1
|
O'Brien TJ, Barlow IL, Feriani L, Brown AEX. High-throughput tracking enables systematic phenotyping and drug repurposing in C. elegans disease models. eLife 2025; 12:RP92491. [PMID: 39773880 PMCID: PMC11709427 DOI: 10.7554/elife.92491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025] Open
Abstract
There are thousands of Mendelian diseases with more being discovered weekly and the majority have no approved treatments. To address this need, we require scalable approaches that are relatively inexpensive compared to traditional drug development. In the absence of a validated drug target, phenotypic screening in model organisms provides a route for identifying candidate treatments. Success requires a screenable phenotype. However, the right phenotype and assay may not be obvious for pleiotropic neuromuscular disorders. Here, we show that high-throughput imaging and quantitative phenotyping can be conducted systematically on a panel of C. elegans disease model strains. We used CRISPR genome-editing to create 25 worm models of human Mendelian diseases and phenotyped them using a single standardised assay. All but two strains were significantly different from wild-type controls in at least one feature. The observed phenotypes were diverse, but mutations of genes predicted to have related functions led to similar behavioural differences in worms. As a proof-of-concept, we performed a drug repurposing screen of an FDA-approved compound library, and identified two compounds that rescued the behavioural phenotype of a model of UNC80 deficiency. Our results show that a single assay to measure multiple phenotypes can be applied systematically to diverse Mendelian disease models. The relatively short time and low cost associated with creating and phenotyping multiple strains suggest that high-throughput worm tracking could provide a scalable approach to drug repurposing commensurate with the number of Mendelian diseases.
Collapse
Affiliation(s)
- Thomas J O'Brien
- Institute of Clinical Sciences, Imperial College LondonLondonUnited Kingdom
- MRC London Institute of Medical SciencesLondonUnited Kingdom
| | - Ida L Barlow
- Institute of Clinical Sciences, Imperial College LondonLondonUnited Kingdom
- MRC London Institute of Medical SciencesLondonUnited Kingdom
| | - Luigi Feriani
- Institute of Clinical Sciences, Imperial College LondonLondonUnited Kingdom
- MRC London Institute of Medical SciencesLondonUnited Kingdom
| | - André EX Brown
- Institute of Clinical Sciences, Imperial College LondonLondonUnited Kingdom
- MRC London Institute of Medical SciencesLondonUnited Kingdom
| |
Collapse
|
2
|
Palicharla VR, Badgandi HB, Hwang SH, Legué E, Liem KF, Mukhopadhyay S. A defined tubby domain β-barrel surface region of TULP3 mediates ciliary trafficking of diverse cargoes. Mol Biol Cell 2025; 36:ar1. [PMID: 39565681 PMCID: PMC11742108 DOI: 10.1091/mbc.e24-09-0426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/05/2024] [Accepted: 11/12/2024] [Indexed: 11/22/2024] Open
Abstract
The primary cilium is a paradigmatic subcellular compartment at the nexus of numerous cellular and morphogenetic pathways. The tubby family protein TULP3 acts as an adapter of the intraflagellar transport complex A in transporting integral membrane and membrane-associated lipidated proteins into cilia. However, the mechanisms by which TULP3 coordinates ciliary transport of diverse cargoes is not well understood. Here, we provide molecular insights into TULP3-mediated ciliary cargo recognition. We screened for critical TULP3 residues by proximity biotinylation-mass spectrometry, structural analysis, and testing TULP3 variants in human patients with hepatorenal fibrocystic disease and spina bifida. The TULP3 residues we identified 1) were located on one side of the β-barrel of the tubby domain away from the phosphoinositide binding site, 2) mediated ciliary trafficking of lipidated and transmembrane cargoes, and 3) determined proximity with these cargoes in vivo without affecting ciliary localization, phosphoinositide binding or hydrodynamic properties of TULP3. Overall, these findings implicate a specific region of one of the surfaces of the TULP3 β-barrel in ciliary trafficking of diverse cargoes. This region overlooks the β-strands 8-12 of the β-barrel and is away from the membrane anchoring phosphoinositide binding site. Targeting the TULP3-cargo interactions could provide therapeutics in ciliary trafficking diseases.
Collapse
Affiliation(s)
- Vivek Reddy Palicharla
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Hemant B. Badgandi
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Sun-Hee Hwang
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Emilie Legué
- Vertebrate Developmental Biology Program, Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520
| | - Karel F. Liem
- Vertebrate Developmental Biology Program, Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520
| | - Saikat Mukhopadhyay
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| |
Collapse
|
3
|
Reddy Palicharla V, Mukhopadhyay S. Molecular and structural perspectives on protein trafficking to the primary cilium membrane. Biochem Soc Trans 2024; 52:1473-1487. [PMID: 38864436 PMCID: PMC11346432 DOI: 10.1042/bst20231403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/13/2024]
Abstract
The primary cilium is a dynamic subcellular compartment templated from the mother centriole or basal body. Cilia are solitary and tiny, but remarkably consequential in cellular pathways regulating proliferation, differentiation, and maintenance. Multiple transmembrane proteins such as G-protein-coupled receptors, channels, enzymes, and membrane-associated lipidated proteins are enriched in the ciliary membrane. The precise regulation of ciliary membrane content is essential for effective signal transduction and maintenance of tissue homeostasis. Surprisingly, a few conserved molecular factors, intraflagellar transport complex A and the tubby family adapter protein TULP3, mediate the transport of most membrane cargoes into cilia. Recent advances in cryogenic electron microscopy provide fundamental insights into these molecular players. Here, we review the molecular players mediating cargo delivery into the ciliary membrane through the lens of structural biology. These mechanistic insights into ciliary transport provide a framework for understanding of disease variants in ciliopathies, enable precise manipulation of cilia-mediated pathways, and provide a platform for the development of targeted therapeutics.
Collapse
Affiliation(s)
- Vivek Reddy Palicharla
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, U.S.A
| | - Saikat Mukhopadhyay
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, U.S.A
| |
Collapse
|
4
|
Zhang L, Zhang H, Agborbesong E, Zhou JX, Li X. Phosphorylation of MIF by PIP4K2a is necessary for cilia biogenesis. Cell Death Dis 2023; 14:795. [PMID: 38052787 PMCID: PMC10698143 DOI: 10.1038/s41419-023-06323-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 11/08/2023] [Accepted: 11/21/2023] [Indexed: 12/07/2023]
Abstract
Primary cilia are microtubule-based organelles that play important roles in development and tissue homeostasis. Macrophage migration inhibitory factor (MIF) has long been recognized as a secreted cytokine in the pathogenesis of various human diseases, including cancer and autosomal dominant polycystic kidney disease (ADPKD). Unlike other cytokines, unique functional characteristics of intracellular MIF have emerged. In this study, we show that MIF is localized and formed a ring like structure at the proximal end of centrioles, where it regulates cilia biogenesis through affecting 1) the recruitment of TTBK2 to basal body and the removal of CP110 from mother centriole, 2) the accumulation of CEP290 at centriolar satellites, and 3) the trafficking of intraflagellar transport (IFT) related proteins. We also show that MIF functions as a novel transcriptional factor to regulate the expression of genes related to ciliogenesis via binding on the promotors of those genes. MIF also binds chromatin and regulates transcription of genes involved in diverse homeostatic signaling pathways. We identify phosphatidylinositol-5-phosphate 4-kinase type 2 alpha (PIP4K2a) as an upstream regulator of MIF, which interacts with and phosphorylates MIF at S91 to increase its interaction with 14-3-3ζ, resulting in its nuclear translocation and transcription regulation. This study suggests that MIF is a key player in cilia biogenesis and a novel transcriptional regulator in homeostasis, which forward our understanding of how MIF is able to carry out several nonoverlapping functions.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Hongbing Zhang
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Ewud Agborbesong
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Julie Xia Zhou
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Xiaogang Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, 55905, USA.
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
5
|
Abstract
Phosphoinositides (PIs) are phospholipids derived from phosphatidylinositol. PIs are regulated via reversible phosphorylation, which is directed by the opposing actions of PI kinases and phosphatases. PIs constitute a minor fraction of the total cellular lipid pool but play pleiotropic roles in multiple aspects of cell biology. Genetic mutations of PI regulatory enzymes have been identified in rare congenital developmental syndromes, including ciliopathies, and in numerous human diseases, such as cancer and metabolic and neurological disorders. Accordingly, PI regulatory enzymes have been targeted in the design of potential therapeutic interventions for human diseases. Recent advances place PIs as central regulators of membrane dynamics within functionally distinct subcellular compartments. This brief review focuses on the emerging role PIs play in regulating cell signaling within the primary cilium and in directing transfer of molecules at interorganelle membrane contact sites and identifies new roles for PIs in subcellular spaces.
Collapse
Affiliation(s)
- Elizabeth Michele Davies
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Victoria 3800, Australia
| | - Christina Anne Mitchell
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Victoria 3800, Australia
| | - Harald Alfred Stenmark
- Department of Molecular Cell Biology, Institute for Cancer Research. The Norwegian Radium Hospital, Montebello, N-0379 Oslo, Norway
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Montebello, N-0379 Oslo, Norway
| |
Collapse
|
6
|
Thallmair V, Schultz L, Evers S, Jolie T, Goecke C, Leitner MG, Thallmair S, Oliver D. Localization of the tubby domain, a PI(4,5)P2 biosensor, to E-Syt3-rich endoplasmic reticulum-plasma membrane junctions. J Cell Sci 2023; 136:jcs260848. [PMID: 37401342 PMCID: PMC10445746 DOI: 10.1242/jcs.260848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 06/26/2023] [Indexed: 07/05/2023] Open
Abstract
The phospholipid phosphatidylinositol (4,5)-bisphosphate [PI(4,5)P2] acts as a signaling lipid at the plasma membrane (PM) with pleiotropic regulatory actions on multiple cellular processes. Signaling specificity might result from spatiotemporal compartmentalization of the lipid and from combinatorial binding of PI(4,5)P2 effector proteins to additional membrane components. Here, we analyzed the spatial distribution of tubbyCT, a paradigmatic PI(4,5)P2-binding domain, in live mammalian cells by total internal reflection fluorescence (TIRF) microscopy and molecular dynamics simulations. We found that unlike other well-characterized PI(4,5)P2 recognition domains, tubbyCT segregates into distinct domains within the PM. TubbyCT enrichment occurred at contact sites between PM and endoplasmic reticulum (ER) (i.e. at ER-PM junctions) as shown by colocalization with ER-PM markers. Localization to these sites was mediated in a combinatorial manner by binding to PI(4,5)P2 and by interaction with a cytosolic domain of extended synaptotagmin 3 (E-Syt3), but not other E-Syt isoforms. Selective localization to these structures suggests that tubbyCT is a novel selective reporter for a ER-PM junctional pool of PI(4,5)P2. Finally, we found that association with ER-PM junctions is a conserved feature of tubby-like proteins (TULPs), suggesting an as-yet-unknown function of TULPs.
Collapse
Affiliation(s)
- Veronika Thallmair
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps University Marburg, 35037 Marburg, Germany
- DFG Research Training Group, Membrane Plasticity in Tissue Development and Remodeling, GRK 2213, Philipps UniversityMarburg, 35037 Marburg, Germany
| | - Lea Schultz
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps University Marburg, 35037 Marburg, Germany
| | - Saskia Evers
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps University Marburg, 35037 Marburg, Germany
| | - Theresa Jolie
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps University Marburg, 35037 Marburg, Germany
| | - Christian Goecke
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps University Marburg, 35037 Marburg, Germany
| | - Michael G. Leitner
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps University Marburg, 35037 Marburg, Germany
- Institute of Physiology, Department of Physiology and Medical Physics, Medical University of Innsbruck, 6020 Innsbruck, Austria
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH&Co.KG, Birkendorfer Str. 65, 88400 Biberach an der Riß, Germany
| | - Sebastian Thallmair
- Frankfurt Institute for Advanced Studies, 60438 Frankfurt am Main, Germany
- Groningen Biomolecular Sciences and Biotechnology Institute and The Zernike Institute for Advanced Material, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Dominik Oliver
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps University Marburg, 35037 Marburg, Germany
- DFG Research Training Group, Membrane Plasticity in Tissue Development and Remodeling, GRK 2213, Philipps UniversityMarburg, 35037 Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Universities of Marburg and Giessen, 35032 Marburg, Germany
| |
Collapse
|
7
|
DeMars KM, Ross MR, Starr A, McIntyre JC. Neuronal primary cilia integrate peripheral signals with metabolic drives. Front Physiol 2023; 14:1150232. [PMID: 37064917 PMCID: PMC10090425 DOI: 10.3389/fphys.2023.1150232] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/20/2023] [Indexed: 03/31/2023] Open
Abstract
Neuronal primary cilia have recently emerged as important contributors to the central regulation of energy homeostasis. As non-motile, microtubule-based organelles, primary cilia serve as signaling antennae for metabolic status. The impairment of ciliary structure or function can produce ciliopathies for which obesity is a hallmark phenotype and global ablation of cilia induces non-syndromic adiposity in mouse models. This organelle is not only a hub for metabolic signaling, but also for catecholamine neuromodulation that shapes neuronal circuitry in response to sensory input. The objective of this review is to highlight current research investigating the mechanisms of primary cilium-regulated metabolic drives for maintaining energy homeostasis.
Collapse
Affiliation(s)
- Kelly M. DeMars
- Department of Neuroscience, University of Florida, Gainesville, FL, United States
| | - Madeleine R. Ross
- Department of Neuroscience, University of Florida, Gainesville, FL, United States
- Summer Neuroscience Internship Program, University of Florida, Gainesville, FL, United States
| | - Alana Starr
- Department of Neuroscience, University of Florida, Gainesville, FL, United States
| | - Jeremy C. McIntyre
- Department of Neuroscience, University of Florida, Gainesville, FL, United States
| |
Collapse
|
8
|
Bernard A, Ojeda Naharros I, Yue X, Mifsud F, Blake A, Bourgain-Guglielmetti F, Ciprin J, Zhang S, McDaid E, Kim K, Nachury MV, Reiter JF, Vaisse C. MRAP2 regulates energy homeostasis by promoting primary cilia localization of MC4R. JCI Insight 2023; 8:e155900. [PMID: 36692018 PMCID: PMC9977312 DOI: 10.1172/jci.insight.155900] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 11/30/2022] [Indexed: 01/24/2023] Open
Abstract
The G protein-coupled receptor melanocortin-4 receptor (MC4R) and its associated protein melanocortin receptor-associated protein 2 (MRAP2) are essential for the regulation of food intake and body weight in humans. MC4R localizes and functions at the neuronal primary cilium, a microtubule-based organelle that senses and relays extracellular signals. Here, we demonstrate that MRAP2 is critical for the weight-regulating function of MC4R neurons and the ciliary localization of MC4R. More generally, our study also reveals that GPCR localization to primary cilia can require specific accessory proteins that may not be present in heterologous cell culture systems. Our findings further demonstrate that targeting of MC4R to neuronal primary cilia is essential for the control of long-term energy homeostasis and suggest that genetic disruption of MC4R ciliary localization may frequently underlie inherited forms of obesity.
Collapse
Affiliation(s)
| | | | - Xinyu Yue
- Department of Medicine and The Diabetes Center
| | | | - Abbey Blake
- Department of Medicine and The Diabetes Center
| | | | | | - Sumei Zhang
- Department of Medicine and The Diabetes Center
| | - Erin McDaid
- Department of Medicine and The Diabetes Center
| | - Kellan Kim
- Department of Medicine and The Diabetes Center
| | | | - Jeremy F. Reiter
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, UCSF, San Francisco, California, USA
- Chan Zuckerberg Biohub, San Francisco, California, USA
| | | |
Collapse
|
9
|
Xu W, Xu M, Yin Q, Liu C, Cao Q, Deng Y, Liu S, He G. A novel homozygous TUB mutation associated with autosomal recessive retinitis pigmentosa in a consanguineous Chinese family. BMC Med Genomics 2023; 16:9. [PMID: 36650547 PMCID: PMC9847046 DOI: 10.1186/s12920-023-01430-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 01/04/2023] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Retinitis pigmentosa (RP) is the most common type of inherited retinopathy. At least 69 genes for RP have been identified. A significant proportion of RP, however, remains genetically unsolved. In this study, the genetic basis of a Chinese consanguineous family with presumed autosomal recessive retinitis pigmentosa (arRP) was investigated. METHODS Overall ophthalmic examinations, including funduscopy, decimal best-corrected visual acuity, axial length and electroretinography (ERG) were performed for the family. Genomic DNA from peripheral blood of the proband was subjected to whole exome sequencing. In silico predictions, structural modelling, and minigene assays were conducted to evaluate the pathogenicity of the variant. RESULTS A novel homozygous variant (NM_003320.4: c.1379A > G) in the TUB gene was identified as a candidate pathogenic variant in this parental consanguineous pedigree. This variant co-segregated with the disease in this pedigree and was absent in 118 ethnically matched healthy controls. It's an extremely rare variant that is neither deposited in population databases (1000 Genomes, ExAC, GnomAD, or Exome Variant Server) nor reported in the literature. Phylogenetic analysis indicated that the Asn residue at codon 460 of TUB is highly conserved across diverse species from tropicalis to humans. It was also completely conserved among the TUB, TULP1, TULP2, and TULP3 family proteins. Multiple bioinformatic algorithms predicted that this variant was deleterious. CONCLUSIONS A novel missense variant in TUB was identified, which was probably the pathogenic basis for arRP in this consanguineous family. This is the first report of a homozygous missense variant in TUB for RP.
Collapse
Affiliation(s)
- Wei Xu
- grid.477407.70000 0004 1806 9292Central Laboratory, Hunan Provincial People’s Hospital (the First Affiliated Hospital of Hunan Normal University), Changsha, 410000 China
| | - Ming Xu
- grid.464229.f0000 0004 1765 8757School of Medicine, Changsha Medical University, Changsha, 410219 China
| | - Qinqin Yin
- grid.477407.70000 0004 1806 9292Department of Ophthalmology, Hunan Provincial People’s Hospital (the First Affiliated Hospital of Hunan Normal University), Changsha, 410000 China
| | - Chuangyi Liu
- grid.477407.70000 0004 1806 9292Department of Ophthalmology, Hunan Provincial People’s Hospital (the First Affiliated Hospital of Hunan Normal University), Changsha, 410000 China
| | - Qiuxiang Cao
- grid.411427.50000 0001 0089 3695School of Life Sciences, Hunan Normal University, Changsha, 410081 China
| | - Yun Deng
- grid.411427.50000 0001 0089 3695School of Life Sciences, Hunan Normal University, Changsha, 410081 China
| | - Sulai Liu
- grid.477407.70000 0004 1806 9292Central Laboratory, Hunan Provincial People’s Hospital (the First Affiliated Hospital of Hunan Normal University), Changsha, 410000 China
| | - Guiyun He
- Department of Ophthalmology, Hunan Provincial People's Hospital (the First Affiliated Hospital of Hunan Normal University), Changsha, 410000, China.
| |
Collapse
|
10
|
Stubbs T, Bingman JI, Besse J, Mykytyn K. Ciliary signaling proteins are mislocalized in the brains of Bardet-Biedl syndrome 1-null mice. Front Cell Dev Biol 2023; 10:1092161. [PMID: 36699005 PMCID: PMC9868275 DOI: 10.3389/fcell.2022.1092161] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/22/2022] [Indexed: 01/11/2023] Open
Abstract
In the brain, primary cilia are found on most, if not all, central neurons. The importance of neuronal cilia is underscored by the fact that human diseases caused by primary cilia dysfunction, which are known as ciliopathies, are associated with neuropathologies, including neuropsychiatric disorders and learning and memory deficits. Neuronal cilia are enriched for certain G protein-coupled receptors and their downstream effectors, suggesting they sense and respond to neuromodulators in the extracellular milieu. GPCR ciliary localization is disrupted in neurons from mouse models of the ciliopathy Bardet-Biedl syndrome, with GPCRs failing to localize to cilia, indicating the Bardet-Biedl syndrome proteins are required for trafficking of G protein-coupled receptors into neuronal cilia. Yet, dopamine receptor 1 accumulates in cilia in the absence of Bardet-Biedl syndrome proteins, suggesting Bardet-Biedl syndrome proteins are required for normal ciliary import and export. To further explore the roles of the Bardet-Biedl syndrome proteins in neuronal cilia, we examined localization of ciliary signaling proteins in a new constitutive Bbs1 knockout mouse model. Interestingly, we find that two additional ciliary G protein-coupled receptors (Gpr161 and Gpr19) abnormally accumulate in cilia on Bardet-Biedl syndrome neurons. In addition, we find that the GPCR signaling protein β-arrestin accumulates in a subset of cilia in the brain, suggesting the presence of additional unidentified ciliary G protein-coupled receptors. These results confirm the importance of the Bardet-Biedl syndrome proteins in establishing ciliary GPCR pathways and indicate that loss of Bbs1 leads to complex changes in the localization of signaling proteins in the brain.
Collapse
|
11
|
Lindner LA, Derstroff D, Oliver D, Reimann K. Distribution of ciliary adaptor proteins tubby and TULP3 in the organ of Corti. Front Neurosci 2023; 17:1162937. [PMID: 37144094 PMCID: PMC10151737 DOI: 10.3389/fnins.2023.1162937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 03/28/2023] [Indexed: 05/06/2023] Open
Abstract
Tubby-like proteins are membrane-associated adaptors that mediate directional trafficking into primary cilia. In inner ear sensory epithelia, cilia-including the hair cell's kinocilium-play important roles as organizers of polarity, tissue architecture and cellular function. However, auditory dysfunction in tubby mutant mice was recently found to be related to a non-ciliary function of tubby, the organization of a protein complex in sensory hair bundles of auditory outer hair cells (OHCs). Targeting of signaling components into cilia in the cochlea might therefore rather rely on closely related tubby-like proteins (TULPs). In this study, we compared cellular and subcellular localization of tubby and TULP3 in the mouse inner ear sensory organs. Immunofluorescence microscopy confirmed the previously reported highly selective localization of tubby in the stereocilia tips of OHCs and revealed a previously unnoticed transient localization to kinocilia during early postnatal development. TULP3 was detected in the organ of Corti and vestibular sensory epithelium, where it displayed a complex spatiotemporal pattern. TULP3 localized to kinocilia of cochlear and vestibular hair cells in early postnatal development but disappeared subsequently before the onset of hearing. This pattern suggested a role in targeting ciliary components into kinocilia, possibly related to the developmental processes that shape the sensory epithelia. Concurrent with loss from kinocilia, pronounced TULP3 immunolabeling progressively appeared at microtubule bundles in non-sensory Pillar (PCs) and Deiters cells (DC). This subcellular localization may indicate a novel function of TULP proteins associated with the formation or regulation of microtubule-based cellular structures.
Collapse
Affiliation(s)
- Laura A. Lindner
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Marburg, Philipps-University Marburg, Marburg, Germany
| | - Dennis Derstroff
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Marburg, Philipps-University Marburg, Marburg, Germany
| | - Dominik Oliver
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps-University Marburg, Marburg, Germany
| | - Katrin Reimann
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Marburg, Philipps-University Marburg, Marburg, Germany
- *Correspondence: Katrin Reimann,
| |
Collapse
|
12
|
Park K, Leroux MR. Composition, organization and mechanisms of the transition zone, a gate for the cilium. EMBO Rep 2022; 23:e55420. [PMID: 36408840 PMCID: PMC9724682 DOI: 10.15252/embr.202255420] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/08/2022] [Accepted: 10/31/2022] [Indexed: 11/22/2022] Open
Abstract
The cilium evolved to provide the ancestral eukaryote with the ability to move and sense its environment. Acquiring these functions required the compartmentalization of a dynein-based motility apparatus and signaling proteins within a discrete subcellular organelle contiguous with the cytosol. Here, we explore the potential molecular mechanisms for how the proximal-most region of the cilium, termed transition zone (TZ), acts as a diffusion barrier for both membrane and soluble proteins and helps to ensure ciliary autonomy and homeostasis. These include a unique complement and spatial organization of proteins that span from the microtubule-based axoneme to the ciliary membrane; a protein picket fence; a specialized lipid microdomain; differential membrane curvature and thickness; and lastly, a size-selective molecular sieve. In addition, the TZ must be permissive for, and functionally integrates with, ciliary trafficking systems (including intraflagellar transport) that cross the barrier and make the ciliary compartment dynamic. The quest to understand the TZ continues and promises to not only illuminate essential aspects of human cell signaling, physiology, and development, but also to unravel how TZ dysfunction contributes to ciliopathies that affect multiple organ systems, including eyes, kidney, and brain.
Collapse
Affiliation(s)
- Kwangjin Park
- Department of Molecular Biology and BiochemistrySimon Fraser UniversityBurnabyBCCanada
- Centre for Cell Biology, Development, and DiseaseSimon Fraser UniversityBurnabyBCCanada
- Present address:
Terry Fox LaboratoryBC CancerVancouverBCCanada
- Present address:
Department of Medical GeneticsUniversity of British ColumbiaVancouverBCCanada
| | - Michel R Leroux
- Department of Molecular Biology and BiochemistrySimon Fraser UniversityBurnabyBCCanada
- Centre for Cell Biology, Development, and DiseaseSimon Fraser UniversityBurnabyBCCanada
| |
Collapse
|
13
|
Amack JD. Structures and functions of cilia during vertebrate embryo development. Mol Reprod Dev 2022; 89:579-596. [PMID: 36367893 PMCID: PMC9805515 DOI: 10.1002/mrd.23650] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/05/2022] [Accepted: 10/28/2022] [Indexed: 11/13/2022]
Abstract
Cilia are hair-like structures that project from the surface of cells. In vertebrates, most cells have an immotile primary cilium that mediates cell signaling, and some specialized cells assemble one or multiple cilia that are motile and beat synchronously to move fluids in one direction. Gene mutations that alter cilia structure or function cause a broad spectrum of disorders termed ciliopathies that impact virtually every system in the body. A wide range of birth defects associated with ciliopathies underscores critical functions for cilia during embryonic development. In many cases, the mechanisms underlying cilia functions during development and disease remain poorly understood. This review describes different types of cilia in vertebrate embryos and discusses recent research results from diverse model systems that provide novel insights into how cilia form and function during embryo development. The work discussed here not only expands our understanding of in vivo cilia biology, but also opens new questions about cilia and their roles in establishing healthy embryos.
Collapse
Affiliation(s)
- Jeffrey D. Amack
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, New York, USA,,BioInspired Syracuse: Institute for Material and Living Systems, Syracuse, New York, USA
| |
Collapse
|
14
|
Ijaz F, Nakazato R, Setou M, Ikegami K. A pair of primers facing at the double-strand break site enables to detect NHEJ-mediated indel mutations at a 1-bp resolution. Sci Rep 2022; 12:11681. [PMID: 35804017 PMCID: PMC9270360 DOI: 10.1038/s41598-022-15776-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 06/29/2022] [Indexed: 11/11/2022] Open
Abstract
The introduction of small insertion/deletion (indel) mutations in the coding region of genes by the site-specific nucleases such as Cas9 allows researchers to obtain frameshift null mutants. Technically simple and costly reasonable genotyping methods are awaited to efficiently screen the frameshift null mutant candidates. Here, we developed a simple genotyping method called DST-PCR (Double-strand break Site-Targeted PCR) using “face-to-face” primers where the 3’ ends of forward and reverse primers face each other at the position between 3-bp and 4-bp upstream of the PAM sequence, which is generally the Cas9-mediated double-strand break site. Generated amplicons are directly subjected to TBE-High-Resolution PAGE, which contains a high concentration of bis-acrylamide, for mutant clones detection with 1-bp resolution. We present actual cases of screening of CRISPR/Cas9-engineered knockout (KO) cells for six genes, where we screen indels to obtain potential KO cell clones utilizing our approach. This method allowed us to detect 1-bp to 2-bp insertion and 1-bp to 4-bp deletion in one or both alleles of mutant cell clones. In addition, this technique also allowed the identification of heterozygous and homozygous biallelic functional KO candidates. Thus, DST-PCR is a simple and fast method to screen KO candidates generated by the CRISPR/Cas9 system before the final selection of clones with sequencing.
Collapse
Affiliation(s)
- Faryal Ijaz
- Department of Anatomy and Developmental Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8553, Japan
| | - Ryota Nakazato
- Department of Anatomy and Developmental Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8553, Japan
| | - Mitsutoshi Setou
- Department of Cellular and Molecular Anatomy and International Mass Imaging Center, Hamamatsu University School of Medicine, Hamamatsu, 431-3192, Japan
| | - Koji Ikegami
- Department of Anatomy and Developmental Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8553, Japan. .,Department of Cellular and Molecular Anatomy and International Mass Imaging Center, Hamamatsu University School of Medicine, Hamamatsu, 431-3192, Japan. .,JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan.
| |
Collapse
|
15
|
Lee CH, Kang GM, Kim MS. Mechanisms of Weight Control by Primary Cilia. Mol Cells 2022; 45:169-176. [PMID: 35387896 PMCID: PMC9001153 DOI: 10.14348/molcells.2022.2046] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/25/2022] [Accepted: 01/25/2022] [Indexed: 02/06/2023] Open
Abstract
A primary cilium, a hair-like protrusion of the plasma membrane, is a pivotal organelle for sensing external environmental signals and transducing intracellular signaling. An interesting linkage between cilia and obesity has been revealed by studies of the human genetic ciliopathies Bardet-Biedl syndrome and Alström syndrome, in which obesity is a principal manifestation. Mouse models of cell type-specific cilia dysgenesis have subsequently demonstrated that ciliary defects restricted to specific hypothalamic neurons are sufficient to induce obesity and hyperphagia. A potential mechanism underlying hypothalamic neuron cilia-related obesity is impaired ciliary localization of G protein-coupled receptors involved in the regulation of appetite and energy metabolism. A well-studied example of this is melanocortin 4 receptor (MC4R), mutations in which are the most common cause of human monogenic obesity. In the paraventricular hypothalamus neurons, a blockade of ciliary trafficking of MC4R as well as its downstream ciliary signaling leads to hyperphagia and weight gain. Another potential mechanism is reduced leptin signaling in hypothalamic neurons with defective cilia. Leptin receptors traffic to the periciliary area upon leptin stimulation. Moreover, defects in cilia formation hamper leptin signaling and actions in both developing and differentiated hypothalamic neurons. The list of obesity-linked ciliary proteins is expending and this supports a tight association between cilia and obesity. This article provides a brief review on the mechanism of how ciliary defects in hypothalamic neurons facilitate obesity.
Collapse
Affiliation(s)
- Chan Hee Lee
- Department of Biomedical Science, Hallym University, Chuncheon 24252, Korea
| | - Gil Myoung Kang
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Min-Seon Kim
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| |
Collapse
|
16
|
Hilgendorf KI. Primary Cilia Are Critical Regulators of White Adipose Tissue Expansion. Front Physiol 2021; 12:769367. [PMID: 34759842 PMCID: PMC8573240 DOI: 10.3389/fphys.2021.769367] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/04/2021] [Indexed: 12/14/2022] Open
Abstract
The primary cilium is a microtubule-based cellular protrusion found on most mammalian cell types in diverse tissues. It functions as a cellular antenna to sense and transduce a broad range of signals, including odorants, light, mechanical stimuli, and chemical ligands. This diversity in signals requires cilia to display a context and cell type-specific repertoire of receptors. Recently, primary cilia have emerged as critical regulators of metabolism. The importance of primary cilia in metabolic disease is highlighted by the clinical features of human genetic disorders with dysfunctional ciliary signaling, which include obesity and diabetes. This review summarizes the current literature on the role of primary cilia in metabolic disease, focusing on the importance of primary cilia in directing white adipose tissue expansion during obesity.
Collapse
Affiliation(s)
- Keren I Hilgendorf
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, United States
| |
Collapse
|
17
|
Hong JJ, Kim KE, Park SY, Bok J, Seo JT, Moon SJ. Differential Roles of Tubby Family Proteins in Ciliary Formation and Trafficking. Mol Cells 2021; 44:591-601. [PMID: 34462398 PMCID: PMC8424140 DOI: 10.14348/molcells.2021.0082] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 12/13/2022] Open
Abstract
Cilia are highly specialized organelles that extend from the cell membrane and function as cellular signaling hubs. Thus, cilia formation and the trafficking of signaling molecules into cilia are essential cellular processes. TULP3 and Tubby (TUB) are members of the tubby-like protein (TULP) family that regulate the ciliary trafficking of G-protein coupled receptors, but the functions of the remaining TULPs (i.e., TULP1 and TULP2) remain unclear. Herein, we explore whether these four structurally similar TULPs share a molecular function in ciliary protein trafficking. We found that TULP3 and TUB, but not TULP1 or TULP2, can rescue the defective cilia formation observed in TULP3-knockout (KO) hTERT RPE-1 cells. TULP3 and TUB also fully rescue the defective ciliary localization of ARL13B, INPP5E, and GPR161 in TULP3 KO RPE-1 cells, while TULP1 and TULP2 only mediate partial rescues. Furthermore, loss of TULP3 results in abnormal IFT140 localization, which can be fully rescued by TUB and partially rescued by TULP1 and TULP2. TUB's capacity for binding IFT-A is essential for its role in cilia formation and ciliary protein trafficking in RPE-1 cells, whereas its capacity for PIP2 binding is required for proper cilia length and IFT140 localization. Finally, chimeric TULP1 containing the IFT-A binding domain of TULP3 fully rescues ciliary protein trafficking, but not cilia formation. Together, these two TULP domains play distinct roles in ciliary protein trafficking but are insufficient for cilia formation in RPE-1 cells. In addition, TULP1 and TULP2 play other unknown molecular roles that should be addressed in the future.
Collapse
Affiliation(s)
- Julie J. Hong
- Department of Oral Biology, BK 21 FOUR Project, Yonsei University College of Dentistry, Seoul 03722, Korea
| | - Kyung Eun Kim
- Department of Oral Biology, BK 21 FOUR Project, Yonsei University College of Dentistry, Seoul 03722, Korea
| | - So Young Park
- Department of Oral Biology, BK 21 FOUR Project, Yonsei University College of Dentistry, Seoul 03722, Korea
| | - Jinwoong Bok
- Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Jeong Taeg Seo
- Department of Oral Biology, BK 21 FOUR Project, Yonsei University College of Dentistry, Seoul 03722, Korea
| | - Seok Jun Moon
- Department of Oral Biology, BK 21 FOUR Project, Yonsei University College of Dentistry, Seoul 03722, Korea
| |
Collapse
|
18
|
Monroe TO, Garrett ME, Kousi M, Rodriguiz RM, Moon S, Bai Y, Brodar SC, Soldano KL, Savage J, Hansen TF, Muzny DM, Gibbs RA, Barak L, Sullivan PF, Ashley-Koch AE, Sawa A, Wetsel WC, Werge T, Katsanis N. PCM1 is necessary for focal ciliary integrity and is a candidate for severe schizophrenia. Nat Commun 2020; 11:5903. [PMID: 33214552 PMCID: PMC7677393 DOI: 10.1038/s41467-020-19637-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 10/13/2020] [Indexed: 12/30/2022] Open
Abstract
The neuronal primary cilium and centriolar satellites have functions in neurogenesis, but little is known about their roles in the postnatal brain. We show that ablation of pericentriolar material 1 in the mouse leads to progressive ciliary, anatomical, psychomotor, and cognitive abnormalities. RNAseq reveals changes in amine- and G-protein coupled receptor pathways. The physiological relevance of this phenotype is supported by decreased available dopamine D2 receptor (D2R) levels and the failure of antipsychotic drugs to rescue adult behavioral defects. Immunoprecipitations show an association with Pcm1 and D2Rs. Finally, we sequence PCM1 in two human cohorts with severe schizophrenia. Systematic modeling of all discovered rare alleles by zebrafish in vivo complementation reveals an enrichment for pathogenic alleles. Our data emphasize a role for the pericentriolar material in the postnatal brain, with progressive degenerative ciliary and behavioral phenotypes; and they support a contributory role for PCM1 in some individuals diagnosed with schizophrenia. The role of ciliary/centriolar components in the postnatal brain is unclear. Here, the authors show via ablation of Pcm1 in mice that degenerative ciliary/centriolar phenotypes induce neuroanatomical and behavioral changes. Sequencing of PCM1 in human cohorts and zebrafish in vivo complementation suggests PCM1 mutations can contribute to schizophrenia.
Collapse
Affiliation(s)
- Tanner O Monroe
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.,Advanced Center for Translational and Genetic Medicine (ACT-GeM), Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, 60611, USA
| | - Melanie E Garrett
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, 27701, USA
| | - Maria Kousi
- MIT Computer Science and Artificial Intelligence Laboratory (CSAIL), Broad Institute of MIT and Harvard, Cambridge, MA, 02139, USA
| | - Ramona M Rodriguiz
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, 27710, USA.,Mouse Behavioral and Neuroendocrine Analysis Core Facility, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Sungjin Moon
- Department of Biological Sciences, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Yushi Bai
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Steven C Brodar
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Karen L Soldano
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, 27701, USA
| | - Jeremiah Savage
- Center for Translational Data Science, The University of Chicago, Chicago, IL, 60615, USA
| | - Thomas F Hansen
- Department of Clinical Sciences, University of Copenhagen, Copenhagen, Denmark.,Institute of Biological Psychiatry, MHC Sct. Hans, Mental Health Services, Copenhagen, Denmark
| | - Donna M Muzny
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, 77030, TX, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Richard A Gibbs
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, 77030, TX, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Lawrence Barak
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Patrick F Sullivan
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.,Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.,Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, SE-171 77, Sweden
| | - Allison E Ashley-Koch
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, 27701, USA
| | - Akira Sawa
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.,Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.,Department of Mental Health, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - William C Wetsel
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, 27710, USA.,Mouse Behavioral and Neuroendocrine Analysis Core Facility, Duke University School of Medicine, Durham, NC, 27710, USA.,Department of Cell Biology, Duke University School of Medicine, Durham, NC, 27710, USA.,Department of Neurobiology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Thomas Werge
- Department of Clinical Sciences, University of Copenhagen, Copenhagen, Denmark.,Institute of Biological Psychiatry, MHC Sct. Hans, Mental Health Services, Copenhagen, Denmark.,iPSYCH - The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark.,Center for GeoGenetics, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Nicholas Katsanis
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA. .,Advanced Center for Translational and Genetic Medicine (ACT-GeM), Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, 60611, USA.
| |
Collapse
|
19
|
TULP1 and TUB Are Required for Specific Localization of PRCD to Photoreceptor Outer Segments. Int J Mol Sci 2020; 21:ijms21228677. [PMID: 33213002 PMCID: PMC7698587 DOI: 10.3390/ijms21228677] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/11/2020] [Accepted: 11/16/2020] [Indexed: 11/28/2022] Open
Abstract
Photoreceptor disc component (PRCD) is a small protein which is exclusively localized to photoreceptor outer segments, and is involved in the formation of photoreceptor outer segment discs. Mutations in PRCD are associated with retinal degeneration in humans, mice, and dogs. The purpose of this work was to identify PRCD-binding proteins in the retina. PRCD protein-protein interactions were identified when implementing the Ras recruitment system (RRS), a cytoplasmic-based yeast two-hybrid system, on a bovine retina cDNA library. An interaction between PRCD and tubby-like protein 1 (TULP1) was identified. Co-immunoprecipitation in transfected mammalian cells confirmed that PRCD interacts with TULP1, as well as with its homolog, TUB. These interactions were mediated by TULP1 and TUB highly conserved C-terminal tubby domain. PRCD localization was altered in the retinas of TULP1- and TUB-deficient mice. These results show that TULP1 and TUB, which are involved in the vesicular trafficking of several photoreceptor proteins from the inner segment to the outer segment, are also required for PRCD exclusive localization to photoreceptor outer segment discs.
Collapse
|
20
|
Ramos C, Roberts JB, Jasso KR, Ten Eyck TW, Everett T, Pozo P, Setlow B, McIntyre JC. Neuron-specific cilia loss differentially alters locomotor responses to amphetamine in mice. J Neurosci Res 2020; 99:827-842. [PMID: 33175436 DOI: 10.1002/jnr.24755] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 10/07/2020] [Accepted: 10/25/2020] [Indexed: 12/20/2022]
Abstract
The neural mechanisms that underlie responses to drugs of abuse are complex, and impacted by a number of neuromodulatory peptides. Within the past 10 years it has been discovered that several of the receptors for neuromodulators are enriched in the primary cilia of neurons. Primary cilia are microtubule-based organelles that project from the surface of nearly all mammalian cells, including neurons. Despite what we know about cilia, our understanding of how cilia regulate neuronal function and behavior is still limited. The primary objective of this study was to investigate the contributions of primary cilia on specific neuronal populations to behavioral responses to amphetamine. To test the consequences of cilia loss on amphetamine-induced locomotor activity we selectively ablated cilia from dopaminergic or GAD2-GABAergic neurons in mice. Cilia loss had no effect on baseline locomotion in either mouse strain. In mice lacking cilia on dopaminergic neurons, locomotor activity compared to wild- type mice was reduced in both sexes in response to acute administration of 3.0 mg/kg amphetamine. In contrast, changes in the locomotor response to amphetamine in mice lacking cilia on GAD2-GABAergic neurons were primarily driven by reductions in locomotor activity in males. Following repeated amphetamine administration (1.0 mg kg-1 day-1 over 5 days), mice lacking cilia on GAD2-GABAergic neurons exhibited enhanced sensitization of the locomotor stimulant response to the drug, whereas mice lacking cilia on dopaminergic neurons did not differ from wild-type controls. These results indicate that cilia play neuron-specific roles in both acute and neuroplastic responses to psychostimulant drugs of abuse.
Collapse
Affiliation(s)
- Carlos Ramos
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Jonté B Roberts
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Kalene R Jasso
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Tyler W Ten Eyck
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Thomas Everett
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Patricia Pozo
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Barry Setlow
- Department of Psychiatry, University of Florida, Gainesville, FL, USA.,Center for Addiction Research and Education, University of Florida, Gainesville, FL, USA
| | - Jeremy C McIntyre
- Department of Neuroscience, University of Florida, Gainesville, FL, USA.,Center for Addiction Research and Education, University of Florida, Gainesville, FL, USA
| |
Collapse
|
21
|
Distinct roles of stereociliary links in the nonlinear sound processing and noise resistance of cochlear outer hair cells. Proc Natl Acad Sci U S A 2020; 117:11109-11117. [PMID: 32358189 DOI: 10.1073/pnas.1920229117] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Outer hair cells (OHCs) play an essential role in hearing by acting as a nonlinear amplifier which helps the cochlea detect sounds with high sensitivity and accuracy. This nonlinear sound processing generates distortion products, which can be measured as distortion-product otoacoustic emissions (DPOAEs). The OHC stereocilia that respond to sound vibrations are connected by three kinds of extracellular links: tip links that connect the taller stereocilia to shorter ones and convey force to the mechanoelectrical transduction channels, tectorial membrane-attachment crowns (TM-ACs) that connect the tallest stereocilia to one another and to the overlying TM, and horizontal top connectors (HTCs) that link adjacent stereocilia. While the tip links have been extensively studied, the roles that the other two types of links play in hearing are much less clear, largely because of a lack of suitable animal models. Here, while analyzing genetic combinations of tubby mice, we encountered models missing both HTCs and TM-ACs or HTCs alone. We found that the tubby mutation causes loss of both HTCs and TM-ACs due to a mislocalization of stereocilin, which results in OHC dysfunction leading to severe hearing loss. Intriguingly, the addition of the modifier allele modifier of tubby hearing 1 in tubby mice selectively rescues the TM-ACs but not the HTCs. Hearing is significantly rescued in these mice with robust DPOAE production, indicating an essential role of the TM-ACs but not the HTCs in normal OHC function. In contrast, the HTCs are required for the resistance of hearing to damage caused by noise stress.
Collapse
|
22
|
Establishing and regulating the composition of cilia for signal transduction. Nat Rev Mol Cell Biol 2020; 20:389-405. [PMID: 30948801 DOI: 10.1038/s41580-019-0116-4] [Citation(s) in RCA: 261] [Impact Index Per Article: 52.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The primary cilium is a hair-like surface-exposed organelle of the eukaryotic cell that decodes a variety of signals - such as odorants, light and Hedgehog morphogens - by altering the local concentrations and activities of signalling proteins. Signalling within the cilium is conveyed through a diverse array of second messengers, including conventional signalling molecules (such as cAMP) and some unusual intermediates (such as sterols). Diffusion barriers at the ciliary base establish the unique composition of this signalling compartment, and cilia adapt their proteome to signalling demands through regulated protein trafficking. Much progress has been made on the molecular understanding of regulated ciliary trafficking, which encompasses not only exchanges between the cilium and the rest of the cell but also the shedding of signalling factors into extracellular vesicles.
Collapse
|
23
|
Long H, Huang K. Transport of Ciliary Membrane Proteins. Front Cell Dev Biol 2020; 7:381. [PMID: 31998723 PMCID: PMC6970386 DOI: 10.3389/fcell.2019.00381] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 12/17/2019] [Indexed: 12/24/2022] Open
Abstract
Cilia and flagella are highly conserved organelles in eukaryotic cells that drive cell movement and act as cell antennae that receive and transmit signals. In addition to receiving and transducing external signals that activate signal cascades, cilia also secrete ciliary ectosomes that send signals to recipient cells, and thereby mediate cell–cell communication. Abnormal ciliary function leads to various ciliopathies, and the precise transport and localization of ciliary membrane proteins are essential for cilium function. This review summarizes current knowledge about the transport processes of ciliary membrane proteins after their synthesis at the endoplasmic reticulum: modification and sorting in the Golgi apparatus, transport through vesicles to the ciliary base, entrance into cilia through the diffusion barrier, and turnover by ectosome secretion. The molecular mechanisms and regulation involved in each step are also discussed. Transport of ciliary membrane proteins is a complex, precise cellular process coordinated among multiple organelles. By systematically analyzing the existing research, we identify topics that should be further investigated to promote progress in this field of research.
Collapse
Affiliation(s)
- Huan Long
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Kaiyao Huang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
24
|
Abstract
Primary cilia project in a single copy from the surface of most vertebrate cell types; they detect and transmit extracellular cues to regulate diverse cellular processes during development and to maintain tissue homeostasis. The sensory capacity of primary cilia relies on the coordinated trafficking and temporal localization of specific receptors and associated signal transduction modules in the cilium. The canonical Hedgehog (HH) pathway, for example, is a bona fide ciliary signalling system that regulates cell fate and self-renewal in development and tissue homeostasis. Specific receptors and associated signal transduction proteins can also localize to primary cilia in a cell type-dependent manner; available evidence suggests that the ciliary constellation of these proteins can temporally change to allow the cell to adapt to specific developmental and homeostatic cues. Consistent with important roles for primary cilia in signalling, mutations that lead to their dysfunction underlie a pleiotropic group of diseases and syndromic disorders termed ciliopathies, which affect many different tissues and organs of the body. In this Review, we highlight central mechanisms by which primary cilia coordinate HH, G protein-coupled receptor, WNT, receptor tyrosine kinase and transforming growth factor-β (TGFβ)/bone morphogenetic protein (BMP) signalling and illustrate how defects in the balanced output of ciliary signalling events are coupled to developmental disorders and disease progression.
Collapse
|
25
|
DiTirro D, Philbrook A, Rubino K, Sengupta P. The Caenorhabditis elegans Tubby homolog dynamically modulates olfactory cilia membrane morphogenesis and phospholipid composition. eLife 2019; 8:48789. [PMID: 31259686 PMCID: PMC6624019 DOI: 10.7554/elife.48789] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 06/21/2019] [Indexed: 12/13/2022] Open
Abstract
Plasticity in sensory signaling is partly mediated via regulated trafficking of signaling molecules to and from primary cilia. Tubby-related proteins regulate ciliary protein transport; however, their roles in remodeling cilia properties are not fully understood. We find that the C. elegans TUB-1 Tubby homolog regulates membrane morphogenesis and signaling protein transport in specialized sensory cilia. In particular, TUB-1 is essential for sensory signaling-dependent reshaping of olfactory cilia morphology. We show that compromised sensory signaling alters cilia membrane phosphoinositide composition via TUB-1-dependent trafficking of a PIP5 kinase. TUB-1 regulates localization of this lipid kinase at the cilia base in part via localization of the AP-2 adaptor complex subunit DPY-23. Our results describe new functions for Tubby proteins in the dynamic regulation of cilia membrane lipid composition, morphology, and signaling protein content, and suggest that this conserved family of proteins plays a critical role in mediating cilia structural and functional plasticity.
Collapse
Affiliation(s)
- Danielle DiTirro
- Department of Biology, Brandeis University, Waltham, United States
| | - Alison Philbrook
- Department of Biology, Brandeis University, Waltham, United States
| | - Kendrick Rubino
- Department of Biology, Brandeis University, Waltham, United States
| | - Piali Sengupta
- Department of Biology, Brandeis University, Waltham, United States
| |
Collapse
|
26
|
Wang DX, Kaur Y, Alyass A, Meyre D. A Candidate-Gene Approach Identifies Novel Associations Between Common Variants in/Near Syndromic Obesity Genes and BMI in Pediatric and Adult European Populations. Diabetes 2019; 68:724-732. [PMID: 30692245 DOI: 10.2337/db18-0986] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 01/24/2019] [Indexed: 11/13/2022]
Abstract
We hypothesized that monogenic syndromic obesity genes are also involved in the polygenic variation of BMI. Single-marker, tag single nucleotide polymorphism (tagSNP) and gene-based analysis were performed on common variants near 54 syndromic obesity genes. We used publicly available data from meta-analyses of European BMI genome-wide association studies conducted by the Genetic Investigation of ANthropometric Traits (GIANT) Consortium and the UK Biobank (UKB) (N = 681,275 adults). A total of 33 loci were identified, of which 19 of 33 (57.6%) were located at SNPs previously identified by the GIANT Consortium and UKB meta-analysis, 11 of 33 (33.3%) were located at novel SNPs, and 3 of 33 (9.1%) were novel genes identified with gene-based analysis. Both single-marker and tagSNP analyses mapped the previously identified 19 SNPs by the GIANT Consortium and UKB meta-analysis. Gene-based analysis confirmed 15 of 19 (78.9%) of the novel SNPs' associated genes. Of the 11 novel loci, 8 were identified with single-marker analysis and the remaining 3 were identified with tagSNP analysis. Gene-based analysis confirmed 4 of 11 (36.3%) of these loci. Meta-analysis with the Early Growth Genetics (EGG) Consortium (N = 35,668 children) was conducted post hoc for top SNPs, confirming 17 of 33 (51.5%) loci, of which 5 were novel. This study supports evidence for a continuum between rare monogenic syndromic and common polygenic forms of obesity.
Collapse
Affiliation(s)
- Dominic X Wang
- Department of Health Research, Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada
- Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Yuvreet Kaur
- Department of Health Research, Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada
- Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Akram Alyass
- Department of Health Research, Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada
| | - David Meyre
- Department of Health Research, Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
27
|
Picariello T, Brown JM, Hou Y, Swank G, Cochran DA, King OD, Lechtreck K, Pazour GJ, Witman GB. A global analysis of IFT-A function reveals specialization for transport of membrane-associated proteins into cilia. J Cell Sci 2019; 132:jcs220749. [PMID: 30659111 PMCID: PMC6382014 DOI: 10.1242/jcs.220749] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 01/02/2019] [Indexed: 12/28/2022] Open
Abstract
Intraflagellar transport (IFT), which is essential for the formation and function of cilia in most organisms, is the trafficking of IFT trains (i.e. assemblies of IFT particles) that carry cargo within the cilium. Defects in IFT cause several human diseases. IFT trains contain the complexes IFT-A and IFT-B. To dissect the functions of these complexes, we studied a Chlamydomonas mutant that is null for the IFT-A protein IFT140. The mutation had no effect on IFT-B but destabilized IFT-A, preventing flagella assembly. Therefore, IFT-A assembly requires IFT140. Truncated IFT140, which lacks the N-terminal WD repeats of the protein, partially rescued IFT and supported formation of half-length flagella that contained normal levels of IFT-B but greatly reduced amounts of IFT-A. The axonemes of these flagella had normal ultrastructure and, as investigated by SDS-PAGE, normal composition. However, composition of the flagellar 'membrane+matrix' was abnormal. Analysis of the latter fraction by mass spectrometry revealed decreases in small GTPases, lipid-anchored proteins and cell signaling proteins. Thus, IFT-A is specialized for the import of membrane-associated proteins. Abnormal levels of the latter are likely to account for the multiple phenotypes of patients with defects in IFT140.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Tyler Picariello
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Jason M Brown
- Department of Biology, Salem State University, Salem, MA 01970, USA
| | - Yuqing Hou
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Gregory Swank
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Deborah A Cochran
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Oliver D King
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Karl Lechtreck
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | - Gregory J Pazour
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - George B Witman
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| |
Collapse
|
28
|
Wang L, De Solis AJ, Goffer Y, Birkenbach KE, Engle SE, Tanis R, Levenson JM, Li X, Rausch R, Purohit M, Lee JY, Tan J, De Rosa MC, Doege CA, Aaron HL, Martins GJ, Brüning JC, Egli D, Costa R, Berbari N, Leibel RL, Stratigopoulos G. Ciliary gene RPGRIP1L is required for hypothalamic arcuate neuron development. JCI Insight 2019; 4:e123337. [PMID: 30728336 PMCID: PMC6413800 DOI: 10.1172/jci.insight.123337] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 01/03/2019] [Indexed: 12/16/2022] Open
Abstract
Intronic polymorphisms in the α-ketoglutarate-dependent dioxygenase gene (FTO) that are highly associated with increased body weight have been implicated in the transcriptional control of a nearby ciliary gene, retinitis pigmentosa GTPase regulator-interacting protein-1 like (RPGRIP1L). Previous studies have shown that congenital Rpgrip1l hypomorphism in murine proopiomelanocortin (Pomc) neurons causes obesity by increasing food intake. Here, we show by congenital and adult-onset Rpgrip1l deletion in Pomc-expressing neurons that the hyperphagia and obesity are likely due to neurodevelopmental effects that are characterized by a reduction in the Pomc/Neuropeptide Y (Npy) neuronal number ratio and marked increases in arcuate hypothalamic-paraventricular hypothalamic (ARH-PVH) axonal projections. Biallelic RPGRIP1L mutations result in fewer cilia-positive human induced pluripotent stem cell-derived (iPSC-derived) neurons and blunted responses to Sonic Hedgehog (SHH). Isogenic human ARH-like embryonic stem cell-derived (ESc-derived) neurons homozygous for the obesity-risk alleles at rs8050136 or rs1421085 have decreased RPGRIP1L expression and have lower numbers of POMC neurons. RPGRIP1L overexpression increases POMC cell number. These findings suggest that apparently functional intronic polymorphisms affect hypothalamic RPGRIP1L expression and impact development of POMC neurons and their derivatives, leading to hyperphagia and increased adiposity.
Collapse
Affiliation(s)
- Liheng Wang
- Naomi Berrie Diabetes Center and Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Alain J. De Solis
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Cologne, Germany
| | - Yossef Goffer
- Naomi Berrie Diabetes Center & Division of Molecular Genetics, Department of Pediatrics, College of Physicians and Surgeons of Columbia University, New York, New York, USA
| | - Kathryn E. Birkenbach
- Naomi Berrie Diabetes Center & Division of Molecular Genetics, Department of Pediatrics, College of Physicians and Surgeons of Columbia University, New York, New York, USA
| | - Staci E. Engle
- Department of Biology, Indiana University-Purdue University, Indianapolis, Indiana, USA
| | - Ross Tanis
- University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Jacob M. Levenson
- University of Central Florida College of Medicine, Orlando, Florida, USA
| | - Xueting Li
- Institute of Human Nutrition graduate program, Columbia University, New York, New York, USA
| | - Richard Rausch
- Naomi Berrie Diabetes Center & Division of Molecular Genetics, Department of Pediatrics, College of Physicians and Surgeons of Columbia University, New York, New York, USA
| | - Manika Purohit
- Zuckerman Institute, Columbia University, New York, New York, USA
| | - Jen-Yi Lee
- Cancer Research Laboratory Molecular Imaging Center, University of California, Berkeley, 94720, USA
| | - Jerica Tan
- Naomi Berrie Diabetes Center, Columbia Stem Cell Initiative, Department of Pathology and Cell Biology, Columbia University, New York, New York, USA
| | - Maria Caterina De Rosa
- Naomi Berrie Diabetes Center, Columbia Stem Cell Initiative, Department of Pathology and Cell Biology, Columbia University, New York, New York, USA
| | - Claudia A. Doege
- Naomi Berrie Diabetes Center, Columbia Stem Cell Initiative, Department of Pathology and Cell Biology, Columbia University, New York, New York, USA
| | - Holly L. Aaron
- Cancer Research Laboratory Molecular Imaging Center, University of California, Berkeley, 94720, USA
| | | | - Jens C. Brüning
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Cologne, Germany
- Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Cologne, Germany
- Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- National Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Dieter Egli
- Naomi Berrie Diabetes Center & Division of Molecular Genetics, Department of Pediatrics, College of Physicians and Surgeons of Columbia University, New York, New York, USA
| | - Rui Costa
- Zuckerman Institute, Columbia University, New York, New York, USA
| | - Nicolas Berbari
- Department of Biology, Indiana University-Purdue University, Indianapolis, Indiana, USA
| | - Rudolph L. Leibel
- Naomi Berrie Diabetes Center & Division of Molecular Genetics, Department of Pediatrics, College of Physicians and Surgeons of Columbia University, New York, New York, USA
| | - George Stratigopoulos
- Naomi Berrie Diabetes Center & Division of Molecular Genetics, Department of Pediatrics, College of Physicians and Surgeons of Columbia University, New York, New York, USA
| |
Collapse
|
29
|
Han S, Miyoshi K, Shikada S, Amano G, Wang Y, Yoshimura T, Katayama T. TULP3 is required for localization of membrane-associated proteins ARL13B and INPP5E to primary cilia. Biochem Biophys Res Commun 2019; 509:227-234. [PMID: 30583862 DOI: 10.1016/j.bbrc.2018.12.109] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 12/14/2018] [Indexed: 01/24/2023]
Abstract
The primary cilia are known as biosensors that transduce signals through the ciliary membrane proteins in vertebrate cells. The ciliary membrane contains transmembrane proteins and membrane-associated proteins. Tubby-like protein 3 (TULP3), a member of the tubby family, has been shown to interact with the intraflagellar transport-A complex (IFT-A) and to be involved in the ciliary localization of transmembrane proteins, although its role in the ciliary entry of membrane-associated proteins has remained unclear. Here, to determine whether TULP3 is required for the localization of ciliary membrane-associated proteins, we generated and analyzed TULP3-knockout (KO) hTERT RPE-1 (RPE1) cells. Immunofluorescence analysis demonstrated that ciliary formation was downregulated in TULP3-KO cells and that membrane-associated proteins, ADP-ribosylation factor-like 13B (ARL13B) and inositol polyphosphate-5-phosphatase E (INPP5E), failed to localize to primary cilia in TULP3-KO cells. These defects in the localization of ARL13B and INPP5E in TULP3-KO cells were rescued by the exogenous expression of wild-type TULP3, but not that of mutant TULP3 lacking the ability to bind IFT-A. In addition, the expression of TUB protein, another member of the tubby family whose endogenous expression is absent in RPE1 cells, also rescued the defective ciliary localization of ARL13B and INPP5E in TULP3-KO cells, suggesting that there is functional redundancy between TULP3 and TUB. Our findings indicate that TULP3 participates in ciliogenesis, and targets membrane-associated proteins to primary cilia via binding to IFT-A.
Collapse
Affiliation(s)
- Sarina Han
- Department of Child Development and Molecular Brain Science, United Graduate School of Child Development, Osaka University, Suita, Osaka, Japan
| | - Ko Miyoshi
- Department of Child Development and Molecular Brain Science, United Graduate School of Child Development, Osaka University, Suita, Osaka, Japan.
| | - Sho Shikada
- Department of Child Development and Molecular Brain Science, United Graduate School of Child Development, Osaka University, Suita, Osaka, Japan
| | - Genki Amano
- Department of Child Development and Molecular Brain Science, United Graduate School of Child Development, Osaka University, Suita, Osaka, Japan
| | - Yinshengzhuoma Wang
- Department of Child Development and Molecular Brain Science, United Graduate School of Child Development, Osaka University, Suita, Osaka, Japan
| | - Takeshi Yoshimura
- Department of Child Development and Molecular Brain Science, United Graduate School of Child Development, Osaka University, Suita, Osaka, Japan
| | - Taiichi Katayama
- Department of Child Development and Molecular Brain Science, United Graduate School of Child Development, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
30
|
Saito Y, Hamamoto A, Kobayashi Y. [Selective signaling pathway via feeding-related ciliary GPCR, melanin-concentrating hormone receptor 1]. Nihon Yakurigaku Zasshi 2019; 154:179-185. [PMID: 31597896 DOI: 10.1254/fpj.154.179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
G-protein-coupled receptors (GPCRs), which constitute a highly diverse family of seven transmembrane receptors, respond to external signals and regulate a variety of cellular and physiological processes. GPCRs are encoded by about 800 different genes in human and they represent the largest family of drug targets in clinical trials, which accounts for about 30% of approved drugs acting on 108 unique GPCRs. Signaling through GPCRs can be optimized by enriching receptors, selective binding partners, and downstream effectors in discrete cellular environment. The primary cilium is a ubiquitous organelle that functions as a sensory antenna for surrounding physical and chemical stimuli. Primary cilium's compartment is as little as 1/10,000th of the total cell volume. Therefore, the ciliary membrane is highly enriched for specific signaling molecules, allowing the primary cilium to organize signaling in a highly ordered microenvironment. Recently, a set of non-olfactory GPCRs such as somatostatin receptor 3 and melanin-concentrating hormone receptor 1 (MCHR1) have been found to be selectively targeted to cilia on several mammalian cell types including neuronal cells both in vitro and in vivo approaches. Moreover, investigations into the pathophysiology have implicated GPCR ciliary signaling in a number of developmental and cellular pathways. Thus, cilia are now considered as an increasingly important connection for GPCR signaling. This review summarizes our current understanding of the signaling pathways though ciliary GPCR, especially feeding- and mood-related GPCR MCHR1, along with specific biological phenomenon as cilia length shortening.
Collapse
Affiliation(s)
- Yumiko Saito
- Graduate School of Integrated Sciences for Life, Hiroshima University
| | - Akie Hamamoto
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University
| | - Yuki Kobayashi
- Graduate School of Integrated Sciences for Life, Hiroshima University
| |
Collapse
|
31
|
Hearn T. ALMS1 and Alström syndrome: a recessive form of metabolic, neurosensory and cardiac deficits. J Mol Med (Berl) 2018; 97:1-17. [PMID: 30421101 PMCID: PMC6327082 DOI: 10.1007/s00109-018-1714-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/25/2018] [Accepted: 10/30/2018] [Indexed: 12/12/2022]
Abstract
Alström syndrome (AS) is characterised by metabolic deficits, retinal dystrophy, sensorineural hearing loss, dilated cardiomyopathy and multi-organ fibrosis. Elucidating the function of the mutated gene, ALMS1, is critical for the development of specific treatments and may uncover pathways relevant to a range of other disorders including common forms of obesity and type 2 diabetes. Interest in ALMS1 is heightened by the recent discovery of its involvement in neonatal cardiomyocyte cell cycle arrest, a process with potential relevance to regenerative medicine. ALMS1 encodes a ~ 0.5 megadalton protein that localises to the base of centrioles. Some studies have suggested a role for this protein in maintaining centriole-nucleated sensory organelles termed primary cilia, and AS is now considered to belong to the growing class of human genetic disorders linked to ciliary dysfunction (ciliopathies). However, mechanistic details are lacking, and recent studies have implicated ALMS1 in several processes including endosomal trafficking, actin organisation, maintenance of centrosome cohesion and transcription. In line with a more complex picture, multiple isoforms of the protein likely exist and non-centrosomal sites of localisation have been reported. This review outlines the evidence for both ciliary and extra-ciliary functions of ALMS1.
Collapse
Affiliation(s)
- Tom Hearn
- Institute of Life Science, Swansea University Medical School, Singleton Park, Swansea, SA2 8PP, UK.
| |
Collapse
|
32
|
Sterpka A, Chen X. Neuronal and astrocytic primary cilia in the mature brain. Pharmacol Res 2018; 137:114-121. [PMID: 30291873 PMCID: PMC6410375 DOI: 10.1016/j.phrs.2018.10.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/28/2018] [Accepted: 10/01/2018] [Indexed: 12/17/2022]
Abstract
Primary cilia are tiny microtubule-based signaling devices that regulate a variety of physiological functions, including metabolism and cell division. Defects in primary cilia lead to a myriad of diseases in humans such as obesity and cancers. In the mature brain, both neurons and astrocytes contain a single primary cilium. Although neuronal primary cilia are not directly involved in synaptic communication, their pathophysiological impacts on obesity and mental disorders are well recognized. In contrast, research on astrocytic primary cilia lags far behind. Currently, little is known about their functions and molecular pathways in the mature brain. Unlike neurons, postnatal astrocytes retain the capacity of cell division and can become reactive and proliferate in response to various brain insults such as epilepsy, ischemia, traumatic brain injury, and neurodegenerative β-amyloid plaques. Since primary cilia derive from the mother centrioles, astrocyte proliferation must occur in coordination with the dismantling and ciliogenesis of astrocyte cilia. In this regard, the functions, signal pathways, and structural dynamics of neuronal and astrocytic primary cilia are fundamentally different. Here we discuss and compare the current understanding of neuronal and astrocytic primary cilia.
Collapse
Affiliation(s)
- Ashley Sterpka
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH, 03824, United States
| | - Xuanmao Chen
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH, 03824, United States.
| |
Collapse
|
33
|
Andersen MK, Hansen T. Genetics of metabolic traits in Greenlanders: lessons from an isolated population. J Intern Med 2018; 284:464-477. [PMID: 30101502 DOI: 10.1111/joim.12814] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this review, we describe the extraordinary population of Greenland, which differs from large outbred populations of Europe and Asia, both in terms of population history and living conditions. Many years in isolation, small population size and an extreme environment have shaped the genetic composition of the Greenlandic population. The unique genetic background combined with the transition from a traditional Inuit lifestyle and diet, to a more Westernized lifestyle, has led to an increase in the prevalence of metabolic conditions like obesity, where the prevalence from 1993 to 2010 has increased from 16.4% to 19.4% among men, and from 13.0% to 25.4% among women, type 2 diabetes and cardiovascular diseases. The genetic susceptibility to metabolic conditions has been explored in Greenlanders, as well as other isolated populations, taking advantage of population-genetic properties of these populations. During the last 10 years, these studies have provided examples of loci showing evidence of positive selection, due to adaption to Arctic climate and Inuit diet, including TBC1D4 and FADS/CPT1A, and have facilitated the discovery of several loci associated with metabolic phenotypes. Most recently, the c.2433-1G>A loss-of-function variant in ADCY3 associated with obesity and type 2 diabetes was described. This locus has provided novel biological insights, as it has been shown that reduced ADCY3 function causes obesity through disrupted function in primary cilia. Future studies of isolated populations will likely provide further genetic as well as biological insights.
Collapse
Affiliation(s)
- M K Andersen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - T Hansen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
34
|
Günther T, Tulipano G, Dournaud P, Bousquet C, Csaba Z, Kreienkamp HJ, Lupp A, Korbonits M, Castaño JP, Wester HJ, Culler M, Melmed S, Schulz S. International Union of Basic and Clinical Pharmacology. CV. Somatostatin Receptors: Structure, Function, Ligands, and New Nomenclature. Pharmacol Rev 2018; 70:763-835. [PMID: 30232095 PMCID: PMC6148080 DOI: 10.1124/pr.117.015388] [Citation(s) in RCA: 164] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Somatostatin, also known as somatotropin-release inhibitory factor, is a cyclopeptide that exerts potent inhibitory actions on hormone secretion and neuronal excitability. Its physiologic functions are mediated by five G protein-coupled receptors (GPCRs) called somatostatin receptor (SST)1-5. These five receptors share common structural features and signaling mechanisms but differ in their cellular and subcellular localization and mode of regulation. SST2 and SST5 receptors have evolved as primary targets for pharmacological treatment of pituitary adenomas and neuroendocrine tumors. In addition, SST2 is a prototypical GPCR for the development of peptide-based radiopharmaceuticals for diagnostic and therapeutic interventions. This review article summarizes findings published in the last 25 years on the physiology, pharmacology, and clinical applications related to SSTs. We also discuss potential future developments and propose a new nomenclature.
Collapse
Affiliation(s)
- Thomas Günther
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Giovanni Tulipano
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Pascal Dournaud
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Corinne Bousquet
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Zsolt Csaba
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Hans-Jürgen Kreienkamp
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Amelie Lupp
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Márta Korbonits
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Justo P Castaño
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Hans-Jürgen Wester
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Michael Culler
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Shlomo Melmed
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Stefan Schulz
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| |
Collapse
|
35
|
Morthorst SK, Christensen ST, Pedersen LB. Regulation of ciliary membrane protein trafficking and signalling by kinesin motor proteins. FEBS J 2018; 285:4535-4564. [PMID: 29894023 DOI: 10.1111/febs.14583] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/09/2018] [Accepted: 06/11/2018] [Indexed: 12/14/2022]
Abstract
Primary cilia are antenna-like sensory organelles that regulate a substantial number of cellular signalling pathways in vertebrates, both during embryonic development as well as in adulthood, and mutations in genes coding for ciliary proteins are causative of an expanding group of pleiotropic diseases known as ciliopathies. Cilia consist of a microtubule-based axoneme core, which is subtended by a basal body and covered by a bilayer lipid membrane of unique protein and lipid composition. Cilia are dynamic organelles, and the ability of cells to regulate ciliary protein and lipid content in response to specific cellular and environmental cues is crucial for balancing ciliary signalling output. Here we discuss mechanisms involved in regulation of ciliary membrane protein trafficking and signalling, with main focus on kinesin-2 and kinesin-3 family members.
Collapse
|
36
|
Hua K, Ferland RJ. Primary cilia proteins: ciliary and extraciliary sites and functions. Cell Mol Life Sci 2018; 75:1521-1540. [PMID: 29305615 PMCID: PMC5899021 DOI: 10.1007/s00018-017-2740-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 12/21/2017] [Accepted: 12/27/2017] [Indexed: 02/07/2023]
Abstract
Primary cilia are immotile organelles known for their roles in development and cell signaling. Defects in primary cilia result in a range of disorders named ciliopathies. Because this organelle can be found singularly on almost all cell types, its importance extends to most organ systems. As such, elucidating the importance of the primary cilium has attracted researchers from all biological disciplines. As the primary cilia field expands, caution is warranted in attributing biological defects solely to the function of this organelle, since many of these "ciliary" proteins are found at other sites in cells and likely have non-ciliary functions. Indeed, many, if not all, cilia proteins have locations and functions outside the primary cilium. Extraciliary functions are known to include cell cycle regulation, cytoskeletal regulation, and trafficking. Cilia proteins have been observed in the nucleus, at the Golgi apparatus, and even in immune synapses of T cells (interestingly, a non-ciliated cell). Given the abundance of extraciliary sites and functions, it can be difficult to definitively attribute an observed phenotype solely to defective cilia rather than to some defective extraciliary function or a combination of both. Thus, extraciliary sites and functions of cilia proteins need to be considered, as well as experimentally determined. Through such consideration, we will understand the true role of the primary cilium in disease as compared to other cellular processes' influences in mediating disease (or through a combination of both). Here, we review a compilation of known extraciliary sites and functions of "cilia" proteins as a means to demonstrate the potential non-ciliary roles for these proteins.
Collapse
Affiliation(s)
- Kiet Hua
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, MC-136, Albany, NY, 12208, USA.
| | - Russell J Ferland
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, MC-136, Albany, NY, 12208, USA.
- Department of Neurology, Albany Medical College, Albany, NY, 12208, USA.
| |
Collapse
|
37
|
Garcia G, Raleigh DR, Reiter JF. How the Ciliary Membrane Is Organized Inside-Out to Communicate Outside-In. Curr Biol 2018; 28:R421-R434. [PMID: 29689227 PMCID: PMC6434934 DOI: 10.1016/j.cub.2018.03.010] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cilia, organelles that move to execute functions like fertilization and signal to execute functions like photoreception and embryonic patterning, are composed of a core of nine-fold doublet microtubules overlain by a membrane. Distinct types of cilia display distinct membrane morphologies, ranging from simple domed cylinders to the highly ornate invaginations and membrane disks of photoreceptor outer segments. Critical for the ability of cilia to signal, both the protein and the lipid compositions of ciliary membranes are different from those of other cellular membranes. This specialization presents a unique challenge for the cell as, unlike membrane-bounded organelles, the ciliary membrane is contiguous with the surrounding plasma membrane. This distinct ciliary membrane is generated in concert with multiple membrane remodeling events that comprise the process of ciliogenesis. Once the cilium is formed, control of ciliary membrane composition relies on discrete molecular machines, including a barrier to membrane proteins entering the cilium at a specialized region of the base of the cilium called the transition zone and a trafficking adaptor that controls G protein-coupled receptor (GPCR) localization to the cilium called the BBSome. The ciliary membrane can be further remodeled by the removal of membrane proteins by the release of ciliary extracellular vesicles that may function in intercellular communication, removal of unneeded proteins or ciliary disassembly. Here, we review the structures and transport mechanisms that control ciliary membrane composition, and discuss how membrane specialization enables the cilium to function as the antenna of the cell.
Collapse
Affiliation(s)
- Galo Garcia
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA
| | - David R Raleigh
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA; Department of Radiation Oncology, University of California, San Francisco, CA 94143, USA; Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA
| | - Jeremy F Reiter
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA.
| |
Collapse
|
38
|
Quantitative Comparison of Primary Cilia Marker Expression and Length in the Mouse Brain. J Mol Neurosci 2018; 64:397-409. [PMID: 29464516 DOI: 10.1007/s12031-018-1036-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 01/31/2018] [Indexed: 12/12/2022]
Abstract
Primary cilia are small, special cellular organelles that provide important sensory and signaling functions during the development of mammalian organs and coordination of postnatal cellular processes. Dysfunction of primary cilia are thought to be the main cause of ciliopathies, a group of genetic disorders characterized by overlapping developmental defects and prominent neurodevelopmental features. Although, disrupted cilia-linked signaling pathways have been implicated in the regulation of numerous neuronal functions, the precise role of primary cilia in the brain are still unknown. Importantly, studies of recent years have highlighted that different functions of primary cilia are reflected by their diverse morphology and unique signaling components localized in the ciliary membrane. In the present study, we conducted a comparative analysis of the expression pattern, distribution and length of adenylyl cyclase 3, somatostatin receptor 3, and ADP-ribosylation factor-like protein 13B expressing primary cilia in the mouse brain. We show that cilia of neurons and astrocytes display a well characterized distribution and ciliary marker arrangements. Moreover, quantitative comparison of their length, density and occurrence rate revealed that primary cilia exhibit region-specific alternations. In summary, our study provides a comprehensive overview of the cellular organization and morphological traits of primary cilia in regions of the physiological adult mouse brain.
Collapse
|
39
|
Wang M, Xu Z, Kong Y. The tubby-like proteins kingdom in animals and plants. Gene 2018; 642:16-25. [PMID: 29109004 DOI: 10.1016/j.gene.2017.10.077] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 08/15/2017] [Accepted: 10/27/2017] [Indexed: 11/28/2022]
|
40
|
Mukhopadhyay S, Badgandi HB, Hwang SH, Somatilaka B, Shimada IS, Pal K. Trafficking to the primary cilium membrane. Mol Biol Cell 2017; 28:233-239. [PMID: 28082521 PMCID: PMC5231892 DOI: 10.1091/mbc.e16-07-0505] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 11/14/2016] [Accepted: 11/15/2016] [Indexed: 12/13/2022] Open
Abstract
The primary cilium has been found to be associated with a number of cellular signaling pathways, such as vertebrate hedgehog signaling, and implicated in the pathogenesis of diseases affecting multiple organs, including the neural tube, kidney, and brain. The primary cilium is the site where a subset of the cell's membrane proteins is enriched. However, pathways that target and concentrate membrane proteins in cilia are not well understood. Processes determining the level of proteins in the ciliary membrane include entry into the compartment, removal, and retention by diffusion barriers such as the transition zone. Proteins that are concentrated in the ciliary membrane are also localized to other cellular sites. Thus it is critical to determine the particular role for ciliary compartmentalization in sensory reception and signaling pathways. Here we provide a brief overview of our current understanding of compartmentalization of proteins in the ciliary membrane and the dynamics of trafficking into and out of the cilium. We also discuss major unanswered questions regarding the role that defects in ciliary compartmentalization might play in disease pathogenesis. Understanding the trafficking mechanisms that underlie the role of ciliary compartmentalization in signaling might provide unique approaches for intervention in progressive ciliopathies.
Collapse
Affiliation(s)
- Saikat Mukhopadhyay
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390
| | - Hemant B Badgandi
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390
| | - Sun-Hee Hwang
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390
| | | | - Issei S Shimada
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390
| | - Kasturi Pal
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390
| |
Collapse
|
41
|
Nies VJM, Struik D, Wolfs MGM, Rensen SS, Szalowska E, Unmehopa UA, Fluiter K, van der Meer TP, Hajmousa G, Buurman WA, Greve JW, Rezaee F, Shiri-Sverdlov R, Vonk RJ, Swaab DF, Wolffenbuttel BHR, Jonker JW, van Vliet-Ostaptchouk JV. TUB gene expression in hypothalamus and adipose tissue and its association with obesity in humans. Int J Obes (Lond) 2017; 42:376-383. [PMID: 28852204 DOI: 10.1038/ijo.2017.214] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/21/2017] [Accepted: 07/30/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND/OBJECTIVES Mutations in the Tubby gene (TUB) cause late-onset obesity and insulin resistance in mice and syndromic obesity in humans. Although TUB gene function has not yet been fully elucidated, studies in rodents indicate that TUB is involved in the hypothalamic pathways regulating food intake and adiposity. Aside from the function in central nervous system, TUB has also been implicated in energy metabolism in adipose tissue in rodents. We aimed to determine the expression and distribution patterns of TUB in man as well as its potential association with obesity. SUBJECTS/METHODS In situ hybridization was used to localize the hypothalamic regions and cells expressing TUB mRNA. Using RT-PCR, we determined the mRNA expression level of the two TUB gene alternative splicing isoforms, the short and the long transcript variants, in the hypothalami of 12 obese and 12 normal-weight subjects, and in biopsies from visceral (VAT) and subcutaneous (SAT) adipose tissues from 53 severely obese and 24 non-obese control subjects, and correlated TUB expression with parameters of obesity and metabolic health. RESULTS Expression of both TUB transcripts was detected in the hypothalamus, whereas only the short TUB isoform was found in both VAT and SAT. TUB mRNA was detected in several hypothalamic regions involved in body weight regulation, including the nucleus basalis of Meynert and the paraventricular, supraoptic and tuberomammillary nuclei. We found no difference in the hypothalamic TUB expression between obese and control groups, whereas the level of TUB mRNA was significantly lower in adipose tissue of obese subjects as compared to controls. Also, TUB expression was negatively correlated with indices of body weight and obesity in a fat-depot-specific manner. CONCLUSIONS Our results indicate high expression of TUB in the hypothalamus, especially in areas involved in body weight regulation, and the correlation between TUB expression in adipose tissue and obesity. These findings suggest a role for TUB in human obesity.
Collapse
Affiliation(s)
- V J M Nies
- Section of Molecular Metabolism and Nutrition, Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - D Struik
- Section of Molecular Metabolism and Nutrition, Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - M G M Wolfs
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - S S Rensen
- Department of General Surgery, Maastricht University Medical Center, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht, The Netherlands
| | - E Szalowska
- Centre for Medical Biomics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - U A Unmehopa
- Department of Endocrinology & Metabolism, Academic Medical Center, Amsterdam, The Netherlands
| | - K Fluiter
- Department of Genome Analysis, Academic Medical Center, Amsterdam, The Netherlands
| | - T P van der Meer
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - G Hajmousa
- Cardiovascular Regenerative Medicine, Department Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - W A Buurman
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - J W Greve
- Department of Surgery, Zuyderland Medical Center Heerlen; Dutch Obesity Clinic South, Heerlen, The Netherlands
| | - F Rezaee
- Centre for Medical Biomics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - R Shiri-Sverdlov
- Departments of Molecular Genetics, School of Nutrition & Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands
| | - R J Vonk
- Centre for Medical Biomics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - D F Swaab
- Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - B H R Wolffenbuttel
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - J W Jonker
- Section of Molecular Metabolism and Nutrition, Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - J V van Vliet-Ostaptchouk
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
42
|
Abstract
Study reveals that Tubby family proteins help deliver GPCRs and other integral membrane proteins into cilia. Study reveals that Tubby family proteins help deliver GPCRs and other integral membrane proteins into cilia.
Collapse
|
43
|
Badgandi HB, Hwang SH, Shimada IS, Loriot E, Mukhopadhyay S. Tubby family proteins are adapters for ciliary trafficking of integral membrane proteins. J Cell Biol 2017; 216:743-760. [PMID: 28154160 PMCID: PMC5350516 DOI: 10.1083/jcb.201607095] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 11/25/2016] [Accepted: 01/09/2017] [Indexed: 01/19/2023] Open
Abstract
Trafficking of integral membrane proteins to cilia is poorly understood. Badgandi et al. show that tubby family proteins TULP3 and TUB act as general adapters for ciliary trafficking of structurally diverse integral membrane cargo like GCPRs and the polycystin 1/2 complex. The primary cilium is a paradigmatic organelle for studying compartmentalized signaling; however, unlike soluble protein trafficking, processes targeting integral membrane proteins to cilia are poorly understood. In this study, we determine that the tubby family protein TULP3 functions as a general adapter for ciliary trafficking of structurally diverse integral membrane cargo, including multiple reported and novel rhodopsin family G protein–coupled receptors (GPCRs) and the polycystic kidney disease–causing polycystin 1/2 complex. The founding tubby family member TUB also localizes to cilia similar to TULP3 and determines trafficking of a subset of these GPCRs to neuronal cilia. Using minimal ciliary localization sequences from GPCRs and fibrocystin (also implicated in polycystic kidney disease), we demonstrate these motifs to be sufficient and TULP3 dependent for ciliary trafficking. We propose a three-step model for TULP3/TUB-mediated ciliary trafficking, including the capture of diverse membrane cargo by the tubby domain in a phosphoinositide 4,5-bisphosphate (PI(4,5)P2)-dependent manner, ciliary delivery by intraflagellar transport complex A binding to the TULP3/TUB N terminus, and subsequent release into PI(4,5)P2-deficient ciliary membrane.
Collapse
Affiliation(s)
- Hemant B Badgandi
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Sun-Hee Hwang
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Issei S Shimada
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Evan Loriot
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390.,STARS Program, University of Texas Southwestern Medical Center, Dallas, TX 75390.,Jesuit College Preparatory School of Dallas, Dallas, TX 75244
| | - Saikat Mukhopadhyay
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| |
Collapse
|
44
|
Dong Y, Cai X, Wu Y, Liu Y, Deng L, Chen H. Insights from Genetic Model Systems of Retinal Degeneration: Role of Epsins in Retinal Angiogenesis and VEGFR2 Signaling. JOURNAL OF NATURE AND SCIENCE 2017; 3:e281. [PMID: 28191500 PMCID: PMC5303005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The retina is a light sensitive tissue that contains specialized photoreceptor cells called rods and cones which process visual signals. These signals are relayed to the brain through interneurons and the fibers of the optic nerve. The retina is susceptible to a variety of degenerative diseases, including age-related macular degeneration (AMD), diabetic retinopathy (DR), retinitis pigmentosa (RP) and other inherited retinal degenerations. In order to reveal the mechanism underlying these diseases and to find methods for the prevention/treatment of retinal degeneration, animal models have been generated to mimic human eye diseases. In this paper, several well-characterized and commonly used animal models are reviewed. Of particular interest are the contributions of these models to our understanding of the mechanisms of retinal degeneration and thereby providing novel treatment options including gene therapy, stem cell therapy, nanomedicine, and CRISPR/Cas9 genome editing. Role of newly-identified adaptor protein epsins from our laboratory is discussed in retinal angiogenesis and VEGFR2 signaling.
Collapse
Affiliation(s)
- Yunzhou Dong
- Vascular Biology Program, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Xue Cai
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Yong Wu
- Department of Internal Medicine, Charles R. Drew University of Medicine & Sciences, University of California School of Medicine, Los Angeles, CA 90059, USA
| | - Yanjun Liu
- Department of Internal Medicine, Charles R. Drew University of Medicine & Sciences, University of California School of Medicine, Los Angeles, CA 90059, USA
| | - Lin Deng
- Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Hong Chen
- Vascular Biology Program, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
45
|
Lee H, Song J, Jung JH, Ko HW. Primary cilia in energy balance signaling and metabolic disorder. BMB Rep 2016; 48:647-54. [PMID: 26538252 PMCID: PMC4791320 DOI: 10.5483/bmbrep.2015.48.12.229] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Indexed: 12/16/2022] Open
Abstract
Energy homeostasis in our body system is maintained by balancing the intake and expenditure of energy. Excessive accumulation of fat by disrupting the balance system causes overweight and obesity, which are increasingly becoming global health concerns. Understanding the pathogenesis of obesity focused on studying the genes related to familial types of obesity. Recently, a rare human genetic disorder, ciliopathy, links the role for genes regulating structure and function of a cellular organelle, the primary cilium, to metabolic disorder, obesity and type II diabetes. Primary cilia are microtubule based hair-like membranous structures, lacking motility and functions such as sensing the environmental cues, and transducing extracellular signals within the cells. Interestingly, the subclass of ciliopathies, such as Bardet-Biedle and Alström syndrome, manifest obesity and type II diabetes in human and mouse model systems. Moreover, studies on genetic mouse model system indicate that more ciliary genes affect energy homeostasis through multiple regulatory steps such as central and peripheral actions of leptin and insulin. In this review, we discuss the latest findings in primary cilia and metabolic disorders, and propose the possible interaction between primary cilia and the leptin and insulin signal pathways which might enhance our understanding of the unambiguous link of a cell's antenna to obesity and type II diabetes.
Collapse
Affiliation(s)
- Hankyu Lee
- College of Pharmacy, Dongguk University, Goyang 10326, Korea
| | - Jieun Song
- College of Pharmacy, Dongguk University, Goyang 10326, Korea
| | - Joo Hyun Jung
- College of Pharmacy, Dongguk University, Goyang 10326, Korea
| | - Hyuk Wan Ko
- College of Pharmacy, Dongguk University, Goyang 10326, Korea
| |
Collapse
|
46
|
Volta F, Gerdes JM. The role of primary cilia in obesity and diabetes. Ann N Y Acad Sci 2016; 1391:71-84. [DOI: 10.1111/nyas.13216] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 07/19/2016] [Accepted: 08/01/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Francesco Volta
- Institute for Diabetes and Regeneration Research; Helmholtz Zentrum München; Garching Germany
| | - Jantje M. Gerdes
- Institute for Diabetes and Regeneration Research; Helmholtz Zentrum München; Garching Germany
- German Center for Diabetes Research; DZD; Munich Germany
| |
Collapse
|
47
|
Mourão A, Christensen ST, Lorentzen E. The intraflagellar transport machinery in ciliary signaling. Curr Opin Struct Biol 2016; 41:98-108. [PMID: 27393972 DOI: 10.1016/j.sbi.2016.06.009] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 06/07/2016] [Indexed: 01/12/2023]
Abstract
Cilia and flagella on eukaryotic cells are slender microtubule-based projections surrounded by a membrane with a unique lipid and protein composition. It is now appreciated that cilia in addition to their established roles in motility also constitute hubs for cellular signaling by sensing external environmental cues necessary for organ development and maintenance of human health. Pathways reported to rely on the cilium organelle include Hedgehog, TGF-β, Wnt, PDGFRα, integrin and DNA damage repair signaling. An emerging theme in ciliary signaling is the requirement for active transport of signaling components into and out of the cilium proper. Here, we review the current state-of-the-art regarding the importance of intraflagellar transport and BBSome multi-subunit complexes in ciliary signaling.
Collapse
Affiliation(s)
- André Mourão
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | - Søren T Christensen
- Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2100 Copenhagen, Denmark.
| | - Esben Lorentzen
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany.
| |
Collapse
|
48
|
Abstract
Primary cilia are organelles that are present on many different cell types, either transiently or permanently. They play a crucial role in receiving signals from the environment and passing these signals to other parts of the cell. In that way, they are involved in diverse processes such as adipocyte differentiation and olfactory sensation. Mutations in genes coding for ciliary proteins often have pleiotropic effects and lead to clinical conditions, ciliopathies, with multiple symptoms. In this study, we reviewed observations from ciliopathies with obesity as one of the symptoms. It shows that variation in cilia-related genes is itself not a major cause of obesity in the population but may be a part of the multifactorial aetiology of this complex condition. Both common polymorphisms and rare deleterious variants may contribute to the obesity risk. Genotype-phenotype relationships have been noticed. Among the ciliary genes, obesity differs with regard to severity and age of onset, which may relate to the influence of each gene on the balance between pro- and anti-adipogenic processes. Analysis of the function and location of the proteins encoded by these ciliary genes suggests that obesity is more linked to activities at the basal area of the cilium, including initiation of the intraflagellar transport, but less to the intraflagellar transport itself. Regarding the role of cilia, three possible mechanistic processes underlying obesity are described: adipogenesis, neuronal food intake regulation and food odour perception.
Collapse
|
49
|
Guadiana SM, Parker AK, Filho GF, Sequeira A, Semple-Rowland S, Shaw G, Mandel RJ, Foster TC, Kumar A, Sarkisian MR. Type 3 Adenylyl Cyclase and Somatostatin Receptor 3 Expression Persists in Aged Rat Neocortical and Hippocampal Neuronal Cilia. Front Aging Neurosci 2016; 8:127. [PMID: 27303293 PMCID: PMC4885836 DOI: 10.3389/fnagi.2016.00127] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 05/17/2016] [Indexed: 01/09/2023] Open
Abstract
The primary cilia of forebrain neurons assemble around birth and become enriched with neuromodulatory receptors. Our understanding of the permanence of these structures and their associated signaling pathways in the aging brain is poor, but they are worthy of investigation because disruptions in neuronal cilia signaling have been implicated in changes in learning and memory, depression-like symptoms, and sleep anomalies. Here, we asked whether neurons in aged forebrain retain primary cilia and whether the staining characteristics of aged cilia for type 3 adenylyl cyclase (ACIII), somatostatin receptor 3 (SSTR3), and pericentrin resemble those of cilia in younger forebrain. To test this, we analyzed immunostained sections of forebrain tissues taken from young and aged male Fischer 344 (F344) and F344 × Brown Norway (F344 × BN) rats. Analyses of ACIII and SSTR3 in young and aged cortices of both strains of rats revealed that the staining patterns in the neocortex and hippocampus were comparable. Virtually every NeuN positive cell examined possessed an ACIII positive cilium. The lengths of ACIII positive cilia in neocortex were similar between young and aged for both strains, whereas in F344 × BN hippocampus, the cilia lengths increased with age in CA1 and CA3, but not in dentate gyrus (DG). Additionally, the percentages of ACIII positive cilia that were also SSTR3 positive did not differ between young and aged tissues in either strain. We also found that pericentrin, a protein that localizes to the basal bodies of neuronal cilia and functions in primary cilia assembly, persisted in aged cortical neurons of both rat strains. Collectively, our data show that neurons in aged rat forebrain possess primary cilia and that these cilia, like those present in younger brain, continue to localize ACIII, SSTR3, and pericentrin. Further studies will be required to determine if the function and signaling pathways regulated by cilia are similar in aged compared to young brain.
Collapse
Affiliation(s)
- Sarah M Guadiana
- Department of Neuroscience, McKnight Brain Institute, University of Florida Gainesville, FL, USA
| | - Alexander K Parker
- Department of Neuroscience, McKnight Brain Institute, University of Florida Gainesville, FL, USA
| | - Gileno F Filho
- Department of Neuroscience, McKnight Brain Institute, University of Florida Gainesville, FL, USA
| | - Ashton Sequeira
- Department of Neuroscience, McKnight Brain Institute, University of Florida Gainesville, FL, USA
| | - Susan Semple-Rowland
- Department of Neuroscience, McKnight Brain Institute, University of Florida Gainesville, FL, USA
| | - Gerry Shaw
- Department of Neuroscience, McKnight Brain Institute, University of FloridaGainesville, FL, USA; EnCor Biotechnology Inc.Gainesville, FL, USA
| | - Ronald J Mandel
- Department of Neuroscience, McKnight Brain Institute, University of Florida Gainesville, FL, USA
| | - Thomas C Foster
- Department of Neuroscience, McKnight Brain Institute, University of Florida Gainesville, FL, USA
| | - Ashok Kumar
- Department of Neuroscience, McKnight Brain Institute, University of Florida Gainesville, FL, USA
| | - Matthew R Sarkisian
- Department of Neuroscience, McKnight Brain Institute, University of Florida Gainesville, FL, USA
| |
Collapse
|
50
|
Pal K, Hwang SH, Somatilaka B, Badgandi H, Jackson PK, DeFea K, Mukhopadhyay S. Smoothened determines β-arrestin-mediated removal of the G protein-coupled receptor Gpr161 from the primary cilium. J Cell Biol 2016; 212:861-75. [PMID: 27002170 PMCID: PMC4810300 DOI: 10.1083/jcb.201506132] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 02/11/2016] [Indexed: 02/08/2023] Open
Abstract
Dynamic changes in membrane protein composition of the primary cilium are central to development and homeostasis, but we know little about mechanisms regulating membrane protein flux. Stimulation of the sonic hedgehog (Shh) pathway in vertebrates results in accumulation and activation of the effector Smoothened within cilia and concomitant disappearance of a negative regulator, the orphan G protein-coupled receptor (GPCR), Gpr161. Here, we describe a two-step process determining removal of Gpr161 from cilia. The first step involves β-arrestin recruitment by the signaling competent receptor, which is facilitated by the GPCR kinase Grk2. An essential factor here is the ciliary trafficking and activation of Smoothened, which by increasing Gpr161-β-arrestin binding promotes Gpr161 removal, both during resting conditions and upon Shh pathway activation. The second step involves clathrin-mediated endocytosis, which functions outside of the ciliary compartment in coordinating Gpr161 removal. Mechanisms determining dynamic compartmentalization of Gpr161 in cilia define a new paradigm for down-regulation of GPCRs during developmental signaling from a specialized subcellular compartment.
Collapse
Affiliation(s)
- Kasturi Pal
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Sun-Hee Hwang
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Bandarigoda Somatilaka
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Hemant Badgandi
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Peter K Jackson
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305
| | - Kathryn DeFea
- Division of Biomedical Sciences, University of California, Riverside, Riverside, CA 92521
| | - Saikat Mukhopadhyay
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| |
Collapse
|