1
|
Wang T, Wang W, Xu C, Tian X, Zhang D. Genome-wide analysis in northern Chinese twins identifies twelve new susceptibility loci for pulmonary function. BMC Genomics 2024; 25:1255. [PMID: 39736507 DOI: 10.1186/s12864-024-11165-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 12/17/2024] [Indexed: 01/01/2025] Open
Abstract
BACKGROUND Previous genome-wide association studies (GWAS) have established association between genetic variants and pulmonary function across various ethnics, whereas such associations are scarcely reported in Chinese adults. Therefore, we conducted an GWAS to explore relationships between genetic variants and pulmonary function among middle-aged Chinese dizygotic twins and further validated the top variants using data from the UK Biobank (UKB). METHODS In the discovery phase, 139 dizygotic twin pairs were drawn from the Qingdao Twin Registry. Pulmonary function was assessed using three parameters: forced expiratory volume the first second (FEV1), forced vital capacity (FVC), and FEV1/FVC ratio. GWAS was performed using GEMMA, Gene-based analysis was conducted by VEGAS2. And pathway enrichment analysis was performed using PASCAL. In the validation phase, Single-nucleotide polymorphisms (SNPs) with suggestive significance were examined through linear regression analysis of the additive effect model among 1573 Chinese ethnic participants from UKB. RESULTS The median age of twin pairs in the study was 49 years. 3 SNPs (rs80345886, rs117883876, and 75139439) related to FEV1 achieved genome-wide significance. Moreover, 222, 150, and 73 SNPs surpassed suggestive evidence level (p < 1 × 10- 5) for FEV1, FVC, and FEV1/FVC, respectively. Among them, 16 SNPs located in TBC1D16 for FEV1, 25 SNPs located in GPR126 for FVC, and 2 SNPs located in CCDC110 for FEV1/FVC, the three genes were also revealed by gene-based analysis. Moreover, 12 novel SNPs related to pulmonary function were validated to reach the nominal significance level (p < 0.05) in the UKB, with some located in the TBC1D16, TAFA5, and MTHFD1L genes. CONCLUSION Our GWAS results on Chinese dizygotic twins provide new references for the genetic regulation on pulmonary function. Twelve novel susceptibility loci are considered as possible crucial to pulmonary function.
Collapse
Affiliation(s)
- Tong Wang
- Department of Epidemiology and Health Statistics, The College of Public Health, Qingdao University, NO. 308 Ning Xia Street, Qingdao, Shandong Province, 266071, People's Republic of China
| | - Weijing Wang
- Department of Epidemiology and Health Statistics, The College of Public Health, Qingdao University, NO. 308 Ning Xia Street, Qingdao, Shandong Province, 266071, People's Republic of China
| | - Chunsheng Xu
- Qingdao Municipal Center for Disease Control and Prevention, Qingdao, Shandong Province, China
| | - Xiaocao Tian
- Qingdao Municipal Center for Disease Control and Prevention, Qingdao, Shandong Province, China.
| | - Dongfeng Zhang
- Department of Epidemiology and Health Statistics, The College of Public Health, Qingdao University, NO. 308 Ning Xia Street, Qingdao, Shandong Province, 266071, People's Republic of China.
| |
Collapse
|
2
|
Xu Y, Li M, Bai L. Pulmonary Epithelium Cell Fate Determination: Chronic Obstructive Pulmonary Disease, Lung Cancer, or Both. Am J Respir Cell Mol Biol 2024; 71:632-645. [PMID: 39078237 DOI: 10.1165/rcmb.2023-0448tr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 07/30/2024] [Indexed: 07/31/2024] Open
Abstract
The concurrence of chronic obstructive pulmonary disease (COPD) and lung cancer has been widely reported and extensively addressed by pulmonologists and oncologists. However, most studies have focused on shared risk factors, DNA damage pathways, immune microenvironments, inflammation, and imbalanced proteases/antiproteases. In the present review, we explore the association between COPD and lung cancer in terms of airway pluripotent cell fate determination and discuss the various cell types and signaling pathways involved in the maintenance of lung epithelium homeostasis and their involvement in the pathogenesis of co-occurring COPD and lung cancer.
Collapse
Affiliation(s)
- Yu Xu
- Department of Clinical Oncology, Army Medical Center, and
| | - Mengxia Li
- Department of Clinical Oncology, Army Medical Center, and
| | - Li Bai
- Department of Respiratory and Critical Medicine, The Second Affiliated Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
3
|
Hung-Ching C, Yusi F, Gorczyca MT, Kayhan B, Tseng GC. High-dimensional causal mediation analysis by partial sum statistic and sample splitting strategy in imaging genetics application. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.06.23.24309362. [PMID: 38978660 PMCID: PMC11230309 DOI: 10.1101/2024.06.23.24309362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Causal mediation analysis provides a systematic approach to explore the causal role of one or more mediators in the association between exposure and outcome. In omics or imaging data analysis, mediators are often high-dimensional, which brings new statistical challenges. Existing methods either violate causal assumptions or fail in interpretable variable selection. Additionally, mediators are often highly correlated, presenting difficulties in selecting and prioritizing top mediators. To address these issues, we develop a framework using Partial Sum Statistic and Sample Splitting Strategy, namely PS5, for high-dimensional causal mediation analysis. The method provides a powerful global mediation test satisfying causal assumptions, followed by an algorithm to select and prioritize active mediators with quantification of individual mediation contributions. We demonstrate its accurate type I error control, superior statistical power, reduced bias in mediation effect estimation, and accurate mediator selection using extensive simulations of varying levels of effect size, signal sparsity, and mediator correlations. Finally, we apply PS5 to an imaging genetics dataset of chronic obstructive pulmonary disease (COPD) patients ( N =8,897) in the COPDGene study to examine the causal mediation role of lung images ( p =5,810) in the associations between polygenic risk score and lung function and between smoking exposure and lung function, respectively. Both causal mediation analyses successfully estimate the global indirect effect and detect mediating image regions. Collectively, we find a region in the lower lobe of the right lung with a strong and concordant mediation effect for both genetic and environmental exposures. This suggests that targeted treatment toward this region might mitigate the severity of COPD due to genetic and smoking effects.
Collapse
|
4
|
Seo J, Gaddis NC, Patchen BK, Xu J, Barr RG, O'Connor G, Manichaikul AW, Gharib SA, Dupuis J, North KE, Cassano PA, Hancock DB. Exploiting meta-analysis of genome-wide interaction with serum 25-hydroxyvitamin D to identify novel genetic loci associated with pulmonary function. Am J Clin Nutr 2024; 119:1227-1237. [PMID: 38484975 PMCID: PMC11130669 DOI: 10.1016/j.ajcnut.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 02/12/2024] [Accepted: 03/07/2024] [Indexed: 04/01/2024] Open
Abstract
BACKGROUND Higher 25-hydroxyvitamin D (25(OH)D) concentrations in serum has a positive association with pulmonary function. Investigating genome-wide interactions with 25(OH)D may reveal new biological insights into pulmonary function. OBJECTIVES We aimed to identify novel genetic variants associated with pulmonary function by accounting for 25(OH)D interactions. METHODS We included 211,264 participants from the observational United Kingdom Biobank study with pulmonary function tests (PFTs), genome-wide genotypes, and 25(OH)D concentrations from 4 ancestral backgrounds-European, African, East Asian, and South Asian. Among PFTs, we focused on forced expiratory volume in the first second (FEV1) and forced vital capacity (FVC) because both were previously associated with 25(OH)D. We performed genome-wide association study (GWAS) analyses that accounted for variant×25(OH)D interaction using the joint 2 degree-of-freedom (2df) method, stratified by participants' smoking history and ancestry, and meta-analyzed results. We evaluated interaction effects to determine how variant-PFT associations were modified by 25(OH)D concentrations and conducted pathway enrichment analysis to examine the biological relevance of our findings. RESULTS Our GWAS meta-analyses, accounting for interaction with 25(OH)D, revealed 30 genetic variants significantly associated with FEV1 or FVC (P2df <5.00×10-8) that were not previously reported for PFT-related traits. These novel variant signals were enriched in lung function-relevant pathways, including the p38 MAPK pathway. Among variants with genome-wide-significant 2df results, smoking-stratified meta-analyses identified 5 variants with 25(OH)D interactions that influenced FEV1 in both smoking groups (never smokers P1df interaction<2.65×10-4; ever smokers P1df interaction<1.71×10-5); rs3130553, rs2894186, rs79277477, and rs3130929 associations were only evident in never smokers, and the rs4678408 association was only found in ever smokers. CONCLUSION Genetic variant associations with lung function can be modified by 25(OH)D, and smoking history can further modify variant×25(OH)D interactions. These results expand the known genetic architecture of pulmonary function and add evidence that gene-environment interactions, including with 25(OH)D and smoking, influence lung function.
Collapse
Affiliation(s)
- Jungkyun Seo
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, United States
| | - Nathan C Gaddis
- RTI International, Research Triangle Park, NC, United States
| | - Bonnie K Patchen
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, United States
| | - Jiayi Xu
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - R Graham Barr
- Divisions of Pulmonary, Allergy, and Critical Care Medicine, Columbia University Medical Center, New York, NY, United States
| | - George O'Connor
- Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA, United States
| | - Ani W Manichaikul
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, United States
| | - Sina A Gharib
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, United States; Division of Pulmonary, Critical Care and Sleep Medicine, Computational Medicine Core, Center for Lung Biology, University of Washington, Seattle, WA, United States
| | - Josée Dupuis
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Quebec, Canada
| | - Kari E North
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, United States
| | - Patricia A Cassano
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, United States; Division of Epidemiology, Department of Population Health Sciences, Weill Cornell Medicine, NY, United States
| | - Dana B Hancock
- RTI International, Research Triangle Park, NC, United States.
| |
Collapse
|
5
|
Odimba U, Senthilselvan A, Farrell J, Gao Z. Sex-Specific Genetic Determinants of Asthma-COPD Phenotype and COPD in Middle-Aged and Older Canadian Adults: An Analysis of CLSA Data. COPD 2023; 20:233-247. [PMID: 37466093 DOI: 10.1080/15412555.2023.2229906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/22/2023] [Accepted: 06/20/2023] [Indexed: 07/20/2023]
Abstract
The etiology of sex differences in the risk of asthma-COPD phenotype and COPD is still not completely understood. Genetic and environmental risk factors are commonly believed to play an important role. This study aims to identify sex-specific genetic markers associated with asthma-COPD phenotype and COPD using the Canadian Longitudinal Study on Aging (CLSA) Baseline Comprehensive and Genomic data. There were a total of 1,415 COPD cases. Out of them, 504 asthma-COPD phenotype cases were identified. 20,524 participants without a diagnosis of asthma and COPD served as controls. We performed genome-wide SNP-by-sex interaction analysis. SNPs with an interaction p-value < 10-5 were included in a sex-stratified multivariable logistic regression for asthma-COPD phenotype and COPD outcomes. 18 and 28 SNPs had a significant interaction term p-value < 10-5 with sex in the regression analyses of asthma-COPD phenotype and COPD outcomes, respectively. Sex-stratified multivariable analysis of asthma-COPD phenotype showed that 7 SNPs in/near SMYD3, FHIT, ZNF608, RIMBP2, ZNF133, BPIFB1, and S100B loci were significant in males. Sex-stratified multivariable analysis of COPD showed that 8 SNPs in/near MAGI1, COX18, OSTC, ELOVL5, C7orf72 FGF14, and NKAIN4 were significant in males, and 4 SNPs in/near genes CAMTA1, SATB2, PDE10A, and LINC00908 were significant in females. An SNP in the ZPBP gene was associated with COPD in both males and females. Identification of sex-specific loci associated with asthma-COPD phenotype and COPD may offer valuable evidence toward a better understanding of the sex-specific differences in the pathophysiology of the diseases.
Collapse
Affiliation(s)
- Ugochukwu Odimba
- Clinical Epidemiology Unit, Division of Community Health and Humanities, Faculty of Medicine, Memorial University, St. John's, Canada
| | | | - Jamie Farrell
- Clinical Epidemiology Unit, Division of Community Health and Humanities, Faculty of Medicine, Memorial University, St. John's, Canada
- Faculty of Medicine, Health Sciences Centre (Respirology Department), Memorial University, St John's, Newfoundland and Labrador, Canada
| | - Zhiwei Gao
- Clinical Epidemiology Unit, Division of Community Health and Humanities, Faculty of Medicine, Memorial University, St. John's, Canada
| |
Collapse
|
6
|
Margaritte-Jeannin P, Vernet R, Budu-Aggrey A, Ege M, Madore AM, Linhard C, Mohamdi H, von Mutius E, Granell R, Demenais F, Laprise C, Bouzigon E, Dizier MH. TNS1 and NRXN1 Genes Interacting With Early-Life Smoking Exposure in Asthma-Plus-Eczema Susceptibility. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2023; 15:779-794. [PMID: 37957795 PMCID: PMC10643854 DOI: 10.4168/aair.2023.15.6.779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 05/15/2023] [Accepted: 06/13/2023] [Indexed: 11/15/2023]
Abstract
PURPOSE Numerous genes have been associated with allergic diseases (asthma, allergic rhinitis, and eczema), but they explain only part of their heritability. This is partly because most previous studies ignored complex mechanisms such as gene-environment (G-E) interactions and complex phenotypes such as co-morbidity. However, it was recently evidenced that the co-morbidity of asthma-plus-eczema appears as a sub-entity depending on specific genetic factors. Besides, evidence also suggest that gene-by-early life environmental tobacco smoke (ETS) exposure interactions play a role in asthma, but were never investigated for asthma-plus-eczema. To identify genetic variants interacting with ETS exposure that influence asthma-plus-eczema susceptibility. METHODS To conduct a genome-wide interaction study (GWIS) of asthma-plus-eczema according to ETS exposure, we applied a 2-stage strategy with a first selection of single nucleotide polymorphisms (SNPs) from genome-wide association meta-analysis to be tested at a second stage by interaction meta-analysis. All meta-analyses were conducted across 4 studies including a total of 5,516 European-ancestry individuals, of whom 1,164 had both asthma and eczema. RESULTS Two SNPs showed significant interactions with ETS exposure. They were located in 2 genes, NRXN1 (2p16) and TNS1 (2q35), never reported associated and/or interacting with ETS exposure for asthma, eczema or more generally for allergic diseases. TNS1 is a promising candidate gene because of its link to lung and skin diseases with possible interactive effect with tobacco smoke exposure. CONCLUSIONS This first GWIS of asthma-plus-eczema with ETS exposure underlines the importance of studying sub-phenotypes such as co-morbidities as well as G-E interactions to detect new susceptibility genes.
Collapse
Affiliation(s)
- Patricia Margaritte-Jeannin
- Université Paris Cité, UMRS 1124, INSERM, Genomic Epidemiology and Multifactorial Diseases Group, Paris, France
| | - Raphaël Vernet
- Université Paris Cité, UMRS 1124, INSERM, Genomic Epidemiology and Multifactorial Diseases Group, Paris, France
| | - Ashley Budu-Aggrey
- Medical Research Council (MRC) Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Markus Ege
- Dr von Hauner Children's Hospital, Ludwig Maximilian University; Institute of Asthma and Allergy prevention, Helmholtz Centre Munich; Comprehensive Pneumology Center Munich (CPC-M), German Center for Lung Research, Munich, Germany
| | - Anne-Marie Madore
- Département des sciences fondamentales, Centre intersectoriel en santé durable (CISD), Université du Québec à Chicoutimi, Saguenay, QC, Canada
| | - Christophe Linhard
- Université Paris Cité, UMRS 1124, INSERM, Genomic Epidemiology and Multifactorial Diseases Group, Paris, France
| | - Hamida Mohamdi
- Université Paris Cité, UMRS 1124, INSERM, Genomic Epidemiology and Multifactorial Diseases Group, Paris, France
| | - Erika von Mutius
- Dr von Hauner Children's Hospital, Ludwig Maximilian University; Institute of Asthma and Allergy prevention, Helmholtz Centre Munich; Comprehensive Pneumology Center Munich (CPC-M), German Center for Lung Research, Munich, Germany
| | - Raquell Granell
- Medical Research Council (MRC) Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Florence Demenais
- Université Paris Cité, UMRS 1124, INSERM, Genomic Epidemiology and Multifactorial Diseases Group, Paris, France
| | - Cathrine Laprise
- Département des sciences fondamentales, Centre intersectoriel en santé durable (CISD), Université du Québec à Chicoutimi, Saguenay, QC, Canada
| | - Emmanuelle Bouzigon
- Université Paris Cité, UMRS 1124, INSERM, Genomic Epidemiology and Multifactorial Diseases Group, Paris, France
| | - Marie-Hélène Dizier
- Université Paris Cité, UMRS 1124, INSERM, Genomic Epidemiology and Multifactorial Diseases Group, Paris, France.
| |
Collapse
|
7
|
Perez-Garcia J, Pino-Yanes M, Plender EG, Everman JL, Eng C, Jackson ND, Moore CM, Beckman KB, Medina V, Sharma S, Winnica DE, Holguin F, Rodríguez-Santana J, Villar J, Ziv E, Seibold MA, Burchard EG. Epigenomic response to albuterol treatment in asthma-relevant airway epithelial cells. Clin Epigenetics 2023; 15:156. [PMID: 37784136 PMCID: PMC10546710 DOI: 10.1186/s13148-023-01571-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 09/25/2023] [Indexed: 10/04/2023] Open
Abstract
BACKGROUND Albuterol is the first-line asthma medication used in diverse populations. Although DNA methylation (DNAm) is an epigenetic mechanism involved in asthma and bronchodilator drug response (BDR), no study has assessed whether albuterol could induce changes in the airway epithelial methylome. We aimed to characterize albuterol-induced DNAm changes in airway epithelial cells, and assess potential functional consequences and the influence of genetic variation and asthma-related clinical variables. RESULTS We followed a discovery and validation study design to characterize albuterol-induced DNAm changes in paired airway epithelial cultures stimulated in vitro with albuterol. In the discovery phase, an epigenome-wide association study using paired nasal epithelial cultures from Puerto Rican children (n = 97) identified 22 CpGs genome-wide associated with repeated-use albuterol treatment (p < 9 × 10-8). Albuterol predominantly induced a hypomethylation effect on CpGs captured by the EPIC array across the genome (probability of hypomethylation: 76%, p value = 3.3 × 10-5). DNAm changes on the CpGs cg23032799 (CREB3L1), cg00483640 (MYLK4-LINC01600), and cg05673431 (KSR1) were validated in nasal epithelia from 10 independent donors (false discovery rate [FDR] < 0.05). The effect on the CpG cg23032799 (CREB3L1) was cross-tissue validated in bronchial epithelial cells at nominal level (p = 0.030). DNAm changes in these three CpGs were shown to be influenced by three independent genetic variants (FDR < 0.05). In silico analyses showed these polymorphisms regulated gene expression of nearby genes in lungs and/or fibroblasts including KSR1 and LINC01600 (6.30 × 10-14 ≤ p ≤ 6.60 × 10-5). Additionally, hypomethylation at the CpGs cg10290200 (FLNC) and cg05673431 (KSR1) was associated with increased gene expression of the genes where they are located (FDR < 0.05). Furthermore, while the epigenetic effect of albuterol was independent of the asthma status, severity, and use of medication, BDR was nominally associated with the effect on the CpG cg23032799 (CREB3L1) (p = 0.004). Gene-set enrichment analyses revealed that epigenomic modifications of albuterol could participate in asthma-relevant processes (e.g., IL-2, TNF-α, and NF-κB signaling pathways). Finally, nine differentially methylated regions were associated with albuterol treatment, including CREB3L1, MYLK4, and KSR1 (adjusted p value < 0.05). CONCLUSIONS This study revealed evidence of epigenetic modifications induced by albuterol in the mucociliary airway epithelium. The epigenomic response induced by albuterol might have potential clinical implications by affecting biological pathways relevant to asthma.
Collapse
Grants
- R01 ES015794 NIEHS NIH HHS
- R01 HL120393 NHLBI NIH HHS
- R01ES015794, R21ES24844 NIEHS NIH HHS
- UM1 HG008901 NHGRI NIH HHS
- R01MD010443, R56MD013312 NIMHD NIH HHS
- R01 HL135156 NHLBI NIH HHS
- R01 HL128439 NHLBI NIH HHS
- R01 HL117004 NHLBI NIH HHS
- R21 ES024844 NIEHS NIH HHS
- R01 HL117626 NHLBI NIH HHS
- R56 MD013312 NIMHD NIH HHS
- R01 MD010443 NIMHD NIH HHS
- R01 HL155024 NHLBI NIH HHS
- R01HL155024-01, HHSN268201600032I, 3R01HL-117626-02S1, HHSN268201800002I, 3R01HL117004-02S3, 3R01HL-120393-02S1, R01HL117004, R01HL128439, R01HL135156, X01HL134589 NHLBI NIH HHS
- HHSN268201600032C NHLBI NIH HHS
- U24 HG008956 NHGRI NIH HHS
- Ministerio de Universidades
- Ministerio de Ciencia e Innovación
- Instituto de Salud Carlos III
- National Heart, Lung, and Blood Institute
- National Human Genome Research Institute
- National Institute of Environmental Health Sciences
- National Institute on Minority Health and Health Disparities
- The Centers for Common Disease Genomics of the Genome Sequencing Program
- Tobacco-Related Disease Research Program
- Sandler Family Foundation
- American Asthma Foundation
- Amos Medical Faculty Development Program from the Robert Wood Johnson Foundation
- Harry Wm. and Diana V. Hind Distinguished Professor in Pharmaceutical Sciences II
Collapse
Affiliation(s)
- Javier Perez-Garcia
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology, and Genetics, Universidad de La Laguna (ULL), La Laguna, Tenerife, Canary Islands, Spain.
| | - Maria Pino-Yanes
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology, and Genetics, Universidad de La Laguna (ULL), La Laguna, Tenerife, Canary Islands, Spain.
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain.
- Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna (ULL), La Laguna, Spain.
| | - Elizabeth G Plender
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, USA
| | - Jamie L Everman
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, USA
| | - Celeste Eng
- Department of Medicine, University of California San Francisco (UCSF), San Francisco, CA, USA
| | - Nathan D Jackson
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, USA
| | - Camille M Moore
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, USA
- Department of Biomedical Research, National Jewish Health, Denver, CO, USA
- Department of Biostatistics and Informatics, University of Colorado, Denver, CO, USA
| | - Kenneth B Beckman
- University of Minnesota Genomics Center (UMNGC), Minneapolis, MN, USA
| | | | - Sunita Sharma
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Daniel Efrain Winnica
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Fernando Holguin
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | | | - Jesús Villar
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Multidisciplinary Organ Dysfunction Evaluation Research Network (MODERN), Research Unit, Hospital Universitario Dr. Negrín, Las Palmas de Gran Canaria, Spain
- Li Ka Shing Knowledge Institute at the St. Michael's Hospital, Toronto, ON, Canada
| | - Elad Ziv
- Institute for Human Genetics, University of California San Francisco (UCSF), San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco School of Medicine, San Francisco, CA, USA
| | - Max A Seibold
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, USA
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, USA
- Department of Pediatrics, National Jewish Health, Denver, CO, USA
| | - Esteban G Burchard
- Department of Medicine, University of California San Francisco (UCSF), San Francisco, CA, USA
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco (UCSF), San Francisco, CA, USA
| |
Collapse
|
8
|
Sardon-Prado O, Diaz-Garcia C, Corcuera-Elosegui P, Korta-Murua J, Valverde-Molina J, Sanchez-Solis M. Severe Asthma and Biological Therapies: Now and the Future. J Clin Med 2023; 12:5846. [PMID: 37762787 PMCID: PMC10532431 DOI: 10.3390/jcm12185846] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/18/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Recognition of phenotypic variability in pediatric asthma allows for a more personalized therapeutic approach. Knowledge of the underlying pathophysiological and molecular mechanisms (endotypes) of corresponding biomarkers and new treatments enables this strategy to progress. Biologic therapies for children with severe asthma are becoming more relevant in this sense. The T2 phenotype is the most prevalent in childhood and adolescence, and non-T2 phenotypes are usually rare. This document aims to review the mechanism of action, efficacy, and potential predictive and monitoring biomarkers of biological drugs, focusing on the pediatric population. The drugs currently available are omalizumab, mepolizumab, benralizumab, dupilumab, and 1ezepelumab, with some differences in administrative approval prescription criteria between the U.S. Food and Drug Administration (FDA) and the European Medicines Agency (EMA). Previously, we described the characteristics of severe asthma in children and its diagnostic and therapeutic management.
Collapse
Affiliation(s)
- Olaia Sardon-Prado
- Division of Paediatric Respiratory Medicine, Donostia University Hospital, 20014 San Sebastián, Spain; (O.S.-P.); (P.C.-E.); (J.K.-M.)
- Department of Pediatrics, University of the Basque Country (UPV/EHU), 20014 Leioa, Spain
| | - Carolina Diaz-Garcia
- Paediatric Pulmonology and Allergy Unit, Santa Lucia General University Hospital, 30202 Cartagena, Spain;
| | - Paula Corcuera-Elosegui
- Division of Paediatric Respiratory Medicine, Donostia University Hospital, 20014 San Sebastián, Spain; (O.S.-P.); (P.C.-E.); (J.K.-M.)
| | - Javier Korta-Murua
- Division of Paediatric Respiratory Medicine, Donostia University Hospital, 20014 San Sebastián, Spain; (O.S.-P.); (P.C.-E.); (J.K.-M.)
| | - Jose Valverde-Molina
- Department of Paediatrics, Santa Lucía General University Hospital, 30202 Cartagena, Spain
- IMIB Biomedical Research Institute, 20120 Murcia, Spain;
| | - Manuel Sanchez-Solis
- IMIB Biomedical Research Institute, 20120 Murcia, Spain;
- Department of Pediatrics, University of Murcia, 20120 Murcia, Spain
- Paediatric Allergy and Pulmonology Units, Virgen de la Arrixaca University Children’s Hospital, 20120 Murcia, Spain
| |
Collapse
|
9
|
Granell R, Curtin JA, Haider S, Kitaba NT, Mathie SA, Gregory LG, Yates LL, Tutino M, Hankinson J, Perretti M, Vonk JM, Arshad HS, Cullinan P, Fontanella S, Roberts GC, Koppelman GH, Simpson A, Turner SW, Murray CS, Lloyd CM, Holloway JW, Custovic A. A meta-analysis of genome-wide association studies of childhood wheezing phenotypes identifies ANXA1 as a susceptibility locus for persistent wheezing. eLife 2023; 12:e84315. [PMID: 37227431 PMCID: PMC10292845 DOI: 10.7554/elife.84315] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 05/22/2023] [Indexed: 05/26/2023] Open
Abstract
Background Many genes associated with asthma explain only a fraction of its heritability. Most genome-wide association studies (GWASs) used a broad definition of 'doctor-diagnosed asthma', thereby diluting genetic signals by not considering asthma heterogeneity. The objective of our study was to identify genetic associates of childhood wheezing phenotypes. Methods We conducted a novel multivariate GWAS meta-analysis of wheezing phenotypes jointly derived using unbiased analysis of data collected from birth to 18 years in 9568 individuals from five UK birth cohorts. Results Forty-four independent SNPs were associated with early-onset persistent, 25 with pre-school remitting, 33 with mid-childhood remitting, and 32 with late-onset wheeze. We identified a novel locus on chr9q21.13 (close to annexin 1 [ANXA1], p<6.7 × 10-9), associated exclusively with early-onset persistent wheeze. We identified rs75260654 as the most likely causative single nucleotide polymorphism (SNP) using Promoter Capture Hi-C loops, and then showed that the risk allele (T) confers a reduction in ANXA1 expression. Finally, in a murine model of house dust mite (HDM)-induced allergic airway disease, we demonstrated that anxa1 protein expression increased and anxa1 mRNA was significantly induced in lung tissue following HDM exposure. Using anxa1-/- deficient mice, we showed that loss of anxa1 results in heightened airway hyperreactivity and Th2 inflammation upon allergen challenge. Conclusions Targeting this pathway in persistent disease may represent an exciting therapeutic prospect. Funding UK Medical Research Council Programme Grant MR/S025340/1 and the Wellcome Trust Strategic Award (108818/15/Z) provided most of the funding for this study.
Collapse
Affiliation(s)
- Raquel Granell
- MRC Integrative Epidemiology Unit, Department of Population Health Sciences, Bristol Medical School, University of BristolBristolUnited Kingdom
| | - John A Curtin
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, The University of Manchester, Manchester Academic Health Science Centre, and Manchester University NHS Foundation TrustManchesterUnited Kingdom
| | - Sadia Haider
- National Heart and Lung Institute, Imperial College LondonLondonUnited Kingdom
| | - Negusse Tadesse Kitaba
- Human Development and Health, Faculty of Medicine, University of SouthamptonSouthamptonUnited Kingdom
| | - Sara A Mathie
- National Heart and Lung Institute, Imperial College LondonLondonUnited Kingdom
| | - Lisa G Gregory
- National Heart and Lung Institute, Imperial College LondonLondonUnited Kingdom
| | - Laura L Yates
- National Heart and Lung Institute, Imperial College LondonLondonUnited Kingdom
| | - Mauro Tutino
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, The University of Manchester, Manchester Academic Health Science Centre, and Manchester University NHS Foundation TrustManchesterUnited Kingdom
| | - Jenny Hankinson
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, The University of Manchester, Manchester Academic Health Science Centre, and Manchester University NHS Foundation TrustManchesterUnited Kingdom
| | - Mauro Perretti
- William Harvey Research Institute, Barts and The London School of Medicine Queen Mary University of LondonLondonUnited Kingdom
| | - Judith M Vonk
- Department of Epidemiology, University of Groningen, University Medical Center Groningen\GroningenNetherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC)GroningenNetherlands
| | - Hasan S Arshad
- NIHR Southampton Biomedical Research Centre, University Hospitals Southampton NHS Foundation TrustSouthamptonUnited Kingdom
- David Hide Asthma and Allergy Research CentreIsle of WightUnited Kingdom
- Clinical and Experimental Sciences, Faculty of Medicine, University of SouthamptonSouthamptonUnited Kingdom
| | - Paul Cullinan
- National Heart and Lung Institute, Imperial College LondonLondonUnited Kingdom
| | - Sara Fontanella
- National Heart and Lung Institute, Imperial College LondonLondonUnited Kingdom
| | - Graham C Roberts
- Human Development and Health, Faculty of Medicine, University of SouthamptonSouthamptonUnited Kingdom
- NIHR Southampton Biomedical Research Centre, University Hospitals Southampton NHS Foundation TrustSouthamptonUnited Kingdom
- David Hide Asthma and Allergy Research CentreIsle of WightUnited Kingdom
| | - Gerard H Koppelman
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC)GroningenNetherlands
- Department of Pediatric Pulmonology and Pediatric Allergology, University of Groningen, University Medical Center Groningen, Beatrix Children’s HospitalGroningenNetherlands
| | - Angela Simpson
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, The University of Manchester, Manchester Academic Health Science Centre, and Manchester University NHS Foundation TrustManchesterUnited Kingdom
| | - Steve W Turner
- Child Health, University of AberdeenAberdeenUnited Kingdom
| | - Clare S Murray
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, The University of Manchester, Manchester Academic Health Science Centre, and Manchester University NHS Foundation TrustManchesterUnited Kingdom
| | - Clare M Lloyd
- National Heart and Lung Institute, Imperial College LondonLondonUnited Kingdom
| | - John W Holloway
- Human Development and Health, Faculty of Medicine, University of SouthamptonSouthamptonUnited Kingdom
- NIHR Southampton Biomedical Research Centre, University Hospitals Southampton NHS Foundation TrustSouthamptonUnited Kingdom
| | - Adnan Custovic
- National Heart and Lung Institute, Imperial College LondonLondonUnited Kingdom
| |
Collapse
|
10
|
Herrera-Luis E, Forno E, Celedón JC, Pino-Yanes M. Asthma Exacerbations: The Genes Behind the Scenes. J Investig Allergol Clin Immunol 2023; 33:76-94. [PMID: 36420738 PMCID: PMC10638677 DOI: 10.18176/jiaci.0878] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The clinical and socioeconomic burden of asthma exacerbations (AEs) constitutes a major public health problem. In the last 4 years, there has been an increase in ethnic diversity in candidate-gene and genome-wide association studies of AEs, which in the latter case led to the identification of novel genes and underlying pathobiological processes. Pharmacogenomics, admixture mapping analyses, and the combination of multiple "omics" layers have helped to prioritize genomic regions of interest and/or facilitated our understanding of the functional consequences of genetic variation. Nevertheless, the field still lags behind the genomics of asthma, where a vast compendium of genetic approaches has been used (eg, gene-environment nteractions, next-generation sequencing, and polygenic risk scores). Furthermore, the roles of the DNA methylome and histone modifications in AEs have received little attention, and microRNA findings remain to be validated in independent studies. Likewise, the most recent transcriptomic studies highlight the importance of the host-airway microbiome interaction in the modulation of risk of AEs. Leveraging -omics and deep-phenotyping data from subtypes or homogenous subgroups of patients will be crucial if we are to overcome the inherent heterogeneity of AEs, boost the identification of potential therapeutic targets, and implement precision medicine approaches to AEs in clinical practice.
Collapse
Affiliation(s)
- E Herrera-Luis
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), La Laguna, Tenerife, Spain
| | - E Forno
- Division of Pediatric Pulmonary Medicine, UPMC Children´s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - J C Celedón
- Division of Pediatric Pulmonary Medicine, UPMC Children´s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - M Pino-Yanes
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), La Laguna, Tenerife, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain 4 Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna (ULL), La Laguna, Tenerife, Spain
- Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna (ULL), La Laguna, Tenerife, Spain
| |
Collapse
|
11
|
Sinkala M, Elsheikh SSM, Mbiyavanga M, Cullinan J, Mulder NJ. A genome-wide association study identifies distinct variants associated with pulmonary function among European and African ancestries from the UK Biobank. Commun Biol 2023; 6:49. [PMID: 36641522 PMCID: PMC9840173 DOI: 10.1038/s42003-023-04443-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 01/09/2023] [Indexed: 01/16/2023] Open
Abstract
Pulmonary function is an indicator of well-being, and pulmonary pathologies are the third major cause of death worldwide. We analysed the UK Biobank genome-wide association summary statistics of pulmonary function for Europeans and individuals of recent African descent to identify variants associated with the trait in the two ancestries. Here, we show 627 variants in Europeans and 3 in Africans associated with three pulmonary function parameters. In addition to the 110 variants in Europeans previously reported to be associated with phenotypes related to pulmonary function, we identify 279 novel loci, including an ISX intergenic variant rs369476290 on chromosome 22 in Africans. Remarkably, we find no shared variants among Africans and Europeans. Furthermore, enrichment analyses of variants separately for each ancestry background reveal significant enrichment for terms related to pulmonary phenotypes in Europeans but not Africans. Further analysis of studies of pulmonary phenotypes reveals that individuals of European background are disproportionally overrepresented in datasets compared to Africans, with the gap widening over the past five years. Our findings extend our understanding of the different variants that modify the pulmonary function in Africans and Europeans, a promising finding for future GWASs and medical studies.
Collapse
Affiliation(s)
- Musalula Sinkala
- Computational Biology Division, Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Anzio Rd, Observatory, 7925, Cape Town, South Africa.
| | - Samar S M Elsheikh
- Pharmacogenetics Research Clinic, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Mamana Mbiyavanga
- Computational Biology Division, Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Anzio Rd, Observatory, 7925, Cape Town, South Africa
| | - Joshua Cullinan
- Computational Biology Division, Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Anzio Rd, Observatory, 7925, Cape Town, South Africa
| | - Nicola J Mulder
- Computational Biology Division, Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Anzio Rd, Observatory, 7925, Cape Town, South Africa
| |
Collapse
|
12
|
Lahmar Z, Ahmed E, Fort A, Vachier I, Bourdin A, Bergougnoux A. Hedgehog pathway and its inhibitors in chronic obstructive pulmonary disease (COPD). Pharmacol Ther 2022; 240:108295. [PMID: 36191777 DOI: 10.1016/j.pharmthera.2022.108295] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/22/2022] [Accepted: 09/28/2022] [Indexed: 11/05/2022]
Abstract
COPD affects millions of people and is now ranked as the third leading cause of death worldwide. This largely untreatable chronic airway disease results in irreversible destruction of lung architecture. The small lung hypothesis is now supported by epidemiological, physiological and clinical studies. Accordingly, the early and severe COPD phenotype carries the most dreadful prognosis and finds its roots during lung growth. Pathophysiological mechanisms remain poorly understood and implicate individual susceptibility (genetics), a large part of environmental factors (viral infections, tobacco consumption, air pollution) and the combined effects of those triggers on gene expression. Genetic susceptibility is most likely involved as the disease is severe and starts early in life. The latter observation led to the identification of Mendelian inheritance via disease-causing variants of SERPINA1 - known as the basis for alpha-1 anti-trypsin deficiency, and TERT. In the last two decades multiple genome wide association studies (GWAS) identified many single nucleotide polymorphisms (SNPs) associated with COPD. High significance SNPs are located in 4q31 near HHIP which encodes an evolutionarily highly conserved physiological inhibitor of the Hedgehog signaling pathway (HH). HHIP is critical to several in utero developmental lung processes. It is also implicated in homeostasis, injury response, epithelial-mesenchymal transition and tumor resistance to apoptosis. A few studies have reported decreased HHIP RNA and protein levels in human adult COPD lungs. HHIP+/- murine models led to emphysema. HH pathway inhibitors, such as vismodegib and sonidegib, are already validated in oncology, whereas other drugs have evidenced in vitro effects. Targeting the Hedgehog pathway could lead to a new therapeutic avenue in COPD. In this review, we focused on the early and severe COPD phenotype and the small lung hypothesis by exploring genetic susceptibility traits that are potentially treatable, thus summarizing promising therapeutics for the future.
Collapse
Affiliation(s)
- Z Lahmar
- Department of Respiratory Diseases, CHU de Montpellier, Montpellier, France
| | - E Ahmed
- Department of Respiratory Diseases, CHU de Montpellier, Montpellier, France; PhyMedExp, Univ Montpellier, Inserm U1046, CNRS UMR 9214, Montpellier, France
| | - A Fort
- PhyMedExp, Univ Montpellier, Inserm U1046, CNRS UMR 9214, Montpellier, France
| | - I Vachier
- Department of Respiratory Diseases, CHU de Montpellier, Montpellier, France; PhyMedExp, Univ Montpellier, Inserm U1046, CNRS UMR 9214, Montpellier, France
| | - A Bourdin
- Department of Respiratory Diseases, CHU de Montpellier, Montpellier, France; PhyMedExp, Univ Montpellier, Inserm U1046, CNRS UMR 9214, Montpellier, France
| | - A Bergougnoux
- PhyMedExp, Univ Montpellier, Inserm U1046, CNRS UMR 9214, Montpellier, France; Laboratoire de Génétique Moléculaire et de Cytogénomique, CHU de Montpellier, Montpellier, France.
| |
Collapse
|
13
|
Caligiuri SPB, Howe WM, Wills L, Smith ACW, Lei Y, Bali P, Heyer MP, Moen JK, Ables JL, Elayouby KS, Williams M, Fillinger C, Oketokoun Z, Lehmann VE, DiFeliceantonio AG, Johnson PM, Beaumont K, Sebra RP, Ibanez-Tallon I, Kenny PJ. Hedgehog-interacting protein acts in the habenula to regulate nicotine intake. Proc Natl Acad Sci U S A 2022; 119:e2209870119. [PMID: 36346845 PMCID: PMC9674224 DOI: 10.1073/pnas.2209870119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/28/2022] [Indexed: 11/10/2023] Open
Abstract
Hedgehog-interacting protein (HHIP) sequesters Hedgehog ligands to repress Smoothened (SMO)-mediated recruitment of the GLI family of transcription factors. Allelic variation in HHIP confers risk of chronic obstructive pulmonary disease and other smoking-related lung diseases, but underlying mechanisms are unclear. Using single-cell and cell-type-specific translational profiling, we show that HHIP expression is highly enriched in medial habenula (MHb) neurons, particularly MHb cholinergic neurons that regulate aversive behavioral responses to nicotine. HHIP deficiency dysregulated the expression of genes involved in cholinergic signaling in the MHb and disrupted the function of nicotinic acetylcholine receptors (nAChRs) through a PTCH-1/cholesterol-dependent mechanism. Further, CRISPR/Cas9-mediated genomic cleavage of the Hhip gene in MHb neurons enhanced the motivational properties of nicotine in mice. These findings suggest that HHIP influences vulnerability to smoking-related lung diseases in part by regulating the actions of nicotine on habenular aversion circuits.
Collapse
Affiliation(s)
- Stephanie P B Caligiuri
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - William M Howe
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Lauren Wills
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Alexander C W Smith
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Ye Lei
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Purva Bali
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Mary P Heyer
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Janna K Moen
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Jessica L Ables
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Karim S Elayouby
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Maya Williams
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Clementine Fillinger
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Zainab Oketokoun
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Vanessa E Lehmann
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | | | - Paul M Johnson
- Department of Information Technology and Electrical Engineering, ETH Zürich, 8092 Zürich, Switzerland
| | - Kristin Beaumont
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Robert P Sebra
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Ines Ibanez-Tallon
- Laboratory of Molecular Biology, The Rockefeller University, New York, NY 10065
| | - Paul J Kenny
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| |
Collapse
|
14
|
Mintoff D, Pace NP, Borg I. Interpreting the spectrum of gamma-secretase complex missense variation in the context of hidradenitis suppurativa—An in-silico study. Front Genet 2022; 13:962449. [PMID: 36118898 PMCID: PMC9478468 DOI: 10.3389/fgene.2022.962449] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/08/2022] [Indexed: 11/23/2022] Open
Abstract
Hidradenitis suppurativa (HS) is a disease of the pilosebaceous unit characterized by recurrent nodules, abscesses and draining tunnels with a predilection to intertriginous skin. The pathophysiology of HS is complex. However, it is known that inflammation and hyperkeratinization at the hair follicle play crucial roles in disease manifestation. Genetic and environmental factors are considered the main drivers of these two pathophysiological processes. Despite a considerable proportion of patients having a positive family history of disease, only a minority of patients suffering from HS have been found to harbor monogenic variants which segregate to affected kindreds. Most of these variants are in the ɣ secretase complex (GSC) protein-coding genes. In this manuscript, we set out to characterize the burden of missense pathogenic variants in healthy reference population using large scale genomic dataset thereby providing a standard for comparing genomic variation in GSC protein-coding genes in the HS patient cohort.
Collapse
Affiliation(s)
- Dillon Mintoff
- Department of Pathology, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| | - Nikolai P. Pace
- Centre for Molecular Biology and Biobanking, University of Malta, Msida, Malta
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
- *Correspondence: Nikolai P. Pace,
| | - Isabella Borg
- Department of Pathology, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
- Centre for Molecular Biology and Biobanking, University of Malta, Msida, Malta
- Department of Pathology, Mater Dei Hospital, Msida, Malta
| |
Collapse
|
15
|
Joo J, Mak ACY, Xiao S, Sleiman PM, Hu D, Huntsman S, Eng C, Kan M, Diwakar AR, Lasky-Su JA, Weiss ST, Sordillo JE, Wu AC, Cloutier M, Canino G, Forno E, Celedón JC, Seibold MA, Hakonarson H, Williams LK, Burchard EG, Himes BE. Genome-wide association study in minority children with asthma implicates DNAH5 in bronchodilator responsiveness. Sci Rep 2022; 12:12514. [PMID: 35869121 PMCID: PMC9307508 DOI: 10.1038/s41598-022-16488-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/11/2022] [Indexed: 12/25/2022] Open
Abstract
Variability in response to short-acting β2-agonists (e.g., albuterol) among patients with asthma from diverse racial/ethnic groups may contribute to asthma disparities. We sought to identify genetic variants associated with bronchodilator response (BDR) to identify potential mechanisms of drug response and risk factors for worse asthma outcomes. Genome-wide association studies of bronchodilator response (BDR) were performed using TOPMed Whole Genome Sequencing data of the Asthma Translational Genomic Collaboration (ATGC), which corresponded to 1136 Puerto Rican, 656 Mexican and 4337 African American patients with asthma. With the population-specific GWAS results, a trans-ethnic meta-analysis was performed to identify BDR-associated variants shared across the three populations. Replication analysis was carried out in three pediatric asthma cohorts, including CAMP (Childhood Asthma Management Program; n = 560), GACRS (Genetics of Asthma in Costa Rica Study; n = 967) and HPR (Hartford-Puerto Rico; n = 417). A genome-wide significant locus (rs35661809; P = 3.61 × 10-8) in LINC02220, a non-coding RNA gene, was identified in Puerto Ricans. While this region was devoid of protein-coding genes, capture Hi-C data showed a distal interaction with the promoter of the DNAH5 gene in lung tissue. In replication analysis, the GACRS cohort yielded a nominal association (1-tailed P < 0.05). No genetic variant was associated with BDR at the genome-wide significant threshold in Mexicans and African Americans. Our findings help inform genetic underpinnings of BDR for understudied minority patients with asthma, but the limited availability of genetic data for racial/ethnic minority children with asthma remains a paramount challenge.
Collapse
Affiliation(s)
- Jaehyun Joo
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, 402 Blockley Hall, 423 Guardian Drive, Philadelphia, PA, 19104, USA
| | - Angel C Y Mak
- Department of Medicine, University of California, San Francisco, UCSF, 1550 4th Street, Bldg 19B, San Francisco, CA, 94158, USA
| | - Shujie Xiao
- Center for Individualized and Genomic Medicine Research, Department of Internal Medicine, Henry Ford Health System, Detroit, MI, USA
| | - Patrick M Sleiman
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Human Genetics, Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Donglei Hu
- Department of Medicine, University of California, San Francisco, UCSF, 1550 4th Street, Bldg 19B, San Francisco, CA, 94158, USA
| | - Scott Huntsman
- Department of Medicine, University of California, San Francisco, UCSF, 1550 4th Street, Bldg 19B, San Francisco, CA, 94158, USA
| | - Celeste Eng
- Department of Medicine, University of California, San Francisco, UCSF, 1550 4th Street, Bldg 19B, San Francisco, CA, 94158, USA
| | - Mengyuan Kan
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, 402 Blockley Hall, 423 Guardian Drive, Philadelphia, PA, 19104, USA
| | - Avantika R Diwakar
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, 402 Blockley Hall, 423 Guardian Drive, Philadelphia, PA, 19104, USA
| | - Jessica A Lasky-Su
- Department of Medicine, Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Scott T Weiss
- Department of Medicine, Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Joanne E Sordillo
- PRecisiOn Medicine Translational Research (PROMoTeR) Center, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Ann C Wu
- PRecisiOn Medicine Translational Research (PROMoTeR) Center, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Michelle Cloutier
- Department of Pediatrics, University of Connecticut, Farmington, CT, USA
| | - Glorisa Canino
- Behavioral Sciences Research Institute, University of Puerto Rico, San Juan, PR, USA
| | - Erick Forno
- Division of Pediatric Pulmonary Medicine, UMPC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| | - Juan C Celedón
- Division of Pediatric Pulmonary Medicine, UMPC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| | - Max A Seibold
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, USA
| | - Hakon Hakonarson
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Human Genetics, Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - L Keoki Williams
- Center for Individualized and Genomic Medicine Research, Department of Internal Medicine, Henry Ford Health System, Detroit, MI, USA
| | - Esteban G Burchard
- Department of Medicine, University of California, San Francisco, UCSF, 1550 4th Street, Bldg 19B, San Francisco, CA, 94158, USA.
- Department of Bioengineering and Therapeutic Sciences, University of Californica, San Francisco, CA, USA.
| | - Blanca E Himes
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, 402 Blockley Hall, 423 Guardian Drive, Philadelphia, PA, 19104, USA.
| |
Collapse
|
16
|
Do AR, Ko DY, Kim J, Bak SH, Lee KY, Yoon D, Shin C, Kim S, Kim WJ, Won S. Genome-Wide Association Study of Airway Wall Thickening in a Korean Chronic Obstructive Pulmonary Disease Cohort. Genes (Basel) 2022; 13:genes13071258. [PMID: 35886039 PMCID: PMC9318537 DOI: 10.3390/genes13071258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/23/2022] [Accepted: 06/28/2022] [Indexed: 02/04/2023] Open
Abstract
Airway wall thickening (AWT) plays an important pathophysiological role in airway diseases such as chronic obstructive pulmonary disease (COPD). There are only a few studies on the genetic components contributing to AWT in the Korean population. This study aimed to identify AWT-related single-nucleotide polymorphisms (SNPs) using a genome-wide association study (GWAS). We performed GWAS for AWT using the CODA and KUCOPD cohorts. Thereafter, a meta-analysis was performed. Airway wall thickness was measured using automatic segmentation software. The AWT at an internal perimeter of 10 mm (AWT-Pi10) was calculated by the square root of the theoretical airway wall area using the full-width-half-maximum method. We identified a significant SNP (rs11648772, p = 1.41 × 10-8) located in LINC02127, near SALL1. This gene is involved in the inhibition of epithelial-mesenchymal transition in glial cells, and it affects bronchial wall depression in COPD patients. Additionally, we identified other SNPs (rs11970854, p = 1.92 × 10-6; rs16920168, p = 5.29 × 10-6) involved in airway inflammation and proliferation and found that AWT is influenced by these genetic variants. Our study helps identify the genetic cause of COPD in an Asian population and provides a potential basis for treatment.
Collapse
Affiliation(s)
- Ah Ra Do
- Interdisciplinary Program of Bioinformatics, Seoul National University, Seoul 08826, Korea;
| | - Do Yeon Ko
- Environmental Health Center, Department of Internal Medicine, Kangwon National University, Chuncheon 25948, Korea; (D.Y.K.); (J.K.)
| | - Jeeyoung Kim
- Environmental Health Center, Department of Internal Medicine, Kangwon National University, Chuncheon 25948, Korea; (D.Y.K.); (J.K.)
| | - So Hyeon Bak
- Department of Radiology, Kangwon National University Hospital, Kangwon National University School of Medicine, Chuncheon 24341, Korea;
| | - Ki Yeol Lee
- Department of Radiology, Korea University Ansan Hospital, Ansan 15355, Korea;
| | - Dankyu Yoon
- Department of Chronic Disease Convergence Research, Division of Allergy and Respiratory Disease Research, National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju 28159, Korea;
| | - Chol Shin
- Institute for Human Genomic Study, College of Medicine, Korea University, Seoul 08826, Korea;
- Department of Internal Medicine, Division of Pulmonary Sleep and Critical Care Medicine, Korea University Ansan Hospital, Ansan 15355, Korea
| | - Soriul Kim
- Institute for Human Genomic Study, College of Medicine, Korea University, Seoul 08826, Korea;
- Correspondence: (S.K.); (W.J.K.); (S.W.); Tel.: +82-31-412-5603 (S.K.); +82-33-258-9303 (W.J.K.), +82-2-880-2714 (S.W.)
| | - Woo Jin Kim
- Environmental Health Center, Department of Internal Medicine, Kangwon National University, Chuncheon 25948, Korea; (D.Y.K.); (J.K.)
- Correspondence: (S.K.); (W.J.K.); (S.W.); Tel.: +82-31-412-5603 (S.K.); +82-33-258-9303 (W.J.K.), +82-2-880-2714 (S.W.)
| | - Sungho Won
- Interdisciplinary Program of Bioinformatics, Seoul National University, Seoul 08826, Korea;
- Department of Public Health Sciences, School of Public Health, Seoul National University, Seoul 08826, Korea
- Institute of Health and Environment, Seoul National University, Seoul 08826, Korea
- RexSoft Inc., Seoul 08826, Korea
- Correspondence: (S.K.); (W.J.K.); (S.W.); Tel.: +82-31-412-5603 (S.K.); +82-33-258-9303 (W.J.K.), +82-2-880-2714 (S.W.)
| |
Collapse
|
17
|
Li D, Kim W, An J, Kim S, Lee S, Do A, Kim W, Lee S, Yoon D, Lee K, Ha S, Silverman EK, Cho M, Shin C, Won S. Heritability Analyses Uncover Shared Genetic Effects of Lung Function and Change over Time. Genes (Basel) 2022; 13:genes13071261. [PMID: 35886044 PMCID: PMC9316642 DOI: 10.3390/genes13071261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/05/2022] [Accepted: 07/08/2022] [Indexed: 01/27/2023] Open
Abstract
Genetic influence on lung functions has been identified in previous studies; however, the relative longitudinal effects of genetic factors and their interactions with smoking on lung function remain unclear. Here, we identified the longitudinal effects of genetic variants on lung function by determining single nucleotide polymorphism (SNP) heritability and genetic correlations, and by analyzing interactions with smoking. Subject-specific means and annual change rates were calculated for eight spirometric measures obtained from 6622 Korean adults aged 40−69 years every two years for 14 years, and their heritabilities were estimated separately. Statistically significant (p < 0.05) heritability for the subject-specific means of all spirometric measures (8~32%) and change rates of forced expiratory volume in 1 s to forced vital capacity ratio (FEV1/FVC; 16%) and post-bronchodilator FEV1/FVC (17%) were detected. Significant genetic correlations of the change rate with the subject-specific mean were observed for FEV1/FVC (ρg = 0.64) and post-bronchodilator FEV1/FVC (ρg = 0.47). Furthermore, post-bronchodilator FEV1/FVC showed significant heritability of SNP-by-smoking interaction (hGXS2 = 0.4) for the annual change rate. The GWAS also detected genome-wide significant SNPs for FEV1 (rs4793538), FEV1/FVC (rs2704589, rs62201158, and rs9391733), and post-bronchodilator FEV1/FVC (rs2445936). We found statistically significant evidence of heritability role on the change in lung function, and this was shared with the effects on cross-sectional measurements. We also found some evidence of interaction with smoking for the change of lung function.
Collapse
Affiliation(s)
- Donghe Li
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 08826, Korea; (D.L.); (A.D.)
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA 02118, USA
| | - Woojin Kim
- Department of Internal Medicine and Environmental Health Center, School of Medicine, Kangwon National University, Chuncheon 24341, Korea;
| | - Jahoon An
- Department of Public Health Science, Graduate School of Public Health, Seoul National University, Seoul 08826, Korea;
| | - Soriul Kim
- Institute for Human Genomic Study, College of Medicine, Korea University, Seoul 136701, Korea; (S.K.); (S.L.)
| | - Seungku Lee
- Institute for Human Genomic Study, College of Medicine, Korea University, Seoul 136701, Korea; (S.K.); (S.L.)
| | - Ahra Do
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 08826, Korea; (D.L.); (A.D.)
| | - Wonji Kim
- Channing Division of Network Medicine and Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA; (W.K.); (E.K.S.); (M.C.)
| | - Sanghun Lee
- Department of Medical Consilience, Graduate School, Dankook University, Yongin 16890, Korea;
| | - Dankyu Yoon
- Division of Allergy and Respiratory Disease Research, Department of Chronic Disease Convergence Research, National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju 28159, Korea;
| | - Kwangbae Lee
- Korea Medical Institute, Seoul 03173, Korea; (K.L.); (S.H.)
| | - Seounguk Ha
- Korea Medical Institute, Seoul 03173, Korea; (K.L.); (S.H.)
| | - Edwin K. Silverman
- Channing Division of Network Medicine and Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA; (W.K.); (E.K.S.); (M.C.)
| | - Michael Cho
- Channing Division of Network Medicine and Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA; (W.K.); (E.K.S.); (M.C.)
| | - Chol Shin
- Institute for Human Genomic Study, College of Medicine, Korea University, Seoul 136701, Korea; (S.K.); (S.L.)
- Division of Pulmonary Sleep and Critical Care Medicine, Department of Internal Medicine, Korea University Ansan Hospital, Ansan 15355, Korea
- Correspondence: (C.S.); (S.W.)
| | - Sungho Won
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 08826, Korea; (D.L.); (A.D.)
- Department of Public Health Science, Graduate School of Public Health, Seoul National University, Seoul 08826, Korea;
- Institute of Health and Environment, Seoul National University, Seoul 08826, Korea
- RexSoft Inc., Seoul 08826, Korea
- Correspondence: (C.S.); (S.W.)
| |
Collapse
|
18
|
Zecevic M, Kotur N, Ristivojevic B, Gasic V, Skodric-Trifunovic V, Stjepanovic M, Stevanovic G, Lavadinovic L, Zukic B, Pavlovic S, Stankovic B. Genome-Wide Association Study of COVID-19 Outcomes Reveals Novel Host Genetic Risk Loci in the Serbian Population. Front Genet 2022; 13:911010. [PMID: 35910207 PMCID: PMC9329799 DOI: 10.3389/fgene.2022.911010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/21/2022] [Indexed: 11/16/2022] Open
Abstract
Host genetics, an important contributor to the COVID-19 clinical susceptibility and severity, currently is the focus of multiple genome-wide association studies (GWAS) in populations affected by the pandemic. This is the first study from Serbia that performed a GWAS of COVID-19 outcomes to identify genetic risk markers of disease severity. A group of 128 hospitalized COVID-19 patients from the Serbian population was enrolled in the study. We conducted a GWAS comparing (1) patients with pneumonia (n = 80) against patients without pneumonia (n = 48), and (2) severe (n = 34) against mild disease (n = 48) patients, using a genotyping array followed by imputation of missing genotypes. We have detected a significant signal associated with COVID-19 related pneumonia at locus 13q21.33, with a peak residing upstream of the gene KLHL1 (p = 1.91 × 10−8). Our study also replicated a previously reported COVID-19 risk locus at 3p21.31, identifying lead variants in SACM1L and LZTFL1 genes suggestively associated with pneumonia (p = 7.54 × 10−6) and severe COVID-19 (p = 6.88 × 10−7), respectively. Suggestive association with COVID-19 pneumonia has also been observed at chromosomes 5p15.33 (IRX, NDUFS6, MRPL36, p = 2.81 × 10−6), 5q11.2 (ESM1, p = 6.59 × 10−6), and 9p23 (TYRP1, LURAP1L, p = 8.69 × 10−6). The genes located in or near the risk loci are expressed in neural or lung tissues, and have been previously associated with respiratory diseases such as asthma and COVID-19 or reported as differentially expressed in COVID-19 gene expression profiling studies. Our results revealed novel risk loci for pneumonia and severe COVID-19 disease which could contribute to a better understanding of the COVID-19 host genetics in different populations.
Collapse
Affiliation(s)
- Marko Zecevic
- Laboratory for Molecular Biomedicine, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
- Seven Bridges, Boston, MA, United States
| | - Nikola Kotur
- Laboratory for Molecular Biomedicine, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Bojan Ristivojevic
- Laboratory for Molecular Biomedicine, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Vladimir Gasic
- Laboratory for Molecular Biomedicine, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Vesna Skodric-Trifunovic
- Clinic of Pulmonology, Clinical Centre of Serbia, Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Mihailo Stjepanovic
- Clinic of Pulmonology, Clinical Centre of Serbia, Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Goran Stevanovic
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
- Clinic for Infectious and Tropical Diseases, Clinical Centre of Serbia, Belgrade, Serbia
| | - Lidija Lavadinovic
- Clinic for Infectious and Tropical Diseases, Clinical Centre of Serbia, Belgrade, Serbia
| | - Branka Zukic
- Laboratory for Molecular Biomedicine, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Sonja Pavlovic
- Laboratory for Molecular Biomedicine, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Biljana Stankovic
- Laboratory for Molecular Biomedicine, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
- *Correspondence: Biljana Stankovic,
| |
Collapse
|
19
|
Zou X, Wang R, Yang Z, Wang Q, Fu W, Huo Z, Ge F, Zhong R, Jiang Y, Li J, Xiong S, Hong W, Liang W. Family Socioeconomic Position and Lung Cancer Risk: A Meta-Analysis and a Mendelian Randomization Study. Front Public Health 2022; 10:780538. [PMID: 35734761 PMCID: PMC9207765 DOI: 10.3389/fpubh.2022.780538] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundFamily socioeconomic position (SEP) in childhood is an important factor to predict some chronic diseases. However, the association between family SEP in childhood and the risk of lung cancer is not clear.MethodsA systematic search was performed to explore their relationship. We selected education level, socioeconomic positions of parents and childhood housing conditions to represent an individual family SEP. Hazard ratios (HRs) of lung cancer specific-mortality were synthesized using a random effects model. Two-sample Mendelian randomization (MR) was carried out with summary data from published genome-wide association studies of SEP to assess the possible causal relationship of SEP and risk of lung cancer.ResultsThrough meta-analysis of 13 studies, we observed that to compared with the better SEP, the poorer SEP in the childhood was associated with the increased lung cancer risk in the adulthood (HR: 1.25, 95% CI: 1.10 to 1.43). In addition, the dose-response analysis revealed a positive correlation between the poorer SEP and increased lung cancer risk. Same conclusion was reached in MR [(education level) OR 0.50, 95% CI: 0.39 to 0.63; P < 0.001].ConclusionThis study indicates that poor family socioeconomic position in childhood is causally correlated with lung cancer risk in adulthood.Systematic Review Registrationidentifier: 159082.
Collapse
Affiliation(s)
- Xusen Zou
- South China University of Technology, School of Public Administration, Guangzhou, China
| | - Runchen Wang
- Department of Thoracic Oncology and Surgery, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Nanshan School, Guangzhou Medical University, Guangzhou, China
| | - Zhao Yang
- Peking University First Hospital, Beijing, China
| | - Qixia Wang
- Department of Thoracic Oncology and Surgery, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Nanshan School, Guangzhou Medical University, Guangzhou, China
| | - Wenhai Fu
- Department of Thoracic Oncology and Surgery, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- First Clinical School, Guangzhou Medical University, Guangzhou, China
| | - Zhenyu Huo
- Department of Thoracic Oncology and Surgery, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Nanshan School, Guangzhou Medical University, Guangzhou, China
| | - Fan Ge
- Department of Thoracic Oncology and Surgery, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- First Clinical School, Guangzhou Medical University, Guangzhou, China
| | - Ran Zhong
- Department of Thoracic Oncology and Surgery, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yu Jiang
- Department of Thoracic Oncology and Surgery, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Nanshan School, Guangzhou Medical University, Guangzhou, China
| | - Jiangfu Li
- Department of Thoracic Oncology and Surgery, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shan Xiong
- Department of Thoracic Oncology and Surgery, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wen Hong
- South China University of Technology, School of Public Administration, Guangzhou, China
- Wen Hong
| | - Wenhua Liang
- Department of Thoracic Oncology and Surgery, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- *Correspondence: Wenhua Liang
| |
Collapse
|
20
|
Salek Ardestani S, Zandi MB, Vahedi SM, Mahboudi H, Mahboudi F, Meskoob A. Detection of common copy number of variation underlying selection pressure in Middle Eastern horse breeds using whole-genome sequence data. J Hered 2022; 113:421-430. [PMID: 35605262 DOI: 10.1093/jhered/esac027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 05/21/2022] [Indexed: 11/14/2022] Open
Abstract
Dareshouri, Arabian, and Akhal-Teke are three Middle Eastern horse breeds that have been selected for endurance and adaptation to harsh climates. Deciphering the genetic characteristics of these horses by tracing selection footprints and copy number of variations will be helpful in improving our understanding of equine breeds' development and adaptation. For this purpose, we sequenced the whole-genome of four Dareshouri horses using Illumina Hiseq panels and compared them with publicly available whole-genome sequences of Arabian (n=3) and Akhal-Teke (n=3) horses . Three tests of FLK, hapFLK, and pooled heterozygosity were applied using a sliding window (window size=100kb, step size=50kb) approach to detect putative selection signals. Copy number variation analysis was applied to investigate copy number of variants (CNVs), and the results were used to suggest selection signatures involving CNVs. Whole-genome sequencing demonstrated 8,837,950 single nucleotide polymorphisms (SNPs) in autosomal chromosomes. We suggested 58 genes and three quantitative trait loci (QTLs), including some related to horse gait, insect bite hypersensitivity, and withers height, based on selective signals detected by adjusted p-value of Mahalanobis distance based on the rank-based P-values (Md-rank-P) method. We proposed 12 genomic regions under selection pressure involving CNVs which were previously reported to be associated with metabolism energy (SLC5A8), champagne dilution in horses (SLC36A1), and synthesis of polyunsaturated fatty acids (FAT2). Only 10 Middle Eastern horses were tested in this study; therefore, the conclusions are speculative. Our findings are useful to better understanding the evolution and adaptation of Middle Eastern horse breeds.
Collapse
Affiliation(s)
- Siavash Salek Ardestani
- Department of Animal Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Seyed Milad Vahedi
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, Canada
| | - Hossein Mahboudi
- Department of Biotechnology, School of Pharmacy, Alborz University of Medical Sciences, Karaj, Iran
| | | | | |
Collapse
|
21
|
Genome-Wide Association Study of Fluorescent Oxidation Products Accounting for Tobacco Smoking Status in Adults from the French EGEA Study. Antioxidants (Basel) 2022; 11:antiox11050802. [PMID: 35624665 PMCID: PMC9137810 DOI: 10.3390/antiox11050802] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/13/2022] [Accepted: 04/18/2022] [Indexed: 12/14/2022] Open
Abstract
Oxidative stress (OS) is the main pathophysiological mechanism involved in several chronic diseases, including asthma. Fluorescent oxidation products (FlOPs), a global biomarker of damage due to OS, is of growing interest in epidemiological studies. We conducted a genome-wide association study (GWAS) of the FlOPs level in 1216 adults from the case-control and family-based EGEA study (mean age 43 years old, 51% women, and 23% current smokers) to identify genetic variants associated with FlOPs. The GWAS was first conducted in the whole sample and then stratified according to smoking status, the main exogenous source of reactive oxygen species. Among the top genetic variants identified by the three GWAS, those located in BMP6 (p = 3 × 10−6), near BMPER (p = 9 × 10−6), in GABRG3 (p = 4 × 10−7), and near ATG5 (p = 2 × 10−9) are the most relevant because of both their link to biological pathways related to OS and their association with several chronic diseases for which the role of OS in their pathophysiology has been pointed out. BMP6 and BMPER are of particular interest due to their involvement in the same biological pathways related to OS and their functional interaction. To conclude, this study, which is the first GWAS of FlOPs, provides new insights into the pathophysiology of chronic OS-related diseases.
Collapse
|
22
|
Fraschilla I, Amatullah H, Jeffrey KL. One genome, many cell states: epigenetic control of innate immunity. Curr Opin Immunol 2022; 75:102173. [PMID: 35405493 PMCID: PMC9081230 DOI: 10.1016/j.coi.2022.102173] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/23/2022] [Accepted: 02/23/2022] [Indexed: 12/15/2022]
Abstract
A hallmark of the innate immune system is its ability to rapidly initiate short-lived or sustained transcriptional programs in a cell-specific and pathogen-specific manner that is dependent on dynamic chromatin states. Much of the epigenetic landscape is set during cellular differentiation; however, pathogens and other environmental cues also induce changes in chromatin that can either promote tolerance or 'train' innate immune cells for amplified secondary responses. We review chromatin processes that enable innate immune cell differentiation and functional transcriptional responses in naive or experienced cells, in concert with signal transduction and cellular metabolic shifts. We discuss how immune chromatin mechanisms are maladapted in disease and novel therapeutic approaches for cellular reprogramming.
Collapse
Affiliation(s)
- Isabella Fraschilla
- Division of Gastroenterology and Center for the Study of Inflammatory Bowel Disease, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA; Program in Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Hajera Amatullah
- Division of Gastroenterology and Center for the Study of Inflammatory Bowel Disease, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Kate L Jeffrey
- Division of Gastroenterology and Center for the Study of Inflammatory Bowel Disease, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA; Program in Immunology, Harvard Medical School, Boston, MA 02115, USA; Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
23
|
Lee SB, Park B, Hong KW, Jung DH. Genome-Wide Association of New-Onset Hypertension According to Renin Concentration: The Korean Genome and Epidemiology Cohort Study. J Cardiovasc Dev Dis 2022; 9:jcdd9040104. [PMID: 35448080 PMCID: PMC9025963 DOI: 10.3390/jcdd9040104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/21/2022] [Accepted: 03/29/2022] [Indexed: 11/16/2022] Open
Abstract
The renin-angiotensin system (RAS) is a crucial regulator of vascular resistance and blood volume in the body. This study aimed to examine the genetic predisposition of the plasma renin concentration influencing future hypertension incidence. Based on the Korean Genome and Epidemiology Cohort dataset, 5211 normotensive individuals at enrollment were observed over 12 years, categorized into the low-renin and high-renin groups. We conducted genome-wide association studies for the total, low-renin, and high-renin groups. Among the significant SNPs, the lead SNPs of each locus were focused on for further interpretation. The effect of genotypes was determined by logistic regression analysis between controls and new-onset hypertension, after adjusting for potential confounding variables. During a mean follow-up period of 7.6 years, 1704 participants (32.7%) developed hypertension. The low-renin group showed more incidence rates of new-onset hypertension (35.3%) than the high-renin group (26.5%). Among 153 SNPs in renin-related gene regions, two SNPs (rs11726091 and rs8137145) showed an association in the high-renin group, four SNPs (rs17038966, rs145286444, rs2118663, and rs12336898) in the low-renin group, and three SNPs (rs1938859, rs7968218, and rs117246401) in the total population. Most significantly, the low-renin SNP rs12336898 in the SPTAN1 gene, closely related to vascular wall remodeling, was associated with the development of hypertension (p-value = 1.3 × 10−6). We found the candidate genetic polymorphisms according to blood renin concentration. Our results might be a valuable indicator for hypertension risk prediction and preventive measure, considering renin concentration with genetic susceptibility.
Collapse
Affiliation(s)
- Sung-Bum Lee
- Severance Check-up, Yonsei University Health System, Yongin-si 16995, Korea;
- Department of Medicine, Graduate School, Yonsei University Wonju College of Medicine, Wonju-si 26426, Korea
| | - Byoungjin Park
- Department of Family Medicine, Yongin Severance Hosptal, Yongin-si 16995, Korea;
| | - Kyung-Won Hong
- Healthcare R&D Division, Theragen Bio Co., Ltd., Ganggyo-ro 145, Suwon-si 16229, Korea
- Correspondence: (K.-W.H.); (D.-H.J.)
| | - Dong-Hyuk Jung
- Department of Family Medicine, Yongin Severance Hosptal, Yongin-si 16995, Korea;
- Department of Family Medicine, Yonsei University College of Medicine, Seoul 03722, Korea
- Correspondence: (K.-W.H.); (D.-H.J.)
| |
Collapse
|
24
|
Shen R, Murphy CJ, Xu X, Hu M, Ding J, Wu C. Ras and Rab Interactor 3: From Cellular Mechanisms to Human Diseases. Front Cell Dev Biol 2022; 10:824961. [PMID: 35359443 PMCID: PMC8963869 DOI: 10.3389/fcell.2022.824961] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/18/2022] [Indexed: 11/13/2022] Open
Abstract
Ras and Rab interactor 3 (RIN3) functions as a Guanine nucleotide Exchange Factor (GEF) for some members of the Rab family of small GTPase. By promoting the activation of Rab5, RIN3 plays an important role in regulating endocytosis and endocytic trafficking. In addition, RIN3 activates Ras, another small GTPase, that controls multiple signaling pathways to regulate cellular function. Increasing evidence suggests that dysregulation of RIN3 activity may contribute to the pathogenesis of several disease conditions ranging from Paget’s Disease of the Bone (PDB), Alzheimer’s Disease (AD), Chronic Obstructive Pulmonary Disease (COPD) and to obesity. Recent genome-wide association studies (GWAS) identified variants in the RIN3 gene to be linked with these disease conditions. Interestingly, some variants appear to be missense mutations in the functional domains of the RIN3 protein while most variants are located in the noncoding regions of the RIN3 gene, potentially altering its gene expression. However, neither the protein structure of RIN3 nor its exact function(s) (except for its GEF activity) has been fully defined. Furthermore, how the polymorphisms/variants contribute to disease pathogenesis remain to be understood. Herein, we examine, and review published studies in an attempt to provide a better understanding of the physiological function of RIN3; More importantly, we construct a framework linking the polymorphisms/variants of RIN3 to altered cell signaling and endocytic traffic, and to potential disease mechanism(s).
Collapse
Affiliation(s)
- Ruinan Shen
- Institute of Neurology, Ruijing Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Department of Neurosciences, University of California San Diego School of Medicine, La Jolla, CA, United States
| | - Caitlin J Murphy
- Department of Neurosciences, University of California San Diego School of Medicine, La Jolla, CA, United States
| | - Xiaowen Xu
- Department of Neurosciences, University of California San Diego School of Medicine, La Jolla, CA, United States
| | - Mingzheng Hu
- Department of Neurosciences, University of California San Diego School of Medicine, La Jolla, CA, United States
| | - Jianqing Ding
- Institute of Neurology, Ruijing Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Chengbiao Wu
- Department of Neurosciences, University of California San Diego School of Medicine, La Jolla, CA, United States
- *Correspondence: Chengbiao Wu,
| |
Collapse
|
25
|
Feitosa MF, Wojczynski MK, Anema JA, Daw EW, Wang L, Santanasto AJ, Nygaard M, Province MA. Genetic pleiotropy between pulmonary function and age-related traits: The Long Life Family Study. J Gerontol A Biol Sci Med Sci 2022; 79:glac046. [PMID: 35180297 PMCID: PMC10873520 DOI: 10.1093/gerona/glac046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Pulmonary function (PF) progressively declines with aging. Forced expiratory volume in the first second (FEV1) and forced vital capacity (FVC) are predictors of morbidity of pulmonary and cardiovascular diseases and all-cause mortality. In addition, reduced PF is associated with elevated chronic low-grade systemic inflammation, glucose metabolism, body fatness, and low muscle strength. It may suggest pleiotropic genetic effects between PF with these age-related factors. METHODS We evaluated whether FEV1 and FVC share common pleiotropic genetic effects factors with interleukin-6, high-sensitivity C-reactive protein, body mass index, muscle (grip) strength, plasma glucose, and glycosylated hemoglobin in 3,888 individuals (age range: 26-106). We employed sex-combined and sex-specific correlated meta-analyses to test whether combining genome-wide association p-values from two or more traits enhances the ability to detect variants sharing effects on these correlated traits. RESULTS We identified 32 loci for PF, including 29 novel pleiotropic loci associated with pulmonary function and (i) body fatness (CYP2U1/SGMS2), (ii) glucose metabolism (CBWD1/DOCK8 and MMUT/CENPQ), (iii) inflammatory markers (GLRA3/HPGD, TRIM9, CALN1, CTNNB1/ZNF621, GATA5/SLCO4A1/NTSR1, and NPVF/C7orf31/CYCS), and (iv) muscle strength (MAL2, AC008825.1/LINC02103, AL136418.1). CONCLUSIONS The identified genes/loci for PF and age-related traits suggest their underlying shared genetic effects, which can explain part of their phenotypic correlations. Integration of gene expression and genomic annotation data shows enrichment of our genetic variants in lung, blood, adipose, pancreas, and muscles, among others. Our findings highlight the critical roles of identified gene/locus in systemic inflammation, glucose metabolism, strength performance, PF, and pulmonary disease, which are involved in accelerated biological aging.
Collapse
Affiliation(s)
- Mary F Feitosa
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Mary K Wojczynski
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jason A Anema
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - E Warwick Daw
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Lihua Wang
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Adam J Santanasto
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Marianne Nygaard
- Epidemiology, Biostatistics, and Biodemography, Department of Public Health, University of Southern Denmark, Odense C, Denmark
| | - Michael A Province
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
26
|
Tängdén T, Gustafsson S, Rao AS, Ingelsson E. A genome-wide association study in a large community-based cohort identifies multiple loci associated with susceptibility to bacterial and viral infections. Sci Rep 2022; 12:2582. [PMID: 35173190 PMCID: PMC8850418 DOI: 10.1038/s41598-022-05838-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 01/14/2022] [Indexed: 12/21/2022] Open
Abstract
There is limited data on host-specific genetic determinants of susceptibility to bacterial and viral infections. Genome-wide association studies using large population cohorts can be a first step towards identifying patients prone to infectious diseases and targets for new therapies. Genetic variants associated with clinically relevant entities of bacterial and viral infections (e.g., abdominal infections, respiratory infections, and sepsis) in 337,484 participants of the UK Biobank cohort were explored by genome-wide association analyses. Cases (n = 81,179) were identified based on ICD-10 diagnosis codes of hospital inpatient and death registries. Functional annotation was performed using gene expression (eQTL) data. Fifty-seven unique genome-wide significant loci were found, many of which are novel in the context of infectious diseases. Some of the detected genetic variants were previously reported associated with infectious, inflammatory, autoimmune, and malignant diseases or key components of the immune system (e.g., white blood cells, cytokines). Fine mapping of the HLA region revealed significant associations with HLA-DQA1, HLA-DRB1, and HLA-DRB4 locus alleles. PPP1R14A showed strong colocalization with abdominal infections and gene expression in sigmoid and transverse colon, suggesting causality. Shared significant loci across infections and non-infectious phenotypes in the UK Biobank cohort were found, suggesting associations for example between SNPs identified for abdominal infections and CRP, rheumatoid arthritis, and diabetes mellitus. We report multiple loci associated with bacterial and viral infections. A better understanding of the genetic determinants of bacterial and viral infections can be useful to identify patients at risk and in the development of new drugs.
Collapse
Affiliation(s)
- Thomas Tängdén
- Infection Medicine, Department of Medical Sciences, Uppsala University, Uppsala, Sweden.
| | - Stefan Gustafsson
- Molecular Epidemiology and Science for Life Laboratory, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Abhiram S Rao
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, 94305, USA
- Stanford Diabetes Research Center, Stanford University, Stanford, CA, 94305, USA
| | - Erik Ingelsson
- Molecular Epidemiology and Science for Life Laboratory, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, 94305, USA
- Stanford Diabetes Research Center, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
27
|
Hahn G, Prokopenko D, Lutz SM, Mullin K, Tanzi RE, Cho MH, Silverman EK, Lange C. A Smoothed Version of the Lassosum Penalty for Fitting Integrated Risk Models Using Summary Statistics or Individual-Level Data. Genes (Basel) 2022; 13:genes13010112. [PMID: 35052450 PMCID: PMC8775060 DOI: 10.3390/genes13010112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 02/04/2023] Open
Abstract
Polygenic risk scores are a popular means to predict the disease risk or disease susceptibility of an individual based on its genotype information. When adding other important epidemiological covariates such as age or sex, we speak of an integrated risk model. Methodological advances for fitting more accurate integrated risk models are of immediate importance to improve the precision of risk prediction, thereby potentially identifying patients at high risk early on when they are still able to benefit from preventive steps/interventions targeted at increasing their odds of survival, or at reducing their chance of getting a disease in the first place. This article proposes a smoothed version of the “Lassosum” penalty used to fit polygenic risk scores and integrated risk models using either summary statistics or raw data. The smoothing allows one to obtain explicit gradients everywhere for efficient minimization of the Lassosum objective function while guaranteeing bounds on the accuracy of the fit. An experimental section on both Alzheimer’s disease and COPD (chronic obstructive pulmonary disease) demonstrates the increased accuracy of the proposed smoothed Lassosum penalty compared to the original Lassosum algorithm (for the datasets under consideration), allowing it to draw equal with state-of-the-art methodology such as LDpred2 when evaluated via the AUC (area under the ROC curve) metric.
Collapse
Affiliation(s)
- Georg Hahn
- Harvard T.H. Chan School of Public Health, Harvard University, 677 Huntington Ave, Boston, MA 02115, USA; (S.M.L.); (C.L.)
- Correspondence:
| | - Dmitry Prokopenko
- Genetics and Aging Research Unit, McCance Center for Brain Health, Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA; (D.P.); (K.M.); (R.E.T.)
| | - Sharon M. Lutz
- Harvard T.H. Chan School of Public Health, Harvard University, 677 Huntington Ave, Boston, MA 02115, USA; (S.M.L.); (C.L.)
| | - Kristina Mullin
- Genetics and Aging Research Unit, McCance Center for Brain Health, Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA; (D.P.); (K.M.); (R.E.T.)
| | - Rudolph E. Tanzi
- Genetics and Aging Research Unit, McCance Center for Brain Health, Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA; (D.P.); (K.M.); (R.E.T.)
| | - Michael H. Cho
- Department of Medicine, Brigham and Women’s Hospital, Harvard University, Boston, MA 02115, USA; (M.H.C.); (E.K.S.)
| | - Edwin K. Silverman
- Department of Medicine, Brigham and Women’s Hospital, Harvard University, Boston, MA 02115, USA; (M.H.C.); (E.K.S.)
| | - Christoph Lange
- Harvard T.H. Chan School of Public Health, Harvard University, 677 Huntington Ave, Boston, MA 02115, USA; (S.M.L.); (C.L.)
| | | |
Collapse
|
28
|
De Brandt J, Beijers RJHCG, Chiles J, Maddocks M, McDonald MLN, Schols AMWJ, Nyberg A. Update on the Etiology, Assessment, and Management of COPD Cachexia: Considerations for the Clinician. Int J Chron Obstruct Pulmon Dis 2022; 17:2957-2976. [PMID: 36425061 PMCID: PMC9680681 DOI: 10.2147/copd.s334228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 10/31/2022] [Indexed: 11/19/2022] Open
Abstract
Cachexia is a commonly observed but frequently neglected extra-pulmonary manifestation in patients with chronic obstructive pulmonary disease (COPD). Cachexia is a multifactorial syndrome characterized by severe loss of body weight, muscle, and fat, as well as increased protein catabolism. COPD cachexia places a high burden on patients (eg, increased mortality risk and disease burden, reduced exercise capacity and quality of life) and the healthcare system (eg, increased number, length, and cost of hospitalizations). The etiology of COPD cachexia involves a complex interplay of non-modifiable and modifiable factors (eg, smoking, hypoxemia, hypercapnia, physical inactivity, energy imbalance, and exacerbations). Addressing these modifiable factors is needed to prevent and treat COPD cachexia. Oral nutritional supplementation combined with exercise training should be the primary multimodal treatment approach. Adding a pharmacological agent might be considered in some, but not all, patients with COPD cachexia. Clinicians and researchers should use longitudinal measures (eg, weight loss, muscle mass loss) instead of cross-sectional measures (eg, low body mass index or fat-free mass index) where possible to evaluate patients with COPD cachexia. Lastly, in future research, more detailed phenotyping of cachectic patients to enable a better comparison of included patients between studies, prospective longitudinal studies, and more focus on the impact of exacerbations and the role of biomarkers in COPD cachexia, are highly recommended.
Collapse
Affiliation(s)
- Jana De Brandt
- Faculty of Medicine, Department of Community Medicine and Rehabilitation, Section of Physiotherapy, Umeå University, Umeå, Sweden
| | - Rosanne J H C G Beijers
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Joe Chiles
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Matthew Maddocks
- Cicely Saunders Institute of Palliative Care, Policy and Rehabilitation, King's College London, London, UK
| | - Merry-Lynn N McDonald
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Annemie M W J Schols
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - André Nyberg
- Faculty of Medicine, Department of Community Medicine and Rehabilitation, Section of Physiotherapy, Umeå University, Umeå, Sweden
| |
Collapse
|
29
|
Accordini S, Calciano L, Johannessen A, Benediktsdóttir B, Bertelsen RJ, Bråbäck L, Dharmage SC, Forsberg B, Gómez Real F, Holloway JW, Holm M, Janson C, Jõgi NO, Jõgi R, Malinovschi A, Marcon A, Martínez-Moratalla Rovira J, Sánchez-Ramos JL, Schlünssen V, Torén K, Jarvis D, Svanes C. Prenatal and prepubertal exposures to tobacco smoke in men may cause lower lung function in future offspring: a three-generation study using a causal modelling approach. Eur Respir J 2021; 58:2002791. [PMID: 33795316 PMCID: PMC8529197 DOI: 10.1183/13993003.02791-2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 03/11/2021] [Indexed: 11/24/2022]
Abstract
Mechanistic research suggests that lifestyle and environmental factors impact respiratory health across generations by epigenetic changes transmitted through male germ cells. Evidence from studies on humans is very limited.We investigated multigeneration causal associations to estimate the causal effects of tobacco smoking on lung function within the paternal line. We analysed data from 383 adult offspring (age 18-47 years; 52.0% female) and their 274 fathers, who had participated in the European Community Respiratory Health Survey (ECRHS)/Respiratory Health in Northern Europe, Spain and Australia (RHINESSA) generation study and had provided valid measures of pre-bronchodilator lung function. Two counterfactual-based, multilevel mediation models were developed with: paternal grandmothers' smoking in pregnancy and fathers' smoking initiation in prepuberty as exposures; fathers' forced expiratory volume in 1 s (FEV1) and forced vital capacity (FVC), or FEV1/FVC z-scores as potential mediators (proxies of unobserved biological mechanisms that are true mediators); and offspring's FEV1 and FVC, or FEV1/FVC z-scores as outcomes. All effects were summarised as differences (Δ) in expected z-scores related to fathers' and grandmothers' smoking history.Fathers' smoking initiation in prepuberty had a negative direct effect on both offspring's FEV1 (Δz-score -0.36, 95% CI -0.63- -0.10) and FVC (-0.50, 95% CI -0.80- -0.20) compared with fathers' never smoking. Paternal grandmothers' smoking in pregnancy had a negative direct effect on fathers' FEV1/FVC (-0.57, 95% CI -1.09- -0.05) and a negative indirect effect on offspring's FEV1/FVC (-0.12, 95% CI -0.21- -0.03) compared with grandmothers' not smoking before fathers' birth nor during fathers' childhood.Fathers' smoking in prepuberty and paternal grandmothers' smoking in pregnancy may cause lower lung function in offspring. Our results support the concept that lifestyle-related exposures during these susceptibility periods influence the health of future generations.
Collapse
Affiliation(s)
- Simone Accordini
- Unit of Epidemiology and Medical Statistics, Dept of Diagnostics and Public Health, University of Verona, Verona, Italy
- Equal contribution as first authors
| | - Lucia Calciano
- Unit of Epidemiology and Medical Statistics, Dept of Diagnostics and Public Health, University of Verona, Verona, Italy
- Equal contribution as first authors
| | - Ane Johannessen
- Centre for International Health, Dept of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| | | | - Randi Jacobsen Bertelsen
- Dept of Clinical Science, University of Bergen, Bergen, Norway
- Oral Health Centre of Expertise in Western Norway/Vestland, Bergen, Norway
| | - Lennart Bråbäck
- Section of Sustainable Health, Dept of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Shyamali C Dharmage
- Allergy and Lung Health Unit, School of Population and Global Health, University of Melbourne, Melbourne, Australia
| | - Bertil Forsberg
- Section of Sustainable Health, Dept of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Francisco Gómez Real
- Dept of Clinical Science, University of Bergen, Bergen, Norway
- Dept of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, Norway
| | - John W Holloway
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Mathias Holm
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Christer Janson
- Dept of Medical Sciences: Respiratory, Allergy and Sleep Research, Uppsala University, Uppsala, Sweden
| | - Nils O Jõgi
- Dept of Clinical Science, University of Bergen, Bergen, Norway
- Lung Clinic, Tartu University Hospital, Tartu, Estonia
| | - Rain Jõgi
- Lung Clinic, Tartu University Hospital, Tartu, Estonia
| | - Andrei Malinovschi
- Dept of Medical Sciences: Clinical Physiology, Uppsala University, Uppsala, Sweden
| | - Alessandro Marcon
- Unit of Epidemiology and Medical Statistics, Dept of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Jesús Martínez-Moratalla Rovira
- Servicio de Neumología, Complejo Hospitalario Universitario de Albacete (CHUA), Servicio de Salud de Castilla-La Mancha (SESCAM), Albacete, Spain
| | | | | | - Kjell Torén
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Deborah Jarvis
- Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, UK
- MRC-PHE Centre for Environment and Health, Imperial College London, London, UK
- Equal contribution as last authors
| | - Cecilie Svanes
- Centre for International Health, Dept of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
- Equal contribution as last authors
| |
Collapse
|
30
|
Rare and low-frequency exonic variants and gene-by-smoking interactions in pulmonary function. Sci Rep 2021; 11:19365. [PMID: 34588469 PMCID: PMC8481467 DOI: 10.1038/s41598-021-98120-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 09/02/2021] [Indexed: 02/08/2023] Open
Abstract
Genome-wide association studies have identified numerous common genetic variants associated with spirometric measures of pulmonary function, including forced expiratory volume in one second (FEV1), forced vital capacity, and their ratio. However, variants with lower minor allele frequencies are less explored. We conducted a large-scale gene-smoking interaction meta-analysis on exonic rare and low-frequency variants involving 44,429 individuals of European ancestry in the discovery stage and sought replication in the UK BiLEVE study with 45,133 European ancestry samples and UK Biobank study with 59,478 samples. We leveraged data on cigarette smoking, the major environmental risk factor for reduced lung function, by testing gene-by-smoking interaction effects only and simultaneously testing the genetic main effects and interaction effects. The most statistically significant signal that replicated was a previously reported low-frequency signal in GPR126, distinct from common variant associations in this gene. Although only nominal replication was obtained for a top rare variant signal rs142935352 in one of the two studies, interaction and joint tests for current smoking and PDE3B were significantly associated with FEV1. This study investigates the utility of assessing gene-by-smoking interactions and underscores their effects on potential pulmonary function.
Collapse
|
31
|
Hu Y, Cheng X, Qiu Z, Chen X. Identification of Metabolism-Associated Molecular Subtypes of Chronic Obstructive Pulmonary Disease. Int J Chron Obstruct Pulmon Dis 2021; 16:2351-2362. [PMID: 34429593 PMCID: PMC8374844 DOI: 10.2147/copd.s316304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 08/02/2021] [Indexed: 02/05/2023] Open
Abstract
Purpose This study aimed to identify the COPD molecular subtypes reflecting pulmonary function damage on the basis of metabolism-related gene expression, which provided the opportunity to study the metabolic heterogeneity and the association of metabolic pathways with pulmonary function damage. Methods Univariate linear regression and the Boruta algorithm were used to select metabolism-related genes associated with forced expiratory volume in the first second (FEV1) and FEV1/forced vital capacity (FVC) in the Evaluation of COPD to Longitudinally Identify Predictive Surrogate Endpoints (ECLIPSE) cohort. COPD subtypes were further identified by consensus clustering with best-fit. Then, we analyzed the differences in the clinical characteristics, metabolic pathways, immune cell characteristics, and transcription features among the subtypes. Results This study identified two subtypes (C1 and C2). C1 exhibited higher levels of lower pulmonary function and innate immunity than C2. Ten metabolic pathways were confirmed as key metabolic pathways. The pathways related to N-glycan, hexosamine, purine, alanine, aspartate and glutamate tended to be positively associated with the abundance of adaptive immune cells and negatively associated with the abundance of innate immune cells. In addition, other pathways had opposite trends. All results were verified in Genetic Epidemiology of COPD (COPDGene) datasets. Conclusion The two subtypes reflect the pulmonary function damage and help to further understand the metabolic mechanism of pulmonary function in COPD. Further studies are needed to prove the prognostic and therapeutic value of the subtypes.
Collapse
Affiliation(s)
- Yuanlong Hu
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People's Republic of China
| | - Xiaomeng Cheng
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People's Republic of China
| | - Zhanjun Qiu
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People's Republic of China
| | - Xianhai Chen
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People's Republic of China
| |
Collapse
|
32
|
Yun JH, Lee C, Liu T, Liu S, Kim EY, Xu S, Curtis JL, Pinello L, Bowler RP, Silverman EK, Hersh CP, Zhou X. Hedgehog interacting protein-expressing lung fibroblasts suppress lymphocytic inflammation in mice. JCI Insight 2021; 6:e144575. [PMID: 34375314 PMCID: PMC8492352 DOI: 10.1172/jci.insight.144575] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 07/21/2021] [Indexed: 11/30/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is mainly caused by cigarette smoking and characterized by chronic inflammation in vulnerable individuals. However, it is unknown how genetic factors may shape chronic inflammation in COPD. To understand how hedgehog interacting protein, encoded by HHIP gene identified in the genome-wide association study in COPD, plays a role in inflammation, we utilized Hhip+/– mice that present persistent inflammation and emphysema upon aging similar to that observed in human COPD. By performing single-cell RNA sequencing of the whole lung from mice at different ages, we found that Hhip+/– mice developed a cytotoxic immune response with a specific increase in killer cell lectin-like receptor G1–positive CD8+ T cells with upregulated Ifnγ expression recapitulating human COPD. Hhip expression was restricted to a lung fibroblast subpopulation that had increased interaction with CD8+ T lymphocytes in Hhip+/– compared with Hhip+/+ during aging. Hhip-expressing lung fibroblasts had upregulated IL-18 pathway genes in Hhip+/– lung fibroblasts, which was sufficient to drive increased levels of IFN-γ in CD8+ T cells ex vivo. Our finding provides insight into how a common genetic variation contributes to the amplified lymphocytic inflammation in COPD.
Collapse
Affiliation(s)
- Jeong H Yun
- Department of Medicine, Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, United States of America
| | - ChangHee Lee
- Department of Genetics, Harvard Medical School, Boston, United States of America
| | - Tao Liu
- Department of Medicine, Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, United States of America
| | - Siqi Liu
- Department of Medicine, Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, United States of America
| | - Edy Y Kim
- Department of Medicine, Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, United States of America
| | - Shuang Xu
- Department of Medicine, Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, United States of America
| | - Jeffrey L Curtis
- VA Center, University of Michigan Medical School, Ann Arbor, United States of America
| | - Luca Pinello
- Department of Pathology, Massachusetts General Hospital, Boston, United States of America
| | - Russell P Bowler
- Department of Medicine, National Jewish Health, Denver, United States of America
| | - Edwin K Silverman
- Department of Medicine, Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, United States of America
| | - Craig P Hersh
- Department of Medicine, Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, United States of America
| | - Xiaobo Zhou
- Department of Medicine, Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, United States of America
| |
Collapse
|
33
|
Hernandez-Pacheco N, Gorenjak M, Li J, Repnik K, Vijverberg SJ, Berce V, Jorgensen A, Karimi L, Schieck M, Samedy-Bates LA, Tavendale R, Villar J, Mukhopadhyay S, Pirmohamed M, Verhamme KMC, Kabesch M, Hawcutt DB, Turner S, Palmer CN, Tantisira KG, Burchard EG, Maitland-van der Zee AH, Flores C, Potočnik U, Pino-Yanes M. Identification of ROBO2 as a Potential Locus Associated with Inhaled Corticosteroid Response in Childhood Asthma. J Pers Med 2021; 11:jpm11080733. [PMID: 34442380 PMCID: PMC8399629 DOI: 10.3390/jpm11080733] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 07/26/2021] [Indexed: 12/15/2022] Open
Abstract
Inhaled corticosteroids (ICS) are the most common asthma controller medication. An important contribution of genetic factors in ICS response has been evidenced. Here, we aimed to identify novel genetic markers involved in ICS response in asthma. A genome-wide association study (GWAS) of the change in lung function after 6 weeks of ICS treatment was performed in 166 asthma patients from the SLOVENIA study. Patients with an improvement in lung function ≥8% were considered as ICS responders. Suggestively associated variants (p-value ≤ 5 × 10−6) were evaluated in an independent study (n = 175). Validation of the association with asthma exacerbations despite ICS use was attempted in European (n = 2681) and admixed (n = 1347) populations. Variants previously associated with ICS response were also assessed for replication. As a result, the SNP rs1166980 from the ROBO2 gene was suggestively associated with the change in lung function (OR for G allele: 7.01, 95% CI: 3.29–14.93, p = 4.61 × 10−7), although this was not validated in CAMP. ROBO2 showed gene-level evidence of replication with asthma exacerbations despite ICS use in Europeans (minimum p-value = 1.44 × 10−5), but not in admixed individuals. The association of PDE10A-T with ICS response described by a previous study was validated. This study suggests that ROBO2 could be a potential novel locus for ICS response in Europeans.
Collapse
Affiliation(s)
- Natalia Hernandez-Pacheco
- Research Unit, Hospital Universitario N.S. de Candelaria, Universidad de La Laguna, Carretera General del Rosario 145, 38010 Santa Cruz de Tenerife, Spain;
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez s/n, Faculty of Science, Apartado 456, 38200 San Cristóbal de La Laguna, Spain;
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Avenida de Monforte de Lemos, 5, 28029 Madrid, Spain;
- Correspondence: (N.H.-P.); (U.P.); Tel.: +46-0702983315 (N.H.-P.); +386-22345854 (U.P.)
| | - Mario Gorenjak
- Center for Human Molecular Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia; (M.G.); (K.R.); (V.B.)
| | - Jiang Li
- The Channing Division of Network Medicine, Department of Medicine, Brigham & Women’s Hospital and Harvard Medical School, 75 Francis St, Boston, MA 02115, USA; (J.L.); (K.G.T.)
| | - Katja Repnik
- Center for Human Molecular Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia; (M.G.); (K.R.); (V.B.)
- Laboratory for Biochemistry, Molecular Biology, and Genomics, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia
| | - Susanne J. Vijverberg
- Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (S.J.V.); (A.H.M.-v.d.Z.)
- Division of Pharmacoepidemiology and Clinical Pharmacology, Faculty of Science, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands
- Department of Pediatric Respiratory Medicine and Allergy, Emma’s Children Hospital, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Vojko Berce
- Center for Human Molecular Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia; (M.G.); (K.R.); (V.B.)
- Department of Pediatrics, University Medical Centre Maribor, Ljubljanska Ulica 5, 2000 Maribor, Slovenia
| | - Andrea Jorgensen
- Department of Biostatistics, University of Liverpool, Crown Street, Liverpool L69 3BX, UK;
| | - Leila Karimi
- Department of Medical Informatics, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (L.K.); (K.M.C.V.)
| | - Maximilian Schieck
- Department of Pediatric Pneumology and Allergy, University Children’s Hospital Regensburg (KUNO), Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany; (M.S.); (M.K.)
- Department of Human Genetics, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Lesly-Anne Samedy-Bates
- Department of Medicine, University of California, San Francisco, CA 94143, USA; (L.-A.S.-B.); (E.G.B.)
- Department of Bioengineering and Therapeutic Sciences, University of California, 533 Parnassus Ave, San Francisco, CA 94143, USA
| | - Roger Tavendale
- Population Pharmacogenetics Group, Biomedical Research Institute, Ninewells Hospital, and Medical School, University of Dundee, Dundee DD1 9SY, UK; (R.T.); (S.M.); (C.N.P.)
| | - Jesús Villar
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Avenida de Monforte de Lemos, 5, 28029 Madrid, Spain;
- Multidisciplinary Organ Dysfunction Evaluation Research Network, Research Unit, Hospital Universitario Dr. Negrín, Calle Barranco de la Ballena s/n, 35019 Las Palmas de Gran Canaria, Spain
- Keenan Research Center for Biomedical Science, Li Ka Shing Knowledge Institute, St Michael’s Hospital, 30 Bond St, Toronto, ON M5B 1W8, Canada
| | - Somnath Mukhopadhyay
- Population Pharmacogenetics Group, Biomedical Research Institute, Ninewells Hospital, and Medical School, University of Dundee, Dundee DD1 9SY, UK; (R.T.); (S.M.); (C.N.P.)
- Academic Department of Paediatrics, Brighton and Sussex Medical School, Royal Alexandra Children’s Hospital, 94 N-S Rd, Falmer, Brighton BN2 5BE, UK
| | - Munir Pirmohamed
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, 200 London Rd, Liverpool L3 9TA, UK;
| | - Katia M. C. Verhamme
- Department of Medical Informatics, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (L.K.); (K.M.C.V.)
| | - Michael Kabesch
- Department of Pediatric Pneumology and Allergy, University Children’s Hospital Regensburg (KUNO), Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany; (M.S.); (M.K.)
| | - Daniel B. Hawcutt
- Department of Women’s and Children’s Health, University of Liverpool, Liverpool L69 3BX, UK;
- Alder Hey Children’s Hospital, E Prescot Rd, Liverpool L14 5AB, UK
| | - Steve Turner
- Child Health, University of Aberdeen, King’s College, Aberdeen AB24 3FX, UK;
| | - Colin N. Palmer
- Population Pharmacogenetics Group, Biomedical Research Institute, Ninewells Hospital, and Medical School, University of Dundee, Dundee DD1 9SY, UK; (R.T.); (S.M.); (C.N.P.)
| | - Kelan G. Tantisira
- The Channing Division of Network Medicine, Department of Medicine, Brigham & Women’s Hospital and Harvard Medical School, 75 Francis St, Boston, MA 02115, USA; (J.L.); (K.G.T.)
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, and Harvard Medical School, 75 Francis St, Boston, MA 02115, USA
| | - Esteban G. Burchard
- Department of Medicine, University of California, San Francisco, CA 94143, USA; (L.-A.S.-B.); (E.G.B.)
- Department of Bioengineering and Therapeutic Sciences, University of California, 533 Parnassus Ave, San Francisco, CA 94143, USA
| | - Anke H. Maitland-van der Zee
- Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (S.J.V.); (A.H.M.-v.d.Z.)
- Division of Pharmacoepidemiology and Clinical Pharmacology, Faculty of Science, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands
- Department of Pediatric Respiratory Medicine and Allergy, Emma’s Children Hospital, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Carlos Flores
- Research Unit, Hospital Universitario N.S. de Candelaria, Universidad de La Laguna, Carretera General del Rosario 145, 38010 Santa Cruz de Tenerife, Spain;
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Avenida de Monforte de Lemos, 5, 28029 Madrid, Spain;
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Polígono Industrial de Granadilla, 38600 Granadilla, Spain
- Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna, Faculty of Health Sciences, Apartado 456, 38200 San Cristóbal de La Laguna, Spain
| | - Uroš Potočnik
- Center for Human Molecular Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia; (M.G.); (K.R.); (V.B.)
- Laboratory for Biochemistry, Molecular Biology, and Genomics, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia
- Correspondence: (N.H.-P.); (U.P.); Tel.: +46-0702983315 (N.H.-P.); +386-22345854 (U.P.)
| | - Maria Pino-Yanes
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez s/n, Faculty of Science, Apartado 456, 38200 San Cristóbal de La Laguna, Spain;
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Avenida de Monforte de Lemos, 5, 28029 Madrid, Spain;
- Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna, Faculty of Health Sciences, Apartado 456, 38200 San Cristóbal de La Laguna, Spain
| |
Collapse
|
34
|
Ritchey B, Hai Q, Han J, Barnard J, Smith JD. Genetic variant in 3' untranslated region of the mouse pycard gene regulates inflammasome activity. eLife 2021; 10:e68203. [PMID: 34197316 PMCID: PMC8248980 DOI: 10.7554/elife.68203] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/22/2021] [Indexed: 12/14/2022] Open
Abstract
Quantitative trait locus mapping for interleukin-1β release after inflammasome priming and activation was performed on bone-marrow-derived macrophages (BMDM) from an AKRxDBA/2 mouse strain intercross. The strongest associated locus mapped very close to the Pycard gene on chromosome 7, which codes for the inflammasome adaptor protein apoptosis-associated speck-like protein containing a CARD (ASC). The DBA/2 and AKR Pycard genes only differ at a single-nucleotide polymorphism (SNP) in their 3' untranslated region (UTR). DBA/2 vs. AKR BMDM had increased levels of Pycard mRNA expression and ASC protein, and increased inflammasome speck formation, which was associated with increased Pycard mRNA stability without an increased transcription rate. CRISPR/Cas9 gene editing was performed on DBA/2 embryonic stem cells to change the Pycard 3'UTR SNP from the DBA/2 to the AKR allele. This single base change significantly reduced Pycard expression and inflammasome activity after cells were differentiated into macrophages due to reduced Pycard mRNA stability.
Collapse
Affiliation(s)
- Brian Ritchey
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Qimin Hai
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Juying Han
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - John Barnard
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland ClinicClevelandUnited States
| | - Jonathan D Smith
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland ClinicClevelandUnited States
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve UniversityClevelandUnited States
| |
Collapse
|
35
|
Benway CJ, Liu J, Guo F, Du F, Randell SH, Cho MH, Silverman EK, Zhou X. Chromatin Landscapes of Human Lung Cells Predict Potentially Functional Chronic Obstructive Pulmonary Disease Genome-Wide Association Study Variants. Am J Respir Cell Mol Biol 2021; 65:92-102. [PMID: 33788674 DOI: 10.1165/rcmb.2020-0475oc] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Genome-wide association studies (GWASs) have identified dozens of loci associated with risk of chronic obstructive pulmonary disease (COPD). However, identifying the causal variants and their functional role in the appropriate cell type remains a major challenge. We aimed to identify putative causal variants in 82 GWAS loci associated with COPD susceptibility and predict the regulatory impact of these variants in lung-cell types. We used an integrated approach featuring statistical fine mapping, open chromatin profiling, and machine learning to identify functional variants. We generated chromatin accessibility data using the Assay for Transposase-Accessible Chromatin with High-Throughput Sequencing (ATAC-seq) for human primary lung-cell types implicated in COPD pathobiology. We then evaluated the enrichment of COPD risk variants in lung-specific open chromatin regions and generated cell type-specific regulatory predictions for >6,500 variants corresponding to 82 COPD GWAS loci. Integration of the fine-mapped variants with lung open chromatin regions helped prioritize 22 variants in putative regulatory elements with potential functional effects. Comparison with functional predictions from 222 Encyclopedia of DNA Elements (ENCODE) cell samples revealed cell type-specific regulatory effects of COPD variants in the lung epithelium, endothelium, and immune cells. We identified potential causal variants for COPD risk by integrating fine mapping in GWAS loci with cell-specific regulatory profiling, highlighting the importance of leveraging the chromatin status in relevant cell types to predict the molecular effects of risk variants in lung disease.
Collapse
Affiliation(s)
| | | | - Feng Guo
- Channing Division of Network Medicine and
| | - Fei Du
- Channing Division of Network Medicine and
| | - Scott H Randell
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Michael H Cho
- Channing Division of Network Medicine and.,Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts; and
| | - Edwin K Silverman
- Channing Division of Network Medicine and.,Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts; and
| | - Xiaobo Zhou
- Channing Division of Network Medicine and.,Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts; and
| | | |
Collapse
|
36
|
Hertz DL, Douglas JA, Kidwell KM, Gersch CL, Desta Z, Storniolo AM, Stearns V, Skaar TC, Hayes DF, Henry NL, Rae JM. Genome-wide association study of letrozole plasma concentrations identifies non-exonic variants that may affect CYP2A6 metabolic activity. Pharmacogenet Genomics 2021; 31:116-123. [PMID: 34096894 PMCID: PMC8185249 DOI: 10.1097/fpc.0000000000000429] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVES Letrozole is a nonsteroidal aromatase inhibitor used to treat hormone-receptor-positive breast cancer. Variability in letrozole efficacy and toxicity may be partially attributable to variable systemic drug exposure, which may be influenced by germline variants in the enzymes responsible for letrozole metabolism, including cytochrome P450 2A6 (CYP2A6). The objective of this genome-wide association study (GWAS) was to identify polymorphisms associated with steady-state letrozole concentrations. METHODS The Exemestane and Letrozole Pharmacogenetics (ELPh) Study randomized postmenopausal patients with hormone-receptor-positive nonmetastatic breast cancer to letrozole or exemestane treatment. Germline DNA was collected pretreatment and blood samples were collected after 1 or 3 months of treatment to measure steady-state letrozole (and exemestane) plasma concentrations via HPLC/MS. Genome-wide genotyping was conducted on the Infinium Global Screening Array (>650 000 variants) followed by imputation. The association of each germline variant with age- and BMI-adjusted letrozole concentrations was tested in self-reported white patients via linear regression assuming an additive genetic model. RESULTS There were 228 patients who met the study-specific inclusion criteria and had both DNA and letrozole concentration data for this GWAS. The association for one genotyped polymorphism (rs7937) with letrozole concentration surpassed genome-wide significance (P = 5.26 × 10-10), explaining 13% of the variability in untransformed steady-state letrozole concentrations. Imputation around rs7937 and in silico analyses identified rs56113850, a variant in the CYP2A6 intron that may affect CYP2A6 expression and activity. rs7937 was associated with age- and BMI-adjusted letrozole levels even after adjusting for genotype-predicted CYP2A6 metabolic phenotype (P = 3.86 × 10-10). CONCLUSION Our GWAS findings confirm that steady-state letrozole plasma concentrations are partially determined by germline polymorphisms that affect CYP2A6 activity, including variants near rs7937 such as the intronic rs56113850 variant. Further research is needed to confirm whether rs56113850 directly affects CYP2A6 activity and to integrate nonexonic variants into CYP2A6 phenotypic activity prediction systems.
Collapse
Affiliation(s)
- Daniel L Hertz
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, Michigan
| | - Julie A Douglas
- Department of Human Genetics, University of Michigan Medical School, University of Michigan, Ann Arbor, Michigan
- Department of Mathematics and Statistics, Skidmore College, Saratoga Springs, New York
| | - Kelley M Kidwell
- Department of Biostatistics, University of Michigan School of Public Health, University of Michigan, Ann Arbor, Michigan
| | - Christina L Gersch
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan Medical School, University of Michigan, Ann Arbor, Michigan
| | - Zeruesenay Desta
- Department of Medicine, Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Ana-Maria Storniolo
- Department of Medicine, Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Vered Stearns
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Todd C Skaar
- Department of Medicine, Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Daniel F Hayes
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan Medical School, University of Michigan, Ann Arbor, Michigan
| | - N Lynn Henry
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan Medical School, University of Michigan, Ann Arbor, Michigan
| | - James M Rae
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan Medical School, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
37
|
Margaritte-Jeannin P, Budu-Aggrey A, Ege M, Madore AM, Linhard C, Mohamdi H, von Mutius E, Granell R, Demenais F, Laprise C, Bouzigon E, Dizier MH. Identification of OCA2 as a novel locus for the co-morbidity of asthma-plus-eczema. Clin Exp Allergy 2021; 52:70-81. [PMID: 34155719 DOI: 10.1111/cea.13972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/04/2021] [Accepted: 06/04/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND Numerous genes have been associated with the three most common allergic diseases (asthma, allergic rhinitis or eczema) but these genes explain only a part of the heritability. In the vast majority of genetic studies, complex phenotypes such as co-morbidity of two of these diseases, have not been considered. This may partly explain missing heritability. OBJECTIVE To identify genetic variants specifically associated with the co-morbidity of asthma-plus-eczema. METHODS We first conducted a meta-analysis of four GWAS (Genome-Wide Association Study) of the combined asthma-plus-eczema phenotype (total of 8807 European-ancestry subjects of whom 1208 subjects had both asthma and eczema). To assess whether the association with SNP(s) was specific to the co-morbidity, we also conducted a meta-analysis of homogeneity test of association according to disease status ("asthma-plus-eczema" vs. the presence of only one disease "asthma only or eczema only"). We then used a joint test by combining the two test statistics from the co-morbidity-SNP association and the phenotypic heterogeneity of SNP effect meta-analyses. RESULTS Seven SNPs were detected for specific association to the asthma-plus-eczema co-morbidity, two with significant and five with suggestive evidence using the joint test after correction for multiple testing. The two significant SNPs are located in the OCA2 gene (Oculocutaneous Albinism II), a new locus never detected for significant evidence of association with any allergic disease. This gene is a promising candidate gene, because of its link to skin and lung diseases, and to epithelial barrier and immune mechanisms. CONCLUSION Our study underlines the importance of studying sub-phenotypes as co-morbidities to detect new susceptibility genes.
Collapse
Affiliation(s)
| | - Ashley Budu-Aggrey
- Medical Research Council (MRC) Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Markus Ege
- Comprehensive Pneumology Center Munich (CPC-M), German Center for Lung Research, Dr von Hauner Children's Hospital, Ludwig Maximilian University, Munich, Germany
| | - Anne-Marie Madore
- Département des Sciences Fondamentales, Centre Intersectoriel en Santé Durable (CISD), Université du Québec à Chicoutimi, Saguenay, QC, Canada
| | | | | | - Erika von Mutius
- Comprehensive Pneumology Center Munich (CPC-M), German Center for Lung Research, Dr von Hauner Children's Hospital, Ludwig Maximilian University, Munich, Germany
| | - Raquel Granell
- Medical Research Council (MRC) Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | | | - Catherine Laprise
- Département des Sciences Fondamentales, Centre Intersectoriel en Santé Durable (CISD), Université du Québec à Chicoutimi, Saguenay, QC, Canada
| | | | | |
Collapse
|
38
|
Tam A, Leclair P, Li LV, Yang CX, Li X, Witzigmann D, Kulkarni JA, Hackett TL, Dorscheid DR, Singhera GK, Hogg JC, Cullis PR, Sin DD, Lim CJ. FAM13A as potential therapeutic target in modulating TGF-β-induced airway tissue remodeling in COPD. Am J Physiol Lung Cell Mol Physiol 2021; 321:L377-L391. [PMID: 34105356 DOI: 10.1152/ajplung.00477.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Genome-wide association studies have shown that a gene variant in the Family with sequence similarity 13, member A (FAM13A) is strongly associated with reduced lung function and the appearance of respiratory symptoms in patients with chronic obstructive pulmonary disease (COPD). A key player in smoking-induced tissue injury and airway remodeling is the transforming growth factor-β1 (TGF-β1). To determine the role of FAM13A in TGF-β1 signaling, FAM13A-/- airway epithelial cells were generated using CRISPR-Cas9, whereas overexpression of FAM13A was achieved using lipid nanoparticles. Wild-type (WT) and FAM13A-/- cells were treated with TGF-β1, followed by gene and/or protein expression analyses. FAM13A-/- cells augmented TGF-β1-induced increase in collagen type 1 (COL1A1), matrix metalloproteinase 2 (MMP2), expression compared with WT cells. This effect was mediated by an increase in β-catenin (CTNNB1) expression in FAM13A-/- cells compared with WT cells after TGF-β1 treatment. FAM13A overexpression was partially protective from TGF-β1-induced COL1A1 expression. Finally, we showed that airway epithelial-specific FAM13A protein expression is significantly increased in patients with severe COPD compared with control nonsmokers, and negatively correlated with lung function. In contrast, β-catenin (CTNNB1), which has previously been linked to be regulated by FAM13A, is decreased in the airway epithelium of smokers with COPD compared with non-COPD subjects. Together, our data showed that FAM13A may be protective from TGF-β1-induced fibrotic response in the airway epithelium via sequestering CTNNB1 from its regulation on downstream targets. Therapeutic increase in FAM13A expression in the airway epithelium of smokers at risk for COPD, and those with mild COPD, may reduce the extent of airway tissue remodeling.
Collapse
Affiliation(s)
- Anthony Tam
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada.,Center for Heart Lung Innovation, University of British Columbia, St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - Pascal Leclair
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ling Vicky Li
- Department of Pathology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Chen X Yang
- Center for Heart Lung Innovation, University of British Columbia, St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - Xuan Li
- Center for Heart Lung Innovation, University of British Columbia, St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - Dominik Witzigmann
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada.,NanoMedicines Innovation Network, Vancouver, British Columbia, Canada
| | - Jayesh A Kulkarni
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada.,NanoMedicines Innovation Network, Vancouver, British Columbia, Canada
| | - Tillie-Louise Hackett
- Center for Heart Lung Innovation, University of British Columbia, St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - Delbert R Dorscheid
- Center for Heart Lung Innovation, University of British Columbia, St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - Gurpreet K Singhera
- Center for Heart Lung Innovation, University of British Columbia, St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - James C Hogg
- Center for Heart Lung Innovation, University of British Columbia, St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - Pieter R Cullis
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada.,NanoMedicines Innovation Network, Vancouver, British Columbia, Canada
| | - Don D Sin
- Center for Heart Lung Innovation, University of British Columbia, St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - Chinten James Lim
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
39
|
Danielewicz H, Gurgul A, Dębińska A, Myszczyszyn G, Szmatoła T, Myszkal A, Jasielczuk I, Drabik-Chamerska A, Hirnle L, Boznański A. Maternal atopy and offspring epigenome-wide methylation signature. Epigenetics 2021; 16:629-641. [PMID: 32902349 PMCID: PMC8143219 DOI: 10.1080/15592294.2020.1814504] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/18/2020] [Accepted: 08/10/2020] [Indexed: 12/18/2022] Open
Abstract
The increase in the prevalence of allergic diseases is believed to partially depend on environmental changes. DNA methylation is a major epigenetic mechanism, which is known to respond to environmental factors. A number of studies have revealed that patterns of DNA methylation may potentially predict allergic diseases.Here, we examined how maternal atopy is associated with methylation patterns in the cord blood of neonates.We conducted an epigenome-wide association study in a cohort of 96 mother-child pairs. Pregnant women aged not more than 35 years old, not currently smoking or exposed to environmental tobacco smoke, who did not report obesity before conception were considered eligible. They were further tested for atopy. Converted DNA from cord blood was analysed using Infinium MethylationEPIC; for statistical analysis, RnBeads software was applied. Gestational age and sex were included as covariates in the final analysis.83 DM sites were associated with maternal atopy. Within the top DM sites, there were CpG sites which mapped to genes SCD, ITM2C, NT5C3A and NPEPL1. Regional analysis revealed 25 tiling regions, 4 genes, 3 CpG islands and 5 gene promoters, (including PIGCP1, ADAM3A, ZSCAN12P1) associated with maternal atopy. Gene content analysis revealed pointwise enrichments in pathways related to purine-containing compound metabolism, the G1/S transition of the mitotic cell cycle, stem cell division and cellular glucose homoeostasis.These findings suggest that maternal atopy provides a unique intrauterine environment that may constitute the first environment in which exposure is associated with methylation patterns in newborn.
Collapse
Affiliation(s)
- Hanna Danielewicz
- 1st Department of Pediatrics, Allergy and Cardiology, Wroclaw Medical University, Wroclaw, Poland
| | - Artur Gurgul
- Center for Experimental and Innovative Medicine, University of Agriculture in Krakow, Kraków, Poland
| | - Anna Dębińska
- 1st Department of Pediatrics, Allergy and Cardiology, Wroclaw Medical University, Wroclaw, Poland
| | - Grzegorz Myszczyszyn
- 1st Department of Gynecology and Obstetrics, Wroclaw Medical University, Wroclaw, Poland
| | - Tomasz Szmatoła
- Center for Experimental and Innovative Medicine, University of Agriculture in Krakow, Kraków, Poland
| | - Anna Myszkal
- 1st Department of Gynecology and Obstetrics, University Hospital of Jan Mikulicz-Radecki in Wroclaw, Wroclaw, Poland
| | - Igor Jasielczuk
- Center for Experimental and Innovative Medicine, University of Agriculture in Krakow, Kraków, Poland
| | - Anna Drabik-Chamerska
- 1st Department of Pediatrics, Allergy and Cardiology, Wroclaw Medical University, Wroclaw, Poland
| | - Lidia Hirnle
- 1st Department of Gynecology and Obstetrics, Wroclaw Medical University, Wroclaw, Poland
| | - Andrzej Boznański
- 1st Department of Pediatrics, Allergy and Cardiology, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
40
|
Lutz SM, Wu AC, Hokanson JE, Vansteelandt S, Lange C. Caution against examining the role of reverse causality in Mendelian Randomization. Genet Epidemiol 2021; 45:445-454. [PMID: 34008876 DOI: 10.1002/gepi.22385] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 03/13/2021] [Accepted: 04/13/2021] [Indexed: 12/18/2022]
Abstract
Recently, Mendelian Randomization (MR) has gained in popularity as a concept to assess the causal relationship between phenotypes in genetic association studies. An extension of standard MR methodology, the MR Steiger approach, has recently been developed to infer the causal direction between two phenotypes in prospective studies. Through simulation studies, we examined and quantified the ability of the MR Steiger approach to determine the causal direction between two phenotypes (i.e., effect direction). Through simulation studies, our results show that the MR Steiger approach may fail to correctly identify the direction of causality. This is true, especially in the presence of pleiotropy. We also applied the MR Steiger method to the COPDGene study, a case-control study of chronic obstructive pulmonary disease (COPD) in current and former smokers, to examine the role of smoking on lung function. We have created an R package on Github called reverseDirection which runs simulations for user-specified scenarios to examine when the MR Steiger approach can correctly determine the causal direction between two phenotypes in any user specified scenario. In summary, our results emphasize the importance of caution when the MR Steiger approach is used in to infer the direction of causality.
Collapse
Affiliation(s)
- Sharon M Lutz
- Department of Population Medicine, PRecisiOn Medicine Translational Research (PROMoTeR) Center, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, Massachusetts, USA.,Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Ann Chen Wu
- Department of Population Medicine, PRecisiOn Medicine Translational Research (PROMoTeR) Center, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, Massachusetts, USA
| | - John E Hokanson
- Department of Epidemiology, Anschutz Medical Campus, University of Colorado, Aurora, Colorado, USA
| | - Stijn Vansteelandt
- Department of Applied Mathematics, Computer Science, and Statistics, Ghent University, Ghent, Belgium.,Department of Medical Statistics, London School of Hygiene and Tropical Medicine, London, UK
| | - Christoph Lange
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
41
|
Martucci VL, Richmond B, Davis LK, Blackwell TS, Cox NJ, Samuels D, Velez Edwards D, Aldrich MC. Fate or coincidence: do COPD and major depression share genetic risk factors? Hum Mol Genet 2021; 30:619-628. [PMID: 33704461 PMCID: PMC8120137 DOI: 10.1093/hmg/ddab068] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 02/24/2021] [Accepted: 02/27/2021] [Indexed: 01/12/2023] Open
Abstract
Major depressive disorder (MDD) is a common comorbidity in chronic obstructive pulmonary disease (COPD), affecting up to 57% of patients with COPD. Although the comorbidity of COPD and MDD is well established, the causal relationship between these two diseases is unclear. A large-scale electronic health record clinical biobank and genome-wide association study summary statistics for MDD and lung function traits were used to investigate potential shared underlying genetic susceptibility between COPD and MDD. Linkage disequilibrium score regression was used to estimate genetic correlation between phenotypes. Polygenic risk scores (PRS) for MDD and lung function traits were developed and used to perform a phenome-wide association study (PheWAS). Multi-trait-based conditional and joint analysis identified single-nucleotide polymorphisms (SNPs) influencing both lung function and MDD. We found genetic correlations between MDD and all lung function traits were small and not statistically significant. A PRS-MDD was significantly associated with an increased risk of COPD in a PheWAS [odds ratio (OR) = 1.12, 95% confidence interval (CI): 1.09-1.16] when adjusting for age, sex and genetic ancestry, but this relationship became attenuated when controlling for smoking history (OR = 1.08, 95% CI: 1.04-1.13). No significant associations were found between the lung function PRS and MDD. Multi-trait-based conditional and joint analysis identified three SNPs that may contribute to both traits, two of which were previously associated with mood disorders and COPD. Our findings suggest that the observed relationship between COPD and MDD may not be driven by a strong shared genetic architecture.
Collapse
Affiliation(s)
- Victoria L Martucci
- Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Bradley Richmond
- Department of Veterans Affairs Medical Center, Nashville, TN 37212, USA
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Lea K Davis
- Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Timothy S Blackwell
- Department of Veterans Affairs Medical Center, Nashville, TN 37212, USA
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Nancy J Cox
- Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - David Samuels
- Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Digna Velez Edwards
- Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Division of Quantitative Sciences, Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Melinda C Aldrich
- Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Thoracic Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Division of Epidemiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
42
|
Hernandez-Pacheco N, Vijverberg SJ, Herrera-Luis E, Li J, Sio YY, Granell R, Corrales A, Maroteau C, Lethem R, Perez-Garcia J, Farzan N, Repnik K, Gorenjak M, Soares P, Karimi L, Schieck M, Pérez-Méndez L, Berce V, Tavendale R, Eng C, Sardon O, Kull I, Mukhopadhyay S, Pirmohamed M, Verhamme KMC, Burchard EG, Kabesch M, Hawcutt DB, Melén E, Potočnik U, Chew FT, Tantisira KG, Turner S, Palmer CN, Flores C, Pino-Yanes M, Maitland-van der Zee AH. Genome-wide association study of asthma exacerbations despite inhaled corticosteroid use. Eur Respir J 2021; 57:2003388. [PMID: 33303529 PMCID: PMC8122045 DOI: 10.1183/13993003.03388-2020] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 11/09/2020] [Indexed: 02/07/2023]
Abstract
RATIONALE Substantial variability in response to asthma treatment with inhaled corticosteroids (ICS) has been described among individuals and populations, suggesting the contribution of genetic factors. Nonetheless, only a few genes have been identified to date. We aimed to identify genetic variants associated with asthma exacerbations despite ICS use in European children and young adults and to validate the findings in non-Europeans. Moreover, we explored whether a gene-set enrichment analysis could suggest potential novel asthma therapies. METHODS A genome-wide association study (GWAS) of asthma exacerbations was tested in 2681 children of European descent treated with ICS from eight studies. Suggestive association signals were followed up for replication in 538 European asthma patients. Further evaluation was performed in 1773 non-Europeans. Variants revealed by published GWAS were assessed for replication. Additionally, gene-set enrichment analysis focused on drugs was performed. RESULTS 10 independent variants were associated with asthma exacerbations despite ICS treatment in the discovery phase (p≤5×10-6). Of those, one variant at the CACNA2D3-WNT5A locus was nominally replicated in Europeans (rs67026078; p=0.010), but this was not validated in non-European populations. Five other genes associated with ICS response in previous studies were replicated. Additionally, an enrichment of associations in genes regulated by trichostatin A treatment was found. CONCLUSIONS The intergenic region of CACNA2D3 and WNT5A was revealed as a novel locus for asthma exacerbations despite ICS treatment in European populations. Genes associated were related to trichostatin A, suggesting that this drug could regulate the molecular mechanisms involved in treatment response.
Collapse
Affiliation(s)
- Natalia Hernandez-Pacheco
- Research Unit, Hospital Universitario N.S. de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
- Genomics and Health Group, Dept of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Susanne J Vijverberg
- Dept of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Division of Pharmacoepidemiology and Clinical Pharmacology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
- Dept of Paediatric Respiratory Medicine and Allergy, Emma's Children Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Esther Herrera-Luis
- Genomics and Health Group, Dept of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Jiang Li
- The Channing Division of Network Medicine, Dept of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Yang Yie Sio
- Dept of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Raquel Granell
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Almudena Corrales
- Research Unit, Hospital Universitario N.S. de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Cyrielle Maroteau
- Division of Population Health and Genomics, School of Medicine, University of Dundee, Dundee, UK
| | - Ryan Lethem
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Javier Perez-Garcia
- Genomics and Health Group, Dept of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Niloufar Farzan
- Dept of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Division of Pharmacoepidemiology and Clinical Pharmacology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
- Breathomix B.V., El Reeuwijk, The Netherlands
| | - Katja Repnik
- Center for Human Molecular Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Laboratory for Biochemistry, Molecular Biology and Genomics, Faculty for Chemistry and Chemical Engineering, University of Maribor, Maribor, Slovenia
| | - Mario Gorenjak
- Center for Human Molecular Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Patricia Soares
- Academic Dept of Paediatrics, Brighton and Sussex Medical School, Royal Alexandra Children's Hospital, Brighton, UK
- Escola Nacional de Saúde Pública, Lisboa, Portugal
| | - Leila Karimi
- Dept of Medical Informatics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Maximilian Schieck
- Dept of Paediatric Pneumology and Allergy, University Children's Hospital Regensburg (KUNO), Regensburg, Germany
- Dept of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Lina Pérez-Méndez
- Research Unit, Hospital Universitario N.S. de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Dept of Clinic Epidemiology and Biostatistics, Research Unit, Hospital Universitario N.S. de Candelaria, Gerencia de Atención Primaria, Santa Cruz de Tenerife, Spain
| | - Vojko Berce
- Center for Human Molecular Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Dept of Paediatrics, University Medical Centre Maribor, Maribor, Slovenia
| | - Roger Tavendale
- Population Pharmacogenetics Group, Biomedical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Celeste Eng
- Dept of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Olaia Sardon
- Division of Paediatric Respiratory Medicine, Hospital Universitario Donostia, San Sebastián, Spain
- Dept of Paediatrics, University of the Basque Country (UPV/EHU), San Sebastián, Spain
| | - Inger Kull
- Dept of Clinical Sciences and Education Södersjukhuset, Karolinska Institutet and Sachs' Children's Hospital, Stockholm, Sweden
| | - Somnath Mukhopadhyay
- Academic Dept of Paediatrics, Brighton and Sussex Medical School, Royal Alexandra Children's Hospital, Brighton, UK
- Population Pharmacogenetics Group, Biomedical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Munir Pirmohamed
- Dept of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Katia M C Verhamme
- Dept of Medical Informatics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Esteban G Burchard
- Dept of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Dept of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Michael Kabesch
- Dept of Paediatric Pneumology and Allergy, University Children's Hospital Regensburg (KUNO), Regensburg, Germany
| | - Daniel B Hawcutt
- Dept of Women's and Children's Health, University of Liverpool, Liverpool, UK
- Alder Hey Children's Hospital, Liverpool, UK
| | - Erik Melén
- Dept of Clinical Sciences and Education Södersjukhuset, Karolinska Institutet and Sachs' Children's Hospital, Stockholm, Sweden
- Institute of Environmental Medicine, Karolinska Institutet, Solna, Sweden
| | - Uroš Potočnik
- Center for Human Molecular Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Laboratory for Biochemistry, Molecular Biology and Genomics, Faculty for Chemistry and Chemical Engineering, University of Maribor, Maribor, Slovenia
| | - Fook Tim Chew
- Dept of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Kelan G Tantisira
- The Channing Division of Network Medicine, Dept of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Pulmonary and Critical Care Medicine, Dept of Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, USA
| | - Steve Turner
- Child Health, University of Aberdeen, Aberdeen, UK
| | - Colin N Palmer
- Population Pharmacogenetics Group, Biomedical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Carlos Flores
- Research Unit, Hospital Universitario N.S. de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain
- Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Maria Pino-Yanes
- Research Unit, Hospital Universitario N.S. de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
- Genomics and Health Group, Dept of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna, San Cristóbal de La Laguna, Spain
- These authors contributed equally to this work
| | - Anke H Maitland-van der Zee
- Dept of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Division of Pharmacoepidemiology and Clinical Pharmacology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
- Dept of Paediatric Respiratory Medicine and Allergy, Emma's Children Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- These authors contributed equally to this work
| |
Collapse
|
43
|
Read RW, Schlauch KA, Lombardi VC, Cirulli ET, Washington NL, Lu JT, Grzymski JJ. Genome-Wide Identification of Rare and Common Variants Driving Triglyceride Levels in a Nevada Population. Front Genet 2021; 12:639418. [PMID: 33763119 PMCID: PMC7982958 DOI: 10.3389/fgene.2021.639418] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/12/2021] [Indexed: 01/08/2023] Open
Abstract
Clinical conditions correlated with elevated triglyceride levels are well-known: coronary heart disease, hypertension, and diabetes. Underlying genetic and phenotypic mechanisms are not fully understood, partially due to lack of coordinated genotypic-phenotypic data. Here we use a subset of the Healthy Nevada Project, a population of 9,183 sequenced participants with longitudinal electronic health records to examine consequences of altered triglyceride levels. Specifically, Healthy Nevada Project participants sequenced by the Helix Exome+ platform were cross-referenced to their electronic medical records to identify: (1) rare and common single-variant genome-wide associations; (2) gene-based associations using a Sequence Kernel Association Test; (3) phenome-wide associations with triglyceride levels; and (4) pleiotropic variants linked to triglyceride levels. The study identified 549 significant single-variant associations (p < 8.75 × 10-9), many in chromosome 11's triglyceride hotspot: ZPR1, BUD13, APOC3, APOA5. A well-known protective loss-of-function variant in APOC3 (R19X) was associated with a 51% decrease in triglyceride levels in the cohort. Sixteen gene-based triglyceride associations were identified; six of these genes surprisingly did not include a single variant with significant associations. Results at the variant and gene level were validated with the UK Biobank. The combination of a single-variant genome-wide association, a gene-based association method, and phenome wide-association studies identified rare and common variants, genes, and phenotypes associated with elevated triglyceride levels, some of which may have been overlooked with standard approaches.
Collapse
Affiliation(s)
- Robert W. Read
- Center for Genomic Medicine, Desert Research Institute, Reno, NV, United States
| | - Karen A. Schlauch
- Center for Genomic Medicine, Desert Research Institute, Reno, NV, United States
| | - Vincent C. Lombardi
- Department of Microbiology and Immunology, School of Medicine, University of Nevada, Reno, Reno, NV, United States
| | | | | | - James T. Lu
- Helix Opco, LLC., San Mateo, CA, United States
| | - Joseph J. Grzymski
- Center for Genomic Medicine, Desert Research Institute, Reno, NV, United States
- Renown Health, Reno, NV, United States
| |
Collapse
|
44
|
Goddard PC, Keys KL, Mak ACY, Lee EY, Liu AK, Samedy-Bates LA, Risse-Adams O, Contreras MG, Elhawary JR, Hu D, Huntsman S, Oh SS, Salazar S, Eng C, Himes BE, White MJ, Burchard EG. Integrative genomic analysis in African American children with asthma finds three novel loci associated with lung function. Genet Epidemiol 2021; 45:190-208. [PMID: 32989782 PMCID: PMC7902343 DOI: 10.1002/gepi.22365] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/21/2020] [Accepted: 09/14/2020] [Indexed: 11/06/2022]
Abstract
Bronchodilator (BD) drugs are commonly prescribed for treatment and management of obstructive lung function present with diseases such as asthma. Administration of BD medication can partially or fully restore lung function as measured by pulmonary function tests. The genetics of baseline lung function measures taken before BD medication have been extensively studied, and the genetics of the BD response itself have received some attention. However, few studies have focused on the genetics of post-BD lung function. To address this gap, we analyzed lung function phenotypes in 1103 subjects from the Study of African Americans, Asthma, Genes, and Environment, a pediatric asthma case-control cohort, using an integrative genomic analysis approach that combined genotype, locus-specific genetic ancestry, and functional annotation information. We integrated genome-wide association study (GWAS) results with an admixture mapping scan of three pulmonary function tests (forced expiratory volume in 1 s [FEV1 ], forced vital capacity [FVC], and FEV1 /FVC) taken before and after albuterol BD administration on the same subjects, yielding six traits. We identified 18 GWAS loci, and five additional loci from admixture mapping, spanning several known and novel lung function candidate genes. Most loci identified via admixture mapping exhibited wide variation in minor allele frequency across genotyped global populations. Functional fine-mapping revealed an enrichment of epigenetic annotations from peripheral blood mononuclear cells, fetal lung tissue, and lung fibroblasts. Our results point to three novel potential genetic drivers of pre- and post-BD lung function: ADAMTS1, RAD54B, and EGLN3.
Collapse
Affiliation(s)
- Pagé C. Goddard
- Department of Genetics, Stanford University, Stanford, California, USA
- Department of Medicine, University of California, San Francisco, California, USA
| | - Kevin L. Keys
- Department of Medicine, University of California, San Francisco, California, USA
- Berkeley Institute for Data Science, University of California, Berkeley, California, USA
| | - Angel C. Y. Mak
- Department of Medicine, University of California, San Francisco, California, USA
| | - Eunice Y. Lee
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, USA
| | - Amy K. Liu
- Department of Neurology, University of California, San Francisco, California, USA
| | - Lesly-Anne Samedy-Bates
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, USA
| | - Oona Risse-Adams
- Department of Medicine, University of California, San Francisco, California, USA
- Department of Biology, University of California, Santa Cruz, California, USA
| | - María G. Contreras
- Department of Medicine, University of California, San Francisco, California, USA
- Department of Biology, San Francisco State University, San Francisco, California, USA
| | - Jennifer R. Elhawary
- Department of Medicine, University of California, San Francisco, California, USA
| | - Donglei Hu
- Department of Medicine, University of California, San Francisco, California, USA
| | - Scott Huntsman
- Department of Medicine, University of California, San Francisco, California, USA
| | - Sam S. Oh
- Department of Medicine, University of California, San Francisco, California, USA
| | - Sandra Salazar
- Department of Medicine, University of California, San Francisco, California, USA
| | - Celeste Eng
- Department of Medicine, University of California, San Francisco, California, USA
| | - Blanca E. Himes
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Marquitta J. White
- Department of Medicine, University of California, San Francisco, California, USA
| | - Esteban G. Burchard
- Department of Medicine, University of California, San Francisco, California, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, USA
| |
Collapse
|
45
|
Kim H, Choe SA, Lee SJ, Sung J. Causal relationship between the timing of menarche and young adult body mass index with consideration to a trend of consistently decreasing age at menarche. PLoS One 2021; 16:e0247757. [PMID: 33635908 PMCID: PMC7909625 DOI: 10.1371/journal.pone.0247757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 02/12/2021] [Indexed: 02/08/2023] Open
Abstract
Younger age at menarche (AAM) is associated with higher body mass index (BMI) for young women. Considering that continuous trends in decreasing AAM and increasing BMI are found in many countries, we attempted to assess whether the observed negative association between AAM and young adult BMI is causal. We included 4,093 women from the Korean Genome and Epidemiology Study (KoGES) and Healthy twin Study (HTS) with relevant epidemiologic data and genome-wide marker information. To mitigate the remarkable differences in AAM across generations, we converted the AAM to a generation-standardized AAM (gsAAM). To test causality, we applied the Mendelian randomization (MR) approach, using a genetic risk score (GRS) based on 14 AAM-associated single nucleotide polymorphisms (SNPs). We constructed MR models adjusting for education level and validated the results using the inverse-variance weighted (IVW), weighted median (WM), MR-pleiotropy residual sum and outliers test (MR-PRESSO), and MR-Egger regression methods. We found a null association using observed AAM and BMI level (conventional regression; -0.05 [95% CIs -0.10-0.00] per 1-year higher AAM). This null association was replicated when gsAAM was applied instead of AAM. Using the two-stage least squares (2SLS) approach employing a univariate GRS, the association was also negated for both AAM and gsAAM, regardless of model specifications. All the MR diagnostics suggested statistically insignificant associations, but weakly negative trends, without evidence of confounding from pleiotropy. We did not observe a causal association between AAM and young adult BMI whether we considered the birth cohort effect or not. Our study alone does not exclude the possibility of existing a weak negative association, considering the modest power of our study design.
Collapse
Affiliation(s)
- Hakyung Kim
- Genome and Health Big Data Laboratory, Department of Public Health, Graduate School of Public Health, Seoul National University, Seoul, Korea
| | - Seung-Ah Choe
- Department of Preventive Medicine, Korea University College of Medicine, Seoul, Korea
| | - Soo Ji Lee
- Genome and Health Big Data Laboratory, Department of Public Health, Graduate School of Public Health, Seoul National University, Seoul, Korea
- Institute of Health & Environment, Seoul National University, Seoul, Korea
| | - Joohon Sung
- Genome and Health Big Data Laboratory, Department of Public Health, Graduate School of Public Health, Seoul National University, Seoul, Korea
| |
Collapse
|
46
|
Lee S, Lasky-Su JA, Lange C, Kim W, Kumar PL, McDonald MLN, Vaz Fragoso CA, Laurie C, Raby BA, Celedón JC, Cho MH, Won S, Weiss ST, Hecker J. A novel locus for exertional dyspnoea in childhood asthma. Eur Respir J 2021; 57:2001224. [PMID: 32855217 PMCID: PMC8185954 DOI: 10.1183/13993003.01224-2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/31/2020] [Indexed: 12/18/2022]
Abstract
Most children diagnosed with asthma have respiratory symptoms such as cough, dyspnoea and wheezing, which are also important markers of overall respiratory function. A decade of genome-wide association studies (GWAS) have investigated genetic susceptibility to asthma itself, but few have focused on important respiratory symptoms that characterise childhood asthma.Using whole-genome sequencing (WGS) data for 894 asthmatic trios from a Costa Rican cohort, we performed family-based association tests (FBATs) to assess the association between genetic variants and multiple asthma-relevant respiratory phenotypes: cough, phlegm, wheezing, exertional dyspnoea and exertional chest tightness. We tested whether genome-wide significant associations were replicated in two additional studies: 1) 286 asthmatic trios from the Childhood Asthma Management Program (CAMP), and 2) 2691 African American current or former smokers from the COPDGene study.In the 894 Costa Rican trios, we identified a genome-wide significant association (p=2.16×10-9) between exertional dyspnoea and the single nucleotide polymorphism (SNP) rs10165869, located on chromosome 2q37.3, that was replicated in the CAMP cohort (p=0.023) with the same direction of association (combined p=3.28×10-10). This association was not found in the African American participants from COPDGene. We also found suggestive evidence for an association between SNP rs10165869 and the atypical chemokine receptor 3 (ACKR3).Our finding encourages the secondary association analysis of a wider range of phenotypes that characterise respiratory symptoms in other airway diseases/studies.
Collapse
Affiliation(s)
- Sanghun Lee
- Dept of Medical Consilience, Division of Medicine, Graduate
School, Dankook University, Yongin, South Korea
- Dept of Biostatistics, Harvard T.H. Chan School of Public
Health, Boston, MA, USA
| | - Jessica Ann Lasky-Su
- Channing Division of Network Medicine, Brigham and
Women’s Hospital, Boston, MA, USA
| | - Christoph Lange
- Dept of Biostatistics, Harvard T.H. Chan School of Public
Health, Boston, MA, USA
- Channing Division of Network Medicine, Brigham and
Women’s Hospital, Boston, MA, USA
| | - Wonji Kim
- Channing Division of Network Medicine, Brigham and
Women’s Hospital, Boston, MA, USA
| | - Preeti Lakshman Kumar
- Division of Pulmonary, Allergy and Critical Care Medicine,
University of Alabama at Birmingham, Birmingham, AL, USA
| | - Merry-Lynn N. McDonald
- Division of Pulmonary, Allergy and Critical Care Medicine,
University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Cecelia Laurie
- Dept of Biostatistics, University of Washington, Seattle,
WA, USA
| | - Benjamin A. Raby
- Channing Division of Network Medicine, Brigham and
Women’s Hospital, Boston, MA, USA
| | - Juan C. Celedón
- Division of Pediatric Pulmonary Medicine, UPMC
Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA,
USA
| | - Michael H. Cho
- Channing Division of Network Medicine, Brigham and
Women’s Hospital, Boston, MA, USA
| | - Sungho Won
- Dept of Public Health Science, Seoul National University,
Seoul, South Korea
| | - Scott T. Weiss
- Channing Division of Network Medicine, Brigham and
Women’s Hospital, Boston, MA, USA
| | - Julian Hecker
- Channing Division of Network Medicine, Brigham and
Women’s Hospital, Boston, MA, USA
| |
Collapse
|
47
|
Bakker MK, van der Spek RAA, van Rheenen W, Morel S, Bourcier R, Hostettler IC, Alg VS, van Eijk KR, Koido M, Akiyama M, Terao C, Matsuda K, Walters RG, Lin K, Li L, Millwood IY, Chen Z, Rouleau GA, Zhou S, Rannikmäe K, Sudlow CLM, Houlden H, van den Berg LH, Dina C, Naggara O, Gentric JC, Shotar E, Eugène F, Desal H, Winsvold BS, Børte S, Johnsen MB, Brumpton BM, Sandvei MS, Willer CJ, Hveem K, Zwart JA, Verschuren WMM, Friedrich CM, Hirsch S, Schilling S, Dauvillier J, Martin O, Jones GT, Bown MJ, Ko NU, Kim H, Coleman JRI, Breen G, Zaroff JG, Klijn CJM, Malik R, Dichgans M, Sargurupremraj M, Tatlisumak T, Amouyel P, Debette S, Rinkel GJE, Worrall BB, Pera J, Slowik A, Gaál-Paavola EI, Niemelä M, Jääskeläinen JE, von Und Zu Fraunberg M, Lindgren A, Broderick JP, Werring DJ, Woo D, Redon R, Bijlenga P, Kamatani Y, Veldink JH, Ruigrok YM. Genome-wide association study of intracranial aneurysms identifies 17 risk loci and genetic overlap with clinical risk factors. Nat Genet 2020; 52:1303-1313. [PMID: 33199917 PMCID: PMC7116530 DOI: 10.1038/s41588-020-00725-7] [Citation(s) in RCA: 164] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 09/24/2020] [Indexed: 01/16/2023]
Abstract
Rupture of an intracranial aneurysm leads to subarachnoid hemorrhage, a severe type of stroke. To discover new risk loci and the genetic architecture of intracranial aneurysms, we performed a cross-ancestry, genome-wide association study in 10,754 cases and 306,882 controls of European and East Asian ancestry. We discovered 17 risk loci, 11 of which are new. We reveal a polygenic architecture and explain over half of the disease heritability. We show a high genetic correlation between ruptured and unruptured intracranial aneurysms. We also find a suggestive role for endothelial cells by using gene mapping and heritability enrichment. Drug-target enrichment shows pleiotropy between intracranial aneurysms and antiepileptic and sex hormone drugs, providing insights into intracranial aneurysm pathophysiology. Finally, genetic risks for smoking and high blood pressure, the two main clinical risk factors, play important roles in intracranial aneurysm risk, and drive most of the genetic correlation between intracranial aneurysms and other cerebrovascular traits.
Collapse
Affiliation(s)
- Mark K Bakker
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands.
| | - Rick A A van der Spek
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands
| | - Wouter van Rheenen
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands
| | - Sandrine Morel
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Neurosurgery Division, Department of Clinical Neurosciences, Faculty of Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Romain Bourcier
- l'institut du thorax Université de Nantes, CHU Nantes, INSERM, CNRS, Nantes, France
- CHU Nantes, Department of Neuroradiology, Nantes, France
| | - Isabel C Hostettler
- Stroke Research Centre, University College London Queen Square Institute of Neurology, London, UK
- Department of Neurosurgery, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Varinder S Alg
- Stroke Research Centre, University College London Queen Square Institute of Neurology, London, UK
| | - Kristel R van Eijk
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands
| | - Masaru Koido
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Department of Cancer Biology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Masato Akiyama
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Ocular Pathology and Imaging Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Chikashi Terao
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Koichi Matsuda
- Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
- Laboratory of Clinical Genome Sequencing, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Robin G Walters
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Medical Research Council Population Health Research Unit, University of Oxford, Oxford, UK
| | - Kuang Lin
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Liming Li
- Department of Epidemiology, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Iona Y Millwood
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Medical Research Council Population Health Research Unit, University of Oxford, Oxford, UK
| | - Zhengming Chen
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Medical Research Council Population Health Research Unit, University of Oxford, Oxford, UK
| | - Guy A Rouleau
- Montréal Neurological Institute and Hospital, McGill University, Montréal, QC, Canada
| | - Sirui Zhou
- Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, QC, Canada
| | - Kristiina Rannikmäe
- Centre for Medical Informatics, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Cathie L M Sudlow
- Centre for Medical Informatics, Usher Institute, University of Edinburgh, Edinburgh, UK
- UK Biobank, Cheadle, Stockport, UK
| | - Henry Houlden
- Neurogenetics Laboratory, The National Hospital of Neurology and Neurosurgery, London, UK
| | - Leonard H van den Berg
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands
| | - Christian Dina
- l'institut du thorax Université de Nantes, CHU Nantes, INSERM, CNRS, Nantes, France
| | - Olivier Naggara
- Pediatric Radiology, Necker Hospital for Sick Children, Université Paris Descartes, Paris, France
- Department of Neuroradiology, Sainte-Anne Hospital and Université Paris Descartes, INSERM UMR, S894, Paris, France
| | | | - Eimad Shotar
- Department of Neuroradiology, Pitié-Salpêtrière Hospital, Paris, France
| | - François Eugène
- Department of Neuroradiology, University Hospital of Rennes, Rennes, France
| | - Hubert Desal
- l'institut du thorax Université de Nantes, CHU Nantes, INSERM, CNRS, Nantes, France
- CHU Nantes, Department of Neuroradiology, Nantes, France
| | - Bendik S Winsvold
- Department of Research, Innovation and Education, Division of Clinical Neuroscience, Oslo University Hospital, Oslo, Norway
- K. G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Sigrid Børte
- K. G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Research and Communication Unit for Musculoskeletal Health (FORMI), Department of Research, Innovation and Education, Division of Clinical Neuroscience, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Marianne Bakke Johnsen
- K. G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Research and Communication Unit for Musculoskeletal Health (FORMI), Department of Research, Innovation and Education, Division of Clinical Neuroscience, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Ben M Brumpton
- K. G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Marie Søfteland Sandvei
- Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- The Cancer Clinic, St Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Cristen J Willer
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Kristian Hveem
- K. G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- HUNT Research Center, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - John-Anker Zwart
- Department of Research, Innovation and Education, Division of Clinical Neuroscience, Oslo University Hospital, Oslo, Norway
- K. G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - W M Monique Verschuren
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands
- National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Christoph M Friedrich
- Dortmund University of Applied Science and Arts, Dortmund, Germany
- Institute for Medical Informatics, Biometry and Epidemiology (IMIBE), University Hospital Essen, Essen, Germany
| | - Sven Hirsch
- Zurich University of Applied Sciences, School of Life Sciences and Facility Management, Zurich, Switzerland
| | - Sabine Schilling
- Zurich University of Applied Sciences, School of Life Sciences and Facility Management, Zurich, Switzerland
| | | | - Olivier Martin
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | | | | | | | | | | | | | | | - Gregory T Jones
- Department of Surgery, University of Otago, Dunedin, New Zealand
| | - Matthew J Bown
- Department of Cardiovascular Sciences and National Institute for Health Research, University of Leicester, Leicester, UK
- Leicester Biomedical Research Centre, University of Leicester, Glenfield Hospital, Leicester, UK
| | - Nerissa U Ko
- Department of Neurology, University of California at San Francisco, San Francisco, CA, USA
| | - Helen Kim
- Department of Anesthesia and Perioperative Care, Center for Cerebrovascular Research, University of California, San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
- Institute for Human Genetics, University of California, San Francisco, CA, USA
| | - Jonathan R I Coleman
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- UK National Institute for Health Research (NIHR) Biomedical Research Centre (BRC), South London and Maudsley NHS Foundation Trust, London, UK
| | - Gerome Breen
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- UK National Institute for Health Research (NIHR) Biomedical Research Centre (BRC), South London and Maudsley NHS Foundation Trust, London, UK
| | - Jonathan G Zaroff
- Division of Research, Kaiser Permanente of Northern California, Oakland, CA, USA
| | - Catharina J M Klijn
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Rainer Malik
- Institute for Stroke and Dementia Research, University Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Martin Dichgans
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Munich, Germany
| | - Muralidharan Sargurupremraj
- INSERM U1219 Bordeaux Population Health Research Center, University of Bordeaux, Bordeaux, France
- Department of Neurology, Institute for Neurodegenerative Disease, Bordeaux University Hospital, Bordeaux, France
| | - Turgut Tatlisumak
- Department of Clinical Neuroscience at Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Philippe Amouyel
- Institut Pasteur de Lille, UMR1167 LabEx DISTALZ - RID-AGE Université de Lille, INSERM, Centre Hospitalier Université de Lille Lille, Lille Lille, France
| | - Stéphanie Debette
- INSERM U1219 Bordeaux Population Health Research Center, University of Bordeaux, Bordeaux, France
- Department of Neurology, Institute for Neurodegenerative Disease, Bordeaux University Hospital, Bordeaux, France
| | - Gabriel J E Rinkel
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands
| | - Bradford B Worrall
- Departments of Neurology and Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Joanna Pera
- Department of Neurology, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Agnieszka Slowik
- Department of Neurology, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Emília I Gaál-Paavola
- Department of Neurosurgery, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
- Clinical Neurosciences, University of Helsinki, Helsinki, Finland
| | - Mika Niemelä
- Department of Neurosurgery, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Juha E Jääskeläinen
- Neurosurgery NeuroCenter, Kuopio University Hospital, Kuopio, Finland
- Institute of Clinical Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Mikael von Und Zu Fraunberg
- Neurosurgery NeuroCenter, Kuopio University Hospital, Kuopio, Finland
- Institute of Clinical Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Antti Lindgren
- Neurosurgery NeuroCenter, Kuopio University Hospital, Kuopio, Finland
- Institute of Clinical Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | | | - David J Werring
- Stroke Research Centre, University College London Queen Square Institute of Neurology, London, UK
| | - Daniel Woo
- University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Richard Redon
- l'institut du thorax Université de Nantes, CHU Nantes, INSERM, CNRS, Nantes, France
| | - Philippe Bijlenga
- Neurosurgery Division, Department of Clinical Neurosciences, Faculty of Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Yoichiro Kamatani
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Jan H Veldink
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands
| | - Ynte M Ruigrok
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
48
|
Quach BC, Bray MJ, Gaddis NC, Liu M, Palviainen T, Minica CC, Zellers S, Sherva R, Aliev F, Nothnagel M, Young KA, Marks JA, Young H, Carnes MU, Guo Y, Waldrop A, Sey NYA, Landi MT, McNeil DW, Drichel D, Farrer LA, Markunas CA, Vink JM, Hottenga JJ, Iacono WG, Kranzler HR, Saccone NL, Neale MC, Madden P, Rietschel M, Marazita ML, McGue M, Won H, Winterer G, Grucza R, Dick DM, Gelernter J, Caporaso NE, Baker TB, Boomsma DI, Kaprio J, Hokanson JE, Vrieze S, Bierut LJ, Johnson EO, Hancock DB. Expanding the genetic architecture of nicotine dependence and its shared genetics with multiple traits. Nat Commun 2020; 11:5562. [PMID: 33144568 PMCID: PMC7642344 DOI: 10.1038/s41467-020-19265-z] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 09/24/2020] [Indexed: 12/31/2022] Open
Abstract
Cigarette smoking is the leading cause of preventable morbidity and mortality. Genetic variation contributes to initiation, regular smoking, nicotine dependence, and cessation. We present a Fagerström Test for Nicotine Dependence (FTND)-based genome-wide association study in 58,000 European or African ancestry smokers. We observe five genome-wide significant loci, including previously unreported loci MAGI2/GNAI1 (rs2714700) and TENM2 (rs1862416), and extend loci reported for other smoking traits to nicotine dependence. Using the heaviness of smoking index from UK Biobank (N = 33,791), rs2714700 is consistently associated; rs1862416 is not associated, likely reflecting nicotine dependence features not captured by the heaviness of smoking index. Both variants influence nearby gene expression (rs2714700/MAGI2-AS3 in hippocampus; rs1862416/TENM2 in lung), and expression of genes spanning nicotine dependence-associated variants is enriched in cerebellum. Nicotine dependence (SNP-based heritability = 8.6%) is genetically correlated with 18 other smoking traits (rg = 0.40-1.09) and co-morbidities. Our results highlight nicotine dependence-specific loci, emphasizing the FTND as a composite phenotype that expands genetic knowledge of smoking.
Collapse
Affiliation(s)
- Bryan C Quach
- GenOmics, Bioinformatics, and Translational Research Center, Biostatistics and Epidemiology Division, RTI International, Research Triangle Park, NC, 27709, USA
| | - Michael J Bray
- Department of Psychiatry, Washington University, St. Louis, MO, 63130, USA
| | - Nathan C Gaddis
- GenOmics, Bioinformatics, and Translational Research Center, Biostatistics and Epidemiology Division, RTI International, Research Triangle Park, NC, 27709, USA
| | - Mengzhen Liu
- Department of Psychology, University of Minnesota Twin Cities, Minneapolis, MN, 55455, USA
| | - Teemu Palviainen
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, 00290, Helsinki, Finland
| | - Camelia C Minica
- Department of Biological Psychology, Vrije Universiteit, 1081 BT, Amsterdam, The Netherlands
| | - Stephanie Zellers
- Department of Psychology, University of Minnesota Twin Cities, Minneapolis, MN, 55455, USA
| | - Richard Sherva
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA, 02118, USA
| | - Fazil Aliev
- Department of Psychology, Virginia Commonwealth University, Richmond, VA, 23284, USA
- Faculty of Business, Karabuk University, 78050, Kılavuzlar/Karabük Merkez/Karabük, Turkey
| | - Michael Nothnagel
- Cologne Center for Genomics, University of Cologne, 50931, Köln, Germany
- University Hospital Cologne, 50931, Köln, Germany
| | - Kendra A Young
- Department of Epidemiology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Jesse A Marks
- GenOmics, Bioinformatics, and Translational Research Center, Biostatistics and Epidemiology Division, RTI International, Research Triangle Park, NC, 27709, USA
| | - Hannah Young
- Department of Psychology, University of Minnesota Twin Cities, Minneapolis, MN, 55455, USA
| | - Megan U Carnes
- GenOmics, Bioinformatics, and Translational Research Center, Biostatistics and Epidemiology Division, RTI International, Research Triangle Park, NC, 27709, USA
| | - Yuelong Guo
- GenOmics, Bioinformatics, and Translational Research Center, Biostatistics and Epidemiology Division, RTI International, Research Triangle Park, NC, 27709, USA
- GeneCentric Therapeutics, Research Triangle Park, NC, 27709, USA
| | - Alex Waldrop
- GenOmics, Bioinformatics, and Translational Research Center, Biostatistics and Epidemiology Division, RTI International, Research Triangle Park, NC, 27709, USA
| | - Nancy Y A Sey
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, USA
| | - Maria T Landi
- Genetic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, 20892, USA
| | - Daniel W McNeil
- Department of Psychology, West Virginia University, Morgantown, WV, 26505, USA
- Department of Dental Practice and Rural Health, West Virginia University, Morgantown, WV, 26505, USA
| | - Dmitriy Drichel
- Cologne Center for Genomics, University of Cologne, 50931, Köln, Germany
- University Hospital Cologne, 50931, Köln, Germany
| | - Lindsay A Farrer
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA, 02118, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, 02118, USA
- Department of Ophthalmology, Boston University School of Medicine, Boston, MA, 02118, USA
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, 02118, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, 02118, USA
| | - Christina A Markunas
- GenOmics, Bioinformatics, and Translational Research Center, Biostatistics and Epidemiology Division, RTI International, Research Triangle Park, NC, 27709, USA
| | - Jacqueline M Vink
- Behavioural Science Institute, Radboud University, 6500 HE, Nijmegen, The Netherlands
| | - Jouke-Jan Hottenga
- Department of Biological Psychology, Vrije Universiteit, 1081 BT, Amsterdam, The Netherlands
| | - William G Iacono
- Department of Psychology, University of Minnesota Twin Cities, Minneapolis, MN, 55455, USA
| | - Henry R Kranzler
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
- VISN 4 MIRECC, Crescenz VA Medical Center, Philadelphia, PA, 19104, USA
| | - Nancy L Saccone
- Department of Genetics, Washington University, St. Louis, MO, 63130, USA
- Division of Biostatistics, Washington University, St. Louis, MO, 63130, USA
| | - Michael C Neale
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, 23284, USA
- Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, 23284, USA
| | - Pamela Madden
- Department of Psychiatry, Washington University, St. Louis, MO, 63130, USA
| | - Marcella Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, 68159, Mannheim, Germany
| | - Mary L Marazita
- Center for Craniofacial and Dental Genetics, Department of Oral Biology, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Matthew McGue
- Department of Psychology, University of Minnesota Twin Cities, Minneapolis, MN, 55455, USA
| | - Hyejung Won
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, USA
| | - Georg Winterer
- Experimental & Clinical Research Center, Department of Anesthesiology and Operative Intensive Care Medicine, Charité - University Medicine Berlin, 10117, Berlin, Germany
| | - Richard Grucza
- Departments of Family and Community Medicine and Health and Clinical Outcomes Research, Saint Louis University, St. Louis, MO, 63130, USA
| | - Danielle M Dick
- Department of Psychology, Virginia Commonwealth University, Richmond, VA, 23284, USA
- College Behavioral and Emotional Health Institute, Virginia Commonwealth University, Richmond, VA, 23284, USA
- Department of Human & Molecular Genetics, Virginia Commonwealth University, Richmond, VA, 23284, USA
| | - Joel Gelernter
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06511, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT, 06511, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, 06511, USA
- Department of Psychiatry, VA CT Healthcare Center, West Haven, CT, 06511, USA
| | - Neil E Caporaso
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, 20892, USA
| | - Timothy B Baker
- Center for Tobacco Research and Intervention, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53726, USA
| | - Dorret I Boomsma
- Department of Biological Psychology, Vrije Universiteit, 1081 BT, Amsterdam, The Netherlands
| | - Jaakko Kaprio
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, 00290, Helsinki, Finland
- Department of Public Health, Faculty of Medicine, University of Helsinki, 00290, Helsinki, Finland
| | - John E Hokanson
- Department of Epidemiology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Scott Vrieze
- Department of Psychology, University of Minnesota Twin Cities, Minneapolis, MN, 55455, USA
| | - Laura J Bierut
- Department of Psychiatry, Washington University, St. Louis, MO, 63130, USA
| | - Eric O Johnson
- GenOmics, Bioinformatics, and Translational Research Center, Biostatistics and Epidemiology Division, RTI International, Research Triangle Park, NC, 27709, USA
- Fellow Program, RTI International, Research Triangle Park, NC, 27709, USA
| | - Dana B Hancock
- GenOmics, Bioinformatics, and Translational Research Center, Biostatistics and Epidemiology Division, RTI International, Research Triangle Park, NC, 27709, USA.
| |
Collapse
|
49
|
Zhao X, Qiao D, Yang C, Kasela S, Kim W, Ma Y, Shrine N, Batini C, Sofer T, Taliun SAG, Sakornsakolpat P, Balte PP, Prokopenko D, Yu B, Lange LA, Dupuis J, Cade BE, Lee J, Gharib SA, Daya M, Laurie CA, Ruczinski I, Cupples LA, Loehr LR, Bartz TM, Morrison AC, Psaty BM, Vasan RS, Wilson JG, Taylor KD, Durda P, Johnson WC, Cornell E, Guo X, Liu Y, Tracy RP, Ardlie KG, Aguet F, VanDenBerg DJ, Papanicolaou GJ, Rotter JI, Barnes KC, Jain D, Nickerson DA, Muzny DM, Metcalf GA, Doddapaneni H, Dugan-Perez S, Gupta N, Gabriel S, Rich SS, O'Connor GT, Redline S, Reed RM, Laurie CC, Daviglus ML, Preudhomme LK, Burkart KM, Kaplan RC, Wain LV, Tobin MD, London SJ, Lappalainen T, Oelsner EC, Abecasis GR, Silverman EK, Barr RG, Cho MH, Manichaikul A. Whole genome sequence analysis of pulmonary function and COPD in 19,996 multi-ethnic participants. Nat Commun 2020; 11:5182. [PMID: 33057025 PMCID: PMC7598941 DOI: 10.1038/s41467-020-18334-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 08/19/2020] [Indexed: 12/14/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD), diagnosed by reduced lung function, is a leading cause of morbidity and mortality. We performed whole genome sequence (WGS) analysis of lung function and COPD in a multi-ethnic sample of 11,497 participants from population- and family-based studies, and 8499 individuals from COPD-enriched studies in the NHLBI Trans-Omics for Precision Medicine (TOPMed) Program. We identify at genome-wide significance 10 known GWAS loci and 22 distinct, previously unreported loci, including two common variant signals from stratified analysis of African Americans. Four novel common variants within the regions of PIAS1, RGN (two variants) and FTO show evidence of replication in the UK Biobank (European ancestry n ~ 320,000), while colocalization analyses leveraging multi-omic data from GTEx and TOPMed identify potential molecular mechanisms underlying four of the 22 novel loci. Our study demonstrates the value of performing WGS analyses and multi-omic follow-up in cohorts of diverse ancestry.
Collapse
Affiliation(s)
- Xutong Zhao
- Center for Statistical Genetics, and Department of Biostatistics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Dandi Qiao
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Chaojie Yang
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, 22908, USA
| | - Silva Kasela
- New York Genome Center, New York, NY, 10013, USA
- Department of Systems Biology, Columbia University, New York, NY, 10032, USA
| | - Wonji Kim
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Yanlin Ma
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, 22908, USA
| | - Nick Shrine
- Genetic Epidemiology Group, Department of Health Sciences, University of Leicester, Leicester, LE1 7RH, United Kingdom
| | - Chiara Batini
- Genetic Epidemiology Group, Department of Health Sciences, University of Leicester, Leicester, LE1 7RH, United Kingdom
| | - Tamar Sofer
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Sarah A Gagliano Taliun
- Center for Statistical Genetics, and Department of Biostatistics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Phuwanat Sakornsakolpat
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Pallavi P Balte
- Department of Medicine, Columbia University Medical Center, New York, NY, 10032, USA
| | - Dmitry Prokopenko
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Bing Yu
- Department of Epidemiology, Human Genetics & Environmental Sciences, UTHealth School of Public Health, Houston, TX, 77030, USA
| | - Leslie A Lange
- Division of Biomedical Informatics and Personalized Medicine, Department of Medicine, University of Colorado School of Medicine Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Josée Dupuis
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, 02118, USA
| | - Brian E Cade
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Jiwon Lee
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Sina A Gharib
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington, Seattle, WA, 98109, USA
| | - Michelle Daya
- Division of Biomedical Informatics and Personalized Medicine, Department of Medicine, University of Colorado School of Medicine Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Cecelia A Laurie
- Department of Biostatistics, University of Washington, Seattle, WA, 98195, USA
| | - Ingo Ruczinski
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - L Adrienne Cupples
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, 02118, USA
- Boston University and the National Heart Lung and Blood Institute's Framingham Heart Study, Framingham, MA, 01702, USA
| | - Laura R Loehr
- Department of Medicine, UNC School of Medicine, Chapel Hill, NC, 27599, USA
| | - Traci M Bartz
- Department of Biostatistics, University of Washington, Seattle, WA, 98195, USA
| | - Alanna C Morrison
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Departments of Medicine, Epidemiology, and Health Services, University of Washington, Seattle, WA, 98101, USA
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, 98101, USA
| | - Ramachandran S Vasan
- Boston University and the National Heart Lung and Blood Institute's Framingham Heart Study, Framingham, MA, 01702, USA
- Department of Preventive Medicine and Epidemiology, Boston University School of Medicine and Public Health, Boston, MA, 02118, USA
| | - James G Wilson
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Kent D Taylor
- The Institute for Translational Genomics and Population Sciences, The Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, 90502, USA
| | - Peter Durda
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT, 05405, USA
| | - W Craig Johnson
- Department of Biostatistics, University of Washington, Seattle, WA, 98195, USA
| | - Elaine Cornell
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT, 05405, USA
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, The Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, 90502, USA
| | - Yongmei Liu
- Department of Medicine, Division of Cardiology, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, 27701, USA
| | - Russell P Tracy
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT, 05405, USA
| | | | - François Aguet
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - David J VanDenBerg
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - George J Papanicolaou
- Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, The Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, 90502, USA
| | - Kathleen C Barnes
- Division of Biomedical Informatics and Personalized Medicine, Department of Medicine, University of Colorado School of Medicine Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Deepti Jain
- Department of Biostatistics, University of Washington, Seattle, WA, 98195, USA
| | - Deborah A Nickerson
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA
| | - Donna M Muzny
- The Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Ginger A Metcalf
- The Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | | | - Shannon Dugan-Perez
- The Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Namrata Gupta
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Stacey Gabriel
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, 22908, USA
| | - George T O'Connor
- Boston University School Of Medicine, Pulmonary Center, Boston, MA, 02118, USA
| | - Susan Redline
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Division of Pulmonary, Critical Care, and Sleep Medicine, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
| | - Robert M Reed
- Division of Pulmonary and Critical Care Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Cathy C Laurie
- Department of Biostatistics, University of Washington, Seattle, WA, 98195, USA
| | - Martha L Daviglus
- Institute for Minority Health Research, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | | | - Kristin M Burkart
- Department of Medicine, Columbia University Medical Center, New York, NY, 10032, USA
| | - Robert C Kaplan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, NY, 10461, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Louise V Wain
- Genetic Epidemiology Group, Department of Health Sciences, University of Leicester, Leicester, LE1 7RH, United Kingdom
- National Institute for Health Research, Leicester Respiratory Biomedical Research Centre, Glenfield Hospital, Leicester, LE3 9QP, UK
| | - Martin D Tobin
- Genetic Epidemiology Group, Department of Health Sciences, University of Leicester, Leicester, LE1 7RH, United Kingdom
- National Institute for Health Research, Leicester Respiratory Biomedical Research Centre, Glenfield Hospital, Leicester, LE3 9QP, UK
| | - Stephanie J London
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Durham, NC, 27709, USA
| | - Tuuli Lappalainen
- New York Genome Center, New York, NY, 10013, USA
- Department of Systems Biology, Columbia University, New York, NY, 10032, USA
| | - Elizabeth C Oelsner
- Department of Medicine, Columbia University Medical Center, New York, NY, 10032, USA
| | - Goncalo R Abecasis
- Center for Statistical Genetics, and Department of Biostatistics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Edwin K Silverman
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - R Graham Barr
- Department of Medicine, Columbia University Medical Center, New York, NY, 10032, USA
| | - Michael H Cho
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
| | - Ani Manichaikul
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, 22908, USA.
| |
Collapse
|
50
|
Genetic regulation of gene expression of MIF family members in lung tissue. Sci Rep 2020; 10:16980. [PMID: 33046825 PMCID: PMC7552402 DOI: 10.1038/s41598-020-74121-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 09/08/2020] [Indexed: 12/18/2022] Open
Abstract
Macrophage migration inhibitory factor (MIF) is a cytokine found to be associated with chronic obstructive pulmonary disease (COPD). However, there is no consensus on how MIF levels differ in COPD compared to control conditions and there are no reports on MIF expression in lung tissue. Here we studied gene expression of members of the MIF family MIF, D-Dopachrome Tautomerase (DDT) and DDT-like (DDTL) in a lung tissue dataset with 1087 subjects and identified single nucleotide polymorphisms (SNPs) regulating their gene expression. We found higher MIF and DDT expression in COPD patients compared to non-COPD subjects and found 71 SNPs significantly influencing gene expression of MIF and DDTL. Furthermore, the platform used to measure MIF (microarray or RNAseq) was found to influence the splice variants detected and subsequently the direction of the SNP effects on MIF expression. Among the SNPs found to regulate MIF expression, the major LD block identified was linked to rs5844572, a SNP previously found to be associated with lower diffusion capacity in COPD. This suggests that MIF may be contributing to the pathogenesis of COPD, as SNPs that influence MIF expression are also associated with symptoms of COPD. Our study shows that MIF levels are affected not only by disease but also by genetic diversity (i.e. SNPs). Since none of our significant eSNPs for MIF or DDTL have been described in GWAS for COPD or lung function, MIF expression in COPD patients is more likely a consequence of disease-related factors rather than a cause of the disease.
Collapse
|