1
|
Abdullahi A, Wong TW, Ng SS. Understanding the potential mechanisms of disease modifying effects of physical activity and exercise in people with schizophrenia. Schizophr Res 2024; 274:381-391. [PMID: 39490219 DOI: 10.1016/j.schres.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 09/29/2024] [Accepted: 10/09/2024] [Indexed: 11/05/2024]
Abstract
Schizophrenia is a serious chronic mental health problem that usually starts during adolescence and early childhood. It is characterized by positive symptoms (delusions, hallucinations and grossly disorganized speech and behaviour), negative symptoms (apathy, isolation and diminished affect), and cognitive impairment that negatively affect quality of life. Its treatments include the use of pharmacological interventions, exercise, non-invasive brain stimulation and cognitive remediation training. Exercise is a very simple and cost-effective intervention. However, it is important the mechanisms of its effects are understood so that it can be trusted in clinical practice. In addition, understanding the mechanisms is important for its modification and safe use. Similarly, it may help provide the basis for invention of safe and cost-effective pharmacological or alternative therapies. From the literature, the mechanisms of diseases modifying effects of exercise seem to include increased cardiorespiratory fitness, biochemical changes (increased level of BDNF, increased N-acetylaspartate (NAA)/cr (creatine) ratio, decreased level of triglycerides, increased high density lipoprotein (HDL) and decreased salivary cortisol), structural changes (increase in cerebral volume, increased white matter integrity and increased cortical thickness) and anthropometric changes (reduced body weight and body mass index (BMI), increased muscular strength and decreased waist-hip ratio or waist circumference or hip circumference).
Collapse
Affiliation(s)
- Auwal Abdullahi
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China.
| | - Thomson Wl Wong
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China
| | - Shamay Sm Ng
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China.
| |
Collapse
|
2
|
Yu L, Long Q, Zhang Y, Liu Y, Guo Z, Cao X, Qin F, Xu Y, Qian Q, Gao B, Chen J, Liu J, Zeng Y, Teng Z. Bidirectional Mendelian randomization analysis of plasma lipidome and psychiatric disorders. J Affect Disord 2024:S0165-0327(24)01757-9. [PMID: 39442703 DOI: 10.1016/j.jad.2024.10.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND Evidence from observational studies and clinical experiments suggests a close association between plasma lipidome and psychiatric disorders. However, the causal relationship between plasma lipidome and psychiatric disorders remains insufficiently determined. Plasma lipidome are relatively easy to measure and regulate clinically, and they play a crucial role in neuronal signal transduction, making them a focus of interest as potential therapeutic targets for psychiatric disorders. METHODS In this study, we utilized the latest Finnish population-based genome-wide association study (GWAS) data on 179 lipid species. We downloaded data on five psychiatric disorders from the IEU database, including schizophrenia, bipolar disorder, depression, autism from the PGC consortium, and anxiety disorder from the Neale lab. Using two-sample bidirectional Mendelian randomization (MR) analysis, we assessed the relationship between these 179 lipid species and the risk of the five psychiatric disorders. To validate the assumptions of Mendelian randomization, we conducted tests for horizontal pleiotropy and heterogeneity. RESULTS After applying FDR correction to assess the relationship between 179 lipid species traits and the risk of five psychiatric disorders, our analysis provided evidence of a causal relationship specifically between genetic susceptibility in the plasma lipidome and bipolar disorder. This relationship notably involves eight phosphatidylcholines (PCs) and two sterols, with PCs displaying a dual and complex role in the disorder. Reverse Mendelian randomization (MR) analysis did not reveal a significant causal impact of psychiatric disorders on the plasma lipidome. LIMITATIONS Despite using two-sample bidirectional Mendelian randomization analysis, the complex biological pathways and potential confounding factors may still affect the accuracy of the causal relationships. The impact of genetic variations on the lipidome and psychiatric disorders may involve multiple mechanisms, which cannot be fully elucidated in this study. CONCLUSION This study identified a causal relationship between genetic susceptibility in plasma lipidome and bipolar disorder, indicating that plasma lipidome may influence the risk of psychiatric disorders and providing direction for exploring them as potential intervention targets. The findings not only deepen our understanding of the etiology of psychiatric disorders but also provide a critical theoretical foundation for future clinical interventions and prevention strategies, potentially contributing to the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Ling Yu
- Department of Psychiatry, the Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Qing Long
- Department of Psychiatry, the Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Yunqiao Zhang
- Department of Psychiatry, the Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Yilin Liu
- Department of Psychiatry, the Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Ziyi Guo
- Department of Psychiatry, the Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Xiang Cao
- Department of Psychiatry, the Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Fuyi Qin
- Department of Psychiatry, the Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Yangyang Xu
- Department of Psychiatry, the Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Qingqing Qian
- Department of Psychiatry, the Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Biyao Gao
- Department of Psychiatry, the Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Jian Chen
- Department of Gastroenterology, Nanchong Central Hospital, Nanchong, Sichuan Province, China
| | - Jie Liu
- Department of Dermatology and Venereology, the Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Yong Zeng
- Department of the Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China.
| | - Zhaowei Teng
- Department of Psychiatry, the Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China.
| |
Collapse
|
3
|
Marković S, Jadranin M, Miladinović Z, Gavrilović A, Avramović N, Takić M, Tasic L, Tešević V, Mandić B. LC-HRMS Lipidomic Fingerprints in Serbian Cohort of Schizophrenia Patients. Int J Mol Sci 2024; 25:10266. [PMID: 39408605 PMCID: PMC11476971 DOI: 10.3390/ijms251910266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/12/2024] [Accepted: 09/15/2024] [Indexed: 10/20/2024] Open
Abstract
Schizophrenia (SCH) is a major mental illness that causes impaired cognitive function and long-term disability, so the requirements for reliable biomarkers for early diagnosis and therapy of SCH are essential. The objective of this work was an untargeted lipidomic study of serum samples from a Serbian cohort including 30 schizophrenia (SCH) patients and 31 non-psychiatric control (C) individuals by applying liquid chromatography (LC) coupled with high-resolution mass spectrometry (HRMS) and chemometric analyses. Principal component analysis (PCA) of all samples indicated no clear separation between SCH and C groups but indicated clear gender separation in the C group. Multivariate statistical analyses (PCA and orthogonal partial least squares discriminant analysis (OPLS-DA)) of gender-differentiated SCH and C groups established forty-nine differential lipids in the differentiation of male SCH (SCH-M) patients and male controls (C-M), while sixty putative biomarkers were identified in the differentiation of female SCH patients (SCH-F) and female controls (C-F). Lipidomic study of gender-differentiated groups, between SCH-M and C-M and between SCH-F and C-F groups, confirmed that lipids metabolism was altered and the content of the majority of the most affected lipid classes, glycerophospholipids (GP), sphingolipids (SP), glycerolipids (GL) and fatty acids (FA), was decreased compared to controls. From differential lipid metabolites with higher content in both SCH-M and SCH-F patients groups compared to their non-psychiatric controls, there were four common lipid molecules: ceramides Cer 34:2, and Cer 34:1, lysophosphatidylcholine LPC 16:0 and triacylglycerol TG 48:2. Significant alteration of lipids metabolism confirmed the importance of metabolic pathways in the pathogenesis of schizophrenia.
Collapse
Affiliation(s)
- Suzana Marković
- University of Belgrade—Faculty of Chemistry, Studentski trg 12–16, 11000 Belgrade, Serbia; (S.M.); (V.T.)
- University of Belgrade—Faculty of Medicine, Institute of Forensic Medicine, Deligradska 31a, 11000 Belgrade, Serbia
| | - Milka Jadranin
- University of Belgrade—Institute of Chemistry, Technology and Metallurgy, Department of Chemistry, Njegoševa 12, 11000 Belgrade, Serbia;
| | - Zoran Miladinović
- Institute of General and Physical Chemistry, Studentski trg 12–16, 11158 Belgrade, Serbia;
| | - Aleksandra Gavrilović
- Special Hospital for Psychiatric Diseases “Kovin”, Cara Lazara 253, 26220 Kovin, Serbia;
| | - Nataša Avramović
- University of Belgrade—Faculty of Medicine, Institute of Medical Chemistry, Višegradska 26, 11000 Belgrade, Serbia;
| | - Marija Takić
- University of Belgrade—Institute for Medical Research, National Institute of Republic of Serbia, Center of Research Excellence for Nutrition and Metabolism, Group for Nutrition and Metabolism, Tadeuša Košćuška 1, 11000 Belgrade, Serbia;
| | - Ljubica Tasic
- Institute of Chemistry, Organic Chemistry Department, Universidade Estadual de Campinas, UNICAMP, Campinas 13083-970, SP, Brazil;
| | - Vele Tešević
- University of Belgrade—Faculty of Chemistry, Studentski trg 12–16, 11000 Belgrade, Serbia; (S.M.); (V.T.)
| | - Boris Mandić
- University of Belgrade—Faculty of Chemistry, Studentski trg 12–16, 11000 Belgrade, Serbia; (S.M.); (V.T.)
| |
Collapse
|
4
|
Messinis A, Panteli E, Paraskevopoulou A, Zymarikopoulou AK, Filiou MD. Altered lipidomics biosignatures in schizophrenia: A systematic review. Schizophr Res 2024; 271:380-390. [PMID: 39142015 DOI: 10.1016/j.schres.2024.06.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 06/08/2024] [Accepted: 06/22/2024] [Indexed: 08/16/2024]
Abstract
Multiomics approaches have significantly aided the identification of molecular signatures in complex neuropsychiatric disorders. Lipidomics, one of the newest additions in the -omics family, sheds light on lipid profiles and is an emerging methodological tool to study schizophrenia pathobiology, as lipid dysregulation has been repeatedly observed in schizophrenia. In this review, we performed a detailed literature search for lipidomics studies in schizophrenia. Following elaborate inclusion/exclusion criteria, we focused on human studies in schizophrenia and schizophrenia-related diagnoses in brain and blood specimens, including serum plasma, platelets and red blood cells. Eighteen studies fulfilled our inclusion criteria, of which five were conducted in the brain, 12 in peripheral material and one in both. Here, we first provide background on lipidomics and the main lipid categories addressed, review in detail the included literature and look for common lipidomics patterns in brain and the periphery that emerge from these studies. Furthermore, we highlight current limitations in schizophrenia lipidomics research and underline the need for following up on lipidomics results with complementary molecular approaches.
Collapse
Affiliation(s)
- Alexandros Messinis
- Department of Biological Applications and Technology, University of Ioannina, 45110 Ioannina, Greece
| | - Eirini Panteli
- Department of Biological Applications and Technology, University of Ioannina, 45110 Ioannina, Greece
| | - Aristea Paraskevopoulou
- Department of Biological Applications and Technology, University of Ioannina, 45110 Ioannina, Greece
| | | | - Michaela D Filiou
- Department of Biological Applications and Technology, University of Ioannina, 45110 Ioannina, Greece; Biomedical Research Institute, Foundation for Research and Technology-Hellas (FORTH), 45110 Ioannina, Greece; Institute of Biosciences, University of Ioannina, 45110 Ioannina, Greece.
| |
Collapse
|
5
|
Yang Q, Wang Q, Peng P, Liu T, Zhang X. Association of clinical variables and thyroid-stimulating hormone with psychotic symptoms in patients with first-episode and drug-naïve major depressive disorder with elevated fasting blood glucose: preliminary exploratory study with a large sample. BJPsych Open 2024; 10:e99. [PMID: 38699891 PMCID: PMC11094438 DOI: 10.1192/bjo.2024.53] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 02/26/2024] [Accepted: 03/13/2024] [Indexed: 05/05/2024] Open
Abstract
BACKGROUND Psychotic symptoms and elevated fasting blood glucose (FBG) are frequently observed in people with major depressive disorder (MDD), but there is a lack of research into this relationship within this cohort. AIMS This study aimed to preliminarily explore the prevalence of psychotic symptoms and their predictors among patients with MDD and elevated FBG. METHOD This study enrolled 1718 patients with first-episode and drug-naïve (FEDN) MDD. Sociodemographic data and physical and biochemical indicators were collected. Clinical symptoms were assessed with tools such as the Hamilton Rating Scale for Anxiety, Hamilton Rating Scale for Depression (HRSD) and Positive and Negative Syndrome Scale positive subscale. RESULTS The odds ratio for psychotic symptoms in those with MDD and elevated FBG (18.7%) was 2.33 times higher than those with MDD without elevated FBG. Presence of psychotic symptoms was significantly correlated with HRSD score, suicide attempts, and total cholesterol and thyroid-stimulating hormone levels. The combination of HRSD score, suicide attempts and thyroid-stimulating hormone levels among patients with MDD and elevated FBG effectively distinguished between individuals with and without psychotic symptoms, achieving an area under the curve of 0.87. CONCLUSIONS Psychotic symptoms are frequently observed among FEDN MDD patients with elevated FBG, and depressive symptoms, suicide attempts and thyroid-stimulating hormone levels are related to psychotic symptoms in this cohort.
Collapse
Affiliation(s)
- Qian Yang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China; and Department of Psychology, Zhongshan City People's Hospital, Zhongshan, China
| | - Qianjin Wang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Pu Peng
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Tieqiao Liu
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xiangyang Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
6
|
Alashmali S. Nutritional roles and therapeutic potentials of dietary sphingomyelin in brain diseases. J Clin Biochem Nutr 2024; 74:185-191. [PMID: 38799143 PMCID: PMC11111474 DOI: 10.3164/jcbn.23-97] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/12/2023] [Indexed: 05/29/2024] Open
Abstract
Sphingolipids have recently gained interest as potential players in variety of diseases due to their import roles in human body particularly, the brain. As sphingomyelin is the most common type of sphingolipids, deficits in its distribution to brain cells may contribute to neurological anomalies. However, data is limited regarding the impact of different levels of dietary sphingomyelin intake on neural function especially if this approach can boost cognition and prevent neurological disorders. This review evaluates the effect of dietary sphingomyelin and its metabolites (ceramide and sphingosine-1-phosphate) in animal models and in humans, with a primary focus on its impact on brain health. Additionally, it proposes multiple neuroenhancing effects of sphingomyelin-rich diet. This presents an opportunity to stimulate further research that aims to determine the therapeutic value of dietary sphingomyelin in preventing, improving or slowing the progression of central nervous system disorders.
Collapse
Affiliation(s)
- Shoug Alashmali
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
7
|
Zorkina Y, Ushakova V, Ochneva A, Tsurina A, Abramova O, Savenkova V, Goncharova A, Alekseenko I, Morozova I, Riabinina D, Kostyuk G, Morozova A. Lipids in Psychiatric Disorders: Functional and Potential Diagnostic Role as Blood Biomarkers. Metabolites 2024; 14:80. [PMID: 38392971 PMCID: PMC10890164 DOI: 10.3390/metabo14020080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/07/2023] [Accepted: 12/19/2023] [Indexed: 02/25/2024] Open
Abstract
Lipids are a crucial component of the human brain, serving important structural and functional roles. They are involved in cell function, myelination of neuronal projections, neurotransmission, neural plasticity, energy metabolism, and neuroinflammation. Despite their significance, the role of lipids in the development of mental disorders has not been well understood. This review focused on the potential use of lipids as blood biomarkers for common mental illnesses, such as major depressive disorder, anxiety disorders, bipolar disorder, and schizophrenia. This review also discussed the impact of commonly used psychiatric medications, such as neuroleptics and antidepressants, on lipid metabolism. The obtained data suggested that lipid biomarkers could be useful for diagnosing psychiatric diseases, but further research is needed to better understand the associations between blood lipids and mental disorders and to identify specific biomarker combinations for each disease.
Collapse
Affiliation(s)
- Yana Zorkina
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (V.U.); (A.O.); (A.T.); (O.A.); (V.S.); (I.M.); (D.R.); (G.K.); (A.M.)
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia
| | - Valeria Ushakova
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (V.U.); (A.O.); (A.T.); (O.A.); (V.S.); (I.M.); (D.R.); (G.K.); (A.M.)
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia
| | - Aleksandra Ochneva
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (V.U.); (A.O.); (A.T.); (O.A.); (V.S.); (I.M.); (D.R.); (G.K.); (A.M.)
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia
| | - Anna Tsurina
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (V.U.); (A.O.); (A.T.); (O.A.); (V.S.); (I.M.); (D.R.); (G.K.); (A.M.)
| | - Olga Abramova
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (V.U.); (A.O.); (A.T.); (O.A.); (V.S.); (I.M.); (D.R.); (G.K.); (A.M.)
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia
| | - Valeria Savenkova
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (V.U.); (A.O.); (A.T.); (O.A.); (V.S.); (I.M.); (D.R.); (G.K.); (A.M.)
| | - Anna Goncharova
- Moscow Center for Healthcare Innovations, 123473 Moscow, Russia;
| | - Irina Alekseenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academi of Science, 142290 Moscow, Russia
- Russia Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, 2, Kurchatov Square, 123182 Moscow, Russia
| | - Irina Morozova
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (V.U.); (A.O.); (A.T.); (O.A.); (V.S.); (I.M.); (D.R.); (G.K.); (A.M.)
| | - Daria Riabinina
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (V.U.); (A.O.); (A.T.); (O.A.); (V.S.); (I.M.); (D.R.); (G.K.); (A.M.)
| | - Georgy Kostyuk
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (V.U.); (A.O.); (A.T.); (O.A.); (V.S.); (I.M.); (D.R.); (G.K.); (A.M.)
| | - Anna Morozova
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (V.U.); (A.O.); (A.T.); (O.A.); (V.S.); (I.M.); (D.R.); (G.K.); (A.M.)
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia
| |
Collapse
|
8
|
Lakshimi VI, Kavitha M. New Insights into Prospective Health Potential of ω-3 PUFAs. Curr Nutr Rep 2023; 12:813-829. [PMID: 37996669 DOI: 10.1007/s13668-023-00508-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2023] [Indexed: 11/25/2023]
Abstract
PURPOSE OF REVIEW Docosahexaenoic acid and eicosapentaenoic acid are the two essential long-chain ω-3 polyunsaturated fatty acids (ω-3 PUFAs) promoting human health which are obtained from diet or supplementation. The eicosanoids derived from ω-6 and ω-3 PUFAs have opposite characteristics of pro- and anti-inflammatory activities. The proinflammatory effects of ω-6 PUFAs are behind the pathology of the adverse health conditions of PUFA metabolism like cardiovascular diseases, neurological disorders, and inflammatory diseases. A balanced ω-6 to ω-3 ratio of 1-4:1 is critical to prevent the associated disorders. But due to modern agricultural practices, there is a disastrous shift in this ratio to 10-20:1. This review primarily aims to discuss the myriad health potentials of ω-3 PUFAs uncovered through recent research. It further manifests the importance of maintaining a balanced ω-6 to ω-3 PUFA ratio. RECENT FINDINGS ω-3 PUFAs exhibit protective effects against diabetes mellitus-associated complications including diabetic retinopathy, diabetic nephropathy, and proteinuria. COVID-19 is also not an exception to the health benefits of ω-3 PUFAs. Supplementation of ω-3 PUFAs improved the respiratory and clinical symptoms in COVID-19 patients. ω-3 PUFAs exhibit a variety of health benefits including anti-inflammatory property and antimicrobial property and are effective in protecting against various health conditions like atherosclerosis, cardiovascular diseases, diabetes mellitus, COVID-19, and neurological disorders. In the present review, various health potentials of ω-3 PUFAs are extensively reviewed and summarized. Further, the importance of a balanced ω-6 to ω-3 PUFA ratio has been emphasized besides stating the diverse sources of ω-3 PUFA.
Collapse
Affiliation(s)
- V Iswareya Lakshimi
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - M Kavitha
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
9
|
Ying S, Heung T, Thiruvahindrapuram B, Engchuan W, Yin Y, Blagojevic C, Zhang Z, Hegele RA, Yuen RKC, Bassett AS. Polygenic risk for triglyceride levels in the presence of a high impact rare variant. BMC Med Genomics 2023; 16:281. [PMID: 37940981 PMCID: PMC10634078 DOI: 10.1186/s12920-023-01717-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 10/25/2023] [Indexed: 11/10/2023] Open
Abstract
BACKGROUND Elevated triglyceride (TG) levels are a heritable and modifiable risk factor for cardiovascular disease and have well-established associations with common genetic variation captured in a polygenic risk score (PRS). In young adulthood, the 22q11.2 microdeletion conveys a 2-fold increased risk for mild-moderate hypertriglyceridemia. This study aimed to assess the role of the TG-PRS in individuals with this elevated baseline risk for mild-moderate hypertriglyceridemia. METHODS We studied a deeply phenotyped cohort of adults (n = 157, median age 34 years) with a 22q11.2 microdeletion and available genome sequencing, lipid level, and other clinical data. The association between a previously developed TG-PRS and TG levels was assessed using a multivariable regression model adjusting for effects of sex, BMI, and other covariates. We also constructed receiver operating characteristic (ROC) curves using logistic regression models to assess the ability of TG-PRS and significant clinical variables to predict mild-moderate hypertriglyceridemia status. RESULTS The TG-PRS was a significant predictor of TG-levels (p = 1.52E-04), along with male sex and BMI, in a multivariable model (pmodel = 7.26E-05). The effect of TG-PRS appeared to be slightly stronger in individuals with obesity (BMI ≥ 30) (beta = 0.4617) than without (beta = 0.1778), in a model unadjusted for other covariates (p-interaction = 0.045). Among ROC curves constructed, the inclusion of TG-PRS, sex, and BMI as predictor variables produced the greatest area under the curve (0.749) for classifying those with mild-moderate hypertriglyceridemia, achieving an optimal sensitivity and specificity of 0.746 and 0.707, respectively. CONCLUSIONS These results demonstrate that in addition to significant effects of sex and BMI, genome-wide common variation captured in a PRS also contributes to the variable expression of the 22q11.2 microdeletion with respect to elevated TG levels.
Collapse
Affiliation(s)
- Shengjie Ying
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Clinical Genetics Research Program, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Tracy Heung
- Clinical Genetics Research Program, Centre for Addiction and Mental Health, Toronto, ON, Canada
- The Dalglish Family 22Q Clinic, University Health Network, Toronto, ON, Canada
| | | | - Worrawat Engchuan
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Yue Yin
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Christina Blagojevic
- Clinical Genetics Research Program, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Zhaolei Zhang
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
- Department of Computer Science, University of Toronto, Toronto, ON, Canada
| | - Robert A Hegele
- Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Ryan K C Yuen
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Anne S Bassett
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.
- Clinical Genetics Research Program, Centre for Addiction and Mental Health, Toronto, ON, Canada.
- The Dalglish Family 22Q Clinic, University Health Network, Toronto, ON, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
- Toronto General Hospital Research Institute and Campbell Family Mental Health Research Institute, Toronto, ON, Canada.
| |
Collapse
|
10
|
Głodek M, Skibinska M, Suwalska A. Diet and physical activity and metabolic disorders in patients with schizophrenia and bipolar affective disorder in the Polish population. PeerJ 2023; 11:e15617. [PMID: 37456885 PMCID: PMC10348314 DOI: 10.7717/peerj.15617] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/01/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction There are numerous reports of a higher prevalence of metabolic disorders in patients with schizophrenia and bipolar disorder (BD), yet its connections to diet and physical activity remain not fully explained. This article aimed to evaluate diet, physical activity and selected biochemical and anthropometric parameters associated with metabolism in patients with schizophrenia and BD and to analyse the relationships between these variables in the subjects. Materials and Methods A total of 126 adults participated in the study: 47 patients with schizophrenia, 54 patients with BD and 25 patients in mental illness remission (reference group). Data were collected on the underlying illness and concomitant illnesses, and the severity of symptoms of the current episode was assessed using the following scales: PANSS, MADRS and YMRS. An assessment of the subjects' diet (KomPAN questionnaire) and their physical activity (International Physical Activity Questionnaire) was carried out. Anthropometric and blood pressure measurements were taken and BMI and WHR were calculated. Serum concentrations of fasting glucose, TSH, total cholesterol, LDL and HDL fractions, triglycerides and leptin, ghrelin and resistin were determined. For statistical analysis, the significance level was set at 0.05. For multiple comparisons one way ANOVA or Kruskal Wallis were used with post hoc Tukey and Dunn tests, respectively. To determine correlation of variables, Pearson's linear correlation coefficient or Spearman's rank correlation coefficient were used. Results A total of 50.8% of the subjects had at least one metabolic disorder-most commonly excessive body weight (66.7%) and abdominal obesity (64.3%). Patients did not differ significantly in terms of physical activity, but they did differ in mean time spent sitting-with this being significantly longer for all groups than in the general population. The subjects differed in diet: patients with BD consumed less unhealthy foods than patients with schizophrenia. The highest correlations between physical activity, diet and variables defining metabolic disorders were found in patients with BD. Only in patients with schizophrenia were there significant correlations between the course of the disease and physical activity. Discussion The results suggest the existence of associations between diet, physical activity, and metabolic disorders in both BD and schizophrenia patients. They also suggest a tendency among those patients to spend long periods of time sitting.
Collapse
Affiliation(s)
- Magdalena Głodek
- Department of Mental Health, Chair of Psychiatry, Poznan University of Medical Sciences, Poznań, Poland
- Department of Adult Psychiatry, Chair of Psychiatry, Poznan University of Medical Sciences, Poznań, Poland
| | - Maria Skibinska
- Department of Genetics in Psychiatry, Chair of Psychiatry, Poznan University of Medical Sciences, Poznań, Poland
| | - Aleksandra Suwalska
- Department of Mental Health, Chair of Psychiatry, Poznan University of Medical Sciences, Poznań, Poland
| |
Collapse
|
11
|
Wu TY, Tien N, Lin CL, Cheah YC, Hsu CY, Tsai FJ, Fang YJ, Lim YP. Influence of antipsychotic medications on hyperlipidemia risk in patients with schizophrenia: evidence from a population-based cohort study and in vitro hepatic lipid homeostasis gene expression. Front Med (Lausanne) 2023; 10:1137977. [PMID: 37425327 PMCID: PMC10324036 DOI: 10.3389/fmed.2023.1137977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 06/02/2023] [Indexed: 07/11/2023] Open
Abstract
Introduction Schizophrenia increases the risk of mortality and cardiovascular disease (CVD) risk. However, the correlation between antipsychotics (APs) and CVD remains controversial. Hyperlipidemia is a significant risk factor for CVD. Methods We conducted a nationwide population-based retrospective cohort study to investigate the effects of APs on the risk of hyperlipidemia and lipid homeostasis gene expression. We used data from the Longitudinal Health Insurance Database of Taiwan on new-onset schizophrenia patients and a comparison cohort without schizophrenia. We used a Cox proportional hazards regression model to analyze the differences in hyperlipidemia development between the two cohorts. Furthermore, we examined the effects of APs on the hepatic expression of lipid homeostasis-related genes. Results After adjusting for potential interrelated confounding factors, the case group (N = 4,533) was found to have a higher hyperlipidemia risk than the control cohort (N = 4,533) [adjusted hazard ratio (aHR), 1.30, p < 0.001]. Patients with schizophrenia without APs had a significantly higher risk of hyperlipidemia (aHR, 2.16; p < 0.001). However, patients receiving APs had a significantly lower risk of hyperlipidemia than patients not receiving APs (all aHR ≤ 0.42, p < 0.001). First-generation antipsychotics (FGAs) induce the expression of hepatic lipid catabolism genes in an in vitro model. Discussion Patients with schizophrenia had a higher risk of hyperlipidemia than controls; however, compared with non-treated patients, AP users had a lower risk of hyperlipidemia. Early diagnosis and management of hyperlipidemia may help prevent CVD.
Collapse
Affiliation(s)
- Tien-Yuan Wu
- Graduate Institute of Clinical Pharmacy, College of Medicine, Tzu Chi University, Hualien, Taiwan
- Department of Pharmacy, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan
| | - Ni Tien
- Department of Laboratory Medicine, China Medical University Hospital, Taichung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan
| | - Cheng-Li Lin
- Management Office for Health Data, China Medical University Hospital, Taichung, Taiwan
| | - Yu-Cun Cheah
- Department of Pharmacy, College of Pharmacy, China Medical University, Taichung, Taiwan
| | - Chung Y. Hsu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Fuu-Jen Tsai
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
- Division of Medical Genetics, China Medical University Children's Hospital, Taichung, Taiwan
- Department of Biotechnology and Bioinformatics, Asia University, Taichung, Taiwan
| | - Yi-Jen Fang
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Ph.D. Program in Environmental and Occupational Medicine, College of Medicine, Kaohsiung Medical University and National Health Research Institutes, Kaohsiung, Taiwan
- Department of Environmental Health, Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung-Hsing University, Taichung, Taiwan
- Digestive Disease Center, Show Chwan Memorial Hospital, Changhua, Taiwan
| | - Yun-Ping Lim
- Department of Pharmacy, College of Pharmacy, China Medical University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
- Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
12
|
Habtewold TD, Tiles-Sar N, Liemburg EJ, Sandhu AK, Islam MA, Boezen HM, Bruggeman R, Alizadeh BZ. Six-year trajectories and associated factors of positive and negative symptoms in schizophrenia patients, siblings, and controls: Genetic Risk and Outcome of Psychosis (GROUP) study. Sci Rep 2023; 13:9391. [PMID: 37296301 PMCID: PMC10256804 DOI: 10.1038/s41598-023-36235-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Positive and negative symptoms are prominent but heterogeneous characteristics of schizophrenia spectrum disorder (SSD). Within the framework of the Genetic Risk and Outcome of Psychosis (GROUP) longitudinal cohort study, we aimed to distinguish and identify the genetic and non-genetics predictors of homogenous subgroups of the long-term course of positive and negative symptoms in SSD patients (n = 1119) and their unaffected siblings (n = 1059) in comparison to controls (n = 586). Data were collected at baseline, and after 3- and 6-year follow-ups. Group-based trajectory modeling was applied to identify latent subgroups using positive and negative symptoms or schizotypy scores. A multinomial random-effects logistic regression model was used to identify predictors of latent subgroups. Patients had decreasing, increasing, and relapsing symptoms course. Unaffected siblings and healthy controls had three to four subgroups characterized by stable, decreasing, or increasing schizotypy. PRSSCZ did not predict the latent subgroups. Baseline symptoms severity in patients, premorbid adjustment, depressive symptoms, and quality of life in siblings predicted long-term trajectories while were nonsignificant in controls. In conclusion, up to four homogenous latent subgroups of symptom course can be distinguished within patients, siblings, and controls, while non-genetic factors are the main factors associated with the latent subgroups.
Collapse
Affiliation(s)
- Tesfa Dejenie Habtewold
- Department of Epidemiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands.
- Rob Giel Research Center, University Medical Center Groningen, University Center for Psychiatry, University of Groningen, Groningen, The Netherlands.
| | - Natalia Tiles-Sar
- Department of Epidemiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
- Rob Giel Research Center, University Medical Center Groningen, University Center for Psychiatry, University of Groningen, Groningen, The Netherlands
| | - Edith J Liemburg
- Rob Giel Research Center, University Medical Center Groningen, University Center for Psychiatry, University of Groningen, Groningen, The Netherlands
| | - Amrit Kaur Sandhu
- Department of Epidemiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Md Atiqul Islam
- Department of Statistics, Jagannath University, Dhaka, 1100, Bangladesh
| | - H Marike Boezen
- Department of Epidemiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Richard Bruggeman
- Rob Giel Research Center, University Medical Center Groningen, University Center for Psychiatry, University of Groningen, Groningen, The Netherlands
- Department of Clinical and Developmental Neuropsychology, Faculty of Behavioral and Social Sciences, University of Groningen, Groningen, The Netherlands
| | - Behrooz Z Alizadeh
- Department of Epidemiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands.
- Rob Giel Research Center, University Medical Center Groningen, University Center for Psychiatry, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
13
|
Yan L, Kang C, Wang X, Yang L, Zhao N, Zhang X. Association of serum lipid levels with psychotic symptoms in young, first-episode and drug naïve outpatients with major depressive disorder: A large-scale cross-sectional study. Psychiatry Res 2022; 317:114864. [PMID: 36179590 DOI: 10.1016/j.psychres.2022.114864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 09/03/2022] [Accepted: 09/24/2022] [Indexed: 01/04/2023]
Abstract
BACKGROUND Major depressive disorder (MDD) patients with psychotic symptoms have more complex clinical symptoms and higher relapse rates. The purpose of this study was to compare serum lipid differences between psychotic major depressive disorder (PMD) and non-psychotic major depressive disorder (NPMD) in a large sample of young first-episode drug naïve (FEDN) patients. METHODS We recruited 1289 young MDD patients. Socio-demographic information, clinical data, and lipid parameters were collected. The Hamilton Depression Rating Scale, the Hamilton Anxiety Rating Scale, and the positive symptom subscale of the Positive and Negative Syndrome Scale were used to assess patients' depressive, anxiety and psychotic symptoms, respectively. RESULTS Compared with the NPMD group, the PMD group had higher HAMD, HAMA scores, and higher TC, TG, and LDL-C levels. Correlation analysis showed that psychotic symptoms were significantly associated with the total score of HAMD and HAMA, and the levels of serum lipid. In addition, logistic regression analysis found that TC was associated with psychotic symptoms in young FEDN MDD patients. CONCLUSION Our results suggest TC levels may be associated with psychotic symptoms in young MDD patients. The importance of regular psychotic symptom assessment in young MDD patients with high TC levels should be taken into account.
Collapse
Affiliation(s)
- Lijuan Yan
- Department of Psychiatry and Psychology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Chuanyi Kang
- Department of Psychiatry, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Xiaohong Wang
- Department of Psychiatry, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Liying Yang
- Department of Psychiatry, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Na Zhao
- Department of Psychiatry, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China.
| | - Xiangyang Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
14
|
Montazer M, Ebrahimpour-Koujan S, Surkan PJ, Azadbakht L. Effects of Fish-Oil Consumption on Psychological Function Outcomes in Psychosis: A Systematic Review and Dose-Response Meta-Analysis of Randomized Controlled Trials. Adv Nutr 2022; 13:2149-2164. [PMID: 36166847 PMCID: PMC9879727 DOI: 10.1093/advances/nmac083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 06/22/2022] [Accepted: 07/25/2022] [Indexed: 02/02/2023] Open
Abstract
Research on the effects of fish oil on clinical symptoms and psychosocial functioning in people with psychosis has been inconsistent. We conducted this systematic review and meta-analysis to summarize the available data on the effects of oral intake of fish oil on psychological functioning in patients with psychosis. Three online databases including PubMed, Scopus, and Web of Science were searched to identify relevant studies published by April 2021. The exposure was oral fish-oil supplementation. The Positive and Negative Syndrome Scale (PANSS), the Brief Psychiatric Rating Scale (BPRS), and the Global Assessment of Functioning (GAF) were our outcome measures. Seventeen randomized clinical trials involving 1390 patients were included. No change in PANSS was observed following oral fish-oil intake [weighted mean difference (WMD): -0.87; 95% CI: -16.99, 15.26; P = 0.92]. In a nonlinear dose-response analysis, a significant inverse association was observed between <10 wk of fish-oil supplementation and PANSS (WMD: -10; P-nonlinearity = 0.02). Although analysis of 4 studies showed a nonsignificant reduction in BPRS after fish-oil intake (WMD: -2.990; 95% CI: -6.42, 0.44; P = 0.08), a nonlinear dose-response analysis revealed significant inverse associations between dose (>2200 mg/d) and duration of fish-oil supplementation (<15 wk) with BPRS score (WMD: -8; P-nonlinearity = 0.04). Combined effect sizes from 6 randomized clinical trials showed significant increases in GAF after oral administration of fish oil (WMD: 6.66; 95% CI: 3.39, 9.93; P < 0.001). In conclusion, we did not find any significant changes in PANSS and BPRS scores following fish-oil supplementation. Nevertheless, oral fish-oil intake significantly contributed to improvement in GAF scores. This is the first meta-analysis to examine the effects of fish oil on the psychological functioning scores of PANSS, BPRS, and GAF simultaneously.
Collapse
Affiliation(s)
- Mohsen Montazer
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Soraiya Ebrahimpour-Koujan
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran,Autoimmune Bullous Disease Research Center, Razi Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Pamela J Surkan
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | | |
Collapse
|
15
|
Exploring Lead loci shared between schizophrenia and Cardiometabolic traits. BMC Genomics 2022; 23:617. [PMID: 36008755 PMCID: PMC9414090 DOI: 10.1186/s12864-022-08766-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 07/13/2022] [Indexed: 11/10/2022] Open
Abstract
Individuals with schizophrenia (SCZ) have, on average, a 10- to 20-year shorter expected life span than the rest of the population, primarily due to cardiovascular disease comorbidity. Genome-wide association studies (GWAS) have previously been used to separately identify common variants in SCZ and cardiometabolic traits. However, genetic variants jointly influencing both traits remain to be fully characterised. To assess overlaps (if any) between the genetic architecture of SCZ and cardiometabolic traits, we used conditional false discovery rate (FDR) and local genetic correlation statistical framework analyses. A conjunctional FDR was used to identify shared genetic traits between SCZ and cardiometabolic risk factors. We identified 144 genetic variants which were shared between SCZ and body mass index (BMI), and 15 variants shared between SCZ and triglycerides (TG). Furthermore, we discovered four novel single nucleotide polymorphisms (SNPs) (rs3865350, rs9860913, rs13307 and rs9614186) and four proximate genes (DERL2, SNX4, LY75 and EFCAB6) which were shared by SCZ and BMI. We observed that the novel genetic variant rs13307 and the most proximate gene LY75 exerted potential effects on SCZ and BMI comorbidity. Also, we observed a mixture of concordant and opposite direction associations with shared genetic variants. We demonstrated a moderate to high genetic overlap between SCZ and cardiometabolic traits associated with a pattern of bidirectional associations. Our data suggested a complex interplay between metabolism-related gene pathways in SCZ pathophysiology.
Collapse
|
16
|
Qing Y, Wang P, Cui G, Zhang J, Liang K, Xia Z, Wang P, He L, Jia W. Targeted metabolomics reveals aberrant profiles of serum bile acids in patients with schizophrenia. SCHIZOPHRENIA 2022; 8:65. [PMID: 35982185 PMCID: PMC9388515 DOI: 10.1038/s41537-022-00273-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/01/2022] [Indexed: 11/21/2022]
Abstract
Emerging evidence indicates that bile acids (BAs), which are signaling molecules that regulate metabolism and inflammation, appear to be dysregulated in schizophrenia (SZ). Further investigation is warranted to comprehensively characterize BA profiles in SZ. To address this, we analyzed serum BA profiles in 108 drug-free patients with SZ and in 108 healthy controls (HCs), divided into a discovery set (n = 119) and a validation set (n = 97), using ultraperformance liquid chromatography triple quadrupole mass spectrometry. Forty serum BAs were detected and absolutely quantified using calibration curves. Global BA profiling showed differences in SZ and HC groups in both discovery and validation sets. The concentrations of chenodeoxycholic acid, ursodeoxycholic acid, 3β-chenodeoxycholic acid, 7-ketolithocholic acid, 3-dehydrocholic acid, total BAs, and unconjugated BAs were significantly lower in patients with SZ compared with HCs in the two sample sets. The BA deconjugation potentials by gut microbiota and the affinity index of the farnesoid X receptor (FXR) were notably decreased in SZ patients compared to those of HCs. Conjugated BAs and BA deconjugation potentials differed in SZ patients with first versus recurrent episodes, although similar BA profiles were observed in both groups. In addition, a panel of 8 BA variables acted as a potential auxiliary diagnostic biomarker in discriminating SZ patients from HCs, with area under the curve values for receiver operating characteristic curves of 0.758 and 0.732 and for precision-recall curves of 0.750 and 0.714 in the discovery and validation sets, respectively. This study has provided compelling evidence of comprehensive characteristics of circulating BA metabolism in patients with SZ and promoted a deeper understanding of the role of BAs in the pathophysiology of this disease, possibly via the gut microbiota-FXR signaling pathway.
Collapse
|
17
|
Identification of cerebrospinal fluid and serum metabolomic biomarkers in first episode psychosis patients. Transl Psychiatry 2022; 12:229. [PMID: 35665740 PMCID: PMC9166796 DOI: 10.1038/s41398-022-02000-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/18/2022] [Accepted: 05/26/2022] [Indexed: 11/24/2022] Open
Abstract
Psychotic disorders are currently diagnosed by examining the patient's mental state and medical history. Identifying reliable diagnostic, monitoring, predictive, or prognostic biomarkers would be useful in clinical settings and help to understand the pathophysiology of schizophrenia. Here, we performed an untargeted metabolomics analysis using ultra-high pressure liquid chromatography coupled with time-of-flight mass spectroscopy on cerebrospinal fluid (CSF) and serum samples of 25 patients at their first-episode psychosis (FEP) manifestation (baseline) and after 18 months (follow-up). CSF and serum samples of 21 healthy control (HC) subjects were also analyzed. By comparing FEP and HC groups at baseline, we found eight CSF and 32 serum psychosis-associated metabolites with non-redundant identifications. Most remarkable was the finding of increased CSF serotonin (5-HT) levels. Most metabolites identified at baseline did not differ between groups at 18-month follow-up with significant improvement of positive symptoms and cognitive functions. Comparing FEP patients at baseline and 18-month follow-up, we identified 20 CSF metabolites and 90 serum metabolites that changed at follow-up. We further utilized Ingenuity Pathway Analysis (IPA) and identified candidate signaling pathways involved in psychosis pathogenesis and progression. In an extended cohort, we validated that CSF 5-HT levels were higher in FEP patients than in HC at baseline by reversed-phase high-pressure liquid chromatography. To conclude, these findings provide insights into the pathophysiology of psychosis and identify potential psychosis-associated biomarkers.
Collapse
|
18
|
Huang JK, Lee HC. Emerging Evidence of Pathological Roles of Very-Low-Density Lipoprotein (VLDL). Int J Mol Sci 2022; 23:4300. [PMID: 35457118 PMCID: PMC9031540 DOI: 10.3390/ijms23084300] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/10/2022] [Accepted: 04/11/2022] [Indexed: 12/18/2022] Open
Abstract
Embraced with apolipoproteins (Apo) B and Apo E, triglyceride-enriched very-low-density lipoprotein (VLDL) is secreted by the liver into circulation, mainly during post-meal hours. Here, we present a brief review of the physiological role of VLDL and a systemic review of the emerging evidence supporting its pathological roles. VLDL promotes atherosclerosis in metabolic syndrome (MetS). VLDL isolated from subjects with MetS exhibits cytotoxicity to atrial myocytes, induces atrial myopathy, and promotes vulnerability to atrial fibrillation. VLDL levels are affected by a number of endocrinological disorders and can be increased by therapeutic supplementation with cortisol, growth hormone, progesterone, and estrogen. VLDL promotes aldosterone secretion, which contributes to hypertension. VLDL induces neuroinflammation, leading to cognitive dysfunction. VLDL levels are also correlated with chronic kidney disease, autoimmune disorders, and some dermatological diseases. The extra-hepatic secretion of VLDL derived from intestinal dysbiosis is suggested to be harmful. Emerging evidence suggests disturbed VLDL metabolism in sleep disorders and in cancer development and progression. In addition to VLDL, the VLDL receptor (VLDLR) may affect both VLDL metabolism and carcinogenesis. Overall, emerging evidence supports the pathological roles of VLDL in multi-organ diseases. To better understand the fundamental mechanisms of how VLDL promotes disease development, elucidation of the quality control of VLDL and of the regulation and signaling of VLDLR should be indispensable. With this, successful VLDL-targeted therapies can be discovered in the future.
Collapse
Affiliation(s)
- Jih-Kai Huang
- Department of General Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Hsiang-Chun Lee
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Lipid Science and Aging Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80708, Taiwan
- Graduate Institute of Animal Vaccine Technology, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| |
Collapse
|
19
|
Wang X, Yang L, Liu J, Kang C, Zheng Y, Qiu S, Zhao Y, Goodman CB, Wu HE, Zhao N, Zhang X. Association of serum lipid levels with psychotic symptoms in first-episode and drug naïve outpatients with major depressive disorder: a large-scale cross-sectional study. J Affect Disord 2022; 297:321-326. [PMID: 34710503 DOI: 10.1016/j.jad.2021.10.053] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/08/2021] [Accepted: 10/23/2021] [Indexed: 10/20/2022]
Abstract
Background Major depressive disorder (MDD) is a prevalent psychiatric disorder, with increasing evidence that patients with MDD display psychotic symptoms. Studies have shown the association between lipid levels and MDD, but few have explored the relationship between lipids and psychotic symptoms in MDD. The objective of this study was to compare the differences of lipid levels between patients with psychotic major depressive disorder (PMD) and those with non-psychotic major depressive disorder (NPMD) in first-episode and drug-naive (FEDN) MDD patients. Methods A total of 1718 outpatients with FEDN MDD were recruited. In addition to collecting basic information, their blood specimens were also collected to detect serum TC, HDL-C, TG, and LDL-C. The Hamilton depression scale (HAMD), Hamilton anxiety scale (HAMA), and Positive and Negative Syndrome Scale (PANSS) were used to assess their depression, anxiety, and psychotic symptoms respectively. Results Compared to those with NPMD, those with PMD had higher scores on HAMD, HAMA, and more elevated serum TC, TG, and LDL-C levels, but lower HDL-C levels (all p < 0.05). Further logistic regression analysis showed that TG, the severity of depressive and anxiety symptoms were significantly associated with psychotic symptoms (p < 0.05). Limitations No causal relationship could be drawn due to the cross-sectional design. Conclusions Psychotic symptoms in patients with MDD may be predicted by lipid levels in the future. Our findings suggest that TG seems to predict the presence of current psychotic features among patients with FEDN MDD.
Collapse
Affiliation(s)
- Xiaohong Wang
- Department of Psychiatry, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Liying Yang
- Department of Psychiatry, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Jiacheng Liu
- Department of Psychiatry, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Chuanyi Kang
- Department of Psychiatry, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yue Zheng
- Department of Psychiatry, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Siyu Qiu
- Department of Gastroenterology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Ying Zhao
- Department of Laboratory, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Colin B Goodman
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Hanjing Emily Wu
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Na Zhao
- Department of Psychiatry, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
| | - Xiangyang Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
20
|
Tkachev AI, Stekolshchikova EA, Morozova AY, Anikanov NA, Zorkina YA, Alekseyeva PN, Khobta EB, Andreyuk DS, Zozulya SA, Barkhatova AN, Klyushnik TP, Reznik AM, Kostyuk GP, Khaitovich PE. Ceramides: Shared Lipid Biomarkers of Cardiovascular Disease and Schizophrenia. CONSORTIUM PSYCHIATRICUM 2021; 2:35-43. [PMID: 39044755 PMCID: PMC11262249 DOI: 10.17816/cp101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/08/2021] [Indexed: 11/08/2022] Open
Abstract
INTRODUCTION Schizophrenia, although a debilitating mental illness, greatly affects individuals' physical health as well. One of the leading somatic comorbidities associated with schizophrenia is cardiovascular disease, which has been estimated to be one of the leading causes of excess mortality in patients diagnosed with schizophrenia. Although the shared susceptibility to schizophrenia and cardiovascular disease is well established, the mechanisms linking these two disorders are not well understood. Genetic studies have hinted toward shared lipid metabolism abnormalities co-occurring in the two disorders, while lipid compounds have emerged as prognostic markers for cardiovascular disease. In particular, three ceramide species in the blood plasma, Cer(d18:1/16:0), Cer(d18:1/18:0), and Cer(d18:1/24:1), have been robustly linked to the latter disorder. AIM We aimed to assess the differences in abundances of Cer(d18:1/16:0), Cer(d18:1/18:0), and Cer(d18:1/24:1) in the blood plasma of schizophrenia patients compared to healthy controls. METHODS We measured the abundances of Cer(d18:1/16:0), Cer(d18:1/18:0), and Cer(d18:1/24:1) in a cohort of 82 patients with schizophrenia and 138 controls without a psychiatric diagnosis and validated the results using an independent cohort of 26 patients with schizophrenia, 55 control individuals, and 19 patients experiencing a first psychotic episode. RESULTS We found significant alterations for all three ceramide species Cer(d18:1/16:0), Cer(d18:1/18:0), and Cer(d18:1/24:1) and a particularly strong difference in concentrations between psychiatric patients and controls for the ceramide species Cer(d18:1/18:0). CONCLUSIONS The alteration of Cer(d18:1/16:0), Cer(d18:1/18:0), and Cer(d18:1/24:1) levels in the blood plasma might be a manifestation of metabolic abnormalities common to both schizophrenia and cardiovascular disease.
Collapse
|
21
|
Risk factors for metabolic and cardiovascular disease in inpatients with severe mental illness. Psychiatry Res 2021; 304:114148. [PMID: 34365215 DOI: 10.1016/j.psychres.2021.114148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/30/2021] [Accepted: 07/31/2021] [Indexed: 11/23/2022]
Abstract
Patients with severe mental illness (SMI) have increased burden of somatic illnesses, especially cardiovascular disease. Characterizing the cardiovascular risk profile of patients with SMI is therefore crucial to understanding how to decrease morbidity and mortality in these vulnerable populations. In this observational study, entropy balancing (a form of propensity score matching) was used to compare cardiometabolic health in a sample of the general population from the National Health and Nutrition Examination Survey (NHANES) datasets to inpatients hospitalized in a large, urban, academic psychiatric hospital in Harris County, Texas. Data were analyzed using independent linear regression models for blood pressure, blood glucose, TG:HDL ratio, total cholesterol, and body mass index as outcome variables. Systolic blood pressure (F=34•75, p<0•0001), diastolic blood pressure (F=90•53, p<0•0001), blood glucose (F=12•89, p<0•0001), and the TG:HDL ratio (F=3•16, p<0•0001) were all elevated in the psychiatric inpatient sample vs. the NHANES sample. Contrary to expectations, total cholesterol (F=32•18, p<0•0001) and BMI (F=15•05, p<0•0001) were lower in this sample vs. the NHANES sample. Patients hospitalized with SMI show a cardiometabolic profile which confers greater risk of diabetes- and hypertension-related mortality. Approaches should be developed to target indicators of cardiometabolic health in this population to reduce long-term mortality.
Collapse
|
22
|
Abd El Gayed EM, Rizk MS, Ramadan AN, Bayomy NR. mRNA Expression of the CUB and Sushi Multiple Domains 1 ( CSMD1) and Its Serum Protein Level as Predictors for Psychosis in the Familial High-Risk Children and Young Adults. ACS OMEGA 2021; 6:24128-24138. [PMID: 34568691 PMCID: PMC8459410 DOI: 10.1021/acsomega.1c03637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
Background: Schizophrenia (SCZ) is still a challenging, refractory, and severe disorder. It is not a fully understood disease with genetic and epigenetic susceptibility and about 80% substantial heritability. The CUB and Sushi multiple domains 1 (CSMD1) gene is implicated in neurogenesis, memory, immunity, neuropsychology, and monoamine metabolism. Thus, it is one of the powerful genes involved in the pathogenesis of SCZ. Purpose: To evaluate the possible role of the CSMD1 gene's mRNA expression and its serum protein as markers for the early diagnosis of the first-episode SCZ in familial high-risk (FHR) Egyptian children and young adults. Subjects and methods: This case-control study included 80 first-episode drug-naïve SCZ patients from FHR Egyptian children and young adults and 80 healthy participants, as controls, from the FHR-susceptible children and young adults but did not develop SCZ. In this study, the CSMD1 gene's mRNA expression and CSMD1 serum levels were measured in the peripheral blood, and these levels were correlated with the lipid profile of the study populations. Results: The CSMD1 gene's mRNA expression and its' protein levels were significantly decreased in the SCZ patients compared to controls. The receiver operating characteristic (ROC) curve analysis succeeded in distinguishing SCZ patients from those not having SCZ using cutoff points of ≤0.711 and ≤4.83 ng/mL for the CSMD1 gene's mRNA expression and serum protein level, respectively. At these levels, the diagnostic sensitivities were 93.75 and 91.25%; specificity was 92.5%; positive predictive value (PPV) were 92.6 and 92.4%; and negative predictive values (NPVs) were 93.7 and 91.4%, respectively. Also, the ROC curve analysis succeeded in discriminating those with suicidal tendencies. Conclusion: CSMD1 gene's mRNA expression might be a reliable and early diagnostic predictor of first-episode SCZ in the FHR Egyptian children and young adults.
Collapse
Affiliation(s)
- Eman Masoud Abd El Gayed
- Department
of Medical Biochemistry and Molecular Biology, Menoufia University, Shebin
El-Kom 13829, Egypt
| | - Mohamed Soliman Rizk
- Department
of Medical Biochemistry and Molecular Biology, Menoufia University, Shebin
El-Kom 13829, Egypt
| | - Ahmed Nabil Ramadan
- Department
of Neuropsychiatry, Menoufia University, Shebin El-Kom 13829, Egypt
| | - Noha Rabie Bayomy
- Department
of Medical Biochemistry and Molecular Biology, Menoufia University, Shebin
El-Kom 13829, Egypt
| |
Collapse
|
23
|
Murray AJ, Rogers JC, Katshu MZUH, Liddle PF, Upthegrove R. Oxidative Stress and the Pathophysiology and Symptom Profile of Schizophrenia Spectrum Disorders. Front Psychiatry 2021; 12:703452. [PMID: 34366935 PMCID: PMC8339376 DOI: 10.3389/fpsyt.2021.703452] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/28/2021] [Indexed: 12/12/2022] Open
Abstract
Schizophrenia is associated with increased levels of oxidative stress, as reflected by an increase in the concentrations of damaging reactive species and a reduction in anti-oxidant defences to combat them. Evidence has suggested that whilst not the likely primary cause of schizophrenia, increased oxidative stress may contribute to declining course and poor outcomes associated with schizophrenia. Here we discuss how oxidative stress may be implicated in the aetiology of schizophrenia and examine how current understanding relates associations with symptoms, potentially via lipid peroxidation induced neuronal damage. We argue that oxidative stress may be a good target for future pharmacotherapy in schizophrenia and suggest a multi-step model of illness progression with oxidative stress involved at each stage.
Collapse
Affiliation(s)
- Alex J. Murray
- Institute for Mental Health, University of Birmingham, Birmingham, United Kingdom
| | - Jack C. Rogers
- Institute for Mental Health, University of Birmingham, Birmingham, United Kingdom
| | - Mohammad Zia Ul Haq Katshu
- Institute of Mental Health, Division of Mental Health and Neurosciences University of Nottingham, Nottingham, United Kingdom
- Nottinghamshire Healthcare National Health Service Foundation Trust, Nottingham, United Kingdom
| | - Peter F. Liddle
- Institute of Mental Health, Division of Mental Health and Neurosciences University of Nottingham, Nottingham, United Kingdom
| | - Rachel Upthegrove
- Institute for Mental Health, University of Birmingham, Birmingham, United Kingdom
- Early Intervention Service, Birmingham Women's and Children's National Health Service Foundation Trust, Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
24
|
Agusmita A, Loebis B, Husada MS, Effendy E. Total Cholesterol Levels in Men with Schizophrenia Receiving Risperidone and Haloperidol Treatment. Open Access Maced J Med Sci 2021. [DOI: 10.3889/oamjms.2021.6333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
AIM: The objectives of the study were to compare total cholesterol levels in men with schizophrenia receiving risperidone and haloperidol treatment.
METHODS: We conducted on treatment analysis experiment study involving 30 subjects who received risperidone and 30 subjects who received haloperidol. Total cholesterol levels were examined at week 0 and week 8.
RESULTS: There were no statistically significant differences in baseline characteristics. At week 8, mean of total cholesterol level in the risperidone group was 207.23 ± 21.49 compared to 188.17 ± 17.00 in the haloperidol group. A difference of 19.06 ± 5.00 (95% CI 9.05–29.08) was observed, which is statistically significant (p < 0.001).
CONCLUSIONS: There was a statistically significant increase in total cholesterol levels in men with schizophrenia receiving risperidone compared to haloperidol.
Collapse
|
25
|
Morris G, Berk M, Walder K, O'Neil A, Maes M, Puri BK. The lipid paradox in neuroprogressive disorders: Causes and consequences. Neurosci Biobehav Rev 2021; 128:35-57. [PMID: 34118292 DOI: 10.1016/j.neubiorev.2021.06.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 04/27/2021] [Accepted: 06/06/2021] [Indexed: 02/07/2023]
Abstract
Chronic systemic inflammation is associated with an increased risk of cardiovascular disease in an environment of low low-density lipoprotein (LDL) and low total cholesterol and with the pathophysiology of neuroprogressive disorders. The causes and consequences of this lipid paradox are explored. Circulating activated neutrophils can release inflammatory molecules such as myeloperoxidase and the pro-inflammatory cytokines interleukin-1 beta, interleukin-6 and tumour necrosis factor-alpha. Since activated neutrophils are associated with atherosclerosis and cardiovascular disease and with major depressive disorder, bipolar disorder and schizophrenia, it seems reasonable to hypothesise that the inflammatory molecules released by them may act as mediators of the link between systemic inflammation and the development of atherosclerosis in neuroprogressive disorders. This hypothesis is tested by considering the association at a molecular level of systemic inflammation with increased LDL oxidation; increased small dense LDL levels; increased lipoprotein (a) concentration; secretory phospholipase A2 activation; cytosolic phospholipase A2 activation; increased platelet activation; decreased apolipoprotein A1 levels and function; decreased paroxonase-1 activity; hyperhomocysteinaemia; and metabolic endotoxaemia. These molecular mechanisms suggest potential therapeutic targets.
Collapse
Affiliation(s)
- Gerwyn Morris
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Michael Berk
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Deakin University, CMMR Strategic Research Centre, School of Medicine, Geelong, Victoria, Australia; Orygen, The National Centre of Excellence in Youth Mental Health, the Department of Psychiatry and the Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Ken Walder
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Adrienne O'Neil
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Michael Maes
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Department of Psychiatry, King Chulalongkorn University Hospital, Bangkok, Thailand
| | | |
Collapse
|
26
|
Subsequent Dyslipidemia and Factors Associated with Mortality in Schizophrenia: A Population-Based Study in Taiwan. Healthcare (Basel) 2021; 9:healthcare9050545. [PMID: 34067015 PMCID: PMC8150361 DOI: 10.3390/healthcare9050545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 11/26/2022] Open
Abstract
Background: Persons with schizophrenia are at greater risk of developing subsequent medical conditions. To date, few studies have examined comprehensively the risks, mortality and survival rates in schizophrenia and subsequent dyslipidemia over different time periods. The objective of this study was to evaluate the occurrence of subsequent dyslipidemia after the diagnosis of schizophrenia, and factors associated with mortality and survival rate in patients with schizophrenia. Methods: We used a population-based cohort from Taiwan National Health Insurance Research Database, to investigate in patients whom were first diagnosed with schizophrenia during the period from 1997 through 2009, the risk of subsequent dyslipidemia during follow-up. Cumulative incidences and hazard ratios after adjusting for competing mortality risks were calculated. Results: A total of 20,964 eligible patients were included. Risks (i.e., comorbidity) and protective factors (i.e., statin use) have significant impacts on mortality. The mortality exhibits a U-shaped pattern by age. After 50, the risk of death increases with age. Risk of mortality before 50 increases with a decrease in age. Risks differed by the duration time to subsequent dyslipidemia after schizophrenia. Mean duration was 63.55 months in the survive group, and 43.19 months in the deceased group. The 5-, 10-, and 15-year survival rates for patients with schizophrenia and subsequent dyslipidemia were 97.5, 90, and 79.18%, respectively. Conclusion: Early occurrence of subsequent dyslipidemia is associated with increased overall mortality in patients with schizophrenia.
Collapse
|
27
|
Liu Y, Song X, Liu X, Pu J, Gui S, Xu S, Tian L, Zhong X, Zhao L, Wang H, Liu L, Xu G, Xie P. Alteration of lipids and amino acids in plasma distinguish schizophrenia patients from controls: A targeted metabolomics study. Psychiatry Clin Neurosci 2021; 75:138-144. [PMID: 33421228 DOI: 10.1111/pcn.13194] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/10/2020] [Accepted: 12/22/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Schizophrenia (SCZ) is a serious psychiatric disorder. Metabolite disturbance is an important pathogenic factor in schizophrenic patients. In this study, we aim to identify plasma lipid and amino acid biomarkers for SCZ using targeted metabolomics. METHODS Plasma from 76 SCZ patients and 50 matched controls were analyzed using the LC/MS-based multiple reaction monitoring (MRM) metabolomics approach. A total of 182 targeted metabolites, including 22 amino acids and 160 lipids or lipid-related metabolites were observed. We used binary logistic regression analysis to determine whether the lipid and amino acid biomarkers could discriminate SCZ patients from controls. The area under the curve (AUC) from receiver operation characteristic (ROC) curve analysis was conducted to evaluate the diagnostic performance of the biomarkers panel. RESULTS We identified 19 significantly differentially expressed metabolites between the SCZ patients and the controls (false discovery rate < 0.05), including one amino acid and 18 lipids or lipid-related metabolites. The binary logistic regression-selected panel showed good diagnostic performance in the drug-naïve group (AUC = 0.936) and all SCZ patients (AUC = 0.948), especially in the drug-treated group (AUC = 0.963). CONCLUSIONS Plasma lipids and amino acids showed significant dysregulation in SCZ, which could effectively discriminate SCZ patients from controls. The LC/MS/MS-based approach provides reliable data for the objective diagnosis of SCZ.
Collapse
Affiliation(s)
- Yiyun Liu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Key Laboratory of Psychoseomadsy, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Xuemian Song
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Medical University, Chongqing, China
| | - Xinyu Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Dalian, China
| | - Juncai Pu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Key Laboratory of Psychoseomadsy, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Siwen Gui
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Medical University, Chongqing, China
| | - Shaohua Xu
- Department of Neurology, Yongchuan Hospital, Chongqing Medical University, Chongqing, China
| | - Lu Tian
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaogang Zhong
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Libo Zhao
- Department of Neurology, Yongchuan Hospital, Chongqing Medical University, Chongqing, China
| | - Haiyang Wang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lanxiang Liu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Dalian, China
| | - Peng Xie
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Key Laboratory of Psychoseomadsy, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
28
|
Cruz BF, de Campos-Carli SM, de Oliveira AM, de Brito CB, Garcia ZM, do Nascimento Arifa RD, de Souza DDG, Teixeira AL, Salgado JV. Investigating potential associations between neurocognition/social cognition and oxidative stress in schizophrenia. Psychiatry Res 2021; 298:113832. [PMID: 33652247 DOI: 10.1016/j.psychres.2021.113832] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 02/21/2021] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Deficits in neurocognition and social cognition play a critical role in the functional impairment of patients with schizophrenia. Increased oxidative stress has been evidenced in schizophrenia. Increased oxidative stress can affect neuronal function and lead to impairments in neurocognitive functions (especially working memory) and social cognition. OBJECTIVE To investigate deficits in neurocognition and social cognition and their potential association with oxidative stress biomarkers in schizophrenia. MATERIAL AND METHODS Eight-five clinically stable patients with schizophrenia and 75 controls were enrolled in this study. Neurocognition was evaluated through the Brief Assessment of Cognition in Schizophrenia (BACS). Social cognition was assessed through the Hinting Task - a test of theory of mind - and an emotion processing test, Facial Emotion Recognition Test (FERT-100). Oxidative stress was assessed by measuring serum levels of glutathione (GSH) and thiobarbituric acid reactive substances (TBARS). RESULTS Patients had decreased serum levels of GSH (Z=3.56; p<0.001) and increased TBARS (Z=5.51; P<0.001) when compared with controls. TBARS levels are higher in patients using first generation antipsychotics. Higher serum levels of TBARS in patients were associated with poor performance in working memory test (r=-0.39; p=0.002), even when controlling for age and negative symptoms (Standard Beta: -0.36; CI= -2.52 a -13.71). DISCUSSION The association between greater lipid peroxidation, as assessed by TBARS, and worse performance in working memory corroborates theoretical models of greater vulnerability of schizophrenia to oxidative stress.
Collapse
Affiliation(s)
- Breno Fiuza Cruz
- Mental Health Department, Federal University of Minas Gerais, Belo Horizonte, Brazil.
| | | | - Amanda Margarida de Oliveira
- Neuroscience Program, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Zélia Menezes Garcia
- Microbiology Department, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | | | - Antonio Lucio Teixeira
- Institute of Education and Research, Santa Casa BH, Belo Horizonte, Brazil; Neuropsychiatry Program, UTHealth Houston, TX, United States
| | - João Vinícius Salgado
- Neuroscience Program, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil; Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
29
|
Correia BSB, Nani JV, Waladares Ricardo R, Stanisic D, Costa TBBC, Hayashi MAF, Tasic L. Effects of Psychostimulants and Antipsychotics on Serum Lipids in an Animal Model for Schizophrenia. Biomedicines 2021; 9:235. [PMID: 33652776 PMCID: PMC7996855 DOI: 10.3390/biomedicines9030235] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 02/06/2023] Open
Abstract
Schizophrenia (SCZ) treatment is essentially limited to the use of typical or atypical antipsychotic drugs, which suppress the main symptoms of this mental disorder. Metabolic syndrome is often reported in patients with SCZ under long-term drug treatment, but little is known about the alteration of lipid metabolism induced by antipsychotic use. In this study, we evaluated the blood serum lipids of a validated animal model for SCZ (Spontaneously Hypertensive Rat, SHR), and a normal control rat strain (Normotensive Wistar Rat, NWR), after long-term treatment (30 days) with typical haloperidol (HAL) or atypical clozapine (CLZ) antipsychotics. Moreover, psychostimulants, amphetamine (AMPH) or lisdexamfetamine (LSDX), were administered to NWR animals aiming to mimic the human first episode of psychosis, and the effects on serum lipids were also evaluated. Discrepancies in lipids between SHR and NWR animals, which included increased total lipids and decreased phospholipids in SHR compared with NWR, were similar to the differences previously reported for SCZ patients relative to healthy controls. Administration of psychostimulants in NWR decreased omega-3, which was also decreased in the first episode of psychosis of SCZ. Moreover, choline glycerophospholipids allowed us to distinguish the effects of CLZ in SHR. Thus, changes in the lipid metabolism in SHR seem to be reversed by the long-term treatment with the atypical antipsychotic CLZ, which was under the same condition described to reverse the SCZ-like endophenotypes of this validated animal model for SCZ. These data open new insights for understanding the potential influence of the treatment with typical or atypical antipsychotics on circulating lipids. This may represent an outcome effect from metabolic pathways that regulate lipids synthesis and breakdown, which may be reflecting a cell lipids dysfunction in SCZ.
Collapse
Affiliation(s)
- Banny Silva Barbosa Correia
- Instituto de Química, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-970, Brazil; (B.S.B.C.); (R.W.R.); (D.S.); (T.B.B.C.C.)
| | - João Victor Nani
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo 04044-020, Brazil;
- National Institute for Translational Medicine (INCT-TM, CNPq), Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo (FMRP-USP), São Paulo 14049-900, Brazil
| | - Raniery Waladares Ricardo
- Instituto de Química, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-970, Brazil; (B.S.B.C.); (R.W.R.); (D.S.); (T.B.B.C.C.)
| | - Danijela Stanisic
- Instituto de Química, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-970, Brazil; (B.S.B.C.); (R.W.R.); (D.S.); (T.B.B.C.C.)
| | | | - Mirian A. F. Hayashi
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo 04044-020, Brazil;
- National Institute for Translational Medicine (INCT-TM, CNPq), Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo (FMRP-USP), São Paulo 14049-900, Brazil
| | - Ljubica Tasic
- Instituto de Química, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-970, Brazil; (B.S.B.C.); (R.W.R.); (D.S.); (T.B.B.C.C.)
| |
Collapse
|
30
|
Gjerde PB, Simonsen CE, Lagerberg TV, Steen NE, Andreassen OA, Steen VM, Melle I. Sex-Specific Effect of Serum Lipids and Body Mass Index on Psychotic Symptoms, a Cross-Sectional Study of First-Episode Psychosis Patients. Front Psychiatry 2021; 12:723158. [PMID: 34744818 PMCID: PMC8566674 DOI: 10.3389/fpsyt.2021.723158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/24/2021] [Indexed: 11/23/2022] Open
Abstract
Background: Schizophrenia is a disorder with considerable heterogeneity in course and outcomes, which is in part related to the patients' sex. Studies report a link between serum lipids, body mass index (BMI), and therapeutic response. However, the role of sex in these relationships is poorly understood. In a cross-sectional sample of first-episode psychosis (FEP) patients, we investigated if the relationship between serum lipid levels (total cholesterol, HDL-C, LDL-C, and triglycerides), BMI, and symptoms differs between the sexes. Methods: We included 435 FEP patients (males: N = 283, 65%) from the ongoing Thematically Organized Psychosis (TOP) study. Data on clinical status, antipsychotics, lifestyle, serum lipid levels, and BMI were obtained. The Positive and Negative Syndrome Scale (PANSS) and the Calgary Depression Scale for Schizophrenia (CDSS) were used to assess psychotic and depressive symptoms. General linear models were employed to examine the relationship between metabolic variables and symptomatology. Results: We observed a female-specific association between serum HDL-C levels and negative symptoms (B = -2.24, p = 0.03) and between triglycerides levels (B = 1.48, p = 0.04) and BMI (B = 0.27, p = 0.001) with depressive symptoms. When controlling for BMI, only the association between serum HDL-C levels and negative symptoms remained significant. Moreover, the HDL-C and BMI associations remained significant after controlling for demography, lifestyle, and illness-related factors. Conclusion: We found a relationship between metabolic factors and psychiatric symptoms in FEP patients that was sex-dependent.
Collapse
Affiliation(s)
- Priyanthi B Gjerde
- Norwegian Centre for Mental Disorders Research, Department of Clinical Science, University of Bergen, Bergen, Norway.,Dr. Einar Martens Research Group for Biological Psychiatry, Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway.,Research Unit for General Practice, NORCE Norwegian Research Centre, Bergen, Norway
| | - Carmen E Simonsen
- Norwegian Centre for Mental Disorders Research, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Trine V Lagerberg
- Norwegian Centre for Mental Disorders Research, Oslo University Hospital, Oslo, Norway
| | - Nils Eiel Steen
- Norwegian Centre for Mental Disorders Research, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ole A Andreassen
- Norwegian Centre for Mental Disorders Research, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Vidar M Steen
- Norwegian Centre for Mental Disorders Research, Department of Clinical Science, University of Bergen, Bergen, Norway.,Dr. Einar Martens Research Group for Biological Psychiatry, Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Ingrid Melle
- Norwegian Centre for Mental Disorders Research, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
31
|
Lipidomics of the brain, retina, and biofluids: from the biological landscape to potential clinical application in schizophrenia. Transl Psychiatry 2020; 10:391. [PMID: 33168817 PMCID: PMC7653030 DOI: 10.1038/s41398-020-01080-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 06/08/2020] [Accepted: 06/10/2020] [Indexed: 01/10/2023] Open
Abstract
Schizophrenia is a serious neuropsychiatric disorder, yet a clear pathophysiology has not been identified. To date, neither the objective biomarkers for diagnosis nor specific medications for the treatment of schizophrenia are clinically satisfactory. It is well accepted that lipids are essential to maintain the normal structure and function of neurons in the brain and that abnormalities in neuronal lipids are associated with abnormal neurodevelopment in schizophrenia. However, lipids and lipid-like molecules have been largely unexplored in contrast to proteins and their genes in schizophrenia. Compared with the gene- and protein-centric approaches, lipidomics is a recently emerged and rapidly evolving research field with particular importance for the study of neuropsychiatric disorders such as schizophrenia, in which even subtle aberrant alterations in the lipid composition and concentration of the neurons may disrupt brain functioning. In this review, we aimed to highlight the lipidomics of the brain, retina, and biofluids in both human and animal studies, discuss aberrant lipid alterations in correlation with schizophrenia, and propose future directions from the biological landscape towards potential clinical applications in schizophrenia. Recent studies are in support of the concept that aberrations in some lipid species [e.g. phospholipids, polyunsaturated fatty acids (PUFAs)] lead to structural alterations and, in turn, impairments in the biological function of membrane-bound proteins, the disruption of cell signaling molecule accessibility, and the dysfunction of neurotransmitter systems. In addition, abnormal lipidome alterations in biofluids are linked to schizophrenia, and thus they hold promise in the discovery of biomarkers for the diagnosis of schizophrenia.
Collapse
|
32
|
Guidara W, Messedi M, Naifar M, Maalej M, Grayaa S, Omri S, Ben Thabet J, Maalej M, Charfi N, Ayadi F. Predictive value of oxidative stress biomarkers in drug‑free patients with schizophrenia and schizo-affective disorder. Psychiatry Res 2020; 293:113467. [PMID: 33198042 DOI: 10.1016/j.psychres.2020.113467] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 09/15/2020] [Indexed: 12/23/2022]
Abstract
Several studies have suggested that oxidative stress may represent one of the primary etiological mechanisms of schizophrenia (SZ) and schizoaffective disorder (SAD) which can be targeted by therapeutic intervention. The present study was conducted over a period of 24 months, between June 2016 and June 2018. All enrolled subjects were Tunisian, forty five drug‑free male patients with SZ (mean age: 37.6 years), twenty one drug‑free male patients with SAD (mean age: 28.8 years) and hundred and one age and gender matched controls (mean age: 34.2 years) were enrolled in the study. Plasma reduced glutathione (GSH) and Total thiols levels were significantly decreased in patients compared to controls (respectively p<0.001; p=0.050). In addition, malondialdehyde (MDA), advanced oxidation protein products (AOPP) and protein carbonyls (PC) concentrations and glutathione peroxidase (GSH-Px) activity were significantly increased in patients compared to controls (p<0.001; p<0.001; p<0.001 and p=0.003 respectively). The binary logistic regression analysis revealed that MDA, AOPP, PC and GSH-Px could be considered as independent risk factors for SZ and SAD. When using ROC analysis, a remarkable increase in the area under the curve (AUC) with higher sensitivity (Se) and specificity (Sp) for MDA, AOPP, PC and GSH-Px combined markers was observed. The present study indicated that the identification of the predictive value of this four-selected biomarkers related to oxidative stress in drug free patients should lead to a better identification of the etiological mechanism of SZ or SAD.
Collapse
Affiliation(s)
- Wassim Guidara
- Laboratory of research "Molecular Basis of Human Diseases", LR19ES13, Faculty of Medicine, University of Sfax, Sfax, Tunisia.
| | - Meriam Messedi
- Laboratory of research "Molecular Basis of Human Diseases", LR19ES13, Faculty of Medicine, University of Sfax, Sfax, Tunisia
| | - Manel Naifar
- Laboratory of Biochemistry, University of Sfax & Habib Bourguiba Hospital, Sfax, Tunisia
| | - Manel Maalej
- Psychiatry C- department, University of Sfax & Hédi Chaker Hostipal, Sfax, Tunisia
| | - Sahar Grayaa
- Laboratory of research "Molecular Basis of Human Diseases", LR19ES13, Faculty of Medicine, University of Sfax, Sfax, Tunisia
| | - Sana Omri
- Psychiatry C- department, University of Sfax & Hédi Chaker Hostipal, Sfax, Tunisia
| | - Jihène Ben Thabet
- Psychiatry C- department, University of Sfax & Hédi Chaker Hostipal, Sfax, Tunisia
| | - Mohamed Maalej
- Psychiatry C- department, University of Sfax & Hédi Chaker Hostipal, Sfax, Tunisia
| | - Nada Charfi
- Psychiatry C- department, University of Sfax & Hédi Chaker Hostipal, Sfax, Tunisia
| | - Fatma Ayadi
- Laboratory of research "Molecular Basis of Human Diseases", LR19ES13, Faculty of Medicine, University of Sfax, Sfax, Tunisia; Laboratory of Biochemistry, University of Sfax & Habib Bourguiba Hospital, Sfax, Tunisia
| |
Collapse
|
33
|
Amadio P, Zarà M, Sandrini L, Ieraci A, Barbieri SS. Depression and Cardiovascular Disease: The Viewpoint of Platelets. Int J Mol Sci 2020; 21:E7560. [PMID: 33066277 PMCID: PMC7589256 DOI: 10.3390/ijms21207560] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 02/06/2023] Open
Abstract
Depression is a major cause of morbidity and low quality of life among patients with cardiovascular disease (CVD), and it is now considered as an independent risk factor for major adverse cardiovascular events. Increasing evidence indicates not only that depression worsens the prognosis of cardiac events, but also that a cross-vulnerability between the two conditions occurs. Among the several mechanisms proposed to explain this interplay, platelet activation is the more attractive, seeing platelets as potential mirror of the brain function. In this review, we dissected the mechanisms linking depression and CVD highlighting the critical role of platelet behavior during depression as trigger of cardiovascular complication. In particular, we will discuss the relationship between depression and molecules involved in the CVD (e.g., catecholamines, adipokines, lipids, reactive oxygen species, and chemokines), emphasizing their impact on platelet activation and related mechanisms.
Collapse
Affiliation(s)
- Patrizia Amadio
- Unit of Brain-Heart Axis: Cellular and Molecular Mechanism, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (M.Z.); (L.S.)
| | - Marta Zarà
- Unit of Brain-Heart Axis: Cellular and Molecular Mechanism, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (M.Z.); (L.S.)
| | - Leonardo Sandrini
- Unit of Brain-Heart Axis: Cellular and Molecular Mechanism, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (M.Z.); (L.S.)
| | - Alessandro Ieraci
- Laboratory of Neuropsychopharmacology and Functional Neurogenomics, Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy;
| | - Silvia Stella Barbieri
- Unit of Brain-Heart Axis: Cellular and Molecular Mechanism, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (M.Z.); (L.S.)
| |
Collapse
|
34
|
Reponen EJ, Dieset I, Tesli M, Mørch RH, Aas M, Vedal TSJ, Haug E, Drange OK, Steen NE, Hope S, Szabo A, Gohar SM, Wedervang-Resell K, Djurovic S, Melle I, Aukrust P, Andreassen OA, Ueland T. Atherogenic Lipid Ratios Related to Myeloperoxidase and C-Reactive Protein Levels in Psychotic Disorders. Front Psychiatry 2020; 11:672. [PMID: 32754070 PMCID: PMC7365890 DOI: 10.3389/fpsyt.2020.00672] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/29/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Cardiovascular disease (CVD) is a major cause of premature death in patients with psychotic disorders, where dyslipidemia occurs frequently. In the pathogenesis of these serious mental disorders, a low-grade inflammation seems to be a possible contributor. Concurrently, systemic inflammation and its interplay with dyslipidemia is a central driver in the pathogenesis of CVD. We hypothesize that evaluation of atherogenic lipid ratios together with inflammatory markers reflecting different inflammatory pathways with relevance for atherogenesis, could give novel information on immune-related mechanisms involved in early CVD risk in patients with psychotic disorders. METHODS As a measure for CVD risk we calculated atherogenic lipid ratios using established sex-specific cut-offs: Total cholesterol/high-density lipoprotein; HDL-c (TC/HDL) and triglyceride/HDL-c (TG/HDL) were evaluated in 571 schizophrenia (SCZ) and 247 bipolar disorder (BD) patients, and in 99 healthy controls (HC). In addition, as a measure of low-grade inflammation, we measured fasting plasma levels of nine stable atherogenic inflammatory markers in patients (SCZ, BD) and in HC. The elevated inflammatory markers and CVD risk in patients, as reflected by TC/HDL and TG/HDL, were further assessed in multivariable analyses adjusting for comorbid cardio-metabolic risk factors. RESULTS A markedly higher proportion (26%-31%) of patients had increased TC/HDL and TG/HDL ratios compared with HC. Plasma levels of high-sensitivity C-reactive protein (hs-CRP) and myeloperoxidase (MPO) were higher (p<0.05, p<0.001) in patients with psychotic disorders than in HC, and hs-CRP and MPO were independently associated with atherogenic lipid ratios in the multivariable analyses. CONCLUSIONS Our findings suggest that low-grade inflammation and abnormal neutrophil activation may cause increased CVD risk in patients with psychotic disorders. These mechanisms should be further examined to determine the potential for development of novel risk evaluation strategies.
Collapse
Affiliation(s)
- Elina J. Reponen
- NORMENT Norwegian Centre for Mental Disorders Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Ingrid Dieset
- NORMENT Norwegian Centre for Mental Disorders Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Acute Psychiatric Department, Oslo University Hospital, Oslo, Norway
| | - Martin Tesli
- NORMENT Norwegian Centre for Mental Disorders Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- Department of Mental Disorders, Norwegian Institute of Public Health, Oslo, Norway
| | - Ragni H. Mørch
- NORMENT Norwegian Centre for Mental Disorders Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Monica Aas
- NORMENT Norwegian Centre for Mental Disorders Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Trude S. J. Vedal
- NORMENT Norwegian Centre for Mental Disorders Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Elisabeth Haug
- Department of Acute Psychiatry and Psychosis Treatment, Innlandet Hospital Trust, Reinsvoll, Norway
| | - Ole Kristian Drange
- Department of Mental Health, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Østmarka, Division of Mental Health Care, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Nils Eiel Steen
- NORMENT Norwegian Centre for Mental Disorders Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Sigrun Hope
- NORMENT Norwegian Centre for Mental Disorders Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- Department of Neuro Habilitation, Division of Clinical Neuroscience, Oslo University Hospital, Oslo, Norway
| | - Attila Szabo
- NORMENT Norwegian Centre for Mental Disorders Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Sherif M. Gohar
- NORMENT Norwegian Centre for Mental Disorders Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- Department of Psychiatry, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Kirsten Wedervang-Resell
- NORMENT Norwegian Centre for Mental Disorders Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Department of Psychiatric Research and Development, Oslo University Hospital, Oslo, Norway
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
- NORMENT Norwegian Centre for Mental Disorders Research, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Ingrid Melle
- NORMENT Norwegian Centre for Mental Disorders Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Pål Aukrust
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway
- K.G. Jebsen Thrombosis Research and Expertise Center, University of Tromsø, Tromsø, Norway
| | - Ole A. Andreassen
- NORMENT Norwegian Centre for Mental Disorders Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Thor Ueland
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- K.G. Jebsen Thrombosis Research and Expertise Center, University of Tromsø, Tromsø, Norway
| |
Collapse
|
35
|
Lin BD, Alkema A, Peters T, Zinkstok J, Libuda L, Hebebrand J, Antel J, Hinney A, Cahn W, Adan R, Luykx JJ. Assessing causal links between metabolic traits, inflammation and schizophrenia: a univariable and multivariable, bidirectional Mendelian-randomization study. Int J Epidemiol 2020; 48:1505-1514. [PMID: 31504541 PMCID: PMC7070229 DOI: 10.1093/ije/dyz176] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Blood immunoreactive biomarkers, such as C-reactive protein (CRP), and metabolic abnormalities have been associated with schizophrenia. Studies comprehensively and bidirectionally probing possible causal links between such blood constituents and liability to schizophrenia are lacking. METHODS To disentangle putative causal links between CRP blood levels and schizophrenia in both directions, we conducted multiple univariable Mendelian-randomization (MR) analyses, ranging from fixed-effect to inverse variance-weighted (IVW), weighted-median, MR Egger and generalized summary-data-based Mendelian-randomization (GSMR) models. To prioritize metabolic risk factors for schizophrenia, a novel multivariable approach was applied: multivariable Mendelian-randomization-Bayesian model averaging (MR-BMA). RESULTS All forward univariable MR analyses consistently showed that CRP has a protective effect on schizophrenia, whereas reverse MR analyses consistently suggested absent causal effects of schizophrenia liability on CRP blood levels. Using MR-BMA, as the top protective factors for schizophrenia we prioritized leucine and as the prime risk-factor triglycerides in medium very-low-density lipoprotein (VLDL). The five best-performing MR-BMA models provided one additional risk factor: triglycerides in large VLDL; and two additional protective factors: citrate and lactate. CONCLUSIONS Our results add to a growing body of literature hinting at metabolic changes-in particular of triglycerides-independently of medication status in schizophrenia. We also highlight the absent effects of genetic liability to schizophrenia on CRP levels.
Collapse
Affiliation(s)
- Bochao D Lin
- Department of Psychiatry, UMC Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands.,Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, School of Basic Medical Sciences, Henan University, Kaifeng, China.,Department of Translational Neuroscience, UMC Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Anne Alkema
- Department of Psychiatry, UMC Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Triinu Peters
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University of Duisburg-Essen, University Hospital Essen, Essen, Germany
| | - Janneke Zinkstok
- Department of Psychiatry, UMC Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Lars Libuda
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University of Duisburg-Essen, University Hospital Essen, Essen, Germany
| | - Johannes Hebebrand
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University of Duisburg-Essen, University Hospital Essen, Essen, Germany
| | - Jochen Antel
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University of Duisburg-Essen, University Hospital Essen, Essen, Germany
| | - Anke Hinney
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University of Duisburg-Essen, University Hospital Essen, Essen, Germany
| | - Wiepke Cahn
- Department of Psychiatry, UMC Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Roger Adan
- Department of Translational Neuroscience, UMC Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Jurjen J Luykx
- Department of Psychiatry, UMC Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands.,Department of Translational Neuroscience, UMC Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands.,GGNet Mental Health, Apeldoorn, The Netherlands
| |
Collapse
|
36
|
Effects of Cannabis Use on the Protein and Lipid Profile of Olfactory Neuroepithelium Cells from Schizophrenia Patients Studied by Synchrotron-Based FTIR Spectroscopy. Biomolecules 2020; 10:biom10020329. [PMID: 32092878 PMCID: PMC7072126 DOI: 10.3390/biom10020329] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/12/2020] [Accepted: 02/15/2020] [Indexed: 12/14/2022] Open
Abstract
Schizophrenia (SCZ) is a neurodevelopmental disorder with a high genetic component, but the presence of environmental stressors can be important for its onset and progression. Cannabis use can be a major risk factor for developing SCZ. However, despite the available data on the neurobiological underpinnings of SCZ, there is an important lack of studies in human neuronal tissue and living cells addressing the effects of cannabis in SCZ patients. In this study, we analysed the most relevant bio-macromolecular constituents in olfactory neuroepithelium (ON) cells of healthy controls non-cannabis users, healthy cannabis users, SCZ patients non-cannabis users, and SCZ patients cannabis users using Synchrotron Radiation-Fourier Transform Infrared (SR-FTIR) spectrometry and microscopy. Our results revealed that SCZ patients non-cannabis users, and healthy cannabis users exhibit similar alterations in the macromolecular profile of ON cells, including disruption in lipid composition, increased lipid membrane renewal rate and lipid peroxidation, altered proteins containing more β-sheet structures, and showed an increase in DNA and histone methylation. Notably, these alterations were not observed in SCZ patients who use cannabis regularly. These data suggest a differential effect of cannabis in healthy controls and in SCZ patients in terms of the macromolecular constituents of ON cells.
Collapse
|
37
|
Wedervang-Resell K, Friis S, Lonning V, Smelror RE, Johannessen C, Agartz I, Ulven SM, Holven KB, Andreassen OA, Myhre AM. Lipid alterations in adolescents with early-onset psychosis may be independent of antipsychotic medication. Schizophr Res 2020; 216:295-301. [PMID: 31791814 DOI: 10.1016/j.schres.2019.11.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 07/21/2019] [Accepted: 11/22/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND Dyslipidemia and insulin resistance (HOMA-IR) are cardiovascular risk factors prevalent in patients with psychosis. Whether these factors are intrinsic or affected by lifestyle or antipsychotic medication (AP) is unclear. Therefore, we investigated lipid profiles, HOMA-IR, and psychotic phenotypes in patients aged 12-18 years with early-onset psychosis (EOP) with and without AP exposure. METHOD We measured fasting total cholesterol (TC), high-density lipoprotein cholesterol (HDLC), triglycerides (TG), insulin, and glucose in patients with EOP (n = 39) and healthy controls (HC) (n = 66). Diet information was not available. Negative symptoms were assessed using the Positive and Negative Syndrome Scale (PANSS). We used univariate analysis of variance to compare TC/HDL-C ratios and TG and HOMA-IR values, controlling for body mass index (BMI) and AP exposure. We assessed the explained variance of having EOP using multiple regression analysis. RESULTS Patients with and without AP exposure had significantly higher TC/HDL-C (p = 0.003, p = 0.029) and TG values (p < 0.001, p = 0.021) than HC. Significantly increased HOMA-IR scores were found only in AP-exposed patients (p = 0.037). EOP significantly increased the explained variance for TC/HDL-C and TG, but not for HOMA-IR. Patients with a PANSS negative score > 21 had significantly higher levels of TG than those with low scores (p = 0.032). CONCLUSION Our results suggest that lipid alterations predate AP treatment in adolescents with EOP. Higher levels of negative symptoms and AP further increase metabolic risk. The preliminary findings propose that subclinical dyslipidemia may be intrinsic to EOP.
Collapse
Affiliation(s)
- Kirsten Wedervang-Resell
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of clinical Medicine, University of Oslo, Oslo, Norway; Division of Mental Health and Addiction, Department of Psychiatric Research and Development, Oslo University Hospital, Oslo, Norway.
| | - Svein Friis
- Division of Mental Health and Addiction, Department of Psychiatric Research and Development, Oslo University Hospital, Oslo, Norway
| | - Vera Lonning
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Runar E Smelror
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Cecilie Johannessen
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Ingrid Agartz
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway; Centre for Psychiatric Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Stine M Ulven
- Department of Nutrition, Institute for Basic Medical Sciences, University of Oslo, PO Box 1046, 0317 Blindern, Oslo, Norway
| | - Kirsten B Holven
- Department of Nutrition, Institute for Basic Medical Sciences, University of Oslo, PO Box 1046, 0317 Blindern, Oslo, Norway
| | - Ole A Andreassen
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of clinical Medicine, University of Oslo, Oslo, Norway
| | - Anne M Myhre
- Division of Mental Health and Addiction, Department of Psychiatric Research and Development, Oslo University Hospital, Oslo, Norway; Child and Adolescent Psychiatry Unit, Division of Mental Health and Addiction, Institute of clinical Medicine, University of Oslo, Norway
| |
Collapse
|
38
|
Yu Q, He Z, Zubkov D, Huang S, Kurochkin I, Yang X, Halene T, Willmitzer L, Giavalisco P, Akbarian S, Khaitovich P. Lipidome alterations in human prefrontal cortex during development, aging, and cognitive disorders. Mol Psychiatry 2020; 25:2952-2969. [PMID: 30089790 PMCID: PMC7577858 DOI: 10.1038/s41380-018-0200-8] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 04/26/2018] [Accepted: 06/11/2018] [Indexed: 12/27/2022]
Abstract
Lipids are essential to brain functions, yet they remain largely unexplored. Here we investigated the lipidome composition of prefrontal cortex gray matter in 396 cognitively healthy individuals with ages spanning 100 years, as well as 67 adult individuals diagnosed with autism (ASD), schizophrenia (SZ), and Down syndrome (DS). Of the 5024 detected lipids, 95% showed significant age-dependent concentration differences clustering into four temporal stages, and resulting in a gradual increase in membrane fluidity in individuals ranging from newborn to nonagenarian. Aging affects 14% of the brain lipidome with late-life changes starting predominantly at 50-55 years of age-a period of general metabolic transition. All three diseases alter the brain lipidome composition, leading-among other things-to a concentration decrease in glycerophospholipid metabolism and endocannabinoid signaling pathways. Lipid concentration decreases in SZ were further linked to genetic variants associated with disease, indicating the relevance of the lipidome changes to disease progression.
Collapse
Affiliation(s)
- Qianhui Yu
- grid.9227.e0000000119573309Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031 China ,grid.419092.70000 0004 0467 2285CAS Key Laboratory of Compstudy has been deposited in the National Omics Datautational Biology, CAS-MPG Partner Institute for Computational Biology, SIBS, CAS, Shanghai, 200031 China
| | - Zhisong He
- grid.419092.70000 0004 0467 2285CAS Key Laboratory of Compstudy has been deposited in the National Omics Datautational Biology, CAS-MPG Partner Institute for Computational Biology, SIBS, CAS, Shanghai, 200031 China ,grid.454320.40000 0004 0555 3608Skolkovo Institute of Science and Technology, Moscow, 143028 Russia
| | - Dmitry Zubkov
- grid.454320.40000 0004 0555 3608Skolkovo Institute of Science and Technology, Moscow, 143028 Russia
| | - Shuyun Huang
- grid.419092.70000 0004 0467 2285CAS Key Laboratory of Compstudy has been deposited in the National Omics Datautational Biology, CAS-MPG Partner Institute for Computational Biology, SIBS, CAS, Shanghai, 200031 China ,grid.440637.20000 0004 4657 8879ShanghaiTech University, Shanghai, 200031 China
| | - Ilia Kurochkin
- grid.454320.40000 0004 0555 3608Skolkovo Institute of Science and Technology, Moscow, 143028 Russia
| | - Xiaode Yang
- grid.9227.e0000000119573309Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031 China ,grid.419092.70000 0004 0467 2285CAS Key Laboratory of Compstudy has been deposited in the National Omics Datautational Biology, CAS-MPG Partner Institute for Computational Biology, SIBS, CAS, Shanghai, 200031 China
| | - Tobias Halene
- grid.59734.3c0000 0001 0670 2351Department of Psychiatry and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Lothar Willmitzer
- grid.418390.70000 0004 0491 976XMax Planck Institute for Molecular Plant Physiology, Am Mühlenberg 1, Potsdam, 14476 Germany
| | - Patrick Giavalisco
- Max Planck Institute for Molecular Plant Physiology, Am Mühlenberg 1, Potsdam, 14476, Germany.
| | - Schahram Akbarian
- Department of Psychiatry and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Philipp Khaitovich
- Skolkovo Institute of Science and Technology, Moscow, 143028, Russia. .,ShanghaiTech University, Shanghai, 200031, China. .,Max Planck Institute for Evolutionary Anthropology, Leipzig, 04103, Germany. .,Comparative Biology Group, CAS-MPG Partner Institute for Computational Biology, SIBS, CAS, Shanghai, 200031, China.
| |
Collapse
|
39
|
Gohar SM, Dieset I, Steen NE, Mørch RH, Iversen TS, Steen VM, Andreassen OA, Melle I. Association between serum lipid levels, osteoprotegerin and depressive symptomatology in psychotic disorders. Eur Arch Psychiatry Clin Neurosci 2019; 269:795-802. [PMID: 29721726 PMCID: PMC6739273 DOI: 10.1007/s00406-018-0897-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 04/24/2018] [Indexed: 12/22/2022]
Abstract
Although the relationship between positive and negative symptoms of psychosis and dyslipidemia has been thoroughly investigated in recent studies, the potential link between depression and lipid status is still under-investigated. We here examined the association between lipid levels and depressive symptomatology in patients with psychotic disorders, in addition to their possible inflammatory associations. Participants (n = 652) with the following distribution: schizophrenia, schizophreniform and schizoaffective disorder (schizophrenia group, n = 344); bipolar I, II, NOS, and psychosis NOS (non-schizophrenia group, n = 308) were recruited consecutively from the Norwegian Thematically Organized Psychosis (TOP) Study. Clinical data were obtained by Positive and Negative Syndrome Scale (PANSS), and Calgary Depression Scale for Schizophrenia (CDSS). Blood samples were analyzed for total cholesterol (TC), low-density lipoprotein (LDL), triglyceride (TG), C-reactive protein (CRP), soluble tumor necrosis factor receptor 1(sTNF-R1), osteoprotegerin (OPG), and interleukin 1 receptor antagonist (IL-1Ra). After adjusting for age, gender, BMI, smoking, and dyslipidemia-inducing antipsychotics, TC and LDL scores showed significant associations with depression [β = 0.13, p = 0.007; β = 0.14, p = 0.007], and with two inflammatory markers: CRP [β = 0.14, p = 0.007; β = 0.16, p = 0.007] and OPG [β = 0.14, p = 0.007; β = 0.11, p = 0.007]. Total model variance was 17% for both analyses [F(12, 433) = 8.42, p < 0.001; F(12, 433) = 8.64, p < 0.001]. Current findings highlight a potential independent role of depression and inflammatory markers, CRP and OPG in specific, in the pathophysiology of dyslipidemia in psychotic disorders.
Collapse
Affiliation(s)
- Sherif M. Gohar
- K.G. Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, NORMENT, University of Oslo, Oslo, Norway
- Psychosis Research Unit/TOP, Division of Mental Health and Addiction, Ullevål Hospital, Oslo University Hospital, Building 49, Kirkeveien 166, 0424 Oslo, Norway
- Department of Psychiatry, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Ingrid Dieset
- K.G. Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, NORMENT, University of Oslo, Oslo, Norway
- Psychosis Research Unit/TOP, Division of Mental Health and Addiction, Ullevål Hospital, Oslo University Hospital, Building 49, Kirkeveien 166, 0424 Oslo, Norway
| | - Nils Eiel Steen
- K.G. Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, NORMENT, University of Oslo, Oslo, Norway
- Psychosis Research Unit/TOP, Division of Mental Health and Addiction, Ullevål Hospital, Oslo University Hospital, Building 49, Kirkeveien 166, 0424 Oslo, Norway
| | - Ragni H. Mørch
- K.G. Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, NORMENT, University of Oslo, Oslo, Norway
- Psychosis Research Unit/TOP, Division of Mental Health and Addiction, Ullevål Hospital, Oslo University Hospital, Building 49, Kirkeveien 166, 0424 Oslo, Norway
| | - Trude S. Iversen
- K.G. Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, NORMENT, University of Oslo, Oslo, Norway
- Psychosis Research Unit/TOP, Division of Mental Health and Addiction, Ullevål Hospital, Oslo University Hospital, Building 49, Kirkeveien 166, 0424 Oslo, Norway
| | - Vidar M. Steen
- Department of Clinical Science, K.G. Jebsen Center for Psychosis Research, NORMENT, University of Bergen, Bergen, Norway
- Dr. Einar Martens Research Group for Biological Psychiatry, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Ole A. Andreassen
- K.G. Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, NORMENT, University of Oslo, Oslo, Norway
- Psychosis Research Unit/TOP, Division of Mental Health and Addiction, Ullevål Hospital, Oslo University Hospital, Building 49, Kirkeveien 166, 0424 Oslo, Norway
| | - Ingrid Melle
- K.G. Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, NORMENT, University of Oslo, Oslo, Norway
- Psychosis Research Unit/TOP, Division of Mental Health and Addiction, Ullevål Hospital, Oslo University Hospital, Building 49, Kirkeveien 166, 0424 Oslo, Norway
| |
Collapse
|
40
|
A five-year follow-up study of antioxidants, oxidative stress and polyunsaturated fatty acids in schizophrenia. Acta Neuropsychiatr 2019; 31:202-212. [PMID: 31178002 DOI: 10.1017/neu.2019.14] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Oxidative stress and dysregulated antioxidant defence may be involved in the pathophysiology of schizophrenia. In the present study, we investigated changes in antioxidants and oxidative stress from an acute to a later stable phase. We hypothesised that the levels of oxidative markers are increased in schizophrenia compared with healthy controls; change from the acute to the stable phase; and are associated with the levels of membrane polyunsaturated fatty acids (PUFAs) and symptom severity. METHODS Fifty-five patients with schizophrenia spectrum disorders, assessed during an acute phase and 5 years later during a stable phase, and 51 healthy controls were included. We measured antioxidants (α-tocopherol, uric acid, albumin and bilirubin), markers of oxidative stress (F2-isoprostane and reactive oxygen metabolites) and membrane fatty acids. Antioxidants and oxidative stress markers were compared in schizophrenia versus healthy controls, adjusting for differences in sex, age and smoking, and changes over time. Associations between symptoms and PUFA were also investigated. RESULTS In the acute phase, α-tocopherol was significantly higher (p < 0.001), while albumin was lower (p < 0.001) compared with the stable phase. Changes in α-tocopherol were associated with PUFA levels in the acute phase. In the stable phase, schizophrenia patients had higher uric acid (p = 0.009) and lower bilirubin (p = 0.046) than healthy controls. CRP was higher in patients in the stable phase (p < 0.001), and there was no significant change from the acute phase. CONCLUSION The present findings of change in antioxidant levels in the acute versus stable phase of schizophrenia the present findings suggest that redox regulation is dynamic and changes during different phases of the disorder.
Collapse
|
41
|
Luckhoff H, Phahladira L, Scheffler F, Asmal L, du Plessis S, Chiliza B, Kilian S, Emsley R. Weight gain and metabolic change as predictors of symptom improvement in first-episode schizophrenia spectrum disorder patients treated over 12 months. Schizophr Res 2019; 206:171-176. [PMID: 30503765 DOI: 10.1016/j.schres.2018.11.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 09/18/2018] [Accepted: 11/23/2018] [Indexed: 12/24/2022]
Abstract
BACKGROUND Treatment-emergent weight gain is associated with antipsychotic efficacy in schizophrenia patients treated with clozapine and olanzapine. However, few studies have investigated this relationship in first-episode patients treated with other antipsychotics, in particular those with a lower obesogenic potential. Aim To investigate the relationships between weight gain and associated metabolic changes with psychopathology improvement in relation to age, sex, ethnicity, substance use, treatment duration and antipsychotic dose in first-episode schizophrenia spectrum disorder patients. METHODS This single site cohort study included 106 minimally treated or antipsychotic-naive patients treated with flupenthixol decanoate over 12 months. Psychopathology was evaluated using the Positive and Negative Syndrome Scale (PANSS) and BMI, fasting blood lipids and glucose were assessed at regular intervals. Linear regression models were constructed to determine the effects of socio-demographic, clinical and metabolic factors as predictors of change in total PANSS score and factor-derived domains. RESULTS BMI change scores were inversely correlated with change in PANSS total (R = -0.25; p = 0.011), positive (R = -0.23; p = 0.019), depressive anxiety (R = -0.21; p = 0.031) and disorganized symptoms (R = -0.32; p < 0.001). Linear regression analysis showed that increased BMI and treatment duration both predicted improvement in global psychopathology and disorganized symptoms independent of age, sex, ethnicity, substance use, co-medication with antidepressants and/or anticholinergics, as well as the dose and duration of antipsychotic exposure. CONCLUSIONS Our findings suggest that the relationship between treatment-emergent weight gain and psychopathology improvement is not limited to patients treated with antipsychotics most associated with weight gain, and is not confounded by treatment duration and dose.
Collapse
Affiliation(s)
- H Luckhoff
- Department of Psychiatry, Stellenbosch University, South Africa.
| | - L Phahladira
- Department of Psychiatry, Stellenbosch University, South Africa
| | - F Scheffler
- Department of Psychiatry, Stellenbosch University, South Africa
| | - L Asmal
- Department of Psychiatry, Stellenbosch University, South Africa
| | - S du Plessis
- Department of Psychiatry, Stellenbosch University, South Africa
| | - B Chiliza
- Department of Psychiatry, Nelson R Mandela School of Medicine, University of Kwazulu-Natal, South Africa
| | - S Kilian
- Department of Psychiatry, Stellenbosch University, South Africa
| | - R Emsley
- Department of Psychiatry, Stellenbosch University, South Africa
| |
Collapse
|
42
|
Hussain G, Anwar H, Rasul A, Imran A, Qasim M, Zafar S, Imran M, Kamran SKS, Aziz N, Razzaq A, Ahmad W, Shabbir A, Iqbal J, Baig SM, Ali M, Gonzalez de Aguilar JL, Sun T, Muhammad A, Muhammad Umair A. Lipids as biomarkers of brain disorders. Crit Rev Food Sci Nutr 2019; 60:351-374. [DOI: 10.1080/10408398.2018.1529653] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ghulam Hussain
- Department of Physiology Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Haseeb Anwar
- Department of Physiology Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Azhar Rasul
- Department of Zoology Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Ali Imran
- Institute of Home and Food Sciences, Government College University, Faisalabad, Pakistan
| | - Muhammad Qasim
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Shamaila Zafar
- Department of Physiology Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Muhammad Imran
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore, Pakistan
| | - Syed Kashif Shahid Kamran
- Department of Physiology Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Nimra Aziz
- Department of Physiology Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Aroona Razzaq
- Department of Physiology Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Waseem Ahmad
- Department of Physiology Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Asghar Shabbir
- Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan
| | - Javed Iqbal
- Department of Neurology, Allied Hospital, Faisalabad, Pakistan
| | - Shahid Mahmood Baig
- Human Molecular Genetics Laboratory, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), PIEAS, Faisalabad, Pakistan
| | - Muhammad Ali
- Department of Zoology Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Jose-Luis Gonzalez de Aguilar
- Université de Strasbourg, Strasbourg, France
- Mécanismes Centraux et Péripheriques de la Neurodégénérescence, INSERM, Strasbourg, France
| | - Tao Sun
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, Fujian Province, China
| | - Atif Muhammad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| | | |
Collapse
|
43
|
Kim DD, Barr AM, Fredrikson DH, Honer WG, Procyshyn RM. Association between Serum Lipids and Antipsychotic Response in Schizophrenia. Curr Neuropharmacol 2019; 17:852-860. [PMID: 30819084 PMCID: PMC7052836 DOI: 10.2174/1570159x17666190228113348] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 01/14/2019] [Accepted: 02/14/2019] [Indexed: 12/14/2022] Open
Abstract
Metabolic abnormalities are serious health problems in individuals with schizophrenia. Paradoxically, studies have noted an association where individuals who gained body weight or who have increased their serum lipids demonstrated a better antipsychotic response. As serum lipids serve as more specific physiological markers than body weight, the objective of this study was to review studies that examined the association between changes in serum lipids and changes in symptoms during antipsychotic treatment in individuals with schizophrenia. A Medline® literature search was performed. Fourteen studies were included and analyzed. Evidence suggests that increases in serum lipids may be associated with decreases in symptoms during antipsychotic treatment. This inverse association may be independent of confounding variables, such as weight gain, and may be most evident during treatment with clozapine. Also, according to recent randomized controlled trials, lipid-lowering agents do not appear to worsen symptoms although this needs to be further investigated in clozapine-treated patients. Future studies should investigate the association in question in a larger population and identify underlying mechanisms.
Collapse
Affiliation(s)
| | | | | | | | - Ric M. Procyshyn
- Address correspondence to this author at the Department of Psychiatry, University of British Columbia, Room A3-111, 938 West 28 Avenue, Vancouver, BC, Canada V5Z 4H4; Tel: 604-875-2000 (4722); Fax: 604-875-3871; E-mail:
| |
Collapse
|
44
|
Metabolic-inflammatory status as predictor of clinical outcome at 1-year follow-up in patients with first episode psychosis. Psychoneuroendocrinology 2019; 99:145-153. [PMID: 30243054 DOI: 10.1016/j.psyneuen.2018.09.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 07/31/2018] [Accepted: 09/07/2018] [Indexed: 12/30/2022]
Abstract
BACKGROUND Metabolic abnormalities and peripheral inflammation have been increasingly reported in patients at the onset of psychosis and associated with important physical health disorders and increased mortality. However, the impact of an abnormal metabolic-inflammatory status on the psychiatric outcome of these patients has not yet been investigated. OBJECTIVES The aims of this study were 1) to explore whether, in a sample of patients at their first episode of psychosis (FEP), an overall metabolic-inflammatory status may be measured, by combining metabolic and inflammatory variables in metabolic-inflammatory factors; 2) to explore the association between these factors and clinical outcome at 1-year follow-up (FU), in terms of symptoms severity and treatment response. METHODS In this longitudinal study we recruited 42 FEP patients and 46 healthy controls (HC) matched with patients for age, gender and ethnicity. At baseline (T1) we measured high sensitivity C-reactive protein (hsCRP) as biomarker of inflammation, and body mass index (BMI), lipid profile and gluco-metabolic parameters (glycated hemoglobin (HbA1c) and fasting glucose) as metabolic variables. A principal component analysis (PCA) was then used to reduce the dimensionality of the dataset accounting for both inflammation and metabolic status. In FEP patients, we assessed symptoms severity at T1 and at 1-year FU (T2) as well as treatment response to antipsychotics at T2. RESULTS at T1, FEP showed higher HbA1c (p = 0.034), triglycerides (TG) (p = 0.045) and BMI (p = 0.026) than HC. PCA identified 3 factors: factor 1 accounting for hsCRP, TG and BMI, factor 2 accounting for LDL and cholesterol, and factor 3 accounting for fasting glucose and HbA1c. Factor 1 was associated with T1 negative symptoms severity (p = 0.021) and predicted T2 positive (p = 0.004) and overall symptoms severity (0.001), as well as general psychopathology (p < 0.001) and T2 treatment response (p = 0.007). CONCLUSION In this sample of FEP patients, inflammation and metabolism, closely correlated at the onset of psychosis, proved to play a key role as predictors of the clinical course of psychosis when combined in a single factor. These findings offer an important potential target for early screening and interventions.
Collapse
|
45
|
Labrousse VF, Leyrolle Q, Amadieu C, Aubert A, Sere A, Coutureau E, Grégoire S, Bretillon L, Pallet V, Gressens P, Joffre C, Nadjar A, Layé S. Dietary omega-3 deficiency exacerbates inflammation and reveals spatial memory deficits in mice exposed to lipopolysaccharide during gestation. Brain Behav Immun 2018; 73:427-440. [PMID: 29879442 DOI: 10.1016/j.bbi.2018.06.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 05/21/2018] [Accepted: 06/03/2018] [Indexed: 01/03/2023] Open
Abstract
Maternal immune activation (MIA) is a common environmental insult on the developing brain and represents a risk factor for neurodevelopmental disorders. Animal models of in utero inflammation further revealed a causal link between maternal inflammatory activation during pregnancy and behavioural impairment relevant to neurodevelopmental disorders in the offspring. Accumulating evidence point out that proinflammatory cytokines produced both in the maternal and fetal compartments are responsible for social, cognitive and emotional behavioral deficits in the offspring. Polyunsaturated fatty acids (PUFAs) are essential fatty acids with potent immunomodulatory activities. PUFAs and their bioactive derivatives can promote or inhibit many aspects of the immune and inflammatory response. PUFAs of the n-3 series ('n-3 PUFAs', also known as omega-3) exhibit anti-inflammatory/pro-resolution properties and promote immune functions, while PUFAs of the n-6 series ('n-6 PUFAs' or omega-6) favor pro-inflammatory responses. The present study aimed at providing insight into the effects of n-3 PUFAs on the consequences of MIA on brain development. We hypothesized that a reduction in n-3 PUFAs exacerbates both maternal and fetal inflammatory responses to MIA and later-life defects in memory in the offspring. Based on a lipopolysaccharide (LPS) model of MIA (LPS injection at embryonic day 17), we showed that n-3 PUFA deficiency 1) alters fatty acid composition of the fetal and adult offspring brain; 2) exacerbates maternal and fetal inflammatory processes with no significant alteration of microglia phenotype, and 3) induces spatial memory deficits in the adult offspring. We also showed a strong negative correlation between brain content in n-3 PUFA and cytokine production in MIA-exposed fetuses. Overall, our study is the first to address the deleterious effects of n-3 PUFA deficiency on brain lipid composition, inflammation and memory performances in MIA-exposed animals and indicates that it should be considered as a potent environmental risk factor for the apparition of neurodevelopmental disorders.
Collapse
Affiliation(s)
- V F Labrousse
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France; Univ. Bordeaux, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France
| | - Q Leyrolle
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France; Univ. Bordeaux, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France; PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, F-75019 Paris, France
| | - C Amadieu
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France; Univ. Bordeaux, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France
| | - A Aubert
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France; Univ. Bordeaux, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France
| | - A Sere
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France; Univ. Bordeaux, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France
| | - E Coutureau
- Centre National de la Recherche Scientifique, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, Uité Mixte de Recherche 5287, 33076 Bordeaux, France; Université de Bordeaux, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, 33076 Bordeaux, France
| | - S Grégoire
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, Dijon, France
| | - L Bretillon
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, Dijon, France
| | - V Pallet
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France; Univ. Bordeaux, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France
| | - P Gressens
- PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, F-75019 Paris, France; Centre for the Developing Brain, Department of Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London SE1 7EH, United Kingdom
| | - C Joffre
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France; Univ. Bordeaux, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France
| | - A Nadjar
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France; Univ. Bordeaux, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France.
| | - S Layé
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France; Univ. Bordeaux, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France.
| |
Collapse
|
46
|
Sun GY, Simonyi A, Fritsche KL, Chuang DY, Hannink M, Gu Z, Greenlief CM, Yao JK, Lee JC, Beversdorf DQ. Docosahexaenoic acid (DHA): An essential nutrient and a nutraceutical for brain health and diseases. Prostaglandins Leukot Essent Fatty Acids 2018; 136:3-13. [PMID: 28314621 PMCID: PMC9087135 DOI: 10.1016/j.plefa.2017.03.006] [Citation(s) in RCA: 161] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 03/06/2017] [Accepted: 03/09/2017] [Indexed: 01/01/2023]
Abstract
Docosahexaenoic acid (DHA), a polyunsaturated fatty acid (PUFA) enriched in phospholipids in the brain and retina, is known to play multi-functional roles in brain health and diseases. While arachidonic acid (AA) is released from membrane phospholipids by cytosolic phospholipase A2 (cPLA2), DHA is linked to action of the Ca2+-independent iPLA2. DHA undergoes enzymatic conversion by 15-lipoxygenase (Alox 15) to form oxylipins including resolvins and neuroprotectins, which are powerful lipid mediators. DHA can also undergo non-enzymatic conversion by reacting with oxygen free radicals (ROS), which cause the production of 4-hydoxyhexenal (4-HHE), an aldehyde derivative which can form adducts with DNA, proteins and lipids. In studies with both animal models and humans, there is evidence that inadequate intake of maternal n-3 PUFA may lead to aberrant development and function of the central nervous system (CNS). What is less certain is whether consumption of n-3 PUFA is important in maintaining brain health throughout one's life span. Evidence mostly from non-human studies suggests that DHA intake above normal nutritional requirements might modify the risk/course of a number of diseases of the brain. This concept has fueled much of the present interest in DHA research, in particular, in attempts to delineate mechanisms whereby DHA may serve as a nutraceutical and confer neuroprotective effects. Current studies have revealed ability for the oxylipins to regulation of cell redox homeostasis through the Nuclear factor (erythroid-derived 2)-like 2/Antioxidant response element (Nrf2/ARE) anti-oxidant pathway, and impact signaling pathways associated with neurotransmitters, and modulation of neuronal functions involving brain-derived neurotropic factor (BDNF). This review is aimed at describing recent studies elaborating these mechanisms with special regard to aging and Alzheimer's disease, autism spectrum disorder, schizophrenia, traumatic brain injury, and stroke.
Collapse
Affiliation(s)
- Grace Y Sun
- Biochemistry Department, University of Missouri, Columbia, MO, United States
| | - Agnes Simonyi
- Biochemistry Department, University of Missouri, Columbia, MO, United States
| | - Kevin L Fritsche
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
| | - Dennis Y Chuang
- Department of Neurology, University Hospitals Cleveland Medical Center and Case Western Reserve University, Cleveland, OH, United States
| | - Mark Hannink
- Biochemistry Department, University of Missouri, Columbia, MO, United States
| | - Zezong Gu
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO, United States
| | | | - Jeffrey K Yao
- Medical Research Service, VA Pittsburgh Healthcare System, and Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - James C Lee
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, United States
| | - David Q Beversdorf
- Department of Radiology, Neurology, and Psychological Sciences, and the Thompson Center, William and Nancy Thompson Endowed Chair in Radiology, University of Missouri School of Medicine, Columbia, MO, United States
| |
Collapse
|
47
|
Gjerde PB, Dieset I, Simonsen C, Hoseth EZ, Iversen T, Lagerberg TV, Lyngstad SH, Mørch RH, Skrede S, Andreassen OA, Melle I, Steen VM. Increase in serum HDL level is associated with less negative symptoms after one year of antipsychotic treatment in first-episode psychosis. Schizophr Res 2018; 197:253-260. [PMID: 29129510 DOI: 10.1016/j.schres.2017.10.042] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 10/16/2017] [Accepted: 10/29/2017] [Indexed: 12/20/2022]
Abstract
BACKGROUND A potential link between increase in total cholesterol and triglycerides and clinical improvement has been observed during antipsychotic drug treatment in chronic schizophrenia patients, possibly due to drug related effects on lipid biosynthesis. We examined whether changes in serum lipids are associated with alleviation of psychosis symptoms after one year of antipsychotic drug treatment in a cohort of first-episode psychosis (FEP) patients. METHODS A total of 132 non-affective antipsychotic-treated FEP patients were included through the Norwegian Thematically Organized Psychosis (TOP) project. Data on antipsychotic usage, serum lipids (total cholesterol, high-density lipoprotein (HDL) cholesterol, low-density lipoprotein (LDL) cholesterol and triglycerides (TG)), body mass index (BMI) and clinical state were obtained at baseline and after 12months. The Positive and Negative Syndrome Scale (PANSS) was used to assess psychotic symptoms. Mixed-effects models were employed to examine the relationship between serum lipids and psychotic symptoms while controlling for potential confounders including BMI. RESULTS An increase in HDL during one year of antipsychotic treatment was associated with reduction in PANSS negative subscores (B=-0.48, p=0.03). This relationship was not affected by concurrent change in BMI (adjusted HDL: B=-0.54, p=0.02). No significant associations were found between serum lipids, BMI and PANSS positive subscores. CONCLUSION We found that an increase in HDL level during antipsychotic treatment is associated with improvement in negative symptoms in FEP. These findings warrant further investigation to clarify the interaction between lipid pathways and psychosis.
Collapse
Affiliation(s)
- Priyanthi B Gjerde
- NORMENT, K.G. Jebsen Center for Psychosis Research, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; Dr. Einar Martens Research Group for Biological Psychiatry, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, 5021 Bergen, Norway.
| | - Ingrid Dieset
- NORMENT, K.G. Jebsen Centre for Psychosis Research, Oslo University Hospital, 0424 Oslo, Norway.
| | - Carmen Simonsen
- NORMENT, K.G. Jebsen Centre for Psychosis Research, Oslo University Hospital, 0424 Oslo, Norway.
| | - Eva Z Hoseth
- NORMENT, K.G. Jebsen Centre for Psychosis Research, Oslo University Hospital, 0424 Oslo, Norway; Division of Mental Health and Addiction, Møre and Romsdal Health Trust, Kristiansund, Norway.
| | - Trude Iversen
- NORMENT, K.G. Jebsen Centre for Psychosis Research, Oslo University Hospital, 0424 Oslo, Norway.
| | - Trine V Lagerberg
- NORMENT, K.G. Jebsen Centre for Psychosis Research, Oslo University Hospital, 0424 Oslo, Norway.
| | - Siv Hege Lyngstad
- NORMENT, K.G. Jebsen Centre for Psychosis Research, Oslo University Hospital, 0424 Oslo, Norway.
| | - Ragni H Mørch
- NORMENT, K.G. Jebsen Centre for Psychosis Research, Oslo University Hospital, 0424 Oslo, Norway.
| | - Silje Skrede
- NORMENT, K.G. Jebsen Center for Psychosis Research, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; Dr. Einar Martens Research Group for Biological Psychiatry, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, 5021 Bergen, Norway.
| | - Ole A Andreassen
- NORMENT, K.G. Jebsen Centre for Psychosis Research, Oslo University Hospital, 0424 Oslo, Norway; Department of Clinical Medicine, University of Oslo, 0424 Oslo, Norway.
| | - Ingrid Melle
- NORMENT, K.G. Jebsen Centre for Psychosis Research, Oslo University Hospital, 0424 Oslo, Norway.
| | - Vidar M Steen
- NORMENT, K.G. Jebsen Center for Psychosis Research, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; Dr. Einar Martens Research Group for Biological Psychiatry, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, 5021 Bergen, Norway.
| |
Collapse
|
48
|
Low dietary intake of n-3 fatty acids, niacin, folate, and vitamin C in Korean patients with schizophrenia and the development of dietary guidelines for schizophrenia. Nutr Res 2017; 45:10-18. [PMID: 29037327 DOI: 10.1016/j.nutres.2017.07.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 05/19/2017] [Accepted: 07/17/2017] [Indexed: 12/15/2022]
Abstract
Inappropriate dietary intake and poor nutritional status are reported to be associated with metabolic syndrome and psychopathology in patients with schizophrenia. We hypothesized that inappropriate dietary habits and insufficient dietary intake of specific nutrients are associated with schizophrenia. To test the hypothesis, we assessed the dietary habits and nutritional intake of patients with schizophrenia and then developed suitable dietary guidelines. In total, 140 subjects (73 controls and 67 patients with schizophrenia from community mental health centers) were included, and dietary intakes were analyzed using a semi-quantitative food frequency questionnaire. As a result, the proportion of overweight or obese patients was significantly higher in schizophrenia subjects (64.2%) compared with control subjects (39.7%) (P=.004). The male schizophrenia patients had significantly lower dietary intakes of protein, polyunsaturated fatty acids (PUFAs), vitamin K, niacin, folate, and vitamin C than the male control subjects. In all multiple logistic regression models, subjects with the "low" dietary intake of protein, n-3 PUFAs, niacin, folate, and vitamin C had a significantly higher odds ratios for schizophrenia compared with those with the "high" dietary intake category of each nutrient. Therefore, maintenance of a healthy body weight and sufficient dietary intake of protein, PUFAs, niacin, folate, and vitamin C are recommended for Korean patients with schizophrenia.
Collapse
|