1
|
Lacunza E, Fink V, Salas ME, Gun AM, Basiletti JA, Picconi MA, Golubicki M, Robbio J, Kujaruk M, Iseas S, Williams S, Figueroa MI, Coso O, Cahn P, Ramos JC, Abba MC. Transcriptome and microbiome-immune changes across preinvasive and invasive anal cancer lesions. JCI Insight 2024; 9:e180907. [PMID: 39024554 PMCID: PMC11343604 DOI: 10.1172/jci.insight.180907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/10/2024] [Indexed: 07/20/2024] Open
Abstract
Anal squamous cell carcinoma (ASCC) is a rare gastrointestinal malignancy linked to high-risk human papillomavirus (HPV) infection, which develops from precursor lesions like low-grade squamous intraepithelial lesions and high-grade squamous intraepithelial lesions (HGSILs). ASCC incidence varies across populations and poses increased risk for people living with HIV. Our investigation focused on transcriptomic and metatranscriptomic changes from squamous intraepithelial lesions to ASCC. Metatranscriptomic analysis highlighted specific bacterial species (e.g., Fusobacterium nucleatum, Bacteroides fragilis) more prevalent in ASCC than precancerous lesions. These species correlated with gene-encoding enzymes (Acca, glyQ, eno, pgk, por) and oncoproteins (FadA, dnaK), presenting potential diagnostic or treatment markers. Unsupervised transcriptomic analysis identified distinct sample clusters reflecting histological diagnosis, immune infiltrate, HIV/HPV status, and pathway activities, recapitulating anal cancer progression's natural history. Our study unveiled molecular mechanisms in anal cancer progression, aiding in stratifying HGSIL cases based on low or high risk of progression to malignancy.
Collapse
Affiliation(s)
- Ezequiel Lacunza
- Centro de Investigaciones Inmunológicas Básicas y Aplicadas (CINIBA), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
- University of Miami - Center for AIDS Research/Sylvester Cancer Comprehensive Center Argentina Consortium for Research and Training in Virally Induced AIDS-Malignancies, University of Miami Miller School of Medicine, Miami, Florida, USA (detailed in Supplemental Acknowledgments)
| | - Valeria Fink
- University of Miami - Center for AIDS Research/Sylvester Cancer Comprehensive Center Argentina Consortium for Research and Training in Virally Induced AIDS-Malignancies, University of Miami Miller School of Medicine, Miami, Florida, USA (detailed in Supplemental Acknowledgments)
- Dirección de Investigaciones, Fundación Huésped, Buenos Aires, Argentina
| | - María E. Salas
- Centro de Investigaciones Inmunológicas Básicas y Aplicadas (CINIBA), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
- University of Miami - Center for AIDS Research/Sylvester Cancer Comprehensive Center Argentina Consortium for Research and Training in Virally Induced AIDS-Malignancies, University of Miami Miller School of Medicine, Miami, Florida, USA (detailed in Supplemental Acknowledgments)
| | - Ana M. Gun
- University of Miami - Center for AIDS Research/Sylvester Cancer Comprehensive Center Argentina Consortium for Research and Training in Virally Induced AIDS-Malignancies, University of Miami Miller School of Medicine, Miami, Florida, USA (detailed in Supplemental Acknowledgments)
- Dirección de Investigaciones, Fundación Huésped, Buenos Aires, Argentina
| | - Jorge A. Basiletti
- Laboratorio Nacional y Regional de Referencia de Virus Papiloma Humano, Instituto Nacional de Enfermedades Infecciosas - ANLIS “Dr. Malbrán”, Buenos Aires, Argentina
| | - María A. Picconi
- Laboratorio Nacional y Regional de Referencia de Virus Papiloma Humano, Instituto Nacional de Enfermedades Infecciosas - ANLIS “Dr. Malbrán”, Buenos Aires, Argentina
| | - Mariano Golubicki
- Unidad de Oncología, Hospital de Gastroenterología “Dr. Carlos Bonorino Udaondo”, Buenos Aires, Argentina
| | - Juan Robbio
- Unidad de Oncología, Hospital de Gastroenterología “Dr. Carlos Bonorino Udaondo”, Buenos Aires, Argentina
| | - Mirta Kujaruk
- Unidad de Oncología, Hospital de Gastroenterología “Dr. Carlos Bonorino Udaondo”, Buenos Aires, Argentina
| | - Soledad Iseas
- Medical Oncology Department, Paris-St Joseph Hospital, Paris, France
| | - Sion Williams
- University of Miami - Center for AIDS Research/Sylvester Cancer Comprehensive Center Argentina Consortium for Research and Training in Virally Induced AIDS-Malignancies, University of Miami Miller School of Medicine, Miami, Florida, USA (detailed in Supplemental Acknowledgments)
- University of Miami - Center for AIDS Research/Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - María I. Figueroa
- University of Miami - Center for AIDS Research/Sylvester Cancer Comprehensive Center Argentina Consortium for Research and Training in Virally Induced AIDS-Malignancies, University of Miami Miller School of Medicine, Miami, Florida, USA (detailed in Supplemental Acknowledgments)
- Dirección de Investigaciones, Fundación Huésped, Buenos Aires, Argentina
| | - Omar Coso
- University of Miami - Center for AIDS Research/Sylvester Cancer Comprehensive Center Argentina Consortium for Research and Training in Virally Induced AIDS-Malignancies, University of Miami Miller School of Medicine, Miami, Florida, USA (detailed in Supplemental Acknowledgments)
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Pedro Cahn
- University of Miami - Center for AIDS Research/Sylvester Cancer Comprehensive Center Argentina Consortium for Research and Training in Virally Induced AIDS-Malignancies, University of Miami Miller School of Medicine, Miami, Florida, USA (detailed in Supplemental Acknowledgments)
- Dirección de Investigaciones, Fundación Huésped, Buenos Aires, Argentina
| | - Juan C. Ramos
- University of Miami - Center for AIDS Research/Sylvester Cancer Comprehensive Center Argentina Consortium for Research and Training in Virally Induced AIDS-Malignancies, University of Miami Miller School of Medicine, Miami, Florida, USA (detailed in Supplemental Acknowledgments)
- University of Miami - Center for AIDS Research/Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Martín C. Abba
- Centro de Investigaciones Inmunológicas Básicas y Aplicadas (CINIBA), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
- University of Miami - Center for AIDS Research/Sylvester Cancer Comprehensive Center Argentina Consortium for Research and Training in Virally Induced AIDS-Malignancies, University of Miami Miller School of Medicine, Miami, Florida, USA (detailed in Supplemental Acknowledgments)
| |
Collapse
|
2
|
Tang KN, Adkesson MJ, Cárdenas-Alayza S, Adamovicz L, Deming AC, Wellehan JFX, Childress A, Cortes-Hinojosa G, Colegrove K, Langan JN, Allender MC. Otariid gammaherpesvirus 1 in South American fur seals (Arctocephalus australis) and a novel related herpesvirus in free-ranging South American sea lions (Otaria byronia): Prevalence and effects of age, sex, and sample type. PLoS One 2024; 19:e0299404. [PMID: 38446776 PMCID: PMC10917305 DOI: 10.1371/journal.pone.0299404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 02/08/2024] [Indexed: 03/08/2024] Open
Abstract
Otariid gammaherpesvirus 1 (OtGHV1) is associated with high rates of urogenital carcinoma in free-ranging California sea lions (Zalophus californianus; CSL), and until recently was reported only in the Northern Hemisphere. The objective of this study was to survey free-ranging South American sea lions (Otaria byronia; SASL) and South American fur seals (Arctocephalus australis: SAFS) in Punta San Juan, Peru for OtGHV1 and to determine prevalence characteristics. Twenty-one percent (14/67) of urogenital swabs collected over three years (2011, 2014, 2015) from live pinnipeds of both species tested positive with a pan-herpesvirus conventional PCR. Sequencing of SAFS amplicons revealed 100% homology to OtGHV1 at the DNA polymerase, glycoprotein B, and viral bcl2-like genes. Sequencing of SASL amplicons revealed a novel related virus, herein called Otariid gammaherpesvirus 8 (OtGHV8). For comparison of sample sites, urogenital, conjunctival, and oropharyngeal swabs collected from 136 live pinnipeds of both species at Punta San Juan between 2011-2018 were then assayed using quantitative PCR for a segment of the OtGHV1/8 DNA polymerase gene using a qPCR assay now determined to cross-react between the two viruses. In total, across both species, 38.6% (51/132) of urogenital swabs, 5.6% (4/71) of conjunctival swabs, and 1.1% (1/90) of oropharyngeal swabs were positive for OtGHV1/8, with SASL only positive on urogenital swabs. Results from SASL were complicated by the finding of OtGHV8, necessitating further study to determine prevalence of OtGHV1 versus OtGHV8 using an alternate assay. Results from SAFS suggest a potential relationship between OtGHV1 in SAFS and CSL. Though necropsy surveillance in SAFS is very limited, geographic patterns of OtGHV1-associated urogenital carcinoma in CSL and the tendency of herpesviruses to cause more detrimental disease in aberrant hosts suggests that it is possible that SAFS may be the definitive host of OtGHV1, which gives further insight into the diversity and phyogeography of this clade of related gammaherpesviruses.
Collapse
Affiliation(s)
- Karisa N. Tang
- Chicago Zoological Society, Brookfield Zoo, Brookfield, IL, United States of America
- Illinois Zoological and Aquatic Animal Residency, Urbana, IL, United States of America
- A. Watson Armour III Center for Animal Health and Welfare, John G. Shedd Aquarium, Chicago, IL, United States of America
| | - Michael J. Adkesson
- Chicago Zoological Society, Brookfield Zoo, Brookfield, IL, United States of America
| | - Susana Cárdenas-Alayza
- Centro para la Sostenibilidad Ambiental, Universidad Peruana Cayetano Heredia, Lima, Peru
- Departamento de Ciencias Biológicas y Fisiológicas, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Laura Adamovicz
- Wildlife Epidemiology Laboratory, University of Illinois College of Veterinary Medicine, Urbana, IL, United States of America
| | - Alissa C. Deming
- Pacific Marine Mammal Center, Laguna Beach, CA, United States of America
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States of America
| | - James F. X. Wellehan
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States of America
| | - April Childress
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States of America
| | - Galaxia Cortes-Hinojosa
- Escuela de Medicina Veterinaria, Facultad de Agronomía e Ingeniería Forestal, Facultad de Ciencias Biológicas y Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Kathleen Colegrove
- Zoological Pathology Program, Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Illinois, Brookfield, IL, United States of America
| | - Jennifer N. Langan
- Chicago Zoological Society, Brookfield Zoo, Brookfield, IL, United States of America
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois, Urbana, IL, United States of America
| | - Matthew C. Allender
- Chicago Zoological Society, Brookfield Zoo, Brookfield, IL, United States of America
- Wildlife Epidemiology Laboratory, University of Illinois College of Veterinary Medicine, Urbana, IL, United States of America
| |
Collapse
|
3
|
Kilich G, Perelygina L, Sullivan KE. Rubella virus chronic inflammatory disease and other unusual viral phenotypes in inborn errors of immunity. Immunol Rev 2024; 322:113-137. [PMID: 38009321 DOI: 10.1111/imr.13290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2023]
Abstract
Infectious susceptibility is a component of many inborn errors of immunity. Nevertheless, antibiotic use is often used as a surrogate in history taking for infectious susceptibility, thereby disadvantaging patients who present with viral infections as their phenotype. Further complicating clinical evaluations are unusual manifestations of viral infections which may be less familiar that the typical respiratory viral infections. This review covers several unusual viral phenotypes arising in patients with inborn errors of immunity and other settings of immune compromise. In some cases, chronic infections lead to oncogenesis or tumor-like growths and the conditions and mechanisms of viral-induced oncogenesis will be described. This review covers enterovirus, rubella, measles, papillomavirus, and parvovirus B19. It does not cover EBV and hemophagocytic lymphohistiocytosis nor lymphomagenesis related to EBV. EBV susceptibility has been recently reviewed. Our goal is to increase awareness of the unusual manifestations of viral infections in patients with IEI and to describe treatment modalities utilized in this setting. Coincidentally, each of the discussed viral infections can have a cutaneous component and figures will serve as a reminder of the physical features of these viruses. Given the high morbidity and mortality, early recognition can only improve outcomes.
Collapse
Affiliation(s)
- Gonench Kilich
- Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Ludmila Perelygina
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | | |
Collapse
|
4
|
Georgopoulos AP, James LM. Association between brain cancer immunogenetic profile and in silico immunogenicities of 11 viruses. Sci Rep 2023; 13:21528. [PMID: 38057480 PMCID: PMC10700375 DOI: 10.1038/s41598-023-48843-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023] Open
Abstract
Several viruses including human herpes viruses (HHVs), human polyomavirus JCV, and human papilloma virus (HPV) have been implicated in brain cancer, albeit inconsistently. Since human leukocyte antigen (HLA) is centrally involved in the human immune response to viruses and has been implicated in brain cancer, we evaluated in silico the immunogenicity between 69 Class I HLA alleles with epitopes of proteins of 9 HHVs, JCV, and HPV with respect to a population-based HLA-brain cancer profile. We found that immunogenicity varied widely across HLA alleles with HLA-C alleles exhibiting the highest immunogenicity, and that immunogenicity scores were negatively associated with the population-based HLA-brain cancer profile, particularly for JCV, HHV6A, HHV5, HHV3, HHV8, and HHV7. Consistent with the role of HLA in foreign antigen elimination, the findings suggest that viruses with proteins of high HLA immunogenicity are eliminated more effectively and, consequently, less likely to cause brain cancer; conversely, the absence of highly immunogenic HLA may allow the viral antigens to persist, contributing to cancer.
Collapse
Affiliation(s)
- Apostolos P Georgopoulos
- The HLA Research Group, Brain Sciences Center, Department of Veterans Affairs Health Care System, Minneapolis VAMC, One Veterans Drive, Minneapolis, MN, 55417, USA.
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN, USA.
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, USA.
- Department of Neurology, University of Minnesota Medical School, Minneapolis, MN, USA.
| | - Lisa M James
- The HLA Research Group, Brain Sciences Center, Department of Veterans Affairs Health Care System, Minneapolis VAMC, One Veterans Drive, Minneapolis, MN, 55417, USA
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN, USA
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, USA
| |
Collapse
|
5
|
Din SRU, Saeed S, Khan SU, Arbi FM, Xuefang G, Zhong M. Bacteria-driven cancer therapy: Exploring advancements and challenges. Crit Rev Oncol Hematol 2023; 191:104141. [PMID: 37742883 DOI: 10.1016/j.critrevonc.2023.104141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/26/2023] Open
Abstract
Cancer, a serious fatal disease caused by the uncontrolled growth of cells, is the biggest challenge flagging around medicine and health fields. Conventionally, various treatments-based strategies such as radiotherapy, chemotherapy, and alternative cancer therapies possess drugs that cannot reach the cancerous tissues and make them toxic to noncancerous cells. Cancer immunotherapy has made outstanding achievements in reducing the chances of cancer. Our considerable attention towards cancer-directed immune responses and the mechanisms behind which immune cells kill cancer cells have progressively been helpful in the advancement of new therapies. Among them, bacteria-based cancer immunotherapy has achieved much more attention due to smart and robust mechanisms in activating the host anti-tumor response. Moreover, bacterial-based therapy can be utilized as a single monotherapy or in combination with multiple anticancer immunotherapies to accelerate productive clinical results. Herein, we comprehensively reviewed recent advancements, challenges, and future perspectives in developing bacterial-based cancer immunotherapies.
Collapse
Affiliation(s)
- Syed Riaz Ud Din
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Sumbul Saeed
- School of Environment and Science, Griffith University, Nathan, QLD 4111, Australia
| | - Shahid Ullah Khan
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China; Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China; Women Medical and Dental College, Khyber Medical University, Peshawar, KPK 22020, Pakistan
| | - Fawad Mueen Arbi
- Quaid-e-Azam Medical College, Bahawalpur, Punjab 63100, Pakistan
| | - Guo Xuefang
- Department of Medical Microbiology, Dalian Medical University, Dalian 116044, China
| | - Mintao Zhong
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
6
|
Neugebauer E, Bastidas-Quintero AM, Weidl D, Full F. Pioneer factors in viral infection. Front Immunol 2023; 14:1286617. [PMID: 37876935 PMCID: PMC10591220 DOI: 10.3389/fimmu.2023.1286617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 09/25/2023] [Indexed: 10/26/2023] Open
Abstract
Pioneer factors are transcription factors sharing the fascinating ability to bind to compact chromatin and thereby alter its transcriptional fate. Most pioneer factors are known for their importance during embryonic development, for instance, in inducing zygotic genome activation or cell fate decision. Some pioneer factors are actively induced or downregulated by viral infection. With this, viruses are capable to modulate different signaling pathways resulting for example in MHC-receptor up/downregulation which contributes to viral immune evasion. In this article, we review the current state of research on how different viruses (Herpesviruses, Papillomaviruses and Hepatitis B virus) use pioneer factors for their viral replication and persistence in the host, as well as for the development of viral cancer.
Collapse
Affiliation(s)
- Eva Neugebauer
- Institute of Virology, University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- German Consulting Laboratory for Herpes-Simplex Virus (HSV) and Varizellla-Zoster Virus (VZV), Medical Center, University of Freiburg, Freiburg, Germany
| | - Aura M. Bastidas-Quintero
- Institute of Virology, University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Consulting Laboratory for Herpes-Simplex Virus (HSV) and Varizellla-Zoster Virus (VZV), Medical Center, University of Freiburg, Freiburg, Germany
| | - Daniel Weidl
- Institute for Clinical and Molecular Virology, University Hospital Erlangen, Erlangen, Germany
| | - Florian Full
- Institute of Virology, University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
- German Consulting Laboratory for Herpes-Simplex Virus (HSV) and Varizellla-Zoster Virus (VZV), Medical Center, University of Freiburg, Freiburg, Germany
| |
Collapse
|
7
|
Sausen DG, Shechter O, Gallo ES, Dahari H, Borenstein R. Herpes Simplex Virus, Human Papillomavirus, and Cervical Cancer: Overview, Relationship, and Treatment Implications. Cancers (Basel) 2023; 15:3692. [PMID: 37509353 PMCID: PMC10378257 DOI: 10.3390/cancers15143692] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
There is a significant body of research examining the role of human papillomavirus (HPV) in the pathogenesis of cervical cancer, with a particular emphasis on the oncogenic proteins E5, E6, and E7. What is less well explored, however, is the relationship between cervical cancer and herpes simplex virus (HSV). To date, studies examining the role of HSV in cervical cancer pathogenesis have yielded mixed results. While several experiments have determined that HPV/HSV-2 coinfection results in a higher risk of developing cervical cancer, others have questioned the validity of this association. However, clarifying the potential role of HSV in the pathogenesis of cervical cancer may have significant implications for both the prevention and treatment of this disease. Should this relationship be clarified, treating and preventing HSV could open another avenue with which to prevent cervical cancer. The importance of this is highlighted by the fact that, despite the creation of an effective vaccine against HPV, cervical cancer still impacts 604,000 women and is responsible for 342,000 deaths annually. This review provides an overview of HSV and HPV infections and then delves into the possible links between HPV, HSV, and cervical cancer. It concludes with a summary of preventive measures against and recent treatment advances in cervical cancer.
Collapse
Affiliation(s)
- Daniel G. Sausen
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA 23501, USA; (D.G.S.); (O.S.)
| | - Oren Shechter
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA 23501, USA; (D.G.S.); (O.S.)
| | - Elisa S. Gallo
- Division of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv 64239, Israel
| | - Harel Dahari
- The Program for Experimental and Theoretical Modeling, Division of Hepatology, Department of Medicine, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA;
| | - Ronen Borenstein
- The Program for Experimental and Theoretical Modeling, Division of Hepatology, Department of Medicine, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA;
| |
Collapse
|
8
|
Nunes JM, Kell DB, Pretorius E. Cardiovascular and haematological pathology in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS): A role for viruses. Blood Rev 2023; 60:101075. [PMID: 36963989 PMCID: PMC10027292 DOI: 10.1016/j.blre.2023.101075] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 03/25/2023]
Abstract
ME/CFS is a debilitating chronic condition that often develops after viral or bacterial infection. Insight from the study of Long COVID/Post Acute Sequelae of COVID-19 (PASC), the post-viral syndrome associated with SARS-CoV-2 infection, might prove to be useful for understanding pathophysiological mechanisms of ME/CFS. Disease presentation is similar between the two conditions, and a subset of Long COVID patients meet the diagnostic criteria for ME/CFS. Since Long COVID is characterized by significant vascular pathology - including endothelial dysfunction, coagulopathy, and vascular dysregulation - the question of whether or not the same biological abnormalities are of significance in ME/CFS arises. Cardiac abnormalities have for a while now been documented in ME/CFS cohorts, with recent studies demonstrating major deficits in cerebral blood flow, and hence vascular dysregulation. A growing body of research is demonstrating that ME/CFS is accompanied by platelet hyperactivation, anomalous clotting, a procoagulant phenotype, and endothelial dysfunction. Endothelial damage and dysregulated clotting can impair substance exchange between blood and tissues, and result in hypoperfusion, which may contribute to the manifestation of certain ME/CFS symptoms. Here we review the ME/CFS literature to summarize cardiovascular and haematological findings documented in patients with the condition, and, in this context, briefly discuss the potential role of previously-implicated pathogens. Overall, cardiac and haematological abnormalities are present within ME/CFS cohorts. While atherosclerotic heart disease is not significantly associated with ME/CFS, suboptimal cardiovascular function defined by reduced cardiac output, impaired cerebral blood flow, and vascular dysregulation are, and these abnormalities do not appear to be influenced by deconditioning. Rather, these cardiac abnormalities may result from dysfunction in the (autonomic) nervous system. Plenty of recently published studies are demonstrating significant platelet hyperactivity and endothelial dysfunction in ME/CFS, as well as anomalous clotting processes. It is of particular importance to determine to what extent these cardiovascular and haematological abnormalities contribute to symptom severity, and if these two systems can be targeted for therapeutic purposes. Viral reservoirs of herpesviruses exist in ME/CFS, and most likely contribute to cardiovascular and haematological dysfunction directly or indirectly. This review highlights the potential of studying cardiac functioning, the vasculature, and coagulation system in ME/CFS.
Collapse
Affiliation(s)
- Jean M Nunes
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1, Matieland 7602, South Africa.
| | - Douglas B Kell
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1, Matieland 7602, South Africa; Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown St, Liverpool L69 7ZB, UK; The Novo Nordisk Foundation Centre for Biosustainability, Building 220, Chemitorvet 200, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
| | - Etheresia Pretorius
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1, Matieland 7602, South Africa; Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown St, Liverpool L69 7ZB, UK.
| |
Collapse
|
9
|
Taherkhani R, Farzaneh MR, Taherkhani S, Amini A, Keshtkar F, Aghasipour M, Badri A, Anaei Z, Farshadpour F. Molecular Detection of Epstein-Barr virus in Biopsy Samples of Patients Suffering from Bladder Cancer in Bushehr Province, Iran. IRANIAN SOUTH MEDICAL JOURNAL 2022; 25:326-339. [DOI: 10.52547/ismj.25.4.326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
|
10
|
Chu P, Cadogan SL, Warren-Gash C. Antibodies to Human Herpesviruses and Rate of Incident Cardiovascular Events and All-Cause Mortality in the UK Biobank Infectious Disease Pilot Study. Open Forum Infect Dis 2022; 9:ofac294. [PMID: 35873304 PMCID: PMC9301583 DOI: 10.1093/ofid/ofac294] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/08/2022] [Indexed: 11/14/2022] Open
Abstract
Background Associations between human herpesviruses (HHVs) and cardiovascular disease/mortality have been reported, but evidence is inconsistent. We investigated associations between 3 common herpesviruses and (1) incident stroke or myocardial infarction (MI) and (2) all-cause mortality. Methods We included participants from the UK Biobank Infectious Disease pilot study with valid serum antibody (IgG) measurements taken at cohort entry (2006-2010) for herpes simplex virus type 1 (HSV1), varicella zoster virus (VZV), and cytomegalovirus (CMV). Linked hospital and mortality records up to December 30 2019 provided information on rates of (1) incident first stroke or MI and (2) all-cause mortality. Hazard ratios (HRs) from Cox proportional hazards regression models were used to assess relationships between (1) HHV seropositivity, (2) HHV titer and incident stroke/MI, and death outcomes. Fully adjusted models accounted for sociodemographic information (age, sex, ethnicity, education, deprivation quintile, birthplace, population density), baseline comorbidities (including diabetes and hypertension), smoking status, body mass index, and serum cholesterol. Results Of 9429 study participants (56% female, 95% White, median age 58 years), 41% were seropositive for all 3 HHVs. Human herpesvirus seropositivity was not associated with stroke/MI (fully adjusted HRs and 95% confidence intervals [CIs]: HSV1 = 0.93 [CI, 0.72-1.22], VZV = 0.78 [CI, 0.51-1.20], CMV = 0.91 [CI, 0.71-1.16]) or all-cause mortality (HSV1 = 1.21 [CI, 1.00-1.47], VZV = 0.79 [CI, 0.58-1.07], CMV = 0.90 [CI, 0.76-1.06]). Human herpesvirus titers were not associated with outcomes. Conclusions In this mostly White UK Biobank subset, neither HHV seropositivity nor titers were associated with stroke/MI or all-cause mortality.
Collapse
Affiliation(s)
- Petrina Chu
- Department of Biostatistics & Health Informatics, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
- Department of Non-Communicable Disease Epidemiology, London School of Hygiene & Tropical Medicine (LSHTM), London, United Kingdom
| | - Sharon Louise Cadogan
- Department of Non-Communicable Disease Epidemiology, London School of Hygiene & Tropical Medicine (LSHTM), London, United Kingdom
| | - Charlotte Warren-Gash
- Department of Non-Communicable Disease Epidemiology, London School of Hygiene & Tropical Medicine (LSHTM), London, United Kingdom
| |
Collapse
|
11
|
Arsene DE, Milanesi E, Dobre M. Viral oncogenesis in tumours of the central nervous system: reality or random association? A retrospective study on archived material. J Cell Mol Med 2022; 26:1413-1420. [PMID: 35112466 PMCID: PMC8899179 DOI: 10.1111/jcmm.17064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/25/2021] [Accepted: 10/29/2021] [Indexed: 11/29/2022] Open
Abstract
Central nervous system (CNS) tumours have devastating effects and are recurrent, with dismal prognosis (gliomas) or life‐threatening by the compression effect (meningiomas). This disease's aetiology remains debatable. Over the last decade, the hypothesis that human viruses may be implicated in these tumours has been proposed. In this study, our aim is to examine the presence of 11 viruses in the most frequent CNS primary tumours. Using polymerase chain reaction (PCR), we assessed the viral presence in archived, paraffin‐embedded tumour tissues from 114 patients with glioma and meningioma and in the brain tissue from 40 controls lacking tumour pathology. We focused on candidate neuro‐oncogenic types (herpesviridae and polyomaviruses) and on human papillomavirus (HPV). HPV presence, for which involvement in these tumours was hardly investigated, was found to be associated with both tumour categories compared with controls (glioma, p = 0.032; meningioma, p = 0.032), whereas the presence of the neuro‐oncogenic viruses was found in a negligible number of both categories, suggesting a lack of association with the tumour presence. Moreover, our study reveals a positive correlation between HPV presence and glioma malignancy, and a negative correlation with meningioma grading. Our results suggest that the presence of HPV seems to be significantly associated with primary tumours of the CNS and its meninges.
Collapse
Affiliation(s)
- Dorel Eugen Arsene
- Victor Babes National Institute of Pathology, Bucharest, Romania.,National Institute of Neurology and Neurovascular Diseases, Bucharest, Romania
| | - Elena Milanesi
- Victor Babes National Institute of Pathology, Bucharest, Romania
| | - Maria Dobre
- Victor Babes National Institute of Pathology, Bucharest, Romania
| |
Collapse
|
12
|
Jasinski-Bergner S, Mandelboim O, Seliger B. Molecular mechanisms of human herpes viruses inferring with host immune surveillance. J Immunother Cancer 2021; 8:jitc-2020-000841. [PMID: 32616556 PMCID: PMC7333871 DOI: 10.1136/jitc-2020-000841] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2020] [Indexed: 02/06/2023] Open
Abstract
Several human herpes viruses (HHVs) exert oncogenic potential leading to malignant transformation of infected cells and/or tissues. The molecular processes induced by viral-encoded molecules including microRNAs, peptides, and proteins contributing to immune evasion of the infected host cells are equal to the molecular processes of immune evasion mediated by tumor cells independently of viral infections. Such major immune evasion strategies include (1) the downregulation of proinflammatory cytokines/chemokines as well as the induction of anti-inflammatory cytokines/chemokines, (2) the downregulation of major histocompatibility complex (MHC) class Ia directly as well as indirectly by downregulation of the components involved in the antigen processing, and (3) the downregulation of stress-induced ligands for activating receptors on immune effector cells with NKG2D leading the way. Furthermore, (4) immune modulatory molecules like MHC class Ib molecules and programmed cell death1 ligand 1 can be upregulated on infections with certain herpes viruses. This review article focuses on the known molecular mechanisms of HHVs modulating the above-mentioned possibilities for immune surveillance and even postulates a temporal order linking regular tumor immunology with basic virology and offering putatively novel insights for targeting HHVs.
Collapse
Affiliation(s)
- Simon Jasinski-Bergner
- Institute for Medical Immunology, Martin-Luther-Universitat Halle-Wittenberg, Halle (Saale), Germany
| | - Ofer Mandelboim
- Immunology & Cancer Research Center, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Barbara Seliger
- Institute for Medical Immunology, Martin-Luther-Universitat Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
13
|
Kane RA, Christodoulides N, Jensen IM, Becker DJ, Mansfield KL, Savage AE. Gene expression changes with tumor disease and leech parasitism in the juvenile green sea turtle skin transcriptome. Gene 2021; 800:145800. [PMID: 34175400 DOI: 10.1016/j.gene.2021.145800] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/14/2021] [Accepted: 06/22/2021] [Indexed: 02/07/2023]
Abstract
Emerging infectious diseases are a major threat to biodiversity in the 21st century. Fibropapillomatosis (FP) is an epithelial tumor disease that affects immature and adult marine turtles worldwide, particularly green turtles (Chelonia mydas). We know little about the host factors contributing to FP susceptibility, in part because transcriptomic studies that compare transcript expression in turtles with and without FP are lacking. Here, we performed RNA-Seq on healthy skin tissue from immature C. mydas in the Indian River Lagoon, Florida, USA, comparing turtles (1) with and without FP and (2) with and without leech parasites, a putative vector of FP. We assembled a de novo C. mydas skin transcriptome to identify transcripts with significant differential expression (DE) across FP and leech categories. Significant DE transcripts were found across FP and leech comparisons, including 10 of the same transcripts with DE across both comparisons. Leech-positive individuals significantly upregulated different immune and viral interaction transcripts than did leech-negative individuals, including viral interaction transcripts associated with herpesvirus interactions. This finding strengthens the role of marine leeches as mechanical vectors of Chelonid herpesvirus 5 (ChHV5) which has been implicated as a causative agent of FP. FP-positive turtles upregulated several tumor progression and suppression transcripts relative to FP-negative turtles, which had no significant DE tumor progression transcripts. FP-positive turtles also upregulated significantly more protein interaction transcripts than FP-negative turtles. DE transcripts across leech comparisons showed no functional enrichment, whereas DE transcripts across FP comparisons showed some GO terms were enriched in FP-positive and FP negative turtles. Notably, only FP-negative turtles were enriched for GO terms involved in acquired and inflammatory immune gene regulation. Overall, our DE transcripts included several candidate genes that may play important roles in C. mydas resistance to or recovery from FP, highlighting that transcriptomics provides a promising venue to understand this impactful disease. Continued investigation of C. mydas responses to FP and leech affliction is imperative for species persistence and the conservation of marine ecosystems worldwide due to the essential role of sea turtles in ecosystem function and stability.
Collapse
Affiliation(s)
- Rachael A Kane
- Department of Biology, University of Central Florida, Orlando, FL, United States; School of Biological Sciences, Washington State University, Pullman, WA, United States.
| | | | - Irelyn M Jensen
- Department of Biology, University of Central Florida, Orlando, FL, United States.
| | - Donald J Becker
- Department of Biology, University of Central Florida, Orlando, FL, United States.
| | | | - Anna E Savage
- Department of Biology, University of Central Florida, Orlando, FL, United States.
| |
Collapse
|
14
|
Salimi-Jeda A, Badrzadeh F, Esghaei M, Abdoli A. The role of telomerase and viruses interaction in cancer development, and telomerase-dependent therapeutic approaches. Cancer Treat Res Commun 2021; 27:100323. [PMID: 33530025 DOI: 10.1016/j.ctarc.2021.100323] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 12/21/2022]
Abstract
Human telomerase reverse transcriptase (hTERT) is an enzyme that is critically involved in elongating and maintaining telomeres length to control cell life span and replicative potential. Telomerase activity is continuously expressed in human germ-line cells and most cancer cells, whereas it is suppressed in most somatic cells. In normal cells, by reducing telomerase activity and progressively shortening the telomeres, the cells progress to the senescence or apoptosis process. However, in cancer cells, telomere lengths remain constant due to telomerase's reactivation, and cells continue to proliferate and inhibit apoptosis, and ultimately lead to cancer development and human death due to metastasis. Studies demonstrated that several DNA and RNA oncoviruses could interact with telomerase by integrating their genome sequence within the host cell telomeres specifically. Through the activation of the hTERT promoter and lengthening the telomere, these cells contributes to cancer development. Since oncoviruses can activate telomerase and increase hTERT expression, there are several therapeutic strategies based on targeting the telomerase of cancer cells like telomerase-targeted peptide vaccines, hTERT-targeting dendritic cells (DCs), hTERT-targeting gene therapy, and hTERT-targeting CRISPR/Cas9 system that can overcome tumor-mediated toleration mechanisms and specifically apoptosis in cancer cells. This study reviews available data on the molecular structure of telomerase and the role of oncoviruses and telomerase interaction in cancer development and telomerase-dependent therapeutic approaches to conquest the cancer cells.
Collapse
Affiliation(s)
- Ali Salimi-Jeda
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Fariba Badrzadeh
- Faculti of Medicine, Golestan University of Medical sciences, Golestan, Iran.
| | - Maryam Esghaei
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Asghar Abdoli
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
15
|
Human Cytomegalovirus and Human Herpesvirus-6 and Wilms Tumor: Is There a Link? ARCHIVES OF PEDIATRIC INFECTIOUS DISEASES 2020. [DOI: 10.5812/pedinfect.103904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: Identifying etiologic factors contributing to Wilms tumor (WT) is necessary for its prevention and treatment. Oncogenic viruses cause nearly 20% of all human cancers. Although trials on preventing virus-caused cancers are complex and difficult, but they are not impossible to conduct. Human Cytomegalovirus (HCMV) and human herpes virus-6 (HHV6) can cause different types of cancers. Objectives: The current study aimed to investigate whether HCMV and HHV6-DNA are present in patients with WT. This is the first study of this kind in Iran. Methods: This study was performed on patients with kidney disorders who were referring to Mofid Pediatrics Hospital, Tehran (Iran), during 2010-16. In total, 98 kidney samples (49 patients with WT and 49 normal kidneys (autopsy) and kidneys with benign noninfectious lesions) were investigated to identify HCMV and HHV6-DNA. Qualitative Polymerase Chain reaction (PCR) method and nested polymerase chain reaction (nested-PCR) technique were used to identify HCMV and HHV6, respectively. Results: No significant difference was found between WT patients and controls concerning the HCMV or HHV6. Conclusions: Based on the findings, it can be concluded that there is no association between these viruses and WT.
Collapse
|
16
|
Miller CM, Selvam S, Fuchs G. Fatal attraction: The roles of ribosomal proteins in the viral life cycle. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 12:e1613. [PMID: 32657002 DOI: 10.1002/wrna.1613] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 05/20/2020] [Accepted: 05/26/2020] [Indexed: 12/30/2022]
Abstract
Upon viral infection of a host cell, each virus starts a program to generate many progeny viruses. Although viruses interact with the host cell in numerous ways, one critical step in the virus life cycle is the expression of viral proteins, which are synthesized by the host ribosomes in conjunction with host translation factors. Here we review different mechanisms viruses have evolved to effectively seize host cell ribosomes, the roles of specific ribosomal proteins and their posttranslational modifications on viral RNA translation, or the cellular response to infection. We further highlight ribosomal proteins with extra-ribosomal function during viral infection and put the knowledge of ribosomal proteins during viral infection into the larger context of ribosome-related diseases, known as ribosomopathies. This article is categorized under: Translation > Translation Mechanisms Translation > Translation Regulation.
Collapse
Affiliation(s)
- Clare M Miller
- Department of Biological Sciences, University at Albany, Albany, New York, USA
| | - Sangeetha Selvam
- Department of Biological Sciences, University at Albany, Albany, New York, USA
| | - Gabriele Fuchs
- Department of Biological Sciences, University at Albany, Albany, New York, USA.,The RNA Institute, University at Albany, Albany, New York, USA
| |
Collapse
|
17
|
Lidenge SJ, Kossenkov AV, Tso FY, Wickramasinghe J, Privatt SR, Ngalamika O, Ngowi JR, Mwaiselage J, Lieberman PM, West JT, Wood C. Comparative transcriptome analysis of endemic and epidemic Kaposi's sarcoma (KS) lesions and the secondary role of HIV-1 in KS pathogenesis. PLoS Pathog 2020; 16:e1008681. [PMID: 32706839 PMCID: PMC7406108 DOI: 10.1371/journal.ppat.1008681] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 08/05/2020] [Accepted: 06/03/2020] [Indexed: 02/08/2023] Open
Abstract
In sub-Saharan Africa, endemic Kaposi's sarcoma (EnKS) is still prevalent despite high incidence of epidemic Kaposi's sarcoma (EpKS) resulting from the on-going HIV-1 epidemic. While KSHV is clearly the etiologic agent of KS, the mechanisms underlying KS development are not fully understood. For example, HIV-1 co-infection and concomitant immune dysfunction have been associated with EpKS development. However, the direct or indirect role(s) of HIV-1, and therefore of immune suppression, in EpKS remains unclear. How, or whether, EpKS is mechanistically distinct from EnKS is unknown. Thus, the absence of HIV-1 co-infection in EnKS provides a unique control for investigating and deciphering whether HIV-1 plays a direct or indirect role in the EpKS tumor microenvironment. We hypothesized that HIV-1 co-infection would induce transcriptome changes that differentiate EpKS from EnKS, thereby defining the direct intra-tumor role of HIV-1 in KS. Comparison of ART-treated and -naïve patients would further define the impact of ART on the KS transcriptome. We utilized RNA-seq followed by multiparameter bioinformatics analysis to compare transcriptomes from KS lesions to uninvolved control skin. We provide the first transcriptomic comparison of EpKS versus EnKS, ART-treated vs-naïve EpKS and male vs female EpKS to define the roles of HIV-1 co-infection, the impact of ART, and gender on KS gene expression profiles. Our findings suggest that ART-use and gender have minimal impact on transcriptome profiles of KS lesions. Gene expression profiles strongly correlated between EpKS and EnKS patients (Spearman r = 0.83, p<10-10). A subset of genes involved in tumorigenesis and inflammation/immune responses showed higher magnitude, but not unique dysregulation in EnKS compared to EpKS. While gender and ART had no detectable contribution, the trend toward higher magnitude of gene dysregulation in EnKS coupled with the absence of HIV-1 transcripts in EpKS may suggest an indirect or systemic effect of HIV-1 to promote KS tumorigenesis.
Collapse
Affiliation(s)
- Salum J. Lidenge
- Nebraska Center for Virology and the School of Biological Sciences, University of Nebraska, Lincoln, Nebraska, United States of America
- Ocean Road Cancer Institute, Dar es Salaam, Tanzania
- Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | | | - For Yue Tso
- Nebraska Center for Virology and the School of Biological Sciences, University of Nebraska, Lincoln, Nebraska, United States of America
| | | | - Sara R. Privatt
- Nebraska Center for Virology and the School of Biological Sciences, University of Nebraska, Lincoln, Nebraska, United States of America
| | - Owen Ngalamika
- Dermatology and Venereology section, University Teaching Hospitals, University of Zambia School of Medicine, Lusaka, Zambia
| | - John R. Ngowi
- Ocean Road Cancer Institute, Dar es Salaam, Tanzania
| | - Julius Mwaiselage
- Ocean Road Cancer Institute, Dar es Salaam, Tanzania
- Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Paul M. Lieberman
- Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - John T. West
- Nebraska Center for Virology and the Department of Biochemistry, University of Nebraska, Lincoln, Nebraska, United States of America
| | - Charles Wood
- Nebraska Center for Virology and the School of Biological Sciences, University of Nebraska, Lincoln, Nebraska, United States of America
- Nebraska Center for Virology and the Department of Biochemistry, University of Nebraska, Lincoln, Nebraska, United States of America
| |
Collapse
|
18
|
Freuer D, Linseisen J, Waterboer T, Pessler F, Guzmán CA, Wawro N, Peters A, Meisinger C. Seropositivity of selected chronic infections and different measures of obesity. PLoS One 2020; 15:e0231974. [PMID: 32320435 PMCID: PMC7176148 DOI: 10.1371/journal.pone.0231974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 04/03/2020] [Indexed: 11/25/2022] Open
Abstract
The impact of sex-specific body fat distribution on the susceptibility to five chronic infections, helicobacter pylori and human herpesviruses 3 to 6 (i.e. varicella-zoster, Epstein-Barr, cytomegalo- and human herpesvirus 6), has not previously been examined. In the present study, seropositivity was determined via multiplex serology in serum samples of study participants collected in 2006/08 and 2013/14 during the follow-up examinations F4 (n = 3080) and FF4 (n = 2279) of the German population-based baseline KORA S4 survey. We quantified the severity of overall and abdominal obesity by body mass index, body adiposity index, waist circumference, waist-to-hip ratio, and waist-to-height ratio. Using sex-specific logistic spline-models, cross-sectional and longitudinal associations between obesity measures and seropositivity of the previously mentioned infections were investigated. Overall and abdominal fat content were significantly associated with seropositivity of varicella-zoster virus in both cross-sectional and longitudinal analyses among women. In addition, a non-significant inverse relationship with Epstein-Barr virus seroprevalence in both sexes and a trend towards a positive association with human herpesvirus 6 seropositivity in women were observed. Therefore, in women total body fat may be associated with VZV-seropositivity and may influence the reactivation of the varicella-zoster virus, independent of adipose tissue distribution.
Collapse
Affiliation(s)
- Dennis Freuer
- Chair of Epidemiology at UNIKA-T Augsburg, Ludwig-Maximilians Universität München, Augsburg, Germany
- Independent Research Group Clinical Epidemiology, Helmholtz Zentrum München, German Research Centre for Environmental Health, Neuherberg, Germany
- * E-mail:
| | - Jakob Linseisen
- Chair of Epidemiology at UNIKA-T Augsburg, Ludwig-Maximilians Universität München, Augsburg, Germany
- Independent Research Group Clinical Epidemiology, Helmholtz Zentrum München, German Research Centre for Environmental Health, Neuherberg, Germany
| | - Tim Waterboer
- Infections and Cancer Epidemiology, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Frank Pessler
- Research Group Biomarkers for Infectious Diseases, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Centre for Individualised Infection Medicine, Hannover, Germany
| | - Carlos Alberto Guzmán
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Nina Wawro
- Chair of Epidemiology at UNIKA-T Augsburg, Ludwig-Maximilians Universität München, Augsburg, Germany
- Independent Research Group Clinical Epidemiology, Helmholtz Zentrum München, German Research Centre for Environmental Health, Neuherberg, Germany
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Centre for Environmental Health, Neuherberg, Germany
| | - Christa Meisinger
- Chair of Epidemiology at UNIKA-T Augsburg, Ludwig-Maximilians Universität München, Augsburg, Germany
- Independent Research Group Clinical Epidemiology, Helmholtz Zentrum München, German Research Centre for Environmental Health, Neuherberg, Germany
| |
Collapse
|
19
|
Bacteria and cancer: Different sides of the same coin. Life Sci 2020; 246:117398. [PMID: 32032647 DOI: 10.1016/j.lfs.2020.117398] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/20/2020] [Accepted: 02/01/2020] [Indexed: 12/14/2022]
Abstract
Conventional cancer therapies such as chemotherapy, radiation therapy, and immunotherapy due to the complexity of cancer have been unsuccessful in the complete eradication of tumor cells. Thus, there is a need for new therapeutic strategies toward cancer. Recently, the therapeutic role of bacteria in different fields of medicine and pharmaceutical research has attracted attention in recent decades. Although several bacteria are notorious as cancer-causing agents, recent research revealed intriguing results suggesting the bacterial potential in cancer therapy. Thus, bacterial cancer therapy is an alternative anticancer approach that has promising results on tumor cells in-vivo. Moreover, with the aid of genetic engineering, some natural or genetically modified bacterial strains can directly target hypoxic regions of tumors and secrete therapeutic molecules leading to cancer cell death. Additionally, stimulation of immune cells by bacteria, bacterial cancer DNA vaccine and antitumor bacterial metabolites are other therapeutic applications of bacteria in cancer therapy. The present study is a comprehensive review of different aspects of bacterial cancer therapy alone and in combination with conventional methods, for improving cancer therapy.
Collapse
|
20
|
Herpesviruses in Head and Neck Cancers. Viruses 2020; 12:v12020172. [PMID: 32028641 PMCID: PMC7077226 DOI: 10.3390/v12020172] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 01/31/2020] [Accepted: 02/01/2020] [Indexed: 12/16/2022] Open
Abstract
Head and neck cancers arise in the mucosa lining the oral cavity, oropharynx, hypopharynx, larynx, sinonasal tract, and nasopharynx. The etiology of head and neck cancers is complex and involves many factors, including the presence of oncogenic viruses. These types of cancers are among the most common cancers in the world. Thorough knowledge of the pathogenesis of viral infections is needed to fully understand their impact on cancer development.
Collapse
|
21
|
Naqvi AR. Immunomodulatory roles of human herpesvirus-encoded microRNA in host-virus interaction. Rev Med Virol 2020; 30:e2081. [PMID: 31432608 PMCID: PMC7398577 DOI: 10.1002/rmv.2081] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 12/18/2022]
Abstract
Human herpesviruses (HHV) are large, double stranded, DNA viruses with high seroprevalence across the globe. Clinical manifestation of primary HHV infection resolve shortly, however, this period is prolonged in immunocompromised patients or individuals with suppressed immunity. Examining molecular mechanisms of HHV-encoded virulence factors can provide finer details of HHV-host interaction. A unique genetic feature of most members of HHV is that they encode multiple microRNAs (miR). In this review, I will provide mechanistic insights into the immunomodulatory functions of herpesvirus-encoded viral miR (v-miR) that favor viral persistence and spread by ingenious immune evasion schemes. Similar to host miR, v-miR can simultaneously regulate expression of multiple transcripts including host- and virus-derived. V-miRs, by virtue of their direct interaction with various transcripts, can regulate expression of critical components of host innate and adaptive immune system. V-miRs are also exported through exosomal route and gain entry into various cells even at distant sites, thereby allowing HHV to manipulate cellular and tissue immunity. Targeting v-miR may serve as a novel and promising therapeutic candidate to mitigate HHV-mediated clinical manifestations.
Collapse
Affiliation(s)
- Afsar R Naqvi
- Mucosal Immunology Lab, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
22
|
Lopes A, Vandermeulen G, Préat V. Cancer DNA vaccines: current preclinical and clinical developments and future perspectives. J Exp Clin Cancer Res 2019; 38:146. [PMID: 30953535 PMCID: PMC6449928 DOI: 10.1186/s13046-019-1154-7] [Citation(s) in RCA: 230] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 03/26/2019] [Indexed: 12/22/2022] Open
Abstract
The recent developments in immuno-oncology have opened an unprecedented avenue for the emergence of vaccine strategies. Therapeutic DNA cancer vaccines are now considered a very promising strategy to activate the immune system against cancer. In the past, several clinical trials using plasmid DNA vaccines demonstrated a good safety profile and the activation of a broad and specific immune response. However, these vaccines often demonstrated only modest therapeutic effects in clinical trials due to the immunosuppressive mechanisms developed by the tumor. To enhance the vaccine-induced immune response and the treatment efficacy, DNA vaccines could be improved by using two different strategies. The first is to increase their immunogenicity by selecting and optimizing the best antigen(s) to be inserted into the plasmid DNA. The second strategy is to combine DNA vaccines with other complementary therapies that could improve their activity by attenuating immunosuppression in the tumor microenvironment or by increasing the activity/number of immune cells. A growing number of preclinical and clinical studies are adopting these two strategies to better exploit the potential of DNA vaccination. In this review, we analyze the last 5-year preclinical studies and 10-year clinical trials using plasmid DNA vaccines for cancer therapy. We also investigate the strategies that are being developed to overcome the limitations in cancer DNA vaccination, revisiting the rationale for different combinations of therapy and the different possibilities in antigen choice. Finally, we highlight the most promising developments and critical points that need to be addressed to move towards the approval of therapeutic cancer DNA vaccines as part of the standard of cancer care in the future.
Collapse
Affiliation(s)
- Alessandra Lopes
- Université Catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier, 73, B1.73.12, B-1200 Brussels, Belgium
| | - Gaëlle Vandermeulen
- Université Catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier, 73, B1.73.12, B-1200 Brussels, Belgium
| | - Véronique Préat
- Université Catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier, 73, B1.73.12, B-1200 Brussels, Belgium
| |
Collapse
|
23
|
Koala and Wombat Gammaherpesviruses Encode the First Known Viral NTPDase Homologs and Are Phylogenetically Divergent from All Known Gammaherpesviruses. J Virol 2019; 93:JVI.01404-18. [PMID: 30567986 DOI: 10.1128/jvi.01404-18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 12/12/2018] [Indexed: 11/20/2022] Open
Abstract
There is a large taxonomic gap in our understanding of mammalian herpesvirus genetics and evolution corresponding to those herpesviruses that infect marsupials, which diverged from eutherian mammals approximately 150 million years ago (mya). We compare the genomes of two marsupial gammaherpesviruses, Phascolarctid gammaherpesvirus 1 (PhaHV1) and Vombatid gammaherpesvirus 1 (VoHV1), which infect koalas (Phascolarc tos cinereus) and wombats (Vombatus ursinus), respectively. The core viral genomes were approximately 117 kbp and 110 kbp in length, respectively, sharing 69% pairwise nucleotide sequence identity. Phylogenetic analyses showed that PhaHV1 and VoHV1 formed a separate branch, which may indicate a new gammaherpesvirus genus. The genomes contained 60 predicted open reading frames (ORFs) homologous to those in eutherian herpesviruses and 20 ORFs not yet found in any other herpesvirus. Seven of these ORFs were shared by the two viruses, indicating that they were probably acquired prespeciation, approximately 30 to 40 mya. One of these shared genes encodes a putative nucleoside triphosphate diphosphohydrolase (NTPDase). NTPDases are usually found in mammals and higher-order eukaryotes, with a very small number being found in bacteria. This is the first time that an NTPDase has been identified in any viral genome. Interrogation of public transcriptomic data sets from two koalas identified PhaHV1-specific transcripts in multiple host tissues, including transcripts for the novel NTPDase. PhaHV1 ATPase activity was also demonstrated in vitro, suggesting that the encoded NTPDase is functional during viral infection. In mammals, NTPDases are important in downregulation of the inflammatory and immune responses, but the role of the PhaHV1 NTPDase during viral infection remains to be determined.IMPORTANCE The genome sequences of the koala and wombat gammaherpesviruses show that the viruses form a distinct branch, indicative of a novel genus within the Gammaherpesvirinae Their genomes contain several new ORFs, including ORFs encoding a β-galactoside α-2,6-sialyltransferase that is phylogenetically closest to poxvirus and insect homologs and the first reported viral NTPDase. NTPDases are ubiquitously expressed in mammals and are also present in several parasitic, fungal, and bacterial pathogens. In mammals, these cell surface-localized NTPDases play essential roles in thromboregulation, inflammation, and immune suppression. In this study, we demonstrate that the virus-encoded NTPDase is enzymatically active and is transcribed during natural infection of the host. Understanding how these enzymes benefit viruses can help to inform how they may cause disease or evade host immune defenses.
Collapse
|
24
|
Affiliation(s)
- Geoffrey K. Maiyoh
- Department of Medical Biochemistry, School of Medicine, Moi University, Eldoret, Kenya
- Johannesburg Institute for Advanced Study, University of Johannesburg, Johannesburg, South Africa
| | - Vivian C. Tuei
- Department of Chemistry and Biochemistry, School of Science, University of Eldoret, Eldoret, Kenya
| |
Collapse
|
25
|
Nogalski MT, Solovyov A, Kulkarni AS, Desai N, Oberstein A, Levine AJ, Ting DT, Shenk T, Greenbaum BD. A tumor-specific endogenous repetitive element is induced by herpesviruses. Nat Commun 2019; 10:90. [PMID: 30626867 PMCID: PMC6327058 DOI: 10.1038/s41467-018-07944-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 11/29/2018] [Indexed: 01/01/2023] Open
Abstract
Tandem satellite repeats account for 3% of the human genome. One of them, Human Satellite II (HSATII), is highly expressed in several epithelial cancers and cancer cell lines. Here we report an acute induction of HSATII RNA in human cells infected with two herpes viruses. We show that human cytomegalovirus (HCMV) IE1 and IE2 proteins cooperate to induce HSATII RNA affecting several aspects of the HCMV replication cycle, viral titers and infected-cell processes. HSATII RNA expression in tissue from two chronic HCMV colitis patients correlates with the strength of CMV antigen staining. Thus, endogenous HSATII RNA synthesis after herpesvirus infections appears to have functionally important consequences for viral replication and may provide a novel insight into viral pathogenesis. The HSATII induction seen in both infected and cancer cells suggests possible convergence upon common HSATII-based regulatory mechanisms in these seemingly disparate diseases.
Collapse
Affiliation(s)
- Maciej T Nogalski
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
| | - Alexander Solovyov
- Department of Medicine, Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Pathology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Anupriya S Kulkarni
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Niyati Desai
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Adam Oberstein
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
| | - Arnold J Levine
- The Simons Center for Systems Biology, School of Natural Sciences, Institute for Advanced Study, Princeton, NJ, 08540, USA
| | - David T Ting
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Thomas Shenk
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA.
| | - Benjamin D Greenbaum
- Department of Medicine, Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Pathology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
26
|
Brenner N, Mentzer AJ, Butt J, Michel A, Prager K, Brozy J, Weißbrich B, Aiello AE, Meier HCS, Breuer J, Almond R, Allen N, Pawlita M, Waterboer T. Validation of Multiplex Serology detecting human herpesviruses 1-5. PLoS One 2018; 13:e0209379. [PMID: 30589867 PMCID: PMC6307738 DOI: 10.1371/journal.pone.0209379] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 12/04/2018] [Indexed: 11/24/2022] Open
Abstract
Human herpesviruses (HHV) cause a variety of clinically relevant conditions upon primary infection of typically young and immunocompetent hosts. Both primary infection and reactivation after latency can lead to more severe disease, such as encephalitis, congenital defects and cancer. Infections with HHV are also associated with cardiovascular and neurodegenerative disease. However, most of the associations are based on retrospective case-control analyses and well-powered prospective cohort studies are needed for assessing temporality and causality. To enable comprehensive investigations of HHV-related disease etiology in large prospective population-based cohort studies, we developed HHV Multiplex Serology. This methodology represents a low-cost, high-throughput technology that allows simultaneous measurement of specific antibodies against five HHV species: Herpes simplex viruses 1 and 2, Varicella zoster virus, Epstein-Barr virus, and Cytomegalovirus. The newly developed HHV species-specific ('Monoplex') assays were validated against established gold-standard reference assays. The specificity and sensitivity of the HHV species-specific Monoplex Serology assays ranged from 92.3% to 100.0% (median 97.4%) and 91.8% to 98.7% (median 96.6%), respectively. Concordance with reference assays was very high with kappa values ranging from 0.86 to 0.96 (median kappa 0.93). Multiplexing the Monoplex Serology assays resulted in no loss of performance and allows simultaneous detection of antibodies against the 5 HHV species in a high-throughput manner.
Collapse
Affiliation(s)
- Nicole Brenner
- Infections and Cancer Epidemiology, German Cancer Research Center, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Alexander J. Mentzer
- The Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, United Kingdom
| | - Julia Butt
- Infections and Cancer Epidemiology, German Cancer Research Center, Heidelberg, Germany
| | - Angelika Michel
- Infections and Cancer Epidemiology, German Cancer Research Center, Heidelberg, Germany
| | - Kristina Prager
- Infections and Cancer Epidemiology, German Cancer Research Center, Heidelberg, Germany
| | - Johannes Brozy
- Infections and Cancer Epidemiology, German Cancer Research Center, Heidelberg, Germany
| | - Benedikt Weißbrich
- Institute of Virology and Immunobiology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Allison E. Aiello
- Department of Epidemiology, Gillings School of Global Public Health and Carolina Population Center, Chapel Hill, North Carolina, United States of America
| | - Helen C. S. Meier
- Joseph J. Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, WI, United States of America
| | - Judy Breuer
- Division of Infection and Immunity, University College London, London, United Kingdom
| | | | - Naomi Allen
- UK Biobank, Stockport, United Kingdom
- Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Michael Pawlita
- Molecular Diagnostics of Oncogenic Infections, German Cancer Research Center, Heidelberg, Germany
| | - Tim Waterboer
- Infections and Cancer Epidemiology, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
27
|
Eliassen E, Lum E, Pritchett J, Ongradi J, Krueger G, Crawford JR, Phan TL, Ablashi D, Hudnall SD. Human Herpesvirus 6 and Malignancy: A Review. Front Oncol 2018; 8:512. [PMID: 30542640 PMCID: PMC6277865 DOI: 10.3389/fonc.2018.00512] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 10/19/2018] [Indexed: 12/21/2022] Open
Abstract
In order to determine the role of human herpesvirus 6 (HHV-6) in human disease, several confounding factors, including methods of detection, types of controls, and the ubiquitous nature of the virus, must be considered. This is particularly problematic in the case of cancer, in which rates of detection vary greatly among studies. To determine what part, if any, HHV-6 plays in oncogenesis, a review of the literature was performed. There is evidence that HHV-6 is present in certain types of cancer; however, detection of the virus within tumor cells is insufficient for assigning a direct role of HHV-6 in tumorigenesis. Findings supportive of a causal role for a virus in cancer include presence of the virus in a large proportion of cases, presence of the virus in most tumor cells, and virus-induced in-vitro cell transformation. HHV-6, if not directly oncogenic, may act as a contributory factor that indirectly enhances tumor cell growth, in some cases by cooperation with other viruses. Another possibility is that HHV-6 may merely be an opportunistic virus that thrives in the immunodeficient tumor microenvironment. Although many studies have been carried out, it is still premature to definitively implicate HHV-6 in several human cancers. In some instances, evidence suggests that HHV-6 may cooperate with other viruses, including EBV, HPV, and HHV-8, in the development of cancer, and HHV-6 may have a role in such conditions as nodular sclerosis Hodgkin lymphoma, gastrointestinal cancer, glial tumors, and oral cancers. However, further studies will be required to determine the exact contributions of HHV-6 to tumorigenesis.
Collapse
Affiliation(s)
- Eva Eliassen
- HHV-6 Foundation, Santa Barbara, CA, United States
| | - Emily Lum
- HHV-6 Foundation, Santa Barbara, CA, United States
| | - Joshua Pritchett
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, United States
| | - Joseph Ongradi
- Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary
| | - Gerhard Krueger
- Department of Pathology and Laboratory Medicine, University of Texas- Houston Medical School, Houston, TX, United States
| | - John R Crawford
- Department of Neurosciences and Pediatrics, University of California San Diego and Rady Children's Hospital, San Diego, CA, United States
| | - Tuan L Phan
- HHV-6 Foundation, Santa Barbara, CA, United States.,Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, United States
| | | | | |
Collapse
|
28
|
Vázquez-Ulloa E, Lizano M, Sjöqvist M, Olmedo-Nieva L, Contreras-Paredes A. Deregulation of the Notch pathway as a common road in viral carcinogenesis. Rev Med Virol 2018; 28:e1988. [PMID: 29956408 DOI: 10.1002/rmv.1988] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 03/27/2018] [Accepted: 05/23/2018] [Indexed: 12/15/2022]
Abstract
The Notch pathway is a conserved signaling pathway and a form of direct cell-cell communication related to many biological processes during development and adulthood. Deregulation of the Notch pathway is involved in many diseases, including cancer. Almost 20% of all cancer cases have an infectious etiology, with viruses responsible for at least 1.5 million new cancer cases per year. Seven groups of viruses have been classified as oncogenic: hepatitis B and C viruses (HBV and HCV respectively), Epstein-Barr virus (EBV), Kaposi sarcoma-associated herpesvirus (KSHV), human T lymphotropic virus (HTLV-1), human papillomavirus (HPV), and Merkel cell polyomavirus (MCPyV). These viruses share the ability to manipulate a variety of cell pathways that are critical in proliferation and differentiation, leading to malignant transformation. Viral proteins interact directly or indirectly with different members of the Notch pathway, altering their normal function. This review focuses exclusively on the direct interactions of viral oncoproteins with Notch elements, providing a deeper understanding of the dual behavior of the Notch pathway as activator or suppressor of neoplasia in virus-related cancers.
Collapse
Affiliation(s)
- Elenaé Vázquez-Ulloa
- Programa de Maestría y Doctorado en Ciencias Bioquímicas, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Tecnológico Nacional de México, Instituto Tecnológico de Gustavo A. Madero, Mexico City, Mexico
| | - Marcela Lizano
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Marika Sjöqvist
- Faculty of Science and Engineering, Biosciences, Åbo Akademi University, Turku, Finland
| | - Leslie Olmedo-Nieva
- Programa de Maestría y Doctorado en Ciencias Bioquímicas, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Adriana Contreras-Paredes
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
29
|
Aliyu UM, Folasire AM, Ntekim AI. Treatment outcome of patients with nasopharyngeal carcinoma in Nigeria: An institutional experience. PRECISION RADIATION ONCOLOGY 2018. [DOI: 10.1002/pro6.44] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
| | | | - Atara Isaiah Ntekim
- College of Medicine; University of Ibadan; Ibadan Nigeria
- University College Hospital; Ibadan Nigeria
| |
Collapse
|
30
|
Tso FY, Kossenkov AV, Lidenge SJ, Ngalamika O, Ngowi JR, Mwaiselage J, Wickramasinghe J, Kwon EH, West JT, Lieberman PM, Wood C. RNA-Seq of Kaposi's sarcoma reveals alterations in glucose and lipid metabolism. PLoS Pathog 2018; 14:e1006844. [PMID: 29352292 PMCID: PMC5792027 DOI: 10.1371/journal.ppat.1006844] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 01/31/2018] [Accepted: 12/27/2017] [Indexed: 12/31/2022] Open
Abstract
Kaposi’s sarcoma-associated herpesvirus (KSHV) is the etiologic agent of Kaposi’s sarcoma (KS). It is endemic in a number of sub-Saharan African countries with infection rate of >50%. The high prevalence of HIV-1 coupled with late presentation of advanced cancer staging make KS the leading cancer in the region with poor prognosis and high mortality. Disease markers and cellular functions associated with KS tumorigenesis remain ill-defined. Several studies have attempted to investigate changes of the gene profile with in vitro infection of monoculture models, which are not likely to reflect the cellular complexity of the in vivo lesion environment. Our approach is to characterize and compare the gene expression profile in KS lesions versus non-cancer tissues from the same individual. Such comparisons could identify pathways critical for KS formation and maintenance. This is the first study that utilized high throughput RNA-seq to characterize the viral and cellular transcriptome in tumor and non-cancer biopsies of African epidemic KS patients. These patients were treated anti-retroviral therapy with undetectable HIV-1 plasma viral load. We found remarkable variability in the viral transcriptome among these patients, with viral latency and immune modulation genes most abundantly expressed. The presence of KSHV also significantly affected the cellular transcriptome profile. Specifically, genes involved in lipid and glucose metabolism disorder pathways were substantially affected. Moreover, infiltration of immune cells into the tumor did not prevent KS formation, suggesting some functional deficits of these cells. Lastly, we found only minimal overlaps between our in vivo cellular transcriptome dataset with those from in vitro studies, reflecting the limitation of in vitro models in representing tumor lesions. These findings could lead to the identification of diagnostic and therapeutic markers for KS, and will provide bases for further mechanistic studies on the functions of both viral and cellular genes that are involved. Kaposi’s sarcoma-associated herpesvirus (KSHV) is endemic in sub-Saharan Africa and cause Kaposi’s sarcoma (KS). KS is one of the most common cancer among HIV-1 patients in this region. Despite anti-retroviral treatment, prognosis for KS is poor with high mortality often due to presentation of late cancer stage. In order to identify biomarkers or therapeutic targets against KS, a better understanding of the viral and cellular genes expression/transcriptome in the tumor will be necessary. We used RNA-seq, a highly efficient method to sequence transcriptome, to characterize and compare the viral and cellular transcriptome in tumor and non-cancer tissues from KS patients. We found that viral genes involved in latency and immune modulation are most commonly expressed among KS patients. Additionally, cellular genes involved in lipid and glucose metabolism disorder pathways are significantly affected by the presence of KSHV. Despite the detection of immune cells in the tumor, it did not prevent the tumor progression, suggesting some level of immune cell dysfunctions in KS patients. Lastly, we found limited overlap of our data, derived from actual KS biopsy, with other cell culture models, suggesting that the complexity of tumor is difficult to be reflected in cell line models.
Collapse
Affiliation(s)
- For Yue Tso
- Nebraska Center for Virology and the School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | | | - Salum J. Lidenge
- Nebraska Center for Virology and the School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
- Ocean Road Cancer Institute, Dar es Salaam, Tanzania
- Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Owen Ngalamika
- Dermatology and Venereology section, University Teaching Hospitals, University of Zambia School of Medicine, Lusaka, Zambia
| | - John R. Ngowi
- Ocean Road Cancer Institute, Dar es Salaam, Tanzania
| | - Julius Mwaiselage
- Ocean Road Cancer Institute, Dar es Salaam, Tanzania
- Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | | | - Eun Hee Kwon
- Nebraska Center for Virology and the School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - John T. West
- Nebraska Center for Virology and the School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Paul M. Lieberman
- Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Charles Wood
- Nebraska Center for Virology and the School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
- * E-mail:
| |
Collapse
|
31
|
Yakkioui Y, Speel EJM, Van Overbeeke JJ, Boderie MJM, Pujari S, Hausen AZ, Wolffs PFG, Temel Y. Oncogenic Viruses in Skull Base Chordomas. World Neurosurg 2017; 112:e7-e13. [PMID: 29191533 DOI: 10.1016/j.wneu.2017.11.117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 11/19/2017] [Accepted: 11/22/2017] [Indexed: 11/26/2022]
Abstract
BACKGROUND Chordomas are rare tumors assumed to derive from notochordal remnants. We believe that a molecular switch is responsible for their malignant behavior. The involvement of oncogenic viruses has not been studied, however. Thus, in the present study, we investigated the presence of oncogenic viruses in chordomas. METHODS DNA and RNA from snap-frozen chordoma (n = 18) and chondrosarcoma (n = 15) specimens were isolated. Real-time PCR or RT-PCR was performed to assess the presence of multiple oncogenic viruses, including herpesviridea (herpes simplex virus [HSV]-1, HSV-2, Epstein-Barr virus [EBV], cytomegalovirus, human herpesvirus [HHV]- 6, HHV-7, and Kaposi's sarcoma-associated herpesvirus), polyomaviridea (parvovirus B19 [PVB19], BK virus, JC virus, Simian virus 40, Merkel cell polyomavirus, human polyomavirus [HPyV]-6, and HPyV-7), papillomaviridae, and respiratory viruses. Immunohistochemistry (IHC) and in situ hybridization (ISH) were used to validate the positive results. RESULTS PVB19 DNA was detected in 4 of 18 chordomas (22%) and in 1 of 15 chondrosarcomas (7%). IHC recognizing the VP2 capsid protein of PVB19 showed a positive cytoplasmic staining in 44% of the cases (14 of 32). HHV7 DNA was present in 6 of the 18 chordomas (33%). Genomic DNA of EBV was found in 22% of the samples; however, no positive results were found on ISH. None of the chordoma cases showed any presence of DNA from the remaining viruses. CONCLUSIONS Viral involvement in the etiology of chordomas is likely, with PVB19 the most distinguishing.
Collapse
Affiliation(s)
- Youssef Yakkioui
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, The Netherlands; Division of Experimental Neurosurgery, School of Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands.
| | - Ernst-Jan M Speel
- Department of Pathology, Maastricht University Medical Center, Maastricht, The Netherlands; School of Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Jacobus J Van Overbeeke
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, The Netherlands; Division of Experimental Neurosurgery, School of Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Merel J M Boderie
- Infectious Diseases Division, Department of Internal Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Sreedhar Pujari
- Department of Pathology, Maastricht University Medical Center, Maastricht, The Netherlands; School of Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Axel Zur Hausen
- Department of Pathology, Maastricht University Medical Center, Maastricht, The Netherlands; School of Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Petra F G Wolffs
- Department of Medical Microbiology and Virology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Yasin Temel
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, The Netherlands; Division of Experimental Neurosurgery, School of Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
32
|
Khoddami M, Nadji SA, Dehghanian P. Herpes Simplex Virus and Langerhans Cell Histiocytosis. IRANIAN JOURNAL OF PATHOLOGY 2017; 12:323-328. [PMID: 29563927 PMCID: PMC5844676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 01/29/2017] [Indexed: 06/08/2023]
Abstract
BACKGROUND AND OBJECTIVE Langerhans cell histiocytosis (LCH) is a rare histiocytic proliferative disorder of unknown etiology and mainly affects young children. The histological feature is granuloma-like proliferation of langerhans-type dendritic cells. Although the possible role of viruses such as Epstein-Barr virus (EBV, Human Herpes virus -4), Human Herpes virus-6 (HHV-6), Herpes Simplex virus (HSV) types 1 and 2 and Cytomegalovirus (CMV, Human Herpes virus-5) is suggested in the pathogenesis of LCH by some investigators, its exact pathophysiology has not been cleared yet. In this study, we investigated the presence of HSV types 1 and 2 in Iranian children with LCH. METHODS In this retrospective study, we investigated the prevalence of presence of HSV types 1 and 2 (in 30 patients with LCH), using paraffin-embedded tissue samples and 30 age and tissue-matched controls (operated for reasons other than infectious diseases) from the Department of Pediatric Pathology, Tehran, Iran, by nested Polymerase Chain reaction method. No ethical issues arose in the study, because only the pathology reports were reviewed and patients were anonymous. RESULTS We failed to find HSV types 1 and 2 DNA in any of the 30 patients with LCH or the control group. CONCLUSION According to our findings, HSV types 1 and 2 do not appear to have any etiologic role in the pathogenesis of LCH in Iranian children. These results are in accordance with previous investigations with negative findings.
Collapse
Affiliation(s)
- Maliheh Khoddami
- Pediatric Pathology Research Center, Research Institute for Children Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Alireza Nadji
- Virology Research Center (VRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Paria Dehghanian
- Pediatric Infections Research Center, Research Institute for Children Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
33
|
Tso FY, Sawyer A, Kwon EH, Mudenda V, Langford D, Zhou Y, West J, Wood C. Kaposi's Sarcoma-Associated Herpesvirus Infection of Neurons in HIV-Positive Patients. J Infect Dis 2017; 215:1898-1907. [PMID: 27932611 DOI: 10.1093/infdis/jiw545] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 11/11/2016] [Indexed: 12/18/2022] Open
Abstract
Background Kaposi's sarcoma-associated herpesvirus (KSHV) is the causative agent of Kaposi sarcoma (KS), one of the leading cancers in human immunodeficiency virus (HIV)-infected patients in Zambia. KSHV was detected in the human central nervous system (CNS) by polymerase chain reaction (PCR) analysis, but tissue location and cell tropism for KSHV infection has not been established. Given the neurotropism exhibited by other herpesviruses and the frequent coinfection of HIV-positive individuals by KSHV, we sought to determine whether the central nervous system (CNS) can be infected by KSHV in HIV-positive Zambian individuals. Methods Postmortem brain tissue specimens were collected from individuals coinfected with KSHV and HIV. PCR and Southern blots were performed on DNA extracted from the brain tissue specimens to verify KSHV infection. Immunohistochemical analysis and immunofluorescent microscopy were used to localize and identify KSHV-infected cells. Tropism was further established by in vitro infection of primary human neurons with rKSHV.219. Results KSHV DNA was detected in the CNS from 4 of 11 HIV-positive individuals. Immunohistochemical analysis and immunofluorescent microscopy demonstrated that KSHV infected neurons and oligodendrocytes in parenchymal brain tissues. KSHV infection of neurons was confirmed by in vitro infection of primary human neurons with rKSHV.219. Conclusion Our study showed that KSHV infects human CNS-resident cells, primarily neurons, in HIV-positive Zambian individuals.
Collapse
Affiliation(s)
- For Yue Tso
- Nebraska Center for Virology.,School of Biological Sciences
| | - Ashley Sawyer
- Nebraska Center for Virology.,School of Biological Sciences
| | - Eun Hee Kwon
- Nebraska Center for Virology.,School of Biological Sciences
| | - Victor Mudenda
- Department of Microbiology and Pathology, University Teaching Hospital, Lusaka, Zambia
| | - Dianne Langford
- Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - You Zhou
- Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - John West
- Nebraska Center for Virology.,School of Biological Sciences
| | - Charles Wood
- Nebraska Center for Virology.,School of Biological Sciences
| |
Collapse
|
34
|
Janket SJ, Qureshi M, Bascones-Martinez A, González-Febles J, Meurman JH. Holistic paradigm in carcinogenesis: Genetics, epigenetics, immunity, inflammation and oral infections. World J Immunol 2017; 7:11-23. [DOI: 10.5411/wji.v7.i2.11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 02/25/2017] [Accepted: 04/07/2017] [Indexed: 02/05/2023] Open
Abstract
Recent debate among the experts of cancer research regarding the main causes of carcinogenesis encouraged us to review the etiology of cancer pathogenesis. The somatic mutation theory attributes carcinogenesis to random errors in DNA multiplication while the tissue organization field theory ascribes causation to environmental factors. We recognize complexity in cancer pathogenesis and accept the premise of both DNA multiplication errors and environmental factors in cancer development. Furthermore, it should also be noted that the combination of these factors and the relative importance of the each differ in various types of cancers. For example, in some cancers, genetics plays a prominent role while in others environment such as obesity plays a much stronger role. Additionally, the cancer mitigating factors should also be considered. The balance of cancer-enhancing and cancer-suppressing forces determines the cancer incidence. Ultimately, identifying the lifestyle factors that revise somatic mutations or epigenetic alterations will lead to a clear understanding of pathogenic mechanisms of cancer and to the optimal preventive strategies. This narrative review evaluates the published evidence on carcinogenesis pertaining to the whole organism (thus, holistic) incorporating genetics, epigenetics, immunology, inflammation and infections with emphasis on oral infections.
Collapse
|
35
|
Soto E, Richey C, Stevens B, Yun S, Kenelty K, Reichley S, Griffin M, Kurobe T, Camus A. Co-infection of Acipenserid herpesvirus 2 (AciHV-2) and Streptococcus iniae in cultured white sturgeon Acipenser transmontanus. DISEASES OF AQUATIC ORGANISMS 2017; 124:11-20. [PMID: 28357982 DOI: 10.3354/dao03108] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A mortality event in cultured white sturgeon Acipenser transmontanus (Richardson, 1836) sub-adults was investigated. After transfer between farms, high mortality was observed in fish, associated with back arching, abnormal swimming, and ulcerative skin lesions. Necropsy of moribund individuals revealed hemorrhagic ascites and petechial hemorrhages in the coelomic peritoneum and serosa of internal organs. Acipenserid herpesvirus 2 (AciHV-2) was isolated from external tissue samples, then identified and genotyped by sequencing of the terminase and polymerase genes. In addition, Streptococcus iniae was recovered from internal organs of affected fish. Histologic changes were limited to interstitial hematopoietic areas of the kidney and consisted of small foci of necrosis accompanied by fibrin deposition, minimal inflammatory response, and small numbers of bacterial cocci compatible with streptococci. Identity was confirmed by partial sequencing of the 16S rRNA, rpoB, and gyrB genes. Genetic fingerprinting demonstrated a genetic profile distinct from S. iniae isolates recovered from previous outbreaks in wild and cultured fish in North America, South America, and the Caribbean. Although the isolates were resistant to white sturgeon complement in serum killing assays, in vivo challenges failed to fulfill Koch's postulates. However, the clinical presentation, coupled with consistent recovery of S. iniae and AciHV-2 from moribund fish, suggests viral and bacterial co-infection were the proximate cause of death. To our knowledge, this represents the first report of AciHV-2 and S. iniae co-infection in cultured white sturgeon.
Collapse
Affiliation(s)
- Esteban Soto
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, Davis, CA 95616, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Schmidt S, Mor A, Schønheyder H, Sørensen H, Dekkers O, Cronin-Fenton D. Herpes zoster as a marker of occult cancer: A systematic review and meta-analysis. J Infect 2017; 74:215-235. [DOI: 10.1016/j.jinf.2016.11.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 11/06/2016] [Accepted: 11/07/2016] [Indexed: 01/14/2023]
|
37
|
Grützmeier S, Porwit A, Schmitt C, Sandström E, Åkerlund B, Ernberg I. Fulminant anaplastic large cell lymphoma (ALCL) concomitant with primary cytomegalovirus (CMV) infection, and human herpes virus 8 (HHV-8) infection together with Epstein-Barr-virus (EBV) reactivation in a patient with asymptomatic HIV-infection. Infect Agent Cancer 2016; 11:46. [PMID: 27551290 PMCID: PMC4992999 DOI: 10.1186/s13027-016-0094-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 07/26/2016] [Indexed: 11/23/2022] Open
Abstract
Background Most malignant lymphomas in HIV-patients are caused by reactivation of EBV-infection. Some lymphomas have a very rapid fulminant course. HHV-8 has also been reported to be a cause of lymphoma. The role of CMV in the development of lymphoma is not clear, though both CMV and HHV-8 have been reported in tissues adjacent to the tumour in Burkitt lymphoma patients. Here we present a patient with asymptomatic HIV infection, that contracted a primary cytomegalovirus (CMV) infection and human herpes virus 8 (HHV-8) infection. Three weeks before onset of symptoms the patient had unprotected sex which could be possible source of his CMV and also HHV-8 infection He deteriorated rapidly and died with a generalized anaplastic large cell lymphoma (ALCL). Methods A Caucasian homosexual male with asymptomatic human immunodeficiency virus (HIV) infection contracted a primary cytomegalovirus (CMV) infection and human herpes virus 8 (HHV-8) infection. He deteriorated rapidly and died with a generalized anaplastic large cell lymphoma (ALCL). Clinical and laboratory records were compiled. Immunohistochemistry was performed on lymphoid tissues, a liver biopsy, a bone marrow aspirate and the spleen during the illness and at autopsy. Serology and PCR for HIV, CMV, EBV, HHV-1–3 and 6–8 was performed on blood drawn during the course of disease. Results The patient presented with an acute primary CMV infection. Biopsies taken 2 weeks before death showed a small focus of ALCL in one lymph node of the neck. Autopsy demonstrated a massive infiltration of ALCL in lymph nodes, liver, spleen and bone marrow. Blood samples confirmed primary CMV- infection, a HHV-8 infection together with reactivation of Epstein- Barr-virus (EBV). Conclusion Primary CMV-infection and concomitant HHV-8 infection correlated with reactivation of EBV. We propose that these two viruses influenced the development and progression of the lymphoma. Quantitative PCR blood analysis for EBV, CMV and HHV-8 could be valuable in diagnosis and treatment of this type of very rapidly developing lymphoma. It is also a reminder of the importance of prevention and prophylaxis of several infections by having protected sex.
Collapse
Affiliation(s)
- Sven Grützmeier
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institute, Box 280, Stockholm, SE- 17177 Sweden ; Department of Infectious diseases/Venhälsan, Stockholm South General Hospital, Sjukhusbacken 14, SE-11883 Stockholm, Sweden
| | - Anna Porwit
- Department of Oncology/Pathology, Karolinska Institutet, SE- 17177 Stockholm, Sweden ; Present address: Department of Laboratory Hematology, Laboratory Medicine Program, University Health Network, Toronto, ON Canada
| | - Corinna Schmitt
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Eric Sandström
- Department of Infectious diseases/Venhälsan, Stockholm South General Hospital, Sjukhusbacken 14, SE-11883 Stockholm, Sweden
| | - Börje Åkerlund
- Department of Infectious Diseases, Karolinska University Hospital, Huddinge, Sweden
| | - Ingemar Ernberg
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institute, Box 280, Stockholm, SE- 17177 Sweden
| |
Collapse
|
38
|
Polz-Dacewicz M, Strycharz-Dudziak M, Dworzański J, Stec A, Kocot J. Salivary and serum IL-10, TNF-α, TGF-β, VEGF levels in oropharyngeal squamous cell carcinoma and correlation with HPV and EBV infections. Infect Agent Cancer 2016; 11:45. [PMID: 27547238 PMCID: PMC4992298 DOI: 10.1186/s13027-016-0093-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 07/11/2016] [Indexed: 01/11/2023] Open
Abstract
Background Each year approximately 6,000 new cases of head and neck cancer are registered in Poland. Human papillomavirus (HPV) and Epstein-Barr virus (EBV) have been associated with tumour formation. Cytokines have been shown to play an important role both in inflammation and carcinogenesis and they can be detected in saliva and serum with ELISA assays. Salivary biomarkers may be used as markers of early cancer detection. The aim of this study was the analysis of the serum and salivary levels of IL-10, TNF-α, TGF-β and VEGF in patients with oropharyngeal cancer and in healthy individuals. The level of these biomarkers was also analyzed in HPV- and EBV-related cases. Methods The study involved 78 patients with histopathologically confirmed oropharyngeal squamous cell carcinoma and 40 healthy controls. Serum and salivary levels of IL-10, TNF-α, TGF-β and VEGF were analyzed both in patients and in healthy individuals by ELISA method using Diaclone SAS commercially available kits (France). EBV DNA was detected by the nested PCR for amplification of EBNA-2. HPV detection and genotyping was performed using the INNO-LiPA HPV Genotyping Extraassay (Innogenetics N. V, Gent, Belgium). The obtained results were subjected to statistical analysis using Mann–Whitney and Kruskal Wallis tests. Test values of p < 0.05 were considered statistically significant. Results The level of tested cytokines was higher in patients than in controls both in serum (IL-10: 2.3 pg/ml vs 1.65 pg/ml, p = 0.0003; TGF-β: 11.3 ng/ml vs 7.8 ng/ml, p = 0.0005; VEGF: 614 pg/ml vs 210 pg/ml, p = 0.0004; TNF-α: 15.0 ng/ml vs 12.90 ng/ml, p = 0.1397) as well as in saliva (IL-10: 5.9 pg/ml vs 2.5 pg/ml, p = 0.00002; TGF-β: 24.1 ng/ml vs 14.8 ng/ml, p = 0.00002; VEGF: 4321 pg/ml vs 280 pg/ml, p = 0.0000; TNF-α: 23.1 ng/ml vs 11.3 ng/ml, p = 0.00002). EBV DNA was detected in 51.3 % of patients and 20 % of controls, HPV DNA was present in 30.8 % of patients and 2,5 % of controls. The level of IL-10 was statistically higher in patients infected with EBV, HPV and co-infected with EBV/HPV. The level of TNF-α was significantly higher in patients infected with EBV, while TGF-β in patients with HPV infection and EBV/HPV co-infection. Conclusion Detection of salivary cytokines may be very helpful in early diagnosis, treatment and prognosis of OSCC.
Collapse
Affiliation(s)
| | | | - Jakub Dworzański
- Department of Virology, Medical University of Lublin, Lublin, Poland
| | - Agnieszka Stec
- Department of Virology, Medical University of Lublin, Lublin, Poland
| | - Joanna Kocot
- Chair and Department of Medical Chemistry, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
39
|
BZLF1 Attenuates Transmission of Inflammatory Paracrine Senescence in Epstein-Barr Virus-Infected Cells by Downregulating Tumor Necrosis Factor Alpha. J Virol 2016; 90:7880-93. [PMID: 27334596 DOI: 10.1128/jvi.00999-16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 06/16/2016] [Indexed: 12/17/2022] Open
Abstract
UNLABELLED Recent studies have shown that inflammatory responses trigger and transmit senescence to neighboring cells and activate the senescence-associated secretory phenotype (SASP). Latent Epstein-Barr virus (EBV) infection induces increased secretion of several inflammatory factors, whereas lytic infections evade the antiviral inflammatory response. However, the changes in and roles of the inflammatory microenvironment during the switch between EBV life cycles remain unknown. In the present study, we demonstrate that latent EBV infection in EBV-positive cells triggers the SASP in neighboring epithelial cells. In contrast, lytic EBV infection abolishes this phenotype. BZLF1 attenuates the transmission of paracrine senescence during lytic EBV infection by downregulating tumor necrosis factor alpha (TNF-α) secretion. A mutant BZLF1 protein, BZLF1Δ207-210, that cannot inhibit TNF-α secretion while maintaining viral transcription, fails to block paracrine senescence, whereas a neutralizing antibody against TNF-α is sufficient to restore its inhibition. Furthermore, latent EBV infection induces oxidative stress in neighboring cells, while BZLF1-mediated downregulation of TNF-α reduces reactive oxygen species (ROS) levels in neighboring cells, and ROS scavengers alleviate paracrine senescence. These results suggest that lytic EBV infection attenuates the transmission of inflammatory paracrine senescence through BZLF1 downregulation of TNF-α secretion and alters the inflammatory microenvironment to allow virus propagation and persistence. IMPORTANCE The senescence-associated secretory phenotype (SASP), an important tumorigenic process, is triggered and transmitted by inflammatory factors. The different life cycles of Epstein-Barr virus (EBV) infection in EBV-positive cells employ distinct strategies to modulate the inflammatory response and senescence. The elevation of inflammatory factors during latent EBV infection promotes the SASP in uninfected cells. In contrast, during the viral lytic cycle, BZLF1 suppresses the production of TNF-α, resulting in the attenuation of paracrine inflammatory senescence. This finding indicates that EBV evades inflammatory senescence during lytic infection and switches from facilitating tumor-promoting SASP to generating a virus-propagating microenvironment, thereby facilitating viral spread in EBV-associated diseases.
Collapse
|
40
|
Zanella S, Garani MC, Borgna-Pignatti C. Malignancies and thalassemia: a review of the literature. Ann N Y Acad Sci 2016; 1368:140-8. [DOI: 10.1111/nyas.13005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 12/16/2015] [Accepted: 12/18/2015] [Indexed: 12/12/2022]
Affiliation(s)
- Sara Zanella
- Department of Medical Sciences-Pediatrics; University of Ferrara; Ferrara Italy
| | - Maria Chiara Garani
- Department of Medical Sciences-Pediatrics; University of Ferrara; Ferrara Italy
| | | |
Collapse
|
41
|
Chavoshi S, Egorova O, Lacdao IK, Farhadi S, Sheng Y, Saridakis V. Identification of Kaposi Sarcoma Herpesvirus (KSHV) vIRF1 Protein as a Novel Interaction Partner of Human Deubiquitinase USP7. J Biol Chem 2016; 291:6281-91. [PMID: 26786098 DOI: 10.1074/jbc.m115.710632] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Indexed: 12/25/2022] Open
Abstract
Viral interferon regulatory factor 1 (vIRF1), a Kaposi sarcoma herpesvirus protein, destabilizes p53 by inhibiting p53 acetylation and Hdm2 phosphorylation. This leads to increased ubiquitination and degradation of p53 by Hdm2, which cripples the cellular p53-mediated antiviral response. Ubiquitin-specific protease 7 (USP7) deubiquitinates p53 and Hdm2 and regulates their stability. We identified an EGPS consensus sequence in vIRF1, which is identical to that found in Epstein-Barr virus nuclear antigen 1 (EBNA1) that interacts with the N-terminal domain of USP7 (USP7-NTD). GST pulldown assays demonstrated that vIRF1 interacts with USP7-NTD via its EGPS motif. NMR heteronuclear single quantum correlation (HSQC) analysis revealed chemical perturbations after titration of USP7-NTD with vIRF1 (44)SPGEGPSGTG(53) peptide. In contrast, these perturbations were reduced with a mutant vIRF1 peptide, (44)SPGEGPAGTG(53). Fluorescence polarization analysis indicated that the vIRF1 peptide interacted with USP7-NTD with a Kd of 2.0 μm. The crystal structure of the USP7-NTD·vIRF1 peptide complex revealed an identical mode of binding as that of the EBNA1 peptide to USP7-NTD. We also showed that USP7 interacts with vIRF1 in U2OS cells. Decreased levels of p53, but not Hdm2 or ataxia telangiectasia-mutated (ATM), were seen after expression of vIRF1, but not with a vIRF1 mutant protein. Our results support a new role for vIRF1 through deregulation of the deubiquitinating enzyme USP7 to inhibit p53-mediated antiviral responses.
Collapse
Affiliation(s)
- Sara Chavoshi
- From the Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada
| | - Olga Egorova
- From the Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada
| | - Ira Kay Lacdao
- From the Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada
| | - Sahar Farhadi
- From the Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada
| | - Yi Sheng
- From the Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada
| | - Vivian Saridakis
- From the Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada
| |
Collapse
|
42
|
Constitutive Activation of Interleukin-13/STAT6 Contributes to Kaposi's Sarcoma-Associated Herpesvirus-Related Primary Effusion Lymphoma Cell Proliferation and Survival. J Virol 2015; 89:10416-26. [PMID: 26246572 DOI: 10.1128/jvi.01525-15] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 07/29/2015] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED Activation of the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling pathway has been associated with numerous human malignancies, including primary effusion lymphomas (PELs). PEL, a cancerous proliferation of B cells, is caused by Kaposi's sarcoma-associated herpesvirus (KSHV). Previously we identified constitutive phosphorylation of STAT6 on tyrosine 641 (p-STAT6(C)) in PEL cell lines BC3 and BCBL1; however, the molecular mechanism leading to this activation remains unclear. Here we demonstrate that STAT6 activation tightly correlates with interleukin-13 (IL-13) secretion, JAK1/2 tyrosine phosphorylation, and reduced expression of SHP1 due to KSHV infection. Moreover, p-STAT6(C) and reduction of SHP1 were also observed in KS patient tissue. Notably, blockade of IL-13 by antibody neutralization dramatically inhibits PEL cell proliferation and survival. Taken together, these results suggest that IL-13/STAT6 signaling is modulated by KSHV to promote host cell proliferation and viral pathogenesis. IMPORTANCE STAT6 is a member of signal transducer and activator of transcription (STAT) family, whose activation is linked to KSHV-associated cancers. The mechanism through which STAT6 is modulated by KSHV remains unclear. In this study, we demonstrated that constitutive activation of STAT6 in KSHV-associated PEL cells results from interleukin-13 (IL-13) secretion and reduced expression of SHP1. Importantly, we also found that depletion of IL-13 reduces PEL cell growth and survival. This discovery provides new insight that IL-13/STAT6 plays an essential role in KSHV pathogenesis.
Collapse
|
43
|
Mortality in cancer patients previously diagnosed with herpes zoster in the hospital setting: a nationwide cohort study. Br J Cancer 2015; 112:1822-6. [PMID: 25880013 PMCID: PMC4647253 DOI: 10.1038/bjc.2015.136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 03/09/2015] [Accepted: 03/17/2015] [Indexed: 11/08/2022] Open
Abstract
Background: Herpes zoster (HZ) is associated with underlying immunodeficiency and may thereby predict mortality of subsequent cancer. Methods: By using Danish nationwide medical databases, we identified all cancer patients with a prior hospital-based HZ diagnosis during 1982–2011 (n=2754) and a matched cancer cohort without prior HZ (n=26 243). We computed adjusted mortality rate ratios (aMRRs) associating prior HZ with mortality following cancer. Results: Prior HZ was associated with decreased mortality within the year after cancer diagnosis (aMRR 0.87; 95% confidence interval (CI): 0.81–0.93), but not thereafter (aMRR 1.07; 95% CI: 0.99–1.15). However, prior HZ predicted increased mortality throughout the entire follow-up among patients aged <60 years (aMRR 1.39; 95% CI: 1.15–1.68) and those with disseminated HZ (aMRR 1.18; 95% CI: 1.01–1.37). The increased mortality rates were observed primarily for haematological and immune-related cancers. Conclusions: Overall, HZ was not a predictor of increased mortality following subsequent cancer.
Collapse
|
44
|
Kaposi's Sarcoma-Associated Herpesvirus Latency-Associated Nuclear Antigen Inhibits Major Histocompatibility Complex Class II Expression by Disrupting Enhanceosome Assembly through Binding with the Regulatory Factor X Complex. J Virol 2015; 89:5536-56. [PMID: 25740990 DOI: 10.1128/jvi.03713-14] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Accepted: 02/26/2015] [Indexed: 12/27/2022] Open
Abstract
UNLABELLED Major histocompatibility complex class II (MHC-II) molecules play a central role in adaptive antiviral immunity by presenting viral peptides to CD4(+) T cells. Due to their key role in adaptive immunity, many viruses, including Kaposi's sarcoma-associated herpesvirus (KSHV), have evolved multiple strategies to inhibit the MHC-II antigen presentation pathway. The expression of MHC-II, which is controlled mainly at the level of transcription, is strictly dependent upon the binding of the class II transactivator (CIITA) to the highly conserved promoters of all MHC-II genes. The recruitment of CIITA to MHC-II promoters requires its direct interactions with a preassembled MHC-II enhanceosome consisting of cyclic AMP response element-binding protein (CREB) and nuclear factor Y (NF-Y) complex and regulatory factor X (RFX) complex proteins. Here, we show that KSHV-encoded latency-associated nuclear antigen (LANA) disrupts the association of CIITA with the MHC-II enhanceosome by binding to the components of the RFX complex. Our data show that LANA is capable of binding to all three components of the RFX complex, RFX-associated protein (RFXAP), RFX5, and RFX-associated ankyrin-containing protein (RFXANK), in vivo but binds more strongly with the RFXAP component in in vitro binding assays. Levels of MHC-II proteins were significantly reduced in KSHV-infected as well as LANA-expressing B cells. Additionally, the expression of LANA in a luciferase promoter reporter assay showed reduced HLA-DRA promoter activity in a dose-dependent manner. Chromatin immunoprecipitation assays showed that LANA binds to the MHC-II promoter along with RFX proteins and that the overexpression of LANA disrupts the association of CIITA with the MHC-II promoter. These assays led to the conclusion that the interaction of LANA with RFX proteins interferes with the recruitment of CIITA to MHC-II promoters, resulting in an inhibition of MHC-II gene expression. Thus, the data presented here identify a novel mechanism used by KSHV to downregulate the expressions of MHC-II genes. IMPORTANCE Kaposi's sarcoma-associated herpesvirus is the causative agent of multiple human malignancies. It establishes a lifelong latent infection and persists in infected cells without being detected by the host's immune surveillance system. Only a limited number of viral proteins are expressed during latency, and these proteins play a significant role in suppressing both the innate and adaptive immunities of the host. Latency-associated nuclear antigen (LANA) is one of the major proteins expressed during latent infection. Here, we show that LANA blocks MHC-II gene expression to subvert the host immune system by disrupting the MHC-II enhanceosome through binding with RFX transcription factors. Therefore, this study identifies a novel mechanism utilized by KSHV LANA to deregulate MHC-II gene expression, which is critical for CD4(+) T cell responses in order to escape host immune surveillance.
Collapse
|
45
|
Alibek K, Irving S, Sautbayeva Z, Kakpenova A, Bekmurzayeva A, Baiken Y, Imangali N, Shaimerdenova M, Mektepbayeva D, Balabiyev A, Chinybayeva A. Disruption of Bcl-2 and Bcl-xL by viral proteins as a possible cause of cancer. Infect Agent Cancer 2014; 9:44. [PMID: 25699089 PMCID: PMC4333878 DOI: 10.1186/1750-9378-9-44] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 11/25/2014] [Indexed: 01/01/2023] Open
Abstract
The Bcl proteins play a critical role in apoptosis, as mutations in family members interfere with normal programmed cell death. Such events can cause cell transformation, potentially leading to cancer. Recent discoveries indicate that some viral proteins interfere with Bcl proteins either directly or indirectly; however, these data have not been systematically described. Some viruses encode proteins that reprogramme host cellular signalling pathways controlling cell differentiation, proliferation, genomic integrity, cell death, and immune system recognition. This review analyses and summarises the existing data and discusses how viral proteins interfere with normal pro- and anti-apoptotic functions of Bcl-2 and Bcl-xL. Particularly, this article focuses on how viral proteins, such as Herpesviruses, HTLV-1, HPV and HCV, block apoptosis and how accumulation of such interference predisposes cancer development. Finally, we discuss possible ways to prevent and treat cancers using a combination of traditional therapies and antiviral preparations that are effective against these viruses.
Collapse
Affiliation(s)
- Kenneth Alibek
- Nazarbayev University Research and Innovation System (NURIS), Nazarbayev University, 53 Kabanbay Batyr Avenue, Astana, 010000 Kazakhstan ; National Medical Holding, 2 Syganak Street, Astana, 010000 Kazakhstan
| | - Stephanie Irving
- Nazarbayev University Research and Innovation System (NURIS), Nazarbayev University, 53 Kabanbay Batyr Avenue, Astana, 010000 Kazakhstan
| | - Zarina Sautbayeva
- Nazarbayev University Research and Innovation System (NURIS), Nazarbayev University, 53 Kabanbay Batyr Avenue, Astana, 010000 Kazakhstan
| | - Ainur Kakpenova
- Nazarbayev University Research and Innovation System (NURIS), Nazarbayev University, 53 Kabanbay Batyr Avenue, Astana, 010000 Kazakhstan
| | - Aliya Bekmurzayeva
- Nazarbayev University Research and Innovation System (NURIS), Nazarbayev University, 53 Kabanbay Batyr Avenue, Astana, 010000 Kazakhstan
| | - Yeldar Baiken
- Nazarbayev University Research and Innovation System (NURIS), Nazarbayev University, 53 Kabanbay Batyr Avenue, Astana, 010000 Kazakhstan
| | - Nurgul Imangali
- School of Science and Technology, Nazarbayev University, 53 Kabanbay Batyr Avenue, Astana, 010000 Kazakhstan
| | - Madina Shaimerdenova
- School of Science and Technology, Nazarbayev University, 53 Kabanbay Batyr Avenue, Astana, 010000 Kazakhstan
| | - Damel Mektepbayeva
- Nazarbayev University Research and Innovation System (NURIS), Nazarbayev University, 53 Kabanbay Batyr Avenue, Astana, 010000 Kazakhstan
| | - Arnat Balabiyev
- Nazarbayev University Research and Innovation System (NURIS), Nazarbayev University, 53 Kabanbay Batyr Avenue, Astana, 010000 Kazakhstan
| | - Aizada Chinybayeva
- Nazarbayev University Research and Innovation System (NURIS), Nazarbayev University, 53 Kabanbay Batyr Avenue, Astana, 010000 Kazakhstan
| |
Collapse
|
46
|
Moens U, Van Ghelue M, Ehlers B. Are human polyomaviruses co-factors for cancers induced by other oncoviruses? Rev Med Virol 2014; 24:343-60. [PMID: 24888895 DOI: 10.1002/rmv.1798] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 04/25/2014] [Accepted: 05/07/2014] [Indexed: 12/16/2022]
Abstract
Presently, 12 human polyomaviruses are known: BK polyomavirus (BKPyV), JCPyV, KIPyV, WUPyV, Merkel cell polyomavirus (MCPyV), HPyV6, HPyV7, Trichodysplasia spinulosa-associated polyomavirus, HPyV9, HPyV10, STLPyV and HPyV12. In addition, the non-human primate polyomavirus simian virus 40 (SV40) seems to circulate in the human population. MCPyV was first described in 2008 and is now accepted to be an etiological factor in about 80% of the rare but aggressive skin cancer Merkel cell carcinoma. SV40, BKPyV and JCPyV or part of their genomes can transform cells, including human cells, and induce tumours in animal models. Moreover, DNA and RNA sequences and proteins of these three viruses have been discovered in tumour tissue. Despite these observations, their role in cancer remains controversial. So far, an association between cancer and the other human polyomaviruses is lacking. Because human polyomavirus DNA has been found in a broad spectrum of cell types, simultaneous dwelling with other oncogenic viruses is possible. Co-infecting human polyomaviruses may therefore act as a co-factor in the development of cancer, including those induced by other oncoviruses. Reviewing studies that report co-infection with human polyomaviruses and other tumour viruses in cancer tissue fail to detect a clear link between co-infection and cancer. Directions for future studies to elaborate on a possible auxiliary role of human polyomaviruses in cancer are suggested, and the mechanisms by which human polyomaviruses may synergize with other viruses in oncogenic transformation are discussed.
Collapse
Affiliation(s)
- Ugo Moens
- University of Tromsø, Faculty of Health Sciences, Institute of Medical Biology, Molecular Inflammation Research Group, Tromsø, Norway
| | | | | |
Collapse
|