and complex disease associations in the same locus.
Collapse
Affiliation(s)
- Yuetiva Deming
- Department of Psychiatry, Washington University School of Medicine, 660 S. Euclid Ave. B8134, St. Louis, MO 63110, USA
| | - Jian Xia
- Department of Psychiatry, Washington University School of Medicine, 660 S. Euclid Ave. B8134, St. Louis, MO 63110, USA
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Yefei Cai
- Department of Psychiatry, Washington University School of Medicine, 660 S. Euclid Ave. B8134, St. Louis, MO 63110, USA
| | - Jenny Lord
- Department of Psychiatry, Washington University School of Medicine, 660 S. Euclid Ave. B8134, St. Louis, MO 63110, USA
- Human Genetics Programme, Wellcome Trust Sanger Institute, Cambridge, CB10 1SA, UK
| | - Jorge L. Del-Aguila
- Department of Psychiatry, Washington University School of Medicine, 660 S. Euclid Ave. B8134, St. Louis, MO 63110, USA
| | - Maria Victoria Fernandez
- Department of Psychiatry, Washington University School of Medicine, 660 S. Euclid Ave. B8134, St. Louis, MO 63110, USA
| | - David Carrell
- Department of Psychiatry, Washington University School of Medicine, 660 S. Euclid Ave. B8134, St. Louis, MO 63110, USA
| | - Kathleen Black
- Department of Psychiatry, Washington University School of Medicine, 660 S. Euclid Ave. B8134, St. Louis, MO 63110, USA
| | - John Budde
- Department of Psychiatry, Washington University School of Medicine, 660 S. Euclid Ave. B8134, St. Louis, MO 63110, USA
| | - ShengMei Ma
- Department of Psychiatry, Washington University School of Medicine, 660 S. Euclid Ave. B8134, St. Louis, MO 63110, USA
| | - Benjamin Saef
- Department of Psychiatry, Washington University School of Medicine, 660 S. Euclid Ave. B8134, St. Louis, MO 63110, USA
| | - Bill Howells
- Department of Psychiatry, Washington University School of Medicine, 660 S. Euclid Ave. B8134, St. Louis, MO 63110, USA
| | - Sarah Bertelsen
- Department of Psychiatry, Washington University School of Medicine, 660 S. Euclid Ave. B8134, St. Louis, MO 63110, USA
| | - Matthew Bailey
- Department of Biology, Brigham Young University, Provo, UT, USA
| | - Perry G. Ridge
- Department of Biology, Brigham Young University, Provo, UT, USA
| | - David Holtzman
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA
- Department of Developmental Biology, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, 4488 Forest Park Ave., St Louis, MO 63108, USA
- Hope Center for Neurological Disorders. Washington University School of Medicine, 660 S. Euclid Ave. B8111, St. Louis, MO 63110, USA
| | - John C. Morris
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA
- Department of Developmental Biology, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, 4488 Forest Park Ave., St Louis, MO 63108, USA
- Hope Center for Neurological Disorders. Washington University School of Medicine, 660 S. Euclid Ave. B8111, St. Louis, MO 63110, USA
| | - Kelly Bales
- Neuroscience Research Unit, Worldwide Research and Development, Pfizer, Inc., Groton, CT, USA
| | - Eve H. Pickering
- Neuroscience Research Unit, Worldwide Research and Development, Pfizer, Inc., Groton, CT, USA
| | - Jin-Moo Lee
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| | - Laura Heitsch
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| | - John Kauwe
- Department of Biology, Brigham Young University, Provo, UT, USA
| | - Alison Goate
- Department of Psychiatry, Washington University School of Medicine, 660 S. Euclid Ave. B8134, St. Louis, MO 63110, USA
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, 4488 Forest Park Ave., St Louis, MO 63108, USA
- Hope Center for Neurological Disorders. Washington University School of Medicine, 660 S. Euclid Ave. B8111, St. Louis, MO 63110, USA
| | - Laura Piccio
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University School of Medicine, 660 S. Euclid Ave. B8134, St. Louis, MO 63110, USA
- Hope Center for Neurological Disorders. Washington University School of Medicine, 660 S. Euclid Ave. B8111, St. Louis, MO 63110, USA
| |
Collapse
|
34
|
COOKE BAILEY JESSICAN, WILSON SARAH, BROWN-GENTRY KRISTIN, GOODLOE ROBERT, CRAWFORD DANAC. KIDNEY DISEASE GENETICS AND THE IMPORTANCE OF DIVERSITY IN PRECISION MEDICINE. PACIFIC SYMPOSIUM ON BIOCOMPUTING. PACIFIC SYMPOSIUM ON BIOCOMPUTING 2016; 21:285-96. [PMID: 26776194 PMCID: PMC4720994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Kidney disease is a well-known health disparity in the United States where African Americans are affected at higher rates compared with other groups such as European Americans and Mexican Americans. Common genetic variants in the myosin, heavy chain 9, non-muscle (MYH9) gene were initially identified as associated with non-diabetic end-stage renal disease in African Americans, and it is now understood that these variants are in strong linkage disequilibrium with likely causal variants in neighboring APOL1. Subsequent genome-wide and candidate gene studies have suggested that MYH9 common variants among others are also associated with chronic kidney disease and quantitative measures of kidney function in various populations. In a precision medicine setting, it is important to consider genetic effects or genetic associations that differ across racial/ethnic groups in delivering data relevant to disease risk or individual-level patient assessment. Kidney disease and quantitative trait-associated genetic variants have yet to be systematically characterized in multiple racial/ethnic groups. Therefore, to further characterize the prevalence of these genetic variants and their association with kidney related traits, we have genotyped 10 kidney disease or quantitative trait-associated single nucleotide polymorphisms (SNPs) (rs2900976, rs10505955, rs10502868, rs1243400, rs9305354, rs12917707, rs17319721, rs2467853, rs2032487, and rs4821480) in 14,998 participants from the population-based cross-sectional National Health and Nutrition Examination Surveys (NHANES) III and 1999-2002 as part of the Epidemiologic Architecture for Genes Linked to Environment (EAGLE) study. In this general adult population ascertained regardless of health status (6,293 non-Hispanic whites, 3,013 non-Hispanic blacks, and 3,542 Mexican Americans), we observed higher rates of chronic kidney disease among non-Hispanic blacks compared with the other groups as expected. We performed single SNP tests of association using linear regressions assuming an additive genetic model adjusted for age, sex, diastolic blood pressure, systolic blood pressure, and type 2 diabetes status for several outcomes including creatinine (urinary), creatinine (serum), albumin (urinary), eGFR, and albumin-to-urinary creatinine ratio (ACR). We also tested for associations between each SNP and chronic kidney disease and albuminuria using logistic regression. Surprisingly, none of the MYH9 variants tested was associated with kidney diseases or traits in non-Hispanic blacks (p>0.05), perhaps attributable to the clinical heterogeneity of kidney disease in this population. Several associations were observed in each racial/ethnic group at p<0.05, but none were consistently associated in the same direction in all three groups. The lack of significant and consistent associations is most likely due to power highlighting the importance of the availability of large, diverse populations for genetic association studies of complex diseases and traits to inform precision medicine efforts in diverse patient populations.
Collapse
Affiliation(s)
- JESSICA N. COOKE BAILEY
- Institute for Computational Biology, Department of Epidemiology and Biostatistics, Case Western Reserve University, Wolstein Research Building, 2103 Cornell Road, Suite 2527, Cleveland, OH 44106, USA,
| | - SARAH WILSON
- Center for Human Genetics, Vanderbilt University, 519 Light Hall, 2215 Garland Avenue, Nashville, TN 37232, USA,
| | - KRISTIN BROWN-GENTRY
- Center for Human Genetics Research, Vanderbilt University, 519 Light Hall, 2215 Garland Avenue, Nashville, TN 37232, USA,
| | - ROBERT GOODLOE
- Center for Human Genetics Research, Vanderbilt University, 519 Light Hall, 2215 Garland Avenue, Nashville, TN 37232, USA,
| | - DANA C. CRAWFORD
- Institute for Computational Biology, Department of Epidemiology and Biostatistics, Case Western Reserve University, Wolstein Research Building, 2103 Cornell Road, Suite 2527, Cleveland, OH 44106, USA,
| |
Collapse
|
35
|
Iyengar SK, Sedor JR, Freedman BI, Kao WHL, Kretzler M, Keller BJ, Abboud HE, Adler SG, Best LG, Bowden DW, Burlock A, Chen YDI, Cole SA, Comeau ME, Curtis JM, Divers J, Drechsler C, Duggirala R, Elston RC, Guo X, Huang H, Hoffmann MM, Howard BV, Ipp E, Kimmel PL, Klag MJ, Knowler WC, Kohn OF, Leak TS, Leehey DJ, Li M, Malhotra A, März W, Nair V, Nelson RG, Nicholas SB, O’Brien SJ, Pahl MV, Parekh RS, Pezzolesi MG, Rasooly RS, Rotimi CN, Rotter JI, Schelling JR, Seldin MF, Shah VO, Smiles AM, Smith MW, Taylor KD, Thameem F, Thornley-Brown DP, Truitt BJ, Wanner C, Weil EJ, Winkler CA, Zager PG, Igo RP, Hanson RL, Langefeld CD. Genome-Wide Association and Trans-ethnic Meta-Analysis for Advanced Diabetic Kidney Disease: Family Investigation of Nephropathy and Diabetes (FIND). PLoS Genet 2015; 11:e1005352. [PMID: 26305897 PMCID: PMC4549309 DOI: 10.1371/journal.pgen.1005352] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 06/10/2015] [Indexed: 11/28/2022] Open
Abstract
Diabetic kidney disease (DKD) is the most common etiology of chronic kidney disease (CKD) in the industrialized world and accounts for much of the excess mortality in patients with diabetes mellitus. Approximately 45% of U.S. patients with incident end-stage kidney disease (ESKD) have DKD. Independent of glycemic control, DKD aggregates in families and has higher incidence rates in African, Mexican, and American Indian ancestral groups relative to European populations. The Family Investigation of Nephropathy and Diabetes (FIND) performed a genome-wide association study (GWAS) contrasting 6,197 unrelated individuals with advanced DKD with healthy and diabetic individuals lacking nephropathy of European American, African American, Mexican American, or American Indian ancestry. A large-scale replication and trans-ethnic meta-analysis included 7,539 additional European American, African American and American Indian DKD cases and non-nephropathy controls. Within ethnic group meta-analysis of discovery GWAS and replication set results identified genome-wide significant evidence for association between DKD and rs12523822 on chromosome 6q25.2 in American Indians (P = 5.74x10-9). The strongest signal of association in the trans-ethnic meta-analysis was with a SNP in strong linkage disequilibrium with rs12523822 (rs955333; P = 1.31x10-8), with directionally consistent results across ethnic groups. These 6q25.2 SNPs are located between the SCAF8 and CNKSR3 genes, a region with DKD relevant changes in gene expression and an eQTL with IPCEF1, a gene co-translated with CNKSR3. Several other SNPs demonstrated suggestive evidence of association with DKD, within and across populations. These data identify a novel DKD susceptibility locus with consistent directions of effect across diverse ancestral groups and provide insight into the genetic architecture of DKD. Type 2 diabetes is the most common cause of severe kidney disease worldwide and diabetic kidney disease (DKD) associates with premature death. Individuals of non-European ancestry have the highest burden of type 2 DKD; hence understanding the causes of DKD remains critical to reducing health disparities. Family studies demonstrate that genes regulate the onset and progression of DKD; however, identifying these genes has proven to be challenging. The Family Investigation of Diabetes and Nephropathy consortium (FIND) recruited a large multi-ethnic collection of individuals with type 2 diabetes with and without kidney disease in order to detect genes associated with DKD. FIND discovered and replicated a DKD-associated genetic locus on human chromosome 6q25.2 (rs955333) between the SCAF8 and CNKSR genes. Findings were supported by significantly different expression of genes in this region from kidney tissue of subjects with, versus without DKD. The present findings identify a novel kidney disease susceptibility locus in individuals with type 2 diabetes which is consistent across subjects of differing ancestries. In addition, FIND results provide a rich catalogue of genetic variation in DKD patients for future research on the genetic architecture regulating this common and devastating disease.
Collapse
Affiliation(s)
- Sudha K. Iyengar
- Department of Epidemiology & Biostatistics, Case Western Reserve University, Cleveland, Ohio, United States of America
- * E-mail: (SKI); (JRS); (BIF)
| | - John R. Sedor
- Departments of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
- Departments of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio, United States of America
- * E-mail: (SKI); (JRS); (BIF)
| | - Barry I. Freedman
- Department of Internal Medicine, Section on Nephrology, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
- * E-mail: (SKI); (JRS); (BIF)
| | - W. H. Linda Kao
- Department of Epidemiology and Medicine, John Hopkins University, Baltimore, Maryland, United States of America
| | - Matthias Kretzler
- Department of Internal Medicine/Nephrology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Benjamin J. Keller
- Department of Internal Medicine/Nephrology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Hanna E. Abboud
- Department of Medicine/Nephrology, The University of Texas Health Science Center, San Antonio, Texas, United States of America
| | - Sharon G. Adler
- Department of Medicine, Division of Nephrology and Hypertension, Harbor-UCLA Medical Center, Torrance, California, United States of America
| | - Lyle G. Best
- Missouri Breaks Industries Research, Timber Lake, South Dakota, United States of America
| | - Donald W. Bowden
- Department of Biochemistry, Center for Human Genomics, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Allison Burlock
- Department of Internal Medicine/Nephrology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Yii-Der Ida Chen
- The Institute for Translational Genomics and Population Sciences, Harbor-UCLA Medical Center, Torrance, California, United States of America
| | - Shelley A. Cole
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Mary E. Comeau
- Center for Public Health Genomics and Department of Biostatistical Sciences, Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, United States of America
| | - Jeffrey M. Curtis
- National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, Arizona, United States of America
| | - Jasmin Divers
- Center for Public Health Genomics and Department of Biostatistical Sciences, Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, United States of America
| | - Christiane Drechsler
- University Hospital Würzburg, Renal Division and Comprehensive Heart Failure Center, Würzburg, Germany
| | - Ravi Duggirala
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Robert C. Elston
- Department of Epidemiology & Biostatistics, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Harbor-UCLA Medical Center, Torrance, California, United States of America
| | - Huateng Huang
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | | | - Barbara V. Howard
- MedStar Health Research Institute, Hyattsville, Maryland, United States of America
| | - Eli Ipp
- Department of Medicine, Section of Diabetes and Metabolism, Harbor-UCLA Medical Center, Torrance, California, United States of America
| | - Paul L. Kimmel
- Division of Kidney, Urologic, and Hematologic Diseases, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland, United States of America
| | - Michael J. Klag
- Johns Hopkins Bloomberg School of Public Health, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - William C. Knowler
- National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, Arizona, United States of America
| | - Orly F. Kohn
- Department of Medicine, University of Chicago Medicine, Chicago, Illinois, United States of America
| | - Tennille S. Leak
- Department of Internal Medicine/Nephrology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - David J. Leehey
- Department of Medicine, Loyola School of Medicine, Maywood, Illinois, United States of America
| | - Man Li
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Alka Malhotra
- National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, Arizona, United States of America
| | - Winfried März
- Heidelberg University and Synlab Academy, University of Graz, Graz, Austria
| | - Viji Nair
- Department of Internal Medicine/Nephrology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Robert G. Nelson
- National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, Arizona, United States of America
| | - Susanne B. Nicholas
- Department of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Stephen J. O’Brien
- Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg, Russia, and Oceanographic Center, Nova Southeastern University, Ft. Lauderdale, Florida, United States of America
| | - Madeleine V. Pahl
- Department of Medicine, University of California, Irvine, Irvine, California, United States of America
| | - Rulan S. Parekh
- Departments of Paediatrics and Medicine, Hospital for Sick Children, University Health Network and the University of Toronto, Toronto, Ontario, Canada
| | - Marcus G. Pezzolesi
- Department of Medicine, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Rebekah S. Rasooly
- National Institute of Diabetes and Digestive Disease, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Charles N. Rotimi
- Center for Research on Genomics and Global Health, Bethesda, Maryland, United States of America
| | - Jerome I. Rotter
- The Institute for Translational Genomics and Population Sciences, Harbor-UCLA Medical Center, Torrance, California, United States of America
| | - Jeffrey R. Schelling
- Departments of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Michael F. Seldin
- Department of Biochemistry and Molecular Medicine, UC Davis School of Medicine, Davis, California, United States of America
| | - Vallabh O. Shah
- Department of Biochemistry & Molecular Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Adam M. Smiles
- Joslin Diabetes Center, Section on Genetics and Epidemiology, Boston, Massachusetts, United States of America
| | - Michael W. Smith
- National Human Genome Research Institute, Rockville, Maryland, United States of America
| | - Kent D. Taylor
- The Institute for Translational Genomics and Population Sciences, Harbor-UCLA Medical Center, Torrance, California, United States of America
| | - Farook Thameem
- Department of Medicine, The University of Texas Health Science Center, San Antonio, Texas, United States of America
| | | | - Barbara J. Truitt
- Department of Epidemiology & Biostatistics, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Christoph Wanner
- Department of Medicine, Division of Nephrology, University Hospital Würzburg, Würzburg, Germany
| | - E. Jennifer Weil
- National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, Arizona, United States of America
| | - Cheryl A. Winkler
- Center for Cancer Research, National Cancer Institute, Frederick, Maryland, United States of America
| | - Philip G. Zager
- Department of Internal Medicine, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Robert P. Igo
- Department of Epidemiology & Biostatistics, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Robert L. Hanson
- National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, Arizona, United States of America
| | - Carl D. Langefeld
- The Institute for Translational Genomics and Population Sciences, Harbor-UCLA Medical Center, Torrance, California, United States of America
| | | |
Collapse
|
36
|
Laston SL, Voruganti VS, Haack K, Shah VO, Bobelu A, Bobelu J, Ghahate D, Harford AM, Paine SS, Tentori F, Cole SA, MacCluer JW, Comuzzie AG, Zager PG. Genetics of kidney disease and related cardiometabolic phenotypes in Zuni Indians: the Zuni Kidney Project. Front Genet 2015; 6:6. [PMID: 25688259 PMCID: PMC4311707 DOI: 10.3389/fgene.2015.00006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 01/08/2015] [Indexed: 12/31/2022] Open
Abstract
The objective of this study is to identify genetic factors associated with chronic kidney disease (CKD) and related cardiometabolic phenotypes among participants of the Genetics of Kidney Disease in Zuni Indians study. The study was conducted as a community-based participatory research project in the Zuni Indians, a small endogamous tribe in rural New Mexico. We recruited 998 members from 28 extended multigenerational families, ascertained through probands with CKD who had at least one sibling with CKD. We used the Illumina Infinium Human1M-Duo version 3.0 BeadChips to type 1.1 million single nucleotide polymorphisms (SNPs). Prevalence estimates for CKD, hyperuricemia, diabetes, and hypertension were 24%, 30%, 17% and 34%, respectively. We found a significant (p < 1.58 × 10-7) association for a SNP in a novel gene for serum creatinine (PTPLAD2). We replicated significant associations for genes with serum uric acid (SLC2A9), triglyceride levels (APOA1, BUD13, ZNF259), and total cholesterol (PVRL2). We found novel suggestive associations (p < 1.58 × 10-6) for SNPs in genes with systolic (OLFML2B), and diastolic blood pressure (NFIA). We identified a series of genes associated with CKD and related cardiometabolic phenotypes among Zuni Indians, a population with a high prevalence of kidney disease. Illuminating genetic variations that modulate the risk for these disorders may ultimately provide a basis for novel preventive strategies and therapeutic interventions.
Collapse
Affiliation(s)
- Sandra L Laston
- South Texas Diabetes and Obesity Institute, Regional Academic Health Center, University of Texas at San Antonio Harlingen, TX, USA
| | - V Saroja Voruganti
- Department of Nutrition, University of North Carolina at Chapel Hill Kannapolis, NC, USA ; University of North Carolina Nutrition Research Institute, University of North Carolina at Chapel Hill Kannapolis, NC, USA
| | - Karin Haack
- Department of Genetics, Texas Biomedical Research Institute San Antonio, TX, USA
| | - Vallabh O Shah
- Department of Biochemistry, University of New Mexico School of Medicine Albuquerque, NM, USA
| | - Arlene Bobelu
- Department of Biochemistry, University of New Mexico School of Medicine Albuquerque, NM, USA
| | - Jeanette Bobelu
- Department of Biochemistry, University of New Mexico School of Medicine Albuquerque, NM, USA
| | - Donica Ghahate
- Department of Biochemistry, University of New Mexico School of Medicine Albuquerque, NM, USA
| | - Antonia M Harford
- Department of Biochemistry, University of New Mexico School of Medicine Albuquerque, NM, USA
| | | | | | - Shelley A Cole
- Department of Genetics, Texas Biomedical Research Institute San Antonio, TX, USA
| | - Jean W MacCluer
- Department of Genetics, Texas Biomedical Research Institute San Antonio, TX, USA
| | - Anthony G Comuzzie
- Department of Genetics, Texas Biomedical Research Institute San Antonio, TX, USA ; Southwest National Primate Research Center San Antonio, TX, USA
| | - Philip G Zager
- Dialysis Clinic, Inc., Albuquerque, NM USA ; Department of Medicine, Division of Nephrology, University of New Mexico School of Medicine Albuquerque, NM, USA
| |
Collapse
|
37
|
O'Seaghdha CM, Tin A, Yang Q, Katz R, Liu Y, Harris T, Astor B, Coresh J, Fox CS, Kao WHL, Shlipak MG. Association of a cystatin C gene variant with cystatin C levels, CKD, and risk of incident cardiovascular disease and mortality. Am J Kidney Dis 2014; 63:16-22. [PMID: 23932088 PMCID: PMC3872167 DOI: 10.1053/j.ajkd.2013.06.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 06/13/2013] [Indexed: 12/11/2022]
Abstract
BACKGROUND Carriers of the T allele of the single-nucleotide polymorphism rs13038305 tend to have lower cystatin C levels and higher cystatin C-based estimated glomerular filtration rate (eGFRcys). Adjusting for this genetic effect on cystatin C concentrations may improve GFR estimation, reclassify cases of chronic kidney disease (CKD), and strengthen risk estimates for cardiovascular disease (CVD) and mortality. STUDY DESIGN Observational. SETTING & POPULATION 4 population-based cohorts: Atherosclerosis Risk in Communities (ARIC), Cardiovascular Health (CHS), Framingham Heart (FHS), and Health, Aging, and Body Composition (Health ABC) studies. PREDICTORS We estimated the association of rs13038305 with eGFRcys and serum creatinine-based eGFR (eGFRcr) and performed longitudinal analyses of the associations of eGFRcys with mortality and cardiovascular events following adjustment for rs13038305. OUTCOMES We assessed reclassification by genotype-adjusted eGFRcys across CKD categories: <45, 45-59, 60-89, and ≥ 90 mL/min/1.73 m(2). We compared mortality and CVD outcomes in those reclassified to a worse eGFRcys category with those unaffected. Results were combined using fixed-effect inverse-variance meta-analysis. RESULTS In 14,645 participants, each copy of the T allele of rs13038305 (frequency, 21%) was associated with a 6.4% lower cystatin C concentration, 5.5-mL/min/1.73 m(2) higher eGFRcys, and 36% [95% CI, 29%-41%] lower odds of CKD. Associations with CVD (HR, 1.17; 95% CI, 1.14-1.20) and mortality (HR, 1.22; 95% CI, 1.19-1.24) per 10-mL/min/1.73 m(2) lower eGFRcys were similar with or without rs13038305 adjustment. 1,134 (7.7%) participants were reclassified to a worse CKD category following rs13038305 adjustment, and rates of CVD and mortality were higher in individuals who were reclassified. However, the overall net reclassification index was not significant for either outcome, at 0.009 (95% CI, -0.003 to 0.022) for mortality and 0.014 (95% CI, 0.0 to 0.028) for CVD. LIMITATIONS rs13038305 explains only a small proportion of cystatin C variation. CONCLUSIONS Statistical adjustment can correct a genetic bias in GFR estimates based on cystatin C in carriers of the T allele of rs13038305 and result in changes in disease classification. However, on a population level, the effects on overall reclassification of CKD status are modest.
Collapse
Affiliation(s)
- Conall M O'Seaghdha
- National Heart, Lung and Blood Institute's Framingham Heart Study and the Center for Population Studies, Framingham, MA; Renal Division, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Adrienne Tin
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Qiong Yang
- Department of Biostatistics, Boston University School of Public Health, Boston, MA
| | - Ronit Katz
- San Francisco VA Medical Center; Departments of Medicine, Epidemiology & Biostatistics, University of California, San Francisco, CA
| | - Yongmei Liu
- Department of Epidemiology & Prevention, Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC
| | - Tamara Harris
- Laboratory of Epidemiology, Demography, and Biometry, National Institute on Aging, Bethesda, MD
| | - Brad Astor
- Department of Population Health Sciences, The University of Wisconsin, School of Medicine and Public Health, Madison, WI
| | - Josef Coresh
- Welch Center for Prevention, Epidemiology and Clinical Research, The Johns Hopkins University, Baltimore, MD
| | - Caroline S Fox
- National Heart, Lung and Blood Institute's Framingham Heart Study and the Center for Population Studies, Framingham, MA; Division of Endocrinology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - W H Linda Kao
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Michael G Shlipak
- San Francisco VA Medical Center; Departments of Medicine, Epidemiology & Biostatistics, University of California, San Francisco, CA.
| |
Collapse
|
38
|
Thameem F, Igo RP, Freedman BI, Langefeld C, Hanson RL, Schelling JR, Elston RC, Duggirala R, Nicholas SB, Goddard KAB, Divers J, Guo X, Ipp E, Kimmel PL, Meoni LA, Shah VO, Smith MW, Winkler CA, Zager PG, Knowler WC, Nelson RG, Pahl MV, Parekh RS, Kao WHL, Rasooly RS, Adler SG, Abboud HE, Iyengar SK, Sedor JR. A genome-wide search for linkage of estimated glomerular filtration rate (eGFR) in the Family Investigation of Nephropathy and Diabetes (FIND). PLoS One 2013; 8:e81888. [PMID: 24358131 PMCID: PMC3866106 DOI: 10.1371/journal.pone.0081888] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Accepted: 10/27/2013] [Indexed: 12/22/2022] Open
Abstract
Objective Estimated glomerular filtration rate (eGFR), a measure of kidney function, is heritable, suggesting that genes influence renal function. Genes that influence eGFR have been identified through genome-wide association studies. However, family-based linkage approaches may identify loci that explain a larger proportion of the heritability. This study used genome-wide linkage and association scans to identify quantitative trait loci (QTL) that influence eGFR. Methods Genome-wide linkage and sparse association scans of eGFR were performed in families ascertained by probands with advanced diabetic nephropathy (DN) from the multi-ethnic Family Investigation of Nephropathy and Diabetes (FIND) study. This study included 954 African Americans (AA), 781 American Indians (AI), 614 European Americans (EA) and 1,611 Mexican Americans (MA). A total of 3,960 FIND participants were genotyped for 6,000 single nucleotide polymorphisms (SNPs) using the Illumina Linkage IVb panel. GFR was estimated by the Modification of Diet in Renal Disease (MDRD) formula. Results The non-parametric linkage analysis, accounting for the effects of diabetes duration and BMI, identified the strongest evidence for linkage of eGFR on chromosome 20q11 (log of the odds [LOD] = 3.34; P = 4.4×10−5) in MA and chromosome 15q12 (LOD = 2.84; P = 1.5×10−4) in EA. In all subjects, the strongest linkage signal for eGFR was detected on chromosome 10p12 (P = 5.5×10−4) at 44 cM near marker rs1339048. A subsequent association scan in both ancestry-specific groups and the entire population identified several SNPs significantly associated with eGFR across the genome. Conclusion The present study describes the localization of QTL influencing eGFR on 20q11 in MA, 15q21 in EA and 10p12 in the combined ethnic groups participating in the FIND study. Identification of causal genes/variants influencing eGFR, within these linkage and association loci, will open new avenues for functional analyses and development of novel diagnostic markers for DN.
Collapse
Affiliation(s)
- Farook Thameem
- Department of Medicine, The University of Texas Health Science Center, San Antonio, Texas, United States of America
| | - Robert P. Igo
- Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Barry I. Freedman
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Carl Langefeld
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Robert L. Hanson
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, Arizona, United States of America
| | - Jeffrey R. Schelling
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Robert C. Elston
- Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Ravindranath Duggirala
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Susanne B. Nicholas
- Department of Medicine, University of California, Los Angeles, California, United States of America
| | - Katrina A. B. Goddard
- Center for Health Research, Kaiser Permanente Northwest, Portland, Oregon, United States of America
| | - Jasmin Divers
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Xiuqing Guo
- Department of Pediatrics, Harbor-University of California Los Angeles Medical Center, Torrance, California, United States of America
| | - Eli Ipp
- Department of Medicine, Harbor-University of California Los Angeles Medical Center, Torrance, California, United States of America
| | - Paul L. Kimmel
- National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Lucy A. Meoni
- Department of Epidemiology and Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Vallabh O. Shah
- University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Michael W. Smith
- National Human Genome Research Institute, NIH, Bethesda, Maryland, United States of America
| | - Cheryl A. Winkler
- Center for Cancer Research, National Cancer Institute, NIH, Frederick, Maryland, United States of America
| | - Philip G. Zager
- University of New Mexico, Albuquerque, New Mexico, United States of America
| | - William C. Knowler
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, Arizona, United States of America
| | - Robert G. Nelson
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, Arizona, United States of America
| | - Madeline V. Pahl
- Department of Medicine, University of California, Irvine, California, United States of America
| | - Rulan S. Parekh
- Department of Epidemiology and Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Pediatrics, University of Toronto, Toronto, Canada
| | - W. H. Linda Kao
- Department of Epidemiology and Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Rebekah S. Rasooly
- National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sharon G. Adler
- Department of Medicine, Harbor-University of California Los Angeles Medical Center, Torrance, California, United States of America
| | - Hanna E. Abboud
- Department of Medicine, The University of Texas Health Science Center, San Antonio, Texas, United States of America
| | - Sudha K. Iyengar
- Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, Ohio, United States of America
- * E-mail:
| | - John R. Sedor
- Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, Ohio, United States of America
| | | |
Collapse
|
39
|
Xu M, Bi Y, Cui B, Hong J, Wang W, Ning G. The new perspectives on genetic studies of type 2 diabetes and thyroid diseases. Curr Genomics 2013; 14:33-48. [PMID: 23997649 PMCID: PMC3580778 DOI: 10.2174/138920213804999138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2012] [Revised: 11/16/2012] [Accepted: 11/19/2012] [Indexed: 12/18/2022] Open
Abstract
Recently, genome-wide association studies (GWAS) have led to the discovery of hundreds of susceptibility loci that are associated with complex metabolic diseases, such as type 2 diabetes and hyperthyroidism. The majority of the susceptibility loci are common across different races or populations; while some of them show ethnicity-specific distribution. Though the abundant novel susceptibility loci identified by GWAS have provided insight into biology through the discovery of new genes or pathways that were previously not known, most of them are in introns and the associated variants cumulatively explain only a small fraction of total heritability. Here we reviewed the genetic studies on the metabolic disorders, mainly type 2 diabetes and hyperthyroidism, including candidate genes-based findings and more recently the GWAS discovery; we also included the clinical relevance of these novel loci and the gene-environmental interactions. Finally, we discussed the future direction about the genetic study on the exploring of the pathogenesis of the metabolic diseases.
Collapse
Affiliation(s)
- Min Xu
- Key Laboratory for Endocrine and Metabolic Diseases of Ministry of Health, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, E-Institute of Shanghai Universities, Shanghai, China
| | | | | | | | | | | |
Collapse
|
40
|
Alul FY, Shchelochkov OA, Berberich SL, Murray JC, Ryckman KK. Genetic associations with neonatal thyroid-stimulating hormone levels. Pediatr Res 2013; 73:484-91. [PMID: 23344678 PMCID: PMC3775497 DOI: 10.1038/pr.2013.18] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Elevations or deficits in thyroid hormone levels are responsible for a wide range of neonatal and adult phenotypes. Several genome-wide, candidate gene, and meta-analysis studies have examined thyroid hormones in adults; however, to our knowledge, no genetic association studies have been performed with neonatal thyroid levels. METHODS A population of Iowa neonates, term (n = 827) and preterm (n = 815), were genotyped for 45 single-nucleotide polymorphisms (SNPs). Thyroid-stimulating hormone (TSH) values were obtained from the Iowa Neonatal Metabolic Screening Program. ANOVA was performed to identify genetic associations with TSH concentrations. RESULTS The strongest association was rs4704397 in the PDE8B gene (P = 1.3 × 10(-4)), followed by rs965513 (P = 6.4 × 10(-4)) on chromosome 9 upstream of the FOXE1 gene. Both of these SNPs met statistical significance after correction for multiple testing. Six other SNPs were marginally significant (P < 0.05). CONCLUSION We demonstrated for the first time two genetic associations with neonatal TSH levels that replicate findings with adult TSH levels. These SNPs should be considered early predictors of risk for adult diseases and conditions associated with thyroid hormone levels. Furthermore, this study provides a better understanding of the thyroid profile and potential risk for thyroid disorders in newborns.
Collapse
Affiliation(s)
- Farah Y. Alul
- Department of Pediatrics, University of Iowa, Iowa City, IA
| | | | | | | | | |
Collapse
|
41
|
Gopalakrishnan K, Kumarasamy S, Yan Y, Liu J, Kalinoski A, Kothandapani A, Farms P, Joe B. Increased Expression of Rififylin in A < 330 Kb Congenic Strain is Linked to Impaired Endosomal Recycling in Proximal Tubules. Front Genet 2012; 3:138. [PMID: 22891072 PMCID: PMC3413941 DOI: 10.3389/fgene.2012.00138] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2012] [Accepted: 07/11/2012] [Indexed: 11/13/2022] Open
Abstract
Cell surface proteins are internalized into the cell through endocytosis and either degraded within lysosomes or recycled back to the plasma membrane. While perturbations in endosomal internalization are known to modulate renal function, it is not known whether similar alterations in recycling affect renal function. Rififylin is a known regulator of endocytic recycling with E3 ubiquitin protein ligase activity. In this study, using two genetically similar strains, the Dahl Salt-sensitive rat and an S.LEW congenic strain, which had allelic variants within a < 330 kb segment containing rififylin, we tested the hypothesis that alterations in endosomal recycling affect renal function. The congenic strain had 1.59-fold higher renal expression of rififylin. Transcriptome analysis indicated that components of both endocytosis and recycling were upregulated in the congenic strain. Transcription of Atp1a1 and cell surface content of the protein product of Atp1a1, the alpha subunit of Na+K+ATPase were increased in the proximal tubules from the congenic strain. Because rififylin does not directly regulate endocytosis and it is also a differentially expressed gene within the congenic segment, we reasoned that the observed alterations in the transcriptome of the congenic strain constitute a feedback response to the primary functional alteration of recycling caused by rififylin. To test this, recycling of transferrin was studied in isolated proximal tubules. Recycling was significantly delayed within isolated proximal tubules of the congenic strain, which also had a higher level of polyubiquitinated proteins and proteinuria compared with S. These data provide evidence to suggest that delayed endosomal recycling caused by excess of rififylin indirectly affects endocytosis, enhances intracellular protein polyubiquitination and contributes to proteinuria.
Collapse
Affiliation(s)
- Kathirvel Gopalakrishnan
- Center for Hypertension and Personalized Medicine, University of Toledo College of Medicine and Life Sciences Toledo, OH, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Schulz A, Kreutz R. Mapping genetic determinants of kidney damage in rat models. Hypertens Res 2012; 35:675-94. [DOI: 10.1038/hr.2012.77] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
43
|
Hong KW, Ko KP, Ahn Y, Kim CS, Park SJ, Park JK, Kim SS, Kim Y. Epidemiological profiles between equol producers and nonproducers: a genomewide association study of the equol-producing phenotype. GENES AND NUTRITION 2012; 7:567-74. [PMID: 22477055 DOI: 10.1007/s12263-012-0292-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 03/05/2012] [Indexed: 12/17/2022]
Abstract
Equol is a daidzein (a phytoestrogen isoflavone) metabolite of gut bacteria, and the ability to produce equol varies between individuals and reduces the risks of several diseases. We tested the effects of equol production on health in Koreans and identified the genetic factors that determine the equol-producing phenotype. In 1391 subjects, the equol-producing phenotype was determined, based on measurements of serum equol concentrations. The anthropometric and blood biochemical measurements between equol producers and nonproducers were analyzed by LC-MS/MS. Genetic factors were identified in a genomewide association study (GWAS), and the interaction between genetic factors and the equol-producing phenotype was examined. We observed that 70.1 % of the study population produced equol. Blood pressure was significantly lower in equol producers (beta ± SE = -1.35 ± 0.67, p = 0.045). In our genomewide association study, we identified 5 single-nucleotide polymorphisms (p < 1 × 10(-5)) in HACE1. The most significant SNP was rs6927608, and individuals with a minor allele of rs6927608 did not produce equol (odds ratio = 0.57 (95 % CI 0.45-0.72), p value = 2.5 × 10(-6)). Notably, the interaction between equol production and the rs6927608 HACE1 SNP was significantly associated with systolic blood pressure (p value = 1.3 × 10(4)). Equol production is linked to blood pressure, and HACE1, identified in our (GWAS), might be a determinant of the equol-producing phenotype.
Collapse
Affiliation(s)
- Kyung-Won Hong
- Division of Epidemiology and Health Index, Center for Genome Science, Korea Centers for Disease Control and Prevention, #187 Osong saengmyeong 2-ro, Gangoe-myeon, Cheongwon-gun, Chungcheongbuk-do, 363-951, Korea
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Schulz A, Schütten-Faber S, van Es N, Unland J, Schulte L, Kossmehl P, de Heer E, Kreutz R. Induction of albuminuria and kidney damage in SHR by transfer of chromosome 8 from Munich Wistar Frömter rats. Physiol Genomics 2011; 44:110-6. [PMID: 22108208 DOI: 10.1152/physiolgenomics.00123.2011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Inbred Munich Wistar Frömter [MWF/FubRkb (RGD:724569), MWF] rats develop progressive albuminuria with age that is under polygenetic influence. We previously identified a major albuminuria quantitative trait locus (QTL) on rat chromosome (RNO)8 in MWF. To test the independent role of QTL(s) for albuminuria development on RNO8, we generated a consomic SHR-Chr 8(MWF)/Rkb (SHR-8(MWF)) strain by transferring RNO8 from MWF into the albuminuria-resistant background of the spontaneously hypertensive rat [SHR/FubRkb (RGD:631696; SHR)]. Young male MWF, SHR, and SHR-8(MWF) were sham-operated or unilaterally nephrectomized (Nx) at 6 wk and followed up to 24 wk of age, respectively. Systolic blood pressure was significantly lower in SHR-8(MWF) Sham compared with SHR Sham (-19.4 mmHg, P = 0.03) at 24 wk. In contrast, transfer of MWF-RNO8 into SHR induced a significant elevation of urinary albumin excretion (UAE) between weeks 12 and 24 in SHR-8(MWF) compared with SHR Sham animals (P < 0.0001, respectively). Nx resulted in a significant increase in UAE in both strains during follow-up (P < 0.0001, respectively), with significant higher values in SHR-8(MWF) compared with SHR (P < 0.005, respectively). Renal structural changes as determined by glomerulosclerosis (GSI) and tubulointerstitial damage index (TDI) were significantly higher in consomic animals either at Sham (TDI) or Nx (GSI) conditions (P < 0.05, respectively). These data confirm the independent role of MWF QTL(s) on RNO8 for both albuminuria and structural kidney damage. Moreover, this study shows for the first time the induction of albuminuria by transferring one or more albuminuria QTL into a resistant recipient background in a consomic rat strain.
Collapse
Affiliation(s)
- Angela Schulz
- Department of Clinical Pharmacology and Toxicology, Charité Centrum für Therapieforschung, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Lin CJ, Wen MJ, Hung YJ, Pei D, Kuo SW, Hsieh CH. The impact of 5,10-methenyltetrahydrofolate synthetase polymorphism on diabetic nephropathy in the Taiwanese population. Genet Test Mol Biomarkers 2011; 16:142-5. [PMID: 21895484 DOI: 10.1089/gtmb.2011.0050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Genome-wide association studies provide information implicating 5,10-methenyltetrahydrofolate synthetase (MTHFS) as a candidate gene for renal disease. In the Atherosclerosis Risk in Communities study, the intronic single-nucleotide polymorphism rs6495446 in the gene MTHFS confirmed the association between this gene and renal disease among Caucasian participants. We replicated this genetic association in a Taiwanese population with diabetic nephropathy (DN). A total of 358 Taiwanese patients with type 2 diabetes (T2D) were recruited. The case group comprised 180 T2D patients with DN, and the control group comprised the remaining patients without DN. rs6495446 in MTHFS had no significant effect on the risk of DN in Taiwanese patients with T2D. Multivariate logistic regression analysis demonstrated that being male, the duration of diabetes, plasma triglyceride level, and glycemic control were factors that predicted the development of DN.
Collapse
Affiliation(s)
- Chin-Jung Lin
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, Taipei, Taiwan, Republic of China
| | | | | | | | | | | |
Collapse
|
46
|
Philibert RA, Beach SRH, Gunter TD, Todorov AA, Brody GH, Vijayendran M, Elliott L, Hollenbeck N, Russell D, Cutrona C. The relationship of deiodinase 1 genotype and thyroid function to lifetime history of major depression in three independent populations. Am J Med Genet B Neuropsychiatr Genet 2011; 156B:593-9. [PMID: 21563302 PMCID: PMC3236034 DOI: 10.1002/ajmg.b.31200] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 04/25/2011] [Indexed: 11/06/2022]
Abstract
Major depression (MD) is often associated with disturbances of the hypothalamic/pituitary/thyroid (HPT) axis. Unfortunately, whether this association is secondary to common underlying genetic variation or whether the MD-associated disturbances in HPT function are chronic or state-dependent is unknown. To examine these questions, we genotyped 12 single nucleotide polymorphisms identified in previous genome wide association analyses of thyroid function in DNA contributed by 1,555 subjects from three longitudinal ethnically diverse studies that are well-characterized for lifetime MD and thyroid function. We then examined associations between genetic variants and key outcomes of thyroid stimulating hormone, free thyroxine (FT4) and depression. We confirmed prior findings that two variants in deiodinase 1 (DIO1), including a variant in the 3'UTR of DIO1 (rs11206244), were associated with altered FT4 levels in both White and African American subjects. We also found that rs11206244 genotype was associated with lifetime MD in White female subjects, in particular those from high-risk cohorts. However, we found no association of current FT4 levels with lifetime MD in either ethnic group. We conclude that genetic variation influencing thyroid function is a risk factor for MD. Given the evidence from prior studies, further investigations of role of HPT variation in etiology and treatment of MD are indicated.
Collapse
Affiliation(s)
- Robert A. Philibert
- Department of Psychiatry,The University of Iowa, Iowa City, IA.,Neuroscience and Genetics Programs, The University of Iowa, Iowa City, IA.,To whom correspondence should be addressed. Rm 2-126 MEB Psychiatry Research/MEB, Iowa City, IA, USA. 52242-1000 TEL 319-353-4986, FAX 301-353-3003,
| | - Steven R. H. Beach
- Institute for Behavioral Research, The University of Georgia, Athens, GA
| | | | | | - Gene H. Brody
- Institute for Behavioral Research, The University of Georgia, Athens, GA
| | | | - Lilly Elliott
- Department of Psychiatry,The University of Iowa, Iowa City, IA
| | | | | | | |
Collapse
|
47
|
Taylor PN, Panicker V, Sayers A, Shields B, Iqbal A, Bremner AP, Beilby JP, Leedman PJ, Hattersley AT, Vaidya B, Frayling T, Evans J, Tobias JH, Timpson NJ, Walsh JP, Dayan CM. A meta-analysis of the associations between common variation in the PDE8B gene and thyroid hormone parameters, including assessment of longitudinal stability of associations over time and effect of thyroid hormone replacement. Eur J Endocrinol 2011; 164:773-80. [PMID: 21317282 PMCID: PMC3080745 DOI: 10.1530/eje-10-0938] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Common variants in PDE8B are associated with TSH but apparently without any effect on thyroid hormone levels that is difficult to explain. Furthermore, the stability of the association has not been examined in longitudinal studies or in patients on levothyroxine (l-T(4)). DESIGN Totally, four cohorts were used (n=2557): the Busselton Health Study (thyroid function measured on two occasions), DEPTH, EFSOCH (selective cohorts), and WATTS (individuals on l-T(4)). METHODS Meta-analysis to clarify associations between the rs4704397 single nucleotide polymorphism in PDE8B on TSH, tri-iodothyronine (T(3)), and T(4) levels. RESULTS Meta-analysis confirmed that genetic variation in PDE8B was associated with TSH (P=1.64 × 10(-10) 0.20 s.d./allele, 95% confidence interval (CI) 0.142, 0.267) and identified a possible new association with free T(4) (P=0.023, -0.07 s.d./allele, 95% CI -0.137, -0.01), no association was seen with free T(3) (P=0.218). The association between PDE8B and TSH was similar in 1981 (0.14 s.d./allele, 95% CI 0.04, 0.238) and 1994 (0.20 s.d./allele, 95% CI 0.102, 0.300) and even more consistent between PDE8B and free T(4) in 1981 (-0.068 s.d./allele, 95% CI -0.167, 0.031) and 1994 (-0.07 s.d./allele, 95% CI -0.170, 0.030). No associations were seen between PDE8B and thyroid hormone parameters in individuals on l-T(4). CONCLUSION Common genetic variation in PDE8B is associated with reciprocal changes in TSH and free T(4) levels that are consistent over time and lost in individuals on l-T(4). These findings identify a possible genetic marker reflecting variation in thyroid hormone output that will be of value in epidemiological studies and provides additional evidence that PDE8B is involved in TSH signaling in the thyroid.
Collapse
Affiliation(s)
- Peter N Taylor
- Henry Wellcome Laboratories for Integrative Neurosciences and EndocrinologyUniversity of BristolBristol, BS1 3NYUK
| | - Vijay Panicker
- Henry Wellcome Laboratories for Integrative Neurosciences and EndocrinologyUniversity of BristolBristol, BS1 3NYUK
- School of Medicine and PharmacologyUniversity of Western AustraliaCrawley, Western Australia, 6009Australia
| | - Adrian Sayers
- Academic Rheumatology Avon Orthopaedic CentreSouthmead HospitalBristol, BS10 5NBUK
| | - Beverley Shields
- Peninsula NIHR Clinical Research FacilityPeninsula Medical School, University of ExeterExeter, PL6 8BUUK
| | - Ahmed Iqbal
- Henry Wellcome Laboratories for Integrative Neurosciences and EndocrinologyUniversity of BristolBristol, BS1 3NYUK
| | - Alexandra P Bremner
- School of Population HealthUniversity of Western AustraliaCrawley, Western Australia, 6009Australia
| | - John P Beilby
- Pathwest Laboratory Medicine, WANedlands, Western Australia, 6009Australia
| | - Peter J Leedman
- School of Medicine and PharmacologyUniversity of Western AustraliaCrawley, Western Australia, 6009Australia
- Laboratory for Cancer MedicineWestern Australian Institute for Medical Research, Centre for Medical Research, University of Western AustraliaPerth, Western Australia, 6000Australia
- Department of Endocrinology and DiabetesRoyal Perth HospitalPerth, Western Australia, 6847Australia
| | - Andrew T Hattersley
- Peninsula NIHR Clinical Research FacilityPeninsula Medical School, University of ExeterExeter, PL6 8BUUK
| | - Bijay Vaidya
- Department of EndocrinologyRoyal Devon and Exeter HospitalExeter, EX2 5DWUK
| | - Timothy Frayling
- Peninsula NIHR Clinical Research FacilityPeninsula Medical School, University of ExeterExeter, PL6 8BUUK
| | - Jonathan Evans
- Academic Unit of PsychiatryUniversity of BristolBristol, BS6 6JLUK
| | - Jonathan H Tobias
- Academic Rheumatology Avon Orthopaedic CentreSouthmead HospitalBristol, BS10 5NBUK
| | - Nicholas J Timpson
- Department of Social Medicine, MRC Centre for Causal Analyses in Translational EpidemiologyUniversity of BristolBristol, BS8 2BNUK
| | - John P Walsh
- School of Medicine and PharmacologyUniversity of Western AustraliaCrawley, Western Australia, 6009Australia
- Department of Endocrinology and DiabetesSir Charles Gairdner HospitalNedlands, Western Australia, 6009Australia
| | - Colin M Dayan
- Henry Wellcome Laboratories for Integrative Neurosciences and EndocrinologyUniversity of BristolBristol, BS1 3NYUK
- Cardiff University School of MedicineCentre for Endocrine and Diabetes ScienceHeath Park, Cardiff, CF14 4XN WalesUK
- (Correspondence should be addressed to C M Dayan at Cardiff University School of Medicine; )
| |
Collapse
|
48
|
Application of a new method for GWAS in a related case/control sample with known pedigree structure: identification of new loci for nephrolithiasis. PLoS Genet 2011; 7:e1001281. [PMID: 21283782 PMCID: PMC3024262 DOI: 10.1371/journal.pgen.1001281] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Accepted: 12/17/2010] [Indexed: 12/24/2022] Open
Abstract
In contrast to large GWA studies based on thousands of individuals and large meta-analyses combining GWAS results, we analyzed a small case/control sample for uric acid nephrolithiasis. Our cohort of closely related individuals is derived from a small, genetically isolated village in Sardinia, with well-characterized genealogical data linking the extant population up to the 16(th) century. It is expected that the number of risk alleles involved in complex disorders is smaller in isolated founder populations than in more diverse populations, and the power to detect association with complex traits may be increased when related, homogeneous affected individuals are selected, as they are more likely to be enriched with and share specific risk variants than are unrelated, affected individuals from the general population. When related individuals are included in an association study, correlations among relatives must be accurately taken into account to ensure validity of the results. A recently proposed association method uses an empirical genotypic covariance matrix estimated from genome-screen data to allow for additional population structure and cryptic relatedness that may not be captured by the genealogical data. We apply the method to our data, and we also investigate the properties of the method, as well as other association methods, in our highly inbred population, as previous applications were to outbred samples. The more promising regions identified in our initial study in the genetic isolate were then further investigated in an independent sample collected from the Italian population. Among the loci that showed association in this study, we observed evidence of a possible involvement of the region encompassing the gene LRRC16A, already associated to serum uric acid levels in a large meta-analysis of 14 GWAS, suggesting that this locus might lead a pathway for uric acid metabolism that may be involved in gout as well as in nephrolithiasis.
Collapse
|
49
|
Wu CK, Lin JW, Caffrey JL, Chang MH, Hwang JJ, Lin YS. Cystatin C and long-term mortality among subjects with normal creatinine-based estimated glomerular filtration rates: NHANES III (Third National Health and Nutrition Examination Survey). J Am Coll Cardiol 2011; 56:1930-6. [PMID: 21109116 DOI: 10.1016/j.jacc.2010.04.069] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Revised: 03/10/2010] [Accepted: 04/06/2010] [Indexed: 11/18/2022]
Abstract
OBJECTIVES The objective was to test the association of cystatin C (Cys-C) with long-term mortality risk in the subjects with normal creatinine-based estimated glomerular filtration rates (eGFR). BACKGROUND Cys-C has been proposed as a sensitive indicator of renal dysfunction that is associated with cardiovascular events. The predictive value of Cys-C for mortality risk (both cardiovascular and noncardiovascular) and its utility among persons with normal kidney function remains unclear. METHODS The analysis included 2,990 subjects over 40 years of age with normal eGFR who participated in NHANES III (Third National Health and Nutrition Examination Survey). Normal eGFR was defined by Modification of Diet in Renal Disease (MDRD) equation ≥60 ml/min/1.73 m(2). Serum Cys-C was categorized as high, medium, or low. In 1 analysis, the high and low groups were the top and bottom 10%, and in the second analysis, they were the upper and lower thirds. All-cause and cause-specific mortality were obtained from the NHANES III-linked follow-up file through December 31, 2006. Multivariate Cox regression models were applied to assess the association of interest. RESULTS Within an average of 13.7 years follow-up, 488 cardiovascular and 719 noncardiovascular deaths occurred. When the first and last deciles were compared, the relative risks were all increased statistically as follows: all-cause, 4.36 (95% confidence interval [CI]: 2.52 to 7.82); cardiovascular, 7.44 (95% CI: 3.06 to 18.1); cancer, 2.45 (95% CI: 0.85 to 7.04); and noncardiovascular 3.15 (95% CI: 1.53 to 6.49) mortalities. Relative risks all moderated to lower values when the comparisons were expanded to include the upper and lower thirds. Similar associations were still present when Cys-C was modeled on a continuous scale, suggesting a linear relationship between Cys-C and mortality outcomes. CONCLUSIONS Serum Cys-C is prognostic of long-term mortality in the subjects with relatively normal renal function, independent of MDRD eGFR and albuminuria.
Collapse
Affiliation(s)
- Cho-Kai Wu
- Cardiovascular Center and Health Management Center, National Taiwan University Hospital Yun-Lin Branch, Dou-Liou City, Taiwan
| | | | | | | | | | | |
Collapse
|
50
|
Ned RM, Yesupriya A, Imperatore G, Smelser DT, Moonesinghe R, Chang MH, Dowling NF. Inflammation gene variants and susceptibility to albuminuria in the U.S. population: analysis in the Third National Health and Nutrition Examination Survey (NHANES III), 1991-1994. BMC MEDICAL GENETICS 2010; 11:155. [PMID: 21054877 PMCID: PMC2991302 DOI: 10.1186/1471-2350-11-155] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Accepted: 11/05/2010] [Indexed: 11/17/2022]
Abstract
BACKGROUND Albuminuria, a common marker of kidney damage, serves as an important predictive factor for the progression of kidney disease and for the development of cardiovascular disease. While the underlying etiology is unclear, chronic, low-grade inflammation is a suspected key factor. Genetic variants within genes involved in inflammatory processes may, therefore, contribute to the development of albuminuria. METHODS We evaluated 60 polymorphisms within 27 inflammatory response genes in participants from the second phase (1991-1994) of the Third National Health and Nutrition Examination Survey (NHANES III), a population-based and nationally representative survey of the United States. Albuminuria was evaluated as logarithm-transformed albumin-to-creatinine ratio (ACR), as ACR ≥ 30 mg/g, and as ACR above sex-specific thresholds. Multivariable linear regression and haplotype trend analyses were conducted to test for genetic associations in 5321 participants aged 20 years or older. Differences in allele and genotype distributions among non-Hispanic whites, non-Hispanic blacks, and Mexican Americans were tested in additive and codominant genetic models. RESULTS Variants in several genes were found to be marginally associated (uncorrected P value < 0.05) with log(ACR) in at least one race/ethnic group, but none remained significant in crude or fully-adjusted models when correcting for the false-discovery rate (FDR). In analyses of sex-specific albuminuria, IL1B (rs1143623) among Mexican Americans remained significantly associated with increased odds, while IL1B (rs1143623), CRP (rs1800947) and NOS3 (rs2070744) were significantly associated with ACR ≥ 30 mg/g in this population (additive models, FDR-P < 0.05). In contrast, no variants were found to be associated with albuminuria among non-Hispanic blacks after adjustment for multiple testing. The only variant among non-Hispanic whites significantly associated with any outcome was TNF rs1800750, which failed the test for Hardy-Weinberg proportions in this population. Haplotypes within MBL2, CRP, ADRB2, IL4R, NOS3, and VDR were significantly associated (FDR-P < 0.05) with log(ACR) or albuminuria in at least one race/ethnic group. CONCLUSIONS Our findings suggest a small role for genetic variation within inflammation-related genes to the susceptibility to albuminuria. Additional studies are needed to further assess whether genetic variation in these, and untested, inflammation genes alter the susceptibility to kidney damage.
Collapse
Affiliation(s)
- Renée M Ned
- Office of Public Health Genomics, Office of Surveillance, Epidemiology, and Laboratory Services, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Ajay Yesupriya
- Office of Public Health Genomics, Office of Surveillance, Epidemiology, and Laboratory Services, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Giuseppina Imperatore
- Division of Diabetes Translation, National Center for Chronic Disease Prevention and Health Promotion, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Diane T Smelser
- Office of Public Health Genomics, Office of Surveillance, Epidemiology, and Laboratory Services, Centers for Disease Control and Prevention, Atlanta, GA, USA
- American Society of Human Genetics Fellow, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Ramal Moonesinghe
- Office of Minority Health and Health Disparities, Office of the Director, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Man-huei Chang
- Office of Public Health Genomics, Office of Surveillance, Epidemiology, and Laboratory Services, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Nicole F Dowling
- Office of Public Health Genomics, Office of Surveillance, Epidemiology, and Laboratory Services, Centers for Disease Control and Prevention, Atlanta, GA, USA
| |
Collapse
|