1
|
Hou X, Liu H, Li Y, Zhang Z, Wang T, Liang C, Wang C, Li C, Liao W. SlNAP1 promotes tomato fruit ripening by regulating carbohydrate metabolism. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:109079. [PMID: 39213944 DOI: 10.1016/j.plaphy.2024.109079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/18/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Many studies showed NAC transcription factors play an important role in fruit ripening. Moreover, sucrose and starch metabolism is also closely related to fruit ripening. However, there are a few studies focus on whether NAC regulates sucrose and starch metabolism to influence fruit ripening. In this study, virus-induced gene silencing (VIGS) of SlNAP1 suppressed fruit ripening and delayed color transformation. The chlorophyll (including Chla, Chlb, and Chla + b) degradation and carotenoid synthesis in SlNAP1-silenced fruits were dramatically suppressed. Silencing SlNAP1 decreased soluble sugar and reducing sugar accumulation in fruits, and increased starch content. The activity of starch degrading enzymes, including α amylase (AMY) and β amylase (BAM) was significantly lower in SlNAP1-silenced fruits than in the control fruits, whereas denosine diphosphoglucose pyrophosphorylase (AGP) activity was significantly higher. In addition, the expression of starch degradation-related genes (SlAMY1, SlAMY2, SlBAM1, SlBAM7, SlGWD, SlPWD) in SlNAP1-silenced fruits was significantly suppressed, while starch synthesis-related genes (SlAGPase1, SlAGPase2) was significantly increased. Compared with the control fruits, SlNAP1-silenced fruits showed significantly lower sucrose and glucose content. The expression level of sucrose and glucose metabolism-related genes such as Slsus1, Slsus3, SlSPS, SlHxk1, SlHxk2, SlPK1, and SlPK2 was significantly lower in SlNAP1-silenced fruits than in the control fruits. Overall, this study revealed that SlNAP1 gene might positively regulate fruit ripening by influencing carbohydrate metabolism.
Collapse
Affiliation(s)
- Xuemei Hou
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Huwei Liu
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Yihua Li
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Zhuohui Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Tong Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Chen Liang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Chunlei Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Changxia Li
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Weibiao Liao
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, PR China.
| |
Collapse
|
2
|
Gong X, Liu R, Han Y, Niu B, Wu W, Chen H, Fang X, Mu H, Gao H, Chen H. Examining starch metabolism in lotus roots (Nelumbo nucifera Gaertn.) during post-harvest storage at different temperatures. Food Chem 2024; 452:139494. [PMID: 38723566 DOI: 10.1016/j.foodchem.2024.139494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 06/01/2024]
Abstract
This study explores the impact of postharvest storage temperatures (4 °C and 25 °C) on starch metabolism and textural attributes of glutinous lotus root. While starch metabolism is a well-known factor influencing texture, changes in powdery and sticky qualities have remained unexplored. Our research reveals that storing lotus roots at 4 °C delays water dissipation, amylopectin reduction, and the decline in textural elements such as hardness, adhesiveness, springiness, gumminess, and resilience. Lower temperatures postpone amylopectin reduction and sugar interconversion, thereby preserving the sticky texture. Additionally, they suppress starch formation, delay starch metabolism, and elevate the expression of genes involved in starch metabolism. The correlation between gene expression and root texture indicates the critical role of gene regulation in enzyme activity during storage. Overall, low-temperature storage extends lotus root preservation by regulating metabolite content, enzyme activities, and the corresponding genes involved in starch metabolism, preserving both intrinsic and external root quality.
Collapse
Affiliation(s)
- Xinxin Gong
- Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Intelligent Food Logistic and Processing of Zhejiang Province, Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Ruiling Liu
- Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Intelligent Food Logistic and Processing of Zhejiang Province, Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yanchao Han
- Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Intelligent Food Logistic and Processing of Zhejiang Province, Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Ben Niu
- Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Intelligent Food Logistic and Processing of Zhejiang Province, Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Weijie Wu
- Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Intelligent Food Logistic and Processing of Zhejiang Province, Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Huizhi Chen
- Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Intelligent Food Logistic and Processing of Zhejiang Province, Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xiangjun Fang
- Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Intelligent Food Logistic and Processing of Zhejiang Province, Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Honglei Mu
- Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Intelligent Food Logistic and Processing of Zhejiang Province, Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Haiyan Gao
- Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Intelligent Food Logistic and Processing of Zhejiang Province, Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Hangjun Chen
- Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Intelligent Food Logistic and Processing of Zhejiang Province, Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
3
|
Dai J, Xu Z, Fang Z, Zheng X, Cao L, Kang T, Xu Y, Zhang X, Zhan Q, Wang H, Hu Y, Zhao C. NAC Transcription Factor PpNAP4 Promotes Chlorophyll Degradation and Anthocyanin Synthesis in the Skin of Peach Fruit. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19826-19837. [PMID: 39213503 DOI: 10.1021/acs.jafc.4c03924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Chlorophyll (Chl) catabolism and anthocyanin synthesis play pivotal roles in determining the final skin color of fruits during maturation. However, in peach (Prunus persica) fruit, the regulatory mechanism governing skin color, especially the Chl catabolism, remains largely elusive. In this study, we identified ten Chl catabolic genes (CCGs), with PpSGR emerging as a key regulator in Chl degradation in peaches. Furthermore, a NAC-like, activated by AP3/P1 (NAP) transcription factor (TF), PpNAP4, was identified as a positive modulator of Chl breakdown. PpNAP4 induced the expression of PpSGR and other CCGs, including PpPPH, PpPAO, and PpTIC55-2, by directly binding to their promoters. Overexpression of PpNAP4 resulted in a heightened expression of these genes and accelerated Chl degradation. Notably, PpNAP4 also positively regulated the expression of PpANS and PpMYB10.1, one key structural gene and a core transcriptional regulator of anthocyanin synthesis, thereby contributing to fruit coloration. In summary, our findings elucidate that PpNAP4 serves as a pivotal regulator in determining the final skin color of peach by orchestrating Chl degradation and anthocyanin accumulation through direct activation of multiple CCGs and anthocyanin related genes.
Collapse
Affiliation(s)
- Jieyu Dai
- College of Horticulture, Northwest A & F University, Yangling 712100, P.R. China
| | - Ze Xu
- College of Horticulture, Northwest A & F University, Yangling 712100, P.R. China
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, P.R. China
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, P.R. China
- Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou 510640, P.R. China
| | - Zhouheng Fang
- College of Horticulture, Northwest A & F University, Yangling 712100, P.R. China
| | - Xuyang Zheng
- College of Horticulture, Northwest A & F University, Yangling 712100, P.R. China
| | - Lijun Cao
- Howard Hughes Medical Institute, Duke University, Durham, North Carolina 27708, United States
- Department of Biology, Box 90338, Duke University, Durham, North Carolina 27708, United States
| | - Tongyang Kang
- College of Horticulture, Northwest A & F University, Yangling 712100, P.R. China
| | - Yuting Xu
- College of Horticulture, Northwest A & F University, Yangling 712100, P.R. China
| | - Xingzhen Zhang
- College of Horticulture, Northwest A & F University, Yangling 712100, P.R. China
| | - Qianjin Zhan
- College of Horticulture, Northwest A & F University, Yangling 712100, P.R. China
| | - Hong Wang
- Institute of Fruit and Floriculture Research, Gansu Academy of Agricultural Sciences, Anning, Lanzhou 730070, P.R. China
| | - Yanan Hu
- College of Horticulture, Northwest A & F University, Yangling 712100, P.R. China
| | - Caiping Zhao
- College of Horticulture, Northwest A & F University, Yangling 712100, P.R. China
| |
Collapse
|
4
|
Zhang S, Wu S, Jia Z, Zhang J, Li Y, Ma X, Fan B, Wang P, Gao Y, Ye Z, Wang W. Exploring the influence of a single-nucleotide mutation in EIN4 on tomato fruit firmness diversity through fruit pericarp microstructure. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2379-2394. [PMID: 38623687 PMCID: PMC11331787 DOI: 10.1111/pbi.14352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 02/04/2024] [Accepted: 03/29/2024] [Indexed: 04/17/2024]
Abstract
Tomato (Solanum lycopersicum) stands as one of the most valuable vegetable crops globally, and fruit firmness significantly impacts storage and transportation. To identify genes governing tomato firmness, we scrutinized the firmness of 266 accessions from core collections. Our study pinpointed an ethylene receptor gene, SlEIN4, located on chromosome 4 through a genome-wide association study (GWAS) of fruit firmness in the 266 tomato core accessions. A single-nucleotide polymorphism (SNP) (A → G) of SlEIN4 distinguished lower (AA) and higher (GG) fruit firmness genotypes. Through experiments, we observed that overexpression of SlEIN4AA significantly delayed tomato fruit ripening and dramatically reduced fruit firmness at the red ripe stage compared with the control. Conversely, gene editing of SlEIN4AA with CRISPR/Cas9 notably accelerated fruit ripening and significantly increased fruit firmness at the red ripe stage compared with the control. Further investigations revealed that fruit firmness is associated with alterations in the microstructure of the fruit pericarp. Additionally, SlEIN4AA positively regulates pectinase activity. The transient transformation assay verified that the SNP (A → G) on SlEIN4 caused different genetic effects, as overexpression of SlEIN4GG increased fruit firmness. Moreover, SlEIN4 exerts a negative regulatory role in tomato ripening by impacting ethylene evolution through the abundant expression of ethylene pathway regulatory genes. This study presents the first evidence of the role of ethylene receptor genes in regulating fruit firmness. These significant findings will facilitate the effective utilization of firmness and ripening traits in tomato improvement, offering promising opportunities for enhancing tomato storage and transportation capabilities.
Collapse
Affiliation(s)
- Shiwen Zhang
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
- International Joint Laboratory of Henan Horticultural Crop BiologyHenan Agricultural UniversityZhengzhouChina
| | - Shengqing Wu
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
- International Joint Laboratory of Henan Horticultural Crop BiologyHenan Agricultural UniversityZhengzhouChina
| | - Zhiqi Jia
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
- International Joint Laboratory of Henan Horticultural Crop BiologyHenan Agricultural UniversityZhengzhouChina
| | - Junhong Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of EducationHuazhong Agricultural UniversityWuhanChina
| | - Ying Li
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
- International Joint Laboratory of Henan Horticultural Crop BiologyHenan Agricultural UniversityZhengzhouChina
| | - Xingyun Ma
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
- International Joint Laboratory of Henan Horticultural Crop BiologyHenan Agricultural UniversityZhengzhouChina
| | - Bingli Fan
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
- International Joint Laboratory of Henan Horticultural Crop BiologyHenan Agricultural UniversityZhengzhouChina
| | - Panqiao Wang
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
- International Joint Laboratory of Henan Horticultural Crop BiologyHenan Agricultural UniversityZhengzhouChina
| | - Yanna Gao
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
- International Joint Laboratory of Henan Horticultural Crop BiologyHenan Agricultural UniversityZhengzhouChina
| | - Zhibiao Ye
- Key Laboratory of Horticultural Plant Biology, Ministry of EducationHuazhong Agricultural UniversityWuhanChina
| | - Wei Wang
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
- International Joint Laboratory of Henan Horticultural Crop BiologyHenan Agricultural UniversityZhengzhouChina
| |
Collapse
|
5
|
Wang JH, Sun Q, Ma CN, Wei MM, Wang CK, Zhao YW, Wang WY, Hu DG. MdWRKY31-MdNAC7 regulatory network: orchestrating fruit softening by modulating cell wall-modifying enzyme MdXTH2 in response to ethylene signalling. PLANT BIOTECHNOLOGY JOURNAL 2024. [PMID: 39180170 DOI: 10.1111/pbi.14445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 07/02/2024] [Accepted: 07/23/2024] [Indexed: 08/26/2024]
Abstract
Softening in fruit adversely impacts their edible quality and commercial value, leading to substantial economic losses during fruit ripening, long-term storage, long-distance transportation, and marketing. As the apple fruit demonstrates climacteric respiration, its firmness decreases with increasing ethylene release rate during fruit ripening and postharvest storage. However, the molecular mechanisms underlying ethylene-mediated regulation of fruit softening in apple remain poorly understood. In this study, we identified a WRKY transcription factor (TF) MdWRKY31, which is repressed by ethylene treatment. Using transgenic approaches, we found that overexpression of MdWRKY31 delays softening by negatively regulating xyloglucan endotransglucosylase/hydrolases 2 (MdXTH2) expression. Yeast one-hybrid (Y1H), electrophoretic mobility shift (EMSA), and dual-luciferase assays further suggested that MdWRKY31 directly binds to the MdXTH2 promoter via a W-box element and represses its transcription. Transient overexpression of ethylene-induced MdNAC7, a NAC TF, in apple fruit promoted softening by decreasing cellulose content and increasing water-soluble pectin content in fruit. MdNAC7 interacted with MdWRKY31 to form a protein complex, and their interaction decreased the transcriptional repression of MdWRKY31 on MdXTH2. Furthermore, MdNAC7 does not directly regulate MdXTH2 expression, but the protein complex formed with MdWRKY31 hinders MdWRKY31 from binding to the promoter of MdXTH2. Our findings underscore the significance of the regulatory complex NAC7-WRKY31 in ethylene-responsive signalling, connecting the ethylene signal to XTH2 expression to promote fruit softening. This sheds light on the intricate mechanisms governing apple fruit firmness and opens avenues for enhancing fruit quality and reducing economic losses associated with softening.
Collapse
Affiliation(s)
- Jia-Hui Wang
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticultural Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
- College of Horticulture, Agricultural University of Hebei, Baoding, Hebei, China
| | - Quan Sun
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticultural Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Chang-Ning Ma
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticultural Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Meng-Meng Wei
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticultural Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Chu-Kun Wang
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticultural Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Yu-Wen Zhao
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticultural Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Wen-Yan Wang
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticultural Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Da-Gang Hu
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticultural Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| |
Collapse
|
6
|
Huang B, Li Y, Jia K, Wang X, Wang H, Li C, Sui X, Zhang Y, Nie J, Yuan Y, Jia D. The MdMYB44-MdTPR1 repressive complex inhibits MdCCD4 and MdCYP97A3 expression through histone deacetylation to regulate carotenoid biosynthesis in apple. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:540-556. [PMID: 38662911 DOI: 10.1111/tpj.16782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/03/2024] [Accepted: 04/12/2024] [Indexed: 07/01/2024]
Abstract
Carotenoids are photosynthetic pigments and antioxidants that contribute to different plant colors. However, the involvement of TOPLESS (TPL/TPR)-mediated histone deacetylation in the modulation of carotenoid biosynthesis through ethylene-responsive element-binding factor-associated amphiphilic repression (EAR)-containing transcription factors (TFs) in apple (Malus domestica Borkh.) is poorly understood. MdMYB44 is a transcriptional repressor that contains an EAR repression motif. In the present study, we used functional analyses and molecular assays to elucidate the molecular mechanisms through which MdMYB44-MdTPR1-mediated histone deacetylation influences carotenoid biosynthesis in apples. We identified two carotenoid biosynthetic genes, MdCCD4 and MdCYP97A3, that were confirmed to be involved in MdMYB44-mediated carotenoid biosynthesis. MdMYB44 enhanced β-branch carotenoid biosynthesis by repressing MdCCD4 expression, whereas MdMYB44 suppressed lutein level by repressing MdCYP97A3 expression. Moreover, MdMYB44 partially influences carotenoid biosynthesis by interacting with the co-repressor TPR1 through the EAR motif to inhibit MdCCD4 and MdCYP97A3 expression via histone deacetylation. Our findings indicate that the MdTPR1-MdMYB44 repressive cascade regulates carotenoid biosynthesis, providing profound insights into the molecular basis of histone deacetylation-mediated carotenoid biosynthesis in plants. These results also provide evidence that the EAR-harboring TF/TPL repressive complex plays a universal role in histone deacetylation-mediated inhibition of gene expression in various plants.
Collapse
Affiliation(s)
- Benchang Huang
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
- Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao, 266109, China
| | - Yuchen Li
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
- Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao, 266109, China
| | - Kun Jia
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
- Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao, 266109, China
| | - Xinyuan Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
- Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao, 266109, China
| | - Huimin Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
- Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao, 266109, China
| | - Chunyu Li
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
- Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao, 266109, China
| | - Xiuqi Sui
- Yantai Modern Fruit Development limited company, Yantai, 264003, China
| | - Yugang Zhang
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jiyun Nie
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
- Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao, 266109, China
| | - Yongbing Yuan
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
- Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao, 266109, China
| | - Dongjie Jia
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
- Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao, 266109, China
| |
Collapse
|
7
|
Li C, Hou X, Zhao Z, Liu H, Huang P, Shi M, Wu X, Gao R, Liu Z, Wei L, Li Y, Liao W. A tomato NAC transcription factor, SlNAP1, directly regulates gibberellin-dependent fruit ripening. Cell Mol Biol Lett 2024; 29:57. [PMID: 38649857 PMCID: PMC11036752 DOI: 10.1186/s11658-024-00577-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/09/2024] [Indexed: 04/25/2024] Open
Abstract
In tomato (Solanum lycopersicum), the ripening of fruit is regulated by the selective expression of ripening-related genes, and this procedure is controlled by transcription factors (TFs). In the various plant-specific TF families, the no apical meristem (NAM), Arabidopsis thaliana activating factor 1/2 (ATAF1/2), and cup-shaped cotyledon 2 (CUC2; NAC) TF family stands out and plays a significant function in plant physiological activities, such as fruit ripening (FR). Despite the numerous genes of NAC found in the tomato genome, limited information is available on the effects of NAC members on FR, and there is also a lack of studies on their target genes. In this research, we focus on SlNAP1, which is a NAC TF that positively influences the FR of tomato. By employing CRISPR/Cas9 technology, compared with the wild type (WT), we generated slnap1 mutants and observed a delay in the ethylene production and color change of fruits. We employed the yeast one-hybrid (Y1H) and dual-luciferase reporter (DLR) assays to confirm that SlNAP1 directly binds to the promoters of two crucial genes involved in gibberellin (GA) degradation, namely SlGA2ox1 and SlGA2ox5, thus activating their expression. Furthermore, through a yeast two-hybrid (Y2H), bimolecular fluorescence complementation (BIFC) and luciferase (LUC) assays, we established an interaction between SlNAP1 and SlGID1. Hence, our findings suggest that SlNAP1 regulates FR positively by activating the GA degradation genes directly. Additionally, the interaction between SlNAP1 and SlGID1 may play a role in SlNAP1-induced FR. Overall, our study provides important insights into the molecular mechanisms through which NAC TFs regulate tomato FR via the GA pathway.
Collapse
Affiliation(s)
- Changxia Li
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China
- College of Agriculture, Guangxi University, 100 East University Road, Xixiangtang District, Nanning, 530004, China
| | - Xuemei Hou
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China
| | - Zongxi Zhao
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China
| | - Huwei Liu
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China
| | - Panpan Huang
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China
| | - Meimei Shi
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China
| | - Xuetong Wu
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China
| | - Rong Gao
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China
| | - Zhiya Liu
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China
| | - Lijuan Wei
- Spice Crops Research Institute, College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, China
| | - Yihua Li
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China
| | - Weibiao Liao
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China.
| |
Collapse
|
8
|
Foresti C, Orduña L, Matus JT, Vandelle E, Danzi D, Bellon O, Tornielli GB, Amato A, Zenoni S. NAC61 regulates late- and post-ripening osmotic, oxidative, and biotic stress responses in grapevine. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2330-2350. [PMID: 38159048 PMCID: PMC11016852 DOI: 10.1093/jxb/erad507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 12/29/2023] [Indexed: 01/03/2024]
Abstract
During late- and post-ripening stages, grape berry undergoes profound biochemical and physiological changes whose molecular control is poorly understood. Here, we report the role of NAC61, a grapevine NAC transcription factor, in regulating different processes involved in berry ripening progression. NAC61 is highly expressed during post-harvest berry dehydration and its expression pattern is closely related to sugar concentration. The ectopic expression of NAC61 in Nicotiana benthamiana leaves resulted in low stomatal conductance, high leaf temperature, tissue collapse and a higher relative water content. Transcriptome analysis of grapevine leaves transiently overexpressing NAC61 and DNA affinity purification and sequencing analyses allowed us to narrow down a list of NAC61-regulated genes. Direct regulation of the stilbene synthase regulator MYB14, the osmotic stress-related gene DHN1b, the Botrytis cinerea susceptibility gene WRKY52, and NAC61 itself was validated. We also demonstrate that NAC61 interacts with NAC60, a proposed master regulator of grapevine organ maturation, in the activation of MYB14 and NAC61 expression. Overall, our findings establish NAC61 as a key player in a regulatory network that governs stilbenoid metabolism and osmotic, oxidative, and biotic stress responses that are the hallmark of late- and post-ripening grape stages.
Collapse
Affiliation(s)
- Chiara Foresti
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Luis Orduña
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Valencia, Spain
| | - José Tomás Matus
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Valencia, Spain
| | - Elodie Vandelle
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Davide Danzi
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Oscar Bellon
- Department of Biotechnology, University of Verona, Verona, Italy
| | | | - Alessandra Amato
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Sara Zenoni
- Department of Biotechnology, University of Verona, Verona, Italy
| |
Collapse
|
9
|
Cao X, Li X, Su Y, Zhang C, Wei C, Chen K, Grierson D, Zhang B. Transcription factor PpNAC1 and DNA demethylase PpDML1 synergistically regulate peach fruit ripening. PLANT PHYSIOLOGY 2024; 194:2049-2068. [PMID: 37992120 DOI: 10.1093/plphys/kiad627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/24/2023]
Abstract
Fruit ripening is accompanied by dramatic changes in color, texture, and flavor and is regulated by transcription factors (TFs) and epigenetic factors. However, the detailed regulatory mechanism remains unclear. Gene expression patterns suggest that PpNAC1 (NAM/ATAF1/2/CUC) TF plays a major role in peach (Prunus persica) fruit ripening. DNA affinity purification (DAP)-seq combined with transactivation tests demonstrated that PpNAC1 can directly activate the expression of multiple ripening-related genes, including ACC synthase1 (PpACS1) and ACC oxidase1 (PpACO1) involved in ethylene biosynthesis, pectinesterase1 (PpPME1), pectate lyase1 (PpPL1), and polygalacturonase1 (PpPG1) related to cell wall modification, and lipase1 (PpLIP1), fatty acid desaturase (PpFAD3-1), and alcohol acyltransferase1 (PpAAT1) involved in volatiles synthesis. Overexpression of PpNAC1 in the tomato (Solanum lycopersicum) nor (nonripening) mutant restored fruit ripening, and its transient overexpression in peach fruit induced target gene expression, supporting a positive role of PpNAC1 in fruit ripening. The enhanced transcript levels of PpNAC1 and its target genes were associated with decreases in their promoter mCG methylation during ripening. Declining DNA methylation was negatively associated with increased transcripts of DNA demethylase1 (PpDML1), whose promoter is recognized and activated by PpNAC1. We propose that decreased methylation of the promoter region of PpNAC1 leads to a subsequent decrease in DNA methylation levels and enhanced transcription of ripening-related genes. These results indicate that positive feedback between PpNAC1 and PpDML1 plays an important role in directly regulating expression of multiple genes required for peach ripening and quality formation.
Collapse
Affiliation(s)
- Xiangmei Cao
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Xinzhao Li
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Yike Su
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Chi Zhang
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Chunyan Wei
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Desheng Middle Road No. 298, Hangzhou, Zhejiang Province 310021, China
| | - Kunsong Chen
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Donald Grierson
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
- Plant and Crop Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, UK
| | - Bo Zhang
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| |
Collapse
|
10
|
Sun C, Yao G, Zhao J, Chen R, Hu K, He G, Zhang H. SlERF109-like and SlNAC1 Coordinately Regulated Tomato Ripening by Inhibiting ACO1 Transcription. Int J Mol Sci 2024; 25:1873. [PMID: 38339150 PMCID: PMC10855853 DOI: 10.3390/ijms25031873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/16/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
As a typical climacteric fruit, tomato (Solanum lycopersicum) is widely used for studying the ripening process. The negative regulation of tomato fruits by transcription factor SlNAC1 has been reported, but its regulatory network was unclear. In the present study, we screened a transcription factor, SlERF109-like, and found it had a stronger relationship with SlNAC1 at the early stage of tomato fruit development through the use of transcriptome data, RT-qPCR, and correlation analysis. We inferred that SlERF109-like could interact with SlNAC1 to become a regulatory complex that co-regulates the tomato fruit ripening process. Results of transient silencing (VIGS) and transient overexpression showed that SlERF109-like and SlNAC1 could regulate chlorophyll degradation-related genes (NYC1, PAO, PPH, SGR1), carotenoids accumulation-related genes (PSY1, PDS, ZDS), ETH-related genes (ACO1, E4, E8), and cell wall metabolism-related genes expression levels (CEL2, EXP, PG, TBG4, XTH5) to inhibit tomato fruit ripening. A dual-luciferase reporter and yeast one-hybrid (Y1H) showed that SlNAC1 could bind to the SlACO1 promoter, but SlERF109-like could not. Furthermore, SlERF109-like could interact with SlNAC1 to increase the transcription for ACO1 by a yeast two-hybrid (Y2H) assay, a luciferase complementation assay, and a dual-luciferase reporter. A correlation analysis showed that SlERF109-like and SlNAC1 were positively correlated with chlorophyll contents, and negatively correlated with carotenoid content and ripening-related genes. Thus, we provide a model in which SlERF109-like could interact with SlNAC1 to become a regulatory complex that negatively regulates the tomato ripening process by inhibiting SlACO1 expression. Our study provided a new regulatory network of tomato fruit ripening and effectively reduced the waste of resources.
Collapse
Affiliation(s)
- Chen Sun
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310012, China; (C.S.); (R.C.)
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; (G.Y.); (J.Z.); (K.H.)
| | - Gaifang Yao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; (G.Y.); (J.Z.); (K.H.)
| | - Jinghan Zhao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; (G.Y.); (J.Z.); (K.H.)
| | - Ruying Chen
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310012, China; (C.S.); (R.C.)
| | - Kangdi Hu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; (G.Y.); (J.Z.); (K.H.)
| | - Guanghua He
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310012, China; (C.S.); (R.C.)
| | - Hua Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; (G.Y.); (J.Z.); (K.H.)
| |
Collapse
|
11
|
Wang M, Wu Y, Zhan W, Wang H, Chen M, Li T, Bai T, Jiao J, Song C, Song S, Feng J, Zheng X. The apple transcription factor MdZF-HD11 regulates fruit softening by promoting Mdβ-GAL18 expression. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:819-836. [PMID: 37936320 DOI: 10.1093/jxb/erad441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/03/2023] [Indexed: 11/09/2023]
Abstract
Fruit ripening and the associated softening are major determinants of fruit quality and post-harvest shelf life. Although the mechanisms underlying fruit softening have been intensively studied, there are limited reports on the regulation of fruit softening in apples (Malus domestica). Here, we identified a zinc finger homeodomain transcription factor MdZF-HD11that trans-activates the promoter of Mdβ-GAL18, which encodes a pectin-degradation enzyme associated with cell wall metabolism. Both MdZF-HD11 and Mdβ-GAL18 genes were up-regulated by exogenous ethylene treatment and repressed by 1-methylcyclopropene treatment. Further experiments revealed that MdZF-HD11 binds directly to the Mdβ-GAL18 promoter and up-regulates its transcription. Moreover, using transgenic apple fruit calli, we found that overexpression of Mdβ-GAL18 or MdZF-HD11 significantly enhanced β-galactosidase activity, and overexpression of MdZF-HD11 induced the expression of Mdβ-GAL18. We also discovered that transient overexpression of Mdβ-GAL18 or MdZF-HD11 in 'Golden Delicious' apple significantly increased the release of ethylene, reduced fruit firmness, promoted the transformation of skin color from green to yellow, and accelerated ripening and softening of the fruit. Finally, the overexpression of MdZF-HD11 in tomato also promoted fruit softening. Collectively, these results indicate that ethylene-induced MdZF-HD11 interacts with Mdβ-GAL18 to promote the post-harvest softening of apple.
Collapse
Affiliation(s)
- Miaomiao Wang
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Yao Wu
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Wenduo Zhan
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Hao Wang
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Ming Chen
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Tongxin Li
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Tuanhui Bai
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Jian Jiao
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Chunhui Song
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Shangwei Song
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Jiancan Feng
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Xianbo Zheng
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
12
|
Gambhir P, Raghuvanshi U, Kumar R, Sharma AK. Transcriptional regulation of tomato fruit ripening. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:289-303. [PMID: 38623160 PMCID: PMC11016043 DOI: 10.1007/s12298-024-01424-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/15/2024] [Accepted: 02/27/2024] [Indexed: 04/17/2024]
Abstract
An intrinsic and genetically determined ripening program of tomato fruits often depends upon the appropriate activation of tissue- and stage-specific transcription factors in space and time. The past two decades have yielded considerable progress in detailing these complex transcriptional as well as hormonal regulatory circuits paramount to fleshy fruit ripening. This non-linear ripening process is strongly controlled by the MADS-box and NOR family of proteins, triggering a transcriptional response associated with the progression of fruit ripening. Deepening insights into the connection between MADS-RIN and plant hormones related transcription factors, such as ERFs and ARFs, further conjugates the idea that several signaling units work in parallel to define an output fruit ripening transcriptome. Besides these TFs, the role of other families of transcription factors such as MYB, GLK, WRKY, GRAS and bHLH have also emerged as important ripening regulators. Other regulators such as EIN and EIL proteins also determine the transcriptional landscape of ripening fruits. Despite the abundant knowledge of the complex spectrum of ripening networks in the scientific domain, identifying more ripening effectors would pave the way for a better understanding of fleshy fruit ripening at the molecular level. This review provides an update on the transcriptional regulators of tomato fruit ripening.
Collapse
Affiliation(s)
- Priya Gambhir
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021 India
| | - Utkarsh Raghuvanshi
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021 India
| | - Rahul Kumar
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046 India
| | - Arun Kumar Sharma
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021 India
| |
Collapse
|
13
|
Yang Z, Mei W, Wang H, Zeng J, Dai H, Ding X. Comprehensive Analysis of NAC Transcription Factors Reveals Their Evolution in Malvales and Functional Characterization of AsNAC019 and AsNAC098 in Aquilaria sinensis. Int J Mol Sci 2023; 24:17384. [PMID: 38139213 PMCID: PMC10744133 DOI: 10.3390/ijms242417384] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
NAC is a class of plant-specific transcription factors that are widely involved in the growth, development and (a)biotic stress response of plants. However, their molecular evolution has not been extensively studied in Malvales, especially in Aquilaria sinensis, a commercial and horticultural crop that produces an aromatic resin named agarwood. In this study, 1502 members of the NAC gene family were identified from the genomes of nine species from Malvales and three model plants. The macroevolutionary analysis revealed that whole genome duplication (WGD) and dispersed duplication (DSD) have shaped the current architectural structure of NAC gene families in Malvales plants. Then, 111 NAC genes were systemically characterized in A. sinensis. The phylogenetic analysis suggests that NAC genes in A. sinensis can be classified into 16 known clusters and four new subfamilies, with each subfamily presenting similar gene structures and conserved motifs. RNA-seq analysis showed that AsNACs presents a broad transcriptional response to the agarwood inducer. The expression patterns of 15 AsNACs in A. sinensis after injury treatment indicated that AsNAC019 and AsNAC098 were positively correlated with the expression patterns of four polyketide synthase (PKS) genes. Additionally, AsNAC019 and AsNAC098 were also found to bind with the AsPKS07 promoter and activate its transcription. This comprehensive analysis provides valuable insights into the molecular evolution of the NAC gene family in Malvales plants and highlights the potential mechanisms of AsNACs for regulating secondary metabolite biosynthesis in A. sinensis, especially for the biosynthesis of 2-(2-phenyl) chromones in agarwood.
Collapse
Affiliation(s)
- Zhuo Yang
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (Z.Y.); (W.M.); (H.W.); (J.Z.)
| | - Wenli Mei
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (Z.Y.); (W.M.); (H.W.); (J.Z.)
- International Joint Research Center of Agarwood, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Hainan Engineering Research Center of Agarwood, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Hao Wang
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (Z.Y.); (W.M.); (H.W.); (J.Z.)
- International Joint Research Center of Agarwood, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Hainan Engineering Research Center of Agarwood, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Jun Zeng
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (Z.Y.); (W.M.); (H.W.); (J.Z.)
- International Joint Research Center of Agarwood, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Hainan Engineering Research Center of Agarwood, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Haofu Dai
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (Z.Y.); (W.M.); (H.W.); (J.Z.)
- International Joint Research Center of Agarwood, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Hainan Engineering Research Center of Agarwood, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Xupo Ding
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (Z.Y.); (W.M.); (H.W.); (J.Z.)
- International Joint Research Center of Agarwood, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Hainan Engineering Research Center of Agarwood, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| |
Collapse
|
14
|
Lin H, Ma L, Guo Q, Liu C, Hou Y, Liu Z, Zhao Y, Jiang C, Guo X, Guo Y. Berry texture QTL and candidate gene analysis in grape ( Vitis vinifera L.). HORTICULTURE RESEARCH 2023; 10:uhad226. [PMID: 38077492 PMCID: PMC10709548 DOI: 10.1093/hr/uhad226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/26/2023] [Indexed: 10/16/2024]
Abstract
Berry texture is a noteworthy economic trait for grape; however, the genetic bases and the complex gene expression and regulatory mechanism for the diverse changes in berry texture are still poorly understood. In this study, the results suggest that it is difficult to obtain high-mesocarp firmness (MesF) and high-pericarp puncture hardness (PPH) grape cultivars with high pericarp brittleness (PerB). The high-density linkage map was constructed using whole-genome resequencing based on 151 F1 individuals originating from intraspecific hybridization between the firm-flesh cultivar 'Red Globe' and soft-flesh cultivar 'Muscat Hamburg'. The total length of the consensus map was 1613.17 cM, with a mean genetic distance between adjacent bin markers of 0.59 cM. Twenty-seven quantitative trait loci (QTLs) for berry MesF, PPH, and PerB were identified in linkage groups (LGs) 1, 3, 4, 6, 8, 9, 10, 11, 14, 16, and 17, including twelve QTLs that were firstly detected in LGs 6, 11, and 14. Fourteen promising candidate genes were identified from the stable QTL regions in LGs 10, 11, 14, and 17. In particular, VvWARK2 and VvWARK8 refer to chromosome 17 and are two promising candidate genes for MesF and PPH, as the VvWARK8 gene may increase pectin residue binding with WARK for high berry firmness maintenance and the allele for VvWARK2 carrying the 'CC' and 'GA' genotypes at Chr17:1836764 and Chr17:1836770 may be associated with non-hard texture grape cultivars. In addition, real-time quantitative polymerase chain reaction (RT-qPCR) verification revealed that the promising candidate transcription factor genes VvMYB4-like, VvERF113, VvWRKY31, VvWRKY1, and VvNAC83 may regulate cell wall metabolism candidate gene expression for grape berry texture changes.
Collapse
Affiliation(s)
- Hong Lin
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866, China
| | - Li Ma
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866, China
| | - Qiuyu Guo
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866, China
| | - Cheng Liu
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866, China
| | - Yangming Hou
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866, China
| | - Zhendong Liu
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866, China
| | - Yuhui Zhao
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866, China
| | - Changyue Jiang
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866, China
| | - Xiuwu Guo
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866, China
| | - Yinshan Guo
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866, China
- Ministry of Education Key Laboratory of Protected Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| |
Collapse
|
15
|
Zheng J, Yang X, Ye J, Su D, Wang L, Liao Y, Zhang W, Wang Q, Chen Q, Xu F. Multiomics analysis provides new insights into the regulatory mechanism of carotenoid biosynthesis in yellow peach peel. MOLECULAR HORTICULTURE 2023; 3:23. [PMID: 37919829 PMCID: PMC10623742 DOI: 10.1186/s43897-023-00070-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/11/2023] [Indexed: 11/04/2023]
Abstract
Carotenoids, as natural tetraterpenes, play a pivotal role in the yellow coloration of peaches and contribute to human dietary health. Despite a relatively clear understanding of the carotenoid biosynthesis pathway, the regulatory mechanism of miRNAs involved in carotenoid synthesis in yellow peaches remain poorly elucidated. This study investigated a total of 14 carotenoids and 40 xanthophyll lipids, including six differentially accumulated carotenoids: violaxanthin, neoxanthin, lutein, zeaxanthin, cryptoxanthin, and (E/Z)-phytoene. An integrated analysis of RNA-seq, miRNA-seq and degradome sequencing revealed that miRNAs could modulate structural genes such as PSY2, CRTISO, ZDS1, CHYB, VDE, ZEP, NCED1, NCED3 and the transcription factors NAC, ARF, WRKY, MYB, and bZIP, thereby participating in carotenoid biosynthesis and metabolism. The authenticity of miRNAs and target gene was corroborated through quantitative real-time PCR. Moreover, through weighted gene coexpression network analysis and a phylogenetic evolutionary study, coexpressed genes and MYB transcription factors potentially implicated in carotenoid synthesis were identified. The results of transient expression experiments indicated that mdm-miR858 inhibited the expression of PpMYB9 through targeted cleavage. Building upon these findings, a regulatory network governing miRNA-mediated carotenoid synthesis was proposed. In summary, this study comprehensively identified miRNAs engaged in carotenoid biosynthesis and their putative target genes, thus enhancing the understanding of carotenoid accumulation and regulatory mechanism in yellow peach peel and expanding the gene regulatory network of carotenoid synthesis.
Collapse
Affiliation(s)
- Jiarui Zheng
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, China
| | - Xiaoyan Yang
- School of Biology and Agriculture, Shaoguan University, Shaoguan, 512005, China
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, 512005, China
| | - Jiabao Ye
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, China
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, 512005, China
| | - Dongxue Su
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, China
| | - Lina Wang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, China
| | - Yongling Liao
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, China
| | - Weiwei Zhang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, China
| | - Qijian Wang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, China
| | - Qiangwen Chen
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, China
| | - Feng Xu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, China.
| |
Collapse
|
16
|
Wei W, Yang YY, Chen JY, Lakshmanan P, Kuang JF, Lu WJ, Shan W. MaNAC029 modulates ethylene biosynthesis and fruit quality and undergoes MaXB3-mediated proteasomal degradation during banana ripening. J Adv Res 2023; 53:33-47. [PMID: 36529351 PMCID: PMC10658243 DOI: 10.1016/j.jare.2022.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 10/12/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
INTRODUCTIONS Ethylene regulates ripening by activating various metabolic pathways that controlcolor, aroma, flavor, texture, and consequently, the quality of fruits. However, the modulation of ethylene biosynthesis and quality formation during banana fruit ripening remains unclear. OBJECTIVES The present study aimed to identify the regulatory module that regulates ethylene and fruit quality-related metabolisms during banana fruit ripening. METHODS We used RNA-seq to compare unripe and ripe banana fruits and identified a ripening-induced NAC transcription factor, MaNAC029. We further performed DNA affinity purification sequencing to identify the MaNAC029's target genes involved in ethylene biosynthesis and fruit quality formation, and electrophoretic mobility shift assay, chromatin immunoprecipitation with real-time polymerase chain reaction and dual luciferase assays to explore the underlying regulatory mechanisms. Immunoprecipitation combined with mass spectrometry, yeast two-hybrid assay, and bimolecular fluorescence complementation assay were used to screen and verify the proteins interacting with MaNAC029. Finally, the function of MaNAC029 and its interacting protein associated with ethylene biosynthesis and quality formation was verified through transient overexpression experiments in banana fruits. RESULTS The study identified a nucleus-localized, ripening-induced NAC transcription factor MaNAC029. It transcriptionally activated genes associated with ethylene biosynthesis and a variety of cellular metabolisms related to fruit quality formation (cell wall degradation, starch degradation, aroma compound synthesis, and chlorophyll catabolism) by directly modulating their promoter activity during ripening. Overexpression of MaNAC029 in banana fruits activated ethylene biosynthesis and accelerated fruit ripening and quality formation. Notably, the E3 ligase MaXB3 interacted with and ubiquitinated MaNAC029 protein, facilitating MaNAC029 proteasomal degradation. Consistent with this finding, MaXB3 overexpression attenuated MaNAC029-enhanced ethylene biosynthesis and quality formation. CONCLUSION Our findings demonstrate that a MaXB3-MaNAC029 module regulates ethylene biosynthesis and a series of cellular metabolisms related to fruit quality formation during banana ripening. These results expand the understanding of the transcriptional and post-translational mechanisms of fruit ripening and quality formation.
Collapse
Affiliation(s)
- Wei Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Ying-Ying Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Jian-Ye Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Prakash Lakshmanan
- Sugarcane Research Institute, Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture/Guangxi Key Laboratory of Sugarcane Genetic Improvement, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing 400716, China; Queensland Alliance for Agriculture and Food Innovation, University of Queensland, St Lucia 4067, QLD, Australia
| | - Jian-Fei Kuang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Wang-Jin Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Wei Shan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
17
|
Wang Q, Hu F, Yao Z, Zhao X, Chu G, Ye J. Comprehensive genomic characterisation of the NAC transcription factor family and its response to drought stress in Eucommia ulmoides. PeerJ 2023; 11:e16298. [PMID: 37901460 PMCID: PMC10601904 DOI: 10.7717/peerj.16298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/23/2023] [Indexed: 10/31/2023] Open
Abstract
The NAC transcription factor family enhances plant adaptation to environmental challenges by participating in signalling pathways triggered by abiotic stressors and hormonal cues. We identified 69 NAC genes in the Eucommia ulmoides genome and renamed them according to their chromosomal distribution. These EuNAC proteins were clustered into 13 sub-families and distributed on 16 chromosomes and 2 scaffolds. The gene structures suggested that the number of exons varied from two to eight among these EuNACs, with a multitude of them containing three exons. Duplicated events resulted in a large gene family; 12 and four pairs of EuNACs were the result of segmental and tandem duplicates, respectively. The drought-stress response pattern of 12 putative EuNACs was observed under drought treatment, revealing that these EuNACs could play crucial roles in mitigating the effects of drought stress responses and serve as promising candidate genes for genetic engineering aimed at enhancing the drought stress tolerance of E. ulmoides. This study provides insight into the evolution, diversity, and characterisation of NAC genes in E. ulmoides and will be helpful for future characterisation of putative EuNACs associated with water deficit.
Collapse
Affiliation(s)
- Qi Wang
- Laboratory of Forestry Department, Agricultural College, Shihezi University, Shihezi, China
| | - FengCheng Hu
- Lveyang County Forest Tree Seedling Workstation, Forestry Bureau of Lveyang County, Lveyang, China
| | - ZhaoQun Yao
- Laboratory of Plant Protection Department, Agricultural College, Shihezi University, Shihezi, China
| | - XinFeng Zhao
- Lveyang County Forest Tree Seedling Workstation, Forestry Bureau of Lveyang County, Lveyang, China
| | - GuangMing Chu
- Laboratory of Forestry Department, Agricultural College, Shihezi University, Shihezi, China
| | - Jing Ye
- Laboratory of Forestry Department, Agricultural College, Shihezi University, Shihezi, China
| |
Collapse
|
18
|
Wei W, Yang YY, Wu CJ, Kuang JF, Chen JY, Lu WJ, Shan W. MaMADS1-MaNAC083 transcriptional regulatory cascade regulates ethylene biosynthesis during banana fruit ripening. HORTICULTURE RESEARCH 2023; 10:uhad177. [PMID: 37868621 PMCID: PMC10585711 DOI: 10.1093/hr/uhad177] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 08/25/2023] [Indexed: 10/24/2023]
Abstract
The hormone ethylene is crucial in the regulation of ripening in climacteric fruit, such as bananas. The transcriptional regulation of ethylene biosynthesis throughout banana fruit ripening has received much study, but the cascaded transcriptional machinery of upstream transcriptional regulators implicated in the ethylene biosynthesis pathway is still poorly understood. Here we report that ethylene biosynthesis genes, including MaACS1, MaACO1, MaACO4, MaACO5, and MaACO8, were upregulated in ripening bananas. NAC (NAM, ATAF, CUC) transcription factor, MaNAC083, a ripening and ethylene-inhibited gene, was discovered as a potential binding protein to the MaACS1 promoter by yeast one-hybrid screening. Further in vitro and in vivo experiments indicated that MaNAC083 bound directly to promoters of the five ethylene biosynthesis genes, thereby transcriptionally repressing their expression, which was further verified by transient overexpression experiments, where ethylene production was inhibited through MaNAC083-modulated transcriptional repression of ethylene biosynthesis genes in banana fruits. Strikingly, MaMADS1, a ripening-induced MADS (MCM1, AGAMOUS, DEFICIENS, SRF4) transcription factor, was found to directly repress the expression of MaNAC083, inhibiting trans-repression of MaNAC083 to ethylene biosynthesis genes, thereby attenuating MaNAC083-repressed ethylene production in bananas. These findings collectively illustrated the mechanistic basis of a MaMADS1-MaNAC083-MaACS1/MaACOs regulatory cascade controlling ethylene biosynthesis during banana fruit ripening. These findings increase our knowledge of the transcriptional regulatory mechanisms of ethylene biosynthesis at the transcriptional level and are expected to help develop molecular approaches to control ripening and improve fruit storability.
Collapse
Affiliation(s)
- Wei Wei
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Ying-ying Yang
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Chao-jie Wu
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Jian-fei Kuang
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Jian-ye Chen
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Wang-jin Lu
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Wei Shan
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
19
|
Sharma M, Negi S, Kumar P, Srivastava DK, Choudhary MK, Irfan M. Fruit ripening under heat stress: The intriguing role of ethylene-mediated signaling. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 335:111820. [PMID: 37549738 DOI: 10.1016/j.plantsci.2023.111820] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/01/2023] [Accepted: 08/05/2023] [Indexed: 08/09/2023]
Abstract
Crop production is significantly influenced by climate, and even minor climate changes can have a substantial impact on crop yields. Rising temperature due to climate change can lead to heat stress (HS) in plants, which not only hinders plant growth and development but also result in significant losses in crop yields. To cope with the different stresses including HS, plants have evolved a variety of adaptive mechanisms. In response to these stresses, phytohormones play a crucial role by generating endogenous signals that regulate the plant's defensive response. Among these, Ethylene (ET), a key phytohormone, stands out as a major regulator of stress responses in plants and regulates many plant traits, which are critical for crop productivity and nutritional quality. ET is also known as a ripening hormone for decades in climacteric fruit and many studies are available deciphering the function of different ET biosynthesis and signaling components in the ripening process. Recent studies suggest that HS significantly affects fruit quality traits and perturbs fruit ripening by altering the regulation of many ethylene biosynthesis and signaling genes resulting in substantial loss of fruit yield, quality, and postharvest stability. Despite the significant progress in this field in recent years the interplay between ET, ripening, and HS is elusive. In this review, we summarized the recent advances and current understanding of ET in regulating the ripening process under HS and explored their crosstalk at physiological and molecular levels to shed light on intricate relationships.
Collapse
Affiliation(s)
- Megha Sharma
- Department of Biotechnology, Dr. Y.S. Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh, India
| | - Shivanti Negi
- Department of Biotechnology, Dr. Y.S. Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh, India
| | - Pankaj Kumar
- Department of Biotechnology, Dr. Y.S. Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh, India.
| | - Dinesh Kumar Srivastava
- Department of Biotechnology, Dr. Y.S. Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh, India
| | - Mani Kant Choudhary
- Department of Biology, University of Arkansas at Little Rock, Little Rock, AR 72204, USA
| | - Mohammad Irfan
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
20
|
Ding A, Bao F, Yuan X, Wang J, Cheng T, Zhang Q. Integrative Analysis of Metabolome and Transcriptome Revealed Lutein Metabolism Contributed to Yellow Flower Formation in Prunus mume. PLANTS (BASEL, SWITZERLAND) 2023; 12:3333. [PMID: 37765497 PMCID: PMC10537319 DOI: 10.3390/plants12183333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023]
Abstract
Prunus mume is a famous ornamental woody tree with colorful flowers. P. mume with yellow flowers is one of the most precious varieties. Regretfully, metabolites and regulatory mechanisms of yellow flowers in P. mume are still unclear. This hinders innovation of flower color breeding in P. mume. To elucidate the metabolic components and molecular mechanisms of yellow flowers, we analyzed transcriptome and metabolome between 'HJH' with yellow flowers and 'ZLE' with white flowers. Comparing the metabolome of the two varieties, we determined that carotenoids made contributions to the yellow flowers rather than flavonoids. Lutein was the key differential metabolite to cause yellow coloration of 'HJH'. Transcriptome analysis revealed significant differences in the expression of carotenoid cleavage dioxygenase (CCD) between the two varieties. Specifically, the expression level of PmCCD4 was higher in 'ZLE' than that in 'HJH'. Moreover, we identified six major transcription factors that probably regulated PmCCD4 to affect lutein accumulation. We speculated that carotenoid cleavage genes might be closely related to the yellow flower phenotype in P. mume. Further, the coding sequence of PmCCD4 has been cloned from the 'HJH' petals, and bioinformatics analysis revealed that PmCCD4 possessed conserved histidine residues, ensuring its enzymatic activity. PmCCD4 was closely related to PpCCD4, with a homology of 98.16%. Instantaneous transformation analysis in petal protoplasts of P. mume revealed PmCCD4 localization in the plastid. The overexpression of PmCCD4 significantly reduced the carotenoid content in tobacco plants, especially the lutein content, indicating that lutein might be the primary substrate for PmCCD4. We speculated that PmCCD4 might be involved in the cleavage of lutein in plastids, thereby affecting the formation of yellow flowers in P. mume. This work could establish a material and molecular basis of molecular breeding in P. mume for improving the flower color.
Collapse
Affiliation(s)
- Aiqin Ding
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Fei Bao
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Xi Yuan
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Jia Wang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Tangren Cheng
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Qixiang Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
21
|
Szepesi Á, Bakacsy L, Fehér A, Kovács H, Pálfi P, Poór P, Szőllősi R, Gondor OK, Janda T, Szalai G, Lindermayr C, Szabados L, Zsigmond L. L-Aminoguanidine Induces Imbalance of ROS/RNS Homeostasis and Polyamine Catabolism of Tomato Roots after Short-Term Salt Exposure. Antioxidants (Basel) 2023; 12:1614. [PMID: 37627609 PMCID: PMC10451491 DOI: 10.3390/antiox12081614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/02/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Polyamine (PA) catabolism mediated by amine oxidases is an important process involved in fine-tuning PA homeostasis and related mechanisms during salt stress. The significance of these amine oxidases in short-term responses to salt stress is, however, not well understood. In the present study, the effects of L-aminoguanidine (AG) on tomato roots treated with short-term salt stress induced by NaCl were studied. AG is usually used as a copper amine oxidase (CuAO or DAO) inhibitor. In our study, other alterations of PA catabolism, such as reduced polyamine oxidase (PAO), were also observed in AG-treated plants. Salt stress led to an increase in the reactive oxygen and nitrogen species in tomato root apices, evidenced by in situ fluorescent staining and an increase in free PA levels. Such alterations were alleviated by AG treatment, showing the possible antioxidant effect of AG in tomato roots exposed to salt stress. PA catabolic enzyme activities decreased, while the imbalance of hydrogen peroxide (H2O2), nitric oxide (NO), and hydrogen sulfide (H2S) concentrations displayed a dependence on stress intensity. These changes suggest that AG-mediated inhibition could dramatically rearrange PA catabolism and related reactive species backgrounds, especially the NO-related mechanisms. More studies are, however, needed to decipher the precise mode of action of AG in plants exposed to stress treatments.
Collapse
Affiliation(s)
- Ágnes Szepesi
- Department of Plant Biology, Institute of Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary; (L.B.); (A.F.); (H.K.); (P.P.); (P.P.); (R.S.)
| | - László Bakacsy
- Department of Plant Biology, Institute of Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary; (L.B.); (A.F.); (H.K.); (P.P.); (P.P.); (R.S.)
| | - Attila Fehér
- Department of Plant Biology, Institute of Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary; (L.B.); (A.F.); (H.K.); (P.P.); (P.P.); (R.S.)
- Institute of Plant Biology, Biological Research Centre (BRC), Eötvös Loránd Research Network (ELKH), Temesvári krt. 62, H-6726 Szeged, Hungary; (L.S.); (L.Z.)
| | - Henrietta Kovács
- Department of Plant Biology, Institute of Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary; (L.B.); (A.F.); (H.K.); (P.P.); (P.P.); (R.S.)
| | - Péter Pálfi
- Department of Plant Biology, Institute of Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary; (L.B.); (A.F.); (H.K.); (P.P.); (P.P.); (R.S.)
| | - Péter Poór
- Department of Plant Biology, Institute of Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary; (L.B.); (A.F.); (H.K.); (P.P.); (P.P.); (R.S.)
| | - Réka Szőllősi
- Department of Plant Biology, Institute of Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary; (L.B.); (A.F.); (H.K.); (P.P.); (P.P.); (R.S.)
| | - Orsolya Kinga Gondor
- Centre for Agricultural Research, Eötvös Loránd Research Network (ELKH), Brunszvik u.2., H-2462 Martonvásár, Hungary; (O.K.G.); (T.J.); (G.S.)
| | - Tibor Janda
- Centre for Agricultural Research, Eötvös Loránd Research Network (ELKH), Brunszvik u.2., H-2462 Martonvásár, Hungary; (O.K.G.); (T.J.); (G.S.)
| | - Gabriella Szalai
- Centre for Agricultural Research, Eötvös Loránd Research Network (ELKH), Brunszvik u.2., H-2462 Martonvásár, Hungary; (O.K.G.); (T.J.); (G.S.)
| | - Christian Lindermayr
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum Munich, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany;
- Institute of Lung Health and Immunity, Comprehensive Pneumology Center, Helmholtz Munich, Max-Lebsche-Platz 31, 81377 Munich, Germany
| | - László Szabados
- Institute of Plant Biology, Biological Research Centre (BRC), Eötvös Loránd Research Network (ELKH), Temesvári krt. 62, H-6726 Szeged, Hungary; (L.S.); (L.Z.)
| | - Laura Zsigmond
- Institute of Plant Biology, Biological Research Centre (BRC), Eötvös Loránd Research Network (ELKH), Temesvári krt. 62, H-6726 Szeged, Hungary; (L.S.); (L.Z.)
| |
Collapse
|
22
|
Liu D, Tan W, Wang H, Li W, Fu J, Li J, Zhou Y, Lin M, Xing W. Genetic diversity and genome-wide association study of 13 agronomic traits in 977 Beta vulgaris L. germplasms. BMC Genomics 2023; 24:413. [PMID: 37488485 PMCID: PMC10364417 DOI: 10.1186/s12864-023-09522-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 07/17/2023] [Indexed: 07/26/2023] Open
Abstract
BACKGROUND Sugar beet (Beta vulgaris L.) is an economically essential sugar crop worldwide. Its agronomic traits are highly diverse and phenotypically plastic, influencing taproot yield and quality. The National Beet Medium-term Gene Bank in China maintains more than 1700 beet germplasms with diverse countries of origin. However, it lacks detailed genetic background associated with morphological variability and diversity. RESULTS Here, a comprehensive genome-wide association study (GWAS) of 13 agronomic traits was conducted in a panel of 977 sugar beet accessions. Almost all phenotypic traits exhibited wide genetic diversity and high coefficient of variation (CV). A total of 170,750 high-quality single-nucleotide polymorphisms (SNPs) were obtained using the genotyping-by-sequencing (GBS). Neighbour-joining phylogenetic analysis, principal component analysis, population structure and kinship showed no obvious relationships among these genotypes based on subgroups or regional sources. GWAS was carried out using a mixed linear model, and 159 significant associations were detected for these traits. Within the 25 kb linkage disequilibrium decay of the associated markers, NRT1/PTR FAMILY 6.3 (BVRB_5g097760); nudix hydrolase 15 (BVRB_8g182070) and TRANSPORT INHIBITOR RESPONSE 1 (BVRB_8g181550); transcription factor MYB77 (BVRB_2g023500); and ethylene-responsive transcription factor ERF014 (BVRB_1g000090) were predicted to be strongly associated with the taproot traits of root groove depth (RGD); root shape (RS); crown size (CS); and flesh colour (FC), respectively. For the aboveground traits, UDP-glycosyltransferase 79B6 (BVRB_9g223780) and NAC domain-containing protein 7 (BVRB_5g097990); F-box protein At1g10780 (BVRB_6g140760); phosphate transporter PHO1 (BVRB_3g048660); F-box protein CPR1 (BVRB_8g181140); and transcription factor MYB77 (BVRB_2g023500) and alcohol acyltransferase 9 (BVRB_2g023460) might be associated with the hypocotyl colour (HC); plant type (PT); petiole length (PL); cotyledon size (C); and fascicled leaf type (FLT) of sugar beet, respectively. AP-2 complex subunit mu (BVRB_5g106130), trihelix transcription factor ASIL2 (BVRB_2g041790) and late embryogenesis abundant protein 18 (BVRB_5g106150) might be involved in pollen quantity (PQ) variation. The candidate genes extensively participated in hormone response, nitrogen and phosphorus transportation, secondary metabolism, fertilization and embryo maturation. CONCLUSIONS The genetic basis of agronomical traits is complicated in heterozygous diploid sugar beet. The putative valuable genes found in this study will help further elucidate the molecular mechanism of each phenotypic trait for beet breeding.
Collapse
Affiliation(s)
- Dali Liu
- National Beet Medium-term Gene Bank, Heilongjiang University, Harbin, 150080, P. R. China
- Key Laboratory of Sugar Beet Genetics and Breeding, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, P. R. China
| | - Wenbo Tan
- National Beet Medium-term Gene Bank, Heilongjiang University, Harbin, 150080, P. R. China
- Key Laboratory of Sugar Beet Genetics and Breeding, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, P. R. China
| | - Hao Wang
- National Beet Medium-term Gene Bank, Heilongjiang University, Harbin, 150080, P. R. China
- Key Laboratory of Sugar Beet Genetics and Breeding, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, P. R. China
| | - Wangsheng Li
- National Beet Medium-term Gene Bank, Heilongjiang University, Harbin, 150080, P. R. China
- Key Laboratory of Sugar Beet Genetics and Breeding, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, P. R. China
| | - Jingjing Fu
- National Beet Medium-term Gene Bank, Heilongjiang University, Harbin, 150080, P. R. China
- Key Laboratory of Sugar Beet Genetics and Breeding, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, P. R. China
| | - Jiajia Li
- National Beet Medium-term Gene Bank, Heilongjiang University, Harbin, 150080, P. R. China
- Key Laboratory of Sugar Beet Genetics and Breeding, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, P. R. China
| | - Yuanhang Zhou
- Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, P. R. China
| | - Ming Lin
- Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, P. R. China
| | - Wang Xing
- National Beet Medium-term Gene Bank, Heilongjiang University, Harbin, 150080, P. R. China.
- Key Laboratory of Sugar Beet Genetics and Breeding, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, P. R. China.
| |
Collapse
|
23
|
Chen C, Zhang M, Zhang M, Yang M, Dai S, Meng Q, Lv W, Zhuang K. ETHYLENE-INSENSITIVE 3-LIKE 2 regulates β-carotene and ascorbic acid accumulation in tomatoes during ripening. PLANT PHYSIOLOGY 2023; 192:2067-2080. [PMID: 36891812 PMCID: PMC10315317 DOI: 10.1093/plphys/kiad151] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 02/14/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
ETHYLENE-INSENSITIVE 3/ETHYLENE-INSENSITIVE 3-LIKEs (EIN3/EILs) are important ethylene response factors during fruit ripening. Here, we discovered that EIL2 controls carotenoid metabolism and ascorbic acid (AsA) biosynthesis in tomato (Solanum lycopersicum). In contrast to the red fruits presented in the wild type (WT) 45 d after pollination, the fruits of CRISPR/Cas9 eil2 mutants and SlEIL2 RNA interference lines (ERIs) showed yellow or orange fruits. Correlation analysis of transcriptome and metabolome data for the ERI and WT ripe fruits revealed that SlEIL2 is involved in β-carotene and AsA accumulation. ETHYLENE RESPONSE FACTORs (ERFs) are the typical components downstream of EIN3 in the ethylene response pathway. Through a comprehensive screening of ERF family members, we determined that SlEIL2 directly regulates the expression of 4 SlERFs. Two of these, SlERF.H30 and SlERF.G6, encode proteins that participate in the regulation of LYCOPENE-β-CYCLASE 2 (SlLCYB2), encoding an enzyme that mediates the conversion of lycopene to carotene in fruits. In addition, SlEIL2 transcriptionally repressed L-GALACTOSE 1-PHOSPHATE PHOSPHATASE 3 (SlGPP3) and MYO-INOSITOL OXYGENASE 1 (SlMIOX1) expression, which resulted in a 1.62-fold increase of AsA via both the L-galactose and myoinositol pathways. Overall, we demonstrated that SlEIL2 functions in controlling β-carotene and AsA levels, providing a potential strategy for genetic engineering to improve the nutritional value and quality of tomato fruit.
Collapse
Affiliation(s)
- Chong Chen
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Meng Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Mingyue Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Minmin Yang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Shanshan Dai
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Qingwei Meng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Wei Lv
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Kunyang Zhuang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, Shandong 271018, China
| |
Collapse
|
24
|
Diao Q, Tian S, Cao Y, Yao D, Fan H, Zhang Y. Transcriptome analysis reveals association of carotenoid metabolism pathway with fruit color in melon. Sci Rep 2023; 13:5004. [PMID: 36973323 PMCID: PMC10043268 DOI: 10.1038/s41598-023-31432-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/11/2023] [Indexed: 03/29/2023] Open
Abstract
AbstractFlesh color is an important quality of melon (Cucumis melo L.) and is determined mainly by carotenoid content, awarding them with colors, aromas, and nutrients. enhancing the nutritional and health benefits of fruits and vegetables for humans. In this study, we performed transcriptomic analysis of two melon inbred line “B-14” (orange-flesh) and “B-6” (white-flesh) at three developmental stages. We observed that the β-carotene content of inbred line “B-6” (14.232 μg/g) was significantly lower than that of inbred line “B-14” (0.534 μg/g). RNA-sequencing and quantitative reverse transcription PCR analyses were performed to identify differentially expressed genes (DEGs) between the two inbred lines at different stages; the DEGs were analyzed using the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes databases (KEGG). We identified 33 structural DEGs in different developmental periods of the two lines that were related to carotenoid metabolism. Among them, PSY, Z-ISO, ZDS, CRTISO, CCD4, VDE1, and NCED2 were highly correlated with carotenoid content. Thus, this study provides a basis for molecular mechanism of carotenoid biosynthesis and flesh color in melon fruit.
Collapse
|
25
|
Xu Y, Li P, Ma F, Huang D, Xing W, Wu B, Sun P, Xu B, Song S. Characterization of the NAC Transcription Factor in Passion Fruit ( Passiflora edulis) and Functional Identification of PeNAC-19 in Cold Stress. PLANTS (BASEL, SWITZERLAND) 2023; 12:1393. [PMID: 36987081 PMCID: PMC10051797 DOI: 10.3390/plants12061393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/07/2023] [Accepted: 03/13/2023] [Indexed: 06/19/2023]
Abstract
The NAC (NAM, ATAF and CUC) gene family plays an important role in plant development and abiotic stress response. However, up to now, the identification and research of the NAC (PeNAC) family members of passion fruit are still lacking. In this study, 25 PeNACs were identified from the passion fruit genome, and their functions under abiotic stress and at different fruit-ripening stages were analyzed. Furthermore, we analyzed the transcriptome sequencing results of PeNACs under four various abiotic stresses (drought, salt, cold and high temperature) and three different fruit-ripening stages, and verified the expression results of some genes by qRT-PCR. Additionally, tissue-specific analysis showed that most PeNACs were mainly expressed in flowers. In particular, PeNAC-19 was induced by four various abiotic stresses. At present, low temperatures have seriously endangered the development of passion fruit cultivation. Therefore, PeNAC-19 was transformed into tobacco, yeast and Arabidopsis to study their function of resisting low temperature. The results show that PeNAC-19 responded to cold stress significantly in tobacco and Arabidopsis, and could improve the low temperature tolerance of yeast. This study not only improved the understanding of the PeNAC gene family characteristics and evolution, but also provided new insights into the regulation of the PeNAC gene at different stages of fruit maturation and abiotic stresses.
Collapse
Affiliation(s)
- Yi Xu
- State Key Laboratory of Biological Breeding for Tropical Crops, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Germplasm Repository of Passiflora, Hainan Province, Hainan 571101, China
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 571101, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 571101, China
| | - Pengfei Li
- College of Tropical Crops, Yunnan Agricultural University, Kunming 650201, China
| | - Funing Ma
- State Key Laboratory of Biological Breeding for Tropical Crops, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Germplasm Repository of Passiflora, Hainan Province, Hainan 571101, China
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 571101, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 571101, China
| | - Dongmei Huang
- State Key Laboratory of Biological Breeding for Tropical Crops, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Germplasm Repository of Passiflora, Hainan Province, Hainan 571101, China
| | - Wenting Xing
- State Key Laboratory of Biological Breeding for Tropical Crops, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Germplasm Repository of Passiflora, Hainan Province, Hainan 571101, China
| | - Bin Wu
- State Key Laboratory of Biological Breeding for Tropical Crops, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Germplasm Repository of Passiflora, Hainan Province, Hainan 571101, China
| | - Peiguang Sun
- State Key Laboratory of Biological Breeding for Tropical Crops, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Germplasm Repository of Passiflora, Hainan Province, Hainan 571101, China
| | - Binqiang Xu
- State Key Laboratory of Biological Breeding for Tropical Crops, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Germplasm Repository of Passiflora, Hainan Province, Hainan 571101, China
| | - Shun Song
- State Key Laboratory of Biological Breeding for Tropical Crops, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Germplasm Repository of Passiflora, Hainan Province, Hainan 571101, China
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 571101, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 571101, China
| |
Collapse
|
26
|
Xing S, Li R, Zhao H, Zhai H, He S, Zhang H, Zhou Y, Zhao N, Gao S, Liu Q. The transcription factor IbNAC29 positively regulates the carotenoid accumulation in sweet potato. HORTICULTURE RESEARCH 2023; 10:uhad010. [PMID: 36960431 PMCID: PMC10028406 DOI: 10.1093/hr/uhad010] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Carotenoid is a tetraterpene pigment beneficial for human health. Although the carotenoid biosynthesis pathway has been extensively studied in plants, relatively little is known about their regulation in sweet potato. Previously, we conducted the transcriptome database of differentially expressed genes between the sweet potato (Ipomoea batatas) cultivar 'Weiduoli' and its high-carotenoid mutant 'HVB-3'. In this study, we selected one of these candidate genes, IbNAC29, for subsequent analyses. IbNAC29 belongs to the plant-specific NAC (NAM, ATAF1/2, and CUC2) transcription factor family. Relative IbNAC29 mRNA level in the HVB-3 storage roots was ~1.71-fold higher than Weiduoli. Additional experiments showed that the contents of α-carotene, lutein, β-carotene, zeaxanthin, and capsanthin are obviously increased in the storage roots of transgenic sweet potato plants overexpressing IbNAC29. Moreover, the levels of carotenoid biosynthesis genes in transgenic plants were also up-regulated. Nevertheless, yeast one-hybrid assays indicated that IbNAC29 could not directly bind to the promoters of these carotenoid biosynthesis genes. Furthermore, the level of IbSGR1 was down-regulated, whose homologous genes in tomato can negatively regulate carotene accumulation. Yeast three-hybrid analysis revealed that the IbNAC29-IbMYB1R1-IbAITR5 could form a regulatory module. Yeast one-hybrid, electrophoretic mobility shift assay, quantitative PCR analysis of chromatin immunoprecipitation and dual-luciferase reporter assay showed that IbAITR5 directly binds to and inhibits the promoter activity of IbSGR1, up-regulating carotenoid biosynthesis gene IbPSY. Taken together, IbNAC29 is a potential candidate gene for the genetic improvement of nutritive value in sweet potato.
Collapse
Affiliation(s)
- Shihan Xing
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Ruijie Li
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Haoqiang Zhao
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Hong Zhai
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Shaozhen He
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Huan Zhang
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Yuanyuan Zhou
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Ning Zhao
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | | | | |
Collapse
|
27
|
Asakura H, Tanaka M, Tamura T, Saito Y, Yamakawa T, Abe K, Asakura T. Genes related to cell wall metabolisms are targeted by miRNAs in immature tomato fruits under drought stress. Biosci Biotechnol Biochem 2023; 87:290-302. [PMID: 36572396 DOI: 10.1093/bbb/zbac209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/18/2022] [Indexed: 12/28/2022]
Abstract
The metabolism of tomato fruits changes when plants experience drought stress. In this study, we investigated changes in microRNA (miRNA) abundance and detected 32 miRNAs whose expression changes in fruit. The candidate target genes for each miRNA were predicted from the differentially expressed genes identified by transcriptome analysis at the same fruit maturation stage. The predicted targeted genes were related to cell wall metabolisms, response to pathogens, and plant hormones. Among these, we focused on cell wall metabolism-related genes and performed a dual luciferase assay to assess the targeting of their mRNAs by their predicted miRNA. As a result, sly-miR10532 and sly-miR7981e suppress the expression of mRNAs of galacturonosyltransferase-10 like encoding the main enzyme of pectin biosynthesis, while sly-miR171b-5p targets β-1,3-glucosidase mRNAs involved in glucan degradation. These results will allow the systematic characterization of miRNA and their target genes in the tomato fruit under drought stress conditions.
Collapse
Affiliation(s)
- Hiroko Asakura
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Mayui Tanaka
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Tomoko Tamura
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1, Sakuragaoka, Setagaya-ku, Tokyo, Japan
| | - Yoshikazu Saito
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Takashi Yamakawa
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Keiko Abe
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, Japan.,Kanagawa Institute of Industrial Science and Technology (KISTEC), Life Science & Environmental Research Center (LiSE), 705-1, Imaizumi, Ebina, Kanagawa, Japan
| | - Tomiko Asakura
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
28
|
Liu J, Qiao Y, Li C, Hou B. The NAC transcription factors play core roles in flowering and ripening fundamental to fruit yield and quality. FRONTIERS IN PLANT SCIENCE 2023; 14:1095967. [PMID: 36909440 PMCID: PMC9996081 DOI: 10.3389/fpls.2023.1095967] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Fruits are derived from flowers and play an important role in human food, nutrition, and health. In general, flowers determine the crop yield, and ripening affects the fruit quality. Although transcription factors (TFs) only account for a small part of plant transcriptomes, they control the global gene expression and regulation. The plant-specific NAC (NAM, ATAF, and CUC) TFs constitute a large family evolving concurrently with the transition of both aquatic-to-terrestrial plants and vegetative-to-reproductive growth. Thus, NACs play an important role in fruit yield and quality by determining shoot apical meristem (SAM) inflorescence and controlling ripening. The present review focuses on the various properties of NACs together with their function and regulation in flower formation and fruit ripening. Hitherto, we have a better understanding of the molecular mechanisms of NACs in ripening through abscisic acid (ABA) and ethylene (ETH), but how NACs regulate the expression of the inflorescence formation-related genes is largely unknown. In the future, we should focus on the analysis of NAC redundancy and identify the pivotal regulators of flowering and ripening. NACs are potentially vital manipulation targets for improving fruit quantity and quality.
Collapse
Affiliation(s)
- Jianfeng Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuyuan Qiao
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Cui Li
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bingzhu Hou
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
29
|
Yi L, Zhou W, Zhang Y, Chen Z, Wu N, Wang Y, Dai Z. Genetic mapping of a single nuclear locus determines the white flesh color in watermelon ( Citrullus lanatus L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1090009. [PMID: 36824206 PMCID: PMC9941332 DOI: 10.3389/fpls.2023.1090009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/09/2023] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Flesh color is an important trait in watermelon (Citrullus lanatus L.). Several flesh color genes have been identified in watermelon; however, the inheritance of and the molecular basis underlying the white flesh trait remain largely unknown. METHODS In this study, segregation populations were constructed by crossing the canary yellow flesh line HSH-F with the white flesh line Sanbai to fine-map the white flesh gene in watermelon. RESULTS Genetic analysis indicated that the white flesh trait is controlled by a single recessive locus, termed Clwf2. Map-based cloning delimited the Clwf2 locus to a 132.3-kb region on chromosome 6. The candidate region contains 13 putative genes, and four of them-Cla97C06G121860, Cla97C06G121880, Cla97C06G121890, and Cla97C06G121900-were significantly downregulated in the white flesh compared to the canary yellow flesh watermelon fruits. The Cla97C06G121890 gene, which encodes a tetratricopeptide repeat protein, showed almost no expression in the white flesh fruit before maturity, whereas it had a very high expression in the canary yellow flesh fruit at 18 days after pollination. Transmission electron microscopy revealed rounded and regularly shaped chromoplasts in both the canary yellow and white flesh fruits. Further quantitative real-time PCR analysis showed that the expression levels of several key plastid division genes and almost the entire carotenoid biosynthesis pathway genes were downregulated in the white flesh compared to the canary yellow flesh fruits. DISCUSSION This study suggests that the proliferation inhibition of chromoplasts and downregulation of the CBP genes block the accumulation of carotenoids in watermelon and lead to white flesh. These findings advance and extend the understanding of the molecular mechanisms underlying white flesh trait formation and carotenoid biosynthesis in watermelon.
Collapse
Affiliation(s)
- Licong Yi
- Hubei Key Laboratory of Vegetable Germplasm Enhancement and Genetic Improvement, Industrial Crops Institute, Hubei Academy of Agricultural Science, Wuhan, China
- Key Laboratory of Ecological Cultivation on Alpine Vegetables (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Wei Zhou
- Hubei Key Laboratory of Vegetable Germplasm Enhancement and Genetic Improvement, Industrial Crops Institute, Hubei Academy of Agricultural Science, Wuhan, China
- Key Laboratory of Ecological Cultivation on Alpine Vegetables (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Yi Zhang
- Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan, China
| | - Zibiao Chen
- Hubei Key Laboratory of Vegetable Germplasm Enhancement and Genetic Improvement, Industrial Crops Institute, Hubei Academy of Agricultural Science, Wuhan, China
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Na Wu
- Hubei Key Laboratory of Vegetable Germplasm Enhancement and Genetic Improvement, Industrial Crops Institute, Hubei Academy of Agricultural Science, Wuhan, China
| | - Yunqiang Wang
- Hubei Key Laboratory of Vegetable Germplasm Enhancement and Genetic Improvement, Industrial Crops Institute, Hubei Academy of Agricultural Science, Wuhan, China
- Key Laboratory of Ecological Cultivation on Alpine Vegetables (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Zhaoyi Dai
- Hubei Key Laboratory of Vegetable Germplasm Enhancement and Genetic Improvement, Industrial Crops Institute, Hubei Academy of Agricultural Science, Wuhan, China
- Key Laboratory of Ecological Cultivation on Alpine Vegetables (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Wuhan, China
| |
Collapse
|
30
|
Integrated Analysis of Widely Targeted Metabolomics and Transcriptomics Reveals the Effects of Transcription Factor NOR-like1 on Alkaloids, Phenolic Acids, and Flavonoids in Tomato at Different Ripening Stages. Metabolites 2022; 12:metabo12121296. [PMID: 36557334 PMCID: PMC9853326 DOI: 10.3390/metabo12121296] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/14/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Tomato is abundant in alkaloids, phenolic acids, and flavonoids; however, the effect of transcription factor NOR-like1 on these metabolites in tomato is unclear. We used a combination of widely targeted metabolomics and transcriptomics to analyze wild-type tomatoes and CR-NOR-like1 tomatoes. A total of 83 alkaloids, 85 phenolic acids, and 96 flavonoids were detected with significant changes. Combined with a KEGG enrichment analysis, we revealed 16 differentially expressed genes (DEGs) in alkaloid-related arginine and proline metabolism, 60 DEGs were identified in the phenolic acid-related phenylpropane biosynthesis, and 30 DEGs were identified in the flavonoid-related biosynthesis pathway. In addition, some highly correlated differential-expression genes with differential metabolites were further identified by correlation analysis. The present research provides a preliminary view of the effects of NOR-like1 transcription factor on alkaloid, phenolic acid, and flavonoid accumulation in tomatoes at different ripening stages based on widely targeted metabolomics and transcriptomics in plants, laying the foundation for extending fruit longevity and shelf life as well as cultivating stress-resistant plants.
Collapse
|
31
|
Qi X, Dong Y, Liu C, Song L, Chen L, Li M. The PavNAC56 transcription factor positively regulates fruit ripening and softening in sweet cherry (Prunus avium). PHYSIOLOGIA PLANTARUM 2022; 174:e13834. [PMID: 36437693 DOI: 10.1111/ppl.13834] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/11/2022] [Accepted: 11/24/2022] [Indexed: 06/16/2023]
Abstract
The rapid softening of sweet cherry fruits during ripening results in the deterioration of fruit quality. However, few genes related to sweet cherry fruit ripening and softening have been identified, and the molecular regulatory mechanisms underlying this process are poorly understood. Here, we identified and functionally characterized PavNAC56, a NAC transcription factor that positively regulates sweet cherry fruit ripening and softening. Gene expression analyses showed that PavNAC56 was specifically and abundantly expressed in the fruit, and its transcript levels increased in response to abscisic acid (ABA). A subcellular localization analysis revealed that PavNAC56 is a nucleus-localized protein. Virus-induced gene silencing of PavNAC56 inhibited fruit ripening, enhanced fruit firmness, decreased the contents of ABA, anthocyanins, and soluble solids, and down-regulated several fruit ripening-related genes. Yeast one-hybrid and dual-luciferase assays showed that PavNAC56 directly binds to the promoters of several genes related to cell wall metabolism (PavPG2, PavEXPA4, PavPL18, and PavCEL8) and activates their expression. Overall, our findings show that PavNAC56 plays an indispensable role in controlling the ripening and softening of sweet cherry fruit and provides new insights into the regulatory mechanisms by which NAC transcription factors affect nonclimacteric fruit ripening and softening.
Collapse
Affiliation(s)
- Xiliang Qi
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Yuanxin Dong
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Congli Liu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Lulu Song
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Lei Chen
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Ming Li
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| |
Collapse
|
32
|
Peng Z, Liu G, Li H, Wang Y, Gao H, Jemrić T, Fu D. Molecular and Genetic Events Determining the Softening of Fleshy Fruits: A Comprehensive Review. Int J Mol Sci 2022; 23:12482. [PMID: 36293335 PMCID: PMC9604029 DOI: 10.3390/ijms232012482] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/28/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022] Open
Abstract
Fruit softening that occurs during fruit ripening and postharvest storage determines the fruit quality, shelf life and commercial value and makes fruits more attractive for seed dispersal. In addition, over-softening results in fruit eventual decay, render fruit susceptible to invasion by opportunistic pathogens. Many studies have been conducted to reveal how fruit softens and how to control softening. However, softening is a complex and delicate life process, including physiological, biochemical and metabolic changes, which are closely related to each other and are affected by environmental conditions such as temperature, humidity and light. In this review, the current knowledge regarding fruit softening mechanisms is summarized from cell wall metabolism (cell wall structure changes and cell-wall-degrading enzymes), plant hormones (ETH, ABA, IAA and BR et al.), transcription factors (MADS-Box, AP2/ERF, NAC, MYB and BZR) and epigenetics (DNA methylation, histone demethylation and histone acetylation) and a diagram of the regulatory relationship between these factors is provided. It will provide reference for the cultivation of anti-softening fruits.
Collapse
Affiliation(s)
- Zhenzhen Peng
- Laboratory of Fruit Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Gangshuai Liu
- Laboratory of Fruit Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Hongli Li
- Laboratory of Fruit Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yunxiang Wang
- Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China
| | - Haiyan Gao
- Key Laboratory of Post-Harvest Handing of Fruits, Ministry of Agriculture and Rural Affairs, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Tomislav Jemrić
- Department of Pomology, Division of Horticulture and Landscape Architecture, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia
| | - Daqi Fu
- Laboratory of Fruit Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
33
|
Villa-Rivera MG, Martínez O, Ochoa-Alejo N. Putative Transcription Factor Genes Associated with Regulation of Carotenoid Biosynthesis in Chili Pepper Fruits Revealed by RNA-Seq Coexpression Analysis. Int J Mol Sci 2022; 23:ijms231911774. [PMID: 36233073 PMCID: PMC9569626 DOI: 10.3390/ijms231911774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/15/2022] [Accepted: 09/18/2022] [Indexed: 11/19/2022] Open
Abstract
During the ripening process, the pericarp of chili pepper (Capsicum spp.) fruits accumulates large amounts of carotenoids. Although the carotenoid biosynthesis pathway in the Capsicum genus has been widely studied from different perspectives, the transcriptional regulation of genes encoding carotenoid biosynthetic enzymes has not been elucidated in this fruit. We analyzed RNA-Seq transcriptomic data from the fruits of 12 accessions of Capsicum annuum during the growth, development, and ripening processes using the R package named Salsa. We performed coexpression analyses between the standardized expression of genes encoding carotenoid biosynthetic enzymes (target genes (TGs)) and the genes of all expressed transcription factors (TFs). Additionally, we analyzed the promoter region of each biosynthetic gene to identify putative binding sequences for each selected TF candidate. We selected 83 TFs as putative regulators of the carotenogenic structural genes. From them, putative binding sites in the promoters of the carotenoid-biosynthesis-related structural genes were found for only 54 TFs. These results could guide the search for transcription factors involved in the regulation of the carotenogenic pathway in chili pepper fruits and might facilitate the collection of corresponding experimental evidence to corroborate their participation in the regulation of this biosynthetic pathway in Capsicum spp.
Collapse
Affiliation(s)
- Maria Guadalupe Villa-Rivera
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato 36824, Mexico
| | - Octavio Martínez
- Unidad de Genómica Avanzada, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato 36824, Mexico
| | - Neftalí Ochoa-Alejo
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato 36824, Mexico
- Correspondence: ; Tel.: +52-(462)-6239654
| |
Collapse
|
34
|
Ampomah-Dwamena C, Tomes S, Thrimawithana AH, Elborough C, Bhargava N, Rebstock R, Sutherland P, Ireland H, Allan AC, Espley RV. Overexpression of PSY1 increases fruit skin and flesh carotenoid content and reveals associated transcription factors in apple ( Malus × domestica). FRONTIERS IN PLANT SCIENCE 2022; 13:967143. [PMID: 36186009 PMCID: PMC9520574 DOI: 10.3389/fpls.2022.967143] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 07/29/2022] [Indexed: 06/16/2023]
Abstract
Knowledge of the transcriptional regulation of the carotenoid metabolic pathway is still emerging and here, we have misexpressed a key biosynthetic gene in apple to highlight potential transcriptional regulators of this pathway. We overexpressed phytoene synthase (PSY1), which controls the key rate-limiting biosynthetic step, in apple and analyzed its effects in transgenic fruit skin and flesh using two approaches. Firstly, the effects of PSY overexpression on carotenoid accumulation and gene expression was assessed in fruit at different development stages. Secondly, the effect of light exclusion on PSY1-induced fruit carotenoid accumulation was examined. PSY1 overexpression increased carotenoid content in transgenic fruit skin and flesh, with beta-carotene being the most prevalent carotenoid compound. Light exclusion by fruit bagging reduced carotenoid content overall, but carotenoid content was still higher in bagged PSY fruit than in bagged controls. In tissues overexpressing PSY1, plastids showed accelerated chloroplast to chromoplast transition as well as high fluorescence intensity, consistent with increased number of chromoplasts and carotenoid accumulation. Surprisingly, the expression of other carotenoid pathway genes was elevated in PSY fruit, suggesting a feed-forward regulation of carotenogenesis when this enzyme step is mis-expressed. Transcriptome profiling of fruit flesh identified differentially expressed transcription factors (TFs) that also were co-expressed with carotenoid pathway genes. A comparison of differentially expressed genes from both the developmental series and light exclusion treatment revealed six candidate TFs exhibiting strong correlation with carotenoid accumulation. This combination of physiological, transcriptomic and metabolite data sheds new light on plant carotenogenesis and TFs that may play a role in regulating apple carotenoid biosynthesis.
Collapse
Affiliation(s)
| | - Sumathi Tomes
- The New Zealand Institute for Plant and Food Research Ltd., Auckland, New Zealand
| | | | - Caitlin Elborough
- The New Zealand Institute for Plant and Food Research Ltd., Auckland, New Zealand
- BioLumic Limited, Palmerston North, New Zealand
| | - Nitisha Bhargava
- The New Zealand Institute for Plant and Food Research Ltd., Auckland, New Zealand
| | - Ria Rebstock
- The New Zealand Institute for Plant and Food Research Ltd., Auckland, New Zealand
| | - Paul Sutherland
- The New Zealand Institute for Plant and Food Research Ltd., Auckland, New Zealand
| | - Hilary Ireland
- The New Zealand Institute for Plant and Food Research Ltd., Auckland, New Zealand
| | - Andrew C. Allan
- The New Zealand Institute for Plant and Food Research Ltd., Auckland, New Zealand
| | - Richard V. Espley
- The New Zealand Institute for Plant and Food Research Ltd., Auckland, New Zealand
| |
Collapse
|
35
|
Shi Y, Li BJ, Su G, Zhang M, Grierson D, Chen KS. Transcriptional regulation of fleshy fruit texture. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:1649-1672. [PMID: 35731033 DOI: 10.1111/jipb.13316] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/22/2022] [Indexed: 05/24/2023]
Abstract
Fleshy fruit texture is a critically important quality characteristic of ripe fruit. Softening is an irreversible process which operates in most fleshy fruits during ripening which, together with changes in color and taste, contributes to improvements in mouthfeel and general attractiveness. Softening results mainly from the expression of genes encoding enzymes responsible for cell wall modifications but starch degradation and high levels of flavonoids can also contribute to texture change. Some fleshy fruit undergo lignification during development and post-harvest, which negatively affects eating quality. Excessive softening can also lead to physical damage and infection, particularly during transport and storage which causes severe supply chain losses. Many transcription factors (TFs) that regulate fruit texture by controlling the expression of genes involved in cell wall and starch metabolism have been characterized. Some TFs directly regulate cell wall targets, while others act as part of a broader regulatory program governing several aspects of the ripening process. In this review, we focus on advances in our understanding of the transcriptional regulatory mechanisms governing fruit textural change during fruit development, ripening and post-harvest. Potential targets for breeding and future research directions for the control of texture and quality improvement are discussed.
Collapse
Affiliation(s)
- Yanna Shi
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Bai-Jun Li
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Guanqing Su
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Mengxue Zhang
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Donald Grierson
- State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Kun-Song Chen
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| |
Collapse
|
36
|
Zhao Y, Duan X, Wang L, Gao G, Xu C, Qi H. Transcription Factor CmNAC34 Regulated CmLCYB-Mediated β-Carotene Accumulation during Oriental Melon Fruit Ripening. Int J Mol Sci 2022; 23:9805. [PMID: 36077205 PMCID: PMC9455964 DOI: 10.3390/ijms23179805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/22/2022] [Accepted: 08/26/2022] [Indexed: 11/21/2022] Open
Abstract
Ripened oriental melon (Cucumis melo) with orange-colored flesh is rich in β-carotene. Lycopene β-cyclase (LCYB) is the synthetic enzyme that directly controls the massive accumulation of β-carotene. However, the regulatory mechanism underlying the CmLCYB-mediated β-carotene accumulation in oriental melon is fairly unknown. Here, we screened and identified a transcription factor, CmNAC34, by combining bioinformatics analysis and yeast one-hybrid screen with CmLCYB promoter. CmNAC34 was located in the nucleus and acted as a transcriptional activator. The expression profile of CmNAC34 was consistent with that of CmLCYB during the fruit ripening. Additionally, the transient overexpression of CmNAC34 in oriental melon fruit promoted the expression of CmLCYB and enhanced β-carotene concentration, while transient silence of CmNAC34 in fruit was an opposite trend, which indicated CmNAC34 could modulate CmLCYB-mediated β-carotene biosynthesis in oriental melon. Finally, the yeast one-hybrid (Y1H), electrophoretic mobility shift assay (EMSA), β-glucuronidase (GUS) analysis assay, and luciferase reporter (LUC) assay indicated that CmNAC34 could bind to the promoter of CmLCYB and positively regulated the CmLCYB transcription level. These findings suggested that CmNAC34 acted as an activator to regulate β-carotene accumulation by directly binding the promoter of CmLCYB, which provides new insight into the regulatory mechanism of carotenoid metabolism during the development and ripening of oriental melon.
Collapse
Affiliation(s)
| | | | | | | | - Chuanqiang Xu
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, College of Horticulture, Shenyang Agricultural University, National and Local Joint Engineering Research Centre of Northern Horticultural, Facilities Design and Application Technology (Liaoning), Shenyang 110866, China
| | - Hongyan Qi
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, College of Horticulture, Shenyang Agricultural University, National and Local Joint Engineering Research Centre of Northern Horticultural, Facilities Design and Application Technology (Liaoning), Shenyang 110866, China
| |
Collapse
|
37
|
Xiong C, Pei H, Zhang Y, Ren W, Ma Z, Tang Y, Huang J. Integrative analysis of transcriptome and miRNAome reveals molecular mechanisms regulating pericarp thickness in sweet corn during kernel development. FRONTIERS IN PLANT SCIENCE 2022; 13:945379. [PMID: 35958194 PMCID: PMC9361504 DOI: 10.3389/fpls.2022.945379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/27/2022] [Indexed: 06/18/2023]
Abstract
Pericarp thickness affects the edible quality of sweet corn (Zea mays L. saccharata Sturt.). Therefore, breeding varieties with a thin pericarp is important for the quality breeding of sweet corn. However, the molecular mechanisms underlying the pericarp development remain largely unclear. We performed an integrative analysis of mRNA and miRNA sequencing to elucidate the genetic mechanism regulating pericarp thickness during kernel development (at 15 days, 19 days, and 23 days after pollination) of two sweet corn inbred lines with different pericarp thicknesses (M03, with a thinner pericarp and M08, with a thicker pericarp). A total of 2,443 and 1,409 differentially expressed genes (DEGs) were identified in M03 and M08, respectively. Our results indicate that phytohormone-mediated programmed cell death (PCD) may play a critical role in determining pericarp thickness in sweet corn. Auxin (AUX), gibberellin (GA), and brassinosteroid (BR) signal transduction may indirectly mediate PCD to regulate pericarp thickness in M03 (the thin pericarp variety). In contrast, abscisic acid (ABA), cytokinin (CK), and ethylene (ETH) signaling may be the key regulators of pericarp PCD in M08 (the thick pericarp variety). Furthermore, 110 differentially expressed microRNAs (DEMIs) and 478 differentially expressed target genes were identified. miRNA164-, miRNA167-, and miRNA156-mediated miRNA-mRNA pairs may participate in regulating pericarp thickness. The expression results of DEGs were validated by quantitative real-time PCR. These findings provide insights into the molecular mechanisms regulating pericarp thickness and propose the objective of breeding sweet corn varieties with a thin pericarp.
Collapse
|
38
|
Meng F, Li Y, Li S, Chen H, Shao Z, Jian Y, Mao Y, Liu L, Wang Q. Carotenoid biofortification in tomato products along whole agro-food chain from field to fork. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.04.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
39
|
Pons C, Casals J, Palombieri S, Fontanet L, Riccini A, Rambla JL, Ruggiero A, Figás MDR, Plazas M, Koukounaras A, Picarella ME, Sulli M, Fisher J, Ziarsolo P, Blanca J, Cañizares J, Cammareri M, Vitiello A, Batelli G, Kanellis A, Brouwer M, Finkers R, Nikoloudis K, Soler S, Giuliano G, Grillo S, Grandillo S, Zamir D, Mazzucato A, Causse M, Díez MJ, Prohens J, Monforte AJ, Granell A. Atlas of phenotypic, genotypic and geographical diversity present in the European traditional tomato. HORTICULTURE RESEARCH 2022; 9:uhac112. [PMID: 35795386 PMCID: PMC9252105 DOI: 10.1093/hr/uhac112] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/27/2022] [Indexed: 06/15/2023]
Abstract
The Mediterranean basin countries are considered secondary centres of tomato diversification. However, information on phenotypic and allelic variation of local tomato materials is still limited. Here we report on the evaluation of the largest traditional tomato collection, which includes 1499 accessions from Southern Europe. Analyses of 70 traits revealed a broad range of phenotypic variability with different distributions among countries, with the culinary end use within each country being the main driver of tomato diversification. Furthermore, eight main tomato types (phenoclusters) were defined by integrating phenotypic data, country of origin, and end use. Genome-wide association study (GWAS) meta-analyses identified associations in 211 loci, 159 of which were novel. The multidimensional integration of phenoclusters and the GWAS meta-analysis identified the molecular signatures for each traditional tomato type and indicated that signatures originated from differential combinations of loci, which in some cases converged in the same tomato phenotype. Our results provide a roadmap for studying and exploiting this untapped tomato diversity.
Collapse
Affiliation(s)
- Clara Pons
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV), Universitat Politècnica de València, València, Spain
- Instituto de Biología Molecular y Celular de Plantas (IBMCP). Consejo Superior de Investigaciones Científicas (CSIC), Universitat Politècnica de València, València, Spain
| | - Joan Casals
- Department of Agri-Food Engineering and Biotechnology/Miquel Agustí Foundation, Universitat Politècnica de Catalunya, Campus Baix Llobregat, Esteve Terrades 8, 08860 Castelldefels, Spain
| | - Samuela Palombieri
- Institute of Biosciences and BioResources (IBBR), National Research Council of Italy (CNR), Via Università 133, 80055 Portici, Italy
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, 01100 Viterbo, Italy
| | - Lilian Fontanet
- INRAE, UR1052, Génétique et Amélioration des Fruits et Légumes 67 Allé des Chênes, Centre de Recherche PACA, Domaine Saint Maurice, CS60094, Montfavet, 84143, France
- HM Clause, Portes-lès-Valence, France
| | - Alessandro Riccini
- Department of Agriculture and Forest Sciences (DAFNE), Università degli Studi della Tuscia, Viterbo,Italy
| | - Jose Luis Rambla
- Instituto de Biología Molecular y Celular de Plantas (IBMCP). Consejo Superior de Investigaciones Científicas (CSIC), Universitat Politècnica de València, València, Spain
| | - Alessandra Ruggiero
- Institute of Biosciences and BioResources (IBBR), National Research Council of Italy (CNR), Via Università 133, 80055 Portici, Italy
| | - Maria del Rosario Figás
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV), Universitat Politècnica de València, València, Spain
| | - Mariola Plazas
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV), Universitat Politècnica de València, València, Spain
- Instituto de Biología Molecular y Celular de Plantas (IBMCP). Consejo Superior de Investigaciones Científicas (CSIC), Universitat Politècnica de València, València, Spain
| | - Athanasios Koukounaras
- Aristotle University of Thessaloniki, School of Agriculture, Laboratory of Vegetable Crops, Thessaloniki, 54124 Greece
| | - Maurizio E Picarella
- Department of Agriculture and Forest Sciences (DAFNE), Università degli Studi della Tuscia, Viterbo,Italy
| | - Maria Sulli
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Casaccia Research Centre, Rome, Italy
| | - Josef Fisher
- Hebrew University of Jerusalem, Robert H Smith Inst Plant Sci & Genet Agr, Rehovot, Israel
| | - Peio Ziarsolo
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV), Universitat Politècnica de València, València, Spain
| | - Jose Blanca
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV), Universitat Politècnica de València, València, Spain
| | - Joaquin Cañizares
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV), Universitat Politècnica de València, València, Spain
| | - Maria Cammareri
- Institute of Biosciences and BioResources (IBBR), National Research Council of Italy (CNR), Via Università 133, 80055 Portici, Italy
| | - Antonella Vitiello
- Institute of Biosciences and BioResources (IBBR), National Research Council of Italy (CNR), Via Università 133, 80055 Portici, Italy
| | - Giorgia Batelli
- Institute of Biosciences and BioResources (IBBR), National Research Council of Italy (CNR), Via Università 133, 80055 Portici, Italy
| | - Angelos Kanellis
- Group of Biotechnology of Pharmaceutical Plants, Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Matthijs Brouwer
- Wageningen Univ & Res, Plant Breeding, POB 386, NL-6700 AJ Wageningen, Netherlands
| | - Richard Finkers
- Wageningen Univ & Res, Plant Breeding, POB 386, NL-6700 AJ Wageningen, Netherlands
| | | | - Salvador Soler
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV), Universitat Politècnica de València, València, Spain
| | - Giovanni Giuliano
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Casaccia Research Centre, Rome, Italy
| | - Stephania Grillo
- Institute of Biosciences and BioResources (IBBR), National Research Council of Italy (CNR), Via Università 133, 80055 Portici, Italy
| | - Silvana Grandillo
- Institute of Biosciences and BioResources (IBBR), National Research Council of Italy (CNR), Via Università 133, 80055 Portici, Italy
| | - Dani Zamir
- Hebrew University of Jerusalem, Robert H Smith Inst Plant Sci & Genet Agr, Rehovot, Israel
| | - Andrea Mazzucato
- Department of Agriculture and Forest Sciences (DAFNE), Università degli Studi della Tuscia, Viterbo,Italy
| | - Mathilde Causse
- INRAE, UR1052, Génétique et Amélioration des Fruits et Légumes 67 Allé des Chênes, Centre de Recherche PACA, Domaine Saint Maurice, CS60094, Montfavet, 84143, France
| | - Maria José Díez
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV), Universitat Politècnica de València, València, Spain
| | - Jaime Prohens
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV), Universitat Politècnica de València, València, Spain
| | - Antonio Jose Monforte
- Instituto de Biología Molecular y Celular de Plantas (IBMCP). Consejo Superior de Investigaciones Científicas (CSIC), Universitat Politècnica de València, València, Spain
| | - Antonio Granell
- Instituto de Biología Molecular y Celular de Plantas (IBMCP). Consejo Superior de Investigaciones Científicas (CSIC), Universitat Politècnica de València, València, Spain
| |
Collapse
|
40
|
Huang X, Hu L, Kong W, Yang C, Xi W. Red light-transmittance bagging promotes carotenoid accumulation of grapefruit during ripening. Commun Biol 2022; 5:303. [PMID: 35379890 PMCID: PMC8980019 DOI: 10.1038/s42003-022-03270-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 03/14/2022] [Indexed: 11/17/2022] Open
Abstract
Light, a crucial environmental signal, is involved in the regulation of secondary metabolites. To understand the mechanism by which light influences carotenoid metabolism, grapefruits were bagged with four types of light-transmitting bags that altered the transmission of solar light. We show that light-transmitting bagging induced changes in carotenoid metabolism during fruit ripening. Compared with natural light, red light (RL)-transmittance treatment significantly increases the total carotenoid content by 62%. Based on weighted gene co-expression network analysis (WGCNA), ‘blue’ and ‘turquoise’ modules are remarkably associated with carotenoid metabolism under different light treatment (p < 0.05). Transcriptome analysis identifies transcription factors (TFs) bHLH128, NAC2-like/21/72, MYB-like, AGL11/AGL61, ERF023/062, WRKY20, SBPlike-7/13 as being involved in the regulation of carotenoid metabolism in response to RL. Under RL treatment, these TFs regulate the accumulation of carotenoids by directly modulating the expression of carotenogenic genes, including GGPPS2, PDS, Z-ISO, ZDS2/7, CRTISO3, CYP97A, CHYB, ZEP2, CCD1-2. Based on these results, a network of the regulation of carotenoid metabolism by light in citrus fruits is preliminarily proposed. These results show that RL treatments have great potential to improve coloration and nutritional quality of citrus fruits. Grapefruits ripened in red light-transmitting bags have 62% more carotenoid content than those ripened in natural light, leading to better coloration and higher nutritional quality.
Collapse
Affiliation(s)
- Xiulian Huang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400716, China
| | - Linping Hu
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400716, China
| | - Wenbin Kong
- Chongqing Agricultural Technology Extension Station, Chongqing, 401121, China
| | - Can Yang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400716, China
| | - Wanpeng Xi
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400716, China.
| |
Collapse
|
41
|
Li X, Wang X, Zhang Y, Zhang A, You CX. Regulation of fleshy fruit ripening: From transcription factors to epigenetic modifications. HORTICULTURE RESEARCH 2022; 9:uhac013. [PMID: 35147185 PMCID: PMC9035223 DOI: 10.1093/hr/uhac013] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 12/01/2021] [Indexed: 05/24/2023]
Abstract
Fleshy fruits undergo a complex ripening process, developing organoleptic fruit traits that attract herbivores and maximize seed dispersal. Ripening is the terminal stage of fruit development and involves a series of physiological and biochemical changes. In fleshy fruits, ripening always involves a drastic color change triggered by the accumulation of pigments and degradation of chlorophyll, softening caused by cell wall remodeling, and flavor formation as acids and sugars accumulate alongside volatile compounds. The mechanisms underlying fruit ripening rely on the orchestration of ripening-related transcription factors, plant hormones, and epigenetic modifications. In this review, we discuss current knowledge of the transcription factors that regulate ripening in conjunction with ethylene and environmental signals (light and temperature) in the model plant tomato (Solanum lycopersicum) and other fleshy fruits. We emphasize the critical roles of epigenetic regulation, including DNA methylation and histone modification as well as RNA m6A modification, which has been studied intensively. This detailed review was compiled to provide a comprehensive description of the regulatory mechanisms of fruit ripening and guide new strategies for its effective manipulation.
Collapse
Affiliation(s)
- Xiuming Li
- National Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Xuemei Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Yi Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai-An, 271018, China
| | - Aihong Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai-An, 271018, China
| | - Chun-Xiang You
- National Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| |
Collapse
|
42
|
Wang D, Seymour GB. Molecular and biochemical basis of softening in tomato. MOLECULAR HORTICULTURE 2022; 2:5. [PMID: 37789493 PMCID: PMC10515243 DOI: 10.1186/s43897-022-00026-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/20/2022] [Indexed: 10/05/2023]
Abstract
We review the latest information related to the control of fruit softening in tomato and where relevant compare the events with texture changes in other fleshy fruits. Development of an acceptable texture is essential for consumer acceptance, but also determines the postharvest life of fruits. The complex modern supply chain demands effective control of shelf life in tomato without compromising colour and flavour.The control of softening and ripening in tomato (Solanum lycopersicum) are discussed with respect to hormonal cues, epigenetic regulation and transcriptional modulation of cell wall structure-related genes. In the last section we focus on the biochemical changes closely linked with softening in tomato including key aspects of cell wall disassembly. Some important elements of the softening process have been identified, but our understanding of the mechanistic basis of the process in tomato and other fruits remains incomplete, especially the precise relationship between changes in cell wall structure and alterations in fruit texture.
Collapse
Affiliation(s)
- Duoduo Wang
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, 321004, China
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Graham B Seymour
- Divison of Plant and Crop Sciences, University of Nottingham, Sutton Bonington, Loughborough, Leics, LE12 5RD, UK.
| |
Collapse
|
43
|
Liu GS, Li HL, Grierson D, Fu DQ. NAC Transcription Factor Family Regulation of Fruit Ripening and Quality: A Review. Cells 2022; 11:cells11030525. [PMID: 35159333 PMCID: PMC8834055 DOI: 10.3390/cells11030525] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 01/18/2023] Open
Abstract
The NAC transcription factor (TF) family is one of the largest plant-specific TF families and its members are involved in the regulation of many vital biological processes during plant growth and development. Recent studies have found that NAC TFs play important roles during the ripening of fleshy fruits and the development of quality attributes. This review focuses on the advances in our understanding of the function of NAC TFs in different fruits and their involvement in the biosynthesis and signal transduction of plant hormones, fruit textural changes, color transformation, accumulation of flavor compounds, seed development and fruit senescence. We discuss the theoretical basis and potential regulatory models for NAC TFs action and provide a comprehensive view of their multiple roles in modulating different aspects of fruit ripening and quality.
Collapse
Affiliation(s)
- Gang-Shuai Liu
- Laboratory of Fruit Biology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (G.-S.L.); (H.-L.L.)
| | - Hong-Li Li
- Laboratory of Fruit Biology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (G.-S.L.); (H.-L.L.)
| | - Donald Grierson
- Laboratory of Fruit Quality Biology, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China;
- Plant Sciences Division, School of Biosciences, Sutton Bonington Campus, University of Nottingham, Loughborough LE12 5RD, UK
| | - Da-Qi Fu
- Laboratory of Fruit Biology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (G.-S.L.); (H.-L.L.)
- Correspondence:
| |
Collapse
|
44
|
Zhu F, Wen W, Cheng Y, Fernie AR. The metabolic changes that effect fruit quality during tomato fruit ripening. MOLECULAR HORTICULTURE 2022; 2:2. [PMID: 37789428 PMCID: PMC10515270 DOI: 10.1186/s43897-022-00024-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 01/12/2022] [Indexed: 10/05/2023]
Abstract
As the most valuable organ of tomato plants, fruit has attracted considerable attention which most focus on its quality formation during the ripening process. A considerable amount of research has reported that fruit quality is affected by metabolic shifts which are under the coordinated regulation of both structural genes and transcriptional regulators. In recent years, with the development of the next generation sequencing, molecular and genetic analysis methods, lots of genes which are involved in the chlorophyll, carotenoid, cell wall, central and secondary metabolism have been identified and confirmed to regulate pigment contents, fruit softening and other aspects of fruit flavor quality. Here, both research concerning the dissection of fruit quality related metabolic changes, the transcriptional and post-translational regulation of these metabolic pathways are reviewed. Furthermore, a weighted gene correlation network analysis of representative genes of fruit quality has been carried out and the potential of the combined application of the gene correlation network analysis, fine-mapping strategies and next generation sequencing to identify novel candidate genes determinants of fruit quality is discussed.
Collapse
Affiliation(s)
- Feng Zhu
- National R&D Center for Citrus Preservation, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam, Golm, Germany
| | - Weiwei Wen
- National R&D Center for Citrus Preservation, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yunjiang Cheng
- National R&D Center for Citrus Preservation, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam, Golm, Germany.
| |
Collapse
|
45
|
Virrarreal-Sanchez JA, Díaz-Jiménez L, Escobedo-Bocardo JC, Cardenas-Palomo JO, Luna-Alvarez JS, Carlos-Hernández S. Effect of clay and guishe-ash as substrate on Lycopersicon esculentum germination and production. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2022; 24:1330-1338. [PMID: 35014899 DOI: 10.1080/15226514.2021.2025209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The effect of biomass ash and clay on tomato plants (Lycopersicon esculentum) in greenhouse conditions from germination to production was studied. Biomass ash is a waste obtained from thermal treatment of guishe (a by-product of natural fiber), and clay is collected from local soils. Several trials were performed to assess the influence of the addition of clay and guishe-ash on seeds germination, seedling growth, and production yield. The decrease in the values of these variables was considered an indicator of toxicity. The obtained results showed that based clay/ash materials positively affect germination (average ∼90% and six materials allow obtaining 90%) and seedlings growth (an increase of ∼20% in height and more than 50% in fresh air corpuscular weight). However, applying these materials on the production stage induces minor positive effects on fruit diameter, locule number, pericarp thickness, and the number of seeds per fruit. Also, adverse effects (first harvest yield, number of fruits, fresh mass of ripe fruits, lycopene content) were observed. To valorize biomass ash, its combination with other materials such as clay could be an alternative to improve tomato production.
Collapse
Affiliation(s)
| | | | | | - J O Cardenas-Palomo
- Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Saltillo, México
| | - J S Luna-Alvarez
- Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Saltillo, México
| | | |
Collapse
|
46
|
Jin JF, Zhu HH, He QY, Li PF, Fan W, Xu JM, Yang JL, Chen WW. The Tomato Transcription Factor SlNAC063 Is Required for Aluminum Tolerance by Regulating SlAAE3-1 Expression. FRONTIERS IN PLANT SCIENCE 2022; 13:826954. [PMID: 35371150 PMCID: PMC8965521 DOI: 10.3389/fpls.2022.826954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/31/2022] [Indexed: 05/11/2023]
Abstract
Aluminum (Al) toxicity constitutes one of the major limiting factors of plant growth and development on acid soils, which comprises approximately 50% of potentially arable lands worldwide. When suffering Al toxicity, plants reprogram the transcription of genes, which activates physiological and metabolic pathways to deal with the toxicity. Here, we report the role of a NAM, ATAF1, 2 and CUC2 (NAC) transcription factor (TF) in tomato Al tolerance. Among 53 NAC TFs in tomatoes, SlNAC063 was most abundantly expressed in root apex and significantly induced by Al stress. Furthermore, the expression of SlNAC063 was not induced by other metals. Meanwhile, the SlNAC063 protein was localized at the nucleus and has transcriptional activation potentials in yeast. By constructing CRISPR/Cas9 knockout mutants, we found that slnac063 mutants displayed increased sensitivity to Al compared to wild-type plants. However, the mutants accumulated even less Al than wild-type (WT) plants, suggesting that internal tolerance mechanisms but not external exclusion mechanisms are implicated in SlNAC063-mediated Al tolerance in tomatoes. Further comparative RNA-sequencing analysis revealed that only 45 Al-responsive genes were positively regulated by SlNAC063, although the expression of thousands of genes (1,557 upregulated and 636 downregulated) was found to be affected in slnac063 mutants in the absence of Al stress. The kyoto encyclopedia of genes and genomes (KEGG) pathway analysis revealed that SlNAC063-mediated Al-responsive genes were enriched in "phenylpropanoid metabolism," "fatty acid metabolism," and "dicarboxylate metabolism," indicating that SlNAC063 regulates metabolisms in response to Al stress. Quantitative real-time (RT)-PCR analysis showed that the expression of SlAAE3-1 was repressed by SlNAC063 in the absence of Al. However, the expression of SlAAE3-1 was dependent on SlNAC063 in the presence of Al stress. Taken together, our results demonstrate that a NAC TF SlNAC063 is involved in tomato Al tolerance by regulating the expression of genes involved in metabolism, and SlNAC063 is required for Al-induced expression of SlAAE3-1.
Collapse
Affiliation(s)
- Jian Feng Jin
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Hui Hui Zhu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Qi Yu He
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Peng Fei Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Wei Fan
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
| | - Ji Ming Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Jian Li Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
- *Correspondence: Jian Li Yang,
| | - Wei Wei Chen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
- Research Centre for Plant RNA Signaling, Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
- Wei Wei Chen,
| |
Collapse
|
47
|
Gao Y, Fan ZQ, Zhang Q, Li HL, Liu GS, Jing Y, Zhang YP, Zhu BZ, Zhu HL, Chen JY, Grierson D, Luo YB, Zhao XD, Fu DQ. A tomato NAC transcription factor, SlNAM1, positively regulates ethylene biosynthesis and the onset of tomato fruit ripening. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:1317-1331. [PMID: 34580960 DOI: 10.1111/tpj.15512] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 09/09/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
Fruit ripening in tomato (Solanum lycopersicum) is the result of selective expression of ripening-related genes, which are regulated by transcription factors (TFs). The NAC (NAM, ATAF1/2, and CUC2) TF family is one of the largest families of plant-specific TFs and members are involved in a variety of plant physiological activities, including fruit ripening. Fruit ripening-associated NAC TFs studied in tomato to date include NAC-NOR (non-ripening), SlNOR-like1 (non-ripening like1), SlNAC1, and SlNAC4. Considering the large number of NAC genes in the tomato genome, there is little information about the possible roles of other NAC members in fruit ripening, and research on their target genes is lacking. In this study, we characterize SlNAM1, a NAC TF, which positively regulates the initiation of tomato fruit ripening via its regulation of ethylene biosynthesis. The onset of fruit ripening in slnam1-deficient mutants created by CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats and CRISPR-associated protein 9) technology was delayed, whereas fruit ripening in OE-SlNAM1 lines was accelerated compared with the wild type. The results of RNA-sequencing (RNA-seq) and promoter analysis suggested that SlNAM1 directly binds to the promoters of two key ethylene biosynthesis genes (1-aminocyclopropane-1-carboxylate synthase: SlACS2 and SlACS4) and activates their expression. This hypothesis was confirmed by electrophoretic mobility shift assays and dual-luciferase reporter assay. Our findings provide insights into the mechanisms of ethylene production and enrich understanding of the tomato fruit ripening regulatory network.
Collapse
Affiliation(s)
- Ying Gao
- Laboratory of Fruit Biology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100083, China
- Laboratory of Fruit Quality Biology, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Zhong-Qi Fan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qiang Zhang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215000, China
| | - Hong-Li Li
- Laboratory of Fruit Biology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Gang-Shuai Liu
- Laboratory of Fruit Biology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yuan Jing
- Laboratory of Fruit Biology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yi-Ping Zhang
- Laboratory of Fruit Biology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Ben-Zhong Zhu
- Laboratory of Fruit Biology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Hong-Liang Zhu
- Laboratory of Fruit Biology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Jian-Ye Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Donald Grierson
- Laboratory of Fruit Quality Biology, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- Plant Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Yun-Bo Luo
- Laboratory of Fruit Biology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Xiao-Dan Zhao
- School of Food and Chemical Engineering, Beijing Technology and Business University, Beijing, 100048, China
| | - Da-Qi Fu
- Laboratory of Fruit Biology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| |
Collapse
|
48
|
Comprehensive Analyses of NAC Transcription Factor Family in Almond ( Prunus dulcis) and Their Differential Gene Expression during Fruit Development. PLANTS 2021; 10:plants10102200. [PMID: 34686009 PMCID: PMC8541688 DOI: 10.3390/plants10102200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 11/17/2022]
Abstract
As plant specific transcription factors, NAC (NAM, ATAF1/2, CUC2) domain is involved in the plant development and stress responses. Due to the vitality of NAC gene family, BLASTp was performed to identify NAC genes in almond (Prunus dulcis). Further, phylogenetic and syntenic analyses were performed to determine the homology and evolutionary relationship. Gene duplication, gene structure, motif, subcellular localization, and cis-regulatory analyses were performed to assess the function of PdNAC. Whereas RNA-seq analysis was performed to determine the differential expression of PdNAC in fruits at various developmental stages. We identified 106 NAC genes in P. dulcis genome and were renamed according to their chromosomal distribution. Phylogenetic analysis in both P. dulcis and Arabidopsis thaliana revealed the presence of 14 subfamilies. Motif and gene structure followed a pattern according to the PdNAC position in phylogenetic subfamilies. Majority of NAC are localized in the nucleus and have ABA-responsive elements in the upstream region of PdNAC. Differential gene expression analyses revealed one and six PdNAC that were up and down-regulated, respectively, at all development stages. This study provides insights into the structure and function of PdNAC along with their role in the fruit development to enhance an understanding of NAC in P. dulcis.
Collapse
|
49
|
Dang Q, Sha H, Nie J, Wang Y, Yuan Y, Jia D. An apple (Malus domestica) AP2/ERF transcription factor modulates carotenoid accumulation. HORTICULTURE RESEARCH 2021; 8:223. [PMID: 34611138 PMCID: PMC8492665 DOI: 10.1038/s41438-021-00694-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/15/2021] [Accepted: 08/25/2021] [Indexed: 05/13/2023]
Abstract
Color is an important trait for horticultural crops. Carotenoids are one of the main pigments for coloration and have important implications for photosynthesis in plants and benefits for human health. Here, we identified an APETALA2 (AP2)/ETHYLENE RESPONSE FACTOR (ERF) transcription factor named MdAP2-34 in apple (Malus domestica Borkh.). MdAP2-34 expression exhibited a close correlation with carotenoid content in 'Benin Shogun' and 'Yanfu 3' fruit flesh. MdAP2-34 promotes carotenoid accumulation in MdAP2-34-OVX transgenic apple calli and fruits by participating in the carotenoid biosynthesis pathway. The major carotenoid contents of phytoene and β-carotene were much higher in overexpressing MdAP2-34 transgenic calli and fruit skin, yet the predominant compound of lutein showed no obvious difference, indicating that MdAP2-34 regulates phytoene and β-carotene accumulation but not lutein. MdPSY2-1 (phytoene synthase 2) is a major gene in the carotenoid biosynthesis pathway in apple fruit, and the MdPSY2-1 gene is directly bound and transcriptionally activated by MdAP2-34. In addition, overexpressing MdPSY2-1 in apple calli mainly increases phytoene and total carotenoid contents. Our findings will advance and extend our understanding of the complex molecular mechanisms of carotenoid biosynthesis in apple, and this research is valuable for accelerating the apple breeding process.
Collapse
Affiliation(s)
- Qingyuan Dang
- Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
| | - Haiyun Sha
- Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jiyun Nie
- Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yongzhang Wang
- Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yongbing Yuan
- Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Dongjie Jia
- Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
50
|
Fu BL, Wang WQ, Liu XF, Duan XW, Allan AC, Grierson D, Yin XR. An ethylene-hypersensitive methionine sulfoxide reductase regulated by NAC transcription factors increases methionine pool size and ethylene production during kiwifruit ripening. THE NEW PHYTOLOGIST 2021; 232:237-251. [PMID: 34137052 DOI: 10.1111/nph.17560] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 06/11/2021] [Indexed: 06/12/2023]
Abstract
Ethylene plays an important role in regulating fruit ripening by triggering dynamic changes in expression of ripening-associated genes, but the functions of many of these genes are still unknown. Here, a methionine sulfoxide reductase gene (AdMsrB1) was identified by transcriptomics-based analysis as the gene most responsive to ethylene treatment in ripening kiwifruit. The AdMsrB1 protein exhibits a stereospecific activity toward the oxidative stress-induced R enantiomer of methionine sulfoxide (MetSO), reducing it to methionine (Met). Stable overexpression of AdMsrB1 in kiwifruit significantly increased the content of free Met and 1-aminocyclopropane-1-carboxylic acid (ACC), the immediate precursor of ethylene, and increased ethylene production. Dual-luciferase assays indicated that the AdMsrB1 promoter was not directly upregulated by ethylene treatment but was modulated by two ethylene-inducible NAM/ATAF/CUC transcription factors (AdNAC2 and AdNAC72) that bind directly to the AdMsrB1 promoter. Overexpression of AdNAC72 in kiwifruit not only enhanced AdMsrB1 expression, but also increased free Met and ACC content and ethylene production rates. This finding establishes an unexpected regulatory loop that enhances ethylene production and the concentration of its biosynthetic intermediates.
Collapse
Affiliation(s)
- Bei-Ling Fu
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Wen-Qiu Wang
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Xiao-Fen Liu
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Xue-Wu Duan
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Andrew C Allan
- New Zealand Institute for Plant & Food Research Limited, Private Bag 92169, Auckland, New Zealand
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Donald Grierson
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- Plant & Crop Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Xue-Ren Yin
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| |
Collapse
|