1
|
Maleki S, Hendrikse J, Richardson K, Segrave RA, Hughes S, Kayayan E, Oldham S, Syeda W, Coxon JP, Caeyenberghs K, Domínguez D JF, Solowij N, Lubman DI, Suo C, Yücel M. White matter alterations associated with chronic cannabis use disorder: a structural network and fixel-based analysis. Transl Psychiatry 2024; 14:429. [PMID: 39389949 PMCID: PMC11467328 DOI: 10.1038/s41398-024-03150-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 09/25/2024] [Accepted: 10/02/2024] [Indexed: 10/12/2024] Open
Abstract
Cannabis use disorder (CUD) is associated with adverse mental health effects, as well as social and cognitive impairment. Given prevalence rates of CUD are increasing, there is considerable efforts, and need, to identify prognostic markers which may aid in minimising any harm associated with this condition. Previous neuroimaging studies have revealed changes in white matter (WM) organization in people with CUD, though, the findings are mixed. In this study, we applied MRI-based analysis techniques that offer complimentary mechanistic insights, i.e., a connectome approach and fixel-based analysis (FBA) to investigate properties of individual WM fibre populations and their microstructure across the entire brain, providing a highly sensitive approach to detect subtle changes and overcome limitations of previous diffusion models. We compared 56 individuals with CUD (median age 25 years) to a sample of 38 healthy individuals (median age 31.5 years). Compared to controls, those with CUD had significantly increased structural connectivity strength (FDR corrected) across 9 edges between the right parietal cortex and several cortical and subcortical regions, including left orbitofrontal, left temporal pole, and left hippocampus and putamen. Utilizing FBA, WM density was significantly higher in those with CUD (FWE-corrected) across the splenium of the corpus callosum, and lower in the bilateral cingulum and right cerebellum. We observed significant correlation between cannabis use over the past month and connectivity strength of the frontoparietal edge, and between age of regular use and WM density of the bilateral cingulum and right cerebellum. Our findings enhance the understanding of WM architecture alterations associated with CUD.
Collapse
Affiliation(s)
- Suzan Maleki
- BrainPark, Turner Institute for Brain and Mental Health, School of Psychological Sciences and Monash Biomedical Imaging Facility, Monash University, Clayton, VIC, Australia
| | - Joshua Hendrikse
- Movement and Exercise Neuroscience Laboratory, School of Psychological Sciences and Monash Biomedical Imaging Facility, Monash University, Clayton, VIC, Australia
| | - Karyn Richardson
- BrainPark, Turner Institute for Brain and Mental Health, School of Psychological Sciences and Monash Biomedical Imaging Facility, Monash University, Clayton, VIC, Australia
| | - Rebecca A Segrave
- BrainPark, Turner Institute for Brain and Mental Health, School of Psychological Sciences and Monash Biomedical Imaging Facility, Monash University, Clayton, VIC, Australia
| | - Sam Hughes
- BrainPark, Turner Institute for Brain and Mental Health, School of Psychological Sciences and Monash Biomedical Imaging Facility, Monash University, Clayton, VIC, Australia
| | - Edouard Kayayan
- BrainPark, Turner Institute for Brain and Mental Health, School of Psychological Sciences and Monash Biomedical Imaging Facility, Monash University, Clayton, VIC, Australia
| | - Stuart Oldham
- Developmental Imaging, Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Warda Syeda
- Melbourne Brain Centre Imaging Unit, Department of Radiology, The University of Melbourne, Parkville, VIC, Australia
| | - James P Coxon
- Movement and Exercise Neuroscience Laboratory, School of Psychological Sciences and Monash Biomedical Imaging Facility, Monash University, Clayton, VIC, Australia
| | - Karen Caeyenberghs
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Burwood, VIC, Australia
| | - Juan F Domínguez D
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Burwood, VIC, Australia
| | - Nadia Solowij
- School of Psychology, University of Wollongong, Wollongong, NSW, Australia
| | - Dan I Lubman
- Turning Point, Eastern Health, Melbourne, VIC, Australia
- Monash Addiction Research Centre, Eastern Health Clinical School, Monash University, Clayton, VIC, Australia
| | - Chao Suo
- BrainPark, Turner Institute for Brain and Mental Health, School of Psychological Sciences and Monash Biomedical Imaging Facility, Monash University, Clayton, VIC, Australia.
- Neuroscience of Addiction and Mental Health Program, Healthy Brain and Mind Research Centre, School of Behavioral and Health Sciences, Faculty of Health Sciences, Australian Catholic University, Fitzroy, VIC, Australia.
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia.
| | - Murat Yücel
- BrainPark, Turner Institute for Brain and Mental Health, School of Psychological Sciences and Monash Biomedical Imaging Facility, Monash University, Clayton, VIC, Australia.
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia.
| |
Collapse
|
2
|
Xu H, Li J, Huang H, Yin B, Li DD. Abnormal developmental of structural covariance networks in young adults with heavy cannabis use: a 3-year follow-up study. Transl Psychiatry 2024; 14:45. [PMID: 38245512 PMCID: PMC10799944 DOI: 10.1038/s41398-024-02764-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 01/05/2024] [Accepted: 01/10/2024] [Indexed: 01/22/2024] Open
Abstract
Heavy cannabis use (HCU) exerts adverse effects on the brain. Structural covariance networks (SCNs) that illustrate coordinated regional maturation patterns are extensively employed to examine abnormalities in brain structure. Nevertheless, the unexplored aspect remains the developmental alterations of SCNs in young adults with HCU for three years, from the baseline (BL) to the 3-year follow-up (FU). These changes demonstrate dynamic development and hold potential as biomarkers. A total of 20 young adults with HCU and 22 matched controls were recruited. All participants underwent magnetic resonance imaging (MRI) scans at both the BL and FU and were evaluated using clinical measures. Both groups used cortical thickness (CT) and cortical surface area (CSA) to construct structural covariance matrices. Subsequently, global and nodal network measures of SCNs were computed based on these matrices. Regarding global network measures, the BL assessment revealed significant deviations in small-worldness and local efficiency of CT and CSA in young adults with HCU compared to controls. However, no significant differences between the two groups were observed at the FU evaluation. Young adults with HCU displayed changes in nodal network measures across various brain regions during the transition from BL to FU. These alterations included abnormal nodal degree, nodal efficiency, and nodal betweenness in widespread areas such as the entorhinal cortex, superior frontal gyrus, and parahippocampal cortex. These findings suggest that the topography of CT and CSA plays a role in the typical structural covariance topology of the brain. Furthermore, these results indicate the effect of HCU on the developmental changes of SCNs in young adults.
Collapse
Affiliation(s)
- Hui Xu
- School of Mental Health, Wenzhou Medical University, Wenzhou, 325035, China.
- The Affiliated Kangning Hospital of Wenzhou Medical University, Zhejiang Provincial Clinical Research Center for Mental Disorder, Wenzhou, 325007, China.
| | - Jiahao Li
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Huan Huang
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Bo Yin
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Dan-Dong Li
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
| |
Collapse
|
3
|
West ML, Sharif S. Cannabis and Psychosis. Psychiatr Clin North Am 2023; 46:703-717. [PMID: 37879833 DOI: 10.1016/j.psc.2023.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Psychosis and cannabis use may overlap in multiple ways in young people. Research suggests that cannabis use increases risk for having psychotic symptoms, both attenuated (subthreshold) and acute. Cannabis use may also exacerbate psychosis symptoms among young people with underlying psychosis risk and psychotic disorders. Although there are suggestions for treating co-occurring psychosis and cannabis use in young people (e.g., incorporating cannabis use assessment and treatment strategies into specialized early psychosis care), there are many gaps in clinical trial research to support evidence-based treatment of these overlapping concerns.
Collapse
Affiliation(s)
- Michelle L West
- Department of Psychiatry, University of Colorado School of Medicine, Anschutz Health Sciences Building, 1890 N Revere Court, Mailstop F443, Aurora, CO 80045, USA.
| | - Shadi Sharif
- Department of Psychiatry, University of Colorado School of Medicine, Anschutz Health Sciences Building, 1890 N Revere Court, Mailstop F443, Aurora, CO 80045, USA
| |
Collapse
|
4
|
West ML, Sharif S. Cannabis and Psychosis. Child Adolesc Psychiatr Clin N Am 2023; 32:69-83. [PMID: 36410907 DOI: 10.1016/j.chc.2022.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Psychosis and cannabis use may overlap in multiple ways in young people. Research suggests that cannabis use increases risk for having psychotic symptoms, both attenuated (subthreshold) and acute. Cannabis use may also exacerbate psychosis symptoms among young people with underlying psychosis risk and psychotic disorders. Although there are suggestions for treating co-occurring psychosis and cannabis use in young people (e.g., incorporating cannabis use assessment and treatment strategies into specialized early psychosis care), there are many gaps in clinical trial research to support evidence-based treatment of these overlapping concerns.
Collapse
Affiliation(s)
- Michelle L West
- Department of Psychiatry, University of Colorado School of Medicine, Anschutz Health Sciences Building, 1890 N Revere Court, Mailstop F443, Aurora, CO 80045, USA.
| | - Shadi Sharif
- Department of Psychiatry, University of Colorado School of Medicine, Anschutz Health Sciences Building, 1890 N Revere Court, Mailstop F443, Aurora, CO 80045, USA
| |
Collapse
|
5
|
Lichenstein SD, Shaw DS, Forbes EE. Cannabis, connectivity, and coming of age: Associations between cannabis use and anterior cingulate cortex connectivity during the transition to adulthood. Front Hum Neurosci 2022; 16:951204. [PMID: 36438638 PMCID: PMC9692120 DOI: 10.3389/fnhum.2022.951204] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 10/26/2022] [Indexed: 08/10/2023] Open
Abstract
Cannabis use is common among adolescents and emerging adults and is associated with significant adverse consequences for a subset of users. Rates of use peak between the ages of 18-25, yet the neurobiological consequences for neural systems that are actively developing during this time remain poorly understood. In particular, cannabis exposure may interfere with adaptive development of white matter pathways underlying connectivity of the anterior cingulate cortex, including the cingulum and anterior thalamic radiations (ATR). The current study examined the association between cannabis use during adolescence and emerging adulthood and white matter microstructure of the cingulum and ATR among 158 male subjects enrolled in the Pitt Mother and Child Project, a prospective, longitudinal study of risk and resilience among men of low socioeconomic status. Participants were recruited in infancy, completed follow-up assessments throughout childhood and adolescence, and underwent diffusion imaging at ages 20 and 22. At age 20, moderate cannabis use across adolescence (age 12-19) was associated with higher fractional anisotropy (FA) of the cingulum and ATR, relative to both minimal and heavy adolescent use. Longitudinally, moderate and heavy extended cannabis use (age 12-21) was associated with reduced positive change in FA in the cingulum from age 20 to 22, relative to minimal use. These longitudinal results suggest that cannabis exposure may delay cingulum maturation during the transition to adulthood and potentially impact individuals' functioning later in development.
Collapse
Affiliation(s)
- Sarah D. Lichenstein
- Yale Imaging and Psychopharmacology (YIP) Lab, Department of Psychiatry, Yale School of Medicine, New Haven, CT, United States
| | - Daniel S. Shaw
- Pitt Parents and Children Laboratory (PPCL), Department of Psychology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Erika E. Forbes
- Affective Neuroscience and Developmental Psychopathology (ANDP) Lab, Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
6
|
Shah R, Ghosh A, Avasthi A, Ahuja CK, Khandelwal N, Nehra R. White Matter Microstructure and Gray Matter Volume in Cannabis-Induced Psychosis and Schizophrenia With Cannabis Use. J Neuropsychiatry Clin Neurosci 2022; 34:406-413. [PMID: 35872614 DOI: 10.1176/appi.neuropsych.21070172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE This study explored the differences in white matter (WM) microstructural integrity and gray matter (GM) volume between cannabis-induced psychosis (CIP) and schizophrenia with cannabis use (SZC). METHODS This cross-sectional study with convenience sampling involved three groups of 20 participants each (CIP, SZC, and a control group without substance use), matched on age, handedness, and education. CIP and SZC were diagnosed with the Psychiatric Research Interview for Substance and Mental Disorders. Diffusion tensor and kurtosis imaging were done, and fractional anisotropy (FA), mean diffusivity, and mean kurtosis were estimated. GM volume was measured with voxel-based morphometry. RESULTS Group comparisons revealed comparable age at initiation and duration and frequency of cannabis use between participants in the SZC and CIP groups. Participants with SZC had lower FA than controls in the anterior and retrolenticular internal capsule limbs, cingulate gyrus hippocampal formation, fornix, and superior fronto-occipital fasciculus (all p<0.05). Participants with CIP had lower FA than controls in the left fornix and right superior fronto-occipital fasciculus but higher FA than those with SZC in the left corticospinal tract (all p<0.05). On morphometry, participants with CIP had greater cerebellar GM volume than those with SZC and greater inferior frontal gyrus volumes than controls (all p<0.05). CONCLUSIONS Widespread WM microstructural abnormalities were observed in participants with SZC, and fewer but significant WM disruptions were observed in those with CIP. Better WM integrity in some WM fiber tracts and greater GM volumes in crucial brain areas among those with CIP may have prevented the transition to schizophrenia.
Collapse
Affiliation(s)
- Raghav Shah
- Department of Psychiatry (Shah, Ghosh, Avasthi, Nehra) and Department of Radiodiagnosis and Imaging (Ahuja, Khandelwal), Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Abhishek Ghosh
- Department of Psychiatry (Shah, Ghosh, Avasthi, Nehra) and Department of Radiodiagnosis and Imaging (Ahuja, Khandelwal), Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Ajit Avasthi
- Department of Psychiatry (Shah, Ghosh, Avasthi, Nehra) and Department of Radiodiagnosis and Imaging (Ahuja, Khandelwal), Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Chirag K Ahuja
- Department of Psychiatry (Shah, Ghosh, Avasthi, Nehra) and Department of Radiodiagnosis and Imaging (Ahuja, Khandelwal), Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Niranjan Khandelwal
- Department of Psychiatry (Shah, Ghosh, Avasthi, Nehra) and Department of Radiodiagnosis and Imaging (Ahuja, Khandelwal), Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Ritu Nehra
- Department of Psychiatry (Shah, Ghosh, Avasthi, Nehra) and Department of Radiodiagnosis and Imaging (Ahuja, Khandelwal), Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| |
Collapse
|
7
|
The Effects of Alcohol and Cannabis Co-Use on Neurocognitive Function, Brain Structure, and Brain Function. Curr Behav Neurosci Rep 2021; 8:134-149. [PMID: 36908333 PMCID: PMC9997650 DOI: 10.1007/s40473-021-00243-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Purpose of review Given increases in the rates of alcohol and cannabis co-use among adolescents and young adults, this review aims to summarize literature on the effects of alcohol and cannabis co-use on neurocognitive functioning, brain structure, and brain function. Recent findings The limited existing studies examining concurrent, recent, and lifetime alcohol and cannabis co-use suggest effects on the brain are likely multifaceted. The majority of studies report that co-use is associated with negative outcomes such as impaired cognitive function and significant alterations in key structural and functional regions of the brain, while others report null effects of co-use compared to non-substance using control and single-substance use groups. Summary Current studies lack a general consensus on methodology, definitions of concurrent and simultaneous use, and neuroimaging approaches, which makes it challenging to draw strong conclusions about the effects of co-use. More studies are needed to explore the effects of co-use in the context of simultaneous alcohol and cannabis use.
Collapse
|
8
|
Female Sex as a Protective Factor in the Effects of Chronic Cannabis Use on Verbal Learning and Memory. J Int Neuropsychol Soc 2021; 27:581-591. [PMID: 34261552 DOI: 10.1017/s1355617721000217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE The variability of findings in studies examining the effects of chronic cannabis use on neuropsychological functioning highlights the importance of examining contributing factors. Few studies examine the role of sex in the relationship between cannabis and neuropsychological functioning, despite known neurobiological structural differences between males and females. This study examined whether males and females experience differential cognitive effects of chronic cannabis use. METHOD Chronic cannabis users (3+ days per week for >12 months, n = 110, 72% male) and non-users (n = 71, 39% male) completed a neuropsychological test battery. Two multivariate analyses of covariance (MANCOVAs) examined for sex differences in performance within users and non-users on neuropsychological tests, controlling for potential confounding variables. Bonferroni corrections were applied to adjust for multiple comparisons. RESULTS Male and female cannabis users did not differ in cannabis use variables. Female cannabis users performed better than males on multiple subtests of the California Verbal Learning Test-II (CVLT-II), a verbal learning and memory test. Male cannabis users performed better than female users on Trial 1 of the CVLT-II (p = .002), and Trail Making Test B (p = .001), which measure attention and cognitive flexibility, respectively. Non-user males and females performed comparably, with the exception of Trail Making Test B (p = .001). CONCLUSIONS Results suggest that chronic cannabis use differentially impacts males and females, with females exhibiting better verbal learning and memory despite males demonstrating better attention and cognitive flexibility. Further research is needed to understand the potential protective mechanism of female sex on learning and memory effects of cannabis use.
Collapse
|
9
|
Gray matter changes in chronic heavy cannabis users: a voxel-level study using multivariate pattern analysis approach. Neuroreport 2020; 31:1236-1241. [PMID: 33044327 DOI: 10.1097/wnr.0000000000001532] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recent structural MRI studies on gray matter (GM) volumes using group-level mass-univariate statistical analysis suggest that chronic and heavy cannabis exposure may affect brain region-based morphology. In this prospective study, we use a multivariate pattern analysis approach to investigate the voxel-level change of GM densities in chronic heavy cannabis users. Principal component analysis and linear support vector machine are used in this study, resulting in an 88.1% separation between chronic heavy cannabis users (N = 20) and non-cannabis healthy controls (HCs, N = 22) through leave-one-out cross-validation. The model's discriminative pattern showed that GM density decreases in the part of middle frontal gyrus, inferior frontal gyrus, middle temporal gyrus, inferior temporal gyrus and left occipital lobe in heavy cannabis users with respect to HCs and increases in the part of lentiform nucleus, left cerebellum and right parietal lobe. These results suggest that GM densities alteration has taken place on chronic heavy cannabis users compared with HCs at voxel level.
Collapse
|
10
|
Chye Y, Kirkham R, Lorenzetti V, McTavish E, Solowij N, Yücel M. Cannabis, Cannabinoids, and Brain Morphology: A Review of the Evidence. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2020; 6:627-635. [PMID: 32948510 DOI: 10.1016/j.bpsc.2020.07.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/19/2020] [Accepted: 07/10/2020] [Indexed: 11/26/2022]
Abstract
Cannabis and cannabinoid-based products are increasingly being accepted and commodified globally. Yet there is currently limited understanding of the effect of the varied cannabinoid compounds on the brain. Exogenous cannabinoids interact with the endogenous cannabinoid system that underpins vital functions in the brain and body, and they are thought to perturb key brain and cognitive function. However, much neuroimaging research has been confined to observational studies of cannabis users, without examining the specific role of the various cannabinoids (Δ9-tetrahydrocannabinol, cannabidiol, etc.). This review summarizes the brain structural imaging evidence to date associated with cannabis use, its major cannabinoids (e.g., Δ9-tetrahydrocannabinol, cannabidiol), and synthetic cannabinoid products that have emerged as recreational drugs. In doing so, we seek to highlight some of the key issues to consider in understanding cannabinoid-related brain effects, emphasizing the dual neurotoxic and neuroprotective role of cannabinoids, and the need to consider the distinct role of the varied cannabinoids in establishing their effect on the brain.
Collapse
Affiliation(s)
- Yann Chye
- BrainPark, Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia; Monash Biomedical Imaging Facility, Monash University, Melbourne, Victoria, Australia
| | - Rebecca Kirkham
- BrainPark, Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia; Monash Biomedical Imaging Facility, Monash University, Melbourne, Victoria, Australia
| | - Valentina Lorenzetti
- BrainPark, Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia; Monash Biomedical Imaging Facility, Monash University, Melbourne, Victoria, Australia; School of Psychology, Faculty of Health Sciences, Australian Catholic University, Melbourne, Victoria, Australia
| | - Eugene McTavish
- BrainPark, Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia; Monash Biomedical Imaging Facility, Monash University, Melbourne, Victoria, Australia
| | - Nadia Solowij
- School of Psychology, University of Wollongong, Wollongong, New South Wales, Australia; Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, New South Wales, Australia; Australian Centre for Cannabinoid Clinical and Research Excellence, New Lambton Heights, New South Wales, Australia
| | - Murat Yücel
- BrainPark, Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia; Monash Biomedical Imaging Facility, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
11
|
Gökharman FD, Aydin S, Paltun SC, Fatihoğlu E, Yalçin Şahiner Ş, Koşar PN. DTI-MRI findings in synthetic cannabinoid users. Turk J Med Sci 2020; 50:1022-1027. [PMID: 32336074 PMCID: PMC7379452 DOI: 10.3906/sag-1905-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 04/24/2020] [Indexed: 11/15/2022] Open
Abstract
Background/aim Synthetic cannabinoids (SCs) are full agonists of both cannabinoid receptors. Conventional magnetic resonance imaging (MRI) findings of SC users are mainly defined as diffusion restriction and T2/FLAIR hyperintensity. Diffusion tensor imaging (DTI) studies examining SC users have shown contradictory results. The aim of this study was to define white matter (WM) changes of SC users using DTI. Materials and methods The study included 22 patients with a history of using SC for 5–37 months, and 22 healthy, age and sex-matched control subjects. A total of 41 diffusion gradient directions were used in the acquisition of diffusion imaging data. Fractional anisotropy (FA) and apparent diffusion coefficients (ADC) values were obtained. ROIs were placed on WM areas of normal appearance. Results In the SC users, significantly lower FA values were determined in the left temporal lobe (216.2 ± 58.9 vs. 263 ± 27.4; P = 0.002) and right hippocampus (224.5 ± 61.5 vs. 255 ± 24.3; P = 0.040). The ADC values of the hippocampus and temporal lobe were significantly higher than those of the control group on both the left and right sides. Conclusion The SC use causes WM microstructural changes, especially in the hippocampus and temporal lobes. DTI is a useful tool to reveal WM changes in SC addicts and can be used earlier than conventional MRI.
Collapse
Affiliation(s)
| | - Sonay Aydin
- Department of Radiology, Dr. Sami Ulus Training and Research Hospital, Ankara, Turkey
| | - Salih Cihat Paltun
- Department of Psychiatry, Ankara Numune Training and Research Hospital, Ankara Turkey
| | - Erdem Fatihoğlu
- Department of Radiology, Faculty of Medicine, Erzincan University, Erzincan, Turkey
| | - Şafak Yalçin Şahiner
- Department of Psychiatry, Ankara Numune Training and Research Hospital, Ankara Turkey
| | - Pinar Nercis Koşar
- Department of Radiology, Ankara Training and Research Hospital, Ankara, Turkey
| |
Collapse
|
12
|
Yeh CL, Levar N, Broos HC, Dechert A, Potter K, Evins AE, Gilman JM. White matter integrity differences associated with post-traumatic stress disorder are not normalized by concurrent marijuana use. Psychiatry Res Neuroimaging 2020; 295:111017. [PMID: 31760337 PMCID: PMC7730843 DOI: 10.1016/j.pscychresns.2019.111017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/12/2019] [Accepted: 11/13/2019] [Indexed: 11/22/2022]
Abstract
Marijuana (MJ) use and post-traumatic stress disorder (PTSD) have both been associated with abnormalities in brain white matter tracts, including the cingulum and the anterior thalamic radiations (ATR), which project from subcortical regions to frontal cortex. Studies have not assessed the integrity of these tracts in patients with comorbid PTSD and MJ use. To examine effects of PTSD and MJ use on brain structure, we performed diffusion tensor imaging scans on seventy-two trauma-exposed participants, categorized into four groups: those with PTSD who used MJ at least weekly (PTSD+MJ; n = 20), those with PTSD with no regular MJ use (PTSD; n = 19), trauma-exposed controls without PTSD who used MJ (TEC+MJ; n = 14) and trauma-exposed controls with no PTSD or MJ use (TEC; n = 19). White matter integrity was evaluated by calculating fractional anisotropy (FA). Results showed that while FA values in the right ATR and the cingulum differed across groups, there were no significant interactions between PTSD and MJ in any white matter tracts, indicating that MJ exposure neither normalizes nor worsens white matter abnormalities in those with PTSD. Further study is needed to evaluate the impact of MJ use on other neurobiological markers of PTSD.
Collapse
Affiliation(s)
- Chien-Lin Yeh
- Center for Addiction Medicine, Massachusetts General Hospital, Boston, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Nina Levar
- Center for Addiction Medicine, Massachusetts General Hospital, Boston, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Hannah C Broos
- Center for Addiction Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Alyson Dechert
- Center for Addiction Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Kevin Potter
- Center for Addiction Medicine, Massachusetts General Hospital, Boston, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - A Eden Evins
- Center for Addiction Medicine, Massachusetts General Hospital, Boston, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Jodi M Gilman
- Center for Addiction Medicine, Massachusetts General Hospital, Boston, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
13
|
Lorenzetti V, Chye Y, Silva P, Solowij N, Roberts CA. Does regular cannabis use affect neuroanatomy? An updated systematic review and meta-analysis of structural neuroimaging studies. Eur Arch Psychiatry Clin Neurosci 2019; 269:59-71. [PMID: 30706169 DOI: 10.1007/s00406-019-00979-1] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 01/03/2019] [Indexed: 12/22/2022]
Abstract
Regular cannabis use is associated with adverse cognitive and mental health outcomes that have been ascribed to aberrant neuroanatomy in brain regions densely innervated with cannabinoid receptors. Neuroanatomical differences between cannabis users and controls have been assessed in multiple structural magnetic resonance imaging (sMRI) studies. However, there is heterogeneity in the results leading to cautious interpretation of the data so far. We examined the sMRI evidence to date in human cannabis users, to establish more definitely whether neuroanatomical alterations are associated with regular cannabis use. The regional specificity and association with cannabis use indices (i.e. cumulative dosage, duration) were also explored. We systematically reviewed and meta-analysed published sMRI studies investigating regional brain volumes (cortical, subcortical and global) in cannabis users and non-user controls. Three electronic databases were searched (PubMed, Scopus, and PsycINFO). A total of 17 meta-analyses were conducted (one for each cortical, subcortical and global volume) using the generic inverse variance method, whereby standardised mean difference in volume was calculated between users and non-users. Exploratory meta-regressions were conducted to investigate the association between cannabis use indices and regional brain volumes. A total of 30 articles were eligible for inclusion, contributing 106 effect sizes across 17 meta-analyses. Regular cannabis users had significantly smaller volumes of the hippocampus (SMD = 0.14, 95% CIs [0.02, 0.27]; Z = 2.29, p = 0.02, I2 = 74%) and orbitofrontal cortex {medial (SMD = 0.30, 95% CIs [0.15, 0.45]; Z = 3.89, p = 0.0001, I2 = 51%), lateral (SMD = 0.19, 95% CIs [0.07, 0.32]; Z = 3.10, p = 0.002, I2 = 26%)} relative to controls. The volumes of the hippocampus and orbitofrontal cortex were not significantly associated with cannabis duration and dosage. Our findings are consistent with evidence of aberrance in brain regions involved in reward, learning and memory, and motivation circuits in the regular use of substances other than cannabis, pointing to commonality in neurobiological abnormalities between regular users of cannabis and of other substances.
Collapse
Affiliation(s)
- Valentina Lorenzetti
- School of Psychology, Faculty of Health Sciences, Australian Catholic University, Daniel Mannix building, Fitzroy, VIC, 3065, Australia.
| | - Yann Chye
- Brain and Mental Health Research Hub, Monash Institute of Cognitive and Clinical Neuroscience, School of Psychological Sciences, Monash University, Melbourne, Australia
| | - Pedro Silva
- Department of Psychological Sciences, University of Liverpool, Liverpool, UK
| | - Nadia Solowij
- School of Psychology and Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, Australia
| | - Carl A Roberts
- Department of Psychological Sciences, University of Liverpool, Liverpool, UK
| |
Collapse
|
14
|
Bloomfield MAP, Hindocha C, Green SF, Wall MB, Lees R, Petrilli K, Costello H, Ogunbiyi MO, Bossong MG, Freeman TP. The neuropsychopharmacology of cannabis: A review of human imaging studies. Pharmacol Ther 2018; 195:132-161. [PMID: 30347211 PMCID: PMC6416743 DOI: 10.1016/j.pharmthera.2018.10.006] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The laws governing cannabis are evolving worldwide and associated with changing patterns of use. The main psychoactive drug in cannabis is Δ9-tetrahydrocannabinol (THC), a partial agonist at the endocannabinoid CB1 receptor. Acutely, cannabis and THC produce a range of effects on several neurocognitive and pharmacological systems. These include effects on executive, emotional, reward and memory processing via direct interactions with the endocannabinoid system and indirect effects on the glutamatergic, GABAergic and dopaminergic systems. Cannabidiol, a non-intoxicating cannabinoid found in some forms of cannabis, may offset some of these acute effects. Heavy repeated cannabis use, particularly during adolescence, has been associated with adverse effects on these systems, which increase the risk of mental illnesses including addiction and psychosis. Here, we provide a comprehensive state of the art review on the acute and chronic neuropsychopharmacology of cannabis by synthesizing the available neuroimaging research in humans. We describe the effects of drug exposure during development, implications for understanding psychosis and cannabis use disorder, and methodological considerations. Greater understanding of the precise mechanisms underlying the effects of cannabis may also give rise to new treatment targets.
Collapse
Affiliation(s)
- Michael A P Bloomfield
- Translational Psychiatry Research Group, Research Department of Mental Health Neuroscience, Division of Psychiatry, Faculty of Brain Sciences, University College London, United Kingdom; Clinical Psychopharmacology Unit, Research Department of Clinical, Educational and Health Psychology, Faculty of Brain Sciences, University College London, United Kingdom; Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, London, United Kingdom; NIHR University College London Hospitals Biomedical Research Centre, University College Hospital, London, United Kingdom; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, United Kingdom.
| | - Chandni Hindocha
- Translational Psychiatry Research Group, Research Department of Mental Health Neuroscience, Division of Psychiatry, Faculty of Brain Sciences, University College London, United Kingdom; Clinical Psychopharmacology Unit, Research Department of Clinical, Educational and Health Psychology, Faculty of Brain Sciences, University College London, United Kingdom; NIHR University College London Hospitals Biomedical Research Centre, University College Hospital, London, United Kingdom
| | - Sebastian F Green
- Translational Psychiatry Research Group, Research Department of Mental Health Neuroscience, Division of Psychiatry, Faculty of Brain Sciences, University College London, United Kingdom
| | - Matthew B Wall
- Clinical Psychopharmacology Unit, Research Department of Clinical, Educational and Health Psychology, Faculty of Brain Sciences, University College London, United Kingdom; Centre for Neuropsychopharmacology, Division of Brain Sciences, Faculty of Medicine, Imperial College London, United Kingdom; Invicro UK, Hammersmith Hospital, London, United Kingdom
| | - Rachel Lees
- Translational Psychiatry Research Group, Research Department of Mental Health Neuroscience, Division of Psychiatry, Faculty of Brain Sciences, University College London, United Kingdom; Clinical Psychopharmacology Unit, Research Department of Clinical, Educational and Health Psychology, Faculty of Brain Sciences, University College London, United Kingdom; Institute of Cognitive Neuroscience, Faculty of Brain Sciences, University College London, United Kingdom
| | - Katherine Petrilli
- Translational Psychiatry Research Group, Research Department of Mental Health Neuroscience, Division of Psychiatry, Faculty of Brain Sciences, University College London, United Kingdom; Clinical Psychopharmacology Unit, Research Department of Clinical, Educational and Health Psychology, Faculty of Brain Sciences, University College London, United Kingdom; Institute of Cognitive Neuroscience, Faculty of Brain Sciences, University College London, United Kingdom
| | - Harry Costello
- Translational Psychiatry Research Group, Research Department of Mental Health Neuroscience, Division of Psychiatry, Faculty of Brain Sciences, University College London, United Kingdom
| | - M Olabisi Ogunbiyi
- Translational Psychiatry Research Group, Research Department of Mental Health Neuroscience, Division of Psychiatry, Faculty of Brain Sciences, University College London, United Kingdom
| | - Matthijs G Bossong
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, the Netherlands
| | - Tom P Freeman
- Translational Psychiatry Research Group, Research Department of Mental Health Neuroscience, Division of Psychiatry, Faculty of Brain Sciences, University College London, United Kingdom; Clinical Psychopharmacology Unit, Research Department of Clinical, Educational and Health Psychology, Faculty of Brain Sciences, University College London, United Kingdom; Department of Psychology, University of Bath, United Kingdom; National Addiction Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, United Kingdom
| |
Collapse
|
15
|
Levar N, Francis AN, Smith MJ, Ho WC, Gilman JM. Verbal Memory Performance and Reduced Cortical Thickness of Brain Regions Along the Uncinate Fasciculus in Young Adult Cannabis Users. Cannabis Cannabinoid Res 2018; 3:56-65. [PMID: 29607411 PMCID: PMC5870060 DOI: 10.1089/can.2017.0030] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Introduction: Memory impairment is one of the most commonly reported effects of cannabis use, especially among those who initiate use earlier, perhaps due to the effects of delta-9- tetrahydrocannabinol on cannabinoid (CB1) receptors in the brain. Studies have increasingly investigated whether cannabis use is associated with impairments in verbal memory, and with alterations in brain structures underlying verbal memory. The uncinate fasciculus (UF), a long-range white matter tract, connects regions with densely localized CB1 receptors that are important in verbal memory. This study investigated the impact of cannabis use on UF structures and its association with memory performance in young adult cannabis users (CU) and non-using controls (CON). Materials and Methods: Nineteen CU and 22 CON completed a verbal memory task and a neuroimaging protocol, in which diffusion tensor imaging and structural scans were collected. We compared memory performance, diffusion and tractography measures of the UF, and cortical thickness of regions connected by the UF, between CU and CON. In regions showing a significant group effect, we also examined associations between verbal memory performance, cortical thickness, and age of onset of cannabis use. Results: Compared to non-users, CU had worse memory performance, decreased fiber bundle length in the UF, and decreased cortical thickness of brain regions along the UF such as the entorhinal cortex and fusiform gyrus. Verbal memory performance was significantly associated with age of onset of cannabis use, indicating that those who initiated cannabis use at an earlier age performed worse. Cortical thickness of the entorhinal cortex was significantly correlated with age of first use and memory performance. Conclusion: This study provides evidence that cannabis use, especially when initiated at a young age, may be associated with worse verbal memory and altered neural development along the UF. Reductions in cortical thickness in regions implicated in memory processes may underlie weaknesses in verbal memory performance.
Collapse
Affiliation(s)
- Nina Levar
- Center for Addiction Medicine, Massachusetts General Hospital, Boston, Massachusetts.,Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Alan N Francis
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts.,McLean Imaging Center, McLean Hospital, Belmont, Massachusetts
| | - Matthew J Smith
- School of Social Work, University of Michigan, Ann Arbor, Michigan
| | - Wilson C Ho
- Center for Addiction Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Jodi M Gilman
- Center for Addiction Medicine, Massachusetts General Hospital, Boston, Massachusetts.,Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
16
|
Levine A, Clemenza K, Rynn M, Lieberman J. Evidence for the Risks and Consequences of Adolescent Cannabis Exposure. J Am Acad Child Adolesc Psychiatry 2017; 56:214-225. [PMID: 28219487 DOI: 10.1016/j.jaac.2016.12.014] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 12/19/2016] [Accepted: 12/23/2016] [Indexed: 01/08/2023]
Abstract
OBJECTIVE This review of the scientific literature examines the potential adult sequelae of exposure to cannabis and related synthetic cannabinoids in adolescence. We examine the four neuropsychiatric outcomes that are likely most vulnerable to alteration by early cannabinoid use, as identified within both the clinical and preclinical research: cognition, emotional functioning, risk for psychosis, and addiction. METHOD A literature search was conducted through PubMed, PsychInfo, and Google Scholar with no publication date restrictions. The search terms used were "adolescent" and "adult," and either "cannabis," "marijuana," "delta-9-tetra-hydrocannabinol," or "cannabinoid," which was then crossed with one or more of the following terms: "deficit," "impairment," "alteration," "long-term," "persistent," "development," "maturation," and "pubescent." RESULTS The majority of the clinical and preclinical data point to a strong correlation between adolescent cannabinoid exposure and persistent, adverse neuropsychiatric outcomes in adulthood. Although the literature supports the hypothesis that adolescent cannabis use is connected to impaired cognition and mental health in adults, it does not conclusively demonstrate that cannabis consumption alone is sufficient to cause these deficits in humans. The animal literature, however, clearly indicates that adolescent-onset exposure to cannabinoids can catalyze molecular processes that lead to persistent functional deficits in adulthood, deficits that are not found to follow adult-onset exposure and that model some of the adverse outcomes reported in humans among adult populations of early-onset cannabis users. CONCLUSION Based on the data in the current literature, a strong association is found between early, frequent, and heavy adolescent cannabis exposure and poor cognitive and psychiatric outcomes in adulthood, yet definite conclusions cannot yet be made as to whether cannabis use alone has a negative impact on the human adolescent brain. Future research will require animal models and longitudinal studies to be carefully designed with a focus on integrating assessments of molecular, structural, and behavioral outcomes in order to elucidate the full range of potential adverse and long-term consequences of cannabinoid exposure in adolescence.
Collapse
Affiliation(s)
- Amir Levine
- College of Physicians and Surgeons, Columbia University, and the New York State Psychiatric Institute, New York, NY.
| | | | - Moira Rynn
- College of Physicians and Surgeons, Columbia University, and the New York State Psychiatric Institute, New York, NY; New York Presbyterian Hospital-Columbia University Medical Center, New York
| | - Jeffrey Lieberman
- College of Physicians and Surgeons, Columbia University, and the New York State Psychiatric Institute, New York, NY; New York Presbyterian Hospital-Columbia University Medical Center, New York
| |
Collapse
|
17
|
Gruber SA, Sagar KA. Marijuana on the Mind? The Impact of Marijuana on Cognition, Brain Structure, and Brain Function, and Related Public Policy Implications. ACTA ACUST UNITED AC 2017. [DOI: 10.1177/2372732216684851] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Although marijuana (MJ) has been used for thousands of years, the public’s opinion of MJ has shifted drastically over the past century, leaving many wondering about its potential risks and benefits. This article summarizes research detailing the impact of recreational MJ and related variables (frequency, magnitude, potency, and mode of MJ use) on cognition, brain structure, and brain function. MJ use, particularly at young ages, has been reported to undermine cognition, as well as alter brain structure and function. Furthermore, we discuss how data from recreational MJ studies, as well as more recent medical marijuana (MMJ) research findings, relate to legalization efforts. Considerations for policymakers, such as age limits, guidelines for safe use, and the therapeutic potential of certain constituents of MJ (i.e., cannabidiol), are also outlined. In recent years, policy has outpaced science; important areas in need of further research are noted.
Collapse
Affiliation(s)
- Staci A. Gruber
- McLean Hospital, Belmont, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Kelly A. Sagar
- McLean Hospital, Belmont, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
18
|
Cannabis and Amphetamine-type Stimulant-induced Psychoses: A Systematic Overview. ADDICTIVE DISORDERS & THEIR TREATMENT 2016. [DOI: 10.1097/adt.0000000000000086] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Zorlu N, Angelique Di Biase M, Kalaycı ÇÇ, Zalesky A, Bağcı B, Oğuz N, Gelal F, Beşiroğlu L, Gülseren Ş, Sarıçiçek A, Bora E, Pantelis C. Abnormal white matter integrity in synthetic cannabinoid users. Eur Neuropsychopharmacol 2016; 26:1818-1825. [PMID: 27617779 DOI: 10.1016/j.euroneuro.2016.08.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 08/08/2016] [Accepted: 08/24/2016] [Indexed: 02/05/2023]
Abstract
Synthetic cannabinoids have become increasingly popular in the last few years especially among adolescents and young adults. However, no previous studies have assessed the effects of synthetic cannabinoids on the structure of the human brain. Understanding the harms of synthetic cannabinoid use on brain structure is therefore crucial given its increasing use. Diffusion tensor imaging (DTI) was performed in 22 patients who used synthetic cannabinoids more than five times a week for at least 1 year and 18 healthy controls. Fractional anisotropy (FA) was significantly reduced in the cannabinoid group compared to controls in a cluster of white matter voxels spanning the left temporal lobe, subcortical structures and brainstem. This cluster was predominantly traversed by the inferior fronto-occipital fasciculus, inferior longitudinal fasciculus, fornix, cingulum-hippocampus and corticospinal tracts. Long-term use of synthetic cannabinoids is associated with white matter abnormalities in adolescents and young adults. Disturbed brain connectivity in synthetic cannabinoid users may underlie cognitive impairment and vulnerability to psychosis.
Collapse
Affiliation(s)
- Nabi Zorlu
- Department of Psychiatry, Katip Celebi University, Ataturk Training and Research Hospital, Izmir, Turkey.
| | - Maria Angelique Di Biase
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia
| | - Çiğdem Çolak Kalaycı
- Department of Psychiatry, Katip Celebi University, Ataturk Training and Research Hospital, Izmir, Turkey
| | - Andrew Zalesky
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia
| | - Başak Bağcı
- Department of Psychiatry, Katip Celebi University, Ataturk Training and Research Hospital, Izmir, Turkey
| | - Nihan Oğuz
- Department of Psychiatry, Katip Celebi University, Ataturk Training and Research Hospital, Izmir, Turkey
| | - Fazıl Gelal
- Department of Radiodiagnostics, Katip Celebi University, Ataturk Training and Research Hospital, Izmir, Turkey
| | - Lütfullah Beşiroğlu
- Department of Psychiatry, Katip Celebi University, Ataturk Training and Research Hospital, Izmir, Turkey
| | - Şeref Gülseren
- Department of Psychiatry, Katip Celebi University, Ataturk Training and Research Hospital, Izmir, Turkey
| | - Aybala Sarıçiçek
- Department of Psychiatry, Katip Celebi University, Ataturk Training and Research Hospital, Izmir, Turkey
| | - Emre Bora
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia
| | - Christos Pantelis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia; Centre for Neural Engineering (CfNE), Department of Electrical and Electronic Engineering, University of Melbourne, Carlton South, VIC, Australia; Florey Institute for Neuroscience & Mental Health, Parkville, VIC, Australia
| |
Collapse
|
20
|
Jakabek D, Yücel M, Lorenzetti V, Solowij N. An MRI study of white matter tract integrity in regular cannabis users: effects of cannabis use and age. Psychopharmacology (Berl) 2016; 233:3627-37. [PMID: 27503373 DOI: 10.1007/s00213-016-4398-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 07/23/2016] [Indexed: 11/27/2022]
Abstract
RATIONALE Conflicting evidence exists on the effects of cannabis use on brain white matter integrity. The extant literature has exclusively focused on younger cannabis users, with no studies sampling older cannabis users. OBJECTIVES We recruited a sample with a broad age range to examine the integrity of major white matter tracts in association with cannabis use parameters and neurodevelopmental stage. METHODS Regular cannabis users (n = 56) and non-users (n = 20) with a mean age of 32 (range 18-55 years) underwent structural and diffusion MRI scans. White matter was examined using voxel-based statistics and via probabilistic tract reconstruction. The integrity of tracts was assessed using average fractional anisotropy, axial diffusivity and radial diffusivity. Diffusion measures were compared between users and non-users and as group-by-age interactions. Correlations between diffusion measures and age of onset, duration, frequency and dose of current cannabis use were examined. RESULTS Cannabis users overall had lower fractional anisotropy than healthy non-users in the forceps minor tract only (p = .015, partial eta = 0.07), with no voxel-wise differences observed. Younger users showed predominantly reduced axial diffusivity, whereas older users had higher radial diffusivity in widespread tracts. Higher axial diffusivity was associated with duration of cannabis use in the cingulum angular bundle (beta = 5.00 × 10(-5), p = .003). Isolated higher AD in older cannabis users was also observed. CONCLUSIONS The findings suggest that exogenous cannabinoids alter normal brain maturation, with differing effects at various neurodevelopmental stages of life. These age-related differences are posited to account for the disparate results described in the literature.
Collapse
Affiliation(s)
- David Jakabek
- Graduate School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Murat Yücel
- Brain & Mental Health Laboratory, Monash Institute of Cognitive and Clinical Neurosciences, School of Psychological Sciences, Monash University, Clayton, VIC, Australia
| | - Valentina Lorenzetti
- Brain & Mental Health Laboratory, Monash Institute of Cognitive and Clinical Neurosciences, School of Psychological Sciences, Monash University, Clayton, VIC, Australia
| | - Nadia Solowij
- School of Psychology and Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia.
| |
Collapse
|
21
|
Hill SY, Sharma V, Jones BL. Lifetime use of cannabis from longitudinal assessments, cannabinoid receptor (CNR1) variation, and reduced volume of the right anterior cingulate. Psychiatry Res 2016; 255:24-34. [PMID: 27500453 PMCID: PMC5025865 DOI: 10.1016/j.pscychresns.2016.05.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 04/07/2016] [Accepted: 05/25/2016] [Indexed: 01/25/2023]
Abstract
Lifetime measures of cannabis use and co-occurring exposures were obtained from a longitudinal cohort followed an average of 13 years at the time they received a structural MRI scan. MRI scans were analyzed for 88 participants (mean age=25.9 years), 34 of whom were regular users of cannabis. Whole brain voxel based morphometry analyses (SPM8) were conducted using 50 voxel clusters at p=0.005. Controlling for age, familial risk, and gender, we found reduced volume in Regular Users compared to Non-Users, in the lingual gyrus, anterior cingulum (right and left), and the rolandic operculum (right). The right anterior cingulum reached family-wise error statistical significance at p=0.001, controlling for personal lifetime use of alcohol and cigarettes and any prenatal exposures. CNR1 haplotypes were formed from four CNR1 SNPs (rs806368, rs1049353, rs2023239, and rs6454674) and tested with level of cannabis exposure to assess their interactive effects on the lingual gyrus, cingulum (right and left) and rolandic operculum, regions showing cannabis exposure effects in the SPM8 analyses. These analyses used mixed model analyses (SPSS) to control for multiple potentially confounding variables. Level of cannabis exposure was associated with decreased volume of the right anterior cingulum and showed interaction effects with haplotype variation.
Collapse
Affiliation(s)
- Shirley Y Hill
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Vinod Sharma
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Bobby L Jones
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
22
|
Orr JM, Paschall CJ, Banich MT. Recreational marijuana use impacts white matter integrity and subcortical (but not cortical) morphometry. NEUROIMAGE-CLINICAL 2016; 12:47-56. [PMID: 27408790 PMCID: PMC4925620 DOI: 10.1016/j.nicl.2016.06.006] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 05/26/2016] [Accepted: 06/06/2016] [Indexed: 12/05/2022]
Abstract
A recent shift in legal and social attitudes toward marijuana use has also spawned a surge of interest in understanding the effects of marijuana use on the brain. There is considerable evidence that an adolescent onset of marijuana use negatively impacts white matter coherence. On the other hand, a recent well-controlled study demonstrated no effects of marijuana use on the morphometry of subcortical or cortical structures when users and non-users were matched for alcohol use. Regardless, most studies have involved small, carefully selected samples, so the ability to generalize to larger populations is limited. In an attempt to address this issue, we examined the effects of marijuana use on white matter integrity and cortical and subcortical morphometry using data from the Human Connectome Project (HCP) consortium. The HCP data consists of ultra-high resolution neuroimaging data from a large community sample, including 466 adults reporting recreational marijuana use. Rather than just contrasting two groups of individuals who vary significantly in marijuana usage as typifies prior studies, we leveraged the large sample size provided by the HCP data to examine parametric effects of recreational marijuana use. Our results indicate that the earlier the age of onset of marijuana use, the lower was white matter coherence. Age of onset also also affected the shape of the accumbens, while the number of lifetime uses impacted the shape of the amygdala and hippocampus. Marijuana use had no effect on cortical volumes. These findings suggest subtle but significant effects of recreational marijuana use on brain structure. Effects of marijuana use on brain morphology in 466 recreational users were investigated. Age of first use impacted white matter integrity. Age of first use and lifetime times used impacted shape of the hippocampus and accumbens Marijuana use did not affect cortical volume.
Collapse
Affiliation(s)
- Joseph M Orr
- Department of Psychology, Texas A&M University, United States; Institute of Cognitive Science, University of Colorado Boulder, United States
| | - Courtnie J Paschall
- Department of Psychology and Neuroscience, University of Colorado Boulder, United States
| | - Marie T Banich
- Institute of Cognitive Science, University of Colorado Boulder, United States; Department of Psychology and Neuroscience, University of Colorado Boulder, United States
| |
Collapse
|
23
|
Koenders L, Cousijn J, Vingerhoets WAM, van den Brink W, Wiers RW, Meijer CJ, Machielsen MWJ, Veltman DJ, Goudriaan AE, de Haan L. Grey Matter Changes Associated with Heavy Cannabis Use: A Longitudinal sMRI Study. PLoS One 2016; 11:e0152482. [PMID: 27224247 PMCID: PMC4880314 DOI: 10.1371/journal.pone.0152482] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 03/15/2016] [Indexed: 11/30/2022] Open
Abstract
Cannabis is the most frequently used illicit drug worldwide. Cross-sectional neuroimaging studies suggest that chronic cannabis exposure and the development of cannabis use disorders may affect brain morphology. However, cross-sectional studies cannot make a conclusive distinction between cause and consequence and longitudinal neuroimaging studies are lacking. In this prospective study we investigate whether continued cannabis use and higher levels of cannabis exposure in young adults are associated with grey matter reductions. Heavy cannabis users (N = 20, age baseline M = 20.5, SD = 2.1) and non-cannabis using healthy controls (N = 22, age baseline M = 21.6, SD = 2.45) underwent a comprehensive psychological assessment and a T1- structural MRI scan at baseline and 3 years follow-up. Grey matter volumes (orbitofrontal cortex, anterior cingulate cortex, insula, striatum, thalamus, amygdala, hippocampus and cerebellum) were estimated using the software package SPM (VBM-8 module). Continued cannabis use did not have an effect on GM volume change at follow-up. Cross-sectional analyses at baseline and follow-up revealed consistent negative correlations between cannabis related problems and cannabis use (in grams) and regional GM volume of the left hippocampus, amygdala and superior temporal gyrus. These results suggests that small GM volumes in the medial temporal lobe are a risk factor for heavy cannabis use or that the effect of cannabis on GM reductions is limited to adolescence with no further damage of continued use after early adulthood. Long-term prospective studies starting in early adolescence are needed to reach final conclusions.
Collapse
Affiliation(s)
- Laura Koenders
- Department of Psychiatry, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Janna Cousijn
- Department of Psychiatry, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
- Addiction Development and Psychopathology (ADAPT)-lab, Department of Developmental Psychology, University of Amsterdam, Amsterdam, The Netherlands
- Department of Developmental Psychology and Psychonomics, Utrecht University, Utrecht, The Netherlands
| | - Wilhelmina A. M. Vingerhoets
- Department of Nuclear Medicine, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
- Department of Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Wim van den Brink
- Department of Psychiatry, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Reinout W. Wiers
- Addiction Development and Psychopathology (ADAPT)-lab, Department of Developmental Psychology, University of Amsterdam, Amsterdam, The Netherlands
- Cognitive Science Center Amsterdam, University of Amsterdam, Amsterdam, The Netherlands
| | - Carin J. Meijer
- Department of Psychiatry, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Marise W. J. Machielsen
- Department of Psychiatry, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Dick J. Veltman
- University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Anneke E. Goudriaan
- Department of Psychiatry, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
- Arkin Mental Health Care, Amsterdam, The Netherlands
| | - Lieuwe de Haan
- Department of Psychiatry, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
24
|
Shrivastava A, Johnston M, Terpstra K, Bureau Y. Pathways to psychosis in cannabis abuse. ACTA ACUST UNITED AC 2016; 9:30-5. [PMID: 23491968 DOI: 10.3371/csrp.shjo.030813] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cannabis has been implicated as a risk factor for the development of schizophrenia, but the exact biological mechanisms remain unclear. In this review, we attempt to understand the neurobiological pathways that link cannabis use to schizophrenia. This has been an area of great debate; despite similarities between cannabis users and schizophrenia patients, the evidence is not sufficient to establish cause-and-effect. There have been advances in the understanding of the mechanisms of cannabis dependence as well as the role of the cannabinoid system in the development of psychosis and schizophrenia. The neurobiological mechanisms associated with the development of psychosis and effects from cannabis use may be similar but remain elusive. In order to better understand these associations, this paper will show common neurobiological and neuroanatomical changes as well as common cognitive dysfunction in cannabis users and patients of schizophrenia. We conclude that epidemiologic evidence highlights potential causal links; however, neurobiological evidence for causality remains weak.
Collapse
Affiliation(s)
- Amresh Shrivastava
- Department of Psychiatry, Elgin Prevention and Early Intervention Program for Psychosis, The University of Western Ontario, and Mental Health Resource Foundation, Ontario, Canada, Mumbai, Maharashtra, India
| | - Megan Johnston
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| | - Kristen Terpstra
- Department of Psychology, University of Western Ontario, London, Ontario, Canada
| | - Yves Bureau
- Lawson Health Research Institute, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
25
|
Dragogna F, Mauri MC, Marotta G, Armao FT, Brambilla P, Altamura AC. Brain metabolism in substance-induced psychosis and schizophrenia: a preliminary PET study. Neuropsychobiology 2016; 70:195-202. [PMID: 25471704 DOI: 10.1159/000366485] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 08/05/2014] [Indexed: 11/19/2022]
Abstract
INTRODUCTION The relation between schizophrenia and cannabis abuse has been widely discussed from etiopathogenetic, psychopathological and neurometabolic points of view. Relatively little has been written about the differences between schizophrenia with co-occurrent cannabis abuse and substance-induced psychotic disorder (SIPD). Given these premises, our study aims to investigate the psychopathological and neurometabolic features of these clinical entities. METHODS We enrolled patients experiencing an acute psychotic episode, affected either by schizophrenia with or without cannabis abuse (SCZ +/- CA; n = 5 and n = 5, respectively) with recent onset (<5 years of illness) or by SIPD (n = 6), as diagnosed by the Structured Clinical Interview for DSM-IV Axis I. Patients affected by SIPD were all cannabis abusers. All patients were assessed with the PANSS (Positive and Negative Scale for Schizophrenia), urinary toxicological tests and brain 18-FDG-PET scanning in resting condition. Statistical analysis (ANOVA) was performed with Statistical Parametric Mapping SPM8 and Scenium software. RESULTS Bilateral hypermetabolism in the posterior cingulum and the precuneus (p < 0.001) was observed in SIPD patients compared to patients with schizophrenia, with or without cannabis abuse. CONCLUSIONS Our preliminary PET findings suggest that substance abuse may cause increased brain metabolism in patients with induced psychosis but not in those with schizophrenia. These differences in brain metabolism were found in the posterior cingulum and precuneus, which are two core regions of the default mode network in humans.
Collapse
Affiliation(s)
- Filippo Dragogna
- Department of Psychiatry, University of Milan, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | | | | | | | | | | |
Collapse
|
26
|
Brown GG, Jacobus J, McKenna B. Structural imaging for addiction medicine: From neurostructure to neuroplasticity. PROGRESS IN BRAIN RESEARCH 2016; 224:105-27. [PMID: 26822356 PMCID: PMC4856004 DOI: 10.1016/bs.pbr.2015.07.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Quantitative morphometry and diffusion tensor imaging have provided new insights into structural brain changes associated with drugs of abuse. In this chapter, we review recent studies using these methods to investigate structural brain abnormalities associated with excessive use of marijuana, stimulants, and opiates. Although many brain regions have been associated with structural abnormalities following abuse of these drugs, brain systems underlying inhibition, mood regulation, and reward are particularly involved. Candidate pathological mechanisms underlying these structural abnormalities include the direct toxic effects of the drugs, neuroinflammation, ischemia, hemorrhage, and abnormal brain development. Returning damaged brain areas to neural health would involve enhancing neuroplasticity. Behavioral, environmental, pharmacological, and cell-based therapies have been correlated with enhanced neuroplasticity following brain injury, providing a basis for new treatments of brain changes associated with excessive drug use. When testing new treatments, structural imaging may prove useful in selecting patients, monitoring recovery, and perhaps, tailoring interventions.
Collapse
|
27
|
Becker MP, Collins PF, Lim KO, Muetzel RL, Luciana M. Longitudinal changes in white matter microstructure after heavy cannabis use. Dev Cogn Neurosci 2015; 16:23-35. [PMID: 26602958 PMCID: PMC4691379 DOI: 10.1016/j.dcn.2015.10.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 10/03/2015] [Accepted: 10/06/2015] [Indexed: 11/28/2022] Open
Abstract
Diffusion tensor imaging (DTI) studies of cannabis users report alterations in brain white matter microstructure, primarily based on cross-sectional research, and etiology of the alterations remains unclear. We report findings from longitudinal voxelwise analyses of DTI data collected at baseline and at a 2-year follow-up on 23 young adult (18-20 years old at baseline) regular cannabis users and 23 age-, sex-, and IQ-matched non-using controls with limited substance use histories. Onset of cannabis use was prior to age 17. Cannabis users displayed reduced longitudinal growth in fractional anisotropy in the central and parietal regions of the right and left superior longitudinal fasciculus, in white matter adjacent to the left superior frontal gyrus, in the left corticospinal tract, and in the right anterior thalamic radiation lateral to the genu of the corpus callosum, along with less longitudinal reduction of radial diffusion in the right central/posterior superior longitudinal fasciculus, corticospinal tract, and posterior cingulum. Greater amounts of cannabis use were correlated with reduced longitudinal growth in FA as was relatively impaired performance on a measure of verbal learning. These findings suggest that continued heavy cannabis use during adolescence and young adulthood alters ongoing development of white matter microstructure, contributing to functional impairment.
Collapse
Affiliation(s)
- Mary P Becker
- Department of Psychology, University of Minnesota, 75 East River Road, Minneapolis, MN 55455, United States; Center for Neurobehavioral Development, University of Minnesota, 717 Delaware Street SE, Ste. 333, Minneapolis, MN 55414, United States.
| | - Paul F Collins
- Department of Psychology, University of Minnesota, 75 East River Road, Minneapolis, MN 55455, United States; Center for Neurobehavioral Development, University of Minnesota, 717 Delaware Street SE, Ste. 333, Minneapolis, MN 55414, United States
| | - Kelvin O Lim
- Department of Psychiatry, University of Minnesota, 2450 Riverside Avenue South, Minneapolis, MN 55454, United States
| | - R L Muetzel
- Department of Psychology, University of Minnesota, 75 East River Road, Minneapolis, MN 55455, United States
| | - M Luciana
- Department of Psychology, University of Minnesota, 75 East River Road, Minneapolis, MN 55455, United States; Center for Neurobehavioral Development, University of Minnesota, 717 Delaware Street SE, Ste. 333, Minneapolis, MN 55414, United States
| |
Collapse
|
28
|
Filbey FM, McQueeny T, DeWitt SJ, Mishra V. Preliminary findings demonstrating latent effects of early adolescent marijuana use onset on cortical architecture. Dev Cogn Neurosci 2015; 16:16-22. [PMID: 26507433 PMCID: PMC4691364 DOI: 10.1016/j.dcn.2015.10.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 09/09/2015] [Accepted: 10/02/2015] [Indexed: 01/12/2023] Open
Abstract
Early onset MJ use was associated with different patterns of cortical architecture. Early vs. late onset divergence was in brain regions underlying higher-order cognition. Findings were above and beyond effects of alcohol and current age.
Background As the most commonly used illicit substance during early adolescence, long-term or latent effects of early adolescent marijuana use across adolescent developmental processes remain to be determined. Methods We examined cortical thickness, gray/white matter border contrast (GWR) and local gyrification index (LGI) in 42 marijuana (MJ) users. Voxelwise regressions assessed early-onset (age <16) vs. late-onset (≥16 years-old) differences and relationships to continued use while controlling for current age and alcohol use. Results Although groups did not differ by onset status, groups diverged in their correlations between cannabis use and cortical architecture. Among early-onset users, continued years of MJ use and current MJ consumption were associated with thicker cortex, increased GWR and decreased LGI. Late-onset users exhibited the opposite pattern. This divergence was observed in all three morphological measures in the anterior dorsolateral frontal cortex (p < .05, FWE-corrected). Conclusions Divergent patterns between current MJ use and elements of cortical architecture were associated with early MJ use onset. Considering brain development in early adolescence, findings are consistent with disruptions in pruning. However, divergence with continued use for many years thereafter suggests altered trajectories of brain maturation during late adolescence and beyond.
Collapse
Affiliation(s)
- Francesca M Filbey
- Center for BrainHealth, School of Behavioral and Brain Sciences, The University of Texas at Dallas, United States.
| | - Tim McQueeny
- Center for BrainHealth, School of Behavioral and Brain Sciences, The University of Texas at Dallas, United States
| | - Samuel J DeWitt
- Center for BrainHealth, School of Behavioral and Brain Sciences, The University of Texas at Dallas, United States
| | | |
Collapse
|
29
|
The Use of Cannabis as a Predictor of Early Onset of Bipolar Disorder and Suicide Attempts. Neural Plast 2015; 2015:434127. [PMID: 26097750 PMCID: PMC4444580 DOI: 10.1155/2015/434127] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 12/22/2014] [Accepted: 01/07/2015] [Indexed: 12/22/2022] Open
Abstract
Introduction. Bipolar disorder (BD) implies risk of suicide. The age at onset (AAO) of BD carries prognostic significance. Substance abuse may precede the onset of BD and cannabis is the most common illicit drug used. The main goal of this study is to review the association of cannabis use as a risk factor for early onset of BD and for suicide attempts. Materials and Methods. PubMed database was searched for articles using key words “bipolar disorder,” “suicide attempts,” “cannabis,” “marijuana,” “early age at onset,” and “early onset.” Results. The following percentages in bipolar patients were found: suicide attempts 3.6–42%; suicide attempts and substance use 5–60%; suicide attempts and cannabis use 15–42%. An early AAO was associated with cannabis misuse. The mean age of the first manic episode in individuals with and without BD and cannabis use disorder (CUD) was 19.5 and 25.1 years, respectively. The first depressive episode was at 18.5 and 24.4 years, respectively. Individuals misusing cannabis showed increased risk of suicide. Discussion. Cannabis use is associated with increased risk of suicide attempts and with early AAO. However, the effect of cannabis at the AAO and suicide attempts is not clear.
Collapse
|
30
|
Epstein KA, Kumra S. White matter fractional anisotropy over two time points in early onset schizophrenia and adolescent cannabis use disorder: A naturalistic diffusion tensor imaging study. Psychiatry Res 2015; 232:34-41. [PMID: 25779033 DOI: 10.1016/j.pscychresns.2014.10.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 09/15/2014] [Accepted: 10/12/2014] [Indexed: 12/18/2022]
Abstract
Recurrent exposure to cannabis in adolescence increases the risk for later development of psychosis, but there are sparse data regarding the impact of cannabis use on brain structure during adolescence. This pilot study investigated the effect of cannabis use disorder (CUD) upon white matter fractional anisotropy (WM FA) values in non-psychotic treatment-seeking adolescents relative to adolescents with early onset schizophrenia-spectrum disorders (EOSS) and to healthy control (HC) participants. Diffusion tensor imaging (DTI) and tractography methods were used to examine fractional anisotropy (FA) of the cingulum bundle, superior longitudinal fasciculus (SLF), corticospinal tract (CST), inferior longitudinal fasciculus (ILF), inferior fronto-occipital fasciculus (IFOF) and uncinate fasciculus in adolescents with EOSS (n=34), CUD (n=19) and HC (n=29). Participants received DTI and substance use assessments at baseline and at 18-month follow-up. Using multivariate analysis of variance, a significant main effect of diagnostic group was observed. Post-hoc testing revealed that adolescents with CUD showed an altered change in FA values in the left ILF and in the left IFOF (trend level) compared with HC adolescents. Greater consumption of cannabis during the inter-scan interval predicted a greater decrease in left ILF FA in CUD. These preliminary longitudinal data suggest that heavy cannabis use during adolescence, or some factor associated with cannabis use, is associated with an altered change in WM FA values in a fiber bundle that has been implicated in the pathophysiology of EOSS (i.e., the left ILF). Additional studies are needed to clarify the clinical significance of these findings.
Collapse
Affiliation(s)
- Katherine A Epstein
- Division of Child and Adolescent Psychiatry, University of Minnesota, Minneapolis, MN, USA
| | - Sanjiv Kumra
- Division of Child and Adolescent Psychiatry, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
31
|
Shollenbarger SG, Price J, Wieser J, Lisdahl K. Poorer frontolimbic white matter integrity is associated with chronic cannabis use, FAAH genotype, and increased depressive and apathy symptoms in adolescents and young adults. NEUROIMAGE-CLINICAL 2015; 8:117-25. [PMID: 26106535 PMCID: PMC4473294 DOI: 10.1016/j.nicl.2015.03.024] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 03/17/2015] [Accepted: 03/28/2015] [Indexed: 11/30/2022]
Abstract
BACKGROUND The heaviest period of cannabis use coincides with ongoing white matter (WM) maturation. Further, cannabis-related changes may be moderated by FAAH genotype (rs324420). We examined the association between cannabis use and FAAH genotype on frontolimbic WM integrity in adolescents and emerging adults. We then tested whether observed WM abnormalities were linked with depressive or apathy symptoms. METHODS Participants included 37 cannabis users and 37 healthy controls (33 female; ages 18-25). Multiple regressions examined the independent and interactive effects of variables on WM integrity. RESULTS Regular cannabis users demonstrated reduced WM integrity in the bilateral uncinate fasciculus (UNC) (MD, right: p = .009 and left: p = .009; FA, right: p = .04 and left: p = .03) and forceps minor (fMinor) (MD, p = .03) compared to healthy controls. Marginally reduced WM integrity in the cannabis users was found in the left anterior thalamic radiation (ATR) (FA, p = .08). Cannabis group ∗ FAAH genotype interaction predicted WM integrity in bilateral ATR (FA, right: p = .05 and left: p = .001) and fMinor (FA, p = .02). In cannabis users, poorer WM integrity was correlated with increased symptoms of depression and apathy in bilateral ATR and UNC. CONCLUSIONS Consistent with prior findings, cannabis use was associated with reduced frontolimbic WM integrity. WM integrity was also moderated by FAAH genotype, in that cannabis-using FAAH C/C carriers and A carrying controls had reduced WM integrity compared to control C/C carriers. Observed frontolimbic white matter abnormalities were linked with increased depressive and apathy symptoms in the cannabis users.
Collapse
Affiliation(s)
- Skyler G Shollenbarger
- Department of Psychology, University of Wisconsin-Milwaukee, Garland Hall Rm 224, 2441 East Hartford Ave, Milwaukee, WI 53211, USA
| | - Jenessa Price
- McLean Hospital, Harvard Medical School, 115 Mill St., Belmont, MA 02478, USA
| | - Jon Wieser
- Department of Psychology, University of Wisconsin-Milwaukee, Garland Hall Rm 224, 2441 East Hartford Ave, Milwaukee, WI 53211, USA
| | - Krista Lisdahl
- Department of Psychology, University of Wisconsin-Milwaukee, Garland Hall Rm 224, 2441 East Hartford Ave, Milwaukee, WI 53211, USA
| |
Collapse
|
32
|
Lubman DI, Cheetham A, Yücel M. Cannabis and adolescent brain development. Pharmacol Ther 2014; 148:1-16. [PMID: 25460036 DOI: 10.1016/j.pharmthera.2014.11.009] [Citation(s) in RCA: 191] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 11/03/2014] [Indexed: 12/14/2022]
Abstract
Heavy cannabis use has been frequently associated with increased rates of mental illness and cognitive impairment, particularly amongst adolescent users. However, the neurobiological processes that underlie these associations are still not well understood. In this review, we discuss the findings of studies examining the acute and chronic effects of cannabis use on the brain, with a particular focus on the impact of commencing use during adolescence. Accumulating evidence from both animal and human studies suggests that regular heavy use during this period is associated with more severe and persistent negative outcomes than use during adulthood, suggesting that the adolescent brain may be particularly vulnerable to the effects of cannabis exposure. As the endocannabinoid system plays an important role in brain development, it is plausible that prolonged use during adolescence results in a disruption in the normative neuromaturational processes that occur during this period. We identify synaptic pruning and white matter development as two processes that may be adversely impacted by cannabis exposure during adolescence. Potentially, alterations in these processes may underlie the cognitive and emotional deficits that have been associated with regular use commencing during adolescence.
Collapse
Affiliation(s)
- Dan I Lubman
- Turning Point, Eastern Health and Eastern Health Clinical School, Monash University, Victoria, Australia.
| | - Ali Cheetham
- Turning Point, Eastern Health and Eastern Health Clinical School, Monash University, Victoria, Australia
| | - Murat Yücel
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Victoria, Australia; Monash Clinical & Imaging Neuroscience, School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
33
|
Abstract
Questions surrounding the effects of chronic marijuana use on brain structure continue to increase. To date, however, findings remain inconclusive. In this comprehensive study that aimed to characterize brain alterations associated with chronic marijuana use, we measured gray matter (GM) volume via structural MRI across the whole brain by using voxel-based morphology, synchrony among abnormal GM regions during resting state via functional connectivity MRI, and white matter integrity (i.e., structural connectivity) between the abnormal GM regions via diffusion tensor imaging in 48 marijuana users and 62 age- and sex-matched nonusing controls. The results showed that compared with controls, marijuana users had significantly less bilateral orbitofrontal gyri volume, higher functional connectivity in the orbitofrontal cortex (OFC) network, and higher structural connectivity in tracts that innervate the OFC (forceps minor) as measured by fractional anisotropy (FA). Increased OFC functional connectivity in marijuana users was associated with earlier age of onset. Lastly, a quadratic trend was observed suggesting that the FA of the forceps minor tract initially increased following regular marijuana use but decreased with protracted regular use. This pattern may indicate differential effects of initial and chronic marijuana use that may reflect complex neuroadaptive processes in response to marijuana use. Despite the observed age of onset effects, longitudinal studies are needed to determine causality of these effects.
Collapse
|
34
|
O'Tuathaigh CMP, Gantois I, Waddington JL. Genetic dissection of the psychotomimetic effects of cannabinoid exposure. Prog Neuropsychopharmacol Biol Psychiatry 2014; 52:33-40. [PMID: 24239593 DOI: 10.1016/j.pnpbp.2013.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Revised: 10/31/2013] [Accepted: 11/04/2013] [Indexed: 12/31/2022]
Abstract
Cannabis use is an established risk factor for the development of schizophrenia and related psychotic disorders. Factors that may mediate susceptibility to the psychosis-inducing effects of cannabis include the age at onset of first cannabis use, genetic predisposition, as well as interaction with other environmental risk variables. Clinical and preclinical genetic studies provide increasing evidence that, in particular, genes encoding proteins implicated in dopamine signalling are implicated in the cannabis-psychosis association. In the present review, we focus on both human and animal studies which have focused on identifying the neuronal basis of these interactions. We conclude that further studies are required to provide greater mechanistic insight into the long-term and neurodevelopmental effects of cannabis use, with implications for improved understanding of the cannabis-psychosis relationship.
Collapse
Affiliation(s)
- Colm M P O'Tuathaigh
- Molecular & Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin 2, Ireland; School of Medicine, University College Cork, Cork, Ireland.
| | - Ilse Gantois
- Laboratory of Biological Psychology, KU Leuven, 3000 Leuven, Belgium
| | - John L Waddington
- Molecular & Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| |
Collapse
|
35
|
Jacobus J, Squeglia LM, Infante MA, Bava S, Tapert SF. White matter integrity pre- and post marijuana and alcohol initiation in adolescence. Brain Sci 2014; 3:396-414. [PMID: 23914300 PMCID: PMC3728679 DOI: 10.3390/brainsci3010396] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Characterizing the effects of alcohol and marijuana use on adolescent brain development is important for understanding potential alterations in neurodevelopment. Several cross sectional studies have identified group differences in white matter integrity after initiation of heavy alcohol and marijuana use, however none have explored white matter trajectories in adolescents pre- and post initiation of use, particularly for marijuana users. This study followed 16 adolescents with minimal alcohol and marijuana use at ages 16–18 over three years. At follow-up, teens were 19–22 years old; half of the participants initiated heavy alcohol use and half initiated heavy alcohol and marijuana use. Repeated-measures ANOVA revealed 20 clusters in association and projection fibers tracts (p < 0.01) in which a group by time interaction was found. Most consistently, white matter integrity (i.e., fractional anisotropy) decreased for those who initiated both heavy alcohol and marijuana use over the follow-up interval. No effect of time or change in white matter integrity was seen for those who initiated alcohol use only in the majority of clusters. In most regions, at the baseline time point, teens who would later initiate both alcohol and marijuana use demonstrated white matter integrity greater than or equal to teens that initiated alcohol use only. Findings suggest poorer tissue integrity associated with combined initiation of heavy alcohol and marijuana use in late adolescence. While pre-existing differences may also be related to likelihood of substance use, the present data suggest an effect on tissue integrity for these teens transitioning to combined alcohol and marijuana use in later adolescence.
Collapse
Affiliation(s)
- Joanna Jacobus
- VA San Diego Healthcare System Psychology Service (116B), 3350 La Jolla Village Drive, San Diego, CA 92126, USA; E-Mails: (J.J.); (S.B.)
- Department of Psychiatry, University of California, San Diego, 9500 Gilman Drive (0603), La Jolla, CA 92093, USA; E-Mails: (L.M.S.); (M.A.I.)
| | - Lindsay M. Squeglia
- Department of Psychiatry, University of California, San Diego, 9500 Gilman Drive (0603), La Jolla, CA 92093, USA; E-Mails: (L.M.S.); (M.A.I.)
| | - M. Alejandra Infante
- Department of Psychiatry, University of California, San Diego, 9500 Gilman Drive (0603), La Jolla, CA 92093, USA; E-Mails: (L.M.S.); (M.A.I.)
- San Diego Joint Doctoral Program in Clinical Psychology, San Diego State University/University of California, 6363 Alvarado Court, Suite 103, San Diego, CA 92120, USA
| | - Sunita Bava
- VA San Diego Healthcare System Psychology Service (116B), 3350 La Jolla Village Drive, San Diego, CA 92126, USA; E-Mails: (J.J.); (S.B.)
- Department of Psychiatry, University of California, San Diego, 9500 Gilman Drive (0603), La Jolla, CA 92093, USA; E-Mails: (L.M.S.); (M.A.I.)
| | - Susan F. Tapert
- VA San Diego Healthcare System Psychology Service (116B), 3350 La Jolla Village Drive, San Diego, CA 92126, USA; E-Mails: (J.J.); (S.B.)
- Department of Psychiatry, University of California, San Diego, 9500 Gilman Drive (0603), La Jolla, CA 92093, USA; E-Mails: (L.M.S.); (M.A.I.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-858-552-7563; Fax: +1-858-642-6340
| |
Collapse
|
36
|
Lisdahl KM, Wright NE, Kirchner-Medina C, Maple KE, Shollenbarger S. Considering Cannabis: The Effects of Regular Cannabis Use on Neurocognition in Adolescents and Young Adults. CURRENT ADDICTION REPORTS 2014; 1:144-156. [PMID: 25013751 PMCID: PMC4084860 DOI: 10.1007/s40429-014-0019-6] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Thirty-six percent of high school seniors have used cannabis in the past year, and an alarming 6.5% smoked cannabis daily, up from 2.4% in 1993 (Johnston et al., 2013). Adolescents and emerging adults are undergoing significant neurodevelopment and animal studies suggest they may be particularly vulnerable to negative drug effects. In this review, we will provide a detailed overview of studies outlining the effects of regular (at least weekly) cannabis use on neurocognition, including studies outlining cognitive, structural and functional findings. We will also explore the public health impact of this research.
Collapse
Affiliation(s)
- Krista M. Lisdahl
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI
| | - Natasha E. Wright
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI
| | | | - Kristin E. Maple
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI
| | | |
Collapse
|
37
|
Abstract
Cannabis is a known risk factor for schizophrenia, although the exact neurobiological process through which the effects on psychosis occur is not well-understood. In this review, we attempt to develop and discuss a possible pathway for the development of psychosis. We examine the neurobiological changes due to cannabis to see if these changes are similar to those seen in schizophrenic patients the findings show similarities; however, these mere similarities cannot establish a 'cause-effect' relationship as a number of people with similar changes do not develop schizophrenia. Therefore, the 'transition-to-psychosis' due to cannabis, despite being a strong risk factor, remains uncertain based upon neurobiological changes. It appears that other multiple factors might be involved in these processes which are beyond neurobiological factors. Major advances have been made in understanding the underpinning of marijuana dependence, and the role of the cannabinoid system, which is a major area for targeting medications to treat marijuana withdrawal and dependence, as well as other addictions is of now, it is clear that some of the similarities in the neurobiology of cannabis and schizophrenia may indicate a mechanism for the development of psychosis, but its trajectories are undetermined.
Collapse
Affiliation(s)
- Amresh Shrivastava
- Department of Psychiatry, Elgin Early Intervention Program for Psychosis, University of Western Ontario, London, Ontario, Canada ; Mental Health Resource Foundation, Mumbai, Maharashtra, India
| | - Megan Johnston
- Department of Psychology, University of Toronto, St. George, Toronto, Canada
| | - Kristen Terpstra
- Department of Psychology, University of Western Ontario, London, Ontario, Canada
| | - Yves Bureau
- Lawson Health Research Institute, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
38
|
James A, James C, Thwaites T. The brain effects of cannabis in healthy adolescents and in adolescents with schizophrenia: a systematic review. Psychiatry Res 2013; 214:181-9. [PMID: 24139960 DOI: 10.1016/j.pscychresns.2013.07.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 05/31/2013] [Accepted: 07/26/2013] [Indexed: 12/24/2022]
Abstract
Cannabis is widely used in adolescence; however, the effects of cannabis on the developing brain remain unclear. Cannabis might be expected to have increased effects upon brain development and cognition during adolescence. There is extensive re-organisation of grey (GM) and white matter (WM) at this time, while the endocannabinoid (eCB) system, which is involved in the normal physiological regulation of neural transmission, is still developing. In healthy adolescent cannabis users there is a suggestion of greater memory loss and hippocampal volume changes. Functional studies point to recruitment of greater brain areas under cognitive load. Structural and DTI studies are few, and limited by comorbid drug and alcohol use. The studies of cannabis use in adolescent-onset schizophrenia (AOS) differ, with one study pointing to extensive GM and WM changes. There is an intriguing suggestion that the left parietal lobe may be more vulnerable to the effects of cannabis in AOS. As in adult schizophrenia cognition does not appear to be adversely affected in AOS following cannabis use. Given the limited number of studies it is not possible to draw firm conclusions. There is a need for adequately powered, longitudinal studies.
Collapse
Affiliation(s)
- Anthony James
- Highfield Unit, Warneford Hospital, Oxford OX3 7JX. UK.
| | | | | |
Collapse
|
39
|
Jacobus J, Squeglia LM, Bava S, Tapert SF. White matter characterization of adolescent binge drinking with and without co-occurring marijuana use: a 3-year investigation. Psychiatry Res 2013; 214:374-81. [PMID: 24139957 PMCID: PMC3900025 DOI: 10.1016/j.pscychresns.2013.07.014] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 06/08/2013] [Accepted: 07/31/2013] [Indexed: 01/24/2023]
Abstract
The aims of this study were to investigate the consequences of prolonged patterns of alcohol and marijuana use on white matter integrity and neurocognitive functioning in late adolescence, and examine neurodevelopmental trajectories over three years of regular follow-up visits. Three groups of demographically similar teens received assessments every 1.5 years (controls with consistently minimal substance use, n=16; teens who gradually increase their heavy episodic drinking n=17, and continuous binge drinkers with heavy marijuana use, n=21), including comprehensive neuropsychological evaluations, diffusion tensor imaging, and detailed substance use interviews. One-way ANOVA identified fifteen white matter clusters that significantly differed between groups at 3-year follow-up, ages 19-22; controls consistently demonstrated higher values of tissue integrity across fiber tracts. Repeated measures ANOVA revealed significant declines in white matter integrity from baseline to 3-year follow-up in the subsample of substance users, along with poorer global neurocognitive performance in alcohol users with heavy marijuana use by the 18-month follow-up. Findings suggest healthier brain white matter microstructure and better neurocognitive performance for teens free from heavy alcohol and marijuana use. Long-term engagement in these substances may adversely influence white matter and increase vulnerability for development of neuropathology purported to underlie future risk-taking and addictive behaviors.
Collapse
Affiliation(s)
| | | | | | - Susan F. Tapert
- Correspondence to: S. F. Tapert, Ph.D., VA San Diego Healthcare System, Psychology Service (116B), University of California, San Diego, 3350 La Jolla Village Drive, San Diego, CA 92161, Telephone: 858-552-8585, Fax: (858) 552-7414,
| |
Collapse
|
40
|
Rocchetti M, Crescini A, Borgwardt S, Caverzasi E, Politi P, Atakan Z, Fusar-Poli P. Is cannabis neurotoxic for the healthy brain? A meta-analytical review of structural brain alterations in non-psychotic users. Psychiatry Clin Neurosci 2013; 67:483-92. [PMID: 24118193 DOI: 10.1111/pcn.12085] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 06/12/2013] [Accepted: 06/21/2013] [Indexed: 11/27/2022]
Abstract
AIMS Despite growing research in the field of cannabis imaging, mostly in those with a psychotic illness, the possible neurotoxic effects of smoked cannabis on the healthy brain have yet to be fully understood. There appears to be a need to evaluate the existing imaging data on the neuroanatomical effects of cannabis use on non-psychotic populations. METHODS We conducted a meta-analytical review to estimate the putative neurotoxic effect of cannabis in non-psychotic subjects who were using or not using cannabis. We specifically tested the hypothesis that cannabis use can alter grey and white matter in non-psychotic subjects. RESULTS Our systematic literature search uncovered 14 studies meeting the inclusion criteria for the meta-analysis. The overall database comprised 362 users and 365 non-users. At the level of the individual studies there is limited and contrasting evidence supporting a cannabis-related alteration on the white and grey matter structures of non-psychotic cannabis users. However, our meta-analysis showed a consistent smaller hippocampus in users as compared to non-users. Heterogeneity across study designs, image acquisition, small sample sizes and limited availability of regions of interest to be included in the meta-analysis may undermine the core findings of this study. CONCLUSIONS Our results suggest that in the healthy brain, chronic and long-term cannabis exposure may exert significant effects in brain areas enriched with cannabinoid receptors, such as the hippocampus, which could be related to a neurotoxic action.
Collapse
Affiliation(s)
- Matteo Rocchetti
- Department of Psychosis Studies, Institute of Psychiatry, King's College London, London, UK; Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | | | | | | | | | | | | |
Collapse
|
41
|
Elofson J, Gongvatana W, Carey KB. Alcohol use and cerebral white matter compromise in adolescence. Addict Behav 2013; 38:2295-305. [PMID: 23583835 DOI: 10.1016/j.addbeh.2013.03.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 02/01/2013] [Accepted: 03/07/2013] [Indexed: 12/31/2022]
Abstract
Alcohol use is typically initiated during adolescence, a period known to be critical in neurodevelopment. The adolescent brain may be particularly susceptible to the harmful effects of alcohol. While the cognitive deficits associated with alcohol use during adolescence have been well-documented, the neural substrates underlying these effects remain inadequately understood. Cerebral white matter has been suggested as a primary site of alcohol-related damage and diffusion tensor imaging (DTI) allows for the quantification of white matter integrity in vivo. This review summarizes results from both cross-sectional and longitudinal studies employing DTI that indicate that white matter tracts, particularly those thought to be involved in executive functioning, continue to develop throughout adolescence and into adulthood. Numerous DTI studies reveal a positive correlation between white matter integrity and neurocognitive performance and, in adults, the detrimental effects of prolonged alcohol-dependence on white matter integrity. We provide a comprehensive review of the DTI studies exploring the relationship between alcohol use and white matter integrity in adolescents. Results from most of these studies suggest that alcohol use is associated with reduced white matter integrity, particularly in the superior longitudinal fasciculus (SLF), and some evidence suggests that this relationship may be influenced by sex. We conclude by highlighting confounds and limitations of the available research and suggesting directions for future research.
Collapse
|
42
|
Jacobus J, Thayer RE, Trim RS, Bava S, Frank LR, Tapert SF. White matter integrity, substance use, and risk taking in adolescence. PSYCHOLOGY OF ADDICTIVE BEHAVIORS 2013; 27:431-42. [PMID: 22564204 PMCID: PMC3416962 DOI: 10.1037/a0028235] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
White matter development is important for efficient communication between brain regions, higher order cognitive functioning, and complex behaviors. Adolescents have a higher propensity for engaging in risky behaviors, yet few studies have explored associations between white matter integrity and risk taking directly. Altered white matter integrity in mid-adolescence was hypothesized to predict subsequent risk taking behaviors 1.5 years later. Adolescent substance users (predominantly alcohol and marijuana, n = 47) and demographically similar nonusers (n = 49) received diffusion tensor imaging at baseline (ages 16-19), and risk taking measures at both baseline and an 18-month follow-up (i.e., at ages 17-20). Brain regions of interest were the fornix, superior corona radiata, superior longitudinal fasciculus, and superior fronto-occipital fasciculus. In substance-using youth (n = 47), lower white matter integrity at baseline in the fornix and superior corona radiata predicted follow-up substance use (ΔR2 = 10-12%, ps < .01), and baseline fornix integrity predicted follow-up delinquent behaviors (ΔR2 = 10%, p < .01) 1.5 years later. Poorer fronto-limbic white matter integrity was linked to a greater propensity for future risk taking behaviors among youth who initiated heavy substance use by mid-adolescence. Most notable were relationships between projection and limbic-system fibers and future substance-use frequency. Subcortical white matter coherence, along with an imbalance between the maturation levels in cognitive control and reward systems, may disadvantage the resistance to engage in risk taking behaviors during adolescence.
Collapse
Affiliation(s)
- Joanna Jacobus
- Department of Psychiatry, University of California, San Diego, USA
| | | | | | | | | | | |
Collapse
|
43
|
Batalla A, Bhattacharyya S, Yücel M, Fusar-Poli P, Crippa JA, Nogué S, Torrens M, Pujol J, Farré M, Martin-Santos R. Structural and functional imaging studies in chronic cannabis users: a systematic review of adolescent and adult findings. PLoS One 2013; 8:e55821. [PMID: 23390554 PMCID: PMC3563634 DOI: 10.1371/journal.pone.0055821] [Citation(s) in RCA: 271] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 01/02/2013] [Indexed: 12/18/2022] Open
Abstract
Background The growing concern about cannabis use, the most commonly used illicit drug worldwide, has led to a significant increase in the number of human studies using neuroimaging techniques to determine the effect of cannabis on brain structure and function. We conducted a systematic review to assess the evidence of the impact of chronic cannabis use on brain structure and function in adults and adolescents. Methods Papers published until August 2012 were included from EMBASE, Medline, PubMed and LILACS databases following a comprehensive search strategy and pre-determined set of criteria for article selection. Only neuroimaging studies involving chronic cannabis users with a matched control group were considered. Results One hundred and forty-two studies were identified, of which 43 met the established criteria. Eight studies were in adolescent population. Neuroimaging studies provide evidence of morphological brain alterations in both population groups, particularly in the medial temporal and frontal cortices, as well as the cerebellum. These effects may be related to the amount of cannabis exposure. Functional neuroimaging studies suggest different patterns of resting global and brain activity during the performance of several cognitive tasks both in adolescents and adults, which may indicate compensatory effects in response to chronic cannabis exposure. Limitations However, the results pointed out methodological limitations of the work conducted to date and considerable heterogeneity in the findings. Conclusion Chronic cannabis use may alter brain structure and function in adult and adolescent population. Further studies should consider the use of convergent methodology, prospective large samples involving adolescent to adulthood subjects, and data-sharing initiatives.
Collapse
Affiliation(s)
- Albert Batalla
- Psychiatry, Institute of Neurosciences, Hospital Clínic, IDIBAPS, CIBERSAM, Barcelona, Spain
- Department of Psychiatry and Clinical Psychobiology, University of Barcelona, Barcelona, Spain
- Melbourne Neuropsychiatry Centre, The University of Melbourne, Melbourne, Victoria, Australia
| | - Sagnik Bhattacharyya
- Department of Psychosis Studies, King’s College London, Institute of Psychiatry, London, United Kingdom
| | - Murat Yücel
- Melbourne Neuropsychiatry Centre, The University of Melbourne, Melbourne, Victoria, Australia
| | - Paolo Fusar-Poli
- Department of Psychosis Studies, King’s College London, Institute of Psychiatry, London, United Kingdom
| | - Jose Alexandre Crippa
- Neuroscience and Cognitive Behavior Department, University of Sao Paulo, Ribeirao Preto, Brazil
- National Science and Technology Institute for Translational Medicine (INCT-TM, CNPq), Ribeirao Preto, Brazil
| | - Santiago Nogué
- Clinical Toxicology Unit, Emergency Department, Hospital Clínic, IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Marta Torrens
- Neuroscience Program, Pharmacology Unit and Drug Addiction Unit, IMIM-INAD-Parc de Salut Mar, Autonomous University of Barcelona, Barcelona, Spain
- Red de Trastornos Adictivos (RETIC), IMIM-INAD-Parc de Salut Mar, Barcelona, Spain
| | - Jesús Pujol
- Institut d’Alta Tecnologia-PRBB, CRC Mar, Hospital del Mar, Barcelona, Spain
| | - Magí Farré
- Neuroscience Program, Pharmacology Unit and Drug Addiction Unit, IMIM-INAD-Parc de Salut Mar, Autonomous University of Barcelona, Barcelona, Spain
- Red de Trastornos Adictivos (RETIC), IMIM-INAD-Parc de Salut Mar, Barcelona, Spain
| | - Rocio Martin-Santos
- Psychiatry, Institute of Neurosciences, Hospital Clínic, IDIBAPS, CIBERSAM, Barcelona, Spain
- Department of Psychiatry and Clinical Psychobiology, University of Barcelona, Barcelona, Spain
- National Science and Technology Institute for Translational Medicine (INCT-TM, CNPq), Ribeirao Preto, Brazil
- * E-mail:
| |
Collapse
|
44
|
Lisdahl KM, Gilbart ER, Wright NE, Shollenbarger S. Dare to delay? The impacts of adolescent alcohol and marijuana use onset on cognition, brain structure, and function. Front Psychiatry 2013; 4:53. [PMID: 23847550 PMCID: PMC3696957 DOI: 10.3389/fpsyt.2013.00053] [Citation(s) in RCA: 195] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 05/30/2013] [Indexed: 11/13/2022] Open
Abstract
Throughout the world, drug and alcohol use has a clear adolescent onset (Degenhardt et al., 2008). Alcohol continues to be the most popular drug among teens and emerging adults, with almost a third of 12th graders and 40% of college students reporting recent binge drinking (Johnston et al., 2009, 2010), and marijuana (MJ) is the second most popular drug in teens (Johnston et al., 2010). The initiation of drug use is consistent with an overall increase in risk-taking behaviors during adolescence that coincides with significant neurodevelopmental changes in both gray and white matter (Giedd et al., 1996a; Paus et al., 1999; Sowell et al., 1999, 2002, 2004; Gogtay et al., 2004; Barnea-Goraly et al., 2005; Lenroot and Giedd, 2006). Animal studies have suggested that compared to adults, adolescents may be particularly vulnerable to the neurotoxic effects of drugs, especially alcohol and MJ (see Schneider and Koch, 2003; Barron et al., 2005; Monti et al., 2005; Cha et al., 2006; Rubino et al., 2009; Spear, 2010). In this review, we will provide a detailed overview of studies that examined the impact of early adolescent onset of alcohol and MJ use on neurocognition (e.g., Ehrenreich et al., 1999; Wilson et al., 2000; Tapert et al., 2002a; Hartley et al., 2004; Fried et al., 2005; Townshend and Duka, 2005; Medina et al., 2007a; McQueeny et al., 2009; Gruber et al., 2011, 2012; Hanson et al., 2011; Lisdahl and Price, 2012), with a special emphasis on recent prospective longitudinal studies (e.g., White et al., 2011; Hicks et al., 2012; Meier et al., 2012). Finally, we will explore potential clinical and public health implications of these findings.
Collapse
Affiliation(s)
- Krista M Lisdahl
- Department of Psychology, University of Wisconsin-Milwaukee , Milwaukee, WI , USA
| | | | | | | |
Collapse
|
45
|
Bava S, Jacobus J, Thayer RE, Tapert SF. Longitudinal changes in white matter integrity among adolescent substance users. Alcohol Clin Exp Res 2012; 37 Suppl 1:E181-9. [PMID: 23240741 DOI: 10.1111/j.1530-0277.2012.01920.x] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 06/30/2012] [Indexed: 12/01/2022]
Abstract
BACKGROUND The influence of repeated substance use during adolescent neurodevelopment remains unclear as there have been few prospective investigations. The aims of this study were to identify longitudinal changes in fiber tract integrity associated with alcohol- and marijuana-use severity over the course of 1.5 years. METHODS Adolescents with extensive marijuana- and alcohol-use histories by mid-adolescence (n = 41) and youth with consistently minimal if any substance use (n = 51) were followed over 18 months. Teens received diffusion tensor imaging and detailed substance-use assessments with toxicology screening at baseline and 18-month follow-ups (i.e., 182 scans in all), as well as interim substance-use interviews each 6 months. RESULTS At an 18-month follow-up, substance users showed poorer white matter integrity in 7 tracts: (i) right superior longitudinal fasciculus, (ii) left superior longitudinal fasciculus, (iii) right posterior thalamic radiations, (iv) right prefrontal thalamic fibers, (v) right superior temporal gyrus white matter, (vi) right inferior longitudinal fasciculus, and (vii) left posterior corona radiata (ps < 0.01). More alcohol use during the interscan interval predicted higher mean diffusivity (i.e., worsened integrity) in right (p < 0.05) and left (p = 0.06) superior longitudinal fasciculi, above and beyond baseline values in these bundles. Marijuana use during the interscan interval did not predict change over time. More externalizing behaviors at Time 1 predicted lower fractional anisotropy and higher radial diffusivity (i.e., poorer integrity) of the right prefrontal thalamic fibers (p < 0.025). CONCLUSIONS Findings add to previous cross-sectional studies reporting white matter disadvantages in youth with substance-use histories. In particular, alcohol use during adolescent neurodevelopment may be linked to reductions in white matter quality in association fiber tracts with frontal connections. In contrast, youth who engage in a variety of risk-taking behaviors may have unique neurodevelopmental trajectories characterized by truncated development in fronto-thalamic tracts, which could have functional and clinical consequences in young adulthood.
Collapse
Affiliation(s)
- Sunita Bava
- VA San Diego Healthcare System, Psychology Service (116B), San Diego, California 92161, USA
| | | | | | | |
Collapse
|
46
|
Feldstein Ewing SW, McEachern AD, Yezhuvath U, Bryan AD, Hutchison KE, Filbey FM. Integrating brain and behavior: evaluating adolescents' response to a cannabis intervention. PSYCHOLOGY OF ADDICTIVE BEHAVIORS 2012; 27:510-25. [PMID: 22925010 DOI: 10.1037/a0029767] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Client language (change talk [CT] and counterchange talk [CCT]) is gaining increasing support as an active ingredient of psychosocial interventions. Preliminary work with adults suggests that there may be a neural basis for this. With a diverse sample of adolescent cannabis users, we evaluated the influence of CT and CCT on blood oxygen level dependent (BOLD) response during an fMRI cannabis cue-exposure paradigm. We also investigated how BOLD activation related to treatment outcomes. Adolescent cannabis users (N = 43; 83.7% male; 53.5% Hispanic; M age = 16 years) were presented with CT and CCT derived from their prescan intervention session during the fMRI paradigm. Additionally, BOLD activation during CT (vs. CCT) was tested as a predictor of 1-month follow-up cannabis use behavior (frequency of cannabis use, cannabis problems, cannabis dependence). We observed a significant interaction, with greater activation during CT (vs. CCT) during the cannabis (but not control) cues in several areas key to self-referential processes (uncorrected p < 0.001; medial frontal gyrus, insula). Furthermore, BOLD activation during CT (vs. CCT) during cannabis (but not control) cues in areas that underlie introspection (posterior cingulate, precuneus) was significantly related to youths' 1-month follow-up cannabis use behavior (frequency of cannabis use, cannabis problems, cannabis dependence; uncorrected p < 0.001). These data indicate a unique interaction pattern, whereby CT (vs. CCT) during the cannabis (but not control) cues was associated with significantly greater activation in brain areas involved in introspection. Further, this activation was related to significantly better treatment outcomes for youth.
Collapse
|
47
|
Altered cerebral blood flow and neurocognitive correlates in adolescent cannabis users. Psychopharmacology (Berl) 2012; 222:675-84. [PMID: 22395430 PMCID: PMC3510003 DOI: 10.1007/s00213-012-2674-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 02/13/2012] [Indexed: 10/28/2022]
Abstract
RATIONALE The effects of adolescent marijuana use on the developing brain remain unclear, despite its prevalence. Arterial spin labeling (ASL) is a noninvasive imaging technique that characterizes neurovascular status and cerebral blood flow (CBF), potentially revealing contributors to neuropathological alterations. No studies to date have looked at CBF in adolescent marijuana users. OBJECTIVES This study examined CBF in adolescent marijuana users and matched healthy controls at baseline and after 4 weeks of monitored abstinence. METHODS Heavy adolescent marijuana users (n = 23, >200 lifetime marijuana use days) and demographically matched controls (n = 23) with limited substance exposure underwent an ASL brain scan at an initial session and after 4 weeks of sequential urine toxicology to confirm abstinence. RESULTS Marijuana users showed reduced CBF in four cortical regions including the left superior and middle temporal gyri, left insula, left and right medial frontal gyrus, and left supramarginal gyrus at baseline; users showed increased CBF in the right precuneus at baseline, as compared to controls (corrected p values < 0.05). No between group differences were found at follow-up. CONCLUSIONS Marijuana use may influence CBF in otherwise healthy adolescents acutely; however, group differences were not observed after several weeks of abstinence. Neurovascular alterations may contribute to or underlie changes in brain activation, neuropsychological performance, and mood observed in young cannabis users with less than a month of abstinence.
Collapse
|
48
|
Increased marijuana use and gender predict poorer cognitive functioning in adolescents and emerging adults. J Int Neuropsychol Soc 2012; 18:678-88. [PMID: 22613255 PMCID: PMC3956124 DOI: 10.1017/s1355617712000276] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
This study sought to characterize neuropsychological functioning in MJ-using adolescents and emerging adults (ages 18-26) and to investigate whether gender moderated these effects. Data were collected from 59 teens and emerging adults including MJ users (n = 23, 56% female) and controls (n = 35, 50% female) aged 18-26 (M = 21 years). Exclusionary criteria included independent Axis I disorders (besides SUD), and medical and neurologic disorders. After controlling for reading ability, gender, subclinical depressive symptoms, body mass index, and alcohol and other drug use, increased MJ use was associated with slower psychomotor speed/sequencing ability (p < .01), less efficient sustained attention (p < .05), and increased cognitive inhibition errors (p < .03). Gender significantly moderated the effects of MJ on psychomotor speed/sequencing ability (p < .003) in that males had a more robust negative relationship. The current study demonstrated that MJ exposure was associated with poorer psychomotor speed, sustained attention and cognitive inhibition in a dose-dependent manner in young adults, findings that are consistent with other samples of adolescent MJ users. Male MJ users demonstrated greater cognitive slowing than females. Future studies need to examine the neural substrates underlying with these cognitive deficits and whether cognitive rehabilitation or exercise interventions may serve as a viable treatments of cognitive deficits in emerging adult MJ users.
Collapse
|
49
|
Cortico-cerebellar abnormalities in adolescents with heavy marijuana use. Psychiatry Res 2012; 202:224-32. [PMID: 22835865 PMCID: PMC3423594 DOI: 10.1016/j.pscychresns.2011.11.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Revised: 11/09/2011] [Accepted: 11/10/2011] [Indexed: 12/30/2022]
Abstract
There are currently no studies that have evaluated the motor network, including the cerebellum, in adolescent marijuana (MJ) smokers. The current study aimed to evaluate whether there were activation differences in Brodmann's area 4 (BA4), Brodmann's area 6 (BA6), cingulate (CG) and cerebellum between MJ-using adolescents and healthy controls (HC) on a functional magnetic resonance imaging (fMRI) bilateral finger-tapping task. Twenty-four adolescents (aged 18.2 ± 0.7 years) with heavy MJ use and 24 HC (18.0 ± 1.9) had MRI scans on a 3T Siemens scanner, including a standard bilateral fMRI finger-tapping sequence. Imaging data were analyzed using SPM5 in Matlab. As regions of interest, BA4, BA6, cingulate (CG) and cerebellum were selected, and significant clusters of activity were thresholded at p<0.05, corrected. Healthy controls had significantly greater activation than MJ users for the CG and cerebellum. In addition, activation of the cerebellum and CG correlated with lifetime MJ smokes. This is one of the first studies to evaluate cortico-cerebellar circuits in adolescents with heavy MJ use. The study, which used a bilateral finger-tapping fMRI task, provides evidence for both CG and cerebellar dysfunction in MJ abuse and indicates that lifetime MJ use may impact the developing brain.
Collapse
|
50
|
Zalesky A, Solowij N, Yücel M, Lubman DI, Takagi M, Harding IH, Lorenzetti V, Wang R, Searle K, Pantelis C, Seal M. Effect of long-term cannabis use on axonal fibre connectivity. Brain 2012; 135:2245-55. [PMID: 22669080 DOI: 10.1093/brain/aws136] [Citation(s) in RCA: 209] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cannabis use typically begins during adolescence and early adulthood, a period when cannabinoid receptors are still abundant in white matter pathways across the brain. However, few studies to date have explored the impact of regular cannabis use on white matter structure, with no previous studies examining its impact on axonal connectivity. The aim of this study was to examine axonal fibre pathways across the brain for evidence of microstructural alterations associated with long-term cannabis use and to test whether age of regular cannabis use is associated with severity of any microstructural change. To this end, diffusion-weighted magnetic resonance imaging and brain connectivity mapping techniques were performed in 59 cannabis users with longstanding histories of heavy use and 33 matched controls. Axonal connectivity was found to be impaired in the right fimbria of the hippocampus (fornix), splenium of the corpus callosum and commissural fibres. Radial and axial diffusivity in these pathways were associated with the age at which regular cannabis use commenced. Our findings indicate long-term cannabis use is hazardous to the white matter of the developing brain. Delaying the age at which regular use begins may minimize the severity of microstructural impairment.
Collapse
Affiliation(s)
- Andrew Zalesky
- Melbourne Neuropsychiatry Centre, The University of Melbourne and Melbourne Health, Melbourne, 3053, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|