1
|
Tsai IJ. Detecting Assembly Errors With Klumpy: Building Confidence in Your Daily Genomic Analysis. Mol Ecol Resour 2024:e14037. [PMID: 39440672 DOI: 10.1111/1755-0998.14037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 10/02/2024] [Indexed: 10/25/2024]
Abstract
In the realm of genome assembly, even minor errors can send researchers down to rabbit holes of unintended misinterpretation. Enter Klumpy-a tool designed to help detecting these elusive mistakes before they cause significant problems. By providing detailed, region-specific assessments and an intuitive visualisation platform, Klumpy (Madrigal, et al. 2024) empowers researchers to pinpoint and resolve potential issues with precision, paving the way for more reliable downstream analyses and discoveries.
Collapse
|
2
|
Pale M, Pérez-Torres CA, Arenas-Huertero C, Villafán E, Sánchez-Rangel D, Ibarra-Laclette E. Genome-Wide Transcriptional Response of Avocado to Fusarium sp. Infection. PLANTS (BASEL, SWITZERLAND) 2024; 13:2886. [PMID: 39458832 PMCID: PMC11511450 DOI: 10.3390/plants13202886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/20/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024]
Abstract
The avocado crop is relevant for its economic importance and because of its unique evolutionary history. However, there is a lack of information regarding the molecular processes during the defense response against fungal pathogens. Therefore, using a genome-wide approach in this work, we investigated the transcriptional response of the Mexican horticultural race of avocado (Persea americana var. drymifolia), including miRNAs profile and their possible targets. For that, we established an avocado-Fusarium hydroponic pathosystem and studied the response for 21 days. To guarantee robustness in the analysis, first, we improved the avocado genome assembly available for this variety, resulting in 822.49 Mbp in length with 36,200 gene models. Then, using an RNA-seq approach, we identified 13,778 genes differentially expressed in response to the Fusarium infection. According to their expression profile across time, these genes can be clustered into six groups, each associated with specific biological processes. Regarding non-coding RNAs, 8 of the 57 mature miRNAs identified in the avocado genome are responsive to infection caused by Fusarium, and the analysis revealed a total of 569 target genes whose transcript could be post-transcriptionally regulated. This study represents the first research in avocados to comprehensively explore the role of miRNAs in orchestrating defense responses against Fusarium spp. Also, this work provides valuable data about the genes involved in the intricate response of the avocado during fungal infection.
Collapse
Affiliation(s)
- Michel Pale
- Red de Estudios Moleculares Avanzados (REMAV), Instituto de Ecología, A.C. (INECOL), Xalapa 91073, Veracruz, Mexico; (M.P.); (C.-A.P.-T.); (E.V.)
| | - Claudia-Anahí Pérez-Torres
- Red de Estudios Moleculares Avanzados (REMAV), Instituto de Ecología, A.C. (INECOL), Xalapa 91073, Veracruz, Mexico; (M.P.); (C.-A.P.-T.); (E.V.)
- Investigador por México-CONAHCYT en el Instituto de Ecología, A.C. (INECOL), Xalapa 91073, Veracruz, Mexico
| | - Catalina Arenas-Huertero
- Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78295, San Luis Potosí, Mexico;
| | - Emanuel Villafán
- Red de Estudios Moleculares Avanzados (REMAV), Instituto de Ecología, A.C. (INECOL), Xalapa 91073, Veracruz, Mexico; (M.P.); (C.-A.P.-T.); (E.V.)
| | - Diana Sánchez-Rangel
- Red de Estudios Moleculares Avanzados (REMAV), Instituto de Ecología, A.C. (INECOL), Xalapa 91073, Veracruz, Mexico; (M.P.); (C.-A.P.-T.); (E.V.)
- Investigador por México-CONAHCYT en el Instituto de Ecología, A.C. (INECOL), Xalapa 91073, Veracruz, Mexico
| | - Enrique Ibarra-Laclette
- Red de Estudios Moleculares Avanzados (REMAV), Instituto de Ecología, A.C. (INECOL), Xalapa 91073, Veracruz, Mexico; (M.P.); (C.-A.P.-T.); (E.V.)
| |
Collapse
|
3
|
da Silva MERJ, Breyer GM, da Costa MM, Brenig B, Azevedo VADC, Cardoso MRDI, Siqueira FM. Genomic Analyses of Methicillin-Susceptible and Methicillin-Resistant Staphylococcus pseudintermedius Strains Involved in Canine Infections: A Comprehensive Genotypic Characterization. Pathogens 2024; 13:760. [PMID: 39338951 PMCID: PMC11434867 DOI: 10.3390/pathogens13090760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
Staphylococcus pseudintermedius is frequently associated with several bacterial infections in dogs, highlighting a One Health concern due to the zoonotic potential. Given the clinical significance of this pathogen, we performed comprehensive genomic analyses of 28 S. pseudintermedius strains isolated from canine infections throughout whole-genome sequencing using Illumina HiSeq, and compared the genetic features between S. pseudintermedius methicillin-resistant (MRSP) and methicillin-susceptible (MSSP) strains. Our analyses determined that MRSP genomes are larger than MSSP strains, with significant changes in antimicrobial resistance genes and virulent markers, suggesting differences in the pathogenicity of MRSP and MSSP strains. In addition, the pangenome analysis of S. pseudintermedius from canine and human origins identified core and accessory genomes with 1847 and 3037 genes, respectively, which indicates that most of the S. pseudintermedius genome is highly variable. Furthermore, phylogenomic analysis clearly separated MRSP from MSSP strains, despite their infection sites, showing phylogenetic differences according to methicillin susceptibility. Altogether our findings underscore the importance of studying the evolutionary dynamics of S. pseudintermedius, which is crucial for the development of effective prevention and control strategies of resistant S. pseudintermedius infections.
Collapse
Affiliation(s)
- Maria Eduarda Rocha Jacques da Silva
- Department of Veterinary Clinical Pathology, Faculty of Veterinary Medicine, Federal University of Rio Grande do Sul, Porto Alegre 91540-000, Brazil
- Postgraduate Program in Veterinary Science, Federal University of Rio Grande do Sul, Porto Alegre 91540-000, Brazil
| | - Gabriela Merker Breyer
- Department of Veterinary Clinical Pathology, Faculty of Veterinary Medicine, Federal University of Rio Grande do Sul, Porto Alegre 91540-000, Brazil
- Postgraduate Program in Veterinary Science, Federal University of Rio Grande do Sul, Porto Alegre 91540-000, Brazil
| | - Mateus Matiuzzi da Costa
- Department of Animal Science, Federal University of São Francisco Valley (UNIVASF), Petrolina 56300-000, Brazil
| | - Bertram Brenig
- Institute of Veterinary Medicine, Division of Molecular Biology of Livestock and Molecular Diagnostics, Georg August University Göttingen, 37077 Göttingen, Germany
| | - Vasco Ariston de Carvalho Azevedo
- Molecular and Cellular Genetics Laboratory (LGCM), Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil
| | | | - Franciele Maboni Siqueira
- Department of Veterinary Clinical Pathology, Faculty of Veterinary Medicine, Federal University of Rio Grande do Sul, Porto Alegre 91540-000, Brazil
- Postgraduate Program in Veterinary Science, Federal University of Rio Grande do Sul, Porto Alegre 91540-000, Brazil
| |
Collapse
|
4
|
Marín-Paredes R, Peña-Ocaña BA, Martínez-Romero E, Gutiérrez-Sarmiento W, Ruíz-Valdiviezo V, Jasso-Chávez R, Servín-Garcidueñas LE. Metagenome-Assembled Genome of " Candidatus Aramenus sp. CH1" from the Chichon volcano, Mexico. Microbiol Resour Announc 2024; 13:e0052624. [PMID: 39037315 PMCID: PMC11320969 DOI: 10.1128/mra.00526-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/05/2024] [Indexed: 07/23/2024] Open
Abstract
The Chichon volcano contains several thermal manifestations including an acidic crater lake. Here we report a metagenome-assembled genome of "Candidatus Aramenus sp. CH1," a Sulfolobales archaeon inhabiting the crater lake from the Chichon volcano. In this study, we generated a novel Aramenus genome sequence from a thermal area in Southern Mexico.
Collapse
Affiliation(s)
- Roberto Marín-Paredes
- Laboratorio de Microbiómica, Escuela Nacional de Estudios Superiores Unidad Morelia, UNAM, Morelia, Michoacán, México
- Posgrado en Ciencias Biológicas, Unidad de Posgrado, UNAM, Ciudad de México, México
| | - Betsy A. Peña-Ocaña
- Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, México
- Tecnológico Nacional de México, Instituto Tecnológico de Tuxtla Gutiérrez, Tuxtla Gutiérrez, Chiapas, México
| | | | | | - Víctor Ruíz-Valdiviezo
- Tecnológico Nacional de México, Instituto Tecnológico de Tuxtla Gutiérrez, Tuxtla Gutiérrez, Chiapas, México
| | - Ricardo Jasso-Chávez
- Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, México
| | - Luis E. Servín-Garcidueñas
- Laboratorio de Microbiómica, Escuela Nacional de Estudios Superiores Unidad Morelia, UNAM, Morelia, Michoacán, México
| |
Collapse
|
5
|
White RT, Bull MJ, Barker CR, Arnott JM, Wootton M, Jones LS, Howe RA, Morgan M, Ashcroft MM, Forde BM, Connor TR, Beatson SA. Genomic epidemiology reveals geographical clustering of multidrug-resistant Escherichia coli ST131 associated with bacteraemia in Wales. Nat Commun 2024; 15:1371. [PMID: 38355632 PMCID: PMC10866875 DOI: 10.1038/s41467-024-45608-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/30/2024] [Indexed: 02/16/2024] Open
Abstract
Antibiotic resistance is a significant global public health concern. Uropathogenic Escherichia coli sequence type (ST)131, a widely prevalent multidrug-resistant clone, is frequently associated with bacteraemia. This study investigates third-generation cephalosporin resistance in bloodstream infections caused by E. coli ST131. From 2013-2014 blood culture surveillance in Wales, 142 E. coli ST131 genomes were studied alongside global data. All three major ST131 clades were represented across Wales, with clade C/H30 predominant (n = 102/142, 71.8%). Consistent with global findings, Welsh strains of clade C/H30 contain β-lactamase genes from the blaCTX-M-1 group (n = 65/102, 63.7%), which confer resistance to third-generation cephalosporins. Most Welsh clade C/H30 genomes belonged to sub-clade C2/H30Rx (58.3%). A Wales-specific sub-lineage, named GB-WLS.C2, diverged around 1996-2000. An introduction to North Wales around 2002 led to a localised cluster by 2009, depicting limited genomic diversity within North Wales. This investigation emphasises the value of genomic epidemiology, allowing the detection of genetically similar strains in local areas, enabling targeted and timely public health interventions.
Collapse
Affiliation(s)
- Rhys T White
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
- Australian Infectious Disease Research Centre, The University of Queensland, Brisbane, QLD, 4072, Australia
- Australian Centre for Ecogenomics, The University of Queensland, Brisbane, QLD, 4072, Australia
- Health Group, Institute of Environmental Science and Research, 5022, Porirua, New Zealand
| | - Matthew J Bull
- Microbiomes, Microbes and Informatics Group, Organisms and Environment Division, School of Biosciences, Cardiff University, Cardiff, CF10 3AX, United Kingdom
- Public Health Wales Microbiology, University Hospital of Wales, Cardiff, Wales, CF14 4XW, United Kingdom
| | - Clare R Barker
- Microbiomes, Microbes and Informatics Group, Organisms and Environment Division, School of Biosciences, Cardiff University, Cardiff, CF10 3AX, United Kingdom
| | - Julie M Arnott
- Healthcare Associated Infection, Antimicrobial Resistance & Prescribing Programme (HARP), Public Health Wales, 2 Capital Quarter, Tyndall Street, Cardiff, Wales, CF10 4BZ, United Kingdom
| | - Mandy Wootton
- Public Health Wales Microbiology, University Hospital of Wales, Cardiff, Wales, CF14 4XW, United Kingdom
| | - Lim S Jones
- Public Health Wales Microbiology, University Hospital of Wales, Cardiff, Wales, CF14 4XW, United Kingdom
| | - Robin A Howe
- Public Health Wales Microbiology, University Hospital of Wales, Cardiff, Wales, CF14 4XW, United Kingdom
| | - Mari Morgan
- Healthcare Associated Infection, Antimicrobial Resistance & Prescribing Programme (HARP), Public Health Wales, 2 Capital Quarter, Tyndall Street, Cardiff, Wales, CF10 4BZ, United Kingdom
| | - Melinda M Ashcroft
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Brian M Forde
- Australian Infectious Disease Research Centre, The University of Queensland, Brisbane, QLD, 4072, Australia
- The University of Queensland, UQ Centre for Clinical Research (UQCCR), Royal Brisbane & Women's Hospital Campus, Brisbane, QLD, 4029, Australia
| | - Thomas R Connor
- Microbiomes, Microbes and Informatics Group, Organisms and Environment Division, School of Biosciences, Cardiff University, Cardiff, CF10 3AX, United Kingdom.
- Public Health Genomics Programme, Public Health Wales, 2 Capital Quarter, Tyndall Street, Cardiff, Wales, CF10 4BZ, United Kingdom.
| | - Scott A Beatson
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia.
- Australian Infectious Disease Research Centre, The University of Queensland, Brisbane, QLD, 4072, Australia.
- Australian Centre for Ecogenomics, The University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
6
|
Baral B, Matroodi S, Siitonen V, Thapa K, Akhgari A, Yamada K, Nuutila A, Metsä-Ketelä M. Co-factor independent oxidases ncnN and actVA-3 are involved in the dimerization of benzoisochromanequinone antibiotics in naphthocyclinone and actinorhodin biosynthesis. FEMS Microbiol Lett 2023; 370:fnad123. [PMID: 37989784 PMCID: PMC10697411 DOI: 10.1093/femsle/fnad123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/19/2023] [Accepted: 11/20/2023] [Indexed: 11/23/2023] Open
Abstract
Streptomyces produce complex bioactive secondary metabolites with remarkable chemical diversity. Benzoisochromanequinone polyketides actinorhodin and naphthocyclinone are formed through dimerization of half-molecules via single or double carbon-carbon bonds, respectively. Here we sequenced the genome of S. arenae DSM40737 to identify the naphthocyclinone gene cluster and established heterologous production in S. albus J1074 by utilizing direct cluster capture techniques. Comparative sequence analysis uncovered ncnN and ncnM gene products as putative enzymes responsible for dimerization. Inactivation of ncnN that is homologous to atypical co-factor independent oxidases resulted in the accumulation of fogacin, which is likely a reduced shunt product of the true substrate for naphthocyclinone dimerization. In agreement, inactivation of the homologous actVA-3 in S. coelicolor M145 also led to significantly reduced production of actinorhodin. Previous work has identified the NAD(P)H-dependent reductase ActVA-4 as the key enzyme in actinorhodin dimerization, but surprisingly inactivation of the homologous ncnM did not abolish naphthocyclinone formation and the mutation may have been complemented by an endogenous gene product. Our data suggests that dimerization of benzoisochromanequinone polyketides require two-component reductase-oxidase systems.
Collapse
Affiliation(s)
- Bikash Baral
- Department of Life Technologies, University of Turku, FIN-20014 Turku, Finland
| | - Soheila Matroodi
- Department of Life Technologies, University of Turku, FIN-20014 Turku, Finland
- Laboratory of Biotechnology, Department of Marine Biology, Faculty of Marine Science and Oceanography, University of Marine Science and Technology, 64199-34619 Khorramshahr, Iran
| | - Vilja Siitonen
- Department of Life Technologies, University of Turku, FIN-20014 Turku, Finland
| | - Keshav Thapa
- Department of Life Technologies, University of Turku, FIN-20014 Turku, Finland
| | - Amir Akhgari
- Department of Life Technologies, University of Turku, FIN-20014 Turku, Finland
| | - Keith Yamada
- Department of Life Technologies, University of Turku, FIN-20014 Turku, Finland
| | - Aleksi Nuutila
- Department of Life Technologies, University of Turku, FIN-20014 Turku, Finland
| | - Mikko Metsä-Ketelä
- Department of Life Technologies, University of Turku, FIN-20014 Turku, Finland
| |
Collapse
|
7
|
Critical Assessment of Short-Read Assemblers for the Metagenomic Identification of Foodborne and Waterborne Pathogens Using Simulated Bacterial Communities. Microorganisms 2022; 10:microorganisms10122416. [PMID: 36557669 PMCID: PMC9784204 DOI: 10.3390/microorganisms10122416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/30/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022] Open
Abstract
Metagenomics offers the highest level of strain discrimination of bacterial pathogens from complex food and water microbiota. With the rapid evolvement of assembly algorithms, defining an optimal assembler based on the performance in the metagenomic identification of foodborne and waterborne pathogens is warranted. We aimed to benchmark short-read assemblers for the metagenomic identification of foodborne and waterborne pathogens using simulated bacterial communities. Bacterial communities on fresh spinach and in surface water were simulated by generating paired-end short reads of Illumina HiSeq, MiSeq, and NovaSeq at different sequencing depths. Multidrug-resistant Salmonella Indiana SI43 and Pseudomonas aeruginosa PAO1 were included in the simulated communities on fresh spinach and in surface water, respectively. ABySS, IDBA-UD, MaSuRCA, MEGAHIT, metaSPAdes, and Ray Meta were benchmarked in terms of assembly quality, identifications of plasmids, virulence genes, Salmonella pathogenicity island, antimicrobial resistance genes, chromosomal point mutations, serotyping, multilocus sequence typing, and whole-genome phylogeny. Overall, MEGHIT, metaSPAdes, and Ray Meta were more effective for metagenomic identification. We did not obtain an optimal assembler when using the extracted reads classified as Salmonella or P. aeruginosa for downstream genomic analyses, but the extracted reads showed consistent phylogenetic topology with the reference genome when they were aligned with Salmonella or P. aeruginosa strains. In most cases, HiSeq, MiSeq, and NovaSeq were comparable at the same sequencing depth, while higher sequencing depths generally led to more accurate results. As assembly algorithms advance and mature, the evaluation of assemblers should be a continuous process.
Collapse
|
8
|
Le CT, Price EP, Sarovich DS, Nguyen TTA, Powell D, Vu-Khac H, Kurtböke Dİ, Knibb W, Chen SC, Katouli M. Comparative genomics of Nocardia seriolae reveals recent importation and subsequent widespread dissemination in mariculture farms in the South Central Coast region, Vietnam. Microb Genom 2022; 8. [PMID: 35786440 PMCID: PMC9455698 DOI: 10.1099/mgen.0.000845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Between 2010 and 2015, nocardiosis outbreaks caused by Nocardia seriolae affected many permit farms throughout Vietnam, causing mass fish mortalities. To understand the biology, origin and epidemiology of these outbreaks, 20 N. seriolae strains collected from farms in four provinces in the South Central Coast region of Vietnam, along with two Taiwanese strains, were analysed using genetics and genomics. PFGE identified a single cluster amongst all Vietnamese strains that was distinct from the Taiwanese strains. Like the PFGE findings, phylogenomic and SNP genotyping analyses revealed that all Vietnamese N. seriolae strains belonged to a single, unique clade. Strains fell into two subclades that differed by 103 SNPs, with almost no diversity within clades (0–5 SNPs). There was no association between geographical origin and subclade placement, suggesting frequent N. seriolae transmission between Vietnamese mariculture facilities during the outbreaks. The Vietnamese strains shared a common ancestor with strains from Japan and China, with the closest strain, UTF1 from Japan, differing by just 220 SNPs from the Vietnamese ancestral node. Draft Vietnamese genomes range from 7.55 to 7.96 Mbp in size, have an average G+C content of 68.2 % and encode 7 602–7958 predicted genes. Several putative virulence factors were identified, including genes associated with host cell adhesion, invasion, intracellular survival, antibiotic and toxic compound resistance, and haemolysin biosynthesis. Our findings provide important new insights into the epidemiology and pathogenicity of N. seriolae and will aid future vaccine development and disease management strategies, with the ultimate goal of nocardiosis-free aquaculture.
Collapse
Affiliation(s)
- Cuong T. Le
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
- Institute for Aquaculture, Nha Trang University, Nha Trang, Vietnam
| | - Erin P. Price
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
- Sunshine Coast Health Institute, Birtinya, Queensland, Australia
| | - Derek S. Sarovich
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
- Sunshine Coast Health Institute, Birtinya, Queensland, Australia
| | - Thu T. A. Nguyen
- Institute for Biotechnology and Environment, Nha Trang University, Nha Trang, Vietnam
| | - Daniel Powell
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Hung Vu-Khac
- Central Vietnam Veterinary Institute, Nha Trang, Vietnam
| | - D. İpek Kurtböke
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Wayne Knibb
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Shih-Chu Chen
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan, ROC
| | - Mohammad Katouli
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
- *Correspondence: Mohammad Katouli,
| |
Collapse
|
9
|
Song W, Zhang S, Thomas T. MarkerMAG: linking metagenome-assembled genomes (MAGs) with 16S rRNA marker genes using paired-end short reads. Bioinformatics 2022; 38:3684-3688. [PMID: 35713513 DOI: 10.1093/bioinformatics/btac398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 06/08/2022] [Accepted: 06/15/2022] [Indexed: 11/13/2022] Open
Abstract
MOTIVATION Metagenome-assembled genomes (MAGs) have substantially extended our understanding of microbial functionality. However, 16S rRNA genes, which are commonly used in phylogenetic analysis and environmental surveys, are often missing from MAGs. Here, we developed MarkerMAG, a pipeline that links 16S rRNA genes to MAGs using paired-end sequencing reads. RESULTS Assessment of MarkerMAG on three benchmarking metagenomic datasets with various degrees of complexity shows substantial increases in the number of MAGs with 16S rRNA genes and a 100% assignment accuracy. MarkerMAG also estimates the copy number of 16S rRNA genes in MAGs with high accuracy. Assessments on three real metagenomic datasets demonstrates 1.1- to 14.2-fold increases in the number of MAGs with 16S rRNA genes. We also show that MarkerMAG-improved MAGs increase the accuracy of functional prediction from 16S rRNA gene amplicon data. MarkerMAG is helpful in connecting information in MAG database with those in 16S rRNA databases and surveys and hence contributes to our increasing understanding of microbial diversity, function, and phylogeny. AVAILABILITY MarkerMAG is implemented in Python3 and freely available at https://github.com/songweizhi/MarkerMAG. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Weizhi Song
- Centre for Marine Science & Innovation, University of New South Wales, Sydney, 2052, Australia.,School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, 2052, Australia
| | - Shan Zhang
- Centre for Marine Science & Innovation, University of New South Wales, Sydney, 2052, Australia.,School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, 2052, Australia
| | - Torsten Thomas
- Centre for Marine Science & Innovation, University of New South Wales, Sydney, 2052, Australia.,School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, 2052, Australia
| |
Collapse
|
10
|
Possible stochastic sex determination in Bursaphelenchus nematodes. Nat Commun 2022; 13:2574. [PMID: 35546147 PMCID: PMC9095866 DOI: 10.1038/s41467-022-30173-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 04/19/2022] [Indexed: 12/13/2022] Open
Abstract
Sex determination mechanisms evolve surprisingly rapidly, yet little is known in the large nematode phylum other than for Caenorhabditis elegans, which relies on chromosomal XX-XO sex determination and a dosage compensation mechanism. Here we analyze by sex-specific genome sequencing and genetic analysis sex determination in two fungal feeding/plant-parasitic Bursaphelenchus nematodes and find that their sex differentiation is more likely triggered by random, epigenetic regulation than by more well-known mechanisms of chromosomal or environmental sex determination. There is no detectable difference in male and female chromosomes, nor any linkage to sexual phenotype. Moreover, the protein sets of these nematodes lack genes involved in X chromosome dosage counting or compensation. By contrast, our genetic screen for sex differentiation mutants identifies a Bursaphelenchus ortholog of tra-1, the major output of the C. elegans sex determination cascade. Nematode sex determination pathways might have evolved by “bottom-up” accretion from the most downstream regulator, tra-1. In most species, sex is determined by genetic or environmental factors. Here, the authors present evidence that sex determination in Bursaphelenchus nematodes is instead likely to be regulated by a random, epigenetic mechanism.
Collapse
|
11
|
Quek S, Cerdeira L, Jeffries CL, Tomlinson S, Walker T, Hughes GL, Heinz E. Wolbachia endosymbionts in two Anopheles species indicates independent acquisitions and lack of prophage elements. Microb Genom 2022; 8. [PMID: 35446252 PMCID: PMC9453072 DOI: 10.1099/mgen.0.000805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Wolbachia is a genus of obligate bacterial endosymbionts that infect a diverse range of arthropod species as well as filarial nematodes, with its single described species, Wolbachia pipientis, divided into several ‘supergroups’ based on multilocus sequence typing. Wolbachia strains in mosquitoes have been shown to inhibit the transmission of human pathogens, including Plasmodium malaria parasites and arboviruses. Despite their large host range, Wolbachia strains within the major malaria vectors of the Anopheles gambiae and Anopheles funestus complexes appear at low density, established solely on PCR-based methods. Questions have been raised as to whether this represents a true endosymbiotic relationship. However, recent definitive evidence for two distinct, high-density strains of supergroup B Wolbachia within Anopheles demeilloni and Anopheles moucheti has opened exciting possibilities to explore naturally occurring Wolbachia endosymbionts in Anopheles for biocontrol strategies to block Plasmodium transmission. Here, we utilize genomic analyses to demonstrate that both Wolbachia strains have retained all key metabolic and transport pathways despite their smaller genome size, with this reduction potentially attributable to degenerated prophage regions. Even with this reduction, we confirmed the presence of cytoplasmic incompatibility (CI) factor genes within both strains, with wAnD maintaining intact copies of these genes while the cifB gene was interrupted in wAnM, so functional analysis is required to determine whether wAnM can induce CI. Additionally, phylogenetic analysis indicates that these Wolbachia strains may have been introduced into these two Anopheles species via horizontal transmission events, rather than by ancestral acquisition and subsequent loss events in the Anopheles gambiae species complex. These are the first Wolbachia genomes, to our knowledge, that enable us to study the relationship between natural strain Plasmodium malaria parasites and their anopheline hosts.
Collapse
Affiliation(s)
- Shannon Quek
- Department of Tropical Disease Biology, Centre for Neglected Tropical Diseases, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Louise Cerdeira
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Claire L Jeffries
- Department of Disease Control, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Sean Tomlinson
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Thomas Walker
- Department of Disease Control, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Grant L Hughes
- Department of Tropical Disease Biology, Centre for Neglected Tropical Diseases, Liverpool School of Tropical Medicine, Liverpool, UK.,Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Eva Heinz
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK.,Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| |
Collapse
|
12
|
Plenderleith LJ, Liu W, Li Y, Loy DE, Mollison E, Connell J, Ayouba A, Esteban A, Peeters M, Sanz CM, Morgan DB, Wolfe ND, Ulrich M, Sachse A, Calvignac-Spencer S, Leendertz FH, Shaw GM, Hahn BH, Sharp PM. Zoonotic origin of the human malaria parasite Plasmodium malariae from African apes. Nat Commun 2022; 13:1868. [PMID: 35387986 PMCID: PMC8987028 DOI: 10.1038/s41467-022-29306-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 03/07/2022] [Indexed: 11/19/2022] Open
Abstract
The human parasite Plasmodium malariae has relatives infecting African apes (Plasmodium rodhaini) and New World monkeys (Plasmodium brasilianum), but its origins remain unknown. Using a novel approach to characterise P. malariae-related sequences in wild and captive African apes, we found that this group comprises three distinct lineages, one of which represents a previously unknown, highly divergent species infecting chimpanzees, bonobos and gorillas across central Africa. A second ape-derived lineage is much more closely related to the third, human-infective lineage P. malariae, but exhibits little evidence of genetic exchange with it, and so likely represents a separate species. Moreover, the levels and nature of genetic polymorphisms in P. malariae indicate that it resulted from the zoonotic transmission of an African ape parasite, reminiscent of the origin of P. falciparum. In contrast, P. brasilianum falls within the radiation of human P. malariae, and thus reflects a recent anthroponosis. Plasmodium malariae is a cause of malaria in humans and related species have been identified in non-human primates. Here, the authors use genomic analyses to establish that human P. malariae arose from a host switch of an ape parasite whilst a species infecting New World monkeys can be traced to a reverse zoonosis.
Collapse
Affiliation(s)
- Lindsey J Plenderleith
- Institute of Evolutionary Biology and Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, EH9 3FL, UK.
| | - Weimin Liu
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yingying Li
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Dorothy E Loy
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Department of Microbiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ewan Mollison
- Institute of Evolutionary Biology and Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, EH9 3FL, UK
| | - Jesse Connell
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ahidjo Ayouba
- Recherche Translationnelle Appliquée au VIH et aux Maladies Infectieuses, Institut de Recherche pour le Développement, University of Montpellier, INSERM, 34090, Montpellier, France
| | - Amandine Esteban
- Recherche Translationnelle Appliquée au VIH et aux Maladies Infectieuses, Institut de Recherche pour le Développement, University of Montpellier, INSERM, 34090, Montpellier, France
| | - Martine Peeters
- Recherche Translationnelle Appliquée au VIH et aux Maladies Infectieuses, Institut de Recherche pour le Développement, University of Montpellier, INSERM, 34090, Montpellier, France
| | - Crickette M Sanz
- Department of Anthropology, Washington University in St. Louis, St Louis, MO, 63130, USA.,Wildlife Conservation Society, Congo Program, BP, 14537, Brazzaville, Republic of the Congo
| | - David B Morgan
- Wildlife Conservation Society, Congo Program, BP, 14537, Brazzaville, Republic of the Congo.,Lester E. Fisher Center for the Study and Conservation of Apes, Lincoln Park Zoo, Chicago, IL, USA
| | | | | | | | | | - Fabian H Leendertz
- Robert Koch Institute, 13353, Berlin, Germany.,Helmholtz Institute for One Health, Greifswald, Germany
| | - George M Shaw
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Department of Microbiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Beatrice H Hahn
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Department of Microbiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Paul M Sharp
- Institute of Evolutionary Biology and Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, EH9 3FL, UK.
| |
Collapse
|
13
|
Mycobacterium bovis PknG R242P Mutation Results in Structural Changes with Enhanced Virulence in the Mouse Model of Infection. Microorganisms 2022; 10:microorganisms10040673. [PMID: 35456728 PMCID: PMC9030157 DOI: 10.3390/microorganisms10040673] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 02/01/2023] Open
Abstract
Mycobacterium bovis is the causative agent of tuberculosis in domestic and wild animal species and sometimes in humans, presenting variable degrees of pathogenicity. It is known that PknG is involved in the first steps of Mycobacterium tuberculosis macrophage infection and immune evasion. We questioned whether M. bovispknG genes were conserved among mycobacteria and if natural genetic modifications would affect its virulence. We discovered a single mutation at a catalytic domain (R242P) of one M. bovis isolate and established the relation between the presence of R242P mutation and enhanced M. bovis virulence. Here, we demonstrated that R242P mutation alters the PknG protein conformation to a more open ATP binding site cleft. It was observed that M. bovis with PknG mutation resulted in increased growth under stress conditions. In addition, infected macrophages by M. bovis (R242P) presented a higher bacterial load compared with M. bovis without the pknG mutation. Furthermore, using the mouse model of infection, animals infected with M. bovis (R242P) had a massive innate immune response migration to the lung that culminated with pneumonia, necrosis, and higher mortality. The PknG protein single point mutation in its catalytic domain did not reduce the bacterial fitness but rather increased its virulence.
Collapse
|
14
|
Draft Genome Sequence of Francisella tularensis subsp. holarctica Strain H0001, Isolated from a Tularemia Patient in the Republic of Korea. Microbiol Resour Announc 2022; 11:e0071921. [PMID: 35084225 PMCID: PMC8800444 DOI: 10.1128/mra.00719-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Francisella tularensis is the etiological agent of the zoonosis tularemia. Here, we report the draft genome sequence of F. tularensis subsp. holarctica H0001, which was isolated from a tularemia patient in the Republic of Korea.
Collapse
|
15
|
Genome assembly and annotation. Bioinformatics 2022. [DOI: 10.1016/b978-0-323-89775-4.00013-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
16
|
White RT, Legione AR, Taylor-Brown A, Fernandez CM, Higgins DP, Timms P, Jelocnik M. Completing the Genome Sequence of Chlamydia pecorum Strains MC/MarsBar and DBDeUG: New Insights into This Enigmatic Koala ( Phascolarctos cinereus) Pathogen. Pathogens 2021; 10:1543. [PMID: 34959498 PMCID: PMC8703710 DOI: 10.3390/pathogens10121543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/17/2021] [Accepted: 11/24/2021] [Indexed: 12/30/2022] Open
Abstract
Chlamydia pecorum, an obligate intracellular pathogen, causes significant morbidity and mortality in livestock and the koala (Phascolarctos cinereus). A variety of C. pecorum gene-centric molecular studies have revealed important observations about infection dynamics and genetic diversity in both koala and livestock hosts. In contrast to a variety of C. pecorum molecular studies, to date, only four complete and 16 draft genomes have been published. Of those, only five draft genomes are from koalas. Here, using whole-genome sequencing and a comparative genomics approach, we describe the first two complete C. pecorum genomes collected from diseased koalas. A de novo assembly of DBDeUG_2018 and MC/MarsBar_2018 resolved the chromosomes and chlamydial plasmids each as single, circular contigs. Robust phylogenomic analyses indicate biogeographical separation between strains from northern and southern koala populations, and between strains infecting koala and livestock hosts. Comparative genomics between koala strains identified new, unique, and shared loci that accumulate single-nucleotide polymorphisms and separate between northern and southern, and within northern koala strains. Furthermore, we predicted novel type III secretion system effectors. This investigation constitutes a comprehensive genome-wide comparison between C. pecorum from koalas and provides improvements to annotations of a C. pecorum reference genome. These findings lay the foundations for identifying and understanding host specificity and adaptation behind chlamydial infections affecting koalas.
Collapse
Affiliation(s)
- Rhys T. White
- Genecology Research Centre, University of the Sunshine Coast, Sippy Downs, Sunshine Coast, QLD 4557, Australia; (R.T.W.); (A.T.-B.); (P.T.)
| | - Alistair R. Legione
- Asia Pacific Centre for Animal Health, Melbourne Veterinary School, The University of Melbourne, Parkville, VIC 3010, Australia;
| | - Alyce Taylor-Brown
- Genecology Research Centre, University of the Sunshine Coast, Sippy Downs, Sunshine Coast, QLD 4557, Australia; (R.T.W.); (A.T.-B.); (P.T.)
- Parasites and Microbes Programme, Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Cristina M. Fernandez
- Sydney School of Veterinary Science, The University of Sydney, Sydney, NSW 2006, Australia; (C.M.F.); (D.P.H.)
| | - Damien P. Higgins
- Sydney School of Veterinary Science, The University of Sydney, Sydney, NSW 2006, Australia; (C.M.F.); (D.P.H.)
| | - Peter Timms
- Genecology Research Centre, University of the Sunshine Coast, Sippy Downs, Sunshine Coast, QLD 4557, Australia; (R.T.W.); (A.T.-B.); (P.T.)
| | - Martina Jelocnik
- Genecology Research Centre, University of the Sunshine Coast, Sippy Downs, Sunshine Coast, QLD 4557, Australia; (R.T.W.); (A.T.-B.); (P.T.)
| |
Collapse
|
17
|
Genome Mining and Comparative Genome Analysis Revealed Niche-Specific Genome Expansion in Antibacterial Bacillus pumilus Strain SF-4. Genes (Basel) 2021; 12:genes12071060. [PMID: 34356076 PMCID: PMC8303946 DOI: 10.3390/genes12071060] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/13/2021] [Accepted: 05/21/2021] [Indexed: 01/21/2023] Open
Abstract
The present study reports the isolation of antibacterial exhibiting Bacillus pumilus (B. pumilus) SF-4 from soil field. The genome of this strain SF-4 was sequenced and analyzed to acquire in-depth genomic level insight related to functional diversity, evolutionary history, and biosynthetic potential. The genome of the strain SF-4 harbor 12 Biosynthetic Gene Clusters (BGCs) including four Non-ribosomal peptide synthetases (NRPSs), two terpenes, and one each of Type III polyketide synthases (PKSs), hybrid (NRPS/PKS), lipopeptide, β-lactone, and bacteriocin clusters. Plant growth-promoting genes associated with de-nitrification, iron acquisition, phosphate solubilization, and nitrogen metabolism were also observed in the genome. Furthermore, all the available complete genomes of B. pumilus strains were used to highlight species boundaries and diverse niche adaptation strategies. Phylogenetic analyses revealed local diversification and indicate that strain SF-4 is a sister group to SAFR-032 and 150a. Pan-genome analyses of 12 targeted strains showed regions of genome plasticity which regulate function of these strains and proposed direct strain adaptations to specific habitats. The unique genome pool carries genes mostly associated with “biosynthesis of secondary metabolites, transport, and catabolism” (Q), “replication, recombination and repair” (L), and “unknown function” (S) clusters of orthologous groups (COG) categories. Moreover, a total of 952 unique genes and 168 exclusively absent genes were prioritized across the 12 genomes. While newly sequenced B. pumilus SF-4 genome consists of 520 accessory, 59 unique, and seven exclusively absent genes. The current study demonstrates genomic differences among 12 B. pumilus strains and offers comprehensive knowledge of the respective genome architecture which may assist in the agronomic application of this strain in future.
Collapse
|
18
|
Hu R, Wang L, Liu Q, Hua L, Huang X, Zhang Y, Fan J, Chen H, Song W, Liang W, Ding N, Li Z, Ding Z, Tang X, Peng Z, Wu B. Whole-Genome Sequence Analysis of Pseudorabies Virus Clinical Isolates from Pigs in China between 2012 and 2017 in China. Viruses 2021; 13:v13071322. [PMID: 34372529 PMCID: PMC8310123 DOI: 10.3390/v13071322] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/03/2021] [Accepted: 07/05/2021] [Indexed: 02/07/2023] Open
Abstract
Pseudorabies virus (PRV) is an economically significant swine infectious agent. A PRV outbreak took place in China in 2011 with novel virulent variants. Although the association of viral genomic variability with pathogenicity is not fully confirmed, the knowledge concerning PRV genomic diversity and evolution is still limited. Here, we sequenced 54 genomes of novel PRV variants isolated in China from 2012 to 2017. Phylogenetic analysis revealed that China strains and US/Europe strains were classified into two separate genotypes. PRV strains isolated from 2012 to 2017 in China are highly related to each other and genetically close to classic China strains such as Ea, Fa, and SC. RDP analysis revealed 23 recombination events within novel PRV variants, indicating that recombination contributes significantly to the viral evolution. The selection pressure analysis indicated that most ORFs were under evolutionary constraint, and 19 amino acid residue sites in 15 ORFs were identified under positive selection. Additionally, 37 unique mutations were identified in 19 ORFs, which distinguish the novel variants from classic strains. Overall, our study suggested that novel PRV variants might evolve from classical PRV strains through point mutation and recombination mechanisms.
Collapse
Affiliation(s)
- Ruiming Hu
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (R.H.); (Q.L.); (L.H.); (X.H.); (Y.Z.); (J.F.); (H.C.); (W.S.); (W.L.); (X.T.)
- Department of Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; (N.D.); (Z.D.)
- Jiangxi Provincial Key Laboratory for Animal Health, Jiangxi Agricultural University, Nanchang 330045, China
| | - Leyi Wang
- Department of Veterinary Clinical Medicine and the Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Illinois, Urbana, IL 61802, USA;
| | - Qingyun Liu
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (R.H.); (Q.L.); (L.H.); (X.H.); (Y.Z.); (J.F.); (H.C.); (W.S.); (W.L.); (X.T.)
| | - Lin Hua
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (R.H.); (Q.L.); (L.H.); (X.H.); (Y.Z.); (J.F.); (H.C.); (W.S.); (W.L.); (X.T.)
| | - Xi Huang
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (R.H.); (Q.L.); (L.H.); (X.H.); (Y.Z.); (J.F.); (H.C.); (W.S.); (W.L.); (X.T.)
| | - Yue Zhang
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (R.H.); (Q.L.); (L.H.); (X.H.); (Y.Z.); (J.F.); (H.C.); (W.S.); (W.L.); (X.T.)
| | - Jie Fan
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (R.H.); (Q.L.); (L.H.); (X.H.); (Y.Z.); (J.F.); (H.C.); (W.S.); (W.L.); (X.T.)
| | - Hongjian Chen
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (R.H.); (Q.L.); (L.H.); (X.H.); (Y.Z.); (J.F.); (H.C.); (W.S.); (W.L.); (X.T.)
| | - Wenbo Song
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (R.H.); (Q.L.); (L.H.); (X.H.); (Y.Z.); (J.F.); (H.C.); (W.S.); (W.L.); (X.T.)
| | - Wan Liang
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (R.H.); (Q.L.); (L.H.); (X.H.); (Y.Z.); (J.F.); (H.C.); (W.S.); (W.L.); (X.T.)
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Animal Husbandry and Veterinary Institute, Hubei Academy of Agricultural Sciences, Wuhan 430070, China
| | - Nengshui Ding
- Department of Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; (N.D.); (Z.D.)
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China
- State Key Laboratory of Food Safety Technology for Meat Products, Xiamen 360000, China
| | - Zuohua Li
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China;
| | - Zhen Ding
- Department of Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; (N.D.); (Z.D.)
- Jiangxi Provincial Key Laboratory for Animal Health, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xibiao Tang
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (R.H.); (Q.L.); (L.H.); (X.H.); (Y.Z.); (J.F.); (H.C.); (W.S.); (W.L.); (X.T.)
| | - Zhong Peng
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (R.H.); (Q.L.); (L.H.); (X.H.); (Y.Z.); (J.F.); (H.C.); (W.S.); (W.L.); (X.T.)
- Correspondence: (Z.P.); (B.W.)
| | - Bin Wu
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (R.H.); (Q.L.); (L.H.); (X.H.); (Y.Z.); (J.F.); (H.C.); (W.S.); (W.L.); (X.T.)
- Correspondence: (Z.P.); (B.W.)
| |
Collapse
|
19
|
Sillo F, Garbelotto M, Giordano L, Gonthier P. Genic introgression from an invasive exotic fungal forest pathogen increases the establishment potential of a sibling native pathogen. NEOBIOTA 2021. [DOI: 10.3897/neobiota.65.64031] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Significant hybridization between the invasive North American fungal plant pathogen Heterobasidion irregulare and its Eurasian sister species H. annosum is ongoing in Italy. Whole genomes of nine natural hybrids were sequenced, assembled and compared with those of three genotypes each of the two parental species. Genetic relationships among hybrids and their level of admixture were determined. A multi-approach pipeline was used to assign introgressed genomic blocks to each of the two species. Alleles that introgressed from H. irregulare to H. annosum were associated with pathways putatively related to saprobic processes, while alleles that introgressed from the native to the invasive species were mainly linked to gene regulation. There was no overlap of allele categories introgressed in the two directions. Phenotypic experiments documented a fitness increase in H. annosum genotypes characterized by introgression of alleles from the invasive species, supporting the hypothesis that hybridization results in putatively adaptive introgression. Conversely, introgression from the native into the exotic species appeared to be driven by selection on genes favoring genome stability. Since the introgression of specific alleles from the exotic H. irregulare into the native H. annosum increased the invasiveness of the latter species, we propose that two invasions may be co-occurring: the first one by genotypes of the exotic species, and the second one by alleles belonging to the exotic species. Given that H. irregulare represents a threat to European forests, monitoring programs need to track not only exotic genotypes in native forest stands, but also exotic alleles introgressed in native genotypes.
Collapse
|
20
|
Chabi-Jesus C, Ramos-González PL, Postclam-Barro M, Fontenele RS, Harakava R, Bassanezi RB, Moreira AS, Kitajima EW, Varsani A, Freitas-Astúa J. Molecular Epidemiology of Citrus Leprosis Virus C: A New Viral Lineage and Phylodynamic of the Main Viral Subpopulations in the Americas. Front Microbiol 2021; 12:641252. [PMID: 33995302 PMCID: PMC8116597 DOI: 10.3389/fmicb.2021.641252] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 04/06/2021] [Indexed: 11/13/2022] Open
Abstract
Despite the importance of viral strains/variants as agents of emerging diseases, genetic and evolutionary processes affecting their ecology are not fully understood. To get insight into this topic, we assessed the population and spatial dynamic parameters of citrus leprosis virus C (CiLV-C, genus Cilevirus, family Kitaviridae). CiLV-C is the etiological agent of citrus leprosis disease, a non-systemic infection considered the main viral disorder affecting citrus orchards in Brazil. Overall, we obtained 18 complete or near-complete viral genomes, 123 complete nucleotide sequences of the open reading frame (ORF) encoding the putative coat protein, and 204 partial nucleotide sequences of the ORF encoding the movement protein, from 430 infected Citrus spp. samples collected between 1932 and 2020. A thorough examination of the collected dataset suggested that the CiLV-C population consists of the major lineages CRD and SJP, unevenly distributed, plus a third one called ASU identified in this work, which is represented by a single isolate found in an herbarium sample collected in Asuncion, Paraguay, in 1937. Viruses from the three lineages share about 85% nucleotide sequence identity and show signs of inter-clade recombination events. Members of the lineage CRD were identified both in commercial and non-commercial citrus orchards. However, those of the lineages SJP were exclusively detected in samples collected in the citrus belt of São Paulo and Minas Gerais, the leading Brazilian citrus production region, after 2015. The most recent common ancestor of viruses of the three lineages dates back to, at least, ∼1500 years ago. Since citrus plants were introduced in the Americas by the Portuguese around the 1520s, the Bayesian phylodynamic analysis suggested that the ancestors of the main CiLV-C lineages likely originated in contact with native vegetation of South America. The intensive expansion of CRD and SJP lineages in Brazil started probably linked to the beginning of the local citrus industry. The high prevalence of CiLV-C in the citrus belt of Brazil likely ensues from the intensive connectivity between orchards, which represents a potential risk toward pathogen saturation across the region.
Collapse
Affiliation(s)
- Camila Chabi-Jesus
- Escola Superior de Agricultura "Luiz de Queiroz", University of São Paulo, São Paulo, Brazil.,Instituto Biológico/IB, São Paulo, Brazil
| | | | | | - Rafaela Salgado Fontenele
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | | | | | - Alecio S Moreira
- Fundo de Defesa da Citricultura, Araraquara, Brazil.,Embrapa Mandioca e Fruticultura, Cruz das Almas, Brazil
| | | | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, United States.,Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, Observatory, Cape Town, South Africa
| | - Juliana Freitas-Astúa
- Instituto Biológico/IB, São Paulo, Brazil.,Embrapa Mandioca e Fruticultura, Cruz das Almas, Brazil
| |
Collapse
|
21
|
Bikash B, Vilja S, Mitchell L, Keith Y, Mikael I, Mikko MK, Jarmo N. Differential regulation of undecylprodigiosin biosynthesis in the yeast-scavenging Streptomyces strain MBK6. FEMS Microbiol Lett 2021; 368:6244240. [PMID: 33881506 PMCID: PMC8102152 DOI: 10.1093/femsle/fnab044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 04/19/2021] [Indexed: 12/22/2022] Open
Abstract
Streptomyces are efficient chemists with a capacity to generate diverse and potent chemical scaffolds. The secondary metabolism of these soil-dwelling prokaryotes is stimulated upon interaction with other microbes in their complex ecosystem. We observed such an interaction when a Streptomyces isolate was cultivated in a media supplemented with dead yeast cells. Whole-genome analysis revealed that Streptomyces sp. MBK6 harbors the red cluster that is cryptic under normal environmental conditions. An interactive culture of MBK6 with dead yeast triggered the production of the red pigments metacycloprodigiosin and undecylprodigiosin. Streptomyces sp. MBK6 scavenges dead-yeast cells and preferentially grows in aggregates of sequestered yeasts within its mycelial network. We identified that the activation depends on the cluster-situated regulator, mbkZ, which may act as a cross-regulator. Cloning of this master regulator mbkZ in S. coelicolor with a constitutive promoter and promoter-deprived conditions generated different production levels of the red pigments. These surprising results were further validated by DNA–protein binding assays. The presence of the red cluster in Streptomyces sp. MBK6 provides a vivid example of horizontal gene transfer of an entire metabolic pathway followed by differential adaptation to a new environment through mutations in the receiver domain of the key regulatory protein MbkZ.
Collapse
Affiliation(s)
- Baral Bikash
- Department of Biotechnology, University of Turku, FIN-20014 Turku, Finland
| | - Siitonen Vilja
- Department of Biotechnology, University of Turku, FIN-20014 Turku, Finland
| | - Laughlin Mitchell
- Department of Biotechnology, University of Turku, FIN-20014 Turku, Finland
| | - Yamada Keith
- Department of Biotechnology, University of Turku, FIN-20014 Turku, Finland
| | - Ilomäki Mikael
- Department of Biotechnology, University of Turku, FIN-20014 Turku, Finland
| | - Metsä-Ketelä Mikko
- Department of Biotechnology, University of Turku, FIN-20014 Turku, Finland
| | - Niemi Jarmo
- Department of Biotechnology, University of Turku, FIN-20014 Turku, Finland
| |
Collapse
|
22
|
Olafson PU, Aksoy S, Attardo GM, Buckmeier G, Chen X, Coates CJ, Davis M, Dykema J, Emrich SJ, Friedrich M, Holmes CJ, Ioannidis P, Jansen EN, Jennings EC, Lawson D, Martinson EO, Maslen GL, Meisel RP, Murphy TD, Nayduch D, Nelson DR, Oyen KJ, Raszick TJ, Ribeiro JMC, Robertson HM, Rosendale AJ, Sackton TB, Saelao P, Swiger SL, Sze SH, Tarone AM, Taylor DB, Warren WC, Waterhouse RM, Weirauch MT, Werren JH, Wilson RK, Zdobnov EM, Benoit JB. The genome of the stable fly, Stomoxys calcitrans, reveals potential mechanisms underlying reproduction, host interactions, and novel targets for pest control. BMC Biol 2021; 19:41. [PMID: 33750380 PMCID: PMC7944917 DOI: 10.1186/s12915-021-00975-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 02/03/2021] [Indexed: 01/01/2023] Open
Abstract
Background The stable fly, Stomoxys calcitrans, is a major blood-feeding pest of livestock that has near worldwide distribution, causing an annual cost of over $2 billion for control and product loss in the USA alone. Control of these flies has been limited to increased sanitary management practices and insecticide application for suppressing larval stages. Few genetic and molecular resources are available to help in developing novel methods for controlling stable flies. Results This study examines stable fly biology by utilizing a combination of high-quality genome sequencing and RNA-Seq analyses targeting multiple developmental stages and tissues. In conjunction, 1600 genes were manually curated to characterize genetic features related to stable fly reproduction, vector host interactions, host-microbe dynamics, and putative targets for control. Most notable was characterization of genes associated with reproduction and identification of expanded gene families with functional associations to vision, chemosensation, immunity, and metabolic detoxification pathways. Conclusions The combined sequencing, assembly, and curation of the male stable fly genome followed by RNA-Seq and downstream analyses provide insights necessary to understand the biology of this important pest. These resources and new data will provide the groundwork for expanding the tools available to control stable fly infestations. The close relationship of Stomoxys to other blood-feeding (horn flies and Glossina) and non-blood-feeding flies (house flies, medflies, Drosophila) will facilitate understanding of the evolutionary processes associated with development of blood feeding among the Cyclorrhapha. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-00975-9.
Collapse
Affiliation(s)
- Pia U Olafson
- Livestock Arthropod Pests Research Unit, USDA-ARS, Kerrville, TX, USA.
| | - Serap Aksoy
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Geoffrey M Attardo
- Department of Entomology and Nematology, University of California - Davis, Davis, CA, USA
| | - Greta Buckmeier
- Livestock Arthropod Pests Research Unit, USDA-ARS, Kerrville, TX, USA
| | - Xiaoting Chen
- The Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Craig J Coates
- Department of Entomology, Texas A & M University, College Station, TX, USA
| | - Megan Davis
- Livestock Arthropod Pests Research Unit, USDA-ARS, Kerrville, TX, USA
| | - Justin Dykema
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA
| | - Scott J Emrich
- Department of Electrical Engineering & Computer Science, University of Tennessee, Knoxville, TN, USA
| | - Markus Friedrich
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA
| | - Christopher J Holmes
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Panagiotis Ioannidis
- Department of Genetic Medicine and Development, University of Geneva Medical School and Swiss Institute of Bioinformatics, 1211, Geneva, Switzerland
| | - Evan N Jansen
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Emily C Jennings
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Daniel Lawson
- The European Molecular Biology Laboratory, The European Bioinformatics Institute, The Wellcome Genome Campus, Hinxton, CB10 1SD, UK
| | | | - Gareth L Maslen
- The European Molecular Biology Laboratory, The European Bioinformatics Institute, The Wellcome Genome Campus, Hinxton, CB10 1SD, UK
| | - Richard P Meisel
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Terence D Murphy
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Dana Nayduch
- Arthropod-borne Animal Diseases Research Unit, USDA-ARS, Manhattan, KS, USA
| | - David R Nelson
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Kennan J Oyen
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Tyler J Raszick
- Department of Entomology, Texas A & M University, College Station, TX, USA
| | - José M C Ribeiro
- Section of Vector Biology, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Rockville, MD, USA
| | - Hugh M Robertson
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | | | - Timothy B Sackton
- Informatics Group, Faculty of Arts and Sciences, Harvard University, Cambridge, MA, USA
| | - Perot Saelao
- Livestock Arthropod Pests Research Unit, USDA-ARS, Kerrville, TX, USA
| | - Sonja L Swiger
- Department of Entomology, Texas A&M AgriLife Research and Extension Center, Stephenville, TX, USA
| | - Sing-Hoi Sze
- Department of Computer Science & Engineering, Department of Biochemistry & Biophysics, Texas A & M University, College Station, TX, USA
| | - Aaron M Tarone
- Department of Entomology, Texas A & M University, College Station, TX, USA
| | - David B Taylor
- Agroecosystem Management Research Unit, USDA-ARS, Lincoln, NE, USA
| | - Wesley C Warren
- University of Missouri, Bond Life Sciences Center, Columbia, MO, USA
| | - Robert M Waterhouse
- Department of Ecology and Evolution, University of Lausanne, and Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology, Divisions of Biomedical Informatics and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - John H Werren
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Richard K Wilson
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA.,College of Medicine, Ohio State University, Columbus, OH, USA
| | - Evgeny M Zdobnov
- Department of Genetic Medicine and Development, University of Geneva Medical School and Swiss Institute of Bioinformatics, 1211, Geneva, Switzerland
| | - Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
23
|
Luo J, Wei Y, Lyu M, Wu Z, Liu X, Luo H, Yan C. A comprehensive review of scaffolding methods in genome assembly. Brief Bioinform 2021; 22:6149347. [PMID: 33634311 DOI: 10.1093/bib/bbab033] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 12/20/2022] Open
Abstract
In the field of genome assembly, scaffolding methods make it possible to obtain a more complete and contiguous reference genome, which is the cornerstone of genomic research. Scaffolding methods typically utilize the alignments between contigs and sequencing data (reads) to determine the orientation and order among contigs and to produce longer scaffolds, which are helpful for genomic downstream analysis. With the rapid development of high-throughput sequencing technologies, diverse types of reads have emerged over the past decade, especially in long-range sequencing, which have greatly enhanced the assembly quality of scaffolding methods. As the number of scaffolding methods increases, biology and bioinformatics researchers need to perform in-depth analyses of state-of-the-art scaffolding methods. In this article, we focus on the difficulties in scaffolding, the differences in characteristics among various kinds of reads, the methods by which current scaffolding methods address these difficulties, and future research opportunities. We hope this work will benefit the design of new scaffolding methods and the selection of appropriate scaffolding methods for specific biological studies.
Collapse
Affiliation(s)
- Junwei Luo
- College of Computer Science and Technology, Henan Polytechnic University, Jiaozuo, China
| | - Yawei Wei
- College of Computer Science and Technology, Henan Polytechnic University, Jiaozuo, China
| | - Mengna Lyu
- College of Computer Science and Technology, Henan Polytechnic University, Jiaozuo, China
| | - Zhengjiang Wu
- College of Computer Science and Technology, Henan Polytechnic University, Jiaozuo, China
| | - Xiaoyan Liu
- College of Computer Science and Technology, Henan Polytechnic University, Jiaozuo, China
| | - Huimin Luo
- School of Computer and Information Engineering, Henan University, Kaifeng, China
| | - Chaokun Yan
- School of Computer and Information Engineering, Henan University, Kaifeng, China
| |
Collapse
|
24
|
Gonzalez LM, Sevilla E, Fernández-García M, Sanchez-Flores A, Montero E. Integration of Genomic and Transcriptomic Data to Elucidate Molecular Processes in Babesia divergens. Methods Mol Biol 2021; 2369:199-215. [PMID: 34313991 DOI: 10.1007/978-1-0716-1681-9_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Emerging pathogens have developed ingenious life cycles to facilitate their growth and survival in the host organism. Detailed knowledge of the life cycle of these pathogens is increasingly necessary if we are to design new strategies to prevent infection and transmission. Multi-omics platforms provide useful data at different biological levels, and integration of these data into current approaches can facilitate holistic assessment of emerging pathogens. In this chapter, we bring together various methods and apply an integrative approach for analysis of genomic and transcriptomic data in Babesia divergens, an Apicomplexa emerging parasite that invades red blood cells and causes redwater fever in cattle and the most severe form of babesiosis in humans in Europe. The integrative methodology described herein can be helpful to identify genes active at specific points during life cycle of Apicomplexa parasites.
Collapse
Affiliation(s)
- Luis Miguel Gonzalez
- Laboratorio de Referencia e Investigación en Parasitología, Centro Nacional de Microbiología, ISCIII Majadahonda, Madrid, Spain
| | - Elena Sevilla
- Laboratorio de Referencia e Investigación en Parasitología, Centro Nacional de Microbiología, ISCIII Majadahonda, Madrid, Spain
| | - Miguel Fernández-García
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, Spain
| | - Alejandro Sanchez-Flores
- Unidad Universitaria de Secuenciación Masiva y Bioinformática, Instituto de Biotecnología, Cuernavaca, Mexico.
| | - Estrella Montero
- Laboratorio de Referencia e Investigación en Parasitología, Centro Nacional de Microbiología, ISCIII Majadahonda, Madrid, Spain.
| |
Collapse
|
25
|
Marla SS, Mishra P, Maurya R, Singh M, Wankhede DP, Kumar A, Yadav MC, Subbarao N, Singh SK, Kumar R. Refinement of Draft Genome Assemblies of Pigeonpea ( Cajanus cajan). Front Genet 2020; 11:607432. [PMID: 33384719 PMCID: PMC7770131 DOI: 10.3389/fgene.2020.607432] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/23/2020] [Indexed: 11/13/2022] Open
Abstract
Genome assembly of short reads from large plant genomes remains a challenge in computational biology despite major developments in next generation sequencing. Of late several draft assemblies have been reported in sequenced plant genomes. The reported draft genome assemblies of Cajanus cajan have different levels of genome completeness, a large number of repeats, gaps, and segmental duplications. Draft assemblies with portions of genome missing are shorter than the referenced original genome. These assemblies come with low map accuracy affecting further functional annotation and the prediction of gene components as desired by crop researchers. Genome coverage, i.e., the number of sequenced raw reads mapped onto a certain location of the genome is an important quality indicator of completeness and assembly quality in draft assemblies. The present work aimed to improve the coverage in reported de novo sequenced draft genomes (GCA_000340665.1 and GCA_000230855.2) of pigeonpea, a legume widely cultivated in India. The two recently sequenced assemblies, A1 and A2 comprised 72% and 75% of the estimated coverage of the genome, respectively. We employed an assembly reconciliation approach to compare the draft assemblies and merge them, filling the gaps by employing an algorithm size sorting mate-pair library to generate a high quality and near complete assembly with enhanced contiguity. The majority of gaps present within scaffolds were filled with right-sized mate-pair reads. The improved assembly reduced the number of gaps than those reported in draft assemblies resulting in an improved genome coverage of 82.4%. Map accuracy of the improved assembly was evaluated using various quality metrics and for the presence of specific trait-related functional genes. Employed pair-end and mate-pair local libraries helped us to reduce gaps, repeats, and other sequence errors resulting in lengthier scaffolds compared to the two draft assemblies. We reported the prediction of putative host resistance genes against Fusarium wilt disease by their performance and evaluated them both in wet laboratory and field phenotypic conditions.
Collapse
Affiliation(s)
- Soma S. Marla
- Indian Council for Agricultural Research (ICAR)-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Pallavi Mishra
- Indian Council for Agricultural Research (ICAR)-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Ranjeet Maurya
- Indian Council for Agricultural Research (ICAR)-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Mohar Singh
- Indian Council for Agricultural Research (ICAR)-National Bureau of Plant Genetic Resources, New Delhi, India
| | | | - Anil Kumar
- Directorate of Education, Rani Lakshmi Bai Central Agricultural University, Jhansi, India
| | - Mahesh C. Yadav
- Indian Council for Agricultural Research (ICAR)-National Bureau of Plant Genetic Resources, New Delhi, India
| | - N. Subbarao
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Sanjeev K. Singh
- Indian Council for Agricultural Research (ICAR)-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Rajesh Kumar
- Indian Council for Agricultural Research (ICAR)-National Bureau of Plant Genetic Resources, New Delhi, India
| |
Collapse
|
26
|
Durrant C, Thiele EA, Holroyd N, Doyle SR, Sallé G, Tracey A, Sankaranarayanan G, Lotkowska ME, Bennett HM, Huckvale T, Abdellah Z, Tchindebet O, Wossen M, Logora MSY, Coulibaly CO, Weiss A, Schulte-Hostedde AI, Foster JM, Cleveland CA, Yabsley MJ, Ruiz-Tiben E, Berriman M, Eberhard ML, Cotton JA. Population genomic evidence that human and animal infections in Africa come from the same populations of Dracunculus medinensis. PLoS Negl Trop Dis 2020; 14:e0008623. [PMID: 33253172 PMCID: PMC7728184 DOI: 10.1371/journal.pntd.0008623] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/10/2020] [Accepted: 07/22/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Guinea worm-Dracunculus medinensis-was historically one of the major parasites of humans and has been known since antiquity. Now, Guinea worm is on the brink of eradication, as efforts to interrupt transmission have reduced the annual burden of disease from millions of infections per year in the 1980s to only 54 human cases reported globally in 2019. Despite the enormous success of eradication efforts to date, one complication has arisen. Over the last few years, hundreds of dogs have been found infected with this previously apparently anthroponotic parasite, almost all in Chad. Moreover, the relative numbers of infections in humans and dogs suggests that dogs are currently the principal reservoir on infection and key to maintaining transmission in that country. PRINCIPAL FINDINGS In an effort to shed light on this peculiar epidemiology of Guinea worm in Chad, we have sequenced and compared the genomes of worms from dog, human and other animal infections. Confirming previous work with other molecular markers, we show that all of these worms are D. medinensis, and that the same population of worms are causing both infections, can confirm the suspected transmission between host species and detect signs of a population bottleneck due to the eradication efforts. The diversity of worms in Chad appears to exclude the possibility that there were no, or very few, worms present in the country during a 10-year absence of reported cases. CONCLUSIONS This work reinforces the importance of adequate surveillance of both human and dog populations in the Guinea worm eradication campaign and suggests that control programs aiming to interrupt disease transmission should stay aware of the possible emergence of unusual epidemiology as pathogens approach elimination.
Collapse
Affiliation(s)
- Caroline Durrant
- Parasites and Microbes, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, United Kingdom
| | - Elizabeth A. Thiele
- Department of Biology, Vassar College, Poughkeepsie, New York, United States of America
| | - Nancy Holroyd
- Parasites and Microbes, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, United Kingdom
| | - Stephen R. Doyle
- Parasites and Microbes, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, United Kingdom
| | - Guillaume Sallé
- Parasites and Microbes, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, United Kingdom
- INRA—U. Tours, UMR 1282 ISP Infectiologie et Santé Publique, Nouzilly, France
| | - Alan Tracey
- Parasites and Microbes, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, United Kingdom
| | - Geetha Sankaranarayanan
- Parasites and Microbes, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, United Kingdom
| | - Magda E. Lotkowska
- Parasites and Microbes, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, United Kingdom
| | - Hayley M. Bennett
- Parasites and Microbes, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, United Kingdom
- Present Address: Berkeley Lights Inc., Emeryville, California, United States of America
| | - Thomas Huckvale
- Parasites and Microbes, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, United Kingdom
| | - Zahra Abdellah
- Parasites and Microbes, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, United Kingdom
| | - Ouakou Tchindebet
- Guinea Worm Eradication Program, The Carter Center, Atlanta, Georgia, United States of America
| | - Mesfin Wossen
- Guinea Worm Eradication Program, The Carter Center, Atlanta, Georgia, United States of America
| | | | - Cheick Oumar Coulibaly
- Guinea Worm Eradication Program, The Carter Center, Atlanta, Georgia, United States of America
| | - Adam Weiss
- Guinea Worm Eradication Program, The Carter Center, Atlanta, Georgia, United States of America
| | | | - Jeremy M. Foster
- New England Biolabs, Ipswich, Massachusetts, United States of America
| | - Christopher A. Cleveland
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Michael J. Yabsley
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, Georgia, United States of America
| | - Ernesto Ruiz-Tiben
- Guinea Worm Eradication Program, The Carter Center, Atlanta, Georgia, United States of America
| | - Matthew Berriman
- Parasites and Microbes, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, United Kingdom
- * E-mail: (JAC); (MB)
| | - Mark L. Eberhard
- Retired, Parasitic Diseases Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - James A. Cotton
- Parasites and Microbes, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, United Kingdom
- * E-mail: (JAC); (MB)
| |
Collapse
|
27
|
Doyle SR, Tracey A, Laing R, Holroyd N, Bartley D, Bazant W, Beasley H, Beech R, Britton C, Brooks K, Chaudhry U, Maitland K, Martinelli A, Noonan JD, Paulini M, Quail MA, Redman E, Rodgers FH, Sallé G, Shabbir MZ, Sankaranarayanan G, Wit J, Howe KL, Sargison N, Devaney E, Berriman M, Gilleard JS, Cotton JA. Genomic and transcriptomic variation defines the chromosome-scale assembly of Haemonchus contortus, a model gastrointestinal worm. Commun Biol 2020; 3:656. [PMID: 33168940 PMCID: PMC7652881 DOI: 10.1038/s42003-020-01377-3] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 10/14/2020] [Indexed: 12/31/2022] Open
Abstract
Haemonchus contortus is a globally distributed and economically important gastrointestinal pathogen of small ruminants and has become a key nematode model for studying anthelmintic resistance and other parasite-specific traits among a wider group of parasites including major human pathogens. Here, we report using PacBio long-read and OpGen and 10X Genomics long-molecule methods to generate a highly contiguous 283.4 Mbp chromosome-scale genome assembly including a resolved sex chromosome for the MHco3(ISE).N1 isolate. We show a remarkable pattern of conservation of chromosome content with Caenorhabditis elegans, but almost no conservation of gene order. Short and long-read transcriptome sequencing allowed us to define coordinated transcriptional regulation throughout the parasite's life cycle and refine our understanding of cis- and trans-splicing. Finally, we provide a comprehensive picture of chromosome-wide genetic diversity both within a single isolate and globally. These data provide a high-quality comparison for understanding the evolution and genomics of Caenorhabditis and other nematodes and extend the experimental tractability of this model parasitic nematode in understanding helminth biology, drug discovery and vaccine development, as well as important adaptive traits such as drug resistance.
Collapse
Affiliation(s)
- Stephen R Doyle
- Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK.
| | - Alan Tracey
- Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Roz Laing
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Garscube Campus, Glasgow, G61 1QH, UK
| | - Nancy Holroyd
- Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - David Bartley
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, EH26 0PZ, UK
| | - Wojtek Bazant
- Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Helen Beasley
- Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Robin Beech
- Institute of Parasitology, McGill University, 21111 Lakeshore Road, Sainte Anne-de-Bellevue, QC, H9X3V9, Canada
| | - Collette Britton
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Garscube Campus, Glasgow, G61 1QH, UK
| | - Karen Brooks
- Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Umer Chaudhry
- Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, EH25 9RG, UK
| | - Kirsty Maitland
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Garscube Campus, Glasgow, G61 1QH, UK
| | - Axel Martinelli
- Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Jennifer D Noonan
- Institute of Parasitology, McGill University, 21111 Lakeshore Road, Sainte Anne-de-Bellevue, QC, H9X3V9, Canada
| | - Michael Paulini
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Michael A Quail
- Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Elizabeth Redman
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Faye H Rodgers
- Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Guillaume Sallé
- INRAE - U. Tours, UMR 1282 ISP Infectiologie et Santé Publique, Centre de recherche Val de Loire, Nouzilly, France
| | | | | | - Janneke Wit
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Kevin L Howe
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Neil Sargison
- Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, EH25 9RG, UK
| | - Eileen Devaney
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Garscube Campus, Glasgow, G61 1QH, UK
| | - Matthew Berriman
- Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - John S Gilleard
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - James A Cotton
- Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK.
| |
Collapse
|
28
|
Harris TM, Price EP, Sarovich DS, Nørskov-Lauritsen N, Beissbarth J, Chang AB, Smith-Vaughan HC. Comparative genomic analysis identifies X-factor (haemin)-independent Haemophilus haemolyticus: a formal re-classification of ' Haemophilus intermedius'. Microb Genom 2020; 6. [PMID: 31860436 PMCID: PMC7067038 DOI: 10.1099/mgen.0.000303] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The heterogeneous and highly recombinogenic genus Haemophilus comprises several species, some of which are pathogenic to humans. All share an absolute requirement for blood-derived factors during growth. Certain species, such as the pathogen Haemophilus influenzae and the commensal Haemophilus haemolyticus, are thought to require both haemin (X-factor) and nicotinamide adenine dinucleotide (NAD, V-factor), whereas others, such as the informally classified 'Haemophilus intermedius subsp. intermedius', and Haemophilus parainfluenzae, only require V-factor. These differing growth requirements are commonly used for species differentiation, although a number of studies are now revealing issues with this approach. Here, we perform large-scale phylogenomics of 240 Haemophilus spp. genomes, including five 'H. intermedius' genomes generated in the current study, to reveal that strains of the 'H. intermedius' group are in fact haemin-independent H. haemolyticus (hiHh). Closer examination of these hiHh strains revealed that they encode an intact haemin biosynthesis pathway, unlike haemin-dependent H. haemolyticus and H. influenzae, which lack most haemin biosynthesis genes. Our results suggest that the common ancestor of modern-day H. haemolyticus and H. influenzae lost key haemin biosynthesis loci, likely as a consequence of specialized adaptation to otorhinolaryngeal and respiratory niches during their divergence from H. parainfluenzae. Genetic similarity analysis demonstrated that the haemin biosynthesis loci acquired in the hiHh lineage were likely laterally transferred from a H. parainfluenzae ancestor, and that this event probably occurred only once in hiHh. This study further challenges the validity of phenotypic methods for differentiating among Haemophilus species, and highlights the need for whole-genome sequencing for accurate characterization of species within this taxonomically challenging genus.
Collapse
Affiliation(s)
- Tegan M Harris
- Child Health Division, Menzies School of Health Research, Darwin, NT, Australia
| | - Erin P Price
- GeneCology Research Centre, University of the Sunshine Coast, Sippy Downs, QLD, Australia.,Child Health Division, Menzies School of Health Research, Darwin, NT, Australia
| | - Derek S Sarovich
- GeneCology Research Centre, University of the Sunshine Coast, Sippy Downs, QLD, Australia.,Child Health Division, Menzies School of Health Research, Darwin, NT, Australia
| | | | - Jemima Beissbarth
- Child Health Division, Menzies School of Health Research, Darwin, NT, Australia
| | - Anne B Chang
- Department of Respiratory and Sleep Medicine, Queensland Children's Hospital, Brisbane, QLD, Australia.,Child Health Division, Menzies School of Health Research, Darwin, NT, Australia
| | - Heidi C Smith-Vaughan
- School of Medicine, Griffith University, Gold Coast, QLD, Australia.,Child Health Division, Menzies School of Health Research, Darwin, NT, Australia
| |
Collapse
|
29
|
Xu M, Guo L, Gu S, Wang O, Zhang R, Peters BA, Fan G, Liu X, Xu X, Deng L, Zhang Y. TGS-GapCloser: A fast and accurate gap closer for large genomes with low coverage of error-prone long reads. Gigascience 2020; 9:giaa094. [PMID: 32893860 PMCID: PMC7476103 DOI: 10.1093/gigascience/giaa094] [Citation(s) in RCA: 139] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/15/2020] [Accepted: 08/14/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Analyses that use genome assemblies are critically affected by the contiguity, completeness, and accuracy of those assemblies. In recent years single-molecule sequencing techniques generating long-read information have become available and enabled substantial improvement in contig length and genome completeness, especially for large genomes (>100 Mb), although bioinformatic tools for these applications are still limited. FINDINGS We developed a software tool to close sequence gaps in genome assemblies, TGS-GapCloser, that uses low-depth (∼10×) long single-molecule reads. The algorithm extracts reads that bridge gap regions between 2 contigs within a scaffold, error corrects only the candidate reads, and assigns the best sequence data to each gap. As a demonstration, we used TGS-GapCloser to improve the scaftig NG50 value of 3 human genome assemblies by 24-fold on average with only ∼10× coverage of Oxford Nanopore or Pacific Biosciences reads, covering with sequence data up to 94.8% gaps with 97.7% positive predictive value. These improved assemblies achieve 99.998% (Q46) single-base accuracy with final inserted sequences having 99.97% (Q35) accuracy, despite the high raw error rate of single-molecule reads, enabling high-quality downstream analyses, including up to a 31-fold increase in the scaftig NGA50 and up to 13.1% more complete BUSCO genes. Additionally, we show that even in ultra-large genome assemblies, such as the ginkgo (∼12 Gb), TGS-GapCloser can cover 71.6% of gaps with sequence data. CONCLUSIONS TGS-GapCloser can close gaps in large genome assemblies using raw long reads quickly and cost-effectively. The final assemblies generated by TGS-GapCloser have improved contiguity and completeness while maintaining high accuracy. The software is available at https://github.com/BGI-Qingdao/TGS-GapCloser.
Collapse
Affiliation(s)
- Mengyang Xu
- BGI-Qingdao, BGI-Shenzhen, 2 Hengyunshan Road, West Coast New Area, Qingdao, 266426, China
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Building 11, Beishan Industrial Zone, Yantian District, Shenzhen, 518083, China
- BGI-Shenzhen, Building 11, Beishan Industrial Zone, Yantian District, Shenzhen, 518083, China
| | - Lidong Guo
- BGI-Qingdao, BGI-Shenzhen, 2 Hengyunshan Road, West Coast New Area, Qingdao, 266426, China
- BGI Education Center, University of Chinese Academy of Sciences, Building 11, Beishan Industrial Zone, Yantian District, Shenzhen, 518083, China
| | - Shengqiang Gu
- BGI-Qingdao, BGI-Shenzhen, 2 Hengyunshan Road, West Coast New Area, Qingdao, 266426, China
- BGI Education Center, University of Chinese Academy of Sciences, Building 11, Beishan Industrial Zone, Yantian District, Shenzhen, 518083, China
| | - Ou Wang
- BGI-Shenzhen, Building 11, Beishan Industrial Zone, Yantian District, Shenzhen, 518083, China
- MGI, BGI-Shenzhen, Building 11, Beishan Industrial Zone, Yantian District, Shenzhen, 518083, China
| | - Rui Zhang
- BGI-Qingdao, BGI-Shenzhen, 2 Hengyunshan Road, West Coast New Area, Qingdao, 266426, China
| | - Brock A Peters
- BGI-Shenzhen, Building 11, Beishan Industrial Zone, Yantian District, Shenzhen, 518083, China
- Complete Genomics Inc., 2904 Orchard Pkwy, San Jose, CA 95134, USA
| | - Guangyi Fan
- BGI-Qingdao, BGI-Shenzhen, 2 Hengyunshan Road, West Coast New Area, Qingdao, 266426, China
- BGI-Shenzhen, Building 11, Beishan Industrial Zone, Yantian District, Shenzhen, 518083, China
| | - Xin Liu
- BGI-Qingdao, BGI-Shenzhen, 2 Hengyunshan Road, West Coast New Area, Qingdao, 266426, China
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Building 11, Beishan Industrial Zone, Yantian District, Shenzhen, 518083, China
- BGI-Shenzhen, Building 11, Beishan Industrial Zone, Yantian District, Shenzhen, 518083, China
- China National GeneBank, BGI-Shenzhen, Jinsha Road, Dapeng New District, Shenzhen, 518120, China
| | - Xun Xu
- BGI-Shenzhen, Building 11, Beishan Industrial Zone, Yantian District, Shenzhen, 518083, China
- China National GeneBank, BGI-Shenzhen, Jinsha Road, Dapeng New District, Shenzhen, 518120, China
| | - Li Deng
- BGI-Qingdao, BGI-Shenzhen, 2 Hengyunshan Road, West Coast New Area, Qingdao, 266426, China
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Building 11, Beishan Industrial Zone, Yantian District, Shenzhen, 518083, China
- BGI-Shenzhen, Building 11, Beishan Industrial Zone, Yantian District, Shenzhen, 518083, China
| | - Yongwei Zhang
- BGI-Shenzhen, Building 11, Beishan Industrial Zone, Yantian District, Shenzhen, 518083, China
- Complete Genomics Inc., 2904 Orchard Pkwy, San Jose, CA 95134, USA
| |
Collapse
|
30
|
Brashear AM, Huckaby AC, Fan Q, Dillard LJ, Hu Y, Li Y, Zhao Y, Wang Z, Cao Y, Miao J, Guler JL, Cui L. New Plasmodium vivax Genomes From the China-Myanmar Border. Front Microbiol 2020; 11:1930. [PMID: 32849480 PMCID: PMC7432439 DOI: 10.3389/fmicb.2020.01930] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 07/22/2020] [Indexed: 11/13/2022] Open
Abstract
Plasmodium vivax is increasingly the dominant species of malaria in the Greater Mekong Subregion (GMS), which is pursuing regional malaria elimination. P. vivax lineages in the GMS are poorly characterized. Currently, P. vivax reference genomes are scarce due to difficulties in culturing the parasite and lack of high-quality samples. In addition, P. vivax is incredibly diverse, necessitating the procurement of reference genomes from different geographical regions. Here we present four new P. vivax draft genomes assembled de novo from clinical samples collected in the China-Myanmar border area. We demonstrate comparable length and content to existing genomes, with the majority of structural variation occurring around subtelomeric regions and exported proteins, which we corroborated with detection of copy number variations in these regions. We predicted peptides from all PIR gene subfamilies, except for PIR D. We confirmed that proteins classically labeled as PIR D family members are not identifiable by PIR motifs, and actually bear stronger resemblance to DUF (domain of unknown function) family DUF3671, potentially pointing to a new, closely related gene family. Further, phylogenetic analyses of MSP7 genes showed high variability within the MSP7-B family compared to MSP7-A and -C families, and the result was comparable to that from whole genome analyses. The new genome assemblies serve as a resource for studying P. vivax within the GMS.
Collapse
Affiliation(s)
- Awtum M. Brashear
- Department of Internal Medicine, University of South Florida, Tampa, Tampa, FL, United States
| | - Adam C. Huckaby
- Department of Biology, University of Virginia, Charlottesville, VA, United States
| | - Qi Fan
- Dalian Institute of Science and Technology, Dalian, China
| | - Luke J. Dillard
- Department of Biology, University of Virginia, Charlottesville, VA, United States
| | - Yubing Hu
- Department of Immunology, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Yuling Li
- Department of Immunology, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Yan Zhao
- Department of Immunology, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Zenglei Wang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yaming Cao
- Department of Immunology, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Jun Miao
- Department of Internal Medicine, University of South Florida, Tampa, Tampa, FL, United States
| | - Jennifer L. Guler
- Department of Biology, University of Virginia, Charlottesville, VA, United States
| | - Liwang Cui
- Department of Internal Medicine, University of South Florida, Tampa, Tampa, FL, United States
| |
Collapse
|
31
|
Abstract
Lymphatic filariasis affects ∼120 million people and can result in elephantiasis and hydrocele. Here, we report the nearly complete genome sequence of the best-studied causative agent of lymphatic filariasis, Brugia malayi. The assembly contains four autosomes, an X chromosome, and only eight gaps but lacks a contiguous sequence for the known Y chromosome. Lymphatic filariasis affects ∼120 million people and can result in elephantiasis and hydrocele. Here, we report the nearly complete genome sequence of the best-studied causative agent of lymphatic filariasis, Brugia malayi. The assembly contains four autosomes, an X chromosome, and only eight gaps but lacks a contiguous sequence for the known Y chromosome.
Collapse
|
32
|
Matroodi S, Siitonen V, Baral B, Yamada K, Akhgari A, Metsä-Ketelä M. Genotyping-Guided Discovery of Persiamycin A From Sponge-Associated Halophilic Streptomonospora sp. PA3. Front Microbiol 2020; 11:1237. [PMID: 32582127 PMCID: PMC7296137 DOI: 10.3389/fmicb.2020.01237] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 05/14/2020] [Indexed: 12/16/2022] Open
Abstract
Microbial natural products have been a cornerstone of the pharmaceutical industry, but the supply of novel bioactive secondary metabolites has diminished due to extensive exploration of the most easily accessible sources, namely terrestrial Streptomyces species. The Persian Gulf is a unique habitat for marine sponges, which contain diverse communities of microorganisms including marine Actinobacteria. These exotic ecosystems may cradle rare actinomycetes with high potential to produce novel secondary metabolites. In this study, we harvested 12 different species of sponges from two locations in the Persian Gulf and isolated 45 symbiotic actinomycetes to assess their biodiversity and sponge-microbe relationships. The isolates were classified into Nocardiopsis (24 isolates), Streptomyces (17 isolates) and rare genera (4 isolates) by 16S rRNA sequencing. Antibiotic activity tests revealed that culture extracts from half of the isolates displayed growth inhibitory effects against seven pathogenic bacteria. Next, we identified five strains with the genetic potential to produce aromatic polyketides by genotyping ketosynthase genes responsible for synthesis of carbon scaffolds. The combined data led us to focus on Streptomonospora sp. PA3, since the genus has rarely been examined for its capacity to produce secondary metabolites. Analysis of culture extracts led to the discovery of a new bioactive aromatic polyketide denoted persiamycin A and 1-hydroxy-4-methoxy-2-naphthoic acid. The genome harbored seven gene clusters involved in secondary metabolism, including a tetracenomycin-type polyketide synthase pathway likely involved in persiamycin formation. The work demonstrates the use of multivariate data and underexplored ecological niches to guide the drug discovery process for antibiotics and anticancer agents.
Collapse
Affiliation(s)
- Soheila Matroodi
- Laboratory of Biotechnology, Department of Marine Biology, Faculty of Marine Science and Oceanography, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran
- Laboratory of Antibiotic Biosynthesis Engineering, Department of Biochemistry, University of Turku, Turku, Finland
| | - Vilja Siitonen
- Laboratory of Antibiotic Biosynthesis Engineering, Department of Biochemistry, University of Turku, Turku, Finland
| | - Bikash Baral
- Laboratory of Antibiotic Biosynthesis Engineering, Department of Biochemistry, University of Turku, Turku, Finland
| | - Keith Yamada
- Laboratory of Antibiotic Biosynthesis Engineering, Department of Biochemistry, University of Turku, Turku, Finland
| | - Amir Akhgari
- Laboratory of Antibiotic Biosynthesis Engineering, Department of Biochemistry, University of Turku, Turku, Finland
| | - Mikko Metsä-Ketelä
- Laboratory of Antibiotic Biosynthesis Engineering, Department of Biochemistry, University of Turku, Turku, Finland
| |
Collapse
|
33
|
Lu P, Jin J, Li Z, Xu Y, Hu D, Liu J, Cao P. PGcloser: Fast Parallel Gap-Closing Tool Using Long-Reads or Contigs to Fill Gaps in Genomes. Evol Bioinform Online 2020; 16:1176934320913859. [PMID: 32362739 PMCID: PMC7180314 DOI: 10.1177/1176934320913859] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 02/25/2020] [Indexed: 01/04/2023] Open
Abstract
Assembled draft genomes usually contain many gaps because of the length limit of next-generation sequencing. Although many gap-closing tools have been developed, most of them still attempt to fill gaps on the basis of next-generation sequencing reads (always < 200 bp). Hence, the gap-filling effect is inferior. Several tools that use long-reads to close gaps have recently been created. However, they require extensive runtimes, which may not be suitable for large genomes. We describe a gap-closing tool called PGcloser, which supports parallel mode and adopts long-reads/contigs to fill gaps in genome sequences. Three tests show that PGcloser is faster than other tools but exhibits similar accuracy. PGcloser is free open-source software that is available at http://software.tobaccodb.org/software/pgcloser.
Collapse
Affiliation(s)
- Peng Lu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Jingjing Jin
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Zefeng Li
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Yalong Xu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Dasha Hu
- Department of Computer Science and Technology, Sichuan University, Chengdu, China
| | - Jiajun Liu
- Department of Computer Science and Technology, Sichuan University, Chengdu, China
| | - Peijian Cao
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| |
Collapse
|
34
|
Foster JM, Grote A, Mattick J, Tracey A, Tsai YC, Chung M, Cotton JA, Clark TA, Geber A, Holroyd N, Korlach J, Li Y, Libro S, Lustigman S, Michalski ML, Paulini M, Rogers MB, Teigen L, Twaddle A, Welch L, Berriman M, Dunning Hotopp JC, Ghedin E. Sex chromosome evolution in parasitic nematodes of humans. Nat Commun 2020; 11:1964. [PMID: 32327641 PMCID: PMC7181701 DOI: 10.1038/s41467-020-15654-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 03/20/2020] [Indexed: 11/09/2022] Open
Abstract
Sex determination mechanisms often differ even between related species yet the evolution of sex chromosomes remains poorly understood in all but a few model organisms. Some nematodes such as Caenorhabditis elegans have an XO sex determination system while others, such as the filarial parasite Brugia malayi, have an XY mechanism. We present a complete B. malayi genome assembly and define Nigon elements shared with C. elegans, which we then map to the genomes of other filarial species and more distantly related nematodes. We find a remarkable plasticity in sex chromosome evolution with several distinct cases of neo-X and neo-Y formation, X-added regions, and conversion of autosomes to sex chromosomes from which we propose a model of chromosome evolution across different nematode clades. The phylum Nematoda offers a new and innovative system for gaining a deeper understanding of sex chromosome evolution.
Collapse
Affiliation(s)
- Jeremy M Foster
- Division of Protein Expression & Modification, New England Biolabs, Ipswich, MA, 01938, USA
| | - Alexandra Grote
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY, 10003, USA
| | - John Mattick
- Institute for Genome Science, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Alan Tracey
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | | | - Matthew Chung
- Institute for Genome Science, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - James A Cotton
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | | | - Adam Geber
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY, 10003, USA
| | - Nancy Holroyd
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | | | - Yichao Li
- School of Electrical Engineering and Computer Science, Ohio University, Athens, OH, 45701, USA
| | - Silvia Libro
- Division of Protein Expression & Modification, New England Biolabs, Ipswich, MA, 01938, USA
| | - Sara Lustigman
- Laboratory of Molecular Parasitology, Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, 10065, USA
| | - Michelle L Michalski
- Department of Biology and Microbiology, University of Wisconsin Oshkosh, Oshkosh, WI, 54901, USA
| | - Michael Paulini
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Matthew B Rogers
- Department of Surgery, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, 15224, USA
| | - Laura Teigen
- Department of Biology and Microbiology, University of Wisconsin Oshkosh, Oshkosh, WI, 54901, USA
| | - Alan Twaddle
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY, 10003, USA
| | - Lonnie Welch
- School of Electrical Engineering and Computer Science, Ohio University, Athens, OH, 45701, USA
| | - Matthew Berriman
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Julie C Dunning Hotopp
- Institute for Genome Science, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| | - Elodie Ghedin
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY, 10003, USA.
- Department of Epidemiology, School of Global Public Health, New York University, New York, NY, 10003, USA.
| |
Collapse
|
35
|
A One Health investigation of Salmonella enterica serovar Wangata in north-eastern New South Wales, Australia, 2016-2017. Epidemiol Infect 2020; 147:e150. [PMID: 30869062 PMCID: PMC6518825 DOI: 10.1017/s0950268819000475] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Salmonella enterica serovar Wangata (S. Wangata) is an important cause of endemic salmonellosis in Australia, with human infections occurring from undefined sources. This investigation sought to examine possible environmental and zoonotic sources for human infections with S. Wangata in north-eastern New South Wales (NSW), Australia. The investigation adopted a One Health approach and was comprised of three complimentary components: a case–control study examining human risk factors; environmental and animal sampling; and genomic analysis of human, animal and environmental isolates. Forty-eight human S. Wangata cases were interviewed during a 6-month period from November 2016 to April 2017, together with 55 Salmonella Typhimurium (S. Typhimurium) controls and 130 neighbourhood controls. Indirect contact with bats/flying foxes (S. Typhimurium controls (adjusted odds ratio (aOR) 2.63, 95% confidence interval (CI) 1.06–6.48)) (neighbourhood controls (aOR 8.33, 95% CI 2.58–26.83)), wild frogs (aOR 3.65, 95% CI 1.32–10.07) and wild birds (aOR 6.93, 95% CI 2.29–21.00) were statistically associated with illness in multivariable analyses. S. Wangata was detected in dog faeces, wildlife scats and a compost specimen collected from the outdoor environments of cases’ residences. In addition, S. Wangata was detected in the faeces of wild birds and sea turtles in the investigation area. Genomic analysis revealed that S. Wangata isolates were relatively clonal. Our findings suggest that S. Wangata is present in the environment and may have a reservoir in wildlife populations in north-eastern NSW. Further investigation is required to better understand the occurrence of Salmonella in wildlife groups and to identify possible transmission pathways for human infections.
Collapse
|
36
|
Global Evolutionary Analysis of 11 Gene Families Part of Reactive Oxygen Species (ROS) Gene Network in Four Eucalyptus Species. Antioxidants (Basel) 2020; 9:antiox9030257. [PMID: 32245199 PMCID: PMC7139577 DOI: 10.3390/antiox9030257] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 12/30/2022] Open
Abstract
Eucalyptus is a worldwide hard-wood species which increasingly focused on. To adapt to various biotic and abiotic stresses, Eucalyptus have evolved complex mechanisms, increasing the cellular concentration of reactive oxygen species (ROS) by numerous ROS controlling enzymes. To better analyse the ROS gene network and discuss the differences between four Eucalyptus species, ROS gene network including 11 proteins families (1CysPrx, 2CysPrx, APx, APx-R, CIII Prx, Diox, GPx, Kat, PrxII, PrxQ and Rboh) were annotated and compared in an expert and exhaustive manner from the genomic data available from E. camaldulensis, E. globulus, E. grandis, and E. gunnii. In addition, a specific sequencing strategy was performed in order to determine if the missed sequences in at least one organism are the results of gain/loss events or only sequencing gaps. We observed that the automatic annotation applied to multigenic families is the source of miss-annotation. Base on the family size, the 11 families can be categorized into duplicated gene families (CIII Prx, Kat, 1CysPrx, and GPx), which contain a lot of gene duplication events and non-duplicated families (APx, APx-R, Rboh, DiOx, 2CysPrx, PrxII, and PrxQ). The gene family sizes are much larger in Eucalyptus than most of other angiosperms due to recent gene duplications, which could give higher adaptability to environmental changes and stresses. The cross-species comparative analysis shows gene gain and loss events during the evolutionary process. The 11 families possess different expression patterns, while in the Eucalyptus genus, the ROS families present similar expression patterns. Overall, the comparative analysis might be a good criterion to evaluate the adaptation of different species with different characters, but only if data mining is as exhaustive as possible. It is also a good indicator to explore the evolutionary process.
Collapse
|
37
|
Schartl M, Kneitz S, Volkoff H, Adolfi M, Schmidt C, Fischer P, Minx P, Tomlinson C, Meyer A, Warren WC. The Piranha Genome Provides Molecular Insight Associated to Its Unique Feeding Behavior. Genome Biol Evol 2020; 11:2099-2106. [PMID: 31282935 PMCID: PMC6681833 DOI: 10.1093/gbe/evz139] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2019] [Indexed: 12/27/2022] Open
Abstract
The piranha enjoys notoriety due to its infamous predatory behavior but much is still not understood about its evolutionary origins and the underlying molecular mechanisms for its unusual feeding biology. We sequenced and assembled the red-bellied piranha (Pygocentrus nattereri) genome to aid future phenotypic and genetic investigations. The assembled draft genome is similar to other related fishes in repeat composition and gene count. Our evaluation of genes under positive selection suggests candidates for adaptations of piranhas’ feeding behavior in neural functions, behavior, and regulation of energy metabolism. In the fasted brain, we find genes differentially expressed that are involved in lipid metabolism and appetite regulation as well as genes that may control the aggression/boldness behavior of hungry piranhas. Our first analysis of the piranha genome offers new insight and resources for the study of piranha biology and for feeding motivation and starvation in other organisms.
Collapse
Affiliation(s)
- Manfred Schartl
- Physiologische Chemie, Biozentrum, University of Würzburg, Germany.,Comprehensive Cancer Center Mainfranken, University Clinic Würzburg, Germany.,Hagler Institute for Advanced Study, Texas A&M University.,Department of Biology, Texas A&M University
| | - Susanne Kneitz
- Physiologische Chemie, Biozentrum, University of Würzburg, Germany
| | - Helene Volkoff
- Department of Biology, Memorial University of Newfoundland, St John's, Canada.,Department of Biochemistry, Memorial University of Newfoundland, St John's, Canada
| | - Mateus Adolfi
- Physiologische Chemie, Biozentrum, University of Würzburg, Germany
| | - Cornelia Schmidt
- Physiologische Chemie, Biozentrum, University of Würzburg, Germany
| | - Petra Fischer
- Physiologische Chemie, Biozentrum, University of Würzburg, Germany
| | - Patrick Minx
- McDonnell Genome Institute, Washington University School of Medicine
| | - Chad Tomlinson
- McDonnell Genome Institute, Washington University School of Medicine
| | - Axel Meyer
- Chair in Zoology and Evolutionary Biology, University of Konstanz, Germany
| | - Wesley C Warren
- McDonnell Genome Institute, Washington University School of Medicine.,Bond Life Sciences Center, University of Missouri
| |
Collapse
|
38
|
Marla SS, Mishra P, Maurya R, Singh M, Wankhede DP, Kumar A, Yadav MC, Subbarao N, Singh SK, Kumar R. Refinement of Draft Genome Assemblies of Pigeonpea ( Cajanus cajan). Front Genet 2020. [PMID: 33384719 DOI: 10.1101/2020.08.10.243949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023] Open
Abstract
Genome assembly of short reads from large plant genomes remains a challenge in computational biology despite major developments in next generation sequencing. Of late several draft assemblies have been reported in sequenced plant genomes. The reported draft genome assemblies of Cajanus cajan have different levels of genome completeness, a large number of repeats, gaps, and segmental duplications. Draft assemblies with portions of genome missing are shorter than the referenced original genome. These assemblies come with low map accuracy affecting further functional annotation and the prediction of gene components as desired by crop researchers. Genome coverage, i.e., the number of sequenced raw reads mapped onto a certain location of the genome is an important quality indicator of completeness and assembly quality in draft assemblies. The present work aimed to improve the coverage in reported de novo sequenced draft genomes (GCA_000340665.1 and GCA_000230855.2) of pigeonpea, a legume widely cultivated in India. The two recently sequenced assemblies, A1 and A2 comprised 72% and 75% of the estimated coverage of the genome, respectively. We employed an assembly reconciliation approach to compare the draft assemblies and merge them, filling the gaps by employing an algorithm size sorting mate-pair library to generate a high quality and near complete assembly with enhanced contiguity. The majority of gaps present within scaffolds were filled with right-sized mate-pair reads. The improved assembly reduced the number of gaps than those reported in draft assemblies resulting in an improved genome coverage of 82.4%. Map accuracy of the improved assembly was evaluated using various quality metrics and for the presence of specific trait-related functional genes. Employed pair-end and mate-pair local libraries helped us to reduce gaps, repeats, and other sequence errors resulting in lengthier scaffolds compared to the two draft assemblies. We reported the prediction of putative host resistance genes against Fusarium wilt disease by their performance and evaluated them both in wet laboratory and field phenotypic conditions.
Collapse
Affiliation(s)
- Soma S Marla
- Indian Council for Agricultural Research (ICAR)-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Pallavi Mishra
- Indian Council for Agricultural Research (ICAR)-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Ranjeet Maurya
- Indian Council for Agricultural Research (ICAR)-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Mohar Singh
- Indian Council for Agricultural Research (ICAR)-National Bureau of Plant Genetic Resources, New Delhi, India
| | | | - Anil Kumar
- Directorate of Education, Rani Lakshmi Bai Central Agricultural University, Jhansi, India
| | - Mahesh C Yadav
- Indian Council for Agricultural Research (ICAR)-National Bureau of Plant Genetic Resources, New Delhi, India
| | - N Subbarao
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Sanjeev K Singh
- Indian Council for Agricultural Research (ICAR)-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Rajesh Kumar
- Indian Council for Agricultural Research (ICAR)-National Bureau of Plant Genetic Resources, New Delhi, India
| |
Collapse
|
39
|
Ranjard L, Wong TKF, Rodrigo AG. Effective machine-learning assembly for next-generation amplicon sequencing with very low coverage. BMC Bioinformatics 2019; 20:654. [PMID: 31829137 PMCID: PMC6907241 DOI: 10.1186/s12859-019-3287-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 11/20/2019] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND In short-read DNA sequencing experiments, the read coverage is a key parameter to successfully assemble the reads and reconstruct the sequence of the input DNA. When coverage is very low, the original sequence reconstruction from the reads can be difficult because of the occurrence of uncovered gaps. Reference guided assembly can then improve these assemblies. However, when the available reference is phylogenetically distant from the sequencing reads, the mapping rate of the reads can be extremely low. Some recent improvements in read mapping approaches aim at modifying the reference according to the reads dynamically. Such approaches can significantly improve the alignment rate of the reads onto distant references but the processing of insertions and deletions remains challenging. RESULTS Here, we introduce a new algorithm to update the reference sequence according to previously aligned reads. Substitutions, insertions and deletions are performed in the reference sequence dynamically. We evaluate this approach to assemble a western-grey kangaroo mitochondrial amplicon. Our results show that more reads can be aligned and that this method produces assemblies of length comparable to the truth while limiting error rate when classic approaches fail to recover the correct length. Finally, we discuss how the core algorithm of this method could be improved and combined with other approaches to analyse larger genomic sequences. CONCLUSIONS We introduced an algorithm to perform dynamic alignment of reads on a distant reference. We showed that such approach can improve the reconstruction of an amplicon compared to classically used bioinformatic pipelines. Although not portable to genomic scale in the current form, we suggested several improvements to be investigated to make this method more flexible and allow dynamic alignment to be used for large genome assemblies.
Collapse
Affiliation(s)
- Louis Ranjard
- The Research School of Biology, The Australian National University, Canberra, Australia
| | - Thomas K. F. Wong
- The Research School of Biology, The Australian National University, Canberra, Australia
| | - Allen G. Rodrigo
- The Research School of Biology, The Australian National University, Canberra, Australia
| |
Collapse
|
40
|
Otto TD, Assefa SA, Böhme U, Sanders MJ, Kwiatkowski D, Berriman M, Newbold C. Evolutionary analysis of the most polymorphic gene family in falciparum malaria. Wellcome Open Res 2019; 4:193. [PMID: 32055709 PMCID: PMC7001760 DOI: 10.12688/wellcomeopenres.15590.1] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2019] [Indexed: 12/22/2022] Open
Abstract
The var gene family of the human malaria parasite Plasmodium falciparum encode proteins that are crucial determinants of both pathogenesis and immune evasion and are highly polymorphic. Here we have assembled nearly complete var gene repertoires from 2398 field isolates and analysed a normalised set of 714 from across 12 countries. This therefore represents the first large scale attempt to catalogue the worldwide distribution of var gene sequences We confirm the extreme polymorphism of this gene family but also demonstrate an unexpected level of sequence sharing both within and between continents. We show that this is likely due to both the remnants of selective sweeps as well as a worrying degree of recent gene flow across continents with implications for the spread of drug resistance. We also address the evolution of the var repertoire with respect to the ancestral genes within the Laverania and show that diversity generated by recombination is concentrated in a number of hotspots. An analysis of the subdomain structure indicates that some existing definitions may need to be revised From the analysis of this data, we can now understand the way in which the family has evolved and how the diversity is continuously being generated. Finally, we demonstrate that because the genes are distributed across the genome, sequence sharing between genotypes acts as a useful population genetic marker.
Collapse
Affiliation(s)
- Thomas D. Otto
- Parasite Genetics, Wellcome Trust Sanger Institute, Hinxton, UK
- Institute of Infection, Immunity & Inflammation, MVLS, University of Glasgow, Glasgow, UK
| | - Sammy A. Assefa
- Parasite Genetics, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Ulrike Böhme
- Parasite Genetics, Wellcome Trust Sanger Institute, Hinxton, UK
| | | | - Dominic Kwiatkowski
- Parasite Genetics, Wellcome Trust Sanger Institute, Hinxton, UK
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Pf3k consortium
- Parasite Genetics, Wellcome Trust Sanger Institute, Hinxton, UK
- Institute of Infection, Immunity & Inflammation, MVLS, University of Glasgow, Glasgow, UK
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Matt Berriman
- Parasite Genetics, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Chris Newbold
- Parasite Genetics, Wellcome Trust Sanger Institute, Hinxton, UK
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| |
Collapse
|
41
|
Attardo GM, Abd-Alla AMM, Acosta-Serrano A, Allen JE, Bateta R, Benoit JB, Bourtzis K, Caers J, Caljon G, Christensen MB, Farrow DW, Friedrich M, Hua-Van A, Jennings EC, Larkin DM, Lawson D, Lehane MJ, Lenis VP, Lowy-Gallego E, Macharia RW, Malacrida AR, Marco HG, Masiga D, Maslen GL, Matetovici I, Meisel RP, Meki I, Michalkova V, Miller WJ, Minx P, Mireji PO, Ometto L, Parker AG, Rio R, Rose C, Rosendale AJ, Rota-Stabelli O, Savini G, Schoofs L, Scolari F, Swain MT, Takáč P, Tomlinson C, Tsiamis G, Van Den Abbeele J, Vigneron A, Wang J, Warren WC, Waterhouse RM, Weirauch MT, Weiss BL, Wilson RK, Zhao X, Aksoy S. Comparative genomic analysis of six Glossina genomes, vectors of African trypanosomes. Genome Biol 2019; 20:187. [PMID: 31477173 PMCID: PMC6721284 DOI: 10.1186/s13059-019-1768-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 07/22/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Tsetse flies (Glossina sp.) are the vectors of human and animal trypanosomiasis throughout sub-Saharan Africa. Tsetse flies are distinguished from other Diptera by unique adaptations, including lactation and the birthing of live young (obligate viviparity), a vertebrate blood-specific diet by both sexes, and obligate bacterial symbiosis. This work describes the comparative analysis of six Glossina genomes representing three sub-genera: Morsitans (G. morsitans morsitans, G. pallidipes, G. austeni), Palpalis (G. palpalis, G. fuscipes), and Fusca (G. brevipalpis) which represent different habitats, host preferences, and vectorial capacity. RESULTS Genomic analyses validate established evolutionary relationships and sub-genera. Syntenic analysis of Glossina relative to Drosophila melanogaster shows reduced structural conservation across the sex-linked X chromosome. Sex-linked scaffolds show increased rates of female-specific gene expression and lower evolutionary rates relative to autosome associated genes. Tsetse-specific genes are enriched in protease, odorant-binding, and helicase activities. Lactation-associated genes are conserved across all Glossina species while male seminal proteins are rapidly evolving. Olfactory and gustatory genes are reduced across the genus relative to other insects. Vision-associated Rhodopsin genes show conservation of motion detection/tracking functions and variance in the Rhodopsin detecting colors in the blue wavelength ranges. CONCLUSIONS Expanded genomic discoveries reveal the genetics underlying Glossina biology and provide a rich body of knowledge for basic science and disease control. They also provide insight into the evolutionary biology underlying novel adaptations and are relevant to applied aspects of vector control such as trap design and discovery of novel pest and disease control strategies.
Collapse
Affiliation(s)
- Geoffrey M Attardo
- Department of Entomology and Nematology, University of California, Davis, Davis, CA, USA.
| | - Adly M M Abd-Alla
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food & Agriculture, Vienna, Vienna, Austria
| | - Alvaro Acosta-Serrano
- Department of Vector Biology, Liverpool School of Tropical Medicine, Merseyside, Liverpool, UK
| | - James E Allen
- VectorBase, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, Cambridgeshire, UK
| | - Rosemary Bateta
- Department of Biochemistry, Biotechnology Research Institute - Kenya Agricultural and Livestock Research Organization, Kikuyu, Kenya
| | - Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Kostas Bourtzis
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food & Agriculture, Vienna, Vienna, Austria
| | - Jelle Caers
- Department of Biology - Functional Genomics and Proteomics Group, KU Leuven, Leuven, Belgium
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, Antwerp, Belgium
| | - Mikkel B Christensen
- VectorBase, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, Cambridgeshire, UK
| | - David W Farrow
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Markus Friedrich
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA
| | - Aurélie Hua-Van
- Laboratoire Evolution, Genomes, Comportement, Ecologie, CNRS, IRD, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Emily C Jennings
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Denis M Larkin
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - Daniel Lawson
- Department of Life Sciences, Imperial College London, London, UK
| | - Michael J Lehane
- Department of Vector Biology, Liverpool School of Tropical Medicine, Merseyside, Liverpool, UK
| | - Vasileios P Lenis
- Schools of Medicine and Dentistry, University of Plymouth, Plymouth, UK
| | - Ernesto Lowy-Gallego
- VectorBase, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, Cambridgeshire, UK
| | - Rosaline W Macharia
- Molecular Biology and Bioinformatics Unit, International Center for Insect Physiology and Ecology, Nairobi, Kenya.,Centre for Biotechnology and Bioinformatics, University of Nairobi, Nairobi, Kenya
| | - Anna R Malacrida
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Heather G Marco
- Department of Biological Sciences, University of Cape Town, Rondebosch, South Africa
| | - Daniel Masiga
- Molecular Biology and Bioinformatics Unit, International Center for Insect Physiology and Ecology, Nairobi, Kenya
| | - Gareth L Maslen
- VectorBase, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, Cambridgeshire, UK
| | - Irina Matetovici
- Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Richard P Meisel
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Irene Meki
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food & Agriculture, Vienna, Vienna, Austria
| | - Veronika Michalkova
- Department of Biological Sciences, Florida International University, Miami, Florida, USA.,Institute of Zoology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Wolfgang J Miller
- Department of Cell and Developmental Biology, Medical University of Vienna, Vienna, Austria
| | - Patrick Minx
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Paul O Mireji
- Department of Biochemistry, Biotechnology Research Institute - Kenya Agricultural and Livestock Research Organization, Kikuyu, Kenya.,Centre for Geographic Medicine Research Coast, Kenya Medical Research Institute, Kilifi, Kenya
| | - Lino Ometto
- Department of Sustainable Ecosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, TN, Italy.,Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Andrew G Parker
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food & Agriculture, Vienna, Vienna, Austria
| | - Rita Rio
- Department of Biology, West Virginia University, Morgantown, WV, USA
| | - Clair Rose
- Department of Vector Biology, Liverpool School of Tropical Medicine, Merseyside, Liverpool, UK
| | - Andrew J Rosendale
- Department of Biology, Mount St. Joseph University, Cincinnati, OH, USA.,Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Omar Rota-Stabelli
- Department of Sustainable Ecosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, TN, Italy
| | - Grazia Savini
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Liliane Schoofs
- Department of Biology - Functional Genomics and Proteomics Group, KU Leuven, Leuven, Belgium
| | - Francesca Scolari
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Martin T Swain
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, Ceredigion, UK
| | - Peter Takáč
- Department of Animal Systematics, Ústav zoológie SAV; Scientica, Ltd, Bratislava, Slovakia
| | - Chad Tomlinson
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - George Tsiamis
- Department of Environmental and Natural Resources Management, University of Patras, Agrinio, Etoloakarnania, Greece
| | | | - Aurelien Vigneron
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Jingwen Wang
- School of Life Sciences, Fudan University, Shanghai, China
| | - Wesley C Warren
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA.,Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Robert M Waterhouse
- Department of Ecology & Evolution, Swiss Institute of Bioinformatics, University of Lausanne, Lausanne, Switzerland
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology and Divisions of Biomedical Informatics and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Brian L Weiss
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Richard K Wilson
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Xin Zhao
- CAS Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences, Beijing, China
| | - Serap Aksoy
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA.
| |
Collapse
|
42
|
Attardo GM, Abd-Alla AMM, Acosta-Serrano A, Allen JE, Bateta R, Benoit JB, Bourtzis K, Caers J, Caljon G, Christensen MB, Farrow DW, Friedrich M, Hua-Van A, Jennings EC, Larkin DM, Lawson D, Lehane MJ, Lenis VP, Lowy-Gallego E, Macharia RW, Malacrida AR, Marco HG, Masiga D, Maslen GL, Matetovici I, Meisel RP, Meki I, Michalkova V, Miller WJ, Minx P, Mireji PO, Ometto L, Parker AG, Rio R, Rose C, Rosendale AJ, Rota-Stabelli O, Savini G, Schoofs L, Scolari F, Swain MT, Takáč P, Tomlinson C, Tsiamis G, Van Den Abbeele J, Vigneron A, Wang J, Warren WC, Waterhouse RM, Weirauch MT, Weiss BL, Wilson RK, Zhao X, Aksoy S. Comparative genomic analysis of six Glossina genomes, vectors of African trypanosomes. Genome Biol 2019; 20:187. [PMID: 31477173 DOI: 10.1101/531749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 07/22/2019] [Indexed: 05/24/2023] Open
Abstract
BACKGROUND Tsetse flies (Glossina sp.) are the vectors of human and animal trypanosomiasis throughout sub-Saharan Africa. Tsetse flies are distinguished from other Diptera by unique adaptations, including lactation and the birthing of live young (obligate viviparity), a vertebrate blood-specific diet by both sexes, and obligate bacterial symbiosis. This work describes the comparative analysis of six Glossina genomes representing three sub-genera: Morsitans (G. morsitans morsitans, G. pallidipes, G. austeni), Palpalis (G. palpalis, G. fuscipes), and Fusca (G. brevipalpis) which represent different habitats, host preferences, and vectorial capacity. RESULTS Genomic analyses validate established evolutionary relationships and sub-genera. Syntenic analysis of Glossina relative to Drosophila melanogaster shows reduced structural conservation across the sex-linked X chromosome. Sex-linked scaffolds show increased rates of female-specific gene expression and lower evolutionary rates relative to autosome associated genes. Tsetse-specific genes are enriched in protease, odorant-binding, and helicase activities. Lactation-associated genes are conserved across all Glossina species while male seminal proteins are rapidly evolving. Olfactory and gustatory genes are reduced across the genus relative to other insects. Vision-associated Rhodopsin genes show conservation of motion detection/tracking functions and variance in the Rhodopsin detecting colors in the blue wavelength ranges. CONCLUSIONS Expanded genomic discoveries reveal the genetics underlying Glossina biology and provide a rich body of knowledge for basic science and disease control. They also provide insight into the evolutionary biology underlying novel adaptations and are relevant to applied aspects of vector control such as trap design and discovery of novel pest and disease control strategies.
Collapse
Affiliation(s)
- Geoffrey M Attardo
- Department of Entomology and Nematology, University of California, Davis, Davis, CA, USA.
| | - Adly M M Abd-Alla
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food & Agriculture, Vienna, Vienna, Austria
| | - Alvaro Acosta-Serrano
- Department of Vector Biology, Liverpool School of Tropical Medicine, Merseyside, Liverpool, UK
| | - James E Allen
- VectorBase, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, Cambridgeshire, UK
| | - Rosemary Bateta
- Department of Biochemistry, Biotechnology Research Institute - Kenya Agricultural and Livestock Research Organization, Kikuyu, Kenya
| | - Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Kostas Bourtzis
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food & Agriculture, Vienna, Vienna, Austria
| | - Jelle Caers
- Department of Biology - Functional Genomics and Proteomics Group, KU Leuven, Leuven, Belgium
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, Antwerp, Belgium
| | - Mikkel B Christensen
- VectorBase, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, Cambridgeshire, UK
| | - David W Farrow
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Markus Friedrich
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA
| | - Aurélie Hua-Van
- Laboratoire Evolution, Genomes, Comportement, Ecologie, CNRS, IRD, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Emily C Jennings
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Denis M Larkin
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - Daniel Lawson
- Department of Life Sciences, Imperial College London, London, UK
| | - Michael J Lehane
- Department of Vector Biology, Liverpool School of Tropical Medicine, Merseyside, Liverpool, UK
| | - Vasileios P Lenis
- Schools of Medicine and Dentistry, University of Plymouth, Plymouth, UK
| | - Ernesto Lowy-Gallego
- VectorBase, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, Cambridgeshire, UK
| | - Rosaline W Macharia
- Molecular Biology and Bioinformatics Unit, International Center for Insect Physiology and Ecology, Nairobi, Kenya
- Centre for Biotechnology and Bioinformatics, University of Nairobi, Nairobi, Kenya
| | - Anna R Malacrida
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Heather G Marco
- Department of Biological Sciences, University of Cape Town, Rondebosch, South Africa
| | - Daniel Masiga
- Molecular Biology and Bioinformatics Unit, International Center for Insect Physiology and Ecology, Nairobi, Kenya
| | - Gareth L Maslen
- VectorBase, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, Cambridgeshire, UK
| | - Irina Matetovici
- Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Richard P Meisel
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Irene Meki
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food & Agriculture, Vienna, Vienna, Austria
| | - Veronika Michalkova
- Department of Biological Sciences, Florida International University, Miami, Florida, USA
- Institute of Zoology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Wolfgang J Miller
- Department of Cell and Developmental Biology, Medical University of Vienna, Vienna, Austria
| | - Patrick Minx
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Paul O Mireji
- Department of Biochemistry, Biotechnology Research Institute - Kenya Agricultural and Livestock Research Organization, Kikuyu, Kenya
- Centre for Geographic Medicine Research Coast, Kenya Medical Research Institute, Kilifi, Kenya
| | - Lino Ometto
- Department of Sustainable Ecosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, TN, Italy
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Andrew G Parker
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food & Agriculture, Vienna, Vienna, Austria
| | - Rita Rio
- Department of Biology, West Virginia University, Morgantown, WV, USA
| | - Clair Rose
- Department of Vector Biology, Liverpool School of Tropical Medicine, Merseyside, Liverpool, UK
| | - Andrew J Rosendale
- Department of Biology, Mount St. Joseph University, Cincinnati, OH, USA
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Omar Rota-Stabelli
- Department of Sustainable Ecosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, TN, Italy
| | - Grazia Savini
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Liliane Schoofs
- Department of Biology - Functional Genomics and Proteomics Group, KU Leuven, Leuven, Belgium
| | - Francesca Scolari
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Martin T Swain
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, Ceredigion, UK
| | - Peter Takáč
- Department of Animal Systematics, Ústav zoológie SAV; Scientica, Ltd, Bratislava, Slovakia
| | - Chad Tomlinson
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - George Tsiamis
- Department of Environmental and Natural Resources Management, University of Patras, Agrinio, Etoloakarnania, Greece
| | | | - Aurelien Vigneron
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Jingwen Wang
- School of Life Sciences, Fudan University, Shanghai, China
| | - Wesley C Warren
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Robert M Waterhouse
- Department of Ecology & Evolution, Swiss Institute of Bioinformatics, University of Lausanne, Lausanne, Switzerland
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology and Divisions of Biomedical Informatics and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Brian L Weiss
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Richard K Wilson
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Xin Zhao
- CAS Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences, Beijing, China
| | - Serap Aksoy
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA.
| |
Collapse
|
43
|
González LM, Estrada K, Grande R, Jiménez-Jacinto V, Vega-Alvarado L, Sevilla E, de la Barrera J, Cuesta I, Zaballos Á, Bautista JM, Lobo CA, Sánchez-Flores A, Montero E. Comparative and functional genomics of the protozoan parasite Babesia divergens highlighting the invasion and egress processes. PLoS Negl Trop Dis 2019; 13:e0007680. [PMID: 31425518 PMCID: PMC6715253 DOI: 10.1371/journal.pntd.0007680] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 08/29/2019] [Accepted: 08/01/2019] [Indexed: 12/31/2022] Open
Abstract
Babesiosis is considered an emerging disease because its incidence has significantly increased in the last 30 years, providing evidence of the expanding range of this rare but potentially life-threatening zoonotic disease. Babesia divergens is a causative agent of babesiosis in humans and cattle in Europe. The recently sequenced genome of B. divergens revealed over 3,741 protein coding-genes and the 10.7-Mb high-quality draft become the first reference tool to study the genome structure of B. divergens. Now, by exploiting this sequence data and using new computational tools and assembly strategies, we have significantly improved the quality of the B. divergens genome. The new assembly shows better continuity and has a higher correspondence to B. bovis chromosomes. Moreover, we present a differential expression analysis using RNA sequencing of the two different stages of the asexual lifecycle of B. divergens: the free merozoite capable of invading erythrocytes and the intraerythrocytic parasite stage that remains within the erythrocyte until egress. Comparison of mRNA levels of both stages identified 1,441 differentially expressed genes. From these, around half were upregulated and the other half downregulated in the intraerythrocytic stage. Orthogonal validation by real-time quantitative reverse transcription PCR confirmed the differential expression. A moderately increased expression level of genes, putatively involved in the invasion and egress processes, were revealed in the intraerythrocytic stage compared with the free merozoite. On the basis of these results and in the absence of molecular models of invasion and egress for B. divergens, we have proposed the identified genes as putative molecular players in the invasion and egress processes. Our results contribute to an understanding of key parasitic strategies and pathogenesis and could be a valuable genomic resource to exploit for the design of diagnostic methods, drugs and vaccines to improve the control of babesiosis. Babesiosis has long been recognized as an economically important disease of cattle, but only in the last 40 years has Babesia been recognized as an important pathogen in humans. Babesiosis in humans is caused by one of several species (B. microti, B. divergens, B. duncani and B. venatorum). The complete Babesia lifecycle requires two hosts, the ixodid ticks and a vertebrate host. It is the parasite's ability to first recognize and then invade host erythrocytes that is central to the pathogenesis of babesiosis. Once inside the cell, the parasite begins a cycle of maturation and growth, resulting in merozoites that egress from the red blood cells (RBCs) and seek new, uninfected RBCs to invade, perpetuating the infection. To better understand this asexual lifecycle, the authors focused on the parasite genome and transcriptome of the asexual erythrocytic forms of B. divergens. Through this functional and comparative genomic approach, the authors have identified genes putatively involved in invasion, gliding motility, moving junction formation and egress, providing new insights into the molecular mechanisms of these processes necessary for B. divergens to survive and propagate during its life cycle.
Collapse
Affiliation(s)
- Luis Miguel González
- Laboratorio de Referencia e Investigación en Parasitología, Centro Nacional de Microbiología, ISCIII Majadahonda, Madrid, Spain
| | - Karel Estrada
- Unidad Universitaria de Secuenciación Masiva y Bioinformática, Instituto de Biotecnología, Cuernavaca, México
| | - Ricardo Grande
- Unidad Universitaria de Secuenciación Masiva y Bioinformática, Instituto de Biotecnología, Cuernavaca, México
| | - Verónica Jiménez-Jacinto
- Unidad Universitaria de Secuenciación Masiva y Bioinformática, Instituto de Biotecnología, Cuernavaca, México
| | | | - Elena Sevilla
- Laboratorio de Referencia e Investigación en Parasitología, Centro Nacional de Microbiología, ISCIII Majadahonda, Madrid, Spain
| | - Jorge de la Barrera
- Unidad de Bioinformática, Área de Unidades Centrales Científico-Técnicas, ISCIII, Majadahonda, Madrid, Spain
| | - Isabel Cuesta
- Unidad de Bioinformática, Área de Unidades Centrales Científico-Técnicas, ISCIII, Majadahonda, Madrid, Spain
| | - Ángel Zaballos
- Unidad de Genómica, Área de Unidades Centrales Científico-Técnicas, ISCIII, Majadahonda, Madrid, Spain
| | - José Manuel Bautista
- Department of Biochemistry and Molecular Biology & Research Institute Hospital 12 de Octubre, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Cheryl A. Lobo
- Blood Borne Parasites, LFKRI, New York Blood Center, New York, New York, United States of America
| | - Alejandro Sánchez-Flores
- Unidad Universitaria de Secuenciación Masiva y Bioinformática, Instituto de Biotecnología, Cuernavaca, México
- * E-mail: (ASF); (EM)
| | - Estrella Montero
- Laboratorio de Referencia e Investigación en Parasitología, Centro Nacional de Microbiología, ISCIII Majadahonda, Madrid, Spain
- * E-mail: (ASF); (EM)
| |
Collapse
|
44
|
Characterization and overproduction of cell-associated cholesterol oxidase ChoD from Streptomyces lavendulae YAKB-15. Sci Rep 2019; 9:11850. [PMID: 31413341 PMCID: PMC6694107 DOI: 10.1038/s41598-019-48132-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 07/25/2019] [Indexed: 11/30/2022] Open
Abstract
Cholesterol oxidases are important enzymes with a wide range of applications from basic research to industry. In this study, we have discovered and described the first cell-associated cholesterol oxidase, ChoD, from Streptomyces lavendulae YAKB-15. This strain is a naturally high producer of ChoD, but only produces ChoD in a complex medium containing whole yeast cells. For characterization of ChoD, we acquired a draft genome sequence of S. lavendulae YAKB-15 and identified a gene product containing a flavin adenine dinucleotide binding motif, which could be responsible for the ChoD activity. The enzymatic activity was confirmed in vitro with histidine tagged ChoD produced in Escherichia coli TOP10, which lead to the determination of basic kinetic parameters with Km 15.9 µM and kcat 10.4/s. The optimum temperature and pH was 65 °C and 5, respectively. In order to increase the efficiency of production, we then expressed the cholesterol oxidase, choD, gene heterologously in Streptomyces lividans TK24 and Streptomyces albus J1074 using two different expression systems. In S. albus J1074, the ChoD activity was comparable to the wild type S. lavendulae YAKB-15, but importantly allowed production of ChoD without the presence of yeast cells.
Collapse
|
45
|
Waters NR, Abram F, Brennan F, Holmes A, Pritchard L. riboSeed: leveraging prokaryotic genomic architecture to assemble across ribosomal regions. Nucleic Acids Res 2019; 46:e68. [PMID: 29608703 PMCID: PMC6009695 DOI: 10.1093/nar/gky212] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 03/12/2018] [Indexed: 11/12/2022] Open
Abstract
The vast majority of bacterial genome sequencing has been performed using Illumina short reads. Because of the inherent difficulty of resolving repeated regions with short reads alone, only ∼10% of sequencing projects have resulted in a closed genome. The most common repeated regions are those coding for ribosomal operons (rDNAs), which occur in a bacterial genome between 1 and 15 times, and are typically used as sequence markers to classify and identify bacteria. Here, we exploit the genomic context in which rDNAs occur across taxa to improve assembly of these regions relative to de novo sequencing by using the conserved nature of rDNAs across taxa and the uniqueness of their flanking regions within a genome. We describe a method to construct targeted pseudocontigs generated by iteratively assembling reads that map to a reference genome’s rDNAs. These pseudocontigs are then used to more accurately assemble the newly sequenced chromosome. We show that this method, implemented as riboSeed, correctly bridges across adjacent contigs in bacterial genome assembly and, when used in conjunction with other genome polishing tools, can assist in closure of a genome.
Collapse
Affiliation(s)
- Nicholas R Waters
- Microbiology, School of Natural Sciences, National University of Ireland, Galway, H91 TK33, Ireland.,Information and Computational Sciences, James Hutton Institute, Invergowrie, Dundee DD2 5DA, Scotland
| | - Florence Abram
- Microbiology, School of Natural Sciences, National University of Ireland, Galway, H91 TK33, Ireland
| | - Fiona Brennan
- Microbiology, School of Natural Sciences, National University of Ireland, Galway, H91 TK33, Ireland.,Soil and Environmental Microbiology, Environmental Research Centre, Teagasc, Johnstown Castle, Wexford, Y35 TC97, Ireland
| | - Ashleigh Holmes
- Cell and Molecular Sciences, James Hutton Institute, Invergowrie, Dundee DD2 5DA, Scotland
| | - Leighton Pritchard
- Information and Computational Sciences, James Hutton Institute, Invergowrie, Dundee DD2 5DA, Scotland
| |
Collapse
|
46
|
Wang A, Wang Z, Li Z, Li LM. BAUM: improving genome assembly by adaptive unique mapping and local overlap-layout-consensus approach. Bioinformatics 2019; 34:2019-2028. [PMID: 29346504 DOI: 10.1093/bioinformatics/bty020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 01/12/2018] [Indexed: 11/13/2022] Open
Abstract
Motivation It is highly desirable to assemble genomes of high continuity and consistency at low cost. The current bottleneck of draft genome continuity using the second generation sequencing (SGS) reads is primarily caused by uncertainty among repetitive sequences. Even though the single-molecule real-time sequencing technology is very promising to overcome the uncertainty issue, its relatively high cost and error rate add burden on budget or computation. Many long-read assemblers take the overlap-layout-consensus (OLC) paradigm, which is less sensitive to sequencing errors, heterozygosity and variability of coverage. However, current assemblers of SGS data do not sufficiently take advantage of the OLC approach. Results Aiming at minimizing uncertainty, the proposed method BAUM, breaks the whole genome into regions by adaptive unique mapping; then the local OLC is used to assemble each region in parallel. BAUM can (i) perform reference-assisted assembly based on the genome of a close species (ii) or improve the results of existing assemblies that are obtained based on short or long sequencing reads. The tests on two eukaryote genomes, a wild rice Oryza longistaminata and a parrot Melopsittacus undulatus, show that BAUM achieved substantial improvement on genome size and continuity. Besides, BAUM reconstructed a considerable amount of repetitive regions that failed to be assembled by existing short read assemblers. We also propose statistical approaches to control the uncertainty in different steps of BAUM. Availability and implementation http://www.zhanyuwang.xin/wordpress/index.php/2017/07/21/baum. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Anqi Wang
- National Center of Mathematics and Interdisciplinary Sciences, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhanyu Wang
- National Center of Mathematics and Interdisciplinary Sciences, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zheng Li
- National Center of Mathematics and Interdisciplinary Sciences, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Lei M Li
- National Center of Mathematics and Interdisciplinary Sciences, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
47
|
Stampar SN, Broe MB, Macrander J, Reitzel AM, Brugler MR, Daly M. Linear Mitochondrial Genome in Anthozoa (Cnidaria): A Case Study in Ceriantharia. Sci Rep 2019; 9:6094. [PMID: 30988357 PMCID: PMC6465557 DOI: 10.1038/s41598-019-42621-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 04/04/2019] [Indexed: 01/10/2023] Open
Abstract
Sequences and structural attributes of mitochondrial genomes have played a critical role in the clarification of relationships among Cnidaria, a key phylum of early-diverging animals. Among the major lineages of Cnidaria, Ceriantharia (“tube anemones”) remains one of the most enigmatic in terms of its phylogenetic position. We sequenced the mitochondrial genomes of two ceriantharians to see whether the complete organellar genome would provide more support for the phylogenetic placement of Ceriantharia. For both Isarachnanthus nocturnus and Pachycerianthus magnus, the mitochondrial gene sequences could not be assembled into a single circular genome. Instead, our analyses suggest that both species have mitochondrial genomes consisting of multiple linear fragments. Linear mitogenomes are characteristic of members of Medusozoa, one of the major lineages of Cnidaria, but are unreported for Anthozoa, which includes the Ceriantharia. The inferred number of fragments and variation in gene order between species is much greater within Ceriantharia than among the lineages of Medusozoa. We identify origins of replication for each of the five putative chromosomes of the Isarachnanthus nocturnus mitogenome and for each of the eight putative chromosomes of the Pachycerianthus magnus mitogenome. At 80,923 bp, I. nocturnus now holds the record for the largest animal mitochondrial genome reported to date. The novelty of the mitogenomic structure in Ceriantharia highlights the distinctiveness of this lineage but, because it appears to be both unique to and diverse within Ceriantharia, it is uninformative about the phylogenetic position of Ceriantharia relative to other Anthozoa. The presence of tRNAMet and tRNATrp in both ceriantharian mitogenomes supports a closer relationship between Ceriantharia and Hexacorallia than between Ceriantharia and any other cnidarian lineage, but phylogenetic analysis of the genes contained in the mitogenomes suggests that Ceriantharia is sister to a clade containing Octocorallia + Hexacorallia indicating a possible suppression of tRNATrp in Octocorallia.
Collapse
Affiliation(s)
- Sérgio N Stampar
- Departamento de Ciências Biológicas, Faculdade de Ciências e Letras, UNESP - Universidade Estadual Paulista, Assis, SP, Brazil.
| | - Michael B Broe
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH, USA
| | - Jason Macrander
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA.,Department of Biology, Florida Southern College, Lakeland, FL, USA
| | - Adam M Reitzel
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Mercer R Brugler
- Biological Sciences Department, NYC College of Technology, City University of New York, 285 Jay Street, Brooklyn, New York, 11201, USA.,Department of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York, New York, 10024, USA
| | - Marymegan Daly
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
48
|
Tanaka SE, Dayi M, Maeda Y, Tsai IJ, Tanaka R, Bligh M, Takeuchi-Kaneko Y, Fukuda K, Kanzaki N, Kikuchi T. Stage-specific transcriptome of Bursaphelenchus xylophilus reveals temporal regulation of effector genes and roles of the dauer-like stages in the lifecycle. Sci Rep 2019; 9:6080. [PMID: 30988401 PMCID: PMC6465311 DOI: 10.1038/s41598-019-42570-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 04/01/2019] [Indexed: 12/24/2022] Open
Abstract
The pine wood nematode Bursaphelenchus xylophilus is the causal agent of pine wilt disease, one of the most devastating forest diseases in East Asian and West European countries. The lifecycle of B. xylophilus includes four propagative larval stages and gonochoristic adults which are involved in the pathogenicity, and two stages of dispersal larvae involved in the spread of the disease. To elucidate the ecological roles of each developmental stage in the pathogenic life cycle, we performed a comprehensive transcriptome analysis using RNA-seq generated from all developmental stages of B. xylophilus and compared transcriptomes between stages. We found more than 9000 genes are differentially expressed in at least one stage of the life cycle including genes involved in general nematode biology such as reproduction and moulting but also effector genes likely to be involved in parasitism. The dispersal-stage transcriptome revealed its analogy to C. elegans dauer and the distinct roles of the two larval stages from each other regarding survival and transmission. This study provides important insights and resources to understand B. xylophilus parasitic biology.
Collapse
Affiliation(s)
- Suguru E Tanaka
- Laboratory of Forest Botany, Graduate School of Agricultural and Life Sciences, the University of Tokyo, Tokyo, 113-8657, Japan
| | - Mehmet Dayi
- Division of Parasitology, Faculty of Medicine, University of Miyazaki, Miyazaki, 889-1692, Japan
- Forestry Vocational School, Duzce University, 81620, Duzce, Turkey
| | - Yasunobu Maeda
- Division of Parasitology, Faculty of Medicine, University of Miyazaki, Miyazaki, 889-1692, Japan
| | - Isheng J Tsai
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Ryusei Tanaka
- Division of Parasitology, Faculty of Medicine, University of Miyazaki, Miyazaki, 889-1692, Japan
| | - Mark Bligh
- Division of Parasitology, Faculty of Medicine, University of Miyazaki, Miyazaki, 889-1692, Japan
| | - Yuko Takeuchi-Kaneko
- Laboratory of Terrestrial Microbial Ecology, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Kenji Fukuda
- Laboratory of Forest Botany, Graduate School of Agricultural and Life Sciences, the University of Tokyo, Tokyo, 113-8657, Japan
| | - Natsumi Kanzaki
- Kansai Research Center, Forestry and Forest Products Research Institute, Kyoto, 612-0855, Japan
| | - Taisei Kikuchi
- Division of Parasitology, Faculty of Medicine, University of Miyazaki, Miyazaki, 889-1692, Japan.
| |
Collapse
|
49
|
Genome sequence of Xanthomonas fuscans subsp. fuscans strain Xff49: a new isolate obtained from common beans in Southern Brazil. Braz J Microbiol 2019; 50:357-367. [PMID: 30850979 DOI: 10.1007/s42770-019-00050-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 01/21/2019] [Indexed: 01/22/2023] Open
Abstract
The genus Xanthomonas comprises Gram-negative bacteria, many of which are phytopathogens. Xanthomonas fuscans subsp. fuscans is one of the most devastating pathogens affecting the bean plant, resulting in the common bacterial blight of bean (CBB). The disease is mainly foliar and affects a wide variety of bean species, thus acting as the yield-limiting factor for the bean crop. Here, we report the whole-genome sequencing of a new strain of X. fuscans subsp. fuscans, named Xff49, isolated from the infected and symptomatic beans from Capão do Leão, Southern Brazil. The genetic analysis demonstrated the presence of single-nucleotide variants (SNVs) in this strain, potentially affecting the mobilome, cell mobility, and inorganic ion metabolism. In addition, the analysis resulted in the identification of a new plasmid similar to the pAX22 derived from Achromobacter denitrificans, which was named plX, along with plA and plC, previously reported in other strains of X. fuscans subsp. fuscans. Xff49 represents the first Brazilian genome of X. fuscans subsp. fuscans and might provide useful information applicable to the studies of phylogenetics, evolution, and pathogenomics, thereby allowing a better understanding of the genomic features present in the Brazilian strains.
Collapse
|
50
|
Salmela L, Tomescu AI. Safely Filling Gaps with Partial Solutions Common to All Solutions. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2019; 16:617-626. [PMID: 29994355 DOI: 10.1109/tcbb.2017.2785831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Gap filling has emerged as a natural sub-problem of many de novo genome assembly projects. The gap filling problem generally asks for an $s$s-$t$t path in an assembly graph whose length matches the gap length estimate. Several methods have addressed it, but only few have focused on strategies for dealing with multiple gap filling solutions and for guaranteeing reliable results. Such strategies include reporting only unique solutions, or exhaustively enumerating all filling solutions and heuristically creating their consensus. Our main contribution is a new method for reliable gap filling: filling gaps with those sub-paths common to all gap filling solutions. We call these partial solutions safe, following the framework of (Tomescu and Medvedev, RECOMB 2016). We give an efficient safe algorithm running in $O(dm)$O(dm) time and space, where $d$d is the gap length estimate and $m$m is the number of edges of the assembly graph. To show the benefits of this method, we implemented this algorithm for the problem of filling gaps in scaffolds. Our experimental results on bacterial and on conservative human assemblies show that, on average, our method can retrieve over 73 percent more safe and correct bases as compared to previous methods, with a similar precision.
Collapse
|