1
|
Zhou R, Barnes K, Gibson S, Fillmore N. Dual-edged role of SIRT1 in energy metabolism and cardiovascular disease. Am J Physiol Heart Circ Physiol 2024; 327:H1162-H1173. [PMID: 39269450 DOI: 10.1152/ajpheart.00001.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 08/13/2024] [Accepted: 09/06/2024] [Indexed: 09/15/2024]
Abstract
Regulation of energy metabolism is pivotal in the development of cardiovascular diseases. Dysregulation in mitochondrial fatty acid oxidation has been linked to cardiac lipid accumulation and diabetic cardiomyopathy. Sirtuin 1 (SIRT1) is a deacetylase that regulates the acetylation of various proteins involved in mitochondrial energy metabolism. SIRT1 mediates energy metabolism by directly and indirectly affecting multiple aspects of mitochondrial processes, such as mitochondrial biogenesis. SIRT1 interacts with essential mitochondrial energy regulators such as peroxisome proliferator-activated receptor-α (PPARα), PPARγ coactivator-1α, estrogen-related receptor-α, and their downstream targets. Apart from that, SIRT1 regulates additional proteins, including forkhead box protein O1 and AMP-activated protein kinase in cardiac disease. Interestingly, studies have also shown that the expression of SIRT1 plays a dual-edged role in energy metabolism. Depending on the physiological state, SIRT1 expression can be detrimental or protective. This review focuses on the molecular pathways through which SIRT1 regulates energy metabolism in cardiovascular diseases. We will review SIRT1 and discuss its role in cardiac energy metabolism and its benefits and detrimental effects in heart disease.
Collapse
Affiliation(s)
- Redemptor Zhou
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health and Human Sciences, North Dakota State University, Fargo, North Dakota, United States
| | - Kaleb Barnes
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health and Human Sciences, North Dakota State University, Fargo, North Dakota, United States
| | - Savannah Gibson
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health and Human Sciences, North Dakota State University, Fargo, North Dakota, United States
| | - Natasha Fillmore
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health and Human Sciences, North Dakota State University, Fargo, North Dakota, United States
| |
Collapse
|
2
|
Ozcan M, Abdellatif M, Javaheri A, Sedej S. Risks and Benefits of Intermittent Fasting for the Aging Cardiovascular System. Can J Cardiol 2024; 40:1445-1457. [PMID: 38354947 DOI: 10.1016/j.cjca.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/08/2024] [Accepted: 02/08/2024] [Indexed: 02/16/2024] Open
Abstract
Population aging and the associated increase in cardiovascular disease rates pose serious threats to global public health. Different forms of fasting have become an increasingly attractive strategy to directly address aging and potentially limit or delay the onset of cardiovascular diseases. A growing number of experimental studies and clinical trials indicate that the amount and timing of food intake as well as the daily time window during which food is consumed, are crucial determinants of cardiovascular health. Indeed, intermittent fasting counteracts the molecular hallmarks of cardiovascular aging and promotes different aspects of cardiometabolic health, including blood pressure and glycemic control, as well as body weight reduction. In this report, we summarize current evidence from randomized clinical trials of intermittent fasting on body weight and composition as well as cardiovascular and metabolic risk factors. Moreover, we critically discuss the preventive and therapeutic potential of intermittent fasting, but also possible detrimental effects in the context of cardiovascular aging and related disease. We delve into the physiological mechanisms through which intermittent fasting might improve cardiovascular health, and raise important factors to consider in the design of clinical trials on the efficacy of intermittent fasting to reduce major adverse cardiovascular events among aged individuals at high risk of cardiovascular disease. We conclude that despite growing evidence and interest among the lay and scientific communities in the cardiovascular health-improving effects of intermittent fasting, further research efforts and appropriate caution are warranted before broadly implementing intermittent fasting regimens, especially in elderly persons.
Collapse
Affiliation(s)
- Mualla Ozcan
- Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Mahmoud Abdellatif
- Department of Cardiology, Medical University of Graz, Graz, Austria; BioTechMed Graz, Graz, Austria
| | - Ali Javaheri
- Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA; John J. Cochran Veterans Affairs Medical Center, St. Louis, Missouri, USA
| | - Simon Sedej
- Department of Cardiology, Medical University of Graz, Graz, Austria; BioTechMed Graz, Graz, Austria; Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia.
| |
Collapse
|
3
|
Chen W, Zhang S, Hu X, Chen F, Li D. A Review of Healthy Dietary Choices for Cardiovascular Disease: From Individual Nutrients and Foods to Dietary Patterns. Nutrients 2023; 15:4898. [PMID: 38068756 PMCID: PMC10708231 DOI: 10.3390/nu15234898] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Cardiovascular disease (CVD) remains the first cause of mortality globally. Diet plays a fundamental role in cardiovascular health and is closely linked to the development of CVD. Numerous human studies have provided evidence on the relationship between diet and CVD. By discussing the available findings on the dietary components that potentially influence CVD progression and prevention, this review attempted to provide the current state of evidence on healthy dietary choices for CVD. We focus on the effects of individual macronutrients, whole food products, and dietary patterns on the risks of CVD, and the data from population-based trials, observational studies, and meta-analyses are summarized. Unhealthy dietary habits, such as high intake of saturated fatty acids, sugar-sweetened beverages, red meat, and processed meat as well as high salt intake are associated with the increased risk of CVD. Conversely, increased consumption of plant-based components such as dietary fiber, nuts, fruits, and vegetables is shown to be effective in reducing CVD risk factors. The Mediterranean diet appears to be one of the most evidence-based dietary patterns beneficial for CVD prevention. However, there is still great debate regarding whether the supplementation of vitamins and minerals confers cardioprotective benefits. This review provides new insights into the role of dietary factors that are harmful or protective in CVD, which can be adopted for improved cardiovascular health.
Collapse
Affiliation(s)
| | | | | | - Fang Chen
- National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, College of Food Science and Nutritional Engineering, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China; (W.C.); (S.Z.); (X.H.)
| | - Daotong Li
- National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, College of Food Science and Nutritional Engineering, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China; (W.C.); (S.Z.); (X.H.)
| |
Collapse
|
4
|
Forte M, Rodolico D, Ameri P, Catalucci D, Chimenti C, Crotti L, Schirone L, Pingitore A, Torella D, Iacovone G, Valenti V, Schiattarella GG, Perrino C, Sciarretta S. Molecular mechanisms underlying the beneficial effects of exercise and dietary interventions in the prevention of cardiometabolic diseases. J Cardiovasc Med (Hagerstown) 2022; 24:e3-e14. [PMID: 36729582 DOI: 10.2459/jcm.0000000000001397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Cardiometabolic diseases still represent a major cause of mortality worldwide. In addition to pharmacological approaches, lifestyle interventions can also be adopted for the prevention of these morbid conditions. Lifestyle changes include exercise and dietary restriction protocols, such as calorie restriction and intermittent fasting, which were shown to delay cardiovascular ageing and elicit health-promoting effects in preclinical models of cardiometabolic diseases. Beneficial effects are mediated by the restoration of multiple molecular mechanisms in heart and vessels that are compromised by metabolic stress. Exercise and dietary restriction rescue mitochondrial dysfunction, oxidative stress and inflammation. They also improve autophagy. The result of these effects is a marked improvement of vascular and heart function. In this review, we provide a comprehensive overview of the molecular mechanisms involved in the beneficial effects of exercise and dietary restriction in models of diabetes and obesity. We also discuss clinical studies and gap in animal-to-human translation.
Collapse
Affiliation(s)
- Maurizio Forte
- Department of AngioCardioNeurology, IRCCS Neuromed, Pozzilli
| | - Daniele Rodolico
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome
| | - Pietro Ameri
- Cardiovascular Disease Unit, IRCCS Ospedale Policlinico.,Department of Internal Medicine, University of Genova, Genova
| | - Daniele Catalucci
- Humanitas Research Hospital, IRCCS, Rozzano.,National Research Council, Institute of Genetic and Biomedical Research - UOS, Milan
| | - Cristina Chimenti
- Department of Clinical, Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Rome
| | - Lia Crotti
- Istituto Auxologico Italiano, IRCCS, Department of Cardiovascular, Neural and Metabolic Sciences, San Luca Hospital.,Department of Medicine and Surgery, Università Milano-Bicocca, Milan
| | - Leonardo Schirone
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina
| | - Annachiara Pingitore
- Department of General and Specialistic Surgery 'Paride Stefanini' Sapienza University of Rome
| | - Daniele Torella
- Molecular and Cellular Cardiology Laboratory, Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro
| | | | | | - Gabriele G Schiattarella
- Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University of Naples, Naples, Italy
| | - Cinzia Perrino
- Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University of Naples, Naples, Italy
| | - Sebastiano Sciarretta
- Department of AngioCardioNeurology, IRCCS Neuromed, Pozzilli.,Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina
| | | |
Collapse
|
5
|
Arciero PJ, Arciero KM, Poe M, Mohr AE, Ives SJ, Arciero A, Boyce M, Zhang J, Haas M, Valdez E, Corbet D, Judd K, Smith A, Furlong O, Wahler M, Gumpricht E. Intermittent fasting two days versus one day per week, matched for total energy intake and expenditure, increases weight loss in overweight/obese men and women. Nutr J 2022; 21:36. [PMID: 35658959 PMCID: PMC9166203 DOI: 10.1186/s12937-022-00790-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 05/26/2022] [Indexed: 02/08/2023] Open
Abstract
Background Intermittent fasting (IF), consisting of either a one-day (IF1) or two consecutive days (IF2) per week, is commonly used for optimal body weight loss. Our laboratory has previously shown an IF1 diet combined with 6d/week of protein pacing (P; 4–5 meals/day evenly spaced, ~ 30% protein/day) significantly enhances weight loss, body composition, and cardiometabolic health in obese men and women. Whether an IF1-P or IF2-P, matched for weekly energy intake (EI) and expenditure (EE), is superior for weight loss, body composition, and cardiometabolic health is unknown. Methods This randomized control study directly compared an IF1-P (n = 10) versus an IF2-P (n = 10) diet on weight loss and body composition, cardiovascular (blood pressure and lipids), hormone, and hunger responses in 20 overweight men and women during a 4-week weight loss period. Participants received weekly dietary counseling and monitoring of compliance from a registered dietitian. All outcome variables were assessed pre (week 0) and post (week 5). Results Both groups significantly reduced body weight, waist circumference, percent body fat, fat mass, hunger, blood pressure, lipids, glucose, and increased percent fat-free mass (p < 0.05). However, IF2-P resulted in significantly greater reductions in body weight (-29%) and waist circumference (-38%) compared to IF1-P (p < 0.05), and showed a strong tendency for greater reductions in fat mass, glucose, and hunger levels (p < 0.10) despite similar weekly total EI (IF1-P, 9058 ± 692 vs. IF2-P, 8389 ± 438 kcals/week; p = 0.90), EE (~ 300 kcals/day; p = 0.79), and hormone responses (p > 0.10). Conclusions These findings support short-term IF1-P and IF2-P to optimize weight loss and improve body composition, cardiometabolic health, and hunger management, with IF2-P providing enhanced benefits in overweight women and men. Trial registration This trial was registered March 03, 2020 at www.clinicaltrials.gov as NCT04327141. Supplementary Information The online version contains supplementary material available at 10.1186/s12937-022-00790-0.
Collapse
Affiliation(s)
- Paul J Arciero
- Human Nutrition and Metabolism Laboratory, Department of Health and Human Physiological Sciences, Skidmore College, 815 North Broadway, Saratoga Springs, NY, 12866, USA.
| | - Karen M Arciero
- Human Nutrition and Metabolism Laboratory, Department of Health and Human Physiological Sciences, Skidmore College, 815 North Broadway, Saratoga Springs, NY, 12866, USA
| | - Michelle Poe
- Human Nutrition and Metabolism Laboratory, Department of Health and Human Physiological Sciences, Skidmore College, 815 North Broadway, Saratoga Springs, NY, 12866, USA
| | - Alex E Mohr
- College of Health Solutions, Arizona State University, Phoenix, AZ, 85004, USA
| | - Stephen J Ives
- Human Nutrition and Metabolism Laboratory, Department of Health and Human Physiological Sciences, Skidmore College, 815 North Broadway, Saratoga Springs, NY, 12866, USA
| | - Autumn Arciero
- Human Nutrition and Metabolism Laboratory, Department of Health and Human Physiological Sciences, Skidmore College, 815 North Broadway, Saratoga Springs, NY, 12866, USA
| | - Molly Boyce
- Human Nutrition and Metabolism Laboratory, Department of Health and Human Physiological Sciences, Skidmore College, 815 North Broadway, Saratoga Springs, NY, 12866, USA
| | - Jin Zhang
- Human Nutrition and Metabolism Laboratory, Department of Health and Human Physiological Sciences, Skidmore College, 815 North Broadway, Saratoga Springs, NY, 12866, USA
| | - Melissa Haas
- Human Nutrition and Metabolism Laboratory, Department of Health and Human Physiological Sciences, Skidmore College, 815 North Broadway, Saratoga Springs, NY, 12866, USA
| | - Emma Valdez
- Human Nutrition and Metabolism Laboratory, Department of Health and Human Physiological Sciences, Skidmore College, 815 North Broadway, Saratoga Springs, NY, 12866, USA
| | - Delaney Corbet
- Human Nutrition and Metabolism Laboratory, Department of Health and Human Physiological Sciences, Skidmore College, 815 North Broadway, Saratoga Springs, NY, 12866, USA
| | - Kaitlyn Judd
- Human Nutrition and Metabolism Laboratory, Department of Health and Human Physiological Sciences, Skidmore College, 815 North Broadway, Saratoga Springs, NY, 12866, USA
| | - Annika Smith
- Human Nutrition and Metabolism Laboratory, Department of Health and Human Physiological Sciences, Skidmore College, 815 North Broadway, Saratoga Springs, NY, 12866, USA
| | - Olivia Furlong
- Human Nutrition and Metabolism Laboratory, Department of Health and Human Physiological Sciences, Skidmore College, 815 North Broadway, Saratoga Springs, NY, 12866, USA
| | - Marley Wahler
- Human Nutrition and Metabolism Laboratory, Department of Health and Human Physiological Sciences, Skidmore College, 815 North Broadway, Saratoga Springs, NY, 12866, USA
| | | |
Collapse
|
6
|
Wei X, Cooper A, Lee I, Cernoch CA, Huntoon G, Hodek B, Christian H, Chao AM. Intermittent Energy Restriction for Weight Loss: A Systematic Review of Cardiometabolic, Inflammatory and Appetite Outcomes. Biol Res Nurs 2022; 24:410-428. [PMID: 35531785 DOI: 10.1177/10998004221078079] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Current guidelines for obesity treatment recommend reducing daily caloric intake for weight loss. However, long-term weight loss continues to be an issue in obesity management. Alternative weight loss strategies have increased in popularity, such as intermittent energy restriction (IER), a type of eating pattern with periods of fasting alternating with unrestricted eating. The effects of IER on weight loss, cardiovascular risk factors, inflammation, and appetite are not clear. The purpose of this systematic review was to analyze short- (<24 weeks) and long-term (≥24 weeks) effects of IER on anthropometric, cardiometabolic, inflammatory, and appetite outcomes in adults with overweight/obesity. PubMed, CINAHL, Embase, and PsycInfo were searched from inception to July 2020. Human randomized controlled trials (RCTs) on IER with participants with a body mass index ≥25 kg/m2 were included in this review. A total of 42 articles (reporting on 27 different RCTs) were included. In short-term studies, IER showed pre-to-post treatment improvements in eight of nine studies that assessed weight. Weight outcomes were sustained in the long-term. However, no significant long-term between group differences were observed in fat mass, other anthropometric, cardiometabolic, inflammatory, or appetite outcomes. Compared to continuous energy restriction (CER), IER showed no significant long-term differences in anthropometric, cardiometabolic, inflammatory, or appetite outcomes in included studies. More long-term studies are needed to assess the benefits of IER on health outcomes.
Collapse
Affiliation(s)
- Xueting Wei
- Department of Biobehavioral Health Sciences, School of Nursing, 16142University of Pennsylvania, Philadelphia, PA, USA
| | - Ashley Cooper
- Department of Biobehavioral Health Sciences, School of Nursing, 16142University of Pennsylvania, Philadelphia, PA, USA
| | - Irene Lee
- Department of Biobehavioral Health Sciences, School of Nursing, 16142University of Pennsylvania, Philadelphia, PA, USA
| | - Christine A Cernoch
- Department of Biobehavioral Health Sciences, School of Nursing, 16142University of Pennsylvania, Philadelphia, PA, USA
| | - Ginny Huntoon
- Department of Biobehavioral Health Sciences, School of Nursing, 16142University of Pennsylvania, Philadelphia, PA, USA
| | - Brandi Hodek
- Department of Biobehavioral Health Sciences, School of Nursing, 16142University of Pennsylvania, Philadelphia, PA, USA
| | - Hanna Christian
- Department of Biobehavioral Health Sciences, School of Nursing, 16142University of Pennsylvania, Philadelphia, PA, USA
| | - Ariana M Chao
- Department of Biobehavioral Health Sciences, School of Nursing, 16142University of Pennsylvania, Philadelphia, PA, USA.,Department of Psychiatry, Perelman School of Medicine, 16142University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
7
|
Joaquim L, Faria A, Loureiro H, Matafome P. Benefits, mechanisms, and risks of intermittent fasting in metabolic syndrome and type 2 diabetes. J Physiol Biochem 2022; 78:295-305. [PMID: 34985730 DOI: 10.1007/s13105-021-00839-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 08/18/2021] [Indexed: 10/19/2022]
Abstract
One of the emergent nutritional strategies for improving multiple features of cardiometabolic diseases is the practice of intermittent fasting (IF), which consists of alternating periods of eating and fasting. IF can reduce circulating glucose and insulin levels, fat mass, and the risk of developing age-related pathologies. IF appears to upregulate evolution-conserved adaptive cellular responses, such as stress-response pathways, autophagy, and mitochondrial function. IF was also observed to modulate the circadian rhythms of hormones like insulin or leptin, among others, which levels change in conditions of food abundance and deficit. However, some contradictory results regarding the duration of the interventions and the anterior metabolic status of the participants suggest that more and longer studies are needed in order to draw conclusions. This review summarizes the current knowledge regarding the role of IF in the modulation of mechanisms involved in type 2 diabetes, as well as the risks.
Collapse
Affiliation(s)
- Lisandra Joaquim
- Instituto Politécnico de Coimbra, Coimbra Health School (ESTeSC), Coimbra, Portugal
| | - Ana Faria
- Instituto Politécnico de Coimbra, Coimbra Health School (ESTeSC), Coimbra, Portugal
| | - Helena Loureiro
- Instituto Politécnico de Coimbra, Coimbra Health School (ESTeSC), Coimbra, Portugal
| | - Paulo Matafome
- Instituto Politécnico de Coimbra, Coimbra Health School (ESTeSC), Coimbra, Portugal.
- Institute of Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Subunit 1, 1st floor, Azinhaga de Santa Comba, Celas, 3000-354, Coimbra, Portugal.
- Centre for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal.
- Clinical Academic Center, Coimbra, Portugal.
| |
Collapse
|
8
|
Hajek P, Przulj D, Pesola F, McRobbie H, Peerbux S, Phillips-Waller A, Bisal N, Myers Smith K. A randomised controlled trial of the 5:2 diet. PLoS One 2021; 16:e0258853. [PMID: 34788298 PMCID: PMC8598045 DOI: 10.1371/journal.pone.0258853] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 10/05/2021] [Indexed: 01/02/2023] Open
Abstract
Objective The 5:2 diet is a popular intermittent energy restriction method of weight management that awaits further evaluation. We compared the effects of one-off 5:2 instructions with the effects of one-off standard multicomponent weight-management advice; and also examined whether additional behavioural support enhances 5:2 adherence and efficacy compared to one-off instructions. Methods Three hundred adults with obesity were randomised to receive a Standard Brief Advice (SBA) covering diet and physical activity (N = 100); 5:2 self-help instructions (5:2SH) (N = 100); or 5:2SH plus six once-weekly group support sessions (N = 100). Participants were followed up for one year. Results Adherence to 5:2SH was initially high (74% at 6 weeks), but it declined over time (31% at 6 months and 22% at one year). 5:2SH and SBA achieved similar weight-loss at six months (-1.8kg (SD = 3.5) vs -1.7kg (SD = 4.4); b = 0.23, 95%CI:-0.79–1.27, p = 0.7) and at one year (-1.9kg (SD = 4.9) vs -1.8kg (SD = 5.7), b = 0.20, 95%CI:-1.21–1.60, p = 0.79), with 18% vs 15% participants losing ≥5% of their body weight with 5:2SH and SBA, respectively at one year (RR = 0.83, 95%CI:0.44–1.54, p = 0.55). Both interventions received positive ratings, but 5:2SH ratings were significantly higher. 5:2SH had no negative effect on fat and fiber intake and physical activity compared to SBA. Compared to 5:2SH, 5:2G generated a greater weight loss at 6 weeks (-2.3kg vs -1.5kg; b = 0.74, 95%CI:1.37–0.11, p = 0.02), but by one year, the difference was no longer significant (-2.6kg vs -1.9kg, p = 0.37; ≥5% body weight loss 28% vs 18%, p = 0.10). Conclusions Simple 5:2 advice and multicomponent weight management advice generated similar modest results. The 5:2 diet did not undermine other health behaviours, and it received more favourable ratings. Adding initial group support enhanced 5:2 adherence and effects, but the impact diminished over time. Health professionals who provide brief weight management advice may consider including the 5:2 advice as an option. Trial registration ISRCTN registry (ISRCTN79408248).
Collapse
Affiliation(s)
- Peter Hajek
- Health and Lifestyle Research Unit, Wolfson Institute of Population Health, Queen Mary University of London, London, United Kingdom
| | - Dunja Przulj
- Health and Lifestyle Research Unit, Wolfson Institute of Population Health, Queen Mary University of London, London, United Kingdom
| | - Francesca Pesola
- Health and Lifestyle Research Unit, Wolfson Institute of Population Health, Queen Mary University of London, London, United Kingdom
| | - Hayden McRobbie
- Health and Lifestyle Research Unit, Wolfson Institute of Population Health, Queen Mary University of London, London, United Kingdom
| | - Sarrah Peerbux
- Health and Lifestyle Research Unit, Wolfson Institute of Population Health, Queen Mary University of London, London, United Kingdom
| | - Anna Phillips-Waller
- Health and Lifestyle Research Unit, Wolfson Institute of Population Health, Queen Mary University of London, London, United Kingdom
| | - Natalie Bisal
- Health and Lifestyle Research Unit, Wolfson Institute of Population Health, Queen Mary University of London, London, United Kingdom
| | - Katie Myers Smith
- Health and Lifestyle Research Unit, Wolfson Institute of Population Health, Queen Mary University of London, London, United Kingdom
- * E-mail:
| |
Collapse
|
9
|
Bermúdez V, Durán P, Rojas E, Díaz MP, Rivas J, Nava M, Chacín M, Cabrera de Bravo M, Carrasquero R, Ponce CC, Górriz JL, D´Marco L. The Sick Adipose Tissue: New Insights Into Defective Signaling and Crosstalk With the Myocardium. Front Endocrinol (Lausanne) 2021; 12:735070. [PMID: 34603210 PMCID: PMC8479191 DOI: 10.3389/fendo.2021.735070] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/30/2021] [Indexed: 12/12/2022] Open
Abstract
Adipose tissue (AT) biology is linked to cardiovascular health since obesity is associated with cardiovascular disease (CVD) and positively correlated with excessive visceral fat accumulation. AT signaling to myocardial cells through soluble factors known as adipokines, cardiokines, branched-chain amino acids and small molecules like microRNAs, undoubtedly influence myocardial cells and AT function via the endocrine-paracrine mechanisms of action. Unfortunately, abnormal total and visceral adiposity can alter this harmonious signaling network, resulting in tissue hypoxia and monocyte/macrophage adipose infiltration occurring alongside expanded intra-abdominal and epicardial fat depots seen in the human obese phenotype. These processes promote an abnormal adipocyte proteomic reprogramming, whereby these cells become a source of abnormal signals, affecting vascular and myocardial tissues, leading to meta-inflammation, atrial fibrillation, coronary artery disease, heart hypertrophy, heart failure and myocardial infarction. This review first discusses the pathophysiology and consequences of adipose tissue expansion, particularly their association with meta-inflammation and microbiota dysbiosis. We also explore the precise mechanisms involved in metabolic reprogramming in AT that represent plausible causative factors for CVD. Finally, we clarify how lifestyle changes could promote improvement in myocardiocyte function in the context of changes in AT proteomics and a better gut microbiome profile to develop effective, non-pharmacologic approaches to CVD.
Collapse
Affiliation(s)
- Valmore Bermúdez
- Facultad de Ciencias de la Salud, Universidad Simón Bolívar, Barranquilla, Colombia
| | - Pablo Durán
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Edward Rojas
- Cardiovascular Division, University Hospital, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - María P. Díaz
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - José Rivas
- Department of Medicine, Cardiology Division, University of Florida-College of Medicine, Jacksonville, FL, United States
| | - Manuel Nava
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Maricarmen Chacín
- Facultad de Ciencias de la Salud, Universidad Simón Bolívar, Barranquilla, Colombia
| | | | - Rubén Carrasquero
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Clímaco Cano Ponce
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - José Luis Górriz
- Servicio de Nefrología, Hospital Clínico Universitario, INCLIVA, Universidad de Valencia, Valencia, Spain
| | - Luis D´Marco
- Servicio de Nefrología, Hospital Clínico Universitario, INCLIVA, Universidad de Valencia, Valencia, Spain
| |
Collapse
|
10
|
Veldscholte K, Cramer ABG, Joosten KFM, Verbruggen SCAT. Intermittent fasting in paediatric critical illness: The properties and potential beneficial effects of an overnight fast in the PICU. Clin Nutr 2021; 40:5122-5132. [PMID: 34461586 DOI: 10.1016/j.clnu.2021.07.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/21/2021] [Accepted: 07/26/2021] [Indexed: 12/30/2022]
Abstract
Although evidence for the superiority of continuous feeding over intermittent feeding is lacking, in most paediatric intensive care units (PICU) artificial feeding is administered continuously for 24 h per day. Until now, studies in PICU on intermittent feeding have primarily focused on surrogate endpoints such as nutritional intake and gastro-intestinal complaints and none have studied the effects of an extended fasting period. Intermittent fasting has been proven to have many health benefits in both animal and human studies. The observed beneficial effects are based on multiple metabolic and endocrine changes that are presumed crucial in critical illness as well. One key element is the transition to ketone body metabolism, which, among others, contributes to the stimulation of several cellular pathways involved in stress resistance (neuro)plasticity and mitochondrial biogenesis, and might help preserve brain function. Secondly, the fasting state stimulates the activation of autophagy, a process that is crucial for cellular function and integrity. Of the different intermittent fasting strategies investigated, time-restricted feeding with a daily extended fasting period appears most feasible in the PICU. Moreover, planning the fasting period overnight could help maintain the circadian rhythm. Although not investigated, such an overnight intermittent fasting strategy might improve the metabolic profile, feeding tolerance and perhaps even have beneficial effects on tissue repair, reperfusion injury, muscle weakness, and the immune response. Future studies should investigate practical implications in critically ill children and the optimal duration of the fasting periods, which might be affected by the severity of illness and by age.
Collapse
Affiliation(s)
- Karlien Veldscholte
- Intensive Care Unit, Department of Paediatrics and Paediatric Surgery, Erasmus Medical Centre, Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Arnout B G Cramer
- Intensive Care Unit, Department of Paediatrics and Paediatric Surgery, Erasmus Medical Centre, Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Koen F M Joosten
- Intensive Care Unit, Department of Paediatrics and Paediatric Surgery, Erasmus Medical Centre, Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Sascha C A T Verbruggen
- Intensive Care Unit, Department of Paediatrics and Paediatric Surgery, Erasmus Medical Centre, Sophia Children's Hospital, Rotterdam, the Netherlands.
| |
Collapse
|
11
|
Capparelli R, Iannelli D. Role of Epigenetics in Type 2 Diabetes and Obesity. Biomedicines 2021; 9:977. [PMID: 34440181 PMCID: PMC8393970 DOI: 10.3390/biomedicines9080977] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/30/2021] [Accepted: 08/06/2021] [Indexed: 12/23/2022] Open
Abstract
Epigenetic marks the genome by DNA methylation, histone modification or non-coding RNAs. Epigenetic marks instruct cells to respond reversibly to environmental cues and keep the specific gene expression stable throughout life. In this review, we concentrate on DNA methylation, the mechanism often associated with transgenerational persistence and for this reason frequently used in the clinic. A large study that included data from 10,000 blood samples detected 187 methylated sites associated with body mass index (BMI). The same study demonstrates that altered methylation results from obesity (OB). In another study the combined genetic and epigenetic analysis allowed us to understand the mechanism associating hepatic insulin resistance and non-alcoholic disease in Type 2 Diabetes (T2D) patients. The study underlines the therapeutic potential of epigenetic studies. We also account for seemingly contradictory results associated with epigenetics.
Collapse
Affiliation(s)
- Rosanna Capparelli
- Department of Agriculture Sciences, University of Naples “Federico II”, Via Università, 100-Portici, 80055 Naples, Italy
| | - Domenico Iannelli
- Department of Agriculture Sciences, University of Naples “Federico II”, Via Università, 100-Portici, 80055 Naples, Italy
| |
Collapse
|
12
|
Jahrami HA, Faris ME, I Janahi A, I Janahi M, Abdelrahim DN, Madkour MI, Sater MS, Hassan AB, Bahammam AS. Does four-week consecutive, dawn-to-sunset intermittent fasting during Ramadan affect cardiometabolic risk factors in healthy adults? A systematic review, meta-analysis, and meta-regression. Nutr Metab Cardiovasc Dis 2021; 31:2273-2301. [PMID: 34167865 DOI: 10.1016/j.numecd.2021.05.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/07/2021] [Accepted: 05/10/2021] [Indexed: 02/07/2023]
Abstract
AIMS This study aimed to evaluate the effects of Ramadan diurnal intermittent fasting (RDIF; 29-30 days) on cardiometabolic risk factors (CMRF) in healthy adults, and examine the effect of various cofactors on the outcomes using sub-group meta-regression. DATA SYNTHESIS We conducted a systematic review and meta-analysis to measure the effect sizes of changes in CMRF in healthy adult Muslims observing RDIF. Ten scientific databases (EBSCOhost, CINAHL, Cochrane, EMBASE, PubMed/MEDLINE, Scopus, Google Scholar, ProQuest Medical, ScienceDirect, and Web of Science) were searched from the date of inception (1950) to the end of November 2020. The CMRF searched and analyzed were total cholesterol (TC), triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), very low-density lipoprotein cholesterol (VLDL-C), diastolic blood pressure (DBP), and heart rate (HR). We identified 91 studies (4431 adults aged 18-85 years) conducted between 1982 and 2020 in 23 countries distributed over four continents. RDIF-induced effect sizes for CMRF were: TC (no. of studies K = 77, number of subjects N = 3705, Hedge's g = -0.092, 95% confidence interval (CI): -0.168, 0.016); TG (K = 74, N = 3591, Hedge's g = -0.127, 95% CI: -0.203, 0.051); HDL-C (K = 68, N = 3528, Hedge's g = 0.138, 95% CI: 0.051, 0.224); LDL-C (K = 65, N = 3354, Hedge's g = -0.115, 95% CI: -0.197, -0.034); VLDL-C (K = 13, N = 648, Hedge's g = -0.252, 95% CI: -0.431, 0.073), DBP (K = 32, N = 1716, Hedge's g = -0.255, 95% CI: -0.363, 0.147), and HR (K = 12, N = 674, Hedge's g = -0.082, 95% CI: -0.300, 0.136). Meta-regression revealed that the age of fasting people was a significant moderator of changes in both HDL-C (P = 0.02) and VLDL-C (P = 0.01). Male sex was the only significant moderator of changes in LDL-C (P = 0.055). Fasting time duration was the only significant moderator of HDL-C (P = 0.001) at the end of Ramadan. CONCLUSIONS RDIF positively impacts CMRF, which may confer short-term transient protection against cardiovascular disease among healthy people.
Collapse
Affiliation(s)
- Haitham A Jahrami
- Ministry of Health, Bahrain; College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Bahrain
| | - MoezAlIslam E Faris
- Department of Clinical Nutrition and Dietetics, College of Health Sciences/Research Institute for Medical and Health Sciences (RIMHS), University of Sharjah, Sharjah, United Arab Emirates.
| | - Abdulrahman I Janahi
- College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Bahrain
| | - Mohamed I Janahi
- College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Bahrain
| | - Dana N Abdelrahim
- Department of Nutrition and Food Technology, School of Agriculture, The University of Jordan, Amman, Jordan
| | - Mohamed I Madkour
- Department of Medical Laboratory Sciences, College of Health Sciences/Research Institute for Medical and Health Sciences (RIMHS), University of Sharjah, Sharjah, United Arab Emirates
| | - Mai S Sater
- College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Bahrain
| | - Adla B Hassan
- College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Bahrain
| | - Ahmed S Bahammam
- Department of Medicine, College of Medicine, University Sleep Disorders Center, King Saud University, Saudi Arabia; The Strategic Technologies Program of the National Plan for Sciences and Technology and Innovation in the Kingdom of Saudi Arabia, Riyadh, Saudi Arabia
| |
Collapse
|
13
|
Katsarou AL, Katsilambros NL, Koliaki CC. Intermittent Energy Restriction, Weight Loss and Cardiometabolic Risk: A Critical Appraisal of Evidence in Humans. Healthcare (Basel) 2021; 9:495. [PMID: 33922103 PMCID: PMC8143449 DOI: 10.3390/healthcare9050495] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/16/2021] [Accepted: 04/20/2021] [Indexed: 11/17/2022] Open
Abstract
Dietary patterns with intermittent energy restriction (IER) have been proposed as an attractive alternative to continuous energy restriction (CER) for the management of obesity and its associated comorbidities. The most widely studied regimens of IER comprise energy restriction on two days per week (5:2), alternate-day energy restriction by 60-70% (ADF), and timely restriction of energy intake during a specific time window within the day (TRF; time-restricted feeding). Although there is some evidence to suggest that IER can exert beneficial effects on human cardiometabolic health, yet is apparently not superior compared to CER, there are still some critical issues/questions that warrant further investigation: (i) high-quality robust scientific evidence regarding the long-term effects of IER (safety, efficacy, compliance) is limited since the vast majority of intervention studies had a duration of less than 6 months; (ii) whether the positive effects of IER are independent of or actually mediated by weight loss remains elusive; (iii) it remains unknown whether IER protocols are a safe recommendation for the general population; (iv) data concerning the impact of IER on ectopic fat stores, fat-free mass, insulin resistance and metabolic flexibility are inconclusive; (v) the cost-effectiveness of IER dietary regimens has not been adequately addressed; (vi) direct head-to-head studies comparing different IER patterns with variable macronutrient composition in terms of safety and efficacy are scarce; and (vii) evidence is limited with regard to the efficacy of IER in specific populations, including males, the elderly and patients with morbid obesity and diabetes mellitus. Until more solid evidence is available, individualization and critical perspective are definitely warranted to determine which patients might benefit the most from an IER intervention, depending on their personality traits and most importantly comorbid health conditions.
Collapse
Affiliation(s)
| | - Nicholas L. Katsilambros
- Research Laboratory Christeas Hall, Medical Faculty, National Kapodistrian University of Athens, 11527 Athens, Greece;
- First Propaedeutic Department of Internal Medicine and Diabetes Center, Laiko University Hospital, National Kapodistrian University of Athens, 11527 Athens, Greece
| | - Chrysi C. Koliaki
- First Propaedeutic Department of Internal Medicine and Diabetes Center, Laiko University Hospital, National Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
14
|
Allaf M, Elghazaly H, Mohamed OG, Fareen MFK, Zaman S, Salmasi AM, Tsilidis K, Dehghan A. Intermittent fasting for the prevention of cardiovascular disease. Cochrane Database Syst Rev 2021; 1:CD013496. [PMID: 33512717 PMCID: PMC8092432 DOI: 10.1002/14651858.cd013496.pub2] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Cardiovascular disease (CVD) is the leading cause of death worldwide. Lifestyle changes are at the forefront of preventing the disease. This includes advice such as increasing physical activity and having a healthy balanced diet to reduce risk factors. Intermittent fasting (IF) is a popular dietary plan involving restricting caloric intake to certain days in the week such as alternate day fasting and periodic fasting, and restricting intake to a number of hours in a given day, otherwise known as time-restricted feeding. IF is being researched for its benefits and many randomised controlled trials have looked at its benefits in preventing CVD. OBJECTIVES To determine the role of IF in preventing and reducing the risk of CVD in people with or without prior documented CVD. SEARCH METHODS We conducted our search on 12 December 2019; we searched CENTRAL, MEDLINE and Embase. We also searched three trials registers and searched the reference lists of included papers. Systematic reviews were also viewed for additional studies. There was no language restriction applied. SELECTION CRITERIA We included randomised controlled trials comparing IF to ad libitum feeding (eating at any time with no specific caloric restriction) or continuous energy restriction (CER). Participants had to be over the age of 18 and included those with and without cardiometabolic risk factors. Intermittent fasting was categorised into alternate-day fasting, modified alternate-day fasting, periodic fasting and time-restricted feeding. DATA COLLECTION AND ANALYSIS Five review authors independently selected studies for inclusion and extraction. Primary outcomes included all-cause mortality, cardiovascular mortality, stroke, myocardial infarction, and heart failure. Secondary outcomes include the absolute change in body weight, and glucose. Furthermore, side effects such as headaches and changes to the quality of life were also noted. For continuous data, pooled mean differences (MD) (with 95% confidence intervals (CIs)) were calculated. We contacted trial authors to obtain missing data. We used GRADE to assess the certainty of the evidence. MAIN RESULTS: Our search yielded 39,165 records after the removal of duplicates. From this, 26 studies met our criteria, and 18 were included in the pooled analysis. The 18 studies included 1125 participants and observed outcomes ranging from four weeks to six months. No studies included data on all-cause mortality, cardiovascular mortality, stroke, myocardial infarction, and heart failure at any point during follow-up. Of quantitatively analysed data, seven studies compared IF with ab libitum feeding, eight studies compared IF with CER, and three studies compared IF with both ad libitum feeding and CER. Outcomes were reported at short term (≤ 3 months) and medium term (> 3 months to 12 months) follow-up. Body weight was reduced with IF compared to ad libitum feeding in the short term (MD -2.88 kg, 95% CI -3.96 to -1.80; 224 participants; 7 studies; low-certainty evidence). We are uncertain of the effect of IF when compared to CER in the short term (MD -0.88 kg, 95% CI -1.76 to 0.00; 719 participants; 10 studies; very low-certainty evidence) and there may be no effect in the medium term (MD -0.56 kg, 95% CI -1.68 to 0.56; 279 participants; 4 studies; low-certainty evidence). We are uncertain about the effect of IF on glucose when compared to ad libitum feeding in the short term (MD -0.03 mmol/L, 95% CI -0.26 to 0.19; 95 participants; 3 studies; very-low-certainty of evidence) and when compared to CER in the short term: MD -0.02 mmol/L, 95% CI -0.16 to 0.12; 582 participants; 9 studies; very low-certainty; medium term: MD 0.01, 95% CI -0.10 to 0.11; 279 participants; 4 studies; low-certainty evidence). The changes in body weight and glucose were not deemed to be clinically significant. Four studies reported data on side effects, with some participants complaining of mild headaches. One study reported on the quality of life using the RAND SF-36 score. There was a modest increase in the physical component summary score. AUTHORS' CONCLUSIONS Intermittent fasting was seen to be superior to ad libitum feeding in reducing weight. However, this was not clinically significant. There was no significant clinical difference between IF and CER in improving cardiometabolic risk factors to reduce the risk of CVD. Further research is needed to understand the safety and risk-benefit analysis of IF in specific patient groups (e.g. patients with diabetes or eating disorders) as well as the effect on longer-term outcomes such as all-cause mortality and myocardial infarction.
Collapse
Affiliation(s)
| | | | | | | | - Sadia Zaman
- School of Medicine, Imperial College London, London, UK
| | - Abdul-Majeed Salmasi
- Department of Cardiology, London North West University Healthcare NHS Trust, London, UK
| | - Kostas Tsilidis
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
| | - Abbas Dehghan
- School of Public Health, Imperial College London, London, UK
| |
Collapse
|
15
|
Abdollahi S, Kazemi A, de Souza RJ, Clark CCT, Soltani S. The effect of meal frequency on biochemical cardiometabolic factors: A systematic review and meta-analysis of randomized controlled trials. Clin Nutr 2021; 40:3170-3181. [PMID: 33485709 DOI: 10.1016/j.clnu.2020.12.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 12/16/2020] [Accepted: 12/25/2020] [Indexed: 12/26/2022]
Abstract
BACKGROUND Although several randomized controlled trials (RCTs) have supported the beneficial effects of higher meal frequency (MF) on cardiometabolic risk factors, the putative effects of higher MF on health remain inconclusive. This study systematically reviewed the evidence from RCTs of the effect of higher compared with lower MF on the blood lipid profile, glucose homeostasis, and adipokines. METHODS PubMed, Scopus, ISI Web of Science, and the Cochrane database were searched up to October 2020 to retrieve relevant RCTs. A DerSimonian and Laird random effects model was used to pool mean differences and 95% CI for each outcome. The quality of studies and evidence was assessed through standard methods. RESULTS Twenty-one RCTs (686 participants) were included in this meta-analysis. Overall results showed a significant improvement in total cholesterol [weighted mean difference (WMD) = -6.08 mg/dl; 95% CI: -10.68, -1.48; P = 0.01; I2 = 88%], and low-density cholesterol (LDL-C) (WMD = -6.82 mg/dl; 95% CI: -10.97, -1.60; P = 0.009; I2 = 85.7%), while LDL-C to high-density cholesterol ratio (LDL-C: HDL-C) increased (WMD = 0.22; 95% CI: 0.07, 0.36; P = 0.003; I2 = 0.0%) in higher MF vs. lower MF. No significant effects were found on measures of glycemic control, apolipoproteins-A1 and B, or leptin. In subgroup analyses, higher MF significantly reduced serum triglyceride (TG), and increased HDL-C, compared with lower MF in interventions > 12 weeks, and decreased serum TC and LDL-C in healthy participants. A significant reduction in LDL-C also was observed in studies where the same foods given both arms, simply divided into different feeding occasions, and in feeding studies, following higher MF compared to lower MF. CONCLUSION Our meta-analysis found that higher, compared with lower MF may improve total cholesterol, and LDL-C. The intervention does not affect measures of glycemic control, apolipoproteins-A1 and B, or leptin. However, the GRADE ratings of low credibility of the currently available evidence highlights the need for more high-quality studies in order to reach a firm conclusion.
Collapse
Affiliation(s)
- Shima Abdollahi
- Department of Nutrition and Public Health, School of Public Health, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Asma Kazemi
- Nutrition Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Russell J de Souza
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada; Population Health Research Centre, Hamilton Health Sciences Corporation, Hamilton, ON, Canada
| | - Cain C T Clark
- Centre for Intelligent Healthcare, Coventry University, Coventry, CV1 5FB, UK
| | - Sepideh Soltani
- Yazd Cardiovascular Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
16
|
Tekos F, Skaperda Z, Goutzourelas N, Phelps DS, Floros J, Kouretas D. The Importance of Redox Status in the Frame of Lifestyle Approaches and the Genetics of the Lung Innate Immune Molecules, SP-A1 and SP-A2, on Differential Outcomes of COVID-19 Infection. Antioxidants (Basel) 2020; 9:antiox9090784. [PMID: 32854247 PMCID: PMC7554878 DOI: 10.3390/antiox9090784] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 02/07/2023] Open
Abstract
The pandemic of COVID-19 is of great concern to the scientific community. This mainly affects the elderly and people with underlying diseases. People with obesity are more likely to experience unpleasant disease symptoms and increased mortality. The severe oxidative environment that occurs in obesity due to chronic inflammation permits viral activation of further inflammation leading to severe lung disease. Lifestyle affects the levels of inflammation and oxidative stress. It has been shown that a careful diet rich in antioxidants, regular exercise, and fasting regimens, each and/or together, can reduce the levels of inflammation and oxidative stress and strengthen the immune system as they lead to weight loss and activate cellular antioxidant mechanisms and reduce oxidative damage. Thus, a lifestyle change based on the three pillars: antioxidants, exercise, and fasting could act as a proactive preventative measure against the adverse effects of COVID-19 by maintaining redox balance and well-functioning immunity. Moreover, because of the observed diversity in the expression of COVID-19 inflammation, the role of genetics of innate immune molecules, surfactant protein A (SP-A)1 and SP-A2, and their differential impact on the local lung microenvironment and host defense is reviewed as genetics may play a major role in the diverse expression of the disease.
Collapse
Affiliation(s)
- Fotios Tekos
- Department of Biochemistry-Biotechnology, University of Thessaly, 41500 Larissa, Greece; (F.T.); (Z.S.); (N.G.)
| | - Zoi Skaperda
- Department of Biochemistry-Biotechnology, University of Thessaly, 41500 Larissa, Greece; (F.T.); (Z.S.); (N.G.)
| | - Nikolaos Goutzourelas
- Department of Biochemistry-Biotechnology, University of Thessaly, 41500 Larissa, Greece; (F.T.); (Z.S.); (N.G.)
| | - David S. Phelps
- Center for Host Defense, Inflammation, and Lung Disease (CHILD) and Departments of Pediatrics, Hershey, PA 17033, USA; (D.S.P.); (J.F.)
| | - Joanna Floros
- Center for Host Defense, Inflammation, and Lung Disease (CHILD) and Departments of Pediatrics, Hershey, PA 17033, USA; (D.S.P.); (J.F.)
- Obstetrics & Gynecology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Demetrios Kouretas
- Department of Biochemistry-Biotechnology, University of Thessaly, 41500 Larissa, Greece; (F.T.); (Z.S.); (N.G.)
- Correspondence: ; Tel.: +30-2410-565-277; Fax: +30-2410-565-290
| |
Collapse
|
17
|
Corina A, Abrudan MB, Nikolic D, Cӑtoi AF, Chianetta R, Castellino G, Citarrella R, Stoian AP, Pérez-Martínez P, Rizzo M. Effects of Aging and Diet on Cardioprotection and Cardiometabolic Risk Markers. Curr Pharm Des 2020; 25:3704-3714. [PMID: 31692432 DOI: 10.2174/1381612825666191105111232] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 10/30/2019] [Indexed: 12/11/2022]
Abstract
The prevalence of several diseases increases by age, including cardiovascular diseases, which are the leading cause of morbidity and mortality worldwide. Aging, as a complex process characterized by senescence, triggers various pathways, such as oxidative stress, systemic inflammation, metabolism dysfunction, telomere shortening, mitochondrial dysfunction and deregulated autophagy. A better understanding of the mechanisms underlying senescence may lead to the development of new therapeutic targets and strategies for age-related pathologies and extend the healthy lifespan. Modulating lifestyle risk factors and adopting healthy dietary patterns remain significant tools in delaying the aging process, decreasing age-associated comorbidities and mortality, increasing life expectancy and consequently, preventing the development of cardiovascular disease. Furthermore, such a strategy represents the most cost-effective approach, and the quality of life of the subjects may be significantly improved. An integrated, personalized approach targeting cardiometabolic aging and frailty is suggested in daily clinical practice. However, it should be initiated from an early age. Moreover, there is a need for further well designed and controlled studies in order to elucidate a link between the time of feeding, longevity and cardiovascular prevention. In the future, it is expected that the pharmacological treatment in cardioprotective management will be necessary, accompanied by equally important lifestyle interventions and adjunctive exercise.
Collapse
Affiliation(s)
- Andreea Corina
- Lipids and Atherosclerosis Research Unit, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain.,CIBER Fisiopatologia de la Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Cordoba, Spain
| | - Maria B Abrudan
- Department of Pharmaceutical Technology and Biopharmaceutics, "Iuliu Hațieganu", University of Medicine and Pharmacy, Faculty of Pharmacy, Cluj-Napoca, Romania
| | - Dragana Nikolic
- PROMISE Department, University of Palermo, Palermo, Italy.,Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy
| | - Adriana F Cӑtoi
- Pathophysiology Department, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Roberta Chianetta
- PROMISE Department, University of Palermo, Palermo, Italy.,Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy
| | - Giuseppa Castellino
- PROMISE Department, University of Palermo, Palermo, Italy.,Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy
| | | | - Anca P Stoian
- Department of Diabetes, Nutrition and Metabolic Diseases, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Pablo Pérez-Martínez
- Lipids and Atherosclerosis Research Unit, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain.,CIBER Fisiopatologia de la Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Cordoba, Spain
| | - Manfredi Rizzo
- PROMISE Department, University of Palermo, Palermo, Italy
| |
Collapse
|
18
|
Margină D, Ungurianu A, Purdel C, Tsoukalas D, Sarandi E, Thanasoula M, Tekos F, Mesnage R, Kouretas D, Tsatsakis A. Chronic Inflammation in the Context of Everyday Life: Dietary Changes as Mitigating Factors. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E4135. [PMID: 32531935 PMCID: PMC7312944 DOI: 10.3390/ijerph17114135] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 02/07/2023]
Abstract
The lifestyle adopted by most people in Western societies has an important impact on the propensity to metabolic disorders (e.g., diabetes, cancer, cardiovascular disease, neurodegenerative diseases). This is often accompanied by chronic low-grade inflammation, driven by the activation of various molecular pathways such as STAT3 (signal transducer and activator of transcription 3), IKK (IκB kinase), MMP9 (matrix metallopeptidase 9), MAPK (mitogen-activated protein kinases), COX2 (cyclooxigenase 2), and NF-Kβ (nuclear factor kappa-light-chain-enhancer of activated B cells). Multiple intervention studies have demonstrated that lifestyle changes can lead to reduced inflammation and improved health. This can be linked to the concept of real-life risk simulation, since humans are continuously exposed to dietary factors in small doses and complex combinations (e.g., polyphenols, fibers, polyunsaturated fatty acids, etc.). Inflammation biomarkers improve in patients who consume a certain amount of fiber per day; some even losing weight. Fasting in combination with calorie restriction modulates molecular mechanisms such as m-TOR, FOXO, NRF2, AMPK, and sirtuins, ultimately leads to significantly reduced inflammatory marker levels, as well as improved metabolic markers. Moving toward healthier dietary habits at the individual level and in publicly-funded institutions, such as schools or hospitals, could help improving public health, reducing healthcare costs and improving community resilience to epidemics (such as COVID-19), which predominantly affects individuals with metabolic diseases.
Collapse
Affiliation(s)
- Denisa Margină
- Department of Biochemistry, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania
| | - Anca Ungurianu
- Department of Biochemistry, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania
| | - Carmen Purdel
- Department of Toxicology, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania
| | - Dimitris Tsoukalas
- European Institute of Nutritional Medicine EINuM, 00198 Rome , Italy
- Metabolomic Medicine Clinic, Health Clinics for Autoimmune and Chronic Diseases, 10674 Athens, Greece
| | - Evangelia Sarandi
- Metabolomic Medicine Clinic, Health Clinics for Autoimmune and Chronic Diseases, 10674 Athens, Greece
- Laboratory of Toxicology and Forensic Sciences, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Maria Thanasoula
- Metabolomic Medicine Clinic, Health Clinics for Autoimmune and Chronic Diseases, 10674 Athens, Greece
| | - Fotios Tekos
- Department of Biochemistry-Biotechnology, School of Health Sciences, 41500 Larisa, Greece
| | - Robin Mesnage
- Gene Expression and Therapy Group, King's College London, Faculty of Life Sciences and Medicine, Department of Medical and Molecular Genetics, 8th Floor, Tower Wing, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK
| | - Demetrios Kouretas
- Department of Biochemistry-Biotechnology, School of Health Sciences, 41500 Larisa, Greece
| | - Aristidis Tsatsakis
- Department Forensic Sciences and Toxicology, University of Crete, Faculty of Medicine, 71003 Heraklion, Greece
| |
Collapse
|
19
|
Welton S, Minty R, O'Driscoll T, Willms H, Poirier D, Madden S, Kelly L. Intermittent fasting and weight loss: Systematic review. CANADIAN FAMILY PHYSICIAN MEDECIN DE FAMILLE CANADIEN 2020; 66:117-125. [PMID: 32060194 PMCID: PMC7021351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
OBJECTIVE To examine the evidence for intermittent fasting (IF), an alternative to calorie-restricted diets, in treating obesity, an important health concern in Canada with few effective office-based treatment strategies. DATA SOURCES A MEDLINE and EMBASE search from January 1, 2000, to July 1, 2019, yielded 1200 results using the key words fasting, time restricted feeding, meal skipping, alternate day fasting, intermittent fasting, and reduced meal frequency. STUDY SELECTION Forty-one articles describing 27 trials addressed weight loss in overweight and obese patients: 18 small randomized controlled trials (level I evidence) and 9 trials comparing weight after IF to baseline weight with no control group (level II evidence). Studies were often of short duration (2 to 26 weeks) with low enrolment (10 to 244 participants); 2 were of 1-year duration. Protocols varied, with only 5 studies including patients with type 2 diabetes. SYNTHESIS All 27 IF trials found weight loss of 0.8% to 13.0% of baseline weight with no serious adverse events. Twelve studies comparing IF to calorie restriction found equivalent results. The 5 studies that included patients with type 2 diabetes documented improved glycemic control. CONCLUSION Intermittent fasting shows promise for the treatment of obesity. To date, the studies have been small and of short duration. Longer-term research is needed to understand the sustainable role IF can play in weight loss.
Collapse
Affiliation(s)
- Stephanie Welton
- Researcher for the Anishinaabe Bimaadiziwin Research Program in Sioux Lookout, Ont
| | - Robert Minty
- Family physician practising at the Sioux Lookout Meno Ya Win Health Centre and Assistant Professor in the Division of Clinical Sciences at the Northern Ontario School of Medicine
| | - Teresa O'Driscoll
- Assistant Professor in the Division of Clinical Sciences at the Northern Ontario School of Medicine in Sioux Lookout
| | - Hannah Willms
- Research assistant in the Anishinaabe Bimaadiziwin Research Program
| | - Denise Poirier
- Primary care nurse at the Hugh Allan Clinic in Sioux Lookout
| | - Sharen Madden
- Associate Professor in the Division of Clinical Sciences at the Northern Ontario School of Medicine in Sioux Lookout
| | - Len Kelly
- Research consultant for the Sioux Lookout Meno Ya Win Health Centre.
| |
Collapse
|
20
|
Affiliation(s)
- Rafael de Cabo
- From the Translational Gerontology Branch (R.C.) and the Laboratory of Neurosciences (M.P.M.), Intramural Research Program, National Institute on Aging, National Institutes of Health, and the Department of Neuroscience, Johns Hopkins University School of Medicine (M.P.M.) - both in Baltimore
| | - Mark P Mattson
- From the Translational Gerontology Branch (R.C.) and the Laboratory of Neurosciences (M.P.M.), Intramural Research Program, National Institute on Aging, National Institutes of Health, and the Department of Neuroscience, Johns Hopkins University School of Medicine (M.P.M.) - both in Baltimore
| |
Collapse
|
21
|
Smith PJ. Pathways of Prevention: A Scoping Review of Dietary and Exercise Interventions for Neurocognition. Brain Plast 2019; 5:3-38. [PMID: 31970058 PMCID: PMC6971820 DOI: 10.3233/bpl-190083] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease and related dementias (ADRD) represent an increasingly urgent public health concern, with an increasing number of baby boomers now at risk. Due to a lack of efficacious therapies among symptomatic older adults, an increasing emphasis has been placed on preventive measures that can curb or even prevent ADRD development among middle-aged adults. Lifestyle modification using aerobic exercise and dietary modification represents one of the primary treatment modalities used to mitigate ADRD risk, with an increasing number of trials demonstrating that exercise and dietary change, individually and together, improve neurocognitive performance among middle-aged and older adults. Despite several optimistic findings, examination of treatment changes across lifestyle interventions reveals a variable pattern of improvements, with large individual differences across trials. The present review attempts to synthesize available literature linking lifestyle modification to neurocognitive changes, outline putative mechanisms of treatment improvement, and discuss discrepant trial findings. In addition, previous mechanistic assumptions linking lifestyle to neurocognition are discussed, with a focus on potential solutions to improve our understanding of individual neurocognitive differences in response to lifestyle modification. Specific recommendations include integration of contemporary causal inference approaches for analyzing parallel mechanistic pathways and treatment-exposure interactions. Methodological recommendations include trial multiphase optimization strategy (MOST) design approaches that leverage individual differences for improved treatment outcomes.
Collapse
Affiliation(s)
- Patrick J. Smith
- Department of Psychiatry and Behavioral Sciences (Primary), Duke University Medical Center, NC, USA
- Department of Medicine (Secondary), Duke University Medical Center, NC, USA
- Department of Population Health Sciences (Secondary), Duke University, NC, USA
| |
Collapse
|
22
|
McAllister MJ, Pigg BL, Renteria LI, Waldman HS. Time-restricted feeding improves markers of cardiometabolic health in physically active college-age men: a 4-week randomized pre-post pilot study. Nutr Res 2019; 75:32-43. [PMID: 31955013 DOI: 10.1016/j.nutres.2019.12.001] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 10/14/2019] [Accepted: 12/02/2019] [Indexed: 12/26/2022]
Abstract
Time-restricted feeding (TRF) has been shown to improve body composition, blood lipids, and reduce markers of inflammation and oxidative stress. However, most of these studies come from rodent models and small human samples, and it is not clear if the benefits are dependent upon a caloric deficit, or the time restriction nature of TRF. Based off of previous research, we hypothesized that humans following an ad libitum TRF protocol would reduce caloric intake and this caloric deficit would be associated with greater improvements in cardiometabolic health including blood pressure, body composition, blood lipids, and markers of inflammation and antioxidant status compared to an isocaloric TRF protocol. The purpose of this study was to: (1) examine the impact of TRF on markers of cardio-metabolic health and antioxidant status and (2) determine if the adaptations from TRF would differ under ad libitum compared to isocaloric conditions. Twenty-three healthy men were randomized to either an ad libitum or isocaloric 16:8 (fasting: feeding) TRF protocol. A total of 22 men completed the 28-day TRF protocol (mean ± SD; age: 22 ± 2.5 yrs.; height: 178.4 ± 6.9 cm; weight: 90.3 ± 24 kg; BMI: 28.5 ± 8.3 kg/m2). Fasting blood samples were analyzed for glucose, lipids, as well as adiponectin, human growth hormone, insulin, cortisol, C-reactive protein, superoxide dismutase, total nitrate/nitrite, and glutathione. Time-restricted feeding in both groups was associated with significant (P < .05) reductions in body fat, blood pressure, and significant increases in adiponectin and HDL-c. No changes in caloric intake were detected. In summary, the results from this pilot study in metabolically healthy, active young men, suggest that TRF can improve markers of cardiometabolic health.
Collapse
Affiliation(s)
- Matthew J McAllister
- Metabolic and Applied Physiology Lab, Department of Health and Human Performance, Texas State University, San Marcos, TX, 78666.
| | - Brandon L Pigg
- School of Health Studies, The University of Memphis, Memphis TN, 38152
| | - Liliana I Renteria
- Metabolic and Applied Physiology Lab, Department of Health and Human Performance, Texas State University, San Marcos, TX, 78666
| | - Hunter S Waldman
- Human Performance Lab, Department of Kinesiology, University of North Alabama, Florence, AL, 35632
| |
Collapse
|
23
|
Escobar KA, Cole NH, Mermier CM, VanDusseldorp TA. Autophagy and aging: Maintaining the proteome through exercise and caloric restriction. Aging Cell 2019; 18:e12876. [PMID: 30430746 PMCID: PMC6351830 DOI: 10.1111/acel.12876] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 08/31/2018] [Accepted: 09/28/2018] [Indexed: 12/16/2022] Open
Abstract
Accumulation of dysfunctional and damaged cellular proteins and organelles occurs during aging, resulting in a disruption of cellular homeostasis and progressive degeneration and increases the risk of cell death. Moderating the accrual of these defunct components is likely a key in the promotion of longevity. While exercise is known to promote healthy aging and mitigate age‐related pathologies, the molecular underpinnings of this phenomenon remain largely unclear. However, recent evidences suggest that exercise modulates the proteome. Similarly, caloric restriction (CR), a known promoter of lifespan, is understood to augment intracellular protein quality. Autophagy is an evolutionary conserved recycling pathway responsible for the degradation, then turnover of cellular proteins and organelles. This housekeeping system has been reliably linked to the aging process. Moreover, autophagic activity declines during aging. The target of rapamycin complex 1 (TORC1), a central kinase involved in protein translation, is a negative regulator of autophagy, and inhibition of TORC1 enhances lifespan. Inhibition of TORC1 may reduce the production of cellular proteins which may otherwise contribute to the deleterious accumulation observed in aging. TORC1 may also exert its effects in an autophagy‐dependent manner. Exercise and CR result in a concomitant downregulation of TORC1 activity and upregulation of autophagy in a number of tissues. Moreover, exercise‐induced TORC1 and autophagy signaling share common pathways with that of CR. Therefore, the longevity effects of exercise and CR may stem from the maintenance of the proteome by balancing the synthesis and recycling of intracellular proteins and thus may represent practical means to promote longevity.
Collapse
Affiliation(s)
- Kurt A. Escobar
- Department of Kinesiology; California State University, Long Beach; Long Beach California
| | - Nathan H. Cole
- Department of Health, Exercise, & Sports Sciences; University of New Mexico; Albuquerque New Mexico
| | - Christine M. Mermier
- Department of Health, Exercise, & Sports Sciences; University of New Mexico; Albuquerque New Mexico
| | - Trisha A. VanDusseldorp
- Department of Exercise Science & Sports Management; Kennesaw State University; Kennesaw Georgia
| |
Collapse
|
24
|
Tripolt NJ, Stekovic S, Aberer F, Url J, Pferschy PN, Schröder S, Verheyen N, Schmidt A, Kolesnik E, Narath SH, Riedl R, Obermayer-Pietsch B, Pieber TR, Madeo F, Sourij H. Intermittent Fasting (Alternate Day Fasting) in Healthy, Non-obese Adults: Protocol for a Cohort Trial with an Embedded Randomized Controlled Pilot Trial. Adv Ther 2018; 35:1265-1283. [PMID: 30046988 PMCID: PMC6096974 DOI: 10.1007/s12325-018-0746-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND/OBJECTIVES Alternate day fasting (ADF) is a subtype of intermittent fasting and is defined as a continuous sequence of a fast day (100% energy restriction, zero calories) and a feed day (ad libitum food consumption), resulting in roughly 36-h fasting periods. Previous studies demonstrated weight reductions and improvements of cardiovascular risk factors with ADF in obese subjects. However, rigorous data on potential endocrine, metabolic and cardiovascular effects, besides weight loss, are lacking. Therefore we aim to investigate the short- and mid- to long-term clinical and molecular effects of ADF in healthy non-obese subjects. METHODS We will perform a prospective cohort study with an embedded randomized controlled trial (RCT) including 90 healthy subjects. Thirty of them will have performed ADF for at least 6 months (mid-term group). Sixty healthy subjects without a particular diet before enrolment will serve as the control group. These subjects will be 1:1 randomized to either continuing their current diet or performing ADF for 4 weeks. All subjects will undergo study procedures that will be repeated in RCT participants after 4 weeks. These procedures will include assessment of outcome parameters, dual-energy X-ray absorptiometry, measurement of endothelial function, an oral glucose tolerance test, 24-h blood pressure measurement, retinal vessel analysis, echocardiography and physical activity measurement by an accelerometer. Blood, sputum, buccal mucosa and faeces will be collected for laboratory analyses. Participants in the RCT will wear a continuous glucose monitor to verify adherence to the study intervention. PLANNED OUTCOMES The aim of this project is to investigate the effects of ADF on human physiology and molecular cellular processes. This investigation should gain in-depth mechanistic insights into the concept of ADF and form the basis for larger subsequent cohort recruitment and consecutive intervention studies. TRIAL REGISTRATION NCT02673515; registered 24 November 2015. Current protocol date/version: 7 February 2017/version 1.8.
Collapse
Affiliation(s)
- Norbert J Tripolt
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Slaven Stekovic
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Felix Aberer
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Jasmin Url
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- Center for Biomarker Research in Medicine, CBMed, Graz, Austria
| | - Peter N Pferschy
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- Center for Biomarker Research in Medicine, CBMed, Graz, Austria
| | - Sabrina Schröder
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Nicolas Verheyen
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Albrecht Schmidt
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Ewald Kolesnik
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Sophie H Narath
- Center for Biomarker Research in Medicine, CBMed, Graz, Austria
| | - Regina Riedl
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Graz, Austria
| | - Barbara Obermayer-Pietsch
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- Center for Biomarker Research in Medicine, CBMed, Graz, Austria
| | - Thomas R Pieber
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- Center for Biomarker Research in Medicine, CBMed, Graz, Austria
| | - Frank Madeo
- Institute of Molecular Biosciences, University of Graz, Graz, Austria.
- BioTechMed Graz, Graz, Austria.
| | - Harald Sourij
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Graz, Austria.
- Center for Biomarker Research in Medicine, CBMed, Graz, Austria.
| |
Collapse
|
25
|
Bentley RA, Ross CN, O'Brien MJ. Obesity, Metabolism, and Aging: A Multiscalar Approach. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 155:25-42. [PMID: 29653680 DOI: 10.1016/bs.pmbts.2017.11.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Obesity contributes to the aging process through the alteration of metabolic pathways evidenced biochemically in the relationship between caloric restriction and longevity. Humans have entered into an era of metabolism and aging entirely unprecedented in their evolution, with a diet that, for many, contains a majority of calories as sugar and yields an expected lifespan of over 80years in industrialized nations. Deeply embedded in the complex issue of obesity are questions of behavior, causality versus correlation, and appropriate models. For example, are primates a better reference than mice for studying metabolic connections between obesity and aging? We consider those issues from the standpoint of life-history theory, especially implications of the interplay of refined sugar and socioeconomic disparities for the future of human health.
Collapse
Affiliation(s)
| | - Corinna N Ross
- Texas A&M University-San Antonio, San Antonio, TX, United States
| | | |
Collapse
|
26
|
Ku M, Ramos MJ, Fung J. Therapeutic fasting as a potential effective treatment for type 2 diabetes: A 4-month case study. JOURNAL OF INSULIN RESISTANCE 2017. [DOI: 10.4102/jir.v2i1.31] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Lifestyle therapy is an integral part of type 2 diabetes (T2D) management, but there remains no consensus on an optimal diet. The objective of this study is to evaluate the efficacy of therapeutic fasting as a treatment for T2D. This case follows a male T2D patient treated at the Intensive Dietary Management Clinic in Scarborough, Ontario, over a 4-month period. The patient’s initial fasting regimen consisted of a 24-h fast, three times a week. Over the course of treatment, the patient gradually extended his fasting period, eventually fasting for 42 h, two to three times a week. By the end of treatment, the patient’s weight was reduced by 17.8% and his waist circumference was reduced by 11.0%. In addition, the patient’s glycated haemoglobin levels decreased from 7.7% to 7.2%, and he was able to completely discontinue his insulin treatment, despite over a decade of insulin usage. The patient did not find it difficult to adhere to the fasting schedule and did not experience any hypoglycaemic episodes or other significant adverse effects. These observations suggest that therapeutic fasting may be a viable treatment option for T2D patients.
Collapse
|
27
|
LaRocca TJ, Martens CR, Seals DR. Nutrition and other lifestyle influences on arterial aging. Ageing Res Rev 2017; 39:106-119. [PMID: 27693830 DOI: 10.1016/j.arr.2016.09.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 09/16/2016] [Accepted: 09/23/2016] [Indexed: 02/07/2023]
Abstract
As our world's population ages, cardiovascular diseases (CVD) will become an increasingly urgent public health problem. A key antecedent to clinical CVD and many other chronic disorders of aging is age-related arterial dysfunction, characterized by increased arterial stiffness and impaired arterial endothelial function. Accumulating evidence demonstrates that diet and nutrition may favorably modulate these arterial functions with aging, but many important questions remain. In this review, we will summarize the available information on dietary patterns and nutritional factors that have been studied for their potential to reduce arterial stiffness and improve endothelial function with age, with an emphasis on: 1) underlying physiological mechanisms, and 2) emerging areas of research on nutrition and arterial aging that may hold promise for preventing age-related CVD.
Collapse
Affiliation(s)
- Thomas J LaRocca
- Department of Integrative Physiology, University of Colorado Boulder, 354 UCB, Boulder, CO 80309, USA.
| | - Christopher R Martens
- Department of Integrative Physiology, University of Colorado Boulder, 354 UCB, Boulder, CO 80309, USA
| | - Douglas R Seals
- Department of Integrative Physiology, University of Colorado Boulder, 354 UCB, Boulder, CO 80309, USA
| |
Collapse
|
28
|
Kogure A, Uno M, Ikeda T, Nishida E. The microRNA machinery regulates fasting-induced changes in gene expression and longevity in Caenorhabditis elegans. J Biol Chem 2017; 292:11300-11309. [PMID: 28507100 DOI: 10.1074/jbc.m116.765065] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 04/29/2017] [Indexed: 12/23/2022] Open
Abstract
Intermittent fasting (IF) is a dietary restriction regimen that extends the lifespans of Caenorhabditis elegans and mammals by inducing changes in gene expression. However, how IF induces these changes and promotes longevity remains unclear. One proposed mechanism involves gene regulation by microRNAs (miRNAs), small non-coding RNAs (∼22 nucleotides) that repress gene expression and whose expression can be altered by fasting. To test this proposition, we examined the role of the miRNA machinery in fasting-induced transcriptional changes and longevity in C. elegans We revealed that fasting up-regulated the expression of the miRNA-induced silencing complex (miRISC) components, including Argonaute and GW182, and the miRNA-processing enzyme DRSH-1 (the ortholog of the Drosophila Drosha enzyme). Our lifespan measurements demonstrated that IF-induced longevity was suppressed by knock-out or knockdown of miRISC components and was completely inhibited by drsh-1 ablation. Remarkably, drsh-1 ablation inhibited the fasting-induced changes in the expression of the target genes of DAF-16, the insulin/IGF-1 signaling effector in C. elegans Fasting-induced transcriptome alterations were substantially and modestly suppressed in the drsh-1 null mutant and the null mutant of ain-1, a gene encoding GW182, respectively. Moreover, miRNA array analyses revealed that the expression levels of numerous miRNAs changed after 2 days of fasting. These results indicate that components of the miRNA machinery, especially the miRNA-processing enzyme DRSH-1, play an important role in mediating IF-induced longevity via the regulation of fasting-induced changes in gene expression.
Collapse
Affiliation(s)
- Akiko Kogure
- From the Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Masaharu Uno
- From the Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Takako Ikeda
- From the Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Eisuke Nishida
- From the Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
29
|
Calorie restriction prevents the development of insulin resistance and impaired lipid metabolism in gestational diabetes offspring. Pediatr Res 2017; 81:663-671. [PMID: 28024145 DOI: 10.1038/pr.2016.273] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Accepted: 12/04/2016] [Indexed: 12/21/2022]
Abstract
BACKGROUND Gestational diabetes mellitus (GDM) has long-lasting influence on offspring, which is associated with increased risks of insulin resistance, obesity, and type II diabetes mellitus. Calorie restriction (CR) is one of the most common and available nutritional interventions to prevent obesity and diabetes. We are trying to explore the effect of CR on GDM offspring. METHODS The streptozotocin was used to stimulate C57BL/6J mice to develop GDM, a number of metabolic characteristics and related protein expressions were determined in GDM offspring that were fed ad-libitum or treated with calorie restriction. RESULTS CR reduced body weight and glucose levels in GDM offspring. CR modulated the lipid metabolism by decreasing triglyceride and cholesterol levels in plasma. We also found that the effect of CR on insulin sensitivity may involve in signaling pathway through the regulations of phosphatase and tensin homologue deleted on chromosome 10 (PTEN) and protein kinase B (Akt). CONCLUSION GDM is a high risk factor for GDM offspring to develop insulin resistance, while CR could ameliorate this adverse outcome. Moreover, the specific decrease in PTEN activation and increase in Akt phosphorylation in livers of GDM offspring with CR improved insulin sensitivity and lipid metabolism.
Collapse
|
30
|
Martens CR, Seals DR. Practical alternatives to chronic caloric restriction for optimizing vascular function with ageing. J Physiol 2016; 594:7177-7195. [PMID: 27641062 DOI: 10.1113/jp272348] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 09/09/2016] [Indexed: 12/26/2022] Open
Abstract
Calorie restriction (CR) in the absence of malnutrition exerts a multitude of physiological benefits with ageing in model organisms and in humans including improvements in vascular function. Despite the well-known benefits of chronic CR, long-term energy restriction is not likely to be a feasible healthy lifestyle strategy in humans due to poor sustained adherence, and presents additional concerns if applied to normal weight older adults. This review summarizes what is known about the effects of CR on vascular function with ageing including the underlying molecular 'energy- and nutrient-sensing' mechanisms, and discusses the limited but encouraging evidence for alternative pharmacological and lifestyle interventions that may improve vascular function with ageing by mimicking the beneficial effects of long-term CR.
Collapse
Affiliation(s)
- Christopher R Martens
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Douglas R Seals
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| |
Collapse
|
31
|
Kannan S, Mahadevan S, Seshadri K, Sadacharan D, Velayutham K. Fasting practices in Tamil Nadu and their importance for patients with diabetes. Indian J Endocrinol Metab 2016; 20:858-862. [PMID: 27867892 PMCID: PMC5105573 DOI: 10.4103/2230-8210.192921] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Religious practices and cultural customs related to eating habits have a significant impact on lifestyle and health of the community. The Ramadan fasting in Muslims and its influence on various metabolic parameters such as diabetes have been reasonably studied. However, literature related to Hindu religious customs related to fasting and food patterns during various festivals and its effect on diabetes are scarce. This article is an attempt to describe the Hindu religious customs related to fasting and food practices from the State of Tamil Nadu (South India) and to raise the awareness among physicians about its relationship with diabetes which may help in managing their diabetic patients in a better way.
Collapse
Affiliation(s)
- Subramanian Kannan
- Department of Endocrinology, Diabetes and Bariatric Medicine, Narayana Health City, Bengaluru, Karnataka, India
| | - Shriraam Mahadevan
- Department of Endocrinology, Diabetes and Metabolism, Sri Ramachandra Medical College, Chennai, Tamil Nadu, India
| | - Krishna Seshadri
- Department of Endocrinology, Diabetes and Metabolism, Sri Ramachandra Medical College, Chennai, Tamil Nadu, India
| | | | | |
Collapse
|
32
|
Moro T, Tinsley G, Bianco A, Marcolin G, Pacelli QF, Battaglia G, Palma A, Gentil P, Neri M, Paoli A. Effects of eight weeks of time-restricted feeding (16/8) on basal metabolism, maximal strength, body composition, inflammation, and cardiovascular risk factors in resistance-trained males. J Transl Med 2016; 14:290. [PMID: 27737674 PMCID: PMC5064803 DOI: 10.1186/s12967-016-1044-0] [Citation(s) in RCA: 416] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 10/03/2016] [Indexed: 01/10/2023] Open
Abstract
Background Intermittent fasting (IF) is an increasingly popular dietary approach used for weight loss and overall health. While there is an increasing body of evidence demonstrating beneficial effects of IF on blood lipids and other health outcomes in the overweight and obese, limited data are available about the effect of IF in athletes. Thus, the present study sought to investigate the effects of a modified IF protocol (i.e. time-restricted feeding) during resistance training in healthy resistance-trained males. Methods Thirty-four resistance-trained males were randomly assigned to time-restricted feeding (TRF) or normal diet group (ND). TRF subjects consumed 100 % of their energy needs in an 8-h period of time each day, with their caloric intake divided into three meals consumed at 1 p.m., 4 p.m., and 8 p.m. The remaining 16 h per 24-h period made up the fasting period. Subjects in the ND group consumed 100 % of their energy needs divided into three meals consumed at 8 a.m., 1 p.m., and 8 p.m. Groups were matched for kilocalories consumed and macronutrient distribution (TRF 2826 ± 412.3 kcal/day, carbohydrates 53.2 ± 1.4 %, fat 24.7 ± 3.1 %, protein 22.1 ± 2.6 %, ND 3007 ± 444.7 kcal/day, carbohydrates 54.7 ± 2.2 %, fat 23.9 ± 3.5 %, protein 21.4 ± 1.8). Subjects were tested before and after 8 weeks of the assigned diet and standardized resistance training program. Fat mass and fat-free mass were assessed by dual-energy x-ray absorptiometry and muscle area of the thigh and arm were measured using an anthropometric system. Total and free testosterone, insulin-like growth factor 1, blood glucose, insulin, adiponectin, leptin, triiodothyronine, thyroid stimulating hormone, interleukin-6, interleukin-1β, tumor necrosis factor α, total cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, and triglycerides were measured. Bench press and leg press maximal strength, resting energy expenditure, and respiratory ratio were also tested. Results After 8 weeks, the 2 Way ANOVA (Time * Diet interaction) showed a decrease in fat mass in TRF compared to ND (p = 0.0448), while fat-free mass, muscle area of the arm and thigh, and maximal strength were maintained in both groups. Testosterone and insulin-like growth factor 1 decreased significantly in TRF, with no changes in ND (p = 0.0476; p = 0.0397). Adiponectin increased (p = 0.0000) in TRF while total leptin decreased (p = 0.0001), although not when adjusted for fat mass. Triiodothyronine decreased in TRF, but no significant changes were detected in thyroid-stimulating hormone, total cholesterol, high-density lipoprotein, low-density lipoprotein, or triglycerides. Resting energy expenditure was unchanged, but a significant decrease in respiratory ratio was observed in the TRF group. Conclusions Our results suggest that an intermittent fasting program in which all calories are consumed in an 8-h window each day, in conjunction with resistance training, could improve some health-related biomarkers, decrease fat mass, and maintain muscle mass in resistance-trained males.
Collapse
Affiliation(s)
- Tatiana Moro
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Grant Tinsley
- Department of Kinesiology & Sport Management, Texas Tech University, Lubbock, TX, USA
| | - Antonino Bianco
- Sport and Exercise Sciences Research Unit, University of Palermo, Palermo, Italy
| | - Giuseppe Marcolin
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | | | - Giuseppe Battaglia
- Sport and Exercise Sciences Research Unit, University of Palermo, Palermo, Italy
| | - Antonio Palma
- Sport and Exercise Sciences Research Unit, University of Palermo, Palermo, Italy
| | - Paulo Gentil
- College of Physical Education and Dance, Federal University of Goias, Goiania, Brazil
| | - Marco Neri
- Italian Fitness Federation, Ravenna, Italy
| | - Antonio Paoli
- Department of Biomedical Sciences, University of Padova, Padua, Italy.
| |
Collapse
|
33
|
Hujoel P, Bollen AM, Yuen K, Hujoel I. Phenotypic characteristics of adolescents with concave and convex facial profiles – The National Health Examination Survey. HOMO-JOURNAL OF COMPARATIVE HUMAN BIOLOGY 2016; 67:417-432. [DOI: 10.1016/j.jchb.2016.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 04/08/2016] [Indexed: 01/10/2023]
|
34
|
The Effectiveness of Different Diet Strategies to Reduce Type 2 Diabetes Risk in Youth. Nutrients 2016; 8:nu8080486. [PMID: 27517953 PMCID: PMC4997399 DOI: 10.3390/nu8080486] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 07/20/2016] [Accepted: 08/04/2016] [Indexed: 01/05/2023] Open
Abstract
Type 2 diabetes in children and adolescents has become a prominent clinical issue in recent decades. Increasing numbers of young people have risk factors for type 2 diabetes, particularly obesity, indicating the need for effective type 2 diabetes prevention strategies. The aim of this review was to identify specific dietary strategies that optimize improvements in risk factors for type 2 diabetes in youth and hence reduce the risk of type 2 diabetes development. Our review of the current literature indicates that dietary interventions lead to weight loss when intervention adherence is high. However, in addition to weight loss, a diet that is reduced in carbohydrates may optimize improvements in other type 2 diabetes risk factors, including insulin resistance and hyperglycemia. While further research is needed to confirm this finding, reduced carbohydrate diets may include a very low-carbohydrate diet, a very low-energy diet, a lower-glycemic-index diet, and/or an intermittent fasting diet. This array of dietary strategies provides a suite of intervention options for clinicians to recommend to young people at risk of type 2 diabetes. However, these findings are in contrast to current guidelines for the prevention of type 2 diabetes in adults which recommends a low-fat, high-carbohydrate diet.
Collapse
|
35
|
Arciero PJ, Edmonds R, He F, Ward E, Gumpricht E, Mohr A, Ormsbee MJ, Astrup A. Protein-Pacing Caloric-Restriction Enhances Body Composition Similarly in Obese Men and Women during Weight Loss and Sustains Efficacy during Long-Term Weight Maintenance. Nutrients 2016; 8:nu8080476. [PMID: 27483317 PMCID: PMC4997389 DOI: 10.3390/nu8080476] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 07/21/2016] [Accepted: 07/27/2016] [Indexed: 01/07/2023] Open
Abstract
Short-Term protein-pacing (P; ~6 meals/day, >30% protein/day) and caloric restriction (CR, ~25% energy deficit) improves total (TBF), abdominal (ABF) and visceral (VAT) fat loss, energy expenditure, and biomarkers compared to heart healthy (HH) recommendations (3 meals/day, 15% protein/day) in obese adults. Less is known whether obese men and women respond similarly to P-CR during weight loss (WL) and whether a modified P-CR (mP-CR) is more efficacious than a HH diet during long-term (52 week) weight maintenance (WM). The purposes of this study were to evaluate the efficacy of: (1) P-CR on TBF, ABF, resting metabolic rate (RMR), and biomarkers between obese men and women during WL (weeks 0–12); and (2) mP-CR compared to a HH diet during WM (weeks 13–64). During WL, men (n = 21) and women (n = 19) were assessed for TBF, ABF, VAT, RMR, and biomarkers at weeks 0 (pre) and 12 (post). Men and women had similar reductions (p < 0.01) in weight (10%), TBF (19%), ABF (25%), VAT (33%), glucose (7%–12%), insulin (40%), leptin (>50%) and increase in % lean body mass (9%). RMR (kcals/kg bodyweight) was unchanged and respiratory quotient decreased 9%. Twenty-four subjects (mP-CR, n = 10; HH, n = 14) completed WM. mP-CR regained significantly less body weight (6%), TBF (12%), and ABF (17%) compared to HH (p < 0.05). Our results demonstrate P-CR enhances weight loss, body composition and biomarkers, and maintains these changes for 52-weeks compared to a traditional HH diet.
Collapse
Affiliation(s)
- Paul J Arciero
- Human Nutrition and Metabolism Laboratory, Health and Exercise Sciences Department, Skidmore College, Saratoga Springs, NY 12866, USA.
| | - Rohan Edmonds
- Human Nutrition and Metabolism Laboratory, Health and Exercise Sciences Department, Skidmore College, Saratoga Springs, NY 12866, USA.
| | - Feng He
- Human Nutrition and Metabolism Laboratory, Health and Exercise Sciences Department, Skidmore College, Saratoga Springs, NY 12866, USA.
- Department of Kinesiology, California State University-Chico, Chico, CA 95929, USA.
| | - Emery Ward
- Human Nutrition and Metabolism Laboratory, Health and Exercise Sciences Department, Skidmore College, Saratoga Springs, NY 12866, USA.
| | | | - Alex Mohr
- Isagenix International LLC, Gilbert, AZ 85297, USA.
| | - Michael J Ormsbee
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL 32306, USA.
- Department of Biokinetics, Exercise and Leisure Sciences, University of KwaZulu-Natal, Durban 4000, South Africa.
| | - Arne Astrup
- Department of Nutrition, Exercise and Sports, University of Copenhagen, København 1017, Denmark.
| |
Collapse
|
36
|
Hutchison AT, Heilbronn LK. Metabolic impacts of altering meal frequency and timing – Does when we eat matter? Biochimie 2016; 124:187-197. [DOI: 10.1016/j.biochi.2015.07.025] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 07/25/2015] [Indexed: 12/26/2022]
|
37
|
Seimon RV, Roekenes JA, Zibellini J, Zhu B, Gibson AA, Hills AP, Wood RE, King NA, Byrne NM, Sainsbury A. Do intermittent diets provide physiological benefits over continuous diets for weight loss? A systematic review of clinical trials. Mol Cell Endocrinol 2015; 418 Pt 2:153-72. [PMID: 26384657 DOI: 10.1016/j.mce.2015.09.014] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 09/14/2015] [Accepted: 09/15/2015] [Indexed: 01/14/2023]
Abstract
Energy restriction induces physiological effects that hinder further weight loss. Thus, deliberate periods of energy balance during weight loss interventions may attenuate these adaptive responses to energy restriction and thereby increase the efficiency of weight loss (i.e. the amount of weight or fat lost per unit of energy deficit). To address this possibility, we systematically searched MEDLINE, PreMEDLINE, PubMed and Cinahl and reviewed adaptive responses to energy restriction in 40 publications involving humans of any age or body mass index that had undergone a diet involving intermittent energy restriction, 12 with direct comparison to continuous energy restriction. Included publications needed to measure one or more of body weight, body mass index, or body composition before and at the end of energy restriction. 31 of the 40 publications involved 'intermittent fasting' of 1-7-day periods of severe energy restriction. While intermittent fasting appears to produce similar effects to continuous energy restriction to reduce body weight, fat mass, fat-free mass and improve glucose homeostasis, and may reduce appetite, it does not appear to attenuate other adaptive responses to energy restriction or improve weight loss efficiency, albeit most of the reviewed publications were not powered to assess these outcomes. Intermittent fasting thus represents a valid--albeit apparently not superior--option to continuous energy restriction for weight loss.
Collapse
Affiliation(s)
- Radhika V Seimon
- The Boden Institute of Obesity, Nutrition, Exercise & Eating Disorders, Sydney Medical School, Charles Perkins Centre, The University of Sydney, Camperdown NSW 2006, Australia
| | - Jessica A Roekenes
- The Boden Institute of Obesity, Nutrition, Exercise & Eating Disorders, Sydney Medical School, Charles Perkins Centre, The University of Sydney, Camperdown NSW 2006, Australia
| | - Jessica Zibellini
- The Boden Institute of Obesity, Nutrition, Exercise & Eating Disorders, Sydney Medical School, Charles Perkins Centre, The University of Sydney, Camperdown NSW 2006, Australia
| | - Benjamin Zhu
- The Boden Institute of Obesity, Nutrition, Exercise & Eating Disorders, Sydney Medical School, Charles Perkins Centre, The University of Sydney, Camperdown NSW 2006, Australia
| | - Alice A Gibson
- The Boden Institute of Obesity, Nutrition, Exercise & Eating Disorders, Sydney Medical School, Charles Perkins Centre, The University of Sydney, Camperdown NSW 2006, Australia
| | - Andrew P Hills
- Centre for Nutrition and Exercise, Mater Research Institute, The University of Queensland, South Brisbane QLD, 4101, Australia
| | - Rachel E Wood
- Bond Institute of Health and Sport, Faculty of Health Sciences and Medicine, Bond University, Gold Coast, Australia
| | - Neil A King
- Queensland University of Technology (QUT), Institute of Health and Biomedical Innovation and School of Exercise and Nutrition Sciences, Brisbane, QLD 4059, Australia
| | - Nuala M Byrne
- Bond Institute of Health and Sport, Faculty of Health Sciences and Medicine, Bond University, Gold Coast, Australia
| | - Amanda Sainsbury
- The Boden Institute of Obesity, Nutrition, Exercise & Eating Disorders, Sydney Medical School, Charles Perkins Centre, The University of Sydney, Camperdown NSW 2006, Australia.
| |
Collapse
|
38
|
Tinsley GM, La Bounty PM. Effects of intermittent fasting on body composition and clinical health markers in humans. Nutr Rev 2015; 73:661-74. [PMID: 26374764 DOI: 10.1093/nutrit/nuv041] [Citation(s) in RCA: 197] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Intermittent fasting is a broad term that encompasses a variety of programs that manipulate the timing of eating occasions by utilizing short-term fasts in order to improve body composition and overall health. This review examines studies conducted on intermittent fasting programs to determine if they are effective at improving body composition and clinical health markers associated with disease. Intermittent fasting protocols can be grouped into alternate-day fasting, whole-day fasting, and time-restricted feeding. Alternate-day fasting trials of 3 to 12 weeks in duration appear to be effective at reducing body weight (≈3%-7%), body fat (≈3-5.5 kg), total cholesterol (≈10%-21%), and triglycerides (≈14%-42%) in normal-weight, overweight, and obese humans. Whole-day fasting trials lasting 12 to 24 weeks also reduce body weight (≈3%-9%) and body fat, and favorably improve blood lipids (≈5%-20% reduction in total cholesterol and ≈17%-50% reduction in triglycerides). Research on time-restricted feeding is limited, and clear conclusions cannot be made at present. Future studies should examine long-term effects of intermittent fasting and the potential synergistic effects of combining intermittent fasting with exercise.
Collapse
Affiliation(s)
- Grant M Tinsley
- Correspondence: G.M. Tinsley is with the Department of Health, Human Performance, and Recreation, Baylor University, Waco, Texas, USA. P.M. LaBounty is with the Department of Exercise and Sport Science, University of Mary Hardin-Baylor, Belton, Texas, USA.
| | - Paul M La Bounty
- Correspondence: G.M. Tinsley is with the Department of Health, Human Performance, and Recreation, Baylor University, Waco, Texas, USA. P.M. LaBounty is with the Department of Exercise and Sport Science, University of Mary Hardin-Baylor, Belton, Texas, USA
| |
Collapse
|
39
|
Horne BD, Muhlestein JB, Anderson JL. Health effects of intermittent fasting: hormesis or harm? A systematic review. Am J Clin Nutr 2015; 102:464-70. [PMID: 26135345 DOI: 10.3945/ajcn.115.109553] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 05/27/2015] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Intermittent fasting, alternate-day fasting, and other forms of periodic caloric desistance are gaining popularity in the lay press and among animal research scientists. Whether clinical evidence exists for or is strong enough to support the use of such dietary regimens as health interventions is unclear. OBJECTIVE This review sought to identify rigorous, clinically relevant research studies that provide high-quality evidence that therapeutic fasting regimens are clinically beneficial to humans. DESIGN A systematic review of the published literature through January 2015 was performed by using sensitive search strategies to identify randomized controlled clinical trials that evaluated the effects of fasting on either clinically relevant surrogate outcomes (e.g., weight, cholesterol) or actual clinical event endpoints [e.g., diabetes, coronary artery disease (CAD)] and any other studies that evaluated the effects of fasting on clinical event outcomes. RESULTS Three randomized controlled clinical trials of fasting in humans were identified, and the results were published in 5 articles, all of which evaluated the effects of fasting on surrogate outcomes. Improvements in weight and other risk-related outcomes were found in the 3 trials. Two observational clinical outcomes studies in humans were found in which fasting was associated with a lower prevalence of CAD or diabetes diagnosis. No randomized controlled trials of fasting for clinical outcomes were identified. CONCLUSIONS Clinical research studies of fasting with robust designs and high levels of clinical evidence are sparse in the literature. Whereas the few randomized controlled trials and observational clinical outcomes studies support the existence of a health benefit from fasting, substantial further research in humans is needed before the use of fasting as a health intervention can be recommended.
Collapse
Affiliation(s)
- Benjamin D Horne
- Intermountain Heart Institute, Intermountain Medical Center, Salt Lake City, UT; and Genetic Epidemiology Division and
| | - Joseph B Muhlestein
- Intermountain Heart Institute, Intermountain Medical Center, Salt Lake City, UT; and Cardiology Division, Department of Medicine, University of Utah, Salt Lake City, UT
| | - Jeffrey L Anderson
- Intermountain Heart Institute, Intermountain Medical Center, Salt Lake City, UT; and Cardiology Division, Department of Medicine, University of Utah, Salt Lake City, UT
| |
Collapse
|
40
|
Landgrave-Gómez J, Mercado-Gómez O, Guevara-Guzmán R. Epigenetic mechanisms in neurological and neurodegenerative diseases. Front Cell Neurosci 2015; 9:58. [PMID: 25774124 PMCID: PMC4343006 DOI: 10.3389/fncel.2015.00058] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 02/06/2015] [Indexed: 11/13/2022] Open
Abstract
The role of epigenetic mechanisms in the function and homeostasis of the central nervous system (CNS) and its regulation in diseases is one of the most interesting processes of contemporary neuroscience. In the last decade, a growing body of literature suggests that long-term changes in gene transcription associated with CNS's regulation and neurological disorders are mediated via modulation of chromatin structure. "Epigenetics", introduced for the first time by Waddington in the early 1940s, has been traditionally referred to a variety of mechanisms that allow heritable changes in gene expression even in the absence of DNA mutation. However, new definitions acknowledge that many of these mechanisms used to perpetuate epigenetic traits in dividing cells are used by neurons to control a variety of functions dependent on gene expression. Indeed, in the recent years these mechanisms have shown their importance in the maintenance of a healthy CNS. Moreover, environmental inputs that have shown effects in CNS diseases, such as nutrition, that can modulate the concentration of a variety of metabolites such as acetyl-coenzyme A (acetyl-coA), nicotinamide adenine dinucleotide (NAD(+)) and beta hydroxybutyrate (β-HB), regulates some of these epigenetic modifications, linking in a precise way environment with gene expression. This manuscript will portray what is currently understood about the role of epigenetic mechanisms in the function and homeostasis of the CNS and their participation in a variety of neurological disorders. We will discuss how the machinery that controls these modifications plays an important role in processes involved in neurological disorders such as neurogenesis and cell growth. Moreover, we will discuss how environmental inputs modulate these modifications producing metabolic and physiological alterations that could exert beneficial effects on neurological diseases. Finally, we will highlight possible future directions in the field of epigenetics and neurological disorders.
Collapse
Affiliation(s)
- Jorge Landgrave-Gómez
- Facultad de Medicina, Departamento de Fisiología, Universidad Nacional Autónoma de MéxicoMéxico, D.F., México
| | - Octavio Mercado-Gómez
- Facultad de Medicina, Departamento de Fisiología, Universidad Nacional Autónoma de MéxicoMéxico, D.F., México
| | - Rosalinda Guevara-Guzmán
- Facultad de Medicina, Departamento de Fisiología, Universidad Nacional Autónoma de MéxicoMéxico, D.F., México
| |
Collapse
|
41
|
Abstract
Although major research efforts have focused on how specific components of foodstuffs affect health, relatively little is known about a more fundamental aspect of diet, the frequency and circadian timing of meals, and potential benefits of intermittent periods with no or very low energy intakes. The most common eating pattern in modern societies, three meals plus snacks every day, is abnormal from an evolutionary perspective. Emerging findings from studies of animal models and human subjects suggest that intermittent energy restriction periods of as little as 16 h can improve health indicators and counteract disease processes. The mechanisms involve a metabolic shift to fat metabolism and ketone production, and stimulation of adaptive cellular stress responses that prevent and repair molecular damage. As data on the optimal frequency and timing of meals crystalizes, it will be critical to develop strategies to incorporate those eating patterns into health care policy and practice, and the lifestyles of the population.
Collapse
|
42
|
Elliott RM, de Roos B, Duthie SJ, Bouwman FG, Rubio-Aliaga I, Crosley LK, Mayer C, Polley AC, Heim C, Coort SL, Evelo CT, Mulholland F, Daniel H, Mariman EC, Johnson IT. Transcriptome analysis of peripheral blood mononuclear cells in human subjects following a 36 h fast provides evidence of effects on genes regulating inflammation, apoptosis and energy metabolism. GENES AND NUTRITION 2014; 9:432. [PMID: 25260660 DOI: 10.1007/s12263-014-0432-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 09/20/2014] [Indexed: 12/29/2022]
Abstract
There is growing interest in the potential health benefits of diets that involve regular periods of fasting. While animal studies have provided compelling evidence that feeding patterns such as alternate-day fasting can increase longevity and reduce incidence of many chronic diseases, the evidence from human studies is much more limited and equivocal. Additionally, although several candidate processes have been proposed to contribute to the health benefits observed in animals, the precise molecular mechanisms responsible remain to be elucidated. The study described here examined the effects of an extended fast on gene transcript profiles in peripheral blood mononuclear cells from ten apparently healthy subjects, comparing transcript profiles after an overnight fast, sampled on four occasions at weekly intervals, with those observed on a single occasion after a further 24 h of fasting. Analysis of the overnight fasted data revealed marked inter-individual differences, some of which were associated with parameters such as gender and subject body mass. For example, a striking positive association between body mass index and the expression of genes regulated by type 1 interferon was observed. Relatively subtle changes were observed following the extended fast. Nonetheless, the pattern of changes was consistent with stimulation of fatty acid oxidation, alterations in cell cycling and apoptosis and decreased expression of key pro-inflammatory genes. Stimulation of fatty acid oxidation is an expected response, most likely in all tissues, to fasting. The other processes highlighted provide indications of potential mechanisms that could contribute to the putative beneficial effects of intermittent fasting in humans.
Collapse
Affiliation(s)
- R M Elliott
- Institute of Food Research, Colney Lane, Norwich, UK,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Frugé AD, Byrd SH, Fountain BJ, Cossman JS, Schilling MW, Gerard P. Race and gender disparities in nutrient intake are not related to metabolic syndrome in 20- to 59-year-old US adults. Metab Syndr Relat Disord 2014; 12:430-6. [PMID: 25045798 DOI: 10.1089/met.2014.0069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The goal of this study was to examine the relationship between macronutrient and micronutrient intake and metabolic syndrome within race and gender cohorts of young US adults. METHODS The 2007-2010 National Health and Nutrition Examination Survey (NHANES) data for adults (n=2440) aged 20-59 were analyzed. Two 24-hr dietary recalls were used to measure intake of total calories, macronutrients, and 20 vitamins and minerals. Metabolic syndrome and its components were defined by the National Heart, Lung and Blood Institute criteria. Differences in statistical tests were noted when significant at P<0.05. RESULTS Prevalence of metabolic syndrome among 20- to 59-year-old adults was 30.4% [95% confidence interval 27.6-33.2]. Among cohorts, metabolic syndrome was highest in black women and white men, and lowest in black men and white women. Regression analysis indicated that no macronutrients were associated with greater risk of metabolic syndrome. For relative macronutrient intake, men with metabolic syndrome consumed more polyunsaturated fats, whereas women with metabolic syndrome consumed more total, saturated and monounsaturated fats and less fiber and starch than women without metabolic syndrome. Among races, white men and women consumed greater absolute quantities of all macronutrients except carbohydrates and sugar. Micronutrient intake was greatest for white men and women; women without metabolic syndrome had greater micronutrient adequacy than women with metabolic syndrome. CONCLUSION Nutrient intake varied between race/gender cohorts; however, there were few clinically significant differences in nutrient intake between those with and without metabolic syndrome. Diet may be marginally related to diagnosis of metabolic syndrome.
Collapse
Affiliation(s)
- Andrew D Frugé
- 1 Department of Food Science, Nutrition and Health Promotion, Mississippi State University , Mississippi State, Mississippi
| | | | | | | | | | | |
Collapse
|
44
|
Abstract
Excess calorie consumption is associated with metabolic disorders and increased incidence of morbidity. Restricting calorie content, either by daily calorie restriction or intermittent fasting periods, has multiple benefits including weight loss and improved body composition. Previous research has shown that restricting calories in this way can increase longevity and slow the ageing process in laboratory animals, although only sparse data exist in human populations. This review critically evaluates the benefits of these dietary interventions on age-related decline and longevity.
Collapse
Affiliation(s)
- James E Brown
- Aston Research Centre for Healthy Ageing & School of Life and Health Sciences, Aston University, Birmingham, UK
| |
Collapse
|
45
|
Van de Voorde J, Pauwels B, Boydens C, Decaluwé K. Adipocytokines in relation to cardiovascular disease. Metabolism 2013; 62:1513-21. [PMID: 23866981 DOI: 10.1016/j.metabol.2013.06.004] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 06/05/2013] [Accepted: 06/06/2013] [Indexed: 01/22/2023]
Abstract
Adipose tissue can be considered as a huge gland producing paracrine and endocrine hormones, the adipo(cyto)kines. There is growing evidence that these adipo(cyto)kines may link obesity to cardiovascular diseases. The excessive adipocyte hypertrophy in obesity induces hypoxia in adipose tissue. This leads to adiposopathy, the process that converts "healthy" adipose tissue to "sick" adipose tissue. This is accompanied by a change in profile of adipo(cyto)kines released, with less production of the "healthy" adipo(cyto)kines such as adiponectin and omentin and more release of the "unhealthy" adipo(cyto)kines, ultimately leading to the development of cardiovascular diseases. The present review provides a concise and general overview of the actual concepts of the role of adipo(cyto)kines in endothelial dysfunction, hypertension, atherosclerosis and heart diseases. The knowledge of these concepts may lead to new tools to improve health in the next generations.
Collapse
Affiliation(s)
- Johan Van de Voorde
- Department of Pharmacology, Vascular Research Unit, Ghent University, Belgium.
| | | | | | | |
Collapse
|
46
|
Tong Z, Li Q, Zhang J, Wei Y, Miao G, Yang X. Association between interleukin 6 and interleukin 16 gene polymorphisms and coronary heart disease risk in a Chinese population. J Int Med Res 2013; 41:1049-56. [PMID: 23881440 DOI: 10.1177/0300060513483405] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE To investigate the role of interleukin 6 (IL6) and IL16 single nucleotide polymorphisms (SNPs) in coronary artery disease (CAD) risk in a Chinese population. METHODS Patients with CAD and healthy control subjects were recruited. IL6 (rs1800795 and rs1800796) and IL16 (rs8034928, rs3848180, rs4577037, rs1131445, rs4778889 and rs11556218) genotyping was performed on the MassARRAY® platform (Sequenom®, San Diego, CA, USA). RESULTS Frequencies of rs8034928 variant C allele and rs11556218 variant T allele were higher in patients with CAD (n = 326) than controls (n = 341). The rs8034928 C/C genotype (odds ratio [OR] 2.03; 95% confidence intervals [CI] 1.16, 3.62) and C allele (OR 1.97; 95%CI 1.15, 3.45) were associated with increased risk of CAD compared with wild type. Similarly, the rs11556218 T/T genotype (OR 2.44; 95%CI 1.15, 5.44) and T allele (OR 2.37; 95%CI 1.13, 5.24) were associated with increased CAD risk compared with wild type. CONCLUSION The SNPs rs8034928 and rs11556218 are associated with CAD risk in the Chinese population, and may be useful predictive markers for CAD susceptibility.
Collapse
Affiliation(s)
- Zichuan Tong
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | | | | | | | | | | |
Collapse
|
47
|
Brown JE, Mosley M, Aldred S. Intermittent fasting: a dietary intervention for prevention of diabetes and cardiovascular disease? ACTA ACUST UNITED AC 2013. [DOI: 10.1177/1474651413486496] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Intermittent fasting, in which individuals fast on consecutive or alternate days, has been reported to facilitate weight loss and improve cardiovascular risk. This review evaluates the various approaches to intermittent fasting and examines the advantages and limitations for use of this approach in the treatment of obesity and type 2 diabetes.
Collapse
Affiliation(s)
- James E Brown
- Aston Research Centre for Healthy Ageing & School of Life and Health Sciences, Aston University, Birmingham, UK
| | - Michael Mosley
- Aston Research Centre for Healthy Ageing & School of Life and Health Sciences, Aston University, Birmingham, UK
| | - Sarah Aldred
- School of Sport and Exercise Sciences, College of Life and Environmental Sciences, University of Birmingham, UK
| |
Collapse
|