1
|
Kang N, Sargsyan S, Chough I, Petrick L, Liao J, Chen W, Pavlovic N, Lurmann FW, Martinez MP, McConnell R, Xiang AH, Chen Z. Dysregulated metabolic pathways associated with air pollution exposure and the risk of autism: Evidence from epidemiological studies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124729. [PMID: 39147228 DOI: 10.1016/j.envpol.2024.124729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 07/24/2024] [Accepted: 08/13/2024] [Indexed: 08/17/2024]
Abstract
Autism spectrum disorder (ASD) is a developmental disorder with symptoms that range from social and communication impairments to restricted interests and repetitive behavior and is the 4th most disabling condition for children aged 5-14. Risk factors of ASD are not fully understood. Environmental risk factors are believed to play a significant role in the ASD epidemic. Research focusing on air pollution exposure as an early-life risk factor of autism is growing, with numerous studies finding associations of traffic and industrial emissions with an increased risk of ASD. One of the possible mechanisms linking autism and air pollution exposure is metabolic dysfunction. However, there were no consensus about the key metabolic pathways and corresponding metabolite signatures in mothers and children that are altered by air pollution exposure and cause the ASD. Therefore, we performed a review of published papers examining the metabolomic signatures and metabolic pathways that are associated with either air pollution exposure or ASD risk in human studies. In conclusion, we found that dysregulated lipid, fatty acid, amino acid, neurotransmitter, and microbiome metabolisms are associated with both short-term and long-term air pollution exposure and the risk of ASD. These dysregulated metabolisms may provide insights into ASD etiology related to air pollution exposure, particularly during the perinatal period in which neurodevelopment is highly susceptible to damage from oxidative stress and inflammation.
Collapse
Affiliation(s)
- Ni Kang
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Suzan Sargsyan
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Ino Chough
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Lauren Petrick
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Jiawen Liao
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Wu Chen
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | | | | | - Mayra P Martinez
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA, USA
| | - Rob McConnell
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Anny H Xiang
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA, USA
| | - Zhanghua Chen
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
2
|
Persico AM, Asta L, Chehbani F, Mirabelli S, Parlatini V, Cortese S, Arango C, Vitiello B. The pediatric psychopharmacology of autism spectrum disorder: A systematic review - Part II: The future. Prog Neuropsychopharmacol Biol Psychiatry 2024; 136:111176. [PMID: 39490514 DOI: 10.1016/j.pnpbp.2024.111176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/31/2024] [Accepted: 10/19/2024] [Indexed: 11/05/2024]
Abstract
Part I of this systematic review summarized the state-of-the-art of pediatric psychopharmacology for Autism Spectrum Disorder (ASD), a severe and lifelong neurodevelopmental disorder. The purpose of this Part II follow-up article is to provide a systematic overview of the experimental psychopharmacology of ASD. To this aim, we have first identified in the Clinicaltrials.gov website all the 157 pharmacological and nutraceutical compounds which have been experimentally tested in children and adolescents with ASD using the randomized placebo-controlled trial (RCT) design. After excluding 24 drugs already presented in Part I, a systematic review spanning each of the remaining 133 compounds was registered on Prospero (ID: CRD42023476555), performed on PubMed (August 8, 2024), and completed with EBSCO, PsycINFO (psychology and psychiatry literature) and the Cochrane Database of Systematic reviews, yielding a total of 115 published RCTs, including 57 trials for 23 pharmacological compounds and 48 trials for 17 nutraceuticals/supplements. Melatonin and oxytocin were not included, because recent systematic reviews have been already published for both these compounds. RCTs of drugs with the strongest foundation in preclinical research, namely arbaclofen, balovaptan and bumetanide have all failed to reach their primary end-points, although efforts to target specific patient subgroups do warrant further investigation. For the vast majority of compounds, including cannabidiol, vasopressin, and probiotics, insufficient evidence of efficacy and safety is available. However, a small subset of compounds, including N-acetylcysteine, folinic acid, l-carnitine, coenzyme Q10, sulforaphane, and metformin may already be considered, with due caution, for clinical use, because there is promising evidence of efficacy and a high safety profile. For several other compounds, such as secretin, efficacy can be confidently excluded, and/or the data discourage undertaking new RCTs. Part I and Part II summarize "drug-based" information, which will be ultimately merged to provide clinicians with a "symptom-based" consensus statement in a conclusive Part III, with the overarching aim to foster evidence-based clinical practices and to organize new strategies for future clinical trials.
Collapse
Affiliation(s)
- Antonio M Persico
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; Child & Adolescent Neuropsychiatry Program, Modena University Hospital, Modena, Italy.
| | - Lisa Asta
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Fethia Chehbani
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Silvestro Mirabelli
- Interdepartmental Program "Autism 0-90", "G. Martino" University Hospital, Messina, Italy
| | - Valeria Parlatini
- Center for Innovation in Mental Health, School of Psychology, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK; Clinical and Experimental Sciences (CNS and Psychiatry), Faculty of Medicine, University of Southampton, Southampton, UK; Solent NHS Trust, Southampton, UK
| | - Samuele Cortese
- Center for Innovation in Mental Health, School of Psychology, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK; Clinical and Experimental Sciences (CNS and Psychiatry), Faculty of Medicine, University of Southampton, Southampton, UK; Solent NHS Trust, Southampton, UK; Hassenfeld Children's Hospital at NYU Langone, New York University Child Study Center, New York City, NY, USA; DiMePRe-J-Department of Precision and Regenerative Medicine-Jonic Area, University "Aldo Moro", Bari, Italy
| | - Celso Arango
- Child and Adolescent Psychiatry Department, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, School of Medicine Universidad Complutense, IiSGM, CIBERSAM, Madrid, Spain
| | - Benedetto Vitiello
- Department of Public Health and Pediatric Sciences, Section of Child and Adolescent Neuropsychiatry, University of Turin, Turin, Italy
| |
Collapse
|
3
|
Campos JMB, de Aguiar da Costa M, de Rezende VL, Costa RRN, Ebs MFP, Behenck JP, de Roch Casagrande L, Venturini LM, Silveira PCL, Réus GZ, Gonçalves CL. Animal Model of Autism Induced by Valproic Acid Combined with Maternal Deprivation: Sex-Specific Effects on Inflammation and Oxidative Stress. Mol Neurobiol 2024:10.1007/s12035-024-04491-z. [PMID: 39316355 DOI: 10.1007/s12035-024-04491-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 09/08/2024] [Indexed: 09/25/2024]
Abstract
Autism spectrum disorder (ASD) etiology probably involves a complex interplay of both genetic and environmental risk factors, which includes pre- and perinatal exposure to environmental stressors. Thus, this study evaluated the effects of prenatal exposure to valproic acid (VPA) combined with maternal deprivation (MD) on behavior, oxidative stress parameters, and inflammatory state at a central and systemic level in male and female rats. Pregnant Wistar rats were exposed to VPA during gestation, and the offspring were submitted to MD. Offspring were tested for locomotor and social behavior; rats were euthanized, where the cerebellum, posterior cortex, prefrontal cortex, and peripheric blood were collected for oxidative stress and inflammatory analysis. It was observed that young rats (25-30 days old) exposed only to VPA presented a lower social approach when compared to the control group. VPA + MD rats did not present the same deficit. Female rats exposed to VPA + MD presented oxidative stress in all brain areas analyzed. Male rats in the VPA and VPA + MD groups presented oxidative stress only in the cerebellum. Regarding inflammatory parameters, male rats exposed only to MD exhibited an increase in pro-inflammatory cytokines in the blood and in the cortex total. The same was observed in females exposed only to VPA. Animals exposed to VPA + MD showed no alterations in the cytokines analyzed. In summary, gestational (VPA) and perinatal (MD) insults can affect molecular mechanisms such as oxidative stress and inflammation differently depending on the sex and brain area analyzed. Combined exposition to VPA and MD triggers oxidative stress especially in female brains without evoking an inflammatory response.
Collapse
Affiliation(s)
- José Marcelo Botancin Campos
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), 1105, Criciúma, SC, 88806-000, Brazil
| | - Maiara de Aguiar da Costa
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), 1105, Criciúma, SC, 88806-000, Brazil
| | - Victória Linden de Rezende
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), 1105, Criciúma, SC, 88806-000, Brazil
| | - Rosiane Ronchi Nascimento Costa
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), 1105, Criciúma, SC, 88806-000, Brazil
| | - Maria Fernanda Pedro Ebs
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), 1105, Criciúma, SC, 88806-000, Brazil
| | - João Paulo Behenck
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Laura de Roch Casagrande
- Laboratory of Experimental Physiopathology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Ligia Milanez Venturini
- Laboratory of Experimental Physiopathology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Paulo Cesar Lock Silveira
- Laboratory of Experimental Physiopathology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Gislaine Zilli Réus
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Cinara Ludvig Gonçalves
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), 1105, Criciúma, SC, 88806-000, Brazil.
| |
Collapse
|
4
|
Le Belle JE, Condro M, Cepeda C, Oikonomou KD, Tessema K, Dudley L, Schoenfield J, Kawaguchi R, Geschwind D, Silva AJ, Zhang Z, Shokat K, Harris NG, Kornblum HI. Acute rapamycin treatment reveals novel mechanisms of behavioral, physiological, and functional dysfunction in a maternal inflammation mouse model of autism and sensory over-responsivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.08.602602. [PMID: 39026891 PMCID: PMC11257517 DOI: 10.1101/2024.07.08.602602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Maternal inflammatory response (MIR) during early gestation in mice induces a cascade of physiological and behavioral changes that have been associated with autism spectrum disorder (ASD). In a prior study and the current one, we find that mild MIR results in chronic systemic and neuro-inflammation, mTOR pathway activation, mild brain overgrowth followed by regionally specific volumetric changes, sensory processing dysregulation, and social and repetitive behavior abnormalities. Prior studies of rapamycin treatment in autism models have focused on chronic treatments that might be expected to alter or prevent physical brain changes. Here, we have focused on the acute effects of rapamycin to uncover novel mechanisms of dysfunction and related to mTOR pathway signaling. We find that within 2 hours, rapamycin treatment could rapidly rescue neuronal hyper-excitability, seizure susceptibility, functional network connectivity and brain community structure, and repetitive behaviors and sensory over-responsivity in adult offspring with persistent brain overgrowth. These CNS-mediated effects are also associated with alteration of the expression of several ASD-,ion channel-, and epilepsy-associated genes, in the same time frame. Our findings suggest that mTOR dysregulation in MIR offspring is a key contributor to various levels of brain dysfunction, including neuronal excitability, altered gene expression in multiple cell types, sensory functional network connectivity, and modulation of information flow. However, we demonstrate that the adult MIR brain is also amenable to rapid normalization of these functional changes which results in the rescue of both core and comorbid ASD behaviors in adult animals without requiring long-term physical alterations to the brain. Thus, restoring excitatory/inhibitory imbalance and sensory functional network modularity may be important targets for therapeutically addressing both primary sensory and social behavior phenotypes, and compensatory repetitive behavior phenotypes.
Collapse
|
5
|
Mostafavi Abdolmaleky H, Alam R, Nohesara S, Deth RC, Zhou JR. iPSC-Derived Astrocytes and Neurons Replicate Brain Gene Expression, Epigenetic, Cell Morphology and Connectivity Alterations Found in Autism. Cells 2024; 13:1095. [PMID: 38994948 PMCID: PMC11240613 DOI: 10.3390/cells13131095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/04/2024] [Accepted: 06/19/2024] [Indexed: 07/13/2024] Open
Abstract
Excessive inflammatory reactions and oxidative stress are well-recognized molecular findings in autism and these processes can affect or be affected by the epigenetic landscape. Nonetheless, adequate therapeutics are unavailable, as patient-specific brain molecular markers for individualized therapies remain challenging. METHODS We used iPSC-derived neurons and astrocytes of patients with autism vs. controls (5/group) to examine whether they replicate the postmortem brain expression/epigenetic alterations of autism. Additionally, DNA methylation of 10 postmortem brain samples (5/group) was analyzed for genes affected in PSC-derived cells. RESULTS We found hyperexpression of TGFB1, TGFB2, IL6 and IFI16 and decreased expression of HAP1, SIRT1, NURR1, RELN, GPX1, EN2, SLC1A2 and SLC1A3 in the astrocytes of patients with autism, along with DNA hypomethylation of TGFB2, IL6, TNFA and EN2 gene promoters and a decrease in HAP1 promoter 5-hydroxymethylation in the astrocytes of patients with autism. In neurons, HAP1 and IL6 expression trended alike. While HAP1 promoter was hypermethylated in neurons, IFI16 and SLC1A3 promoters were hypomethylated and TGFB2 exhibited increased promoter 5-hydroxymethlation. We also found a reduction in neuronal arborization, spine size, growth rate, and migration, but increased astrocyte size and a reduced growth rate in autism. In postmortem brain samples, we found DNA hypomethylation of TGFB2 and IFI16 promoter regions, but DNA hypermethylation of HAP1 and SLC1A2 promoters in autism. CONCLUSION Autism-associated expression/epigenetic alterations in iPSC-derived cells replicated those reported in the literature, making them appropriate surrogates to study disease pathogenesis or patient-specific therapeutics.
Collapse
Affiliation(s)
- Hamid Mostafavi Abdolmaleky
- Nutrition/Metabolism Laboratory, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Reza Alam
- Nutrition/Metabolism Laboratory, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Shabnam Nohesara
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Richard C Deth
- Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Jin-Rong Zhou
- Nutrition/Metabolism Laboratory, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
6
|
Hirai H, Tanaka T, Matsumura K, Tsuchida A, Hamazaki K, Adachi Y, Inadera H. Relationship between maternal consumption of fermented foods and the development of the offspring at the age of 3 years: The Japan Environment and Children's Study. PLoS One 2024; 19:e0305535. [PMID: 38905296 PMCID: PMC11192395 DOI: 10.1371/journal.pone.0305535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 06/01/2024] [Indexed: 06/23/2024] Open
Abstract
BACKGROUND It is well known that maternal diet affects the development of offspring. Herein, the relationship between maternal intake of fermented foods during pregnancy and offspring development was investigated. METHODS The diet of 103,060 pregnant women at >4 months of gestation who were enrolled in the Japan Environment and Children's Study was analyzed. Their intake levels of fermented soybeans (miso and natto), yogurt, and cheese were investigated. The developmental status of the offspring at 3 years of age was assessed using the Ages and Stages Questionnaires (ASQ-3). Multivariable logistic regression analysis was performed to determine the risk of maternal intake levels of the fermented foods associated with subsequent developmental delay in the offspring. RESULTS Intake of cheese was associated with a reduced risk of child developmental delay in all intake level groups from the second quartile onward. Intakes of miso and yogurt were associated with a reduced risk of developmental delay in communication skills in the fourth quartile. There was no association between intake of natto and developmental delay. CONCLUSION Maternal consumption of fermented foods during pregnancy may reduce the risk of later developmental delay in offspring. It is therefore important to review the mother's diet for fermented foods during pregnancy. However, further studies are warranted to evaluate the factors influencing the association between diet and offspring development.
Collapse
Affiliation(s)
- Hiroko Hirai
- Faculty of Medicine, Department of Pediatrics, University of Toyama, Toyama, Japan
| | - Tomomi Tanaka
- Faculty of Medicine, Department of Pediatrics, University of Toyama, Toyama, Japan
- Toyama Regional Center for JECS, University of Toyama, Toyama, Japan
| | - Kenta Matsumura
- Toyama Regional Center for JECS, University of Toyama, Toyama, Japan
| | - Akiko Tsuchida
- Toyama Regional Center for JECS, University of Toyama, Toyama, Japan
- Faculty of Medicine, Department of Public Health, University of Toyama, Toyama, Japan
| | - Kei Hamazaki
- Toyama Regional Center for JECS, University of Toyama, Toyama, Japan
- Faculty of Medicine, Department of Public Health, University of Toyama, Toyama, Japan
| | - Yuichi Adachi
- Pediatric Allergy Center, Toyama Red Cross Hospital, Toyama, Japan
| | - Hidekuni Inadera
- Toyama Regional Center for JECS, University of Toyama, Toyama, Japan
- Faculty of Medicine, Department of Public Health, University of Toyama, Toyama, Japan
| | | |
Collapse
|
7
|
Perez-Pouchoulen M, Holley AS, Reinl EL, VanRyzin JW, Mehrabani A, Dionisos C, Mirza M, McCarthy MM. Viral-mediated inflammation by Poly I:C induces the chemokine CCL5 in NK cells and its receptors CCR1 and CCR5 in microglia in the neonatal rat cerebellum. NEUROIMMUNE PHARMACOLOGY AND THERAPEUTICS 2024; 3:155-168. [PMID: 39175524 PMCID: PMC11338497 DOI: 10.1515/nipt-2024-0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/22/2024] [Indexed: 08/24/2024]
Abstract
Objectives To study the effect of viral inflammation induced by Polyinosinic:polycytidylic acid (PIC) on the cerebellum during a critical period of development in rats. Methods Neonatal rat pups were treated with PIC on postnatal days (PN) 8 and 10 after which we quantified RNA using Nanostring, qRT-PCR and RNAscope and analyzed immune cells through flow cytometry and immunohistochemistry on PN11. Using the same paradigm, we also analyzed play juvenile behavior, anxiety-like behavior, motor balance using the balance beam and the rotarod assays as well as fine motor behavior using the sunflower seed opening test. Results We determined that male and female pups treated with PIC reacted with a significant increase in CCL5, a chemotactic cytokine that attracts T-cells, eosinophils and basophils to the site of inflammation, at PN11. PIC treatment also increased the expression of two receptors for CCL5, CCR1 and CCR5 in the cerebellar vermis in both males and females at PN11. In-situ hybridization (RNAscope®) for specific transcripts revealed that microglia express both CCL5 receptors under inflammatory and non-inflammatory conditions in both males and females. PIC treatment also increased the total number of CCL5+ cells in the developing cerebellum which were determined to be both natural killer cells and T-cells. There were modest but significant impacts of PIC treatment on large and fine motor skills and juvenile play behavior. Conclusions Our findings suggest an important role for CCL5 and other immune cells in mediating inflammation in the developing cerebellum that potentially impact the maturation of cerebellar neurons during a critical period of development.
Collapse
Affiliation(s)
| | - Amanda S. Holley
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Erin L. Reinl
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jonathan W. VanRyzin
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Amir Mehrabani
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Christie Dionisos
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Muhammed Mirza
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Margaret M. McCarthy
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
- UM-MIND, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
8
|
Wang Y, Ullah H, Deng T, Ren X, Zhao Z, Xin Y, Qiu J. Social isolation induces intestinal barrier disorder and imbalances gut microbiota in mice. Neurosci Lett 2024; 826:137714. [PMID: 38479554 DOI: 10.1016/j.neulet.2024.137714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 03/01/2024] [Accepted: 03/06/2024] [Indexed: 03/17/2024]
Abstract
Social isolation, a known stressor, can have detrimental effects on both physical and mental health. Recent scientific attention has been drawn to the gut-brain axis, a bidirectional communication system between the central nervous system and gut microbiota, suggesting that gut microbes may influence brain function. This study aimed to explore the impact of social isolation on the intestinal barrier and gut microbiota. 40 male BALB/c mice were either individually housed or kept in groups for 8 and 15 weeks. Socially isolated mice exhibited increased anxiety-like behavior, with significant differences between the 8-week and 15-week isolation groups (P < 0.05). After 8 weeks of isolation, there was a reduction in tight junction protein expression in the intestinal mechanical barrier. Furthermore, after 15 weeks of isolation, both tight junction protein and mucin expression, key components of the intestinal chemical barrier, decreased. This was accompanied by a substantial increase in inflammatory cytokines (IL-6 mRNA, IL-10, and TNF-α) in colon tissue in the 15-week isolated group (P < 0.05). Additionally, Illumina MiSequencing revealed significant alterations in the gut microbiota of socially isolated mice, including reduced Firmicutes and Bacteroides compared to the control group. Lactobacillus levels also decreased in the socially isolated mice.
Collapse
Affiliation(s)
- Yue Wang
- Department of Biotechnology, Dalian Medical University, Dalian, China
| | - Hidayat Ullah
- Department of Biotechnology, Dalian Medical University, Dalian, China
| | - Ting Deng
- Department of Biotechnology, Dalian Medical University, Dalian, China
| | - Xinxiu Ren
- Department of Biotechnology, Dalian Medical University, Dalian, China
| | - Zinan Zhao
- Department of Biotechnology, Dalian Medical University, Dalian, China
| | - Yi Xin
- Department of Biotechnology, Dalian Medical University, Dalian, China
| | - Juanjuan Qiu
- Central Lab, The First Affiliated Hospital of Dalian Medical University, Dalian, China.
| |
Collapse
|
9
|
Li W, Liu C, Chen S. Associations between genetically determined dietary factors and risk of autism spectrum disorder: a Mendelian randomization study. Front Nutr 2024; 11:1210855. [PMID: 38496795 PMCID: PMC10940521 DOI: 10.3389/fnut.2024.1210855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 02/19/2024] [Indexed: 03/19/2024] Open
Abstract
Background Existing studies confirm the importance of dietary factors in developing autism spectrum disorder (ASD) and disease progression. Still, these studies are primarily observational, and their causal relationship is unknown. Moreover, due to the extensive diversity of food types, the existing research remains somewhat limited in comprehensiveness. The inconsistency of the results of some studies is very disruptive to the clinic. This study infers a causal relationship between dietary factors on the risk of developing ASD from a genetic perspective, which may lead to significant low-cost benefits for children with ASD once the specificity of dietary factors interfering with ASD is confirmed. Methods We performed a two-sample Mendelian randomization (MR) analysis by selecting single nucleotide polymorphisms (SNPs) for 18 common dietary factors from the genome-wide association study (GWAS) database as instrumental variables (IVs) and obtaining pooled data for ASD (Sample size = 46,351) from the iPSYCH-PGC institution. Inverse variance weighted (IVW) was used as the primary analytical method to estimate causality, Cochran's Q test to assess heterogeneity, the Egger-intercept test to test for pleiotropy and sensitivity analysis to verify the reliability of causal association results. Results The MR analysis identified four dietary factors with potential causal relationships: poultry intake (fixed-effects IVW: OR = 0.245, 95% CI: 0.084-0.718, P < 0.05), beef intake (fixed-effects IVW: OR = 0.380, 95% CI: 0.165-0.874, P < 0.05), cheese intake (random-effects IVW: OR = 1.526, 95% CI: 1.003-2.321, P < 0.05), and dried fruit intake (fixed-effects IVW: OR = 2.167, 95% CI: 1.342-3.501, P < 0.05). There was no causal relationship between the remaining 14 dietary factors and ASD (P > 0.05). Conclusion This study revealed potential causal relationships between poultry intake, beef intake, cheese intake, dried fruit intake, and ASD. Poultry and beef intake were associated with a reduced risk of ASD, while cheese and dried fruit intake were associated with an increased risk. Other dietary factors included in this study were not associated with ASD.
Collapse
Affiliation(s)
- Wenwen Li
- Second School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Cuncheng Liu
- Department of Neonatology, Weifang Traditional Chinese Hospital, Weifang, China
| | - Shouqiang Chen
- Second School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
10
|
Kovacheva E, Gevezova M, Maes M, Sarafian V. Mast Cells in Autism Spectrum Disorder-The Enigma to Be Solved? Int J Mol Sci 2024; 25:2651. [PMID: 38473898 DOI: 10.3390/ijms25052651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Autism Spectrum Disorder (ASD) is a disturbance of neurodevelopment with a complicated pathogenesis and unidentified etiology. Many children with ASD have a history of "allergic symptoms", often in the absence of mast cell (MC)-positive tests. Activation of MCs by various stimuli may release molecules related to inflammation and neurotoxicity, contributing to the development of ASD. The aim of the present paper is to enrich the current knowledge on the relationship between MCs and ASD by discussing key molecules and immune pathways associated with MCs in the pathogenesis of autism. Cytokines, essential marker molecules for MC degranulation and therapeutic targets, are also highlighted. Understanding the relationship between ASD and the activation of MCs, as well as the involved molecules and interactions, are the main points contributing to solving the enigma. Key molecules, associated with MCs, may provide new insights to the discovery of drug targets for modeling inflammation in ASD.
Collapse
Affiliation(s)
- Eleonora Kovacheva
- Department of Medical Biology, Medical University-Plovdiv, 4000 Plovdiv, Bulgaria
- Research Institute, Medical University-Plovdiv, 4000 Plovdiv, Bulgaria
| | - Maria Gevezova
- Department of Medical Biology, Medical University-Plovdiv, 4000 Plovdiv, Bulgaria
- Research Institute, Medical University-Plovdiv, 4000 Plovdiv, Bulgaria
| | - Michael Maes
- Research Institute, Medical University-Plovdiv, 4000 Plovdiv, Bulgaria
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
- Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu 610072, China
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Cognitive Fitness and Technology Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Psychiatry, Medical University-Plovdiv, 4000 Plovdiv, Bulgaria
- Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Victoria Sarafian
- Department of Medical Biology, Medical University-Plovdiv, 4000 Plovdiv, Bulgaria
- Research Institute, Medical University-Plovdiv, 4000 Plovdiv, Bulgaria
| |
Collapse
|
11
|
Gonçalves CL, Doifode T, Rezende VL, Costa MA, Rhoads JM, Soutullo CA. The many faces of microbiota-gut-brain axis in autism spectrum disorder. Life Sci 2024; 337:122357. [PMID: 38123016 DOI: 10.1016/j.lfs.2023.122357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/02/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023]
Abstract
The gut-brain axis is gaining more attention in neurodevelopmental disorders, especially autism spectrum disorder (ASD). Many factors can influence microbiota in early life, including host genetics and perinatal events (infections, mode of birth/delivery, medications, nutritional supply, and environmental stressors). The gut microbiome can influence blood-brain barrier (BBB) permeability, drug bioavailability, and social behaviors. Developing microbiota-based interventions such as probiotics, gastrointestinal (GI) microbiota transplantation, or metabolite supplementation may offer an exciting approach to treating ASD. This review highlights that RNA sequencing, metabolomics, and transcriptomics data are needed to understand how microbial modulators can influence ASD pathophysiology. Due to the substantial clinical heterogeneity of ASD, medical caretakers may be unlikely to develop a broad and effective general gut microbiota modulator. However, dietary modulation followed by administration of microbiota modulators is a promising option for treating ASD-related behavioral and gastrointestinal symptoms. Future work should focus on the accuracy of biomarker tests and developing specific psychobiotic agents tailored towards the gut microbiota seen in ASD patients, which may include developing individualized treatment options.
Collapse
Affiliation(s)
- Cinara L Gonçalves
- Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil.
| | - Tejaswini Doifode
- Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health (UTHealth), Houston, TX, USA
| | - Victoria L Rezende
- Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Maiara A Costa
- Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - J Marc Rhoads
- Department of Pediatrics, Division of Pediatric Gastroenterology, McGovern Medical School, The University of Texas Health (UTHealth), Houston, TX, USA
| | - Cesar A Soutullo
- Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health (UTHealth), Houston, TX, USA
| |
Collapse
|
12
|
Beach SR, Luccarelli J, Praschan N, Fusunyan M, Fricchione GL. Molecular and immunological origins of catatonia. Schizophr Res 2024; 263:169-177. [PMID: 36966063 PMCID: PMC10517087 DOI: 10.1016/j.schres.2023.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 03/03/2023] [Accepted: 03/05/2023] [Indexed: 03/27/2023]
Abstract
Catatonia occurs secondary to both primary psychiatric and neuromedical etiologies. Emerging evidence suggests possible linkages between causes of catatonia and neuroinflammation. These include obvious infectious and inflammatory etiologies, common neuromedical illnesses such as delirium, and psychiatric entities such as depression and autism-spectrum disorders. Symptoms of sickness behavior, thought to be a downstream effect of the cytokine response, are common in many of these etiologies and overlap significantly with symptoms of catatonia. Furthermore, there are syndromes that overlap with catatonia that some would consider variants, including neuroleptic malignant syndrome (NMS) and akinetic mutism, which may also have neuroinflammatory underpinnings. Low serum iron, a common finding in NMS and malignant catatonia, may be caused by the acute phase response. Cellular hits involving either pathogen-associated molecular patterns (PAMP) danger signals or the damage-associated molecular patterns (DAMP) danger signals of severe psychosocial stress may set the stage for a common pathway immunoactivation state that could lower the threshold for a catatonic state in susceptible individuals. Immunoactivation leading to dysfunction in the anterior cingulate cortex (ACC)/mid-cingulate cortex (MCC)/medial prefrontal cortex (mPFC)/paralimbic cortico-striato-thalamo-cortical (CSTC) circuit, involved in motivation and movement, may be particularly important in generating the motor and behavioral symptoms of catatonia.
Collapse
Affiliation(s)
- Scott R Beach
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.
| | - James Luccarelli
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Nathan Praschan
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Mark Fusunyan
- Department of Psychiatry, Santa Clara Valley Medical Center, San Jose, CA, USA
| | - Gregory L Fricchione
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| |
Collapse
|
13
|
Vaishnavi S. Transcranial Magnetic Stimulation for Developmental Neuropsychiatric Disorders with Inflammation. Dev Neurosci 2023; 45:342-348. [PMID: 37944502 PMCID: PMC10664335 DOI: 10.1159/000535103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 11/07/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Transcranial magnetic stimulation (TMS) is a noninvasive brain stimulation technique that may potentially be helpful for neuropsychiatric symptoms of developmental disorders with inflammatory aspects. TMS utilizes a varying magnetic field to induce electrical changes in the brain. Repetitive use of TMS modulates plasticity at multiple levels, particularly at the synapse and network level. SUMMARY As inflammation can affect synaptic plasticity negatively, TMS may theoretically be a tool to address this inflammation-induced dysfunction. There are also data to suggest that TMS can directly downregulate inflammation. Neuropsychiatric consequences of multiple disorders with inflammatory aspects, particularly neurodevelopmental disorders like autism, Tourette syndrome, and obsessive-compulsive disorder (OCD), maybe treated effectively with TMS. Treatment of OCD, treatment-resistant major depression, and nicotine cessation (all in adults) are currently FDA-cleared indications, while migraine is cleared for ages 12 and above. KEY MESSAGES TMS will likely continue to grow in terms of indications as research continues to assess what brain networks are dysfunctional in various disorders and it becomes clearer how to modulate these networks. TMS may thus be best understood as a technology platform that can be utilized to modulate different brain networks affected in neuropsychiatric disorders. TMS is likely to become an increasingly important tool in targeting brain networks that could become dysfunctional in part due to inflammation in the developing brain and addressing consequent neuropsychiatric symptoms.
Collapse
Affiliation(s)
- Sandeep Vaishnavi
- Duke Institute for Brain Sciences, Duke University, Durham, NC, USA
- Center for Neuropsychiatry and Brain Stimulation, ARC Health, Cary, NC, USA
| |
Collapse
|
14
|
El-Ansary A, Al-Ayadhi L. Effects of Walnut and Pumpkin on Selective Neurophenotypes of Autism Spectrum Disorders: A Case Study. Nutrients 2023; 15:4564. [PMID: 37960217 PMCID: PMC10647375 DOI: 10.3390/nu15214564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Special diets or nutritional supplements are regularly given to treat children with autism spectrum disorder (ASD). The increased consumption of particular foods has been demonstrated in numerous trials to lessen autism-related symptoms and comorbidities. A case study on a boy with moderate autism who significantly improved after three years of following a healthy diet consisting of pumpkin and walnuts was examined in this review in connection to a few different neurophenotypes of ASD. We are able to suggest that a diet high in pumpkin and walnuts was useful in improving the clinical presentation of the ASD case evaluated by reducing oxidative stress, neuroinflammation, glutamate excitotoxicity, mitochondrial dysfunction, and altered gut microbiota, all of which are etiological variables. Using illustrated figures, a full description of the ways by which a diet high in pumpkin and nuts could assist the included case is offered.
Collapse
Affiliation(s)
- Afaf El-Ansary
- Autism Center, Lotus Holistic Alternative Medical Center, Abu Dhabi P.O. Box 110281, United Arab Emirates
- Autism Research and Treatment Center, P.O. Box 2925, Riyadh 11461, Saudi Arabia;
| | - Laila Al-Ayadhi
- Autism Research and Treatment Center, P.O. Box 2925, Riyadh 11461, Saudi Arabia;
- Department of Physiology, Faculty of Medicine, King Saud University, P.O. Box 2925, Riyadh 11461, Saudi Arabia
| |
Collapse
|
15
|
Wang Q, Yang Q, Liu X. The microbiota-gut-brain axis and neurodevelopmental disorders. Protein Cell 2023; 14:762-775. [PMID: 37166201 PMCID: PMC10599644 DOI: 10.1093/procel/pwad026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 04/27/2023] [Indexed: 05/12/2023] Open
Abstract
The gut microbiota has been found to interact with the brain through the microbiota-gut-brain axis, regulating various physiological processes. In recent years, the impacts of the gut microbiota on neurodevelopment through this axis have been increasingly appreciated. The gut microbiota is commonly considered to regulate neurodevelopment through three pathways, the immune pathway, the neuronal pathway, and the endocrine/systemic pathway, with overlaps and crosstalks in between. Accumulating studies have identified the role of the microbiota-gut-brain axis in neurodevelopmental disorders including autism spectrum disorder, attention deficit hyperactivity disorder, and Rett Syndrome. Numerous researchers have examined the physiological and pathophysiological mechanisms influenced by the gut microbiota in neurodevelopmental disorders (NDDs). This review aims to provide a comprehensive overview of advancements in research pertaining to the microbiota-gut-brain axis in NDDs. Furthermore, we analyzed both the current state of research progress and discuss future perspectives in this field.
Collapse
Affiliation(s)
- Qinwen Wang
- State Key Laboratory of Reproductive Medicine and offspring Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Department of Pathogen Biology-Microbiology Division, Key Laboratory of Pathogen of Jiangsu Province Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing 211166, China
| | - Qianyue Yang
- State Key Laboratory of Reproductive Medicine and offspring Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Department of Pathogen Biology-Microbiology Division, Key Laboratory of Pathogen of Jiangsu Province Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing 211166, China
| | - Xingyin Liu
- State Key Laboratory of Reproductive Medicine and offspring Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Department of Pathogen Biology-Microbiology Division, Key Laboratory of Pathogen of Jiangsu Province Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing 211166, China
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing 211166, China
- Department of Microbiota Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
16
|
Frasch MG, Yoon BJ, Helbing DL, Snir G, Antonelli MC, Bauer R. Autism Spectrum Disorder: A Neuro-Immunometabolic Hypothesis of the Developmental Origins. BIOLOGY 2023; 12:914. [PMID: 37508346 PMCID: PMC10375982 DOI: 10.3390/biology12070914] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/15/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023]
Abstract
Fetal neuroinflammation and prenatal stress (PS) may contribute to lifelong neurological disabilities. Astrocytes and microglia, among the brain's non-neuronal "glia" cell populations, play a pivotal role in neurodevelopment and predisposition to and initiation of disease throughout lifespan. One of the most common neurodevelopmental disorders manifesting between 1-4 years of age is the autism spectrum disorder (ASD). A pathological glial-neuronal interplay is thought to increase the risk for clinical manifestation of ASD in at-risk children, but the mechanisms remain poorly understood, and integrative, multi-scale models are needed. We propose a model that integrates the data across the scales of physiological organization, from genome to phenotype, and provides a foundation to explain the disparate findings on the genomic level. We hypothesize that via gene-environment interactions, fetal neuroinflammation and PS may reprogram glial immunometabolic phenotypes that impact neurodevelopment and neurobehavior. Drawing on genomic data from the recently published series of ovine and rodent glial transcriptome analyses with fetuses exposed to neuroinflammation or PS, we conducted an analysis on the Simons Foundation Autism Research Initiative (SFARI) Gene database. We confirmed 21 gene hits. Using unsupervised statistical network analysis, we then identified six clusters of probable protein-protein interactions mapping onto the immunometabolic and stress response networks and epigenetic memory. These findings support our hypothesis. We discuss the implications for ASD etiology, early detection, and novel therapeutic approaches. We conclude with delineation of the next steps to verify our model on the individual gene level in an assumption-free manner. The proposed model is of interest for the multidisciplinary community of stakeholders engaged in ASD research, the development of novel pharmacological and non-pharmacological treatments, early prevention, and detection as well as for policy makers.
Collapse
Affiliation(s)
- Martin G Frasch
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA 98195, USA
- Center on Human Development and Disability, University of Washington, Seattle, WA 98195, USA
| | - Byung-Jun Yoon
- Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Dario Lucas Helbing
- Institute for Molecular Cell Biology, Jena University Hospital, Friedrich Schiller University, 07747 Jena, Germany
- Leibniz Institute on Aging, Fritz Lipmann Institute, 07745 Jena, Germany
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Friedrich Schiller University Jena, 07747 Jena, Germany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, 07743 Jena, Germany
| | - Gal Snir
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA 98195, USA
| | - Marta C Antonelli
- Instituto de Biología Celular y Neurociencia "Prof. Eduardo De Robertis", Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires 1121, Argentina
- Institute for Advanced Study, Technical University of Munich, Lichtenbergstrasse 2 a, 85748 Garching, Germany
| | - Reinhard Bauer
- Institute for Molecular Cell Biology, Jena University Hospital, Friedrich Schiller University, 07747 Jena, Germany
| |
Collapse
|
17
|
Usui N, Kobayashi H, Shimada S. Neuroinflammation and Oxidative Stress in the Pathogenesis of Autism Spectrum Disorder. Int J Mol Sci 2023; 24:ijms24065487. [PMID: 36982559 PMCID: PMC10049423 DOI: 10.3390/ijms24065487] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder (NDD) characterized by impairments in social communication, repetitive behaviors, restricted interests, and hyperesthesia/hypesthesia caused by genetic and/or environmental factors. In recent years, inflammation and oxidative stress have been implicated in the pathogenesis of ASD. In this review, we discuss the inflammation and oxidative stress in the pathophysiology of ASD, particularly focusing on maternal immune activation (MIA). MIA is a one of the common environmental risk factors for the onset of ASD during pregnancy. It induces an immune reaction in the pregnant mother’s body, resulting in further inflammation and oxidative stress in the placenta and fetal brain. These negative factors cause neurodevelopmental impairments in the developing fetal brain and subsequently cause behavioral symptoms in the offspring. In addition, we also discuss the effects of anti-inflammatory drugs and antioxidants in basic studies on animals and clinical studies of ASD. Our review provides the latest findings and new insights into the involvements of inflammation and oxidative stress in the pathogenesis of ASD.
Collapse
Affiliation(s)
- Noriyoshi Usui
- Department of Neuroscience and Cell Biology, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan
- United Graduate School of Child Development, Osaka University, Suita 565-0871, Japan
- Global Center for Medical Engineering and Informatics, Osaka University, Suita 565-0871, Japan
- Addiction Research Unit, Osaka Psychiatric Research Center, Osaka Psychiatric Medical Center, Osaka 541-8567, Japan
- Correspondence: ; Tel.: +81-668-79-3124
| | - Hikaru Kobayashi
- SANKEN (Institute of Scientific and Industrial Research), Osaka University, Suita 567-0047, Japan
| | - Shoichi Shimada
- Department of Neuroscience and Cell Biology, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan
- United Graduate School of Child Development, Osaka University, Suita 565-0871, Japan
- Global Center for Medical Engineering and Informatics, Osaka University, Suita 565-0871, Japan
- Addiction Research Unit, Osaka Psychiatric Research Center, Osaka Psychiatric Medical Center, Osaka 541-8567, Japan
| |
Collapse
|
18
|
Xiong Y, Chen J, Li Y. Microglia and astrocytes underlie neuroinflammation and synaptic susceptibility in autism spectrum disorder. Front Neurosci 2023; 17:1125428. [PMID: 37021129 PMCID: PMC10067592 DOI: 10.3389/fnins.2023.1125428] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/03/2023] [Indexed: 04/07/2023] Open
Abstract
Autism spectrum disorder (ASD) is a common neurodevelopmental disorder with onset in childhood. The mechanisms underlying ASD are unclear. In recent years, the role of microglia and astrocytes in ASD has received increasing attention. Microglia prune the synapses or respond to injury by sequestrating the injury site and expressing inflammatory cytokines. Astrocytes maintain homeostasis in the brain microenvironment through the uptake of ions and neurotransmitters. However, the molecular link between ASD and microglia and, or astrocytes remains unknown. Previous research has shown the significant role of microglia and astrocytes in ASD, with reports of increased numbers of reactive microglia and astrocytes in postmortem tissues and animal models of ASD. Therefore, an enhanced understanding of the roles of microglia and astrocytes in ASD is essential for developing effective therapies. This review aimed to summarize the functions of microglia and astrocytes and their contributions to ASD.
Collapse
|
19
|
The intestinal barrier in disorders of the central nervous system. Lancet Gastroenterol Hepatol 2023; 8:66-80. [PMID: 36334596 DOI: 10.1016/s2468-1253(22)00241-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/14/2022] [Accepted: 07/14/2022] [Indexed: 12/12/2022]
Abstract
The intestinal barrier, which primarily consists of a mucus layer, an epithelial barrier, and a gut vascular barrier, has a crucial role in health and disease by facilitating nutrient absorption and preventing the entry of pathogens. The intestinal barrier is in close contact with gut microbiota on its luminal side and with enteric neurons and glial cells on its tissue side. Mounting evidence now suggests that the intestinal barrier is compromised not only in digestive disorders, but also in disorders of the central nervous system (CNS), such as Parkinson's disease, autism spectrum disorder, depression, multiple sclerosis, and Alzheimer's disease. After providing an overview of the structure and functions of the intestinal barrier, we review existing preclinical and clinical studies supporting the notion that intestinal barrier dysfunction is present in neurological, neurodevelopmental, and psychiatric disorders. On the basis of this evidence, we discuss the mechanisms that possibly link gut barrier dysfunction and CNS disorders and the potential impact that evaluating enteric barriers in brain disorders could have on clinical practice, in terms of novel diagnostic and therapeutic strategies, in the near future.
Collapse
|
20
|
Fries J, Baudson TG, Kovacs K, Pietschnig J. Bright, but allergic and neurotic? A critical investigation of the "overexcitable genius" hypothesis. Front Psychol 2022; 13:1051910. [PMID: 36619122 PMCID: PMC9817003 DOI: 10.3389/fpsyg.2022.1051910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/01/2022] [Indexed: 12/25/2022] Open
Abstract
Introduction Higher intelligence has been associated with improved health and longevity. However, recent findings have claimed that exceptional intelligence may come at a cost. Individuals at the upmost end of the intelligence distribution are reported to be disproportionately afflicted by a set of stress-related physical and mental health conditions: so-called overexcitabilities. Few accounts have investigated this issue and no studies are available for non-US samples yet. Here, we aimed to replicate and extend previous work by examining hitherto unaddressed overexcitabilities in a European high-IQ sample. Methods We carried out a preregistered survey among members of MENSA, the world's largest high-IQ society. In total, 615 (307 male) members from Austria, Germany, Hungary, Switzerland, and the United Kingdom participated. Results and Discussion Compared to the general population, our sample exhibited considerably elevated prevalences in autism spectrum disorders (risk ratio/RR = 2.25), chronic fatigue syndrome (RR = 5.69), depression (RR = 4.38), generalized anxiety (RR = 3.82), and irritable bowel syndrome (RR = 3.76). Contrary to previous accounts, neither asthma, allergies, nor autoimmune diseases were elevated. We show that this subsample of intellectually gifted persons faces specific health challenges compared to the general population. The reasons for this remain speculative, as we find little evidence for previously proposed immunological explanations. However, it is possible that the effects are caused by sample selectiveness (i.e., membership in a high-IQ society) rather than high IQ itself.
Collapse
Affiliation(s)
- Jonathan Fries
- Department of Developmental and Educational Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria
| | - Tanja Gabriele Baudson
- Department of Human Sciences, Institute of Psychology, Vinzenz Pallotti University, Vallendar, Germany
- Institute for Globally Distributed Open Research and Education (IGDORE), Vallendar, Germany
- Department of Science and Research, Mensa in Germany, Cham, Germany
| | - Kristof Kovacs
- Institute of Psychology, ELTE Eotvos Lorand University Budapest, Budapest, Hungary
| | - Jakob Pietschnig
- Department of Developmental and Educational Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria
| |
Collapse
|
21
|
Li F, Ke H, Wang S, Mao W, Fu C, Chen X, Fu Q, Qin X, Huang Y, Li B, Li S, Xing J, Wang M, Deng W. Leaky Gut Plays a Critical Role in the Pathophysiology of Autism in Mice by Activating the Lipopolysaccharide-Mediated Toll-Like Receptor 4–Myeloid Differentiation Factor 88–Nuclear Factor Kappa B Signaling Pathway. Neurosci Bull 2022:10.1007/s12264-022-00993-9. [DOI: 10.1007/s12264-022-00993-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/09/2022] [Indexed: 12/23/2022] Open
Abstract
AbstractIncreased intestinal barrier permeability, leaky gut, has been reported in patients with autism. However, its contribution to the development of autism has not been determined. We selected dextran sulfate sodium (DSS) to disrupt and metformin to repair the intestinal barrier in BTBR T+tf/J autistic mice to test this hypothesis. DSS treatment resulted in a decreased affinity for social proximity; however, autistic behaviors in mice were improved after the administration of metformin. We found an increased affinity for social proximity/social memory and decreased repetitive and anxiety-related behaviors. The concentration of lipopolysaccharides in blood decreased after the administration of metformin. The expression levels of the key molecules in the toll-like receptor 4 (TLR4)–myeloid differentiation factor 88 (MyD88)–nuclear factor kappa B (NF-κB) pathway and their downstream inflammatory cytokines in the cerebral cortex were both repressed. Thus, “leaky gut” could be a trigger for the development of autism via activation of the lipopolysaccharide-mediated TLR4–MyD88–NF-κB pathway.
Collapse
|
22
|
Esnafoglu E, Subaşı B. Association of low 25-OH-vitamin D levels and peripheral inflammatory markers in patients with autism spectrum disorder: Vitamin D and inflammation in Autism. Psychiatry Res 2022; 316:114735. [PMID: 35878480 DOI: 10.1016/j.psychres.2022.114735] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 07/17/2022] [Accepted: 07/18/2022] [Indexed: 11/22/2022]
Abstract
Inflammatory mechanisms and Vitamin D are reported to play important roles in the pathophysiology of Autism Spectrum Disorders (ASD). There are ample evidences that vitamin D has an anti-inflammatory effect. In this study, we aimed, for the first time, to investigate the 25-OH-vitamin D with inflammation markers in ASD patients. The study included 154 patients with ASD and 98 healthy subjects. 25-OH-Vitamin D levels and simple peripheral inflammatory markers such as Neutrophil-Lymphocyte ratio (NLR), C-reactive protein (CRP) and, sedimentation were measured in all subjects. K-SADS-PL-DSM 5 were administered to all subjects to evaluate the psychiatric diagnosis. Childhood Autism Rating Scale was used to asses severity of autism. In the patient group, high CRP rate, leukocyte, neutrophil and NLR were significantly high compared to the healthy control group. 25-OH-Vitamin D levels were found to be statistically significantly lower in the ASD group. While a significant negative correlation was found between 25-OH-Vitamin D and CRP, NLR, neutrophil counts in ASD patients, a positive correlation was found between lymphocyte counts. Especially in male ASD patients, the relationship between 25-OH-Vitamin D and inflammation markers was more pronounced. Our findings support the association of vitamin D and inflammation in ASD.
Collapse
Affiliation(s)
- Erman Esnafoglu
- Depatment of Child and Adolescent Pychiatry, Faculty of Medicine, Ordu Universtiy, Egitim ve Arastirma Hastanesi, Cocuk Psikiyatrisi Poliklinigi, Bucak Mah, Ordu 52200, Turkey.
| | - Burak Subaşı
- Department of Psychiatry, Kayseri City Traning and Research Hospital, Kayseri, Turkey
| |
Collapse
|
23
|
Belokopytova II, Kondaurova EM, Kulikova EA, Ilchibaeva TV, Naumenko VS, Popova NK. Effects of the Cc2d1a/Freud-1 Knockdown in the Hippocampus of BTBR Mice on the Autistic-Like Behavior, Expression of Serotonin 5-HT 1A and D2 Dopamine Receptors, and CREB and NF-kB Intracellular Signaling. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:1206-1218. [PMID: 36273889 DOI: 10.1134/s0006297922100145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/29/2022] [Accepted: 08/24/2022] [Indexed: 06/16/2023]
Abstract
The mechanisms of autism are of extreme interest due to the high prevalence of this disorder in the human population. In this regard, special attention is given to the transcription factor Freud-1 (encoded by the Cc2d1a gene), which regulates numerous intracellular signaling pathways and acts as a silencer for 5-HT1A serotonin and D2 dopamine receptors. Disruption of the Freud-1 functions leads to the development of various psychopathologies. In this study, we found an increase in the expression of the Cc2d1a/Freud-1 gene in the hippocampus of BTBR mice (model of autistic-like behavior) in comparison with C57Bl/6J mice and examined how restoration of the Cc2d1a/Freud-1 expression in the hippocampus of BTBR mice affects their behavior, expression of 5-HT1A serotonin and D2 dopamine receptors, and CREB and NF-κB intracellular signaling pathways in these animals. Five weeks after administration of the adeno-associated viral vector (AAV) carrying the pAAV_H1-2_shRNA-Freud-1_Syn_EGFP plasmid encoding a small hairpin RNA (shRNA) that suppressed expression of the Cc2d1a/Freud-1 gene, we observed an elevation in the anxiety levels, as well as the increase in the escape latency and path length to the platform in the Morris water maze test, which was probably associated with a strengthening of the active stress avoidance strategy. However, the Cc2d1a/Freud-1 knockdown did not affect the spatial memory and phosphorylation of the CREB transcription factor, although such effect was found in C57Bl/6J mice in our previous study. These results suggest the impairments in the CREB-dependent effector pathway in BTBR mice, which may play an important role in the development of the autistic-like phenotype. The knockdown of Cc2d1a/Freud-1 in the hippocampus of BTBR mice did not affect expression of the 5-HT1A serotonin and D2 dopamine receptors and key NF-κB signaling genes (Nfkb1 and Rela). Our data suggest that the transcription factor Freud-1 plays a significant role in the pathogenesis of anxiety and active stress avoidance in autism.
Collapse
Affiliation(s)
- Irina I Belokopytova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Elena M Kondaurova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Elizabeth A Kulikova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Tatiana V Ilchibaeva
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Vladimir S Naumenko
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.
| | - Nina K Popova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| |
Collapse
|
24
|
Tan S, Pan N, Xu X, Li H, Lin L, Chen J, Jin C, Pan S, Jing J, Li X. The association between sugar-sweetened beverages and milk intake with emotional and behavioral problems in children with autism spectrum disorder. Front Nutr 2022; 9:927212. [PMID: 35990350 PMCID: PMC9386187 DOI: 10.3389/fnut.2022.927212] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 07/11/2022] [Indexed: 11/28/2022] Open
Abstract
Background Emotional and behavioral problems are common in children with autism spectrum disorder (ASD). It's still unclear whether children with ASD have abnormal sugar-sweetened beverages (SSBs) and milk intake and whether this abnormality will affect their emotions and behavior remains unclear. The current study aims to investigate the association of SSBs and milk intake with emotional and behavioral problems in children with autism spectrum disorder (ASD). Methods 107 children with ASD and 207 typical developing (TD) children aged 6-12 years old were recruited for the study. The frequency of SSBs and milk intake was assessed by a self-designed questionnaire. Emotional and behavioral problems were assessed by Strength and Difficulties Questionnaire (SDQ). Then, the linear regression model was produced to evaluate the association of SSBs and milk intake with emotional and behavioral problems. Results In the current study, there was no difference in frequency of SSBs intake between children with ASD and TD children (p > 0.05), and children with ASD consumed less milk compared to TD children (p < 0.05). After adjusting sex, age, maternal and paternal education, and monthly family income, we found a significant difference in each subscale score of SDQ in the two groups (p < 0.05). In children with ASD, higher frequent SSBs intake was positively associated with the scores of the emotional problem (p for trend <0.05), and lower frequent milk intake was inversely associated with the scores of prosocial behavior (p for trend <0.05). No interactive effects were found on SSBs and milk intake with emotional and behavioral problems (p for trend > 0.05). Conclusion In children with ASD, frequency of SSBs and milk intake was associated with the emotional problem and prosocial behavior, respectively. Children with ASD should increase the frequency of milk intake and decrease the frequency of SSBs intake.
Collapse
Affiliation(s)
- Si Tan
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Ning Pan
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Xiaoyu Xu
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Hailin Li
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Lizi Lin
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Jiajie Chen
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Chengkai Jin
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Shuolin Pan
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Jin Jing
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Xiuhong Li
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
25
|
Li P, Yang Q, Li Y, Han Y, Qu Z, Gao L, Cui T, Xiong W, Xi W, Zhang X. Association of urinary polycyclic aromatic hydrocarbon metabolites with symptoms among autistic children: A case–control study in Tianjin, China. Autism Res 2022; 15:1941-1960. [DOI: 10.1002/aur.2788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/25/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Peiying Li
- Department of Maternal, Child and Adolescent Health School of Public Health, Tianjin Medical University Tianjin China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health School of Public Health, Tianjin Medical University Tianjin China
| | - Qiaoyun Yang
- Tianjin Key Laboratory of Environment, Nutrition and Public Health School of Public Health, Tianjin Medical University Tianjin China
- Department of Occupational and Environmental Health School of Public Health, Tianjin Medical University Tianjin China
| | - Yao Li
- Department of Maternal, Child and Adolescent Health School of Public Health, Tianjin Medical University Tianjin China
| | - Yu Han
- Department of Maternal, Child and Adolescent Health School of Public Health, Tianjin Medical University Tianjin China
| | - Zhiyi Qu
- Department of Maternal, Child and Adolescent Health School of Public Health, Tianjin Medical University Tianjin China
| | - Lei Gao
- Department of Maternal, Child and Adolescent Health School of Public Health, Tianjin Medical University Tianjin China
| | - Tingkai Cui
- Department of Maternal, Child and Adolescent Health School of Public Health, Tianjin Medical University Tianjin China
| | - Wenjuan Xiong
- Department of Maternal, Child and Adolescent Health School of Public Health, Tianjin Medical University Tianjin China
| | - Wei Xi
- Department of Maternal, Child and Adolescent Health School of Public Health, Tianjin Medical University Tianjin China
| | - Xin Zhang
- Department of Maternal, Child and Adolescent Health School of Public Health, Tianjin Medical University Tianjin China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health School of Public Health, Tianjin Medical University Tianjin China
| |
Collapse
|
26
|
Farooq RK, Alamoudi W, Alhibshi A, Rehman S, Sharma AR, Abdulla FA. Varied Composition and Underlying Mechanisms of Gut Microbiome in Neuroinflammation. Microorganisms 2022; 10:705. [PMID: 35456757 PMCID: PMC9032006 DOI: 10.3390/microorganisms10040705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/21/2022] [Accepted: 03/17/2022] [Indexed: 11/16/2022] Open
Abstract
The human gut microbiome has been implicated in a host of bodily functions and their regulation, including brain development and cognition. Neuroinflammation is a relatively newer piece of the puzzle and is implicated in the pathogenesis of many neurological disorders. The microbiome of the gut may alter the inflammatory signaling inside the brain through the secretion of short-chain fatty acids, controlling the availability of amino acid tryptophan and altering vagal activation. Studies in Korea and elsewhere highlight a strong link between microbiome dynamics and neurocognitive states, including personality. For these reasons, re-establishing microbial flora of the gut looks critical for keeping neuroinflammation from putting the whole system aflame through probiotics and allotransplantation of the fecal microbiome. However, the numerosity of the microbiome remains a challenge. For this purpose, it is suggested that wherever possible, a fecal microbial auto-transplant may prove more effective. This review summarizes the current knowledge about the role of the microbiome in neuroinflammation and the various mechanism involved in this process. As an example, we have also discussed the autism spectrum disorder and the implication of neuroinflammation and microbiome in its pathogenesis.
Collapse
Affiliation(s)
- Rai Khalid Farooq
- Department of Neuroscience Research, Institute of Research and Medical Consultations, Imam Abdul Rahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (W.A.); (A.A.); (F.A.A.)
| | - Widyan Alamoudi
- Department of Neuroscience Research, Institute of Research and Medical Consultations, Imam Abdul Rahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (W.A.); (A.A.); (F.A.A.)
| | - Amani Alhibshi
- Department of Neuroscience Research, Institute of Research and Medical Consultations, Imam Abdul Rahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (W.A.); (A.A.); (F.A.A.)
| | - Suriya Rehman
- Department of Epidemic Diseases Research, Institute of Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Ashish Ranjan Sharma
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si 24252, Gangwon-do, Korea;
| | - Fuad A. Abdulla
- Department of Neuroscience Research, Institute of Research and Medical Consultations, Imam Abdul Rahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (W.A.); (A.A.); (F.A.A.)
- Department of Physical Therapy, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, P.O. Box 2435, Dammam 31441, Saudi Arabia
| |
Collapse
|
27
|
Therapeutic Effects of a Novel Form of Biotin on Propionic Acid-Induced Autistic Features in Rats. Nutrients 2022; 14:nu14061280. [PMID: 35334937 PMCID: PMC8955994 DOI: 10.3390/nu14061280] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 12/04/2022] Open
Abstract
Magnesium biotinate (MgB) is a novel biotin complex with superior absorption and anti-inflammatory effects in the brain than D-Biotin. This study aimed to investigate the impact of different doses of MgB on social behavior deficits, learning and memory alteration, and inflammatory markers in propionic acid (PPA)-exposed rats. In this case, 35 Wistar rats (3 weeks old) were distributed into five groups: 1, Control; 2, PPA treated group; 3, PPA+MgBI (10 mg, HED); 4, PPA+MgBII (100 mg, HED); 5, PPA+MgBIII (500 mg, HED). PPA was given subcutaneously at 500 mg/kg/day for five days, followed by MgB for two weeks. PPA-exposed rats showed poor sociability and a high level of anxiety-like behaviors and cognitive impairments (p < 0.001). In a dose-dependent manner, behavioral and learning-memory disorders were significantly improved by MgB supplementation (p < 0.05). PPA decreased both the numbers and the sizes of Purkinje cells in the cerebellum. However, MgB administration increased the sizes and the densities of Purkinje cells. MgB improved the brain and serum Mg, biotin, serotonin, and dopamine concentrations, as well as antioxidant enzymes (CAT, SOD, GPx, and GSH) (p < 0.05). In addition, MgB treatment significantly regulated the neurotoxicity-related cytokines and neurotransmission-related markers. For instance, MgB significantly decreased the expression level of TNF-α, IL-6, IL-17, CCL-3, CCL-5, and CXCL-16 in the brain, compared to the control group (p < 0.05). These data demonstrate that MgB may ameliorate dysfunctions in social behavior, learning and memory and reduce the oxidative stress and inflammation indexes of the brain in a rat model.
Collapse
|
28
|
Parrott JM, Oster T, Lee HY. Altered inflammatory response in FMRP-deficient microglia. iScience 2021; 24:103293. [PMID: 34820601 PMCID: PMC8602000 DOI: 10.1016/j.isci.2021.103293] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 02/08/2021] [Accepted: 10/14/2021] [Indexed: 02/04/2023] Open
Abstract
Fragile X syndrome (FXS) is an inherited intellectual disability with a high risk for comorbid autism spectrum disorders. Since FXS is a genetic disease, patients are more susceptible to environmental factors aggravating symptomatology. However, this confounding interaction between FXS environmental and genetic risk factors is under-investigated. Here, Fmr1 knock-out (KO) mice and the immune stimulus lipopolysaccharide (LPS) were used to explore this interaction between FXS development and inflammation in microglia, the brain’s primary immune cell. Our results demonstrate that Fmr1 KO and wild-type (WT) microglia are not different in inflammatory outcomes without LPS. However, Fmr1 KO microglia produces an elevated pro-inflammatory and phagocytic response following LPS treatment when compared to WT microglia. Our experiments also revealed baseline differences in mitochondrial function and morphology between WT and Fmr1 KO microglia, which LPS treatment exaggerated. Our data suggest an altered inflammatory mechanism in Fmr1 KO microglia implicating a gene and environment interaction. Fmr1 KO microglia display elevated LPS-induced pro-inflammatory gene expressions Fmr1 KO microglia display elevated LPS-induced pro-inflammatory cytokine releases Fmr1 KO microglia demonstrate increased LPS-induced phagocytic responses Fmr1 KO microglial mitochondria have altered properties and LPS-stimulated responses
Collapse
Affiliation(s)
- Jennifer M Parrott
- The Department of Cellular and Integrative Physiology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Thomas Oster
- The Department of Cellular and Integrative Physiology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Hye Young Lee
- The Department of Cellular and Integrative Physiology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| |
Collapse
|
29
|
Shaping the gut microbiota by bioactive phytochemicals: An emerging approach for the prevention and treatment of human diseases. Biochimie 2021; 193:38-63. [PMID: 34688789 DOI: 10.1016/j.biochi.2021.10.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/30/2021] [Accepted: 10/16/2021] [Indexed: 12/11/2022]
Abstract
The human digestive tract is the cottage to trillions of live microorganisms, which regulate health and illness. A healthy Gut Microbiota (GM) is necessary for preventing microbial growth, body growth, obesity, cancer, diabetes, and enhancing immunity. The equilibrium in GM's composition and the presence/absence of critical species enable specific responses to be essential for the host's better health condition. Research evidences revealed that the dietary plants and their bioactive phytochemicals (BPs) play an extensive and critical role in shaping the GM to get beneficial health effects. BPs are also known to improve gastrointestinal health and reduce the risk of several diseases by modulating GM-mediated cellular and molecular processes. Regular intake of BPs-rich vegetables, fruits, and herbal preparations promotes probiotic bacteria, including Bifidobacteria and Lactobacillus species, while inhibiting unwanted gut residents' development Escherichia coli, and Salmonella typhimurium etc. Upon consumption, BPs contact the GM that gets transformed before being absorbed from the gastrointestinal tract. Biotransformation of BPs by GM is linked with the enhancement of bioactivity/toxicity diminishment of the BPs compared to parental phytochemicals. Therefore, the current review focuses on the role of BPs in shaping GM for the prevention and treatment of human diseases.
Collapse
|
30
|
Theoharides TC. Ways to Address Perinatal Mast Cell Activation and Focal Brain Inflammation, including Response to SARS-CoV-2, in Autism Spectrum Disorder. J Pers Med 2021; 11:860. [PMID: 34575637 PMCID: PMC8465360 DOI: 10.3390/jpm11090860] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 01/08/2023] Open
Abstract
The prevalence of autism spectrum disorder (ASD) continues to increase, but no distinct pathogenesis or effective treatment are known yet. The presence of many comorbidities further complicates matters, making a personalized approach necessary. An increasing number of reports indicate that inflammation of the brain leads to neurodegenerative changes, especially during perinatal life, "short-circuiting the electrical system" in the amygdala that is essential for our ability to feel emotions, but also regulates fear. Inflammation of the brain can result from the stimulation of mast cells-found in all tissues including the brain-by neuropeptides, stress, toxins, and viruses such as SARS-CoV-2, leading to the activation of microglia. These resident brain defenders then release even more inflammatory molecules and stop "pruning" nerve connections, disrupting neuronal connectivity, lowering the fear threshold, and derailing the expression of emotions, as seen in ASD. Many epidemiological studies have reported a strong association between ASD and atopic dermatitis (eczema), asthma, and food allergies/intolerance, all of which involve activated mast cells. Mast cells can be triggered by allergens, neuropeptides, stress, and toxins, leading to disruption of the blood-brain barrier (BBB) and activation of microglia. Moreover, many epidemiological studies have reported a strong association between stress and atopic dermatitis (eczema) during gestation, which involves activated mast cells. Both mast cells and microglia can also be activated by SARS-CoV-2 in affected mothers during pregnancy. We showed increased expression of the proinflammatory cytokine IL-18 and its receptor, but decreased expression of the anti-inflammatory cytokine IL-38 and its receptor IL-36R, only in the amygdala of deceased children with ASD. We further showed that the natural flavonoid luteolin is a potent inhibitor of the activation of both mast cells and microglia, but also blocks SARS-CoV-2 binding to its receptor angiotensin-converting enzyme 2 (ACE2). A treatment approach should be tailored to each individual patient and should address hyperactivity/stress, allergies, or food intolerance, with the introduction of natural molecules or drugs to inhibit mast cells and microglia, such as liposomal luteolin.
Collapse
Affiliation(s)
- Theoharis C Theoharides
- Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology, Tufts University School of Medicine, 136 Harrison Avenue, Suite 304, Boston, MA 02111, USA
- School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA
- Department of Internal Medicine, Tufts University School of Medicine and Tufts Medical Center, Boston, MA 02111, USA
- Department of Psychiatry, Tufts University School of Medicine and Tufts Medical Center, Boston, MA 02111, USA
| |
Collapse
|
31
|
Liu M, Zhang SS, Liu DN, Yang YL, Wang YH, Du GH. Chrysomycin A Attenuates Neuroinflammation by Down-Regulating NLRP3/Cleaved Caspase-1 Signaling Pathway in LPS-Stimulated Mice and BV2 Cells. Int J Mol Sci 2021; 22:ijms22136799. [PMID: 34202695 PMCID: PMC8268846 DOI: 10.3390/ijms22136799] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 01/08/2023] Open
Abstract
Chrysomycin A (Chr-A), an antibiotic chrysomycin, was discovered in 1955 and is used to treat cancer and tuberculosis. In the present study, the anti-neuroinflammatory effects and possible mechanism of Chr-A in BALB/c mice and in BV2 microglia cells stimulated by lipopolysaccharide (LPS) were investigated. Firstly, the cortex tissues of mice were analyzed by RNA-seq transcriptome to identify differentially expressed genes (DEGs) regulated by Chr-A in LPS-stimulated mice. Inflammatory cytokines and inflammatory proteins were detected by enzyme-linked immunosorbent assay and Western blot. In RNAseq detection, 639 differential up-regulated genes between the control group and LPS model group and 113 differential down-regulated genes between the LPS model group and Chr-A treatment group were found, and 70 overlapping genes were identified as key genes for Chr-A against neuroinflammation. Subsequent GO biological process enrichment analysis showed that the anti-neuroinflammatory effect of Chr-A might be related to the response to cytokine, cellular response to cytokine stimulus, and regulation of immune system process. The significant signaling pathways of KEGG enrichment analysis were mainly involved in TNF signaling pathway, cytokine-cytokine receptor interaction, NF-κB signaling pathway, IL-17 signaling pathway and NOD-like receptor signaling pathway. Our results of in vivo or in vitro experiments showed that the levels of pro-inflammatory factors including NO, IL-6, IL-1β, IL-17, TNF-α, MCP-1, CXCL12, GM-CSF and COX2 in the LPS-stimulated group were higher than those in the control group, while Chr-A reversed those conditions. Furthermore, the Western blot analysis showed that its anti-neuroinflammation appeared to be related to the down-regulation of NLRP3/cleaved caspase-1 signaling pathway. The current findings provide new insights into the activity and molecular mechanisms of Chr-A for the treatment of neuroinflammation.
Collapse
Affiliation(s)
- Man Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (M.L.); (S.-S.Z.); (D.-N.L.); (Y.-L.Y.)
- Beijing Key Laboratory of Drug Target Identification and New Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Shan-Shan Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (M.L.); (S.-S.Z.); (D.-N.L.); (Y.-L.Y.)
- Beijing Key Laboratory of Drug Target Identification and New Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Dong-Ni Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (M.L.); (S.-S.Z.); (D.-N.L.); (Y.-L.Y.)
- Beijing Key Laboratory of Drug Target Identification and New Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Ying-Lin Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (M.L.); (S.-S.Z.); (D.-N.L.); (Y.-L.Y.)
- Beijing Key Laboratory of Drug Target Identification and New Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yue-Hua Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (M.L.); (S.-S.Z.); (D.-N.L.); (Y.-L.Y.)
- Beijing Key Laboratory of Drug Target Identification and New Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- Correspondence: (Y.-H.W.); (G.-H.D.)
| | - Guan-Hua Du
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (M.L.); (S.-S.Z.); (D.-N.L.); (Y.-L.Y.)
- Beijing Key Laboratory of Drug Target Identification and New Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- Correspondence: (Y.-H.W.); (G.-H.D.)
| |
Collapse
|
32
|
Dash R, Mitra S, Ali MC, Oktaviani DF, Hannan MA, Choi SM, Moon IS. Phytosterols: Targeting Neuroinflammation in Neurodegeneration. Curr Pharm Des 2021; 27:383-401. [PMID: 32600224 DOI: 10.2174/1381612826666200628022812] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 05/02/2020] [Indexed: 11/22/2022]
Abstract
Plant-derived sterols, phytosterols, are well known for their cholesterol-lowering activity in serum and their anti-inflammatory activities. Recently, phytosterols have received considerable attention due to their beneficial effects on various non-communicable diseases, and recommended use as daily dietary components. The signaling pathways mediated in the brain by phytosterols have been evaluated, but little is known about their effects on neuroinflammation, and no clinical studies have been undertaken on phytosterols of interest. In this review, we discuss the beneficial roles of phytosterols, including their attenuating effects on inflammation, blood cholesterol levels, and hallmarks of the disease, and their regulatory effects on neuroinflammatory disease pathways. Despite recent advancements made in phytosterol pharmacology, some critical questions remain unanswered. Therefore, we have tried to highlight the potential of phytosterols as viable therapeutics against neuroinflammation and to direct future research with respect to clinical applications.
Collapse
Affiliation(s)
- Raju Dash
- Department of Anatomy, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Korea
| | - Sarmistha Mitra
- Plasma Bioscience Research Center, Plasma Bio-display, Kwangwoon University, Seoul-01897, Korea
| | - Md Chayan Ali
- Department of Biotechnology and Genetic Engineering, Islamic University, Kushtia-7003, Bangladesh
| | - Diyah Fatimah Oktaviani
- Department of Anatomy, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Korea
| | - Md Abdul Hannan
- Department of Anatomy, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Korea
| | - Sung Min Choi
- Department of Pediatrics, Dongguk University College of Medicine, Gyeongju-38066, Korea
| | - Il Soo Moon
- Department of Anatomy, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Korea
| |
Collapse
|
33
|
Bhuiyan P, Chen Y, Karim M, Dong H, Qian Y. Bidirectional communication between mast cells and the gut-brain axis in neurodegenerative diseases: Avenues for therapeutic intervention. Brain Res Bull 2021; 172:61-78. [PMID: 33892083 DOI: 10.1016/j.brainresbull.2021.04.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 03/02/2021] [Accepted: 04/17/2021] [Indexed: 12/12/2022]
Abstract
Although the global incidence of neurodegenerative diseases has been steadily increasing, especially in adults, there are no effective therapeutic interventions. Neurodegeneration is a heterogeneous group of disorders that is characterized by the activation of immune cells in the central nervous system (CNS) (e.g., mast cells and microglia) and subsequent neuroinflammation. Mast cells are found in the brain and the gastrointestinal tract and play a role in "tuning" neuroimmune responses. The complex bidirectional communication between mast cells and gut microbiota coordinates various dynamic neuro-cellular responses, which propagates neuronal impulses from the gastrointestinal tract into the CNS. Numerous inflammatory mediators from degranulated mast cells alter intestinal gut permeability and disrupt blood-brain barrier, which results in the promotion of neuroinflammatory processes leading to neurological disorders, thereby offsetting the balance in immune-surveillance. Emerging evidence supports the hypothesis that gut-microbiota exert a pivotal role in inflammatory signaling through the activation of immune and inflammatory cells. Communication between inflammatory cytokines and neurocircuits via the gut-brain axis (GBA) affects behavioral responses, activates mast cells and microglia that causes neuroinflammation, which is associated with neurological diseases. In this comprehensive review, we focus on what is currently known about mast cells and the gut-brain axis relationship, and how this relationship is connected to neurodegenerative diseases. We hope that further elucidating the bidirectional communication between mast cells and the GBA will not only stimulate future research on neurodegenerative diseases but will also identify new opportunities for therapeutic interventions.
Collapse
Affiliation(s)
- Piplu Bhuiyan
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, PR China
| | - Yinan Chen
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, PR China
| | - Mazharul Karim
- College of Pharmacy, Western University of Health Science, 309 East 2nd Street, Pomona, CA, 91766, USA
| | - Hongquan Dong
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, PR China.
| | - Yanning Qian
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, PR China.
| |
Collapse
|
34
|
Shabani S. A mechanistic view on the neurotoxic effects of air pollution on central nervous system: risk for autism and neurodegenerative diseases. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:6349-6373. [PMID: 33398761 DOI: 10.1007/s11356-020-11620-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 11/09/2020] [Indexed: 06/12/2023]
Abstract
Many reports have shown a strong association between exposure to neurotoxic air pollutants like heavy metal and particulate matter (PM) as an active participant and neurological disorders. While the effects of these toxic pollutants on cardiopulmonary morbidity have principally been studied, growing evidence has shown that exposure to polluted air is associated with memory impairment, communication deficits, and anxiety/depression among all ages. So, these toxic pollutants in the environment increase the risk of neurodegenerative disease, ischemia, and autism spectrum disorders (ASD). The precise mechanisms in which air pollutants lead to communicative inability, social inability, and declined cognition have remained unknown. Various animal model studies show that amyloid precursor protein (APP), processing, oxidant/antioxidant balance, and inflammation pathways change following the exposure to constituents of polluted air. In the present review study, we collect the probable molecular mechanisms of deleterious CNS effects in response to various air pollutants.
Collapse
Affiliation(s)
- Sahreh Shabani
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
35
|
C7ORF41 Regulates Inflammation by Inhibiting NF- κB Signaling Pathway. BIOMED RESEARCH INTERNATIONAL 2021; 2021:7413605. [PMID: 33506033 PMCID: PMC7806384 DOI: 10.1155/2021/7413605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 12/02/2020] [Accepted: 12/18/2020] [Indexed: 11/18/2022]
Abstract
Inflammation is an important biological process for eliciting immune responses against physiological and pathological stimuli. Inflammation must be efficiently regulated to ensure homeostasis in the body. Nuclear factor-kappa B (NF-κB) signaling is crucial for inflammatory and immune responses. Aberrant activation of NF-κB signaling leads to development of numerous human diseases. In this study, we investigated the function of chromosome 7 open reading frame 41 (C7ORF41) in NF-κB signaling during inflammation. C7ORF41 was upregulated in cells stimulated with tumor necrosis factor-alpha or lipopolysaccharide. Moreover, overexpression of C7ORF41 inhibited the activation of NF-κB and decreased the expression of its downstream target genes. Notably, small hairpin RNA-mediated depletion of C7ORF41 increased the levels of downstream genes and enabled the activation of NF-κB. In conclusion, C7ORF41 negatively regulated inflammation via NF-κB signaling and p65 phosphorylation in vitro. These findings may help to diagnose and prognosticate inflammatory conditions and may help develop new strategies for the management of inflammation-related diseases.
Collapse
|
36
|
Healing autism spectrum disorder with cannabinoids: a neuroinflammatory story. Neurosci Biobehav Rev 2020; 121:128-143. [PMID: 33358985 DOI: 10.1016/j.neubiorev.2020.12.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/28/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023]
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder with a multifactorial etiology. Latest researches are raising the hypothesis of a link between the onset of the main behavioral symptoms of ASD and the chronic neuroinflammatory condition of the autistic brain; increasing evidence of this connection is shedding light on new possible players in the pathogenesis of ASD. The endocannabinoid system (ECS) has a key role in neurodevelopment as well as in normal inflammatory responses and it is not surprising that many preclinical and clinical studies account for alterations of the endocannabinoid signaling in ASD. These findings lay the foundation for a better understanding of the neurochemical mechanisms underlying ASD and for new therapeutic attempts aimed at exploiting the renowned anti-inflammatory properties of cannabinoids to treat pathologies encompassed in the autistic spectrum. This review discusses the current preclinical and clinical evidence supporting a key role of the ECS in the neuroinflammatory state that characterizes ASD, providing hints to identify new biomarkers in ASD and promising therapies for the future.
Collapse
|
37
|
Microglia mediated neuroinflammation in autism spectrum disorder. J Psychiatr Res 2020; 130:167-176. [PMID: 32823050 DOI: 10.1016/j.jpsychires.2020.07.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/09/2020] [Accepted: 07/15/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Although the precise pathophysiologies underlying autism spectrum disorder (ASD) has not yet been fully clarified, growing evidence supports the involvement of neuroinflammation in the pathogenesis of this disorder, with microglia being particular relevance in the pathophysiologic processes. OBJECTIVE The present review aimed to systematically characterize existing literature regarding the role of microglia mediated neuroinflammation in the etiology of ASD. METHODS A systematic search was conducted for records indexed within Pubmed, EMBASE, or Web of Science to identify potentially eligible publications. Study selection and data extraction were performed by two authors, and the discrepancies in each step were settled through discussions. RESULTS A total of 14 studies comprising 1007 subjects met the eligibility criteria for this review, including 8 immunohistochemistry (IHC) studies, 5 genetic analysis studies, and 1 positron emission tomography (PET) studies. Although small in quantity, the included studies collectively pointed to a role of microglia mediated neuroinflammation in the pathogenesis of ASD. CONCLUSION Findings generated from this review consistently supported the involvement of neuroinflammation in the development of ASD, confirmed by the activation of microglia in different brain regions, involving increased cell number or cell density, morphological alterations, and phenotypic shifts.
Collapse
|
38
|
de Leão ERLP, de Souza DNC, de Moura LVB, da Silveira Júnior AM, Dos Santos ALG, Diniz DG, Diniz CWP, Sosthenes MCK. Lateral septum microglial changes and behavioral abnormalities of mice exposed to valproic acid during the prenatal period. J Chem Neuroanat 2020; 111:101875. [PMID: 33127448 DOI: 10.1016/j.jchemneu.2020.101875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/08/2020] [Accepted: 10/20/2020] [Indexed: 12/14/2022]
Abstract
Most animal model studies of autism spectrum disorder (ASD) have been performed in males, which may be a reflex of the 3-times higher prevalence in boys than in girls. For this reason, little is known about the mechanisms underlying disease progression in females, and nothing is known about potential associations between microglial changes in the lateral septum (LS) and adult female cognition. Prenatal exposure to valproic acid (VPA) in mice has been widely used as an experimental model of autism-like behaviors associated with cellular changes. However, no study has reported the influence of VPA exposure in utero and its consequences on limbic system-dependent tasks or the microglial response in the LS in adult female mice. We compared the exploratory activity and risk assessment in novel environments of BALB/c control mice to mice exposed in utero to VPA and estimated the total number of microglia in the LS using an optical fractionator. On day 12.5 of pregnancy, females received diluted VPA or saline by gavage. After weaning, VPA exposed or control pups were separately housed in standard laboratory cages. At 5 months of age, all mice underwent behavioral testing and their brain sections were immunolabelled using IBA-1 antibody. In the open field test, VPA group showed a greater distance traveled, which was accompanied by less immobility, less time spent on the periphery and a greater number, crossed lines. Similar findings were found in the elevated plus maze test, where VPA mice traveled greater distances, immobility was significantly higher than that of control and VPA group spent less time on the closed arms of apparatus. Stereological analysis demonstrated higher microglial total number and density in the LS of VPA mice, as the cell count was greater, but the volume was similar. Therefore, we suggest that an increase in microglia in the LS may be part of the cellular changes associated with behavioral dysfunction in the VPA model of ASD.
Collapse
Affiliation(s)
- Ellen Rose Leandro Ponce de Leão
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário "João de Barros Barreto", Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Dilza Nazaré Colares de Souza
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário "João de Barros Barreto", Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Larissa Victória Barra de Moura
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário "João de Barros Barreto", Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Antonio Morais da Silveira Júnior
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário "João de Barros Barreto", Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Alinne Lorrany Gomes Dos Santos
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário "João de Barros Barreto", Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Daniel Guerreiro Diniz
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário "João de Barros Barreto", Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil; Laboratório de Microscopia Eletrônica, Instituto Evandro Chagas, Belém, Pará, Brazil
| | - Cristovam Wanderley Picanço Diniz
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário "João de Barros Barreto", Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Marcia Consentino Kronka Sosthenes
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário "João de Barros Barreto", Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil.
| |
Collapse
|
39
|
Siddique A, Khan HF, Ali S, Abdullah A, Munir H, Ariff M. Estimation of Alpha-Synuclein Monomer and Oligomer Levels in the Saliva of the Children With Autism Spectrum Disorder: A Possibility for an Early Diagnosis. Cureus 2020; 12:e9936. [PMID: 32968597 PMCID: PMC7505671 DOI: 10.7759/cureus.9936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Background In degenerative brain diseases like Parkinson's disease (PD), alpha-synuclein (a-syn) can be in its monomeric (a-syn-mono) or toxic oligomeric (a-syn-oligo) or as a total (a-syn-total) forms in the biological body fluids including saliva. Past research has observed major a-syn plasma variations in children with autism spectrum disorder (ASD) pointing toward brain degenerative components in their pathophysiology. No prior study has shown a-syn levels in ASD patients' saliva. Objective This study estimates the levels of alpha-synuclein monomer (a-syn-mono) and alpha-synuclein oligomer (a-syn-oligo) in the saliva of ASD affected children so that saliva can be a method for detecting disorder. Materials and methods This cross-sectional, multi-center study was conducted in Islamic International Medical College, Autism Resource Centre (ARC), and Step-to-learn Rehabilitation center for the slow learner in Rawalpindi. The research was performed for one year from August 2018 to August 2019. Saliva samples from 80 children (40 ASD affected children, and 40 age- and sex-comparable healthy controls) were collected. Specific anti-alpha-synuclein monomers (anti-a-syn-mono) and anti-alpha-synuclein oligomers (anti-a-syn-oligo) enzyme-linked immunosorbent assay (ELISA) kits analyzed the salivary samples. Mean ± SD were reported for quantitative data. The data between the two groups were compared using an independent t-test. The p-value of ≤ 0.05 was considered statistically significant. Results A total of 80 children were included in the study (n=40 ASD affected, n=40 healthy controls). The age of participating children was between four and eight years. The mean alpha-synuclein monomer level in the saliva of ASD children was 92.03 ± 117.09 pg/ml (p≤0.05), and in healthy subjects was 186.78 ± 239.31 ρg/ml. The levels of alpha-synuclein oligomer in the saliva of patients with ASD children were 0.13 ± 0.05 ng/ml (p<0.001), and in the healthy subjects was 0.33 ± 0.26 ng/ml. Both alpha-synuclein monomer and alpha-synuclein oligomer levels were low in the saliva of ASD children. Conclusion Children with ASD had low levels of alpha-synuclein monomer and oligomer than healthy children which are unique than that of levels found in other degenerative brain diseases.
Collapse
Affiliation(s)
| | | | - Shazia Ali
- Physiology, Islamic International Medical College, Rawalpindi, PAK
| | | | - Hina Munir
- Physiology, Islamic International Medical College, Rawalpindi, PAK
| | - Madiha Ariff
- Internal Medicine, Dow University of Health Sciences, Karachi, PAK
| |
Collapse
|
40
|
Shmarina GV, Ershova ES, Simashkova NV, Nikitina SG, Chudakova JM, Veiko NN, Porokhovnik LN, Basova AY, Shaposhnikova AF, Pukhalskaya DA, Pisarev VM, Korovina NJ, Gorbachevskaya NL, Dolgikh OA, Bogush M, Kutsev SI, Kostyuk SV. Oxidized cell-free DNA as a stress-signaling factor activating the chronic inflammatory process in patients with autism spectrum disorders. J Neuroinflammation 2020; 17:212. [PMID: 32677958 PMCID: PMC7364812 DOI: 10.1186/s12974-020-01881-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/25/2020] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Autism spectrum disorders (ASD) are known to be associated with an inflammatory process related to immune system dysfunction. This study's aim was to investigate the role of cell-free DNA in chronic inflammatory process in ASD patients. METHODS The study included 133 ASD patients and 27 healthy controls. Sixty-two ASD patients were demonstrated to have mild-to-moderate disease severity (group I) and 71 individuals to have severe ASD (group II). Plasma cell-free (cf) DNA characteristics, plasma cytokine concentrations, expression of the genes for NFкB1 transcription factor and pro-inflammatory cytokines TNFα, IL-1β and IL-8 in peripheral blood lymphocytes (PBL) of ASD patients, and unaffected controls were investigated. Additionally, in vitro experiments with oxidized DNA supplementation to PBL cultures derived from ASD patients and healthy controls were performed. RESULTS The data indicates that ASD patients have demonstrated increased cfDNA concentration in their circulation. cfDNA of patients with severe ASD has been characterized by a high abundance of oxidative modification. Furthermore, ASD patients of both groups have shown elevated plasma cytokine (IL-1β, IL-8, IL-17A) levels and heightened expression of genes for NFкB1 nuclear factor and pro-inflammatory cytokines TNFα, IL-1β, and IL-8 in PBL. In vitro experiments have shown that NF-κB/cytokine mRNA expression profiles of ASD patient PBL treated with oxidized DNA fragments were significantly different from those of healthy controls. CONCLUSIONS It may be proposed that oxidized cfDNA plays a role of stress-signaling factor activating the chronic inflammatory process in patients with ASD.
Collapse
Affiliation(s)
- Galina V Shmarina
- Research Centre for Medical Genetics, Moscow, Russia.
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.
- G.N. Gabrichevsky Institute of Epidemiology and Microbiology, Moscow, Russia.
| | - Elizaveta S Ershova
- Research Centre for Medical Genetics, Moscow, Russia
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | | | | | | | | | | | - Anna Y Basova
- G.E. Sukhareva Scientific-Practical Centre for Mental Health of Children and Adolescents, Moscow, Russia
| | - Antonina F Shaposhnikova
- G.E. Sukhareva Scientific-Practical Centre for Mental Health of Children and Adolescents, Moscow, Russia
| | | | - Vladimir M Pisarev
- V. A. Negovsky Research Institute of General Reanimatology, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow, Russia
| | - Natalia J Korovina
- G.E. Sukhareva Scientific-Practical Centre for Mental Health of Children and Adolescents, Moscow, Russia
| | - Natalia L Gorbachevskaya
- G.E. Sukhareva Scientific-Practical Centre for Mental Health of Children and Adolescents, Moscow, Russia
| | | | - Marina Bogush
- Rowan University Biological Sciences Department, Science Hall, Glassboro, NJ, USA
| | | | - Svetlana V Kostyuk
- Research Centre for Medical Genetics, Moscow, Russia
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| |
Collapse
|
41
|
IL-38 inhibits microglial inflammatory mediators and is decreased in amygdala of children with autism spectrum disorder. Proc Natl Acad Sci U S A 2020; 117:16475-16480. [PMID: 32601180 DOI: 10.1073/pnas.2004666117] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Autism spectrum disorder (ASD) is characterized by impaired social interactions and communication. The pathogenesis of ASD is not known, but it involves activation of microglia. We had shown that the peptide neurotensin (NT) is increased in the serum of children with ASD and stimulates cultured adult human microglia to secrete the proinflammatory molecules IL-1β and CXCL8. This process is inhibited by the cytokine IL-37. Another cytokine, IL-38, has been reported to have antiinflammatory actions. In this report, we show that pretreatment of cultured adult human microglia with recombinant IL-38 (aa3-152, 1-100 ng/mL) inhibits (P < 0.0001) NT-stimulated (10 nM) secretion of IL-1β (at 1 ng/mL) and CXCL8 (at 100 ng/mL). In fact, IL-38 (aa3-152, 1 ng/mL) is more potent than IL-37 (100 ng/mL). Here, we report that pretreatment with IL-38 (100 ng/mL) of embryonic microglia (HMC3), in which secretion of IL-1β was undetectable, inhibits secretion of CXCL8 (P = 0.004). Gene expression of IL-38 and its receptor IL-36R are decreased (P = 0.001 and P = 0.04, respectively) in amygdala from patients with ASD (n = 8) compared to non-ASD controls (n = 8), obtained from the University of Maryland NeuroBioBank. IL-38 is increased (P = 0.03) in the serum of children with ASD. These findings indicate an important role for IL-38 in the inhibition of activation of human microglia, thus supporting its development as a treatment approach for ASD.
Collapse
|
42
|
Costa LG, Cole TB, Dao K, Chang YC, Coburn J, Garrick JM. Effects of air pollution on the nervous system and its possible role in neurodevelopmental and neurodegenerative disorders. Pharmacol Ther 2020; 210:107523. [PMID: 32165138 PMCID: PMC7245732 DOI: 10.1016/j.pharmthera.2020.107523] [Citation(s) in RCA: 216] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 02/25/2020] [Indexed: 02/06/2023]
Abstract
Recent extensive evidence indicates that air pollution, in addition to causing respiratory and cardiovascular diseases, may also negatively affect the brain and contribute to central nervous system diseases. Air pollution is comprised of ambient particulate matter (PM) of different sizes, gases, organic compounds, and metals. An important contributor to PM is represented by traffic-related air pollution, mostly ascribed to diesel exhaust (DE). Epidemiological and animal studies have shown that exposure to air pollution may be associated with multiple adverse effects on the central nervous system. In addition to a variety of behavioral abnormalities, the most prominent effects caused by air pollution are oxidative stress and neuro-inflammation, which are seen in both humans and animals, and are supported by in vitro studies. Among factors which can affect neurotoxic outcomes, age is considered most relevant. Human and animal studies suggest that air pollution may cause developmental neurotoxicity, and may contribute to the etiology of neurodevelopmental disorders, including autism spectrum disorder. In addition, air pollution exposure has been associated with increased expression of markers of neurodegenerative disease pathologies, such as alpha-synuclein or beta-amyloid, and may thus contribute to the etiopathogenesis of neurodegenerative diseases, particularly Alzheimer's disease and Parkinson's disease.
Collapse
Affiliation(s)
- Lucio G Costa
- Dept. of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA; Dept. of Medicine & Surgery, University of Parma, Italy.
| | - Toby B Cole
- Dept. of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA; Center on Human Development and Disability, University of Washington, Seattle, WA, USA
| | - Khoi Dao
- Dept. of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Yu-Chi Chang
- Dept. of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Jacki Coburn
- Dept. of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Jacqueline M Garrick
- Dept. of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|
43
|
Song Y, Lu M, Yuan H, Chen T, Han X. Mast cell-mediated neuroinflammation may have a role in attention deficit hyperactivity disorder (Review). Exp Ther Med 2020; 20:714-726. [PMID: 32742317 PMCID: PMC7388140 DOI: 10.3892/etm.2020.8789] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 04/29/2020] [Indexed: 12/12/2022] Open
Abstract
Attention deficit hyperactivity disorder (ADHD) is a common neurodevelopmental and behavioral disorder with a serious negative impact on the quality of life from childhood until adulthood, which may cause academic failure, family disharmony and even social unrest. The pathogenesis of ADHD has remained to be fully elucidated, leading to difficulties in the treatment of this disease. Genetic and environmental factors contribute to the risk of ADHD development. Certain studies indicated that ADHD has high comorbidity with allergic and autoimmune diseases, with various patients with ADHD having a high inflammatory status. Increasing evidence indicated that mast cells (MCs) are involved in the pathogenesis of brain inflammation and neuropsychiatric disorders. MCs may cause or aggravate neuroinflammation via the selective release of inflammatory factors, interaction with glial cells and neurons, activation of the hypothalamic-pituitary adrenal axis or disruption of the blood-brain barrier integrity. In the present review, the notion that MC activation may be involved in the occurrence and development of ADHD through a number of ways is discussed based on previously published studies. The association between MCs and ADHD appears to lack sufficient evidence at present and this hypothesis is considered to be worthy of further study, providing a novel perspective for the treatment of ADHD.
Collapse
Affiliation(s)
- Yuchen Song
- Institute of Pediatrics of Traditional Chinese Medicine, First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Manqi Lu
- Institute of Pediatrics of Traditional Chinese Medicine, First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Haixia Yuan
- Institute of Pediatrics of Traditional Chinese Medicine, First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Tianyi Chen
- Institute of Pediatrics of Traditional Chinese Medicine, First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Xinmin Han
- Institute of Pediatrics of Traditional Chinese Medicine, First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| |
Collapse
|
44
|
Liao X, Li Y. Nuclear Factor Kappa B in Autism Spectrum Disorder: A Systematic Review. Pharmacol Res 2020; 159:104918. [PMID: 32461184 DOI: 10.1016/j.phrs.2020.104918] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/02/2020] [Accepted: 05/10/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND The nuclear factor kappa B (NF-κB) is composed of a series of transcription factors, which are involved in the expression of a plethora of target genes, many of these genes contributing to the regulation of inflammatory responses. Consistent with its central role in inflammatory responses, existing studies of the neurobiological basis for ASD propose the involvement of NF-κB in the etiology of this disorder. OBJECTIVES The present review aimed to systematically characterize extant literatures regarding the role of NF-κB in the etiology of ASD through data derived from both human studies and animal models. METHODS A systematic electronic search was conducted for records indexed within Pubmed, EMBASE, or Web of Science to identify potentially eligible studies. Study inclusion and data extraction was agreed by two independent authors after reviewing the abstract and full text. RESULTS Among the 371 articles identified in the initial screening, 18 articles met the eligibility criteria for this review, including 14 human case-control studies compared the expression or activation of NF-κB between ASD cases and controls as well as 4 animal studies used mouse model of ASD to examine the level of NF-κB and further evaluate its changes after different drug treatments. These included 18 studies, although relatively small in quantity, appear to support the role of NF-κB in the etiology of ASD. CONCLUSIONS Evidence generated from both human studies and animal models supported the involvement of NF-κB in the neurobiological basis of ASD, despite some concern about whether it functions as a primary contributor causes ASD onset or rather an ancillary factor regulates ASD pathogenesis. The increased understanding of NF-κB in the neurobiological basis of ASD could aid the emergence of clinically relevant diagnostic biomarkers and novel therapeutic strategies acting on the underlying disease pathogenesis. These results suggested that potential methodological differences between studies need to be accounted for and keep open the discussion over the existence of aberrantly NF-κB signaling in ASD subjects.
Collapse
Affiliation(s)
- Xiaoli Liao
- Xiangya Nursing School, Central South University, Changsha, Hunan, China.
| | - Yamin Li
- Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
45
|
Lin LJ, Wu CJ, Wang SD, Kao ST. Qi-Wei-Du-Qi-Wan and its major constituents exert an anti-asthmatic effect by inhibiting mast cell degranulation. JOURNAL OF ETHNOPHARMACOLOGY 2020; 254:112406. [PMID: 31751647 DOI: 10.1016/j.jep.2019.112406] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 10/30/2019] [Accepted: 11/13/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In Asia, Qi-Wei-Du-Qi-Wan (QWDQW) is a traditional Chinese medicine that has been used to treat chest tightness, cough, shortness of breath, night sweats, frequent urination and asthma. QWDQW is recorded in Yi Zong Yi Ren Pian (Medical Physician's Compilation), which was written by Yang Cheng Liu during the Qing Dynasty. AIM OF THE STUDY The traditional Chinese medicine QWDQW is composed of 7 ingredients and has been used in the treatment of asthma in Asia for hundreds of years. However, the mechanism through which QWDQW affects the immune system in the treatment of asthma is not known. Therefore, this study aimed to investigate whether QWDQW alleviates asthmatic symptoms in mice with chronic asthma induced by repeated stimulation with Dermatophagoides pteronyssinus (Der p) and to explore the underlying immune modulatory mechanism. MATERIALS AND METHODS BALB/c mice were stimulated intratracheally (i.t.) with Der p (40 μl, 2.5 μg/μl) once weekly for 6 weeks. Thirty minutes prior to Der p stimulation, the mice were treated with QWDQW (0.5 g/kg and 0.17 g/kg) orally. Three days after the last stimulation, the mice were sacrificed, and infiltration of inflammatory cells, lung histological characteristics, gene expression of lung and serum total IgE were assessed. In other experiments, RBL-2H3 cells were stimulated with DNP-IgE/DNP-BSA and then treated with QWDQW, quercetin, β-carotene, luteolin or a mixture of the three chemicals (Mix13) for 30 min, and the effects of the drugs on RBL-2H3 cell degranulation after DNP stimulation were determined. RESULTS QWDQW significantly reduced Der p-induced airway hyperreactivity (AHR) and decreased total serum IgE and Der p-specific IgE levels. Histopathological examination showed that QWDQW reduced inflammatory cell infiltration and sputum secretion from goblet cells in the lungs. Gene expression analysis indicated that QWDQW reduced overproduction of IL-12、IFN-γ、IL-13、IL-4、RNATES、Eotaxin and MCP-1in lung. Additionally, QWDQW and Mix13 suppressed DNP induced RBL-2H3 degranulation, and the effect was maximal when quercetin, β-carotene and luteolin were administered together. CONCLUSION These results indicate that QWDQW plays a role in suppressing excessive airway reaction and in specific immune modulation in a mouse model of chronic asthma and that QWDQW suppresses mast cell degranulation at defined doses of quercetin, β-carotene and luteolin.
Collapse
Affiliation(s)
- Li-Jen Lin
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, 40402, Taiwan
| | - Chin-Jen Wu
- Department of QC/R&D, Kaiser Pharmaceutical Co, Ltd, Tainan, 71041, Taiwan
| | - Shulhn-Der Wang
- School of Post-Baccalaureate Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, 40402, Taiwan
| | - Shung-Te Kao
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, 40402, Taiwan; Department of Chinese Medicine, China Medical University Hospital, Taichung, 40402, Taiwan; Chinese Medicine Research Center, China Medical University, Taichung, 404, Taiwan.
| |
Collapse
|
46
|
Ducatez S, Lefebvre L, Sayol F, Audet JN, Sol D. Host Cognition and Parasitism in Birds: A Review of the Main Mechanisms. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00102] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
47
|
Perez-Pouchoulen M, Yu SJ, Roby CR, Bonsavage N, McCarthy MM. Regulatory Control of Microglial Phagocytosis by Estradiol and Prostaglandin E2 in the Developing Rat Cerebellum. THE CEREBELLUM 2020; 18:882-895. [PMID: 31435854 DOI: 10.1007/s12311-019-01071-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Microglia are essential to sculpting the developing brain, and they achieve this in part through the process of phagocytosis which is regulated by microenvironmental signals associated with cell death and synaptic connectivity. In the rat cerebellum, microglial phagocytosis reaches its highest activity during the third postnatal week of development but the factors regulating this activity are unknown. A signaling pathway, involving prostaglandin E2 (PGE2) stimulation of the estrogen synthetic enzyme aromatase, peaks during the 2nd postnatal week and is a critical regulator of Purkinje cell maturation. We explored the relationship between the PGE2-estradiol pathway and microglia in the maturing cerebellum. Toward that end, we treated developing rat pups with pharmacological inhibitors of estradiol and PGE2 synthesis and then stained microglia with the universal marker Iba1 and quantified microglia engaged in phagocytosis as well as phagocytic cups in the vermis and cerebellar hemispheres. Inhibition of aromatase reduced the number of phagocytic cups in the vermis, but not in the cerebellar hemisphere at postnatal day 17. Similar results were found after treatment with nimesulide and indomethacin, inhibitors of the PGE2-producing enzymes cyclooxygenase 1 and 2. In contrast, treatment with estradiol or PGE2 had little effect on microglial phagocytosis in the developing cerebellum. Thus, endogenous estrogens and prostaglandins upregulate the phagocytic activity of microglia during a select window of postnatal cerebellar development, but exogenous treatment with these same signaling molecules does not further increase the already high levels of phagocytosis. This may be due to an upper threshold or evidence of resistance to exogenous perturbation.
Collapse
Affiliation(s)
- Miguel Perez-Pouchoulen
- Department of Pharmacology, University of Maryland School of Medicine, 670 W. Baltimore Street, HSFIII 9-130, Baltimore, MD, 21201, USA.
| | - Stacey J Yu
- Department of Pharmacology, University of Maryland School of Medicine, 670 W. Baltimore Street, HSFIII 9-130, Baltimore, MD, 21201, USA
| | - Clinton R Roby
- Department of Pharmacology, University of Maryland School of Medicine, 670 W. Baltimore Street, HSFIII 9-130, Baltimore, MD, 21201, USA
| | - Nicole Bonsavage
- Department of Pharmacology, University of Maryland School of Medicine, 670 W. Baltimore Street, HSFIII 9-130, Baltimore, MD, 21201, USA
| | - Margaret M McCarthy
- Department of Pharmacology, University of Maryland School of Medicine, 670 W. Baltimore Street, HSFIII 9-130, Baltimore, MD, 21201, USA
| |
Collapse
|
48
|
IL-37 is increased in brains of children with autism spectrum disorder and inhibits human microglia stimulated by neurotensin. Proc Natl Acad Sci U S A 2019; 116:21659-21665. [PMID: 31591201 DOI: 10.1073/pnas.1906817116] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Autism spectrum disorder (ASD) does not have a distinct pathogenesis or effective treatment. Increasing evidence supports the presence of immune dysfunction and inflammation in the brains of children with ASD. In this report, we present data that gene expression of the antiinflammatory cytokine IL-37, as well as of the proinflammatory cytokines IL-18 and TNF, is increased in the amygdala and dorsolateral prefrontal cortex of children with ASD as compared to non-ASD controls. Gene expression of IL-18R, which is a receptor for both IL-18 and IL-37, is also increased in the same brain areas of children with ASD. Interestingly, gene expression of the NTR3/sortilin receptor is reduced in the amygdala and dorsolateral prefrontal cortex. Pretreatment of cultured human microglia from normal adult brains with human recombinant IL-37 (1 to 100 ng/mL) inhibits neurotensin (NT)-stimulated secretion and gene expression of IL-1β and CXCL8. Another key finding is that NT, as well as the proinflammatory cytokines IL-1β and TNF increase IL-37 gene expression in cultured human microglia. The data presented here highlight the connection between inflammation and ASD, supporting the development of IL-37 as a potential therapeutic agent of ASD.
Collapse
|
49
|
Jin Y, Choi J, Lee S, Kim JW, Hong Y. Pathogenetical and Neurophysiological Features of Patients with Autism Spectrum Disorder: Phenomena and Diagnoses. J Clin Med 2019; 8:E1588. [PMID: 31581672 PMCID: PMC6832208 DOI: 10.3390/jcm8101588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/17/2019] [Accepted: 09/30/2019] [Indexed: 12/29/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder that is accompanied by social deficits, repetitive and restricted interests, and altered brain development. The majority of ASD patients suffer not only from ASD itself but also from its neuropsychiatric comorbidities. Alterations in brain structure, synaptic development, and misregulation of neuroinflammation are considered risk factors for ASD and neuropsychiatric comorbidities. Electroencephalography has been developed to quantitatively explore effects of these neuronal changes of the brain in ASD. The pineal neurohormone melatonin is able to contribute to neural development. Also, this hormone has an inflammation-regulatory role and acts as a circadian key regulator to normalize sleep. These functions of melatonin may play crucial roles in the alleviation of ASD and its neuropsychiatric comorbidities. In this context, this article focuses on the presumable role of melatonin and suggests that this hormone could be a therapeutic agent for ASD and its related neuropsychiatric disorders.
Collapse
Affiliation(s)
- Yunho Jin
- Department of Rehabilitation Science, Graduate School of Inje University, Gimhae 50834, Korea.
- Ubiquitous Healthcare & Anti-aging Research Center (u-HARC), Inje University, Gimhae 50834, Korea.
- Biohealth Products Research Center (BPRC), Inje University, Gimhae 50834, Korea.
- Department of Physical Therapy, College of Healthcare Medical Science & Engineering, Inje University, Gimhae 50834, Korea.
| | - Jeonghyun Choi
- Department of Rehabilitation Science, Graduate School of Inje University, Gimhae 50834, Korea.
- Ubiquitous Healthcare & Anti-aging Research Center (u-HARC), Inje University, Gimhae 50834, Korea.
- Biohealth Products Research Center (BPRC), Inje University, Gimhae 50834, Korea.
- Department of Physical Therapy, College of Healthcare Medical Science & Engineering, Inje University, Gimhae 50834, Korea.
| | - Seunghoon Lee
- Gimhae Industry Promotion & Biomedical Foundation, Gimhae 50969, Korea.
| | - Jong Won Kim
- Department of Healthcare Information Technology, College of Bio-Nano Information Technology, Inje University, Gimhae 50834, Korea.
| | - Yonggeun Hong
- Department of Rehabilitation Science, Graduate School of Inje University, Gimhae 50834, Korea.
- Ubiquitous Healthcare & Anti-aging Research Center (u-HARC), Inje University, Gimhae 50834, Korea.
- Biohealth Products Research Center (BPRC), Inje University, Gimhae 50834, Korea.
- Department of Physical Therapy, College of Healthcare Medical Science & Engineering, Inje University, Gimhae 50834, Korea.
- Department of Medicine, Division of Hematology/Oncology, Harvard Medical School-Beth Israel Deaconess Medical Center, Boston, MA 02215, USA.
| |
Collapse
|
50
|
Churchward MA, Michaud ER, Todd KG. Supporting microglial niches for therapeutic benefit in psychiatric disorders. Prog Neuropsychopharmacol Biol Psychiatry 2019; 94:109648. [PMID: 31078613 DOI: 10.1016/j.pnpbp.2019.109648] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 05/06/2019] [Accepted: 05/08/2019] [Indexed: 12/27/2022]
Abstract
Inflammation is an essential tissue response to injury, stress, or infection resulting in debris and/or pathogen clearance intended to promote healing and recovery. Due to the status as an immune 'privileged' tissue, microglia serve as endogenous regulators of inflammation in the central nervous system, but maintain communication with peripheral immune system to enable recruitment of peripheral immune cells in case of injury or infection. While microglia retain the functional capacity for a full range of inflammatory functions - microglia express a range of pattern-recognition receptors and function as innate immune cells, carry out phagocytosis of pathogens, and act as antigen presenting cells - in the healthy central nervous system (CNS) these functions are rarely engaged. Subsequently microglia are being recognized to occupy an increasing number of homeostatic niches, and in many cases have adopted immune or inflammatory mechanisms to carry out these niche functions absent immune activation. These sterile inflammatory functions are challenging long-held views of the role of inflammation in the central nervous system while simultaneously expanding the potential for the development of truly novel therapeutic interventions for a range of neuroinflammatory, neurodegenerative, and neuropsychiatric disorders. In the present review we discuss recent preclinical evidence for conserved niche functions for microglia whose disruption may causally contribute to various psychiatric disorders, and prospective targets for restoring disrupted niches.
Collapse
Affiliation(s)
- M A Churchward
- Neurochemical Research Unit, Department of Psychiatry, Faculty of Medicine, University of Alberta, Edmonton, AB T6G2R3, Canada; Neuroscience and Mental Health Institute, Faculty of Medicine, University of Alberta, Edmonton, AB T6G2R3, Canada.
| | - E R Michaud
- Neurochemical Research Unit, Department of Psychiatry, Faculty of Medicine, University of Alberta, Edmonton, AB T6G2R3, Canada; Neuroscience and Mental Health Institute, Faculty of Medicine, University of Alberta, Edmonton, AB T6G2R3, Canada
| | - K G Todd
- Neurochemical Research Unit, Department of Psychiatry, Faculty of Medicine, University of Alberta, Edmonton, AB T6G2R3, Canada; Neuroscience and Mental Health Institute, Faculty of Medicine, University of Alberta, Edmonton, AB T6G2R3, Canada; Department of Biomedical Engineering, University of Alberta, Edmonton, AB T6G2R3, Canada
| |
Collapse
|