1
|
Ketema T, Bassat Q. Primaquine for children, once and for all. THE LANCET. CHILD & ADOLESCENT HEALTH 2024; 8:775-777. [PMID: 39332424 DOI: 10.1016/s2352-4642(24)00231-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 08/20/2024] [Indexed: 09/29/2024]
Affiliation(s)
- Tsige Ketema
- Jimma University, College of Natural Sciences, Department of Biology, Jimma, Ethiopia
| | - Quique Bassat
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain; Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique; ICREA, 08010 Barcelona, Spain; Pediatrics Department, Hospital Sant Joan de Déu, Universitat de Barcelona, Esplugues, Barcelona, Spain; CIBER de Epidemiología y Salud Pública, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
2
|
Anstey NM, Tham WH, Shanks GD, Poespoprodjo JR, Russell BM, Kho S. The biology and pathogenesis of vivax malaria. Trends Parasitol 2024; 40:573-590. [PMID: 38749866 DOI: 10.1016/j.pt.2024.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/19/2024] [Accepted: 04/19/2024] [Indexed: 07/06/2024]
Abstract
Plasmodium vivax contributes significantly to global malaria morbidity. Key advances include the discovery of pathways facilitating invasion by P. vivax merozoites of nascent reticulocytes, crucial for vaccine development. Humanized mouse models and hepatocyte culture systems have enhanced understanding of hypnozoite biology. The spleen has emerged as a major reservoir for asexual vivax parasites, replicating in an endosplenic life cycle, and contributing to recurrent and chronic infections, systemic inflammation, and anemia. Splenic accumulation of uninfected red cells is the predominant cause of anemia. Recurring and chronic infections cause progressive anemia, malnutrition, and death in young children in high-transmission regions. Endothelial activation likely contributes to vivax-associated organ dysfunction. The many recent advances in vivax pathobiology should help guide new approaches to prevention and management.
Collapse
Affiliation(s)
- Nicholas M Anstey
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia.
| | - Wai-Hong Tham
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia; Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - G Dennis Shanks
- School of Public Health, University of Queensland, Brisbane, Queensland, Australia
| | - Jeanne R Poespoprodjo
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia; Centre for Child Health and Department of Child Health, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia; Timika Malaria Research Facility, Papuan Health and Community Development Foundation, Timika, Central Papua, Indonesia; Mimika District Hospital and District Health Authority, Timika, Central Papua, Indonesia
| | - Bruce M Russell
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Steven Kho
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia; Timika Malaria Research Facility, Papuan Health and Community Development Foundation, Timika, Central Papua, Indonesia
| |
Collapse
|
3
|
Price DJ, Nekkab N, Monteiro WM, Villela DAM, Simpson JA, Lacerda MVG, White MT, Devine A. Tafenoquine following G6PD screening versus primaquine for the treatment of vivax malaria in Brazil: A cost-effectiveness analysis using a transmission model. PLoS Med 2024; 21:e1004255. [PMID: 38194420 PMCID: PMC10775976 DOI: 10.1371/journal.pmed.1004255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/29/2023] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND Malaria transmission modelling has demonstrated the potential impact of semiquantitative glucose-6-phosphate dehydrogenase (G6PD) testing and treatment with single-dose tafenoquine for Plasmodium vivax radical cure but has not investigated the associated costs. This study evaluated the cost-effectiveness of P. vivax treatment with tafenoquine after G6PD testing using a transmission model. METHODS AND FINDINGS We explored the cost-effectiveness of using tafenoquine after G6PD screening as compared to usual practice (7-day low-dose primaquine (0.5 mg/kg/day) without G6PD screening) in Brazil using a 10-year time horizon with 5% discounting considering 4 scenarios: (1) tafenoquine for adults only assuming 66.7% primaquine treatment adherence; (2) tafenoquine for adults and children aged >2 years assuming 66.7% primaquine adherence; (3) tafenoquine for adults only assuming 90% primaquine adherence; and (4) tafenoquine for adults only assuming 30% primaquine adherence. The incremental cost-effectiveness ratios (ICERs) were estimated by dividing the incremental costs by the disability-adjusted life years (DALYs) averted. These were compared to a willingness to pay (WTP) threshold of US$7,800 for Brazil, and one-way and probabilistic sensitivity analyses were performed. All 4 scenarios were cost-effective in the base case analysis using this WTP threshold with ICERs ranging from US$154 to US$1,836. One-way sensitivity analyses showed that the results were most sensitive to severity and mortality due to vivax malaria, the lifetime and number of semiquantitative G6PD analysers needed, cost per malaria episode and per G6PD test strips, and life expectancy. All scenarios had a 100% likelihood of being cost-effective at the WTP threshold. The main limitations of this study are due to parameter uncertainty around our cost estimates for low transmission settings, the costs of G6PD screening, and the severity of vivax malaria. CONCLUSIONS In our modelling study that incorporated impact on transmission, tafenoquine prescribed after a semiquantitative G6PD testing was highly likely to be cost-effective in Brazil. These results demonstrate the potential health and economic importance of ensuring safe and effective radical cure.
Collapse
Affiliation(s)
- David J. Price
- Department of Infectious Diseases, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Victoria, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Narimane Nekkab
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Wuelton M. Monteiro
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, Brazil
- Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, Brazil
| | - Daniel A. M. Villela
- Programa de Computacão Científica, Fundacão Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Julie A. Simpson
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Marcus V. G. Lacerda
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, Brazil
- Instituto Leônidas & Maria Deane–ILMD, Fundação Oswaldo Cruz, Manaus, Brazil
| | - Michael T. White
- Institut Pasteur, Université de Paris, G5 Épidémiologie et Analyse des Maladies Infectieuses, Département de Santé Globale, F-75015 Paris, France
| | - Angela Devine
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
- Melbourne Health Economics, Centre for Health Policy, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
4
|
Chu CS, Stolbrink M, Stolady D, Saito M, Beau C, Choun K, Wah TG, Mu N, Htoo K, Nu B, Keereevijit A, Wiladpaingern J, Carrara V, Phyo AP, Lwin KM, Luxemburger C, Proux S, Charunwatthana P, McGready R, White NJ, Nosten F. Severe Falciparum and Vivax Malaria on the Thailand-Myanmar Border: A Review of 1503 Cases. Clin Infect Dis 2023; 77:721-728. [PMID: 37144342 PMCID: PMC10495127 DOI: 10.1093/cid/ciad262] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/18/2023] [Accepted: 04/26/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND The northwestern border of Thailand is an area of low seasonal malaria transmission. Until recent successful malaria elimination activities, malaria was a major cause of disease and death. Historically the incidences of symptomatic Plasmodium falciparum and Plasmodium vivax malaria were approximately similar. METHODS All malaria cases managed in the Shoklo Malaria Research Unit along the Thailand-Myanmar border between 2000 and 2016 were reviewed. RESULTS There were 80 841 consultations for symptomatic P. vivax and 94 467 for symptomatic P. falciparum malaria. Overall, 4844 (5.1%) patients with P. falciparum malaria were admitted to field hospitals, of whom 66 died, compared with 278 (0.34%) with P. vivax malaria, of whom 4 died (3 had diagnoses of sepsis, so the contribution of malaria to their fatal outcomes is uncertain). Applying the 2015 World Health Organization severe malaria criteria, 68 of 80 841 P. vivax admissions (0.08%) and 1482 of 94 467 P. falciparum admissions (1.6%) were classified as severe. Overall, patients with P. falciparum malaria were 15 (95% confidence interval, 13.2-16.8) times more likely than those with P. vivax malaria to require hospital admission, 19 (14.6-23.8) times more likely to develop severe malaria, and ≥14 (5.1-38.7) times more likely to die. CONCLUSIONS In this area, both P. falciparum and P. vivax infections were important causes of hospitalization, but life-threatening P. vivax illness was rare.
Collapse
Affiliation(s)
- Cindy S Chu
- Shoklo Malaria Research Unit, Mahidol–Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Marie Stolbrink
- Shoklo Malaria Research Unit, Mahidol–Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Daniel Stolady
- Shoklo Malaria Research Unit, Mahidol–Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Makoto Saito
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Division of Infectious Diseases, Advanced Clinical Research Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Candy Beau
- Shoklo Malaria Research Unit, Mahidol–Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Kan Choun
- Shoklo Malaria Research Unit, Mahidol–Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Tha Gay Wah
- Shoklo Malaria Research Unit, Mahidol–Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Ne Mu
- Shoklo Malaria Research Unit, Mahidol–Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Klay Htoo
- Shoklo Malaria Research Unit, Mahidol–Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Be Nu
- Shoklo Malaria Research Unit, Mahidol–Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Arunrot Keereevijit
- Shoklo Malaria Research Unit, Mahidol–Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Jacher Wiladpaingern
- Shoklo Malaria Research Unit, Mahidol–Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Verena Carrara
- Shoklo Malaria Research Unit, Mahidol–Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Faculty of Medicine, Institute of Global Health, University of Geneva, Geneva, Switzerland
| | - Aung Pyae Phyo
- Shoklo Malaria Research Unit, Mahidol–Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Khin Maung Lwin
- Shoklo Malaria Research Unit, Mahidol–Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Christine Luxemburger
- Shoklo Malaria Research Unit, Mahidol–Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Stephane Proux
- Shoklo Malaria Research Unit, Mahidol–Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Prakaykaew Charunwatthana
- Mahidol–Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Rose McGready
- Shoklo Malaria Research Unit, Mahidol–Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Nicholas J White
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Mahidol–Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - François Nosten
- Shoklo Malaria Research Unit, Mahidol–Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
5
|
Martins-Filho PR, Lima SVMA, Damascena NP, Araujo APD, Silva MC, Santiago BM, Santos FHA, Machado CEP. Temporal Analysis of Malaria Cases in the Brazilian Yanomami Pediatric Population: A Retrospective Ecologic Study From 2003 to 2022. Pediatr Infect Dis J 2023; 42:e351-e353. [PMID: 37260234 DOI: 10.1097/inf.0000000000003989] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
This retrospective ecological study investigated malaria incidence among Brazilian Yanomami children and adolescents from 2003 to 2022. Of the 145,573 recorded cases, 75.9% occurred in the Yanomami pediatric population. Moreover, an increase in the proportion of cases among the 10-19 age group has been observed, potentially associated with the recruitment of Indigenous adolescents to mining areas in recent years.
Collapse
Affiliation(s)
| | | | | | - Analany Pereira Dias Araujo
- National Center for the Dissemination of Forensic Sciences, Brazilian Federal Police, Distrito Federal, Brazil
- National Institute of Criminalistics, Brazilian Federal Police, Distrito Federal, Brazil
| | - Melina Calmon Silva
- National Center for the Dissemination of Forensic Sciences, Brazilian Federal Police, Distrito Federal, Brazil
| | - Bianca Marques Santiago
- Center for Forensic Medicine and Dentistry, Institute of Science Police of Paraiba, Paraiba, Brazil
- Federal University of Paraiba, Paraiba, Brazil
| | - Francisco Helmer Almeida Santos
- National Center for the Dissemination of Forensic Sciences, Brazilian Federal Police, Distrito Federal, Brazil
- National Institute of Criminalistics, Brazilian Federal Police, Distrito Federal, Brazil
| | - Carlos Eduardo Palhares Machado
- National Center for the Dissemination of Forensic Sciences, Brazilian Federal Police, Distrito Federal, Brazil
- National Institute of Criminalistics, Brazilian Federal Police, Distrito Federal, Brazil
| |
Collapse
|
6
|
Abebe A, Menard D, Dugassa S, Assefa A, Juliano JJ, Lo E, Golassa L. Significant number of Plasmodium vivax mono-infections by PCR misidentified as mixed infections (P. vivax/P. falciparum) by microscopy and rapid diagnostic tests: malaria diagnostic challenges in Ethiopia. Malar J 2023; 22:201. [PMID: 37393257 PMCID: PMC10314452 DOI: 10.1186/s12936-023-04635-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 06/24/2023] [Indexed: 07/03/2023] Open
Abstract
BACKGROUND Plasmodium vivax malaria is now recognized as a cause of severe morbidity and mortality, resulting in a substantial negative effect on health especially in endemic countries. Accurate and prompt diagnosis and treatment of P. vivax malaria is vital for the control and elimination of the disease. METHODS A cross-sectional study was conducted from February 2021 to September 2022 at five malaria endemic sites in Ethiopia including Aribaminch, Shewarobit, Metehara, Gambella, and Dubti. A total of 365 samples that were diagnosed positive for P. vivax (mono and mixed infection) using RDT, site level microscopists and expert microscopists were selected for PCR. Statistical analyses were performed to calculate the proportions, agreement (k), frequencies, and ranges among different diagnostic methods. Fisher's exact tests and correlation test were used to detect associations and relationship between different variables. RESULTS Of the 365 samples, 324 (88.8%), 37(10.1%), 2 (0.5%), and 2 (0.5%) were P. vivax (mono), P. vivax/Plasmodium falciparum (mixed), P. falciparum (mono) and negative by PCR, respectively. The overall agreement of rapid diagnostic test (RDT), site level microscopy and expert microscopists result with PCR was 90.41% (k: 0.49), 90.96% (k: 0.53), and 80.27% (k: 0.24). The overall prevalence of sexual (gametocyte) stage P. vivax in the study population was 215/361 (59.6%). The majority of these 215 samples (180; 83.7%) had below 1000 parasites/µl, with only four samples (1.9%) had ≥ 5000 parasites/µl. The gametocyte density was found to be weakly positive but statically significant with asexual parasitaemia (r = 0.31; p < 0.001). CONCLUSION Both microscopy and RDT showed moderate agreement with PCR in the detection and identification of P. vivax (mono) and P. vivax/P. falciparum (mixed) infections. Therefore, to achieve malaria elimination goals, strengthening routine malaria diagnostic methods by implementing diagnostic tools with a good performance in detecting and accurately identifying malaria species in clinical settings is recommended.
Collapse
Affiliation(s)
- Abnet Abebe
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia.
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia.
| | - Didier Menard
- Laboratory of Parasitology and Mycology, University of Strasbourg, Strasbourg, France
| | - Sisay Dugassa
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Ashenafi Assefa
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia
- Division of Infectious Disease, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jonathan J Juliano
- Division of Infectious Disease, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Eugenia Lo
- Department of Biological Sciences, Bioinformatics Research Center, University of North Carolina at Charlotte, Charlotte, North Carolina, USA
| | - Lemu Golassa
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
7
|
Duong MC, Pham OKN, Thai TT, Lee R, Nguyen TP, Nguyen VVC, Nguyen HP. Magnitude and patterns of severe Plasmodium vivax monoinfection in Vietnam: a 4-year single-center retrospective study. Front Med (Lausanne) 2023; 10:1128981. [PMID: 37324161 PMCID: PMC10265633 DOI: 10.3389/fmed.2023.1128981] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 05/10/2023] [Indexed: 06/17/2023] Open
Abstract
Introduction Infection with Plasmodium vivax is a recognized cause of severe malaria including deaths. The exact burden and patterns of severe P. vivax monoinfections is however still not well quantified, especially in P. vivax endemic regions. We examined the magnitude and patterns of severe malaria caused by monoinfections of P. vivax and associated predictors among patients admitted to a tertiary care center for malaria in Vietnam. Methods A retrospective cohort study was conducted based on the patients' medical records at the Hospital for Tropical Diseases from January 2015 to December 2018. Extracted information included demographic, epidemiologic, clinical, laboratory and treatment characteristics. Results Monoinfections with P. vivax were found in 153 (34.5, 95% CI 30.3-39.1%) patients of whom, uncomplicated and severe malaria were documented in 89.5% (137/153, 95% CI 83.7-93.5%) and 10.5% (16/153, 95% CI 6.5-16.3%), respectively. Patterns of severe malaria included jaundice (8 cases), hypoglycemia (3 cases), shock (2 cases), anemia (2 cases), and cerebral malaria (1 case). Among 153 patients, 73 (47.7%) had classic malaria paroxysm, 57 (37.3%) had >7 days of illness at the time of admission, and 40 (26.1%) were referred from other hospitals. A misdiagnosis as having other diseases from malaria cases coming from other hospitals was up to 32.5% (13/40). Being admitted to hospital after day 7th of illness (AOR = 6.33, 95% CI 1.14-35.30, p = 0.035) was a predictor of severe malaria. Severe malaria was statistically associated with longer hospital length of stay (p = 0.035). Early and late treatment failures and recrudescence were not recorded. All patients recovered completely. Discussion This study confirms the emergence of severe vivax malaria in Vietnam which is associated with delayed hospital admission and increased hospital length of stay. Clinical manifestations of P. vivax infection can be misdiagnosed which results in delayed treatment. To meet the goal of malaria elimination by 2030, it is crucial that the non-tertiary hospitals have the capacity to quickly and correctly diagnose malaria and then provide treatment for malaria including P. vivax infections. More robust studies need to be conducted to fully elucidate the magnitude of severe P. vivax in Vietnam.
Collapse
Affiliation(s)
- Minh Cuong Duong
- School of Population Health, University of New South Wales, Sydney, NSW, Australia
| | | | - Thanh Truc Thai
- Faculty of Public Health, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Rogan Lee
- Centre for Infectious Diseases and Microbiology, Pathology West-ICPMR and Marie Bashir Institute, University of Sydney, Westmead Hospital, Westmead, NSW, Australia
| | | | - Van Vinh Chau Nguyen
- Department of Health, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Hoan Phu Nguyen
- Medical School, Vietnam National University of Ho Chi Minh City, Ho Chi Minh City, Vietnam
- Oxford University Clinical Research Unit (OUCRU), Ho Chi Minh City, Vietnam
| |
Collapse
|
8
|
Duangchan T, Kotepui M, Sukati S, Rattanapan Y, Wangdi K. A Systematic Review and Meta-Analysis of the Proportion Estimates of Disseminated Intravascular Coagulation (DIC) in Malaria. Trop Med Infect Dis 2023; 8:289. [PMID: 37368707 DOI: 10.3390/tropicalmed8060289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/01/2023] [Accepted: 05/19/2023] [Indexed: 06/29/2023] Open
Abstract
Disseminated intravascular coagulation (DIC) is a potentially life-threatening condition that causes systemic coagulation to be turned on and coagulation factors to be used up. However, the evidence for DIC in malaria patients is still not clear, and small case series and retrospective studies have shown varying results. This meta-analysis was intended for the evaluation of the evidence of DIC among malaria patients using a meta-analysis approach. The protocol for the systematic review was registered at PROSPERO as CRD42023392194. Studies that investigated DIC in patients with malaria were searched in Ovid, Scopus, Embase, PubMed, and MEDLINE. The pooled proportion with 95% confidence intervals (CI) of DIC among malaria patients was estimated using a random-effects model. A total of 1837 articles were identified, and 38 articles were included in the meta-analysis. The overall proportion of DIC in malaria was 11.6% (95% CI: 8.9%-14.3%, I2: 93.2%, 38 studies). DIC in severe falciparum malaria and fatal malaria was 14.6% (95% CI: 5.0-24.3%, I2: 95.5%, 11 studies) and 82.2% (95% CI: 56.2-100%, I2: 87.3, 4 studies). The estimates of DIC among severe malaria patients who had multi-organ dysfunction with bleeding, cerebral malaria, acute renal failure, and ≥2 complications were 79.6% (95% CI: 67.1-88.2%, one study), 11.9% (95% CI: 7.9-17.6%, one study), 16.7% (95% CI: 10.2-23.3%, ten studies), and 4.8% (95% CI: 1.9-7.7%, nine studies), respectively. The proportion estimates of DIC among the patients with malaria depended on the Plasmodium species, clinical severity, and types of severe complications. The information from this study provided useful information to guide the management of malaria patients. Future studies are needed to investigate the association between Plasmodium infection and DIC and to understand the mechanism of malaria-induced DIC.
Collapse
Affiliation(s)
- Thitinat Duangchan
- Medical Technology, School of Allied Health Sciences, Walailak University, Tha Sala, Nakhon Si Thammarat 80160, Thailand
- Hematology and Transfusion Science Research Center, Walailak University, Tha Sala, Nakhon Si Thammarat 80160, Thailand
| | - Manas Kotepui
- Medical Technology, School of Allied Health Sciences, Walailak University, Tha Sala, Nakhon Si Thammarat 80160, Thailand
| | - Suriyan Sukati
- Medical Technology, School of Allied Health Sciences, Walailak University, Tha Sala, Nakhon Si Thammarat 80160, Thailand
- Hematology and Transfusion Science Research Center, Walailak University, Tha Sala, Nakhon Si Thammarat 80160, Thailand
| | - Yanisa Rattanapan
- Medical Technology, School of Allied Health Sciences, Walailak University, Tha Sala, Nakhon Si Thammarat 80160, Thailand
- Hematology and Transfusion Science Research Center, Walailak University, Tha Sala, Nakhon Si Thammarat 80160, Thailand
| | - Kinley Wangdi
- Department of Global Health, National Centre for Epidemiology and Population Health, College of Health and Medicine, Australian National University, Canberra 2601, Australia
| |
Collapse
|
9
|
Costa Souza RM, Montenegro Pimentel LML, Ferreira LKM, Pereira VRA, Santos ACDS, Dantas WM, Silva CJO, De Medeiros Brito RM, Andrade JL, De Andrade-Neto VF, Fujiwara RT, Bueno LL, Silva Junior VA, Pena L, Camara CA, Rathi B, De Oliveira RN. Biological activity of 1,2,3-triazole-2-amino-1,4-naphthoquinone derivatives and their evaluation as therapeutic strategy for malaria control. Eur J Med Chem 2023; 255:115400. [PMID: 37130472 DOI: 10.1016/j.ejmech.2023.115400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/30/2023] [Accepted: 04/18/2023] [Indexed: 05/04/2023]
Abstract
Malaria can be caused by several Plasmodium species and the development of an effective vaccine is challenging. Currently, the most effective tool to control the disease is the administration of specific chemotherapy; however, resistance to the frontline antimalarials is one of the major problems in malaria control and thus the development of new drugs becomes urgent. The study presented here sought to evaluate the antimalarial activities of compounds derived from 2-amino-1,4-naphthoquinones containing 1,2,3-triazole using in vivo and in vitro models. 1H-1,2,3-Triazole 2-amino-1,4-naphthoquinone derivatives were synthesized and evaluated for antimalarial activity in vitro, using P. falciparum W2 chloroquine (CQ) resistant strain and in vivo using the murine-P. berghei ANKA strain. Acute toxicity was determined as established by the OECD (2001). Cytotoxicity was evaluated against HepG2 and Vero mammalian cell lines. Transmission electron microscopy of the Plasmodium falciparum trophozoite (early and late stages) was used to evaluate the action of compounds derived at ultra-structural level. The compounds displayed low cytotoxicity CC50 > 100 μM, neither did they cause hemolysis at the tested doses and nor the signs of toxicity in the in vivo acute toxicity test. Among the five compounds tested, one showed IC50 values in submicromolar range of 0.8 μM. Compounds 7, 8 and 11 showed IC50 values < 5 μM, and selectivity index (SI) ranging from 6.8 to 343 for HepG2, and from 13.7 to 494.8 for Vero cells. Compounds 8 and 11 were partially active against P. berghei induced parasitemia in vivo. Analysis of the ultrastructural changes associated with the treatment of these two compounds, showed trophozoites with completely degraded cytoplasm, loss of membrane integrity, organelles in the decomposition stage and possible food vacuole deterioration. Our results indicated that compounds 8 and 11 may be considered hit molecules for antimalarial drug discovery platform and deserve further optimization studies.
Collapse
Affiliation(s)
- Renata Maria Costa Souza
- Department of Immunology, Laboratory of Immunoepidemiology of Aggeu Magalhães Institute, Fiocruz-PE, Recife, Pernambuco, Brazil; Department of Chemistry, Laboratory of Synthesis of Bioactive Compounds, Federal Rural University of Pernambuco, Recife, Pernambuco, Brazil
| | | | | | - Valéria Rêgo Alves Pereira
- Department of Immunology, Laboratory of Immunoparasitology, Aggeu Magalhães Institute, Fiocruz-PE, Recife, Pernambuco, Brazil
| | - Aline Caroline Da Silva Santos
- Department of Immunology, Laboratory of Immunoparasitology, Aggeu Magalhães Institute, Fiocruz-PE, Recife, Pernambuco, Brazil
| | - Willyenne Marília Dantas
- Department of Virology and Experimental Therapy Aggeu Magalhães Institute - Fiocruz-PE, Recife, Pernambuco, Brazil; Department of Chemistry, Laboratory of Synthesis of Bioactive Compounds, Federal Rural University of Pernambuco, Recife, Pernambuco, Brazil
| | - Carla Jasmine Oliveira Silva
- Department of Chemistry, Laboratory of Synthesis of Bioactive Compounds, Federal Rural University of Pernambuco, Recife, Pernambuco, Brazil
| | - Ramayana Morais De Medeiros Brito
- Department of Microbiology and Parasitology, Laboratory of Malaria and Toxoplasmosis Biology, LaBMAT/DMP/CB, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil; Department of Parasitology, Laboratory of Immunobiology and Parasites Control, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - José Lucas Andrade
- Department of Microbiology and Parasitology, Laboratory of Malaria and Toxoplasmosis Biology, LaBMAT/DMP/CB, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Valter Ferreira De Andrade-Neto
- Department of Microbiology and Parasitology, Laboratory of Malaria and Toxoplasmosis Biology, LaBMAT/DMP/CB, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Ricardo Toshio Fujiwara
- Department of Parasitology, Laboratory of Immunobiology and Parasites Control, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Lilian Lacerda Bueno
- Department of Parasitology, Laboratory of Immunobiology and Parasites Control, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Lindomar Pena
- Department of Virology and Experimental Therapy Aggeu Magalhães Institute - Fiocruz-PE, Recife, Pernambuco, Brazil
| | - Celso Amorim Camara
- Department of Chemistry, Laboratory of Synthesis of Bioactive Compounds, Federal Rural University of Pernambuco, Recife, Pernambuco, Brazil
| | - Brijesh Rathi
- Laboratory for Translational Chemistry and Drug Discovery, Department of Chemistry, Hansraj College, University of Delhi, Delhi, 110007, India
| | - Ronaldo Nascimento De Oliveira
- Department of Chemistry, Laboratory of Synthesis of Bioactive Compounds, Federal Rural University of Pernambuco, Recife, Pernambuco, Brazil.
| |
Collapse
|
10
|
Brito-Sousa JD, Murta F, Vitor-Silva S, Sampaio V, Mendes M, Souza B, Batista T, Santos A, Marques L, Barbosa L, Balieiro P, Silva-Neto A, Rabello R, Brito M, Silva E, Rodovalho S, Arcanjo AR, Melo G, Recht J, Domingo GJ, Valle S, Souza R, Nakagawa T, Monteiro W, Lacerda M. Quantitative G6PD Deficiency Screening in Routine Malaria Diagnostic Units in the Brazilian Amazon (SAFEPRIM): An Operational Mixed-Methods Study. Pathogens 2022; 11:1328. [PMID: 36422580 PMCID: PMC9696723 DOI: 10.3390/pathogens11111328] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Glucose-6-phosphate dehydrogenase (G6PD) deficiency testing is not routinely performed before primaquine treatment in most Plasmodium vivax endemic areas, despite the risk of primaquine-associated hemolysis. This is due to the operational challenges associated with pragmatic G6PD testing and as such needs to be addressed. METHODS AND FINDINGS This mixed-methods operational study was aimed at implementing the quantitative point-of-care StandardTM G6PD (SD Biosensor, Korea) screening test in malaria treatment units (MTUs) in the municipalities of Rio Preto da Eva and Mâncio Lima, in the Brazilian Amazon, between mid-January 2020 and December 2020. In total, 1286 P. vivax cases were treated based on the Standard G6PD test: 1230 had activity equal to or greater than 4.0 U/g Hb, and 56 less than 4.0 U/g Hb. No G6PD deficient (G6PDd) genotypes were found in 96 samples from the 1230, and only 21 of the 56 G6PDd cases had confirmed G6PDd genotypes. Evaluations were conducted on the proficiency of health care professionals (HCPs) training to perform the test, the reliability of testing performed in the field, and the perceptions of HCPs and patients about the implementation. Post-training proficiency was 73.4% after a 4-hour training session. This study revealed that locations with lower malaria caseloads will need regular refresher training. The test was well accepted by both HCPs and patients. Signs and symptoms of hemolysis were not always associated with malaria treatment drugs by HCPs and patients. INTERPRETATION Point-of-care quantitative G6PD testing can be performed at MTUs in the Brazilian Amazon to inform treatment decisions with primaquine. Limitations related to technical and cultural aspects need to be addressed further when expanding screening to larger areas.
Collapse
Affiliation(s)
- Jose Diego Brito-Sousa
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Instituto de Pesquisa Clínica Carlos Borborema, Manaus 69040-000, Brazil
- Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus 69065-001, Brazil
| | - Felipe Murta
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Instituto de Pesquisa Clínica Carlos Borborema, Manaus 69040-000, Brazil
- Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus 69065-001, Brazil
| | - Sheila Vitor-Silva
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Instituto de Pesquisa Clínica Carlos Borborema, Manaus 69040-000, Brazil
- Escola de Enfermagem de Manaus, Universidade Federal do Amazonas, Manaus 69057-070, Brazil
| | - Vanderson Sampaio
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Instituto de Pesquisa Clínica Carlos Borborema, Manaus 69040-000, Brazil
- Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus 69065-001, Brazil
- Fundação de Vigilância em Saúde Dra Rosemary Costa Pinto—FVS-RCP, Manaus 69093-018, Brazil
| | - Maxwell Mendes
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Instituto de Pesquisa Clínica Carlos Borborema, Manaus 69040-000, Brazil
| | - Brenda Souza
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Instituto de Pesquisa Clínica Carlos Borborema, Manaus 69040-000, Brazil
| | - Talita Batista
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Instituto de Pesquisa Clínica Carlos Borborema, Manaus 69040-000, Brazil
| | - Alicia Santos
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Instituto de Pesquisa Clínica Carlos Borborema, Manaus 69040-000, Brazil
- Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus 69065-001, Brazil
| | - Leonardo Marques
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Instituto de Pesquisa Clínica Carlos Borborema, Manaus 69040-000, Brazil
- Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus 69065-001, Brazil
| | - Laila Barbosa
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Instituto de Pesquisa Clínica Carlos Borborema, Manaus 69040-000, Brazil
- Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus 69065-001, Brazil
| | - Patricia Balieiro
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Instituto de Pesquisa Clínica Carlos Borborema, Manaus 69040-000, Brazil
| | - Alexandre Silva-Neto
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Instituto de Pesquisa Clínica Carlos Borborema, Manaus 69040-000, Brazil
| | - Renata Rabello
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Instituto de Pesquisa Clínica Carlos Borborema, Manaus 69040-000, Brazil
| | - Marcelo Brito
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Instituto de Pesquisa Clínica Carlos Borborema, Manaus 69040-000, Brazil
| | - Emanuelle Silva
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Instituto de Pesquisa Clínica Carlos Borborema, Manaus 69040-000, Brazil
| | - Sheila Rodovalho
- Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus 69065-001, Brazil
- Pan American Health Organization—PAHO, World Health Organization, Brasilia 70312-970, Brazil
| | - Ana Ruth Arcanjo
- Laboratório Central de Saúde Pública do Amazonas—LACEN/AM, Manaus 69020-040, Brazil
| | - Gisely Melo
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Instituto de Pesquisa Clínica Carlos Borborema, Manaus 69040-000, Brazil
- Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus 69065-001, Brazil
| | - Judith Recht
- Independent Consultant, North Bethesda, MD 20852, USA
| | | | - Suiane Valle
- Hospital Regional do Juruá, Cruzeiro do Sul 69895-000, Brazil
| | - Rodrigo Souza
- Campus Floresta, Universidade Federal do Acre, Cruzeiro do Sul 69895-000, Brazil
| | | | - Wuelton Monteiro
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Instituto de Pesquisa Clínica Carlos Borborema, Manaus 69040-000, Brazil
- Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus 69065-001, Brazil
| | - Marcus Lacerda
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Instituto de Pesquisa Clínica Carlos Borborema, Manaus 69040-000, Brazil
- Fundação Oswaldo Cruz, Instituto Leônidas e Maria Deane—ILMD, Manaus 69057-070, Brazil
| |
Collapse
|
11
|
Villena FE, Sanchez JF, Nolasco O, Braga G, Ricopa L, Barazorda K, Salas CJ, Lucas C, Lizewski SE, Joya CA, Gamboa D, Delgado-Ratto C, Valdivia HO. Drug resistance and population structure of Plasmodium falciparum and Plasmodium vivax in the Peruvian Amazon. Sci Rep 2022; 12:16474. [PMID: 36182962 PMCID: PMC9526214 DOI: 10.1038/s41598-022-21028-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 09/21/2022] [Indexed: 11/22/2022] Open
Abstract
Malaria is a major health problem in Peru despite substantial progress achieved by the ongoing malaria elimination program. This study explored the population genetics of 63 Plasmodium falciparum and 170 P. vivax cases collected in the Peruvian Amazon Basin between 2015 and 2019. Microscopy and PCR were used for malaria detection and positive samples were genotyped at neutral and drug resistance-associated regions. The P. falciparum population exhibited a low nucleotide diversity (π = 0.02) whereas the P. vivax population presented a higher genetic diversity (π = 0.34). All P. falciparum samples (n = 63) carried chloroquine (CQ) resistant mutations on Pfcrt. Most P. falciparum samples (53 out of 54) carried sulfadoxine (SD) resistant mutations on Pfdhfr and Pfdhps. No evidence was found of artemisinin resistance mutations on kelch13. Population structure showed that a single cluster accounted for 93.4% of the P. falciparum samples whereas three clusters were found for P. vivax. Our study shows a low genetic diversity for both species with significant differences in genetic sub-structuring. The high prevalence of CQ-resistance mutations could be a result of indirect selection pressures driven by the P. vivax treatment scheme. These results could be useful for public health authorities to safeguard the progress that Peru has achieved towards malaria elimination.
Collapse
Affiliation(s)
| | - Juan F Sanchez
- Department of Parasitology, U.S. Naval Medical Research Unit No. 6 (NAMRU-6), Lima, Peru
| | - Oscar Nolasco
- Instituto de Medicina Tropical Alexander Von Humboldt, Universidad Peruana Cayetano Heredia, Lima, 31, Peru
| | - Greys Braga
- Department of Parasitology, U.S. Naval Medical Research Unit No. 6 (NAMRU-6), Lima, Peru
| | | | | | - Carola J Salas
- Department of Parasitology, U.S. Naval Medical Research Unit No. 6 (NAMRU-6), Lima, Peru
| | - Carmen Lucas
- Department of Parasitology, U.S. Naval Medical Research Unit No. 6 (NAMRU-6), Lima, Peru
| | - Stephen E Lizewski
- Department of Parasitology, U.S. Naval Medical Research Unit No. 6 (NAMRU-6), Lima, Peru
| | - Christie A Joya
- Department of Parasitology, U.S. Naval Medical Research Unit No. 6 (NAMRU-6), Lima, Peru
| | - Dionicia Gamboa
- Instituto de Medicina Tropical Alexander Von Humboldt, Universidad Peruana Cayetano Heredia, Lima, 31, Peru.,Departamento de Ciencias Celulares y Moleculares, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, 31, Peru
| | - Christopher Delgado-Ratto
- Instituto de Medicina Tropical Alexander Von Humboldt, Universidad Peruana Cayetano Heredia, Lima, 31, Peru.,Malaria Research Group (MaRCH), Global Health Institute, University of Antwerp, 2610, Antwerp, Belgium
| | - Hugo O Valdivia
- Department of Parasitology, U.S. Naval Medical Research Unit No. 6 (NAMRU-6), Lima, Peru.
| |
Collapse
|
12
|
African Plasmodium vivax malaria improbably rare or benign. Trends Parasitol 2022; 38:683-696. [PMID: 35667992 DOI: 10.1016/j.pt.2022.05.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/10/2022] [Accepted: 05/10/2022] [Indexed: 11/23/2022]
Abstract
The overwhelming dominance of Duffy blood group negativity among most people living in sub-Saharan Africa has been considered the basis of their protection from endemic Plasmodium vivax malaria. New evidence demonstrates widespread transmission of P. vivax in Duffy-negative Africa, though currently of unknown distribution, magnitude, or consequences. Other new evidence from outside of Africa demonstrates marked tropisms of P. vivax for extravascular tissues of bone marrow and spleen. Those establish states of proliferative infection with low-grade or undetectable parasitemia of peripheral blood causing acute and chronic disease. This review examines the plausibility of those infectious processes also operating in Duffy-negative Africans and causing harm of unrecognized origin.
Collapse
|
13
|
Ferreira NS, Mathias JLS, Albuquerque SRL, Almeida ACG, Dantas AC, Anselmo FC, Lima ES, Lacerda MVG, Nogueira PA, Ramasawmy R, Gonçalves MS, Moura Neto JP. Duffy blood system and G6PD genetic variants in vivax malaria patients from Manaus, Amazonas, Brazil. Malar J 2022; 21:144. [PMID: 35527254 PMCID: PMC9080172 DOI: 10.1186/s12936-022-04165-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 04/20/2022] [Indexed: 11/18/2022] Open
Abstract
Background Over a third of the world’s population is at risk of Plasmodium vivax-induced malaria. The unique aspect of the parasite’s biology and interactions with the human host make it harder to control and eliminate the disease. Glucose-6-phosphate dehydrogenase (G6PD) deficiency and Duffy-negative blood groups are two red blood cell (RBC) variations that can confer protection against malaria. Methods Molecular genotyping of G6PD and Duffy variants was performed in 225 unrelated patients (97 with uncomplicated and 128 with severe vivax malaria) recruited at a Reference Centre for Infectious Diseases in Manaus. G6PD and Duffy variants characterizations were performed using Real Time PCR (qPCR) and PCR–RFLP, respectively. Results The Duffy blood group system showed a phenotypic distribution Fy(a + b−) of 70 (31.1%), Fy(a + b +) 96 (42.7%), Fy(a−b +) 56 (24.9%) and Fy(a−b−) 1 (0.44%.) The genotype FY*A/FY*B was predominant in both uncomplicated (45.3%) and severe malaria (39.2%). Only one Duffy phenotype Fy(a-b) was found and this involved uncomplicated vivax malaria. The G6PD c.202G > A variant was found in 11 (4.88%) females and 18 (8.0%) males, while c.376A > G was found in 20 females (8.88%) and 23 (10.22%) male patients. When combined GATA mutated and c.202G > A and c.376A > G mutated, was observed at a lower frequency in uncomplicated (3.7%) in comparison to severe malaria (37.9%). The phenotype Fy(a−b +) (p = 0.022) with FY*B/FY*B (p = 0.015) genotype correlated with higher parasitaemia. Conclusions A high prevalence of G6PD c202G > A and c.376A > G and Duffy variants is observed in Manaus, an endemic area for vivax malaria. In addition, this study reports for the first time the Duffy null phenotype Fy(a-b-) in the population of the Amazonas state. Moreover, it is understood that the relationship between G6PD and Duffy variants can modify clinical symptoms in malaria caused by P. vivax and this deserves to be further investigated and explored among this population. Supplementary Information The online version contains supplementary material available at 10.1186/s12936-022-04165-y.
Collapse
|
14
|
Key plasma microRNAs variations in patients with Plasmodium vivax malaria in Iran. Heliyon 2022; 8:e09018. [PMID: 35265764 PMCID: PMC8899233 DOI: 10.1016/j.heliyon.2022.e09018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 12/03/2021] [Accepted: 02/23/2022] [Indexed: 11/29/2022] Open
Abstract
Introduction As the cause of RBC infection and splenomegaly, malaria remains a major parasitic disease in the world. New specific biomarkers such as MicroRNAs (miRNAs) are developed to accurately diagnose malaria and clarify its pathologic changes. This study aimed at evaluating changes in the plasma miRNAs markers of Plasmodium vivax in patients with malaria in Chabahar, Iran. Materials and methods For the present descriptive-analytical study conducted in 2018, we collected blood samples from 20 individuals. Real-time quantitative Polymerase Chain Reaction (RT-qPCR) was used to measure the plasma levels of miR-145, miR-155, miR-191 and miR-223-3p. Results The 2-ΔΔCT method of Real-time PCR showed the plasma levels of miR-223, miR-145 and miR-155 to respectively be 5.6, 16.9 and 1.7 times higher in patients with P. vivax compared to those in healthy individuals. The expressions of all the three miRNAs significantly increased in patients with malaria compared to in the controls (P < 0.05). The expression of miR-191 was 1.405 times higher in patients with malaria compared to that in the controls, although the difference was statistically insignificant. Conclusion The present study found P. vivax to change host miRNAs such as miR-223, miR-145 and miR-155. These small molecules thus appeared to constitute biomarkers for P. vivax malaria assessment.
Collapse
|
15
|
Abstract
BACKGROUND Plasmodium vivax infects an estimated 7 million people every year. Previously, vivax malaria was perceived as a benign condition, particularly when compared to falciparum malaria. Reports of the severe clinical impacts of vivax malaria have been increasing over the last decade. METHODS AND FINDINGS We describe the main clinical impacts of vivax malaria, incorporating a rapid systematic review of severe disease with meta-analysis of data from studies with clearly defined denominators, stratified by hospitalization status. Severe anemia is a serious consequence of relapsing infections in children in endemic areas, in whom vivax malaria causes increased morbidity and mortality and impaired school performance. P. vivax infection in pregnancy is associated with maternal anemia, prematurity, fetal loss, and low birth weight. More than 11,658 patients with severe vivax malaria have been reported since 1929, with 15,954 manifestations of severe malaria, of which only 7,157 (45%) conformed to the World Health Organization (WHO) diagnostic criteria. Out of 423 articles, 311 (74%) were published since 2010. In a random-effects meta-analysis of 85 studies, 68 of which were in hospitalized patients with vivax malaria, we estimated the proportion of patients with WHO-defined severe disease as 0.7% [95% confidence interval (CI) 0.19% to 2.57%] in all patients with vivax malaria and 7.11% [95% CI 4.30% to 11.55%] in hospitalized patients. We estimated the mortality from vivax malaria as 0.01% [95% CI 0.00% to 0.07%] in all patients and 0.56% [95% CI 0.35% to 0.92%] in hospital settings. WHO-defined cerebral, respiratory, and renal severe complications were generally estimated to occur in fewer than 0.5% patients in all included studies. Limitations of this review include the observational nature and small size of most of the studies of severe vivax malaria, high heterogeneity of included studies which were predominantly in hospitalized patients (who were therefore more likely to be severely unwell), and high risk of bias including small study effects. CONCLUSIONS Young children and pregnant women are particularly vulnerable to adverse clinical impacts of vivax malaria, and preventing infections and relapse in this groups is a priority. Substantial evidence of severe presentations of vivax malaria has accrued over the last 10 years, but reporting is inconsistent. There are major knowledge gaps, for example, limited understanding of the underlying pathophysiology and the reason for the heterogenous geographical distribution of reported complications. An adapted case definition of severe vivax malaria would facilitate surveillance and future research to better understand this condition.
Collapse
Affiliation(s)
| | - Prabin Dahal
- Infectious Diseases Data Observatory–IDDO, Oxford, United Kingdom
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Mayfong Mayxay
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Institute of Research and Education Development (IRED), University of Health Sciences, Ministry of Health, Vientiane, Laos
- Lao–Oxford–Mahosot Hospital–Wellcome Trust Research Unit, Mahosot Hospital, Vientiane, Laos
| | - Elizabeth A. Ashley
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Lao–Oxford–Mahosot Hospital–Wellcome Trust Research Unit, Mahosot Hospital, Vientiane, Laos
- * E-mail:
| |
Collapse
|
16
|
Barber BE, Grigg MJ, Piera KA, Chen Y, William T, Weinberg JB, Yeo TW, Anstey NM. Endothelial glycocalyx degradation and disease severity in Plasmodium vivax and Plasmodium knowlesi malaria. Sci Rep 2021; 11:9741. [PMID: 33963210 PMCID: PMC8105350 DOI: 10.1038/s41598-021-88962-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 04/13/2021] [Indexed: 02/03/2023] Open
Abstract
Degradation of the endothelial glycocalyx is associated with mortality in adult falciparum malaria. However, its role in the pathogenesis of non-falciparum malaria is unknown. In Malaysian patients with knowlesi (n = 200) and vivax (n = 61) malaria, and in healthy controls (n = 50), we measured glycocalyx breakdown products plasma syndecan-1 and urinary glycosaminoglycans, and evaluated correlations with biomarkers of disease severity. Urinary glycosaminoglycans were increased in patients with knowlesi and vivax malaria compared to healthy controls, and in knowlesi malaria were highest in those with severe disease. In knowlesi malaria, plasma syndecan-1 was also highest in those with severe disease, and correlated with markers of endothelial activation (angiopoietin-2, osteoprotegerin, ICAM-1), asymmetric dimethylarginine (ADMA) and impaired microvascular reactivity. Syndecan-1 also correlated with endothelial activation (ICAM-1, angiopoietin-2) and ADMA in vivax malaria. In knowlesi malaria increased syndecan-1 was associated with acute kidney injury, after controlling for age and parasitemia. In knowlesi malaria, the difference in median syndecan-1 between severe and non-severe disease was more marked in females than males. Endothelial glycocalyx degradation is increased in knowlesi and vivax malaria, and associated with disease severity and acute kidney injury in knowlesi malaria. Agents that inhibit glycocalyx breakdown may represent adjunctive therapeutics for severe non-falciparum malaria.
Collapse
Affiliation(s)
- Bridget E. Barber
- QIMR Berghofer Medical Research Institute, 300 Herston Rd, Herston, Brisbane, QLD 4006 Australia ,Menzies School of Health Research and Charles Darwin University, Darwin, Australia ,Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Malaysia
| | - Matthew J. Grigg
- Menzies School of Health Research and Charles Darwin University, Darwin, Australia ,Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Malaysia
| | - Kim A. Piera
- Menzies School of Health Research and Charles Darwin University, Darwin, Australia
| | - Youwei Chen
- Duke University and V.A. Medical Centre, Durham, USA
| | - Timothy William
- Clinical Research Centre, Queen Elizabeth Hospital, Kota Kinabalu, Malaysia ,Gleneagles Hospital, Kota Kinabalu, Malaysia
| | | | - Tsin W. Yeo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Nicholas M. Anstey
- Menzies School of Health Research and Charles Darwin University, Darwin, Australia ,Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Malaysia
| |
Collapse
|
17
|
Kho S, Qotrunnada L, Leonardo L, Andries B, Wardani PAI, Fricot A, Henry B, Hardy D, Margyaningsih NI, Apriyanti D, Puspitasari AM, Prayoga P, Trianty L, Kenangalem E, Chretien F, Brousse V, Safeukui I, del Portillo HA, Fernandez-Becerra C, Meibalan E, Marti M, Price RN, Woodberry T, Ndour PA, Russell BM, Yeo TW, Minigo G, Noviyanti R, Poespoprodjo JR, Siregar NC, Buffet PA, Anstey NM. Evaluation of splenic accumulation and colocalization of immature reticulocytes and Plasmodium vivax in asymptomatic malaria: A prospective human splenectomy study. PLoS Med 2021; 18:e1003632. [PMID: 34038413 PMCID: PMC8154101 DOI: 10.1371/journal.pmed.1003632] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 04/19/2021] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND A very large biomass of intact asexual-stage malaria parasites accumulates in the spleen of asymptomatic human individuals infected with Plasmodium vivax. The mechanisms underlying this intense tropism are not clear. We hypothesised that immature reticulocytes, in which P. vivax develops, may display high densities in the spleen, thereby providing a niche for parasite survival. METHODS AND FINDINGS We examined spleen tissue in 22 mostly untreated individuals naturally exposed to P. vivax and Plasmodium falciparum undergoing splenectomy for any clinical indication in malaria-endemic Papua, Indonesia (2015 to 2017). Infection, parasite and immature reticulocyte density, and splenic distribution were analysed by optical microscopy, flow cytometry, and molecular assays. Nine non-endemic control spleens from individuals undergoing spleno-pancreatectomy in France (2017 to 2020) were also examined for reticulocyte densities. There were no exclusion criteria or sample size considerations in both patient cohorts for this demanding approach. In Indonesia, 95.5% (21/22) of splenectomy patients had asymptomatic splenic Plasmodium infection (7 P. vivax, 13 P. falciparum, and 1 mixed infection). Significant splenic accumulation of immature CD71 intermediate- and high-expressing reticulocytes was seen, with concentrations 11 times greater than in peripheral blood. Accordingly, in France, reticulocyte concentrations in the splenic effluent were higher than in peripheral blood. Greater rigidity of reticulocytes in splenic than in peripheral blood, and their higher densities in splenic cords both suggest a mechanical retention process. Asexual-stage P. vivax-infected erythrocytes of all developmental stages accumulated in the spleen, with non-phagocytosed parasite densities 3,590 times (IQR: 2,600 to 4,130) higher than in circulating blood, and median total splenic parasite loads 81 (IQR: 14 to 205) times greater, accounting for 98.7% (IQR: 95.1% to 98.9%) of the estimated total-body P. vivax biomass. More reticulocytes were in contact with sinus lumen endothelial cells in P. vivax- than in P. falciparum-infected spleens. Histological analyses revealed 96% of P. vivax rings/trophozoites and 46% of schizonts colocalised with 92% of immature reticulocytes in the cords and sinus lumens of the red pulp. Larger splenic cohort studies and similar investigations in untreated symptomatic malaria are warranted. CONCLUSIONS Immature CD71+ reticulocytes and splenic P. vivax-infected erythrocytes of all asexual stages accumulate in the same splenic compartments, suggesting the existence of a cryptic endosplenic lifecycle in chronic P. vivax infection. Findings provide insight into P. vivax-specific adaptions that have evolved to maximise survival and replication in the spleen.
Collapse
Affiliation(s)
- Steven Kho
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
| | | | - Leo Leonardo
- Timika Malaria Research Program, Papuan Health and Community Development Foundation, Timika, Papua, Indonesia
| | - Benediktus Andries
- Timika Malaria Research Program, Papuan Health and Community Development Foundation, Timika, Papua, Indonesia
| | | | - Aurelie Fricot
- UMR_S1134, BIGR, Inserm, Université de F-75015 Paris, and Laboratory of Excellence GR-Ex, Paris, France
| | - Benoit Henry
- UMR_S1134, BIGR, Inserm, Université de F-75015 Paris, and Laboratory of Excellence GR-Ex, Paris, France
| | - David Hardy
- Institut Pasteur, Experimental Neuropathology Unit, Paris, France
| | | | - Dwi Apriyanti
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | | | - Pak Prayoga
- Timika Malaria Research Program, Papuan Health and Community Development Foundation, Timika, Papua, Indonesia
| | - Leily Trianty
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | - Enny Kenangalem
- Timika Malaria Research Program, Papuan Health and Community Development Foundation, Timika, Papua, Indonesia
- Rumah Sakit Umum Daerah Kabupaten Mimika, Timika, Papua, Indonesia
| | - Fabrice Chretien
- Institut Pasteur, Experimental Neuropathology Unit, Paris, France
| | - Valentine Brousse
- UMR_S1134, BIGR, Inserm, Université de F-75015 Paris, and Laboratory of Excellence GR-Ex, Paris, France
| | - Innocent Safeukui
- Department of Biological Sciences, Notre Dame University, Notre Dame, Indiana, United States of America
| | - Hernando A. del Portillo
- ISGlobal, Hospital Clinic-Universitat de Barcelona, Barcelona, Spain
- Germans Trias I Pujol Research Institute, Badalona, Spain
- Catalan Institution for Research and Advanced Studies, Barcelona, Spain
| | - Carmen Fernandez-Becerra
- ISGlobal, Hospital Clinic-Universitat de Barcelona, Barcelona, Spain
- Germans Trias I Pujol Research Institute, Badalona, Spain
| | - Elamaran Meibalan
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
- Center for Excellence in Vascular Biology, Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
| | - Matthias Marti
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
- Wellcome Center for Integrative Parasitology, University of Glasgow, Glasgow, United Kingdom
| | - Ric N. Price
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
- Center for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Tonia Woodberry
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
| | - Papa A. Ndour
- UMR_S1134, BIGR, Inserm, Université de F-75015 Paris, and Laboratory of Excellence GR-Ex, Paris, France
| | - Bruce M. Russell
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Tsin W. Yeo
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
| | - Gabriela Minigo
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
| | | | - Jeanne R. Poespoprodjo
- Timika Malaria Research Program, Papuan Health and Community Development Foundation, Timika, Papua, Indonesia
- Rumah Sakit Umum Daerah Kabupaten Mimika, Timika, Papua, Indonesia
- Department of Pediatrics, University of Gadjah Mada, Yogyakarta, Indonesia
| | - Nurjati C. Siregar
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
- Department of Anatomical Pathology, Rumah Sakit Cipto Mangunkusumo and Universitas Indonesia, Jakarta, Indonesia
| | - Pierre A. Buffet
- UMR_S1134, BIGR, Inserm, Université de F-75015 Paris, and Laboratory of Excellence GR-Ex, Paris, France
| | - Nicholas M. Anstey
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
| |
Collapse
|
18
|
Lamien-Meda A, Fuehrer HP, Leitsch D, Noedl H. A powerful qPCR-high resolution melting assay with taqman probe in plasmodium species differentiation. Malar J 2021; 20:121. [PMID: 33639949 PMCID: PMC7916309 DOI: 10.1186/s12936-021-03662-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 02/20/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The use of highly sensitive molecular tools in malaria diagnosis is currently largely restricted to research and epidemiological settings, but will ultimately be essential during elimination and potentially eradication. Accurate diagnosis and differentiation down to species levels, including the two Plasmodium ovale species and zoonotic variants of the disease, will be important for the understanding of changing epidemiological patterns of the disease. METHODS A qPCR-high resolution melting (HRM) method was to detect and differentiate all human Plasmodium species with one forward and one reverse primer set. The HRM detection method was further refined using a hydrolysis probe to specifically discriminate Plasmodium falciparum. RESULTS Out of the 113 samples tested with the developed HRM-qPCR- P. falciparum probe assay, 96 (85.0 %) single infections, 12 (10.6 %) mixed infections, and 5 (4.4 %) were Plasmodium negative. The results were concordant with those of the nested PCR at 98.2 %. The assay limit of detection was varied from 21.47 to 46.43 copies /µl, equivalent to 1-2.11 parasites/µl. All P. falciparum infections were confirmed with the associated Taqman probe. CONCLUSIONS Although the dependence on qPCR currently limits its deployment in resource-limited environments, this assay is highly sensitive and specific, easy to perform and convenient for Plasmodium mono-infection and may provide a novel tool for rapid and accurate malaria diagnosis also in epidemiological studies.
Collapse
Affiliation(s)
- Aline Lamien-Meda
- Institute for Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Vienna, Austria.
| | - Hans-Peter Fuehrer
- Institute of Parasitology, University of Veterinary Medicine, Vienna, Austria
| | - David Leitsch
- Institute for Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Vienna, Austria
| | - Harald Noedl
- Malaria Research Initiative Bandarban, Vienna, Austria
| |
Collapse
|
19
|
Del-Tejo PL, Cubas-Vega N, Caraballo-Guerra C, da Silva BM, da Silva Valente J, Sampaio VS, Baia-da-Silva DC, Castro DB, Martinez-Espinosa FE, Siqueira AM, Lacerda MVG, Monteiro WM, Val F. Should we care about Plasmodium vivax and HIV co-infection? A systematic review and a cases series from the Brazilian Amazon. Malar J 2021; 20:13. [PMID: 33407474 PMCID: PMC7788992 DOI: 10.1186/s12936-020-03518-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/23/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Malaria and HIV are two important public health issues. However, evidence on HIV-Plasmodium vivax co-infection (HIV/PvCo) is scarce, with most of the available information related to Plasmodium falciparum on the African continent. It is unclear whether HIV can change the clinical course of vivax malaria and increase the risk of complications. In this study, a systematic review of HIV/PvCo studies was performed, and recent cases from the Brazilian Amazon were included. METHODS Medical records from a tertiary care centre in the Western Brazilian Amazon (2009-2018) were reviewed to identify HIV/PvCo hospitalized patients. Demographic, clinical and laboratory characteristics and outcomes are reported. Also, a systematic review of published studies on HIV/PvCo was conducted. Metadata, number of HIV/PvCo cases, demographic, clinical, and outcome data were extracted. RESULTS A total of 1,048 vivax malaria patients were hospitalized in the 10-year period; 21 (2.0%) were HIV/PvCo cases, of which 9 (42.9%) had AIDS-defining illnesses. This was the first malaria episode in 11 (52.4%) patients. Seven (33.3%) patients were unaware of their HIV status and were diagnosed on hospitalization. Severe malaria was diagnosed in 5 (23.8%) patients. One patient died. The systematic review search provided 17 articles (12 cross-sectional or longitudinal studies and 5 case report studies). A higher prevalence of studies involved cases in African and Asian countries (35.3 and 29.4%, respectively), and the prevalence of reported co-infections ranged from 0.1 to 60%. CONCLUSION Reports of HIV/PvCo are scarce in the literature, with only a few studies describing clinical and laboratory outcomes. Systematic screening for both co-infections is not routinely performed, and therefore the real prevalence of HIV/PvCo is unknown. This study showed a low prevalence of HIV/PvCo despite the high prevalence of malaria and HIV locally. Even though relatively small, this is the largest case series to describe HIV/PvCo.
Collapse
Affiliation(s)
- Paola López Del-Tejo
- Programa de Pós-Graduação Em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
| | - Nadia Cubas-Vega
- Programa de Pós-Graduação Em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
| | - Cecilia Caraballo-Guerra
- Programa de Pós-Graduação Em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
| | - Bernardo Maia da Silva
- Programa de Pós-Graduação Em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
| | - Jefferson da Silva Valente
- Programa de Pós-Graduação Em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
| | - Vanderson Souza Sampaio
- Programa de Pós-Graduação Em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
- Fundação de Vigilância em Saúde do Amazonas, Manaus, Brazil
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal Do Amazonas, Manaus, Brazil
| | - Djane Clarys Baia-da-Silva
- Programa de Pós-Graduação Em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
| | | | - Flor Ernestina Martinez-Espinosa
- Programa de Pós-Graduação Em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
- Instituto Leônidas and Maria Deane, FIOCRUZ, Manaus, Brazil
| | | | - Marcus Vinícius Guimarães Lacerda
- Programa de Pós-Graduação Em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
- Instituto Leônidas and Maria Deane, FIOCRUZ, Manaus, Brazil
| | - Wuelton Marcelo Monteiro
- Programa de Pós-Graduação Em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
| | - Fernando Val
- Programa de Pós-Graduação Em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil.
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil.
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal Do Amazonas, Manaus, Brazil.
| |
Collapse
|
20
|
Golassa L, Amenga-Etego L, Lo E, Amambua-Ngwa A. The biology of unconventional invasion of Duffy-negative reticulocytes by Plasmodium vivax and its implication in malaria epidemiology and public health. Malar J 2020; 19:299. [PMID: 32831093 PMCID: PMC7443611 DOI: 10.1186/s12936-020-03372-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/10/2020] [Indexed: 12/30/2022] Open
Abstract
Plasmodium vivax has been largely neglected over the past century, despite a widespread recognition of its burden across region where it is endemic. The parasite invades reticulocytes, employing the interaction between Plasmodium vivax Duffy binding protein (PvDBP) and human Duffy antigen receptor for chemokines (DARC). However, P. vivax has now been observed in Duffy-negative individuals, presenting a potentially serious public health problem as the majority of African populations are Duffy-negative. Invasion of Duffy-negative reticulocytes is suggested to be through duplication of the PvDBP and a novel protein encoded by P. vivax erythrocyte binding protein (EBP) genes. The emergence and spread of specific P. vivax strains with ability to invade Duffy-negative reticulocytes has, therefore, drawn substantial attention and further complicated the epidemiology and public health implication of vivax malaria. Given the right environment and vectorial capacity for transmission coupled with the parasite’s ability to invade Duffy-negative individuals, P. vivax could increase its epidemiological significance in Africa. In this review, authors present accruing knowledge on the paradigm shift in P. vivax invasion of Duffy-negative reticulocytes against the established mechanism of invading only Duffy-positive individuals and offer a perspective on the epidemiological diagnostic and public health implication in Africa.
Collapse
Affiliation(s)
- Lemu Golassa
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia.
| | - Lucas Amenga-Etego
- West African Center for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
| | - Eugenia Lo
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Alfred Amambua-Ngwa
- Medical Research Council Unit, The Gambia at London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| |
Collapse
|
21
|
Lacerda MVG, Bassat Q. Primaquine for all: is it time to simplify malaria treatment in co-endemic areas? THE LANCET. INFECTIOUS DISEASES 2020; 19:10-12. [PMID: 30587279 DOI: 10.1016/s1473-3099(18)30612-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 10/03/2018] [Indexed: 10/27/2022]
Affiliation(s)
- Marcus V G Lacerda
- Instituto Leônidas & Maria Deane (Fiocruz), Brazil; Tropical Medicine Foundation Dr Heitor Vieira Dourado, Manaus, Brazil
| | - Quique Bassat
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona 08036, Spain; ICREA, Pg Lluís Companys 23, Barcelona, Spain; Pediatric Infectious Diseases Unit, Pediatrics Department, Hospital Sant Joan de Déu (University of Barcelona), Barcelona, Spain.
| |
Collapse
|
22
|
Gabaldón-Figueira JC, Salmen S, Silva N, Mancilla B, Vielma S. Epidemiological and clinical characteristics of patients with malaria admitted to a hospital in Mérida, Venezuela. Trans R Soc Trop Med Hyg 2020; 114:131-136. [PMID: 31804686 DOI: 10.1093/trstmh/trz112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 09/27/2019] [Accepted: 09/30/2019] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Malaria is expanding rapidly across Venezuela, spreading outwards from traditional high transmission regions in the southeast of the country, but the lack of official data make it impossible to understand the reasons for this expansion and to estimate its real magnitude. This study aims to evaluate the epidemiological characteristics driving the re-emergence of malaria in Mérida, a state in the west of Venezuela, where no cases have been reported since 2003, and also to study the clinical presentation of the disease in patients presenting with malaria. METHODS Thirty-three patients who presented with anemia and fever and with a microscopic diagnosis of malaria were examined and interviewed. Data were collected in standardized forms and analyzed. One-way analysis of variance was used to study differences among patients infected with different parasites. RESULTS Twenty-two patients were from the Zulia state and eleven were from the Mérida state, mainly from the lowlands south of Lake Maracaibo. Six of these patients traveled to the Bolívar state between 2017 and 2019. Thirteen patients presented with the WHO criteria for severe malaria.Conclusions:Domestic migration to the southeast of Venezuela may have played an important role in the expansion of malaria in previously existing endemic areas of transmission and also in the increase in the number of cases of severe malaria.
Collapse
Affiliation(s)
| | - Siham Salmen
- Instituto de Inmunología Clínica, Universidad de los Andes
| | - Nubia Silva
- Instituto de Inmunología Clínica, Universidad de los Andes
| | - Betania Mancilla
- Departamento de Pediatria y Puericultura, Hospital Universitario de los Andes
| | - Silvana Vielma
- Departamento de Microbiología y Parasitología Clínica, Universidad de los Andes
| |
Collapse
|
23
|
Popovici J, Roesch C, Rougeron V. The enigmatic mechanisms by which Plasmodium vivax infects Duffy-negative individuals. PLoS Pathog 2020; 16:e1008258. [PMID: 32078643 PMCID: PMC7032691 DOI: 10.1371/journal.ppat.1008258] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The absence of the Duffy protein at the surface of erythrocytes was considered for decades to confer full protection against Plasmodium vivax as this blood group is the receptor for the key parasite ligand P. vivax Duffy binding protein (PvDBP). However, it is now clear that the parasite is able to break through this protection and induce clinical malaria in Duffy-negative people, although the underlying mechanisms are still not understood. Here, we briefly review the evidence of Duffy-negative infections by P. vivax and summarize the current hypothesis at the basis of this invasion process. We discuss those in the perspective of malaria-elimination challenges, notably in African countries.
Collapse
Affiliation(s)
- Jean Popovici
- Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, Phnom Penh Cambodia
- Malaria Translational Research Unit, Institut Pasteur, Paris & Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Camille Roesch
- Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, Phnom Penh Cambodia
- Malaria Translational Research Unit, Institut Pasteur, Paris & Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Virginie Rougeron
- Laboratoire MIVEGEC (Université de Montpellier-CNRS-IRD), Montpellier, France
| |
Collapse
|
24
|
Kaur C, Pramanik A, Kumari K, Mandage R, Dinda AK, Sankar J, Bagga A, Agarwal SK, Sinha A, Singh G, Acharya P. Renal detection of Plasmodium falciparum, Plasmodium vivax and Plasmodium knowlesi in malaria associated acute kidney injury: a retrospective case-control study. BMC Res Notes 2020; 13:37. [PMID: 31959229 PMCID: PMC6971858 DOI: 10.1186/s13104-020-4900-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 01/08/2020] [Indexed: 12/13/2022] Open
Abstract
Objective Acute kidney injury (AKI) is a frequent presentation in malaria infections. Several cases of AKI that are accompanied by clinical symptoms of malaria infection, such as fever, nausea, respiratory distress, and anemia remain undiagnosed due to challenges in accurate diagnosis using peripheral blood microscopy and rapid diagnostic tests that are currently used in clinical settings. This is particularly true for P. vivax and P. knowlesi infections. As a result, these patients are not able to receive anti-malarial therapy in a timely manner. The objective of the present study was to investigate if patients presenting with AKI harbored any of the five human Plasmodium species (P. falciparum, P. vivax, P. knowlesi, P. malariae, and P. ovale) within their renal tissues. Results We found that renal biopsies from malaria associated AKI patients harbor the human malaria parasites P. falciparum, P. vivax and P. knowlesi as mono- and mixed species infections. Presence of microvascular injury in a majority of the malaria associated AKI cases suggested vascular involvement of P. vivax and P. knowlesi. This research note also highlights P. knowlesi as an emerging pathogen in the Indian subcontinent.
Collapse
Affiliation(s)
- Charandeep Kaur
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Atreyi Pramanik
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Kalpana Kumari
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Rajendra Mandage
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Amit Kumar Dinda
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Jhuma Sankar
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Arvind Bagga
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Sanjay Kumar Agarwal
- Department of Nephrology, All India Institute of Medical Sciences, New Delhi, India
| | - Aditi Sinha
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Geetika Singh
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Pragyan Acharya
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
25
|
Anvikar AR, van Eijk AM, Shah A, Upadhyay KJ, Sullivan SA, Patel AJ, Joshi JM, Tyagi S, Singh R, Carlton JM, Gupta H, Wassmer SC. Clinical and epidemiological characterization of severe Plasmodium vivax malaria in Gujarat, India. Virulence 2020; 11:730-738. [PMID: 32490754 PMCID: PMC7549892 DOI: 10.1080/21505594.2020.1773107] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 04/24/2020] [Accepted: 04/30/2020] [Indexed: 02/07/2023] Open
Abstract
The mounting evidence supporting the capacity of Plasmodium vivax to cause severe disease has prompted the need for a better characterization of the resulting clinical complications. India is making progress with reducing malaria, but epidemics of severe vivax malaria in Gujarat, one of the main contributors to the vivax malaria burden in the country, have been reported recently and may be the result of a decrease in transmission and immune development. Over a period of one year, we enrolled severe malaria patients admitted at the Civil Hospital in Ahmedabad, the largest city in Gujarat, to investigate the morbidity of severe vivax malaria compared to severe falciparum malaria. Patients were submitted to standard thorough clinical and laboratory investigations and only PCR-confirmed infections were selected for the present study. Severevivax malaria (30 patients) was more frequent than severe falciparum malaria (8 patients) in our setting, and it predominantly affected adults (median age 32 years, interquartile range 22.5 years). This suggests a potential age shift in anti-malarial immunity, likely to result from the recent decrease in transmission across India. The clinical presentation of severe vivax patients was in line with previous reports, with jaundice as the most common complication. Our findings further support the need for epidemiological studies combining clinical characterization of severe vivax malaria and serological evaluation of exposure markers to monitor the impact of elimination programmes.
Collapse
Affiliation(s)
- Anupkumar R. Anvikar
- Indian Council of Medical Research (ICMR), National Institute of Malaria Research, New Delhi, India
- Indian Council of Medical Research (ICMR), National Institute of Malaria Research Field Unit, Civil Hospital, Nadiad, India
| | - Anna Maria van Eijk
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, USA
| | - Asha Shah
- Byramjee Jeejeebhoy Medical College (BJMC), Civil Hospital, Ahmedabad, India
| | - Kamlesh J. Upadhyay
- Byramjee Jeejeebhoy Medical College (BJMC), Civil Hospital, Ahmedabad, India
| | - Steven A. Sullivan
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, USA
| | - Ankita J. Patel
- Byramjee Jeejeebhoy Medical College (BJMC), Civil Hospital, Ahmedabad, India
| | - Jaykumar M. Joshi
- Byramjee Jeejeebhoy Medical College (BJMC), Civil Hospital, Ahmedabad, India
| | - Suchi Tyagi
- Byramjee Jeejeebhoy Medical College (BJMC), Civil Hospital, Ahmedabad, India
| | - Ranvir Singh
- Byramjee Jeejeebhoy Medical College (BJMC), Civil Hospital, Ahmedabad, India
| | - Jane M. Carlton
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, USA
| | - Himanshu Gupta
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Samuel C. Wassmer
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
26
|
Guedes KS, Sanchez BAM, Gomes LT, Fontes CJF. Aspartate aminotransferase-to-platelet ratio index (APRI): A potential marker for diagnosis in patients at risk of severe malaria caused by Plasmodium vivax. PLoS One 2019; 14:e0224877. [PMID: 31765438 PMCID: PMC6876935 DOI: 10.1371/journal.pone.0224877] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/23/2019] [Indexed: 02/07/2023] Open
Abstract
Acute infection with Plasmodium vivax, classically associated with benign disease, has been presenting as serious and even fatal disease in recent years. Severe disease is mainly due to biochemical and hematological alterations during the acute phase of infection. In the present cross-sectional study, the aspartate aminotransferase-to-platelet ratio index (APRI) was evaluated as a method for identifying patients at risk of severe vivax malaria. This retrospective study included 130 patients with confirmed P. vivax infection between June 2006 and January 2018. Clinical-epidemiological data were obtained from medical records. Hematological and biochemical parameters were determined using automated equipment. The criteria of severity for infection by Plasmodium falciparum, established by the World Health Organization (WHO), were adapted to classify patients with danger signs of severe vivax malaria. Of the 130 patient’s records evaluated, 19 (14.6%) had one or more signs and symptoms of severe malaria. The mean APRI values among patients with and without severe malaria were 2.11 and 1.09, respectively (p = 0.044). Among those with severe disease, the proportion with an APRI value above 1.50 was 30% compared to the 10% among those without severe disease (p = 0.007). The area under the receiver operating characteristic curve (95% CI), calculated to assess the accuracy of the APRI in discriminating between patients with and without severe disease, was 0.645 (0.494; 0.795). An APRI cutoff of 0.74 resulted in sensitivity of 74.0%, specificity of 56.0%, and accuracy of 65.0%. This study shows that the APRI is elevated in patients with evidence of infection by P. vivax. Based on the good sensitivity found in this study, we conclude that this simple index can serve as a diagnostic biomarker to identify patients at risk of severe disease during the acute phase of P. vivax infection.
Collapse
Affiliation(s)
- Karla Sena Guedes
- Institute of Health Sciences, Federal University of Mato Grosso, Sinop, Brazil
| | | | | | - Cor Jesus Fernandes Fontes
- Institute of Health Sciences, Federal University of Mato Grosso, Sinop, Brazil.,Júlio Müller University Hospital, Federal University of Mato Grosso, Cuiabá, Brazil
| |
Collapse
|
27
|
Popovici J, Pierce-Friedrich L, Kim S, Bin S, Run V, Lek D, Hee KHD, Lee Soon-U L, Cannon MV, Serre D, Menard D. Recrudescence, Reinfection, or Relapse? A More Rigorous Framework to Assess Chloroquine Efficacy for Plasmodium vivax Malaria. J Infect Dis 2019; 219:315-322. [PMID: 30102351 DOI: 10.1093/infdis/jiy484] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 08/07/2018] [Indexed: 11/14/2022] Open
Abstract
Background Plasmodium vivax resistance to chloroquine (CQ) has been reported worldwide, although the World Health Organization clinical drug efficacy studies protocol does not permit classification of patient outcomes. Methods We enrolled 40 patients with P. vivax malaria in northeastern Cambodia, where >17% treatment failures were previously reported. Patients were treated with CQ (30 mg/kg) and followed for 2 months, with frequent clinical examination and capillary blood sample collection for microscopy, molecular parasite detection and genotyping, and drug concentration measurements. Reinfections were prevented by relocating patients to a transmission-free area. Results P. vivax parasites were eliminated in all patients by day 3. Genomic analyses revealed that all clones in polyclonal infections were cleared at the same rate, indicating their equal susceptibility to CQ. CQ blood concentrations were below the therapeutic level in all recurrent infections (24 of 40 patients), which were efficiently cleared by a second course of CQ treatment. Genotyping (128 SNPs barcode) and sequences of entire parasite genome (Whole-Genome Sequencing, Illumina) indicated that two thirds (6 of 8) of the recurrent parasites resulted from heterologous relapses whose 50% are from by sibling/recombinant clones. Conclusions No evidence of CQ resistance was observed. Our data suggest that P. vivax antimalarial drug resistance is likely overestimated and that the current guidelines for clinical drug studies of P. vivax malaria need to be revised.
Collapse
Affiliation(s)
- Jean Popovici
- Malaria Molecular Epidemiology Unit, Institut Pasteur in Cambodia, Phnom Penh
| | | | - Saorin Kim
- Malaria Molecular Epidemiology Unit, Institut Pasteur in Cambodia, Phnom Penh
| | - Sophalai Bin
- Malaria Molecular Epidemiology Unit, Institut Pasteur in Cambodia, Phnom Penh
| | - Vorleak Run
- Malaria Molecular Epidemiology Unit, Institut Pasteur in Cambodia, Phnom Penh
| | - Dysoley Lek
- National Center for Malaria Control, Phnom Penh, Cambodia
| | | | | | - Matthew V Cannon
- Genomic Medicine Institute, Cleveland Clinic, Ohio.,Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore
| | - David Serre
- Genomic Medicine Institute, Cleveland Clinic, Ohio.,Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore
| | - Didier Menard
- Malaria Molecular Epidemiology Unit, Institut Pasteur in Cambodia, Phnom Penh.,Malaria Genetics and Resistance Group, Biology of Host-Parasite Interactions Unit, Institut Pasteur, France
| |
Collapse
|
28
|
Bourgard C, Albrecht L, Kayano ACAV, Sunnerhagen P, Costa FTM. Plasmodium vivax Biology: Insights Provided by Genomics, Transcriptomics and Proteomics. Front Cell Infect Microbiol 2018; 8:34. [PMID: 29473024 PMCID: PMC5809496 DOI: 10.3389/fcimb.2018.00034] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 01/25/2018] [Indexed: 12/17/2022] Open
Abstract
During the last decade, the vast omics field has revolutionized biological research, especially the genomics, transcriptomics and proteomics branches, as technological tools become available to the field researcher and allow difficult question-driven studies to be addressed. Parasitology has greatly benefited from next generation sequencing (NGS) projects, which have resulted in a broadened comprehension of basic parasite molecular biology, ecology and epidemiology. Malariology is one example where application of this technology has greatly contributed to a better understanding of Plasmodium spp. biology and host-parasite interactions. Among the several parasite species that cause human malaria, the neglected Plasmodium vivax presents great research challenges, as in vitro culturing is not yet feasible and functional assays are heavily limited. Therefore, there are gaps in our P. vivax biology knowledge that affect decisions for control policies aiming to eradicate vivax malaria in the near future. In this review, we provide a snapshot of key discoveries already achieved in P. vivax sequencing projects, focusing on developments, hurdles, and limitations currently faced by the research community, as well as perspectives on future vivax malaria research.
Collapse
Affiliation(s)
- Catarina Bourgard
- Laboratory of Tropical Diseases, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas - UNICAMP, Campinas, Brazil
| | - Letusa Albrecht
- Laboratory of Tropical Diseases, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas - UNICAMP, Campinas, Brazil.,Laboratory of Regulation of Gene Expression, Instituto Carlos Chagas, Curitiba, Brazil
| | - Ana C A V Kayano
- Laboratory of Tropical Diseases, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas - UNICAMP, Campinas, Brazil
| | - Per Sunnerhagen
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Fabio T M Costa
- Laboratory of Tropical Diseases, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas - UNICAMP, Campinas, Brazil
| |
Collapse
|
29
|
Baird JK. Tafenoquine for travelers' malaria: evidence, rationale and recommendations. J Travel Med 2018; 25:5150129. [PMID: 30380095 PMCID: PMC6243017 DOI: 10.1093/jtm/tay110] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 10/17/2018] [Accepted: 10/30/2018] [Indexed: 01/01/2023]
Abstract
Background Endemic malaria occurring across much of the globe threatens millions of exposed travelers. While unknown numbers of them suffer acute attacks while traveling, each year thousands return from travel and become stricken in the weeks and months following exposure. This represents perhaps the most serious, prevalent and complex problem faced by providers of travel medicine services. Since before World War II, travel medicine practice has relied on synthetic suppressive blood schizontocidal drugs to prevent malaria during exposure, and has applied primaquine for presumptive anti-relapse therapy (post-travel or post-diagnosis of Plasmodium vivax) since 1952. In 2018, the US Food and Drug Administration approved the uses of a new hepatic schizontocidal and hypnozoitocidal 8-aminoquinoline called tafenoquine for the respective prevention of all malarias and for the treatment of those that relapse (P. vivax and Plasmodium ovale). Methods The evidence and rationale for tafenoquine for the prevention and treatment of malaria was gathered by means of a standard search of the medical literature along with the package inserts for the tafenoquine products Arakoda™ and Krintafel™ for the prevention of all malarias and the treatment of relapsing malarias, respectively. Results The development of tafenoquine-an endeavor of 40 years-at last brings two powerful advantages to travel medicine practice against the malaria threat: (i) a weekly regimen of causal prophylaxis; and (ii) a single-dose radical cure for patients infected by vivax or ovale malarias. Conclusions Although broad clinical experience remains to be gathered, tafenoquine appears to promise more practical and effective prevention and treatment of malaria. Tafenoquine thus applied includes important biological and clinical complexities explained in this review, with particular regard to the problem of hemolytic toxicity in G6PD-deficient patients.
Collapse
Affiliation(s)
- J Kevin Baird
- Eijkman-Oxford Clinical Research Unit, Eijkman Institute of Molecular Biology, Jakarta 10430, Indonesia; and Nuffield Department of Medicine, the Centre for Tropical Medicine and Global Health, University of Oxford, UK
| |
Collapse
|
30
|
Val F, Avalos S, Gomes AA, Zerpa JEA, Fontecha G, Siqueira AM, Bassat Q, Alecrim MGC, Monteiro WM, Lacerda MVG. Are respiratory complications of Plasmodium vivax malaria an underestimated problem? Malar J 2017; 16:495. [PMID: 29273053 PMCID: PMC5741897 DOI: 10.1186/s12936-017-2143-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 12/18/2017] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Respiratory complications are uncommon, but often life-threatening features of Plasmodium vivax malaria. This study aimed to estimate the prevalence and lethality associated with such complications among P. vivax malaria patients in a tertiary hospital in the Western Brazilian Amazon, and to identify variables associated with severe respiratory complications, intensive care need and death. Medical records from 2009 to 2016 were reviewed aiming to identify all patients diagnosed with P. vivax malaria and respiratory complications. Prevalence, lethality and risk factors associated with WHO defined respiratory complications, intensive care need and death were assessed. RESULTS A total of 587 vivax malaria patients were hospitalized during the study period. Thirty (5.1%) developed respiratory complications. Thirteen (43.3%) developed severe respiratory complications, intensive care was required for 12 (40%) patients and 5 (16.6%) died. On admission, anaemia and thrombocytopaenia were common findings, whereas fever was unusual. Patients presented different classes of parasitaemia and six were aparasitaemic on admission. Time to respiratory complications occurred after anti-malarials administration in 18 (60%) patients and progressed very rapidly. Seventeen patients (56.7%) had comorbidities and/or concomitant conditions, which were significantly associated to higher odds of developing severe respiratory complications, need for intensive care and death (p < 0.05). CONCLUSION Respiratory complications were shown to be associated with significant mortality in this population. Patients with comorbidities and/or concomitant conditions require special attention to avoid this potential life-threatening complication.
Collapse
Affiliation(s)
- Fernando Val
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil. .,Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil.
| | - Sara Avalos
- Microbiology Research Institute, Universidad Nacional Autónoma de Honduras, Tegucigalpa, Honduras
| | - André Alexandre Gomes
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil.,Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
| | - José Evelio Albornoz Zerpa
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil.,Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
| | - Gustavo Fontecha
- Microbiology Research Institute, Universidad Nacional Autónoma de Honduras, Tegucigalpa, Honduras
| | - André Machado Siqueira
- Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Quique Bassat
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic-Universitat de Barcelona, Barcelona, Spain.,ICREA, Pg. Lluís Companys 23, 08010, Barcelona, Spain.,Pediatric Infectious Diseases Unit, Pediatrics Department, Hospital Sant Joan de Déu (University of Barcelona), Barcelona, Spain.,Universidad Europea de Madrid, Madrid, Spain
| | - Maria Graças Costa Alecrim
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil.,Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
| | - Wuelton Marcelo Monteiro
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil. .,Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil.
| | - Marcus Vinícius Guimarães Lacerda
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil.,Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil.,Instituto de Pesquisas Leônidas and Maria Deane, Fundação Oswaldo Cruz, Manaus, Amazonas, Brazil
| |
Collapse
|
31
|
Gardinassi LG, Cordy RJ, Lacerda MVG, Salinas JL, Monteiro WM, Melo GC, Siqueira AM, Val FF, Tran V, Jones DP, Galinski MR, Li S. Metabolome-wide association study of peripheral parasitemia in Plasmodium vivax malaria. Int J Med Microbiol 2017; 307:533-541. [PMID: 28927849 PMCID: PMC5698147 DOI: 10.1016/j.ijmm.2017.09.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 06/26/2017] [Accepted: 09/03/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Plasmodium vivax is one of the leading causes of malaria worldwide. Infections with this parasite cause diverse clinical manifestations, and recent studies revealed that infections with P. vivax can result in severe and fatal disease. Despite these facts, biological traits of the host response and parasite metabolism during P. vivax malaria are still largely underexplored. Parasitemia is clearly related to progression and severity of malaria caused by P. falciparum, however the effects of parasitemia during infections with P. vivax are not well understood. RESULTS We conducted an exploratory study using a high-resolution metabolomics platform that uncovered significant associations between parasitemia levels and plasma metabolites from 150 patients with P. vivax malaria. Most plasma metabolites were inversely associated with higher levels of parasitemia. Top predicted metabolites are implicated into pathways of heme and lipid metabolism, which include biliverdin, bilirubin, palmitoylcarnitine, stearoylcarnitine, phosphocholine, glycerophosphocholine, oleic acid and omega-carboxy-trinor-leukotriene B4. CONCLUSIONS The abundance of several plasma metabolites varies according to the levels of parasitemia in patients with P. vivax malaria. Moreover, our data suggest that the host response and/or parasite survival might be affected by metabolites involved in the degradation of heme and metabolism of several lipids. Importantly, these data highlight metabolic pathways that may serve as targets for the development of new antimalarial compounds.
Collapse
Affiliation(s)
- Luiz Gustavo Gardinassi
- Division of Pulmonary, Allergy and Critical Care Medicine, School of Medicine, Emory University, Atlanta, GA, USA; Malaria Host-Pathogen Interaction Center, Atlanta, GA, USA
| | - Regina Joice Cordy
- Malaria Host-Pathogen Interaction Center, Atlanta, GA, USA; International Center for Malaria Research, Education and Development, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Marcus V G Lacerda
- Gerência de Malária, Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, AM, Brazil; Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, AM, Brazil; Instituto Leônidas & Maria Deane (FIOCRUZ), Manaus, AM, Brazil
| | | | - Wuelton M Monteiro
- Gerência de Malária, Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, AM, Brazil; Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, AM, Brazil
| | - Gisely C Melo
- Gerência de Malária, Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, AM, Brazil; Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, AM, Brazil
| | - André M Siqueira
- Instituto Nacional de Infectologia Evandro Chagas (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernando F Val
- Gerência de Malária, Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, AM, Brazil; Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, AM, Brazil
| | - ViLinh Tran
- Division of Pulmonary, Allergy and Critical Care Medicine, School of Medicine, Emory University, Atlanta, GA, USA; Malaria Host-Pathogen Interaction Center, Atlanta, GA, USA; Clinical Biomarkers Laboratory, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Dean P Jones
- Division of Pulmonary, Allergy and Critical Care Medicine, School of Medicine, Emory University, Atlanta, GA, USA; Malaria Host-Pathogen Interaction Center, Atlanta, GA, USA; Clinical Biomarkers Laboratory, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Mary R Galinski
- Malaria Host-Pathogen Interaction Center, Atlanta, GA, USA; International Center for Malaria Research, Education and Development, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA; Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Shuzhao Li
- Division of Pulmonary, Allergy and Critical Care Medicine, School of Medicine, Emory University, Atlanta, GA, USA; Malaria Host-Pathogen Interaction Center, Atlanta, GA, USA; Clinical Biomarkers Laboratory, Department of Medicine, Emory University, Atlanta, GA, USA.
| |
Collapse
|
32
|
Intensive care in severe malaria: Report from the task force on tropical diseases by the World Federation of Societies of Intensive and Critical Care Medicine. J Crit Care 2017; 43:356-360. [PMID: 29132978 DOI: 10.1016/j.jcrc.2017.11.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 11/02/2017] [Indexed: 12/19/2022]
Abstract
Severe malaria is common in tropical countries in Africa, Asia, Oceania and South and Central America. It may also occur in travelers returning from endemic areas. Plasmodium falciparum accounts for most cases, although P vivax is increasingly found to cause severe malaria in Asia. Cerebral malaria is common in children in Africa, manifests as coma and seizures, and has a high morbidity and mortality. In other regions, adults may also develop cerebral malaria but neurological sequelae in survivors are rare. Acute kidney injury, liver dysfunction, thrombocytopenia, disseminated intravascular coagulopathy (DIC) and acute respiratory distress syndrome (ARDS) are also common in severe malaria. Metabolic abnormalities include hypoglycemia, hyponatremia and lactic acidosis. Bacterial infection may coexist in patients presenting with shock or ARDS and this along with a high parasite load has a high mortality. Intravenous artesunate has replaced quinine as the antimalarial agent of choice. Critical care management as per severe sepsis is also applicable to severe malaria. Aggressive fluid boluses may not be appropriate in children. Blood transfusions may be required and treatment of seizures and raised intracranial pressure is important in cerebral malaria in children. Mortality in severe disease ranges from 8 to 30% despite treatment.
Collapse
|
33
|
Arévalo-Herrera M, Rengifo L, Lopez-Perez M, Arce-Plata MI, García J, Herrera S. Complicated malaria in children and adults from three settings of the Colombian Pacific Coast: A prospective study. PLoS One 2017; 12:e0185435. [PMID: 28945797 PMCID: PMC5612730 DOI: 10.1371/journal.pone.0185435] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 09/12/2017] [Indexed: 11/19/2022] Open
Abstract
Background Complicated malaria remains an important public health problem, particularly in endemic settings where access to health services is limited and consequently malaria fatal outcomes occur. Few publications describing the clinical course and outcomes of complicated malaria in Latin America are found in the literature. This prospective study approached the clinical and laboratory characteristics of hospitalized patients with complicated malaria in different endemic areas of the Colombian Pacific Coast with the aim to provide epidemiological knowledge and guide to further reducing malaria severity and mortality. Methods and findings A prospective, descriptive hospital-based study was conducted in 323 complicated malaria patients (median age 20 years) enrolled in Quibdó, Tumaco and Cali between 2014 and 2016. Clinical evaluation was performed and laboratory parameters were assessed during hospitalization. Plasmodium falciparum was the most common parasite species (70%), followed by P. vivax (28%), and mixed malaria (Pf/Pv; 1.9%). Overall, predominant laboratory complications were severe thrombocytopenia (43%), hepatic dysfunction (40%), and severe anaemia (34%). Severe thrombocytopenia was more common in adults (52%) regardless of parasite species. Severe anaemia was the most frequent complication in children ≤10 years (72%) and was most commonly related to P. vivax infection (p < 0.001); whereas liver dysfunction was more frequent in older patients (54%) with P. falciparum (p < 0.001). Two deaths due to P. vivax and P. falciparum each were registered. Treatment provision before recruitment hindered qPCR confirmation of parasite species in some cases. Conclusions The study identified a high prevalence of complicated malaria in the Pacific Coast, together with more frequent severe anaemia in children infected by P. vivax and hepatic dysfunction in adults with P. falciparum. Results indicated the need for earlier diagnosis and treatment to prevent complications development as well as more effective attention at hospital level, in order to rapidly identify and appropriately treat these severe clinical conditions. The study describes epidemiological profiles of the study region and identified the most common complications on which clinicians must focus on to prevent mortality.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Aged, 80 and over
- Anemia/etiology
- Child
- Child, Preschool
- Colombia/epidemiology
- Endemic Diseases
- Female
- Humans
- Infant
- Infant, Newborn
- Liver Diseases/etiology
- Malaria, Falciparum/complications
- Malaria, Falciparum/epidemiology
- Malaria, Falciparum/parasitology
- Malaria, Vivax/complications
- Malaria, Vivax/epidemiology
- Malaria, Vivax/parasitology
- Male
- Middle Aged
- Pregnancy
- Pregnancy Complications, Parasitic/epidemiology
- Pregnancy Complications, Parasitic/parasitology
- Prevalence
- Prospective Studies
- Thrombocytopenia/etiology
- Young Adult
Collapse
Affiliation(s)
- Myriam Arévalo-Herrera
- Caucaseco Scientific Research Center, Cali, Colombia
- Faculty of Health, Universidad del Valle, Cali, Colombia
- * E-mail:
| | - Lina Rengifo
- Caucaseco Scientific Research Center, Cali, Colombia
| | | | | | - Jhon García
- Caucaseco Scientific Research Center, Cali, Colombia
| | | |
Collapse
|
34
|
Venkatesh A, Lahiri A, Reddy PJ, Shastri J, Bankar S, Patankar S, Srivastava S. Identification of Highly Expressed Plasmodium Vivax Proteins from Clinical Isolates Using Proteomics. Proteomics Clin Appl 2017; 12:e1700046. [PMID: 28841253 DOI: 10.1002/prca.201700046] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 07/08/2017] [Indexed: 12/11/2022]
Abstract
Plasmodium vivax is the most geographically widespread species responsible for malaria in humans. Our study focused on identifying highly expressed parasite proteins using a shotgun proteomics approach. Parasites (P. vivax) are isolated from seven patient samples using saponin lysis. Protein extracts from these parasites are processed and subjected to LC-MS/MS analysis. An overall proteome coverage of 605 P. vivax proteins along with 1670 human host proteins are obtained upon combining the data from LC-MS/MS runs. While a major proportion of the P. vivax proteins are either hypothetical or involved in basic cellular activities, few proteins such as tryptophan-rich antigen (Pv-fam-a; PVX_090265), Pv-fam-d protein (PVX_101520), Plasmodium exported protein (PVX_003545), Pvstp1 (PVX_094303) and hypothetical protein (PVX_083555) are detected in more than 80% of the clinical isolates and found to be unique to P. vivax without orthologs in P. falciparum. Our proteomics study on individual parasite isolates reveals highly expressed P. vivax proteins, few of which may be good candidates for vivax malaria diagnosis due to their abundance and absence in P. falciparum. This study represents the first step towards the identification of biomarkers for P. vivax malaria. In future, their clinical diagnostic values must be explored and validated on large patient cohorts.
Collapse
Affiliation(s)
- Apoorva Venkatesh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Anwesha Lahiri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Panga Jaipal Reddy
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Jayanthi Shastri
- Department of Microbiology, T. N. Medical College and BYL Nair Hospital, Mumbai
| | - Sheetal Bankar
- Department of Microbiology, T. N. Medical College and BYL Nair Hospital, Mumbai
| | - Swati Patankar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Sanjeeva Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| |
Collapse
|
35
|
Val F, Machado K, Barbosa L, Salinas JL, Siqueira AM, Costa Alecrim MG, del Portillo H, Bassat Q, Monteiro WM, Guimarães Lacerda MV. Respiratory Complications of Plasmodium vivax Malaria: Systematic Review and Meta-Analysis. Am J Trop Med Hyg 2017; 97:733-743. [PMID: 28722625 PMCID: PMC5590608 DOI: 10.4269/ajtmh.17-0131] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Accepted: 04/19/2017] [Indexed: 12/12/2022] Open
Abstract
Malaria, a major global public health problem, is mainly caused by Plasmodium falciparum and Plasmodium vivax, and is responsible for nearly half a million deaths annually. Although P. vivax malaria was not believed to cause severe disease, recent robust studies have proved otherwise. However, the clinical spectrum and pathogenesis of severe vivax malaria and, especially, its respiratory complications remain poorly understood. A systematic search for articles reporting respiratory complications associated with vivax malaria was performed in Lilacs, Cochrane, Scielo, Web of Science, and Medline databases irrespective of publication date. Prevalence of acute respiratory distress syndrome (ARDS) and associated mortality among vivax patients were calculated from cross-sectional and longitudinal studies, whereas factors associated with mortality were calculated from data pooled from case reports and series of cases. A total of 101 studies were included (49 cross-sectional or longitudinal and 52 case reports or series of cases). Prevalence of ARDS was 2.8% and 2.2% in children and adults, respectively, with nearly 50% mortality. Moreover, female sex (P = 0.013), having any comorbidity (P = 0.036), lower body temperature (P = 0.032), lower hemoglobin (P = 0.043), and oxygen saturation (P = 0.053) values were significantly associated with mortality. Plasmodium vivax malaria respiratory complications included ARDS and were associated with high mortality. Demographics and clinical characteristics upon presentation to hospital were associated with mortality among patients with respiratory complications in vivax malaria. This study reaffirms the evidence of severe and fatal complications of P. vivax malaria and its associated respiratory complications.
Collapse
Affiliation(s)
- Fernando Val
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil
- Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
| | - Kim Machado
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil
- Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
| | - Lisiane Barbosa
- Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
| | | | - André Machado Siqueira
- Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Maria Graças Costa Alecrim
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil
- Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
| | - Hernando del Portillo
- Barcelona Institute for Global Health (ISGlobal) and ICREA and Institut d’Investigacioì Germans Trias i Pujol (IGTP), Badalona, Spain
| | - Quique Bassat
- Barcelona Institute for Global Health (ISGlobal) and ICREA, Badalona, Spain
| | - Wuelton Marcelo Monteiro
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil
- Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
| | - Marcus Vinícius Guimarães Lacerda
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil
- Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
- Instituto de Pesquisas Leônidas and Maria Deane, Fundação Oswaldo Cruz, Manaus, Amazonas, Brazil
| |
Collapse
|
36
|
Uppal K, Salinas JL, Monteiro WM, Val F, Cordy RJ, Liu K, Melo GC, Siqueira AM, Magalhaes B, Galinski MR, Lacerda MVG, Jones DP. Plasma metabolomics reveals membrane lipids, aspartate/asparagine and nucleotide metabolism pathway differences associated with chloroquine resistance in Plasmodium vivax malaria. PLoS One 2017; 12:e0182819. [PMID: 28813452 PMCID: PMC5559093 DOI: 10.1371/journal.pone.0182819] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 07/25/2017] [Indexed: 11/18/2022] Open
Abstract
Background Chloroquine (CQ) is the main anti-schizontocidal drug used in the treatment of uncomplicated malaria caused by Plasmodium vivax. Chloroquine resistant P. vivax (PvCR) malaria in the Western Pacific region, Asia and in the Americas indicates a need for biomarkers of resistance to improve therapy and enhance understanding of the mechanisms associated with PvCR. In this study, we compared plasma metabolic profiles of P. vivax malaria patients with PvCR and chloroquine sensitive parasites before treatment to identify potential molecular markers of chloroquine resistance. Methods An untargeted high-resolution metabolomics analysis was performed on plasma samples collected in a malaria clinic in Manaus, Brazil. Male and female patients with Plasmodium vivax were included (n = 46); samples were collected before CQ treatment and followed for 28 days to determine PvCR, defined as the recurrence of parasitemia with detectable plasma concentrations of CQ ≥100 ng/dL. Differentially expressed metabolic features between CQ-Resistant (CQ-R) and CQ-Sensitive (CQ-S) patients were identified using partial least squares discriminant analysis and linear regression after adjusting for covariates and multiple testing correction. Pathway enrichment analysis was performed using Mummichog. Results Linear regression and PLS-DA methods yielded 69 discriminatory features between CQ-R and CQ-S groups, with 10-fold cross-validation classification accuracy of 89.6% using a SVM classifier. Pathway enrichment analysis showed significant enrichment (p<0.05) of glycerophospholipid metabolism, glycosphingolipid metabolism, aspartate and asparagine metabolism, purine and pyrimidine metabolism, and xenobiotics metabolism. Glycerophosphocholines levels were significantly lower in the CQ-R group as compared to CQ-S patients and also to independent control samples. Conclusions The results show differences in lipid, amino acids, and nucleotide metabolism pathways in the plasma of CQ-R versus CQ-S patients prior to antimalarial treatment. Metabolomics phenotyping of P. vivax samples from patients with well-defined clinical CQ-resistance is promising for the development of new tools to understand the biological process and to identify potential biomarkers of PvCR.
Collapse
Affiliation(s)
- Karan Uppal
- Clinical Biomarkers Laboratory, Division of Pulmonary Medicine, Department of Medicine, Emory University, Atlanta, Georgia, United States of America
- Malaria Host–Pathogen Interaction Center, Atlanta, Georgia, United States of America
- * E-mail: ;
| | - Jorge L. Salinas
- Malaria Host–Pathogen Interaction Center, Atlanta, Georgia, United States of America
- International Center for Malaria Research, Education and Development, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, 954 Gatewood Road, Atlanta, Georgia, United States of America
- Rollins School of Public Health, Emory University, Atlanta, Georgia, United States of America
| | - Wuelton M. Monteiro
- Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil
| | - Fernando Val
- Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil
| | - Regina J. Cordy
- Malaria Host–Pathogen Interaction Center, Atlanta, Georgia, United States of America
- International Center for Malaria Research, Education and Development, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, 954 Gatewood Road, Atlanta, Georgia, United States of America
| | - Ken Liu
- Clinical Biomarkers Laboratory, Division of Pulmonary Medicine, Department of Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Gisely C. Melo
- Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil
| | - Andre M. Siqueira
- Instituto Nacional de Infectologia Evandro Chagas (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Mary R. Galinski
- Malaria Host–Pathogen Interaction Center, Atlanta, Georgia, United States of America
- International Center for Malaria Research, Education and Development, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, 954 Gatewood Road, Atlanta, Georgia, United States of America
- Rollins School of Public Health, Emory University, Atlanta, Georgia, United States of America
| | - Marcus V. G. Lacerda
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil
- Instituto Leônidas & Maria Deane (FIOCRUZ), Manaus, Amazonas, Brazil
- * E-mail: ;
| | - Dean P. Jones
- Clinical Biomarkers Laboratory, Division of Pulmonary Medicine, Department of Medicine, Emory University, Atlanta, Georgia, United States of America
- Malaria Host–Pathogen Interaction Center, Atlanta, Georgia, United States of America
| |
Collapse
|
37
|
Recht J, Siqueira AM, Monteiro WM, Herrera SM, Herrera S, Lacerda MVG. Malaria in Brazil, Colombia, Peru and Venezuela: current challenges in malaria control and elimination. Malar J 2017; 16:273. [PMID: 28676055 PMCID: PMC5496604 DOI: 10.1186/s12936-017-1925-6] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 06/29/2017] [Indexed: 01/24/2023] Open
Abstract
In spite of significant progress towards malaria control and elimination achieved in South America in the 2000s, this mosquito-transmitted tropical disease remains an important public health concern in the region. Most malaria cases in South America come from Amazon rain forest areas in northern countries, where more than half of malaria is caused by Plasmodium vivax, while Plasmodium falciparum malaria incidence has decreased in recent years. This review discusses current malaria data, policies and challenges in four South American Amazon countries: Brazil, Colombia, Peru and the Bolivarian Republic of Venezuela. Challenges to continuing efforts to further decrease malaria incidence in this region include: a significant increase in malaria cases in recent years in Venezuela, evidence of submicroscopic and asymptomatic infections, peri-urban malaria, gold mining-related malaria, malaria in pregnancy, glucose-6-phosphate dehydrogenase (G6PD) deficiency and primaquine use, and possible under-detection of Plasmodium malariae. Some of these challenges underscore the need to implement appropriate tools and procedures in specific regions, such as a field-compatible molecular malaria test, a P. malariae-specific test, malaria diagnosis and appropriate treatment as part of regular antenatal care visits, G6PD test before primaquine administration for P. vivax cases (with weekly primaquine regimen for G6PD deficient individuals), single low dose of primaquine for P. falciparum malaria in Colombia, and national and regional efforts to contain malaria spread in Venezuela urgently needed especially in mining areas. Joint efforts and commitment towards malaria control and elimination should be strategized based on examples of successful regional malaria fighting initiatives, such as PAMAFRO and RAVREDA/AMI.
Collapse
Affiliation(s)
| | - André M Siqueira
- Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Wuelton M Monteiro
- Diretoria de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil
| | - Sonia M Herrera
- Centro de Investigación Científica Caucaseco, Cali, Colombia
| | | | - Marcus V G Lacerda
- Diretoria de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil.,Fiocruz/Fundação de Medicina Tropical Dr. Heitor Vieira Dourado/Institute Elimina, Manaus, Brazil
| |
Collapse
|
38
|
Alho RM, Machado KVA, Val FFA, Fraiji NA, Alexandre MAA, Melo GC, Recht J, Siqueira AM, Monteiro WM, Lacerda MVG. Alternative transmission routes in the malaria elimination era: an overview of transfusion-transmitted malaria in the Americas. Malar J 2017; 16:78. [PMID: 28202065 PMCID: PMC5312538 DOI: 10.1186/s12936-017-1726-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 02/06/2017] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Transfusion-transmitted (TT) malaria is an alternative infection route that has gained little attention from authorities, despite representing a life-threatening condition. There has been no systematic review of this health problem in American countries. The aim of this study was to describe the clinical and epidemiological characteristics of TT malaria in the Americas and identify factors associated with lethality based on the studies published in the literature. METHODS Potentially relevant papers in all languages were retrieved from MEDLINE and LILACS. Additional articles were obtained from reviews and original papers. Publications on screening of candidate blood donors and on surveillance of TT malaria cases were included. Odds ratios with respective 95% confidence intervals (95% CI) were calculated. Epidemiological characteristics of blood donors of TT malaria cases, including a pooled positivity of different tests for malaria diagnosis, were retrieved. RESULTS A total of 63 publications regarding TT malaria from seven countries were included, from 1971 to 2016. A total of 422 cases of TT malaria were recorded. Most TT malaria cases were in females (62.0%) and 39.5% were in the ≥61 years-old age group. About half of all cases were from Mexico (50.7%), 40.3% from the United States of America (USA) and 6.6% from Brazil. Gyneco-obstetrical conditions (67.3%), surgical procedures (20.6%) and complications from neoplasias (6.1%) were the most common indications of transfusion. Packed red blood cells (RBCs) (50.7%) and whole blood (43.3%) were the blood products mostly associated with TT malaria. Cases were mostly caused by Plasmodium malariae (58.4%), followed by Plasmodium vivax (20.7%) and Plasmodium falciparum (17.9%). A total of 66.6% of cases were diagnosed by microscopy. Incubation period of 2-3 weeks was the most commonly observed (28.6%). Lethality was seen in 5.3% of cases and was associated with living in non-endemic countries, P. falciparum infection and concomitant neoplastic diseases. CONCLUSION There is an important research and knowledge gap regarding the TT malaria burden in Latin American countries where malaria remains endemic. No screening method that is practical, affordable and suitably sensitive is available at blood banks in Latin American countries, where infections with low parasitaemia contribute greatly to transmission. Lethality from TT malaria was not negligible. TT malaria needs to be acknowledged and addressed in areas moving toward elimination.
Collapse
Affiliation(s)
- Regina M Alho
- Universidade do Estado do Amazonas, Av. Pedro Teixeira, 25, Dom Pedro, Manaus, AM, 69040-000, Brazil.,Fundação de Hematologia e Hemoterapia do Amazonas, Av. Constantino Nery, 4397, Chapada, Manaus, AM, 69050-002, Brazil
| | - Kim Vinícius Amaral Machado
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Av. Pedro Teixeira, 25, Dom Pedro, Manaus, AM, 69040-000, Brazil
| | - Fernando F A Val
- Universidade do Estado do Amazonas, Av. Pedro Teixeira, 25, Dom Pedro, Manaus, AM, 69040-000, Brazil.,Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Av. Pedro Teixeira, 25, Dom Pedro, Manaus, AM, 69040-000, Brazil
| | - Nelson A Fraiji
- Fundação de Hematologia e Hemoterapia do Amazonas, Av. Constantino Nery, 4397, Chapada, Manaus, AM, 69050-002, Brazil
| | - Marcia A A Alexandre
- Universidade do Estado do Amazonas, Av. Pedro Teixeira, 25, Dom Pedro, Manaus, AM, 69040-000, Brazil
| | - Gisely C Melo
- Universidade do Estado do Amazonas, Av. Pedro Teixeira, 25, Dom Pedro, Manaus, AM, 69040-000, Brazil.,Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Av. Pedro Teixeira, 25, Dom Pedro, Manaus, AM, 69040-000, Brazil
| | | | - André M Siqueira
- Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Av. Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, 21040-360, Brazil
| | - Wuelton M Monteiro
- Universidade do Estado do Amazonas, Av. Pedro Teixeira, 25, Dom Pedro, Manaus, AM, 69040-000, Brazil. .,Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Av. Pedro Teixeira, 25, Dom Pedro, Manaus, AM, 69040-000, Brazil.
| | - Marcus V G Lacerda
- Universidade do Estado do Amazonas, Av. Pedro Teixeira, 25, Dom Pedro, Manaus, AM, 69040-000, Brazil.,Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Av. Pedro Teixeira, 25, Dom Pedro, Manaus, AM, 69040-000, Brazil.,Instituto de Pesquisas Leônidas & Maria Deane, Fundação Oswaldo Cruz, Rua Terezina, 476, Adrianópolis, Manaus, AM, 69057-070, Brazil
| |
Collapse
|
39
|
Pre-travel malaria chemoprophylaxis counselling in a public travel medicine clinic in São Paulo, Brazil. Malar J 2017; 16:64. [PMID: 28173862 PMCID: PMC5297158 DOI: 10.1186/s12936-017-1713-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 01/26/2017] [Indexed: 01/04/2023] Open
Abstract
Background Malaria is one of the most prevalent parasitic diseases in the world and represents a threat to travellers visiting endemic areas. Chemoprophylaxis is the prevention measure used in travel medicine, avoiding clinical manifestations and protecting against the development of severe disease and death. Methods Retrospective and descriptive analysis of malaria prevention data in travellers was recorded from a travel medicine clinic in São Paulo, Brazil, between January 2006 and December 2010. All the medical records of travellers, who had travelled to areas with risk of disease transmission, including Brazil, were analysed. Demographic characteristics of travellers, travel details and recommendations for preventing malaria were also seen. Results During the study period, 2836 pre-travel consultations were carried out on 2744 individuals (92 were consulted twice). The most common reasons for travelling were tourism and work. The most common destinations were Africa (24.5%), Europe (21.2%), Asia (16.6%) and locations within Brazil (14.9%). In general prophylaxis against malaria was recommended in 10.3% of all the consultations. African destinations vs Asian, Brazilian and other destinations and length of stay ≤30 days were independently associated with the higher odds of chemoprophylaxis recommendation after the logistic regression. Conclusion The prophylaxis against malaria was recommended in 10.3% of the consultations. The authors believe that a coherent measure of malaria prevention in Brazil and for international travellers would be to recommend for all parts of the North Brazil, avoidance of mosquito bites and immediate consultation of a physician in case of fever during or after the journey is recommended.
Collapse
|
40
|
Sepúlveda N, Morais CG, Mourão LC, Freire MF, Fontes CJF, Lacerda MVG, Drakeley CJ, Braga ÉM. Allele-specific antibodies to Plasmodium vivax merozoite surface protein-1: prevalence and inverse relationship to haemoglobin levels during infection. Malar J 2016; 15:559. [PMID: 27852258 PMCID: PMC5112628 DOI: 10.1186/s12936-016-1612-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Accepted: 11/09/2016] [Indexed: 11/10/2022] Open
Abstract
Background Antigenic polymorphisms are considered as one of the main strategies employed by malaria parasites to escape from the host immune responses after infections. Merozoite surface protein-1 (MSP-1) of Plasmodium vivax, a promising vaccine candidate, is a highly polymorphic protein whose immune recognition is not well understood. Methods and results The IgG responses to conserved (MSP-119) and polymorphic (block 2 and block 10) epitopes of PvMSP-1 were evaluated in 141 P. vivax infected patients. Ten recombinant proteins corresponding to block 2 (variants BR07, BP29, BP39, BP30, BEL) and block 10 (BR07, BP29, BP39, BP01, BP13) often observed in Brazilian P. vivax isolates were assessed by ELISA in order to determine levels of specific antibodies and their respective seroprevalence. The magnitude and the frequency of variant-specific responses were very low, except for BR07 variant (>40%), which was the predominant haplotype as revealed by block 10 PvMSP-1 gene sequencing. By contrast, 89% of patients had IgG against the C-terminal conserved domain (PvMSP-119), confirming the high antigenicity of this protein. Using multiple linear and logistic regression models, there was evidence for a negative association between levels of haemoglobin and several IgG antibodies against block 2 variant antigens, with the strongest association being observed for BP39 allelic version. This variant was also found to increase the odds of anaemia in these patients. Conclusions These findings may have implications for vaccine development and represent an important step towards a better understanding of the polymorphic PvMSP-1 domain as potential targets of vaccine development. These data highlight the importance of extending the study of these polymorphic epitopes of PvMSP-1 to different epidemiological settings. Electronic supplementary material The online version of this article (doi:10.1186/s12936-016-1612-z) contains supplementary material, which is available to authorized users.
Collapse
|
41
|
Rosas-Aguirre A, Gamboa D, Manrique P, Conn JE, Moreno M, Lescano AG, Sanchez JF, Rodriguez H, Silva H, Llanos-Cuentas A, Vinetz JM. Epidemiology of Plasmodium vivax Malaria in Peru. Am J Trop Med Hyg 2016; 95:133-144. [PMID: 27799639 PMCID: PMC5201219 DOI: 10.4269/ajtmh.16-0268] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 09/29/2016] [Indexed: 01/01/2023] Open
Abstract
Malaria in Peru, dominated by Plasmodium vivax, remains a public health problem. The 1990s saw newly epidemic malaria emerge, primarily in the Loreto Department in the Amazon region, including areas near to Iquitos, the capital city, but sporadic malaria transmission also occurred in the 1990s–2000s in both north-coastal Peru and the gold mining regions of southeastern Peru. Although a Global Fund-supported intervention (PAMAFRO, 2005–2010) was temporally associated with a decrease of malaria transmission, from 2012 to the present, both P. vivax and Plasmodium falciparum malaria cases have rapidly increased. The Peruvian Ministry of Health continues to provide artemesinin-based combination therapy for microscopy-confirmed cases of P. falciparum and chloroquine–primaquine for P. vivax. Malaria transmission continues in remote areas nonetheless, where the mobility of humans and parasites facilitates continued reintroduction outside of ongoing surveillance activities, which is critical to address for future malaria control and elimination efforts. Ongoing P. vivax research gaps in Peru include the following: identification of asymptomatic parasitemics, quantification of the contribution of patent and subpatent parasitemics to mosquito transmission, diagnosis of nonparasitemic hypnozoite carriers, and implementation of surveillance for potential emergence of chloroquine- and 8-aminoquinoline-resistant P. vivax. Clinical trials of tafenoquine in Peru have been promising, and glucose-6-phosphate dehydrogenase deficiency in the region has not been observed to be a limitation to its use. Larger-scale challenges for P. vivax (and malaria in general) in Peru include logistical difficulties in accessing remote riverine populations, consequences of government policy and poverty trends, and obtaining international funding for malaria control and elimination.
Collapse
Affiliation(s)
- Angel Rosas-Aguirre
- Research Institute of Health and Society, Université Catholique de Louvain, Brussels, Belgium.,Instituto de Medicina Tropical "Alexander von Humboldt," Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Dionicia Gamboa
- Departamento de Ciencias Celulares y Moleculares, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru.,Instituto de Medicina Tropical "Alexander von Humboldt," Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Paulo Manrique
- Instituto de Medicina Tropical "Alexander von Humboldt," Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Jan E Conn
- Wadsworth Center, New York State Department of Health, Albany, New York.,Department of Biomedical Sciences, School of Public Health, University at Albany (State University of New York), Albany, New York
| | - Marta Moreno
- Division of Infectious Diseases, Department of Medicine, University of California San Diego, San Diego, California
| | - Andres G Lescano
- Facultad de Salud Pública, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Juan F Sanchez
- Facultad de Salud Pública, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Hugo Rodriguez
- Dirección Regional de Salud Loreto, Ministerio de Salud, Iquitos, Peru
| | - Hermann Silva
- Dirección Regional de Salud Loreto, Ministerio de Salud, Iquitos, Peru
| | - Alejandro Llanos-Cuentas
- Instituto de Medicina Tropical "Alexander von Humboldt," Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Joseph M Vinetz
- Instituto de Medicina Tropical "Alexander von Humboldt," Universidad Peruana Cayetano Heredia, Lima, Peru.,Departamento de Ciencias Celulares y Moleculares, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru.,Division of Infectious Diseases, Department of Medicine, University of California San Diego, San Diego, California
| |
Collapse
|
42
|
Siqueira AM, Alencar AC, Melo GC, Magalhaes BL, Machado K, Alencar Filho AC, Kuehn A, Marques MM, Manso MC, Felger I, Vieira JLF, Lameyre V, Daniel-Ribeiro CT, Lacerda MVG. Fixed-Dose Artesunate-Amodiaquine Combination vs Chloroquine for Treatment of Uncomplicated Blood Stage P. vivax Infection in the Brazilian Amazon: An Open-Label Randomized, Controlled Trial. Clin Infect Dis 2016; 64:166-174. [PMID: 27988484 PMCID: PMC5215218 DOI: 10.1093/cid/ciw706] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 10/18/2016] [Indexed: 01/31/2023] Open
Abstract
In the Brazilian Amazon, the artesunate–amodiaquine combination was more effective in preventing Plasmodium vivax recurrence. With a favorable safety profile, this antimalarial treatment proved to be a good first-line alternative. Chloroquine resistance is probably underestimated in the area. Background. Despite increasing evidence of the development of Plasmodium vivax chloroquine (CQ) resistance, there have been no trials comparing its efficacy with that of artemisinin-based combination therapies (ACTs) in Latin America. Methods. This randomized controlled trial compared the antischizontocidal efficacy and safety of a 3-day supervised treatment of the fixed-dose combination artesunate-amodiaquine Winthrop® (ASAQ) versus CQ for treatment of uncomplicated P. vivax infection in Manaus, Brazil. Patients were followed for 42 days. Primary endpoints were adequate clinical and parasitological responses (ACPR) rates at day 28. Genotype-adjustment was performed. Results. From 2012 to 2013, 380 patients were enrolled. In the per-protocol (PP) analysis, adjusted-ACPR was achieved in 100% (165/165) and 93.6% (161/172) of patients in the ASAQ and CQ arm (difference 6.4%, 95% CI 2.7%; 10.1%) at day 28 and in 97.4% (151/155) and 77.7% (129/166), respectively (difference 19.7%, 95% CI 12.9%; 26.5%), at day 42. Apart from ITT D28 assessment, superiority of ASAQ on ACPR was demonstrated. ASAQ presented faster clearance of parasitaemia and fever. Based on CQ blood level measurements, CQ resistance prevalence was estimated at 11.5% (95% CI: 7.5-17.3) up to day 42. At least one emergent adverse event (AE) was recorded for 79/190 (41x6%) in the ASAQ group and for 85/190 (44x7%) in the CQ group. Both treatments had similar safety profiles. Conclusions. ASAQ exhibited high efficacy against CQ resistant P. vivax and is an adequate alternative in the study area. Studies with an efficacious comparator, longer follow-up and genotype-adjustment can improve CQR characterization. Clinical Trials Registration. NCT01378286.
Collapse
Affiliation(s)
- Andre M Siqueira
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, .,Universidade do Estado do Amazonas, Manaus.,Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro
| | - Aline C Alencar
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado.,Universidade do Estado do Amazonas, Manaus
| | - Gisely C Melo
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado.,Universidade do Estado do Amazonas, Manaus
| | - Belisa L Magalhaes
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado.,Universidade do Estado do Amazonas, Manaus
| | - Kim Machado
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado
| | | | - Andrea Kuehn
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado.,ISGlobal, Barcelona Center for International Health Research (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | | | | | - Ingrid Felger
- Swiss Tropical and Public Health Institute, Basel, Switzerland
| | | | | | | | - Marcus V G Lacerda
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado.,Universidade do Estado do Amazonas, Manaus.,Instituto Leônidas e Maria Deane, Fundação Oswaldo Cruz, Manaus, Brazil
| |
Collapse
|
43
|
Siqueira AM, Mesones-Lapouble O, Marchesini P, Sampaio VDS, Brasil P, Tauil PL, Fontes CJ, Costa FTM, Daniel-Ribeiro CT, Lacerda MVG, Damasceno CP, Santelli ACS. Plasmodium vivax Landscape in Brazil: Scenario and Challenges. Am J Trop Med Hyg 2016; 95:87-96. [PMID: 27708190 PMCID: PMC5201227 DOI: 10.4269/ajtmh.16-0204] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 08/19/2016] [Indexed: 01/01/2023] Open
Abstract
Brazil is the largest country of Latin America, with a considerable portion of its territoritory within the malaria-endemic Amazon region in the North. Furthermore, a considerable portion of its territory is located within the Amazon region in the north. As a result, Brazil has reported half of the total malaria cases in the Americas in the last four decades. Recent progress in malaria control has been accompanied by an increasing proportion of Plasmodium vivax, underscoring a need for a better understanding of management and control of this species and associated challenges. Among these challenges, the contribution of vivax malaria relapses, earlier production of gametocytes (compared with Plasmodium falciparum), inexistent methods to diagnose hypnozoite carriers, and decreasing efficacy of available antimalarials need to be addressed. Innovative tools, strategies, and technologies are needed to achieve further progress toward sustainable malaria elimination. Further difficulties also arise from dealing with the inherent socioeconomic and environmental particularities of the Amazon region and its dynamic changes.
Collapse
Affiliation(s)
- Andre M Siqueira
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil.,Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | | | - Paola Marchesini
- Coordenação Geral do Programa Nacional de Controle da Malaria, Ministério da Saúde, Brasilia, Brazil
| | - Vanderson de Souza Sampaio
- Fundação de Vigilância em Saúde, Manaus, Brazil.,Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil
| | - Patricia Brasil
- Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Pedro L Tauil
- Núcleo de Medicina Tropical, Universidade de Brasília, Brasilia, Brazil
| | | | | | | | - Marcus V G Lacerda
- Instituto Leônidas e Maria Deane, Fundação Oswaldo Cruz (Fiocruz), Manaus, Brazil.,Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil.,Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil
| | - Camila P Damasceno
- Coordenação Geral do Programa Nacional de Controle da Malaria, Ministério da Saúde, Brasilia, Brazil
| | - Ana Carolina S Santelli
- Coordenação Geral do Programa Nacional de Controle da Malaria, Ministério da Saúde, Brasilia, Brazil
| |
Collapse
|
44
|
Rajahram GS, Barber BE, William T, Grigg MJ, Menon J, Yeo TW, Anstey NM. Falling Plasmodium knowlesi Malaria Death Rate among Adults despite Rising Incidence, Sabah, Malaysia, 2010-2014. Emerg Infect Dis 2016; 22:41-8. [PMID: 26690736 PMCID: PMC4696710 DOI: 10.3201/eid2201.151305] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The decreased notification-fatality rate is likely associated with improved use of intravenous artesunate for severe malaria. Deaths from Plasmodium knowlesi malaria have been linked to delayed parenteral treatment. In Malaysia, early intravenous artesunate is now recommended for all severe malaria cases. We describe P. knowlesi fatalities in Sabah, Malaysia, during 2012–2014 and report species-specific fatality rates based on 2010–2014 case notifications. Sixteen malaria-associated deaths (caused by PCR-confirmed P. knowlesi [7], P. falciparum [7], and P. vivax [1] and microscopy-diagnosed “P. malariae” [1]) were reported during 2012–2014. Six patients with severe P. knowlesi malaria received intravenous artesunate at hospital admission. For persons >15 years of age, overall fatality rates during 2010–2014 were 3.4, 4.2, and 1.0 deaths/1,000 P. knowlesi, P. falciparum, and P. vivax notifications, respectively; P. knowlesi–associated fatality rates fell from 9.2 to1.6 deaths/1,000 notifications. No P. knowlesi–associated deaths occurred among children, despite 373 notified cases. Although P. knowlesi malaria incidence is rising, the notification-fatality rate has decreased, likely due to improved use of intravenous artesunate.
Collapse
|
45
|
Chaves YO, da Costa AG, Pereira MLM, de Lacerda MVG, Coelho-Dos-Reis JG, Martins-Filho OA, Teixeira-Carvalho A, Malheiro A, Monteiro WM, Orlandi PP, Marinho CRF, Nogueira PA. Immune response pattern in recurrent Plasmodium vivax malaria. Malar J 2016; 15:445. [PMID: 27581163 PMCID: PMC5007810 DOI: 10.1186/s12936-016-1501-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 08/23/2016] [Indexed: 01/01/2023] Open
Abstract
Background Plasmodium vivax is the causative agent of human malaria of large geographic distribution, with 35 million cases annually. In Brazil, it is the most prevalent species, being responsible by around 70 % of the malaria cases. Methods A cross-sectional study was performed in Manaus (Amazonas, Brazil), including 36 adult patients with primary malaria, 19 with recurrent malaria, and 20 endemic controls. The ex vivo phenotypic features of circulating leukocyte subsets (CD4+ T-cells, CD8+ T-cells, NK, NKT, B, B1 and Treg cells) as well as the plasmatic cytokine profile (IL-2, IL-4, IL-6, IL-10, TNF and IFN-γ) were assessed, aiming at establishing patterns of immune response characteristic of primary malaria vs recurrent malaria as compared to endemic controls. Results The proportion of subjects with high levels of WBC was reduced in malaria patients as compared to the endemic control. Monocytes were diminished particularly in patients with primary malaria. The proportion of subjects with high levels of all lymphocyte subsets was decreased in all malaria groups, regardless their clinical status. Decreased proportion of subjects with high levels of CD4+ and CD8+ T-cells was found especially in the group of patients with recurrent malaria. Data analysis indicated significant increase in the proportion of the subjects with high plasmatic cytokine levels in both malaria groups, characterizing a typical cytokine storm. Recurrent malaria patients displayed the highest plasmatic IL-10 levels, that correlated directly with the CD4+/CD8+ T-cells ratio and the number of malaria episodes. Conclusion The findings confirm that the infection by the P. vivax causes a decrease in peripheral blood lymphocyte subsets, which is intensified in the cases of “recurrent malaria”. The unbalanced CD4+/CD8+ T-cells ratio, as well as increased IL-10 levels were correlated with the number of recurrent malaria episodes. These results suggest that the gradual remodelling of the immune response is dependent on the repeated exposure to the parasite, which involves a strict control of the immune response mediated by the CD4+/CD8+ T-cell unbalance and exacerbated IL-10 secretion. Electronic supplementary material The online version of this article (doi:10.1186/s12936-016-1501-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yury Oliveira Chaves
- Instituto Leônidas e Maria Deane, Fundação Oswaldo Cruz (FIOCRUZ), Manaus, AM, Brazil
| | - Allyson Guimarães da Costa
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas (UEA), Manaus, AM, Brazil.,Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (FMT-HVD), Manaus, AM, Brazil.,Departamento de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, AM, Brazil
| | - Marcelo Luís Monteiro Pereira
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - Marcus Vinícius Guimarães de Lacerda
- Instituto Leônidas e Maria Deane, Fundação Oswaldo Cruz (FIOCRUZ), Manaus, AM, Brazil.,Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas (UEA), Manaus, AM, Brazil.,Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (FMT-HVD), Manaus, AM, Brazil
| | - Jordana Grazziela Coelho-Dos-Reis
- Grupo Integrado de Pesquisas em Biomarcadores de Diagnóstico e Monitoração, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz (FIOCRUZ), Belo Horizonte, MG, Brazil
| | - Olindo Assis Martins-Filho
- Grupo Integrado de Pesquisas em Biomarcadores de Diagnóstico e Monitoração, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz (FIOCRUZ), Belo Horizonte, MG, Brazil
| | - Andréa Teixeira-Carvalho
- Grupo Integrado de Pesquisas em Biomarcadores de Diagnóstico e Monitoração, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz (FIOCRUZ), Belo Horizonte, MG, Brazil
| | - Adriana Malheiro
- Departamento de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, AM, Brazil.,Programa de Pós-Graduação em Imunologia Básica e Aplicada, Universidade Federal do Amazonas (UFAM), Manaus, AM, Brazil
| | - Wuelton Marcelo Monteiro
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas (UEA), Manaus, AM, Brazil.,Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (FMT-HVD), Manaus, AM, Brazil
| | | | - Claudio Romero Farias Marinho
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - Paulo Afonso Nogueira
- Instituto Leônidas e Maria Deane, Fundação Oswaldo Cruz (FIOCRUZ), Manaus, AM, Brazil.
| |
Collapse
|
46
|
Abstract
Introduction: Relapses are important contributors to illness and morbidity in Plasmodium vivax and P. ovale infections. Relapse prevention (radical cure) with primaquine is required for optimal management, control and ultimately elimination of Plasmodium vivax malaria. A review was conducted with publications in English, French, Portuguese and Spanish using the search terms ‘P. vivax’ and ‘relapse’. Areas covered: Hypnozoites causing relapses may be activated weeks or months after initial infection. Incidence and temporal patterns of relapse varies geographically. Relapses derive from parasites either genetically similar or different from the primary infection indicating that some derive from previous infections. Malaria illness itself may activate relapse. Primaquine is the only widely available treatment for radical cure. However, it is often not given because of uncertainty over the risks of primaquine induced haemolysis when G6PD deficiency testing is unavailable. Recommended dosing of primaquine for radical cure in East Asia and Oceania is 0.5 mg base/kg/day and elsewhere is 0.25 mg base/kg/day. Alternative treatments are under investigation. Expert commentary: Geographic heterogeneity in relapse patterns and chloroquine susceptibility of P. vivax, and G6PD deficiency epidemiology mean that radical treatment should be given much more than it is today. G6PD testing should be made widely available so primaquine can be given more safely.
Collapse
Affiliation(s)
- Cindy S Chu
- a Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine , Mahidol University , Mae Sot , Thailand.,b Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine , Mahidol University , Bangkok , Thailand
| | - Nicholas J White
- b Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine , Mahidol University , Bangkok , Thailand.,c Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine , University of Oxford , Oxford , UK
| |
Collapse
|
47
|
Bassat Q, Velarde M, Mueller I, Lin J, Leslie T, Wongsrichanalai C, Baird JK. Key Knowledge Gaps for Plasmodium vivax Control and Elimination. Am J Trop Med Hyg 2016; 95:62-71. [PMID: 27430544 PMCID: PMC5201224 DOI: 10.4269/ajtmh.16-0180] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 05/11/2016] [Indexed: 11/18/2022] Open
Abstract
There is inadequate understanding of the biology, pathology, transmission, and control of Plasmodium vivax, the geographically most widespread cause of human malaria. During the last decades, study of this species was neglected, in part due to the erroneous belief that it is intrinsically benign. In addition, many technical challenges in culturing the parasite also hampered understanding its fundamental biology and molecular and cellular responses to chemotherapeutics. Research on vivax malaria needs to be substantially expanded over the next decade to accelerate its elimination and eradication. This article summarizes key knowledge gaps identified by researchers, national malaria control programs, and other stakeholders assembled by the World Health Organization to develop strategies for controlling and eliminating vivax malaria. The priorities presented in this article emerged in these technical discussions, and were adopted by expert consensus of the authors. All involved understood the priority placed upon pragmatism in this research agenda, that is, focus upon tools delivering better prevention, diagnosis, treatment, and surveillance of P. vivax.
Collapse
Affiliation(s)
- Quique Bassat
- ISGlobal, Barcelona Centre for International Health Research (CRESIB), Hospital Clínic-Universitat de Barcelona, Barcelona, Spain.,Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Mar Velarde
- ISGlobal, Barcelona Centre for International Health Research (CRESIB), Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| | - Ivo Mueller
- Population Health and Immunology Division, Walter and Eliza Hall Institute, Victoria, Australia
| | - Jessica Lin
- Division of Infectious Diseases, University of North Carolina, Chapel Hill, North Carolina
| | - Toby Leslie
- Health Protection and Research Organisation, Kabul, Afghanistan.,London School of Hygiene and Tropical Medicine, London, United Kingdom
| | | | - J Kevin Baird
- Centre for Tropical Medicine, University of Oxford, Oxford, United Kingdom.,Eijkman-Oxford Clinical Research Unit, Jakarta, Indonesia
| |
Collapse
|
48
|
Alencar-Filho AC, Ferreira JMBB, Salinas JL, Fabbri C, Monteiro WM, Siqueira AM, Okoshi K, Lacerda MVG, Okoshi MP. Cardiovascular changes in patients with non-severe Plasmodium vivax malaria. IJC HEART & VASCULATURE 2016; 11:12-16. [PMID: 28616519 PMCID: PMC5441355 DOI: 10.1016/j.ijcha.2016.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 03/04/2016] [Indexed: 11/19/2022]
Abstract
BACKGROUND Cardiovascular system involvement in patients with Plasmodium vivax malaria has been poorly addressed. The aim of this study was to evaluate cardiac structures and function, and serum markers of cardiovascular injury in patients with the non-severe form of vivax malaria in Manaus, Amazonas State, Brazil. METHODS AND RESULTS We prospectively evaluated 26 patients with vivax malaria in an outpatient referral hospital and compared results with a control group of 25 gender- and age-matched healthy individuals. Patients underwent clinical evaluation, laboratory tests, and transthoracic echocardiography at first evaluation (day zero, D0) and seven days (D7) after malaria diagnosis. At D0 echocardiography showed higher left ventricular (LV) systolic diameter (28.8 ± 2.82 vs 30.9 ± 4.03 mm; p = 0.037) and LV diastolic volume (82.4 ± 12.3 vs 93.8 ± 25.9 ml; p = 0.05), and lower LV ejection fraction (Teicholz method: 73.2 ± 6.59 vs 68.4 ± 4.87%; p = 0.004) in patients compared to controls. Right ventricle (RV) fractional area change (54.7 ± 5.11 vs 50.5 ± 6.71%; p = 0.014) was lower, and RV myocardial performance index (0.21 ± 0.07 vs 0.33 ± 0.19; p = 0.007), and pulmonary vascular resistance (1.13 ± 0.25 vs 1.32 ± 0.26 Woods unit; p = 0.012) were higher in patients than controls. Patients presented higher serum levels of unconjugated bilirubin (0.24 ± 0.15 vs 1.30 ± 0.89 mg/dL; p < 0.001), soluble vascular cell adhesion molecule-1 (sVCAM-1; 453 ± 143 vs 1983 ± 880 ng/mL; p < 0.001), N-terminal prohormone brain natriuretic peptide (0.59 ± 0.86 vs 1.08 ± 0.81 pg/mL; p = 0.045), and troponin T (861 ± 338 vs 1037 ± 264 pg/mL; p = 0.045), and lower levels of plasma nitrite (13.42 ± 8.15 vs 8.98 ± 3.97 μM; p = 0.016) than controls. Most alterations had reversed by D7. CONCLUSION Patients with non-severe Plasmodium vivax malaria present subclinical reversible cardiovascular changes.
Collapse
Affiliation(s)
| | | | | | - Camila Fabbri
- North University Center, Pharmacy School, Manaus, Brazil
| | - Wuelton Marcelo Monteiro
- Amazonas State University (UEA), Manaus, Brazil
- Tropical Disease Center “Dr. Heitor Vieira Dourado”, Manaus, Brazil
| | - Andre Machado Siqueira
- National Institute of Infectology Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | | | | |
Collapse
|
49
|
Monteiro WM, Alexandre MA, Siqueira A, Melo G, Romero GAS, d'Ávila E, Benzecry SG, Leite HP, Lacerda MVG. Could Plasmodium vivax malaria trigger malnutrition? Revisiting the Bradford Hill criteria to assess a causal relationship between two neglected problems. Rev Soc Bras Med Trop 2016; 49:274-8. [PMID: 27384822 DOI: 10.1590/0037-8682-0397-2015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 04/13/2016] [Indexed: 02/02/2023] Open
Abstract
The benign characteristics formerly attributed to Plasmodium vivax infections have recently changed owing to the increasing number of reports of severe vivax malaria resulting in a broad spectrum of clinical complications, probably including undernutrition. Causal inference is a complex process, and arriving at a tentative inference of the causal or non-causal nature of an association is a subjective process limited by the existing evidence. Applying classical epidemiology principles, such as the Bradford Hill criteria, may help foster an understanding of causality and lead to appropriate interventions being proposed that may improve quality of life and decrease morbidity in neglected populations. Here, we examined these criteria in the context of the available data suggesting that vivax malaria may substantially contribute to childhood malnutrition. We found the data supported a role for P. vivax in the etiology of undernutrition in endemic areas. Thus, the application of modern causal inference tools, in future studies, may be useful in determining causation.
Collapse
Affiliation(s)
- Wuelton Marcelo Monteiro
- Diretoria de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brasil.,Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, Amazonas, Brasil
| | - Márcia Araújo Alexandre
- Diretoria de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brasil.,Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, Amazonas, Brasil
| | - André Siqueira
- Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brasil
| | - Gisely Melo
- Diretoria de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brasil.,Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, Amazonas, Brasil
| | | | - Efrem d'Ávila
- Diretoria de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brasil.,Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, Amazonas, Brasil
| | - Silvana Gomes Benzecry
- Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, Amazonas, Brasil.,Departamento de Pediatria, Universidade Federal de São Paulo, São Paulo, São Paulo, Brasil
| | - Heitor Pons Leite
- Departamento de Pediatria, Universidade Federal de São Paulo, São Paulo, São Paulo, Brasil
| | - Marcus Vinícius Guimarães Lacerda
- Diretoria de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brasil.,Instituto de Pesquisa Leônidas & Maria Deane, Fundação Oswaldo Cruz, Manaus, Amazonas, Brasil
| |
Collapse
|
50
|
Bennett JW, Yadava A, Tosh D, Sattabongkot J, Komisar J, Ware LA, McCarthy WF, Cowden JJ, Regules J, Spring MD, Paolino K, Hartzell JD, Cummings JF, Richie TL, Lumsden J, Kamau E, Murphy J, Lee C, Parekh F, Birkett A, Cohen J, Ballou WR, Polhemus ME, Vanloubbeeck YF, Vekemans J, Ockenhouse CF. Phase 1/2a Trial of Plasmodium vivax Malaria Vaccine Candidate VMP001/AS01B in Malaria-Naive Adults: Safety, Immunogenicity, and Efficacy. PLoS Negl Trop Dis 2016; 10:e0004423. [PMID: 26919472 PMCID: PMC4769081 DOI: 10.1371/journal.pntd.0004423] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 01/11/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND A vaccine to prevent infection and disease caused by Plasmodium vivax is needed both to reduce the morbidity caused by this parasite and as a key component in efforts to eradicate malaria worldwide. Vivax malaria protein 1 (VMP001), a novel chimeric protein that incorporates the amino- and carboxy- terminal regions of the circumsporozoite protein (CSP) and a truncated repeat region that contains repeat sequences from both the VK210 (type 1) and the VK247 (type 2) parasites, was developed as a vaccine candidate for global use. METHODS We conducted a first-in-human Phase 1 dose escalation vaccine study with controlled human malaria infection (CHMI) of VMP001 formulated in the GSK Adjuvant System AS01B. A total of 30 volunteers divided into 3 groups (10 per group) were given 3 intramuscular injections of 15 μg, 30 μg, or 60 μg respectively of VMP001, all formulated in 500 μL of AS01B at each immunization. All vaccinated volunteers participated in a P. vivax CHMI 14 days following the third immunization. Six non-vaccinated subjects served as infectivity controls. RESULTS The vaccine was shown to be well tolerated and immunogenic. All volunteers generated robust humoral and cellular immune responses to the vaccine antigen. Vaccination did not induce sterile protection; however, a small but significant delay in time to parasitemia was seen in 59% of vaccinated subjects compared to the control group. An association was identified between levels of anti-type 1 repeat antibodies and prepatent period. SIGNIFICANCE This trial was the first to assess the efficacy of a P. vivax CSP vaccine candidate by CHMI. The association of type 1 repeat-specific antibody responses with delay in the prepatency period suggests that augmenting the immune responses to this domain may improve strain-specific vaccine efficacy. The availability of a P. vivax CHMI model will accelerate the process of P. vivax vaccine development, allowing better selection of candidate vaccines for advancement to field trials.
Collapse
Affiliation(s)
- Jason W. Bennett
- Malaria Vaccine Brach, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Anjali Yadava
- Malaria Vaccine Brach, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- * E-mail:
| | - Donna Tosh
- Malaria Vaccine Brach, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | | | - Jack Komisar
- Malaria Vaccine Brach, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Lisa A. Ware
- Malaria Vaccine Brach, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - William F. McCarthy
- U.S. Army Medical Materiel Development Activity, Frederick, Maryland, United States of America
| | - Jessica J. Cowden
- Malaria Vaccine Brach, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Jason Regules
- Malaria Vaccine Brach, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Michele D. Spring
- Malaria Vaccine Brach, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Kristopher Paolino
- Malaria Vaccine Brach, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Joshua D. Hartzell
- Walter Reed National Military Medical Center, Bethesda, Maryland, United States of America
| | - James F. Cummings
- Malaria Vaccine Brach, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Thomas L. Richie
- Naval Medical Research Center, Silver Spring, Maryland, United States of America
| | - Joanne Lumsden
- Malaria Vaccine Brach, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Edwin Kamau
- Malaria Vaccine Brach, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Jittawadee Murphy
- Malaria Vaccine Brach, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Cynthia Lee
- PATH-MVI, Washington, D.C., United States of America
| | | | | | | | | | - Mark E. Polhemus
- Malaria Vaccine Brach, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | | | | | - Christian F. Ockenhouse
- Malaria Vaccine Brach, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| |
Collapse
|