1
|
Paul JK, Azmal M, Haque ANMSNB, Meem M, Talukder OF, Ghosh A. Unlocking the secrets of the human gut microbiota: Comprehensive review on its role in different diseases. World J Gastroenterol 2025; 31:99913. [DOI: 10.3748/wjg.v31.i5.99913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/25/2024] [Accepted: 12/05/2024] [Indexed: 12/30/2024] Open
Abstract
The human gut microbiota, a complex and diverse community of microorganisms, plays a crucial role in maintaining overall health by influencing various physiological processes, including digestion, immune function, and disease susceptibility. The balance between beneficial and harmful bacteria is essential for health, with dysbiosis - disruption of this balance - linked to numerous conditions such as metabolic disorders, autoimmune diseases, and cancers. This review highlights key genera such as Enterococcus, Ruminococcus, Bacteroides, Bifidobacterium, Escherichia coli, Akkermansia muciniphila, Firmicutes (including Clostridium and Lactobacillus), and Roseburia due to their well-established roles in immune regulation and metabolic processes, but other bacteria, including Clostridioides difficile, Salmonella, Helicobacter pylori, and Fusobacterium nucleatum, are also implicated in dysbiosis and various diseases. Pathogenic bacteria, including Escherichia coli and Bacteroides fragilis, contribute to inflammation and cancer progression by disrupting immune responses and damaging tissues. The potential for microbiota-based therapies, such as probiotics, prebiotics, fecal microbiota transplantation, and dietary interventions, to improve health outcomes is examined. Future research directions in the integration of multi-omics, the impact of diet and lifestyle on microbiota composition, and advancing microbiota engineering techniques are also discussed. Understanding the gut microbiota’s role in health and disease is essential for formulating personalized, efficacious treatments and preventive strategies, thereby enhancing health outcomes and progressing microbiome research.
Collapse
Affiliation(s)
- Jibon Kumar Paul
- Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Mahir Azmal
- Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - ANM Shah Newaz Been Haque
- Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Meghla Meem
- Faculty of Medicine, Dhaka University, Dhaka 1000, Bangladesh
| | - Omar Faruk Talukder
- Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Ajit Ghosh
- Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| |
Collapse
|
2
|
Kamath S, Sokolenko E, Collins K, Chan NSL, Mills N, Clark SR, Marques FZ, Joyce P. IUPHAR themed review: The gut microbiome in schizophrenia. Pharmacol Res 2024; 211:107561. [PMID: 39732352 DOI: 10.1016/j.phrs.2024.107561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/11/2024] [Accepted: 12/23/2024] [Indexed: 12/30/2024]
Abstract
Gut microbial dysbiosis or altered gut microbial consortium, in schizophrenia suggests a pathogenic role through the gut-brain axis, influencing neuroinflammatory and neurotransmitter pathways critical to psychotic, affective, and cognitive symptoms. Paradoxically, conventional psychotropic interventions may exacerbate this dysbiosis, with antipsychotics, particularly olanzapine, demonstrating profound effects on microbial architecture through disruption of bacterial phyla ratios, diminished taxonomic diversity, and attenuated short-chain fatty acid synthesis. To address these challenges, novel therapeutic strategies targeting the gut microbiome, encompassing probiotic supplementation, prebiotic compounds, faecal microbiota transplantation, and rationalised co-pharmacotherapy, show promise in attenuating antipsychotic-induced metabolic disruptions while enhancing therapeutic efficacy. Harnessing such insights, precision medicine approaches promise to transform antipsychotic prescribing practices by identifying patients at risk of metabolic side effects based on their microbial profiles. This IUPHAR review collates the current literature landscape of the gut-brain axis and its intricate relationship with schizophrenia while advocating for integrating microbiome assessments and therapeutic management. Such a fundamental shift in proposing microbiome-informed psychotropic prescriptions to optimise therapeutic efficacy and reduce adverse metabolic impacts would align antipsychotic treatments with microbiome safety, prioritising 'gut-neutral' or gut-favourable drugs to safeguard long-term patient outcomes in schizophrenia therapy.
Collapse
Affiliation(s)
- Srinivas Kamath
- UniSA Clinical & Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Elysia Sokolenko
- Discipline of Anatomy and Pathology, School of Biomedicine, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Kate Collins
- UniSA Clinical & Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Nicole S L Chan
- UniSA Clinical & Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Natalie Mills
- Discipline of Psychiatry, Adelaide Medical School, University of Adelaide, Adelaide, South Australia 5000, Australia
| | - Scott R Clark
- Discipline of Psychiatry, Adelaide Medical School, University of Adelaide, Adelaide, South Australia 5000, Australia
| | - Francine Z Marques
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia; Hypertension Research Laboratory, School of Biological Sciences and Victorian Heart Institute, Monash University, Melbourne, VIC, Australia
| | - Paul Joyce
- UniSA Clinical & Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia.
| |
Collapse
|
3
|
Soto PL, Young ME, Nguyen S, Federoff M, Goodson M, Morrison CD, Batdorf HM, Burke SJ, Collier JJ. Early adolescent second-generation antipsychotic exposure produces long-term, post-treatment increases in body weight and metabolism-associated gene expression. Pharmacol Biochem Behav 2024; 247:173951. [PMID: 39722423 DOI: 10.1016/j.pbb.2024.173951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/05/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024]
Abstract
The use of second-generation antipsychotic (SGA) medications in pediatric patients raises concerns about potential long-term adverse outcomes. The current study evaluated the long-term effects of treatment with risperidone or olanzapine on body weight, caloric intake, serum insulin, blood glucose, and metabolism-associated gene expression in C57Bl/6J female mice. Compared to mice treated with vehicle, female mice treated with risperidone or olanzapine gained weight at higher rates during treatment and maintained higher body weights for months following treatment cessation. High-fat diet feeding did not produce a robust difference in weight gain in previously treated vs. control groups. Finally, female mice previously treated with olanzapine also exhibited increased expression of genes associated with inflammation and lipogenesis. These findings suggest that pediatric use of SGA medications that induce excess weight gain during treatment may exert persistent effects on body weight and gene expression and such outcomes may form an important aspect of assessing risk-to-benefit ratios in prescribing decisions.
Collapse
Affiliation(s)
- Paul L Soto
- Department of Psychology, Louisiana State University, Baton Rouge, LA 70803, United States of America; Pennington Biomedical Research Center, Baton Rouge, LA 70808, United States of America.
| | - Michael E Young
- Kansas State University, Manhattan, KS 66506, United States of America
| | - Serena Nguyen
- Department of Psychology, Louisiana State University, Baton Rouge, LA 70803, United States of America; Pennington Biomedical Research Center, Baton Rouge, LA 70808, United States of America
| | - Megan Federoff
- Department of Psychology, Louisiana State University, Baton Rouge, LA 70803, United States of America; Pennington Biomedical Research Center, Baton Rouge, LA 70808, United States of America
| | - Mia Goodson
- Department of Psychology, Louisiana State University, Baton Rouge, LA 70803, United States of America; Pennington Biomedical Research Center, Baton Rouge, LA 70808, United States of America
| | | | - Heidi M Batdorf
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, United States of America
| | - Susan J Burke
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, United States of America
| | - J Jason Collier
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, United States of America
| |
Collapse
|
4
|
Thenappan T, Weir EK. Gut Microbiome and Pulmonary Arterial Hypertension - A Novel and Evolving Paradigm. Physiol Res 2024; 73:S477-S485. [PMID: 39589297 PMCID: PMC11627261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 06/20/2024] [Indexed: 11/27/2024] Open
Abstract
Pulmonary arterial hypertension is characterized by perivascular and systemic inflammation. The gut microbiome influences the host immune system. Here we review the emerging preclinical and clinical evidence that strongly suggests that alterations in the gut microbiome may either initiate or facilitate progression of established pulmonary arterial hypertension by modifying the systemic immune responses. We also briefly review the relationship between the gut microbiome and preeclampsia, a vascular disease also characterized by inflammation. Key words: Dysbiosis, Right ventricle, Inflammation.
Collapse
Affiliation(s)
- T Thenappan
- Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA.
| | | |
Collapse
|
5
|
Yan Y, Zhou D, Chen J. Navigating Nutritional Inequality in Schizophrenia: A Comprehensive Exploration of Diet, Genetics, and Holistic Management Across the Life Cycle. Nutrients 2024; 16:3738. [PMID: 39519571 PMCID: PMC11547656 DOI: 10.3390/nu16213738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/27/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
This review explores the understudied topic of nutritional inequality among individuals with schizophrenia, highlighting the complex interplay between diet, genetics, and mental health. Unhealthy dietary patterns, socioeconomic factors, and disordered eating behaviors contribute to malnutrition, increasing the risk of physical health issues and premature mortality. Socioeconomic factors exacerbate nutritional disparities, necessitating targeted interventions. Genetic influences on nutrient metabolism remain under-researched, although nutritional genomics shows potential for personalized interventions. Current research reveals methodological gaps, urging larger sample sizes and standardized approaches. The integration of nutrigenomics, encompassing various omics disciplines, emerges as a transformative tool. The holistic life-cycle approach to schizophrenia management underscores the vital role of nutrition, calling for personalized interventions to enhance mental health outcomes.
Collapse
Affiliation(s)
- Yiming Yan
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China;
- Shanghai Clinical Research Center for Mental Health, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Disheng Zhou
- School of Nursing, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China;
| | - Jianhua Chen
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China;
- Shanghai Clinical Research Center for Mental Health, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| |
Collapse
|
6
|
West LM, Mooney SJ, Chavez L, Beck A, Clarke GN, Pabiniak CJ, Renz AD, Penfold RB. Evaluation of the Safer Use of Antipsychotics in Youth Study on Population Level Antipsychotic Initiation: An Interrupted Time Series Analysis. J Child Adolesc Psychopharmacol 2024; 34:310-318. [PMID: 38743639 DOI: 10.1089/cap.2024.0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Background: Antipsychotics carry a higher-risk profile than other psychotropic medications and may be prescribed for youth with conditions in which other first-line treatments are more appropriate. This study aimed to evaluate the population-level effect of the Safer Use of Antipsychotics in Youth (SUAY) trial, which aimed to reduce person-days of antipsychotic use among participants. Methods: We conducted an interrupted time series analysis using segmented regression to measure changes in prescribing trends of antipsychotic initiation rates pre-SUAY and post-SUAY trial at four U.S. health systems between 2013 and 2020. Results: In our overall model, adjusted for age and insurance type, antipsychotic initiation rates decreased by 0.73 (95% confidence interval [CI]: 0.30, 1.16, p = 0.002) prescriptions per 10,000 person-months before the SUAY trial. In the first quarter following the start of the trial, there was an immediate decrease in the rate of antipsychotic initiations of 6.57 (95% CI: 0.99, 12.15) prescriptions per 10,000 person-months. When comparing the posttrial period to the pretrial period, there was an increase of 1.09 (95% CI: 0.32, 1.85) prescriptions per 10,000 person-months, but the increasing rate in the posttrial period alone was not statistically significant (0.36 prescriptions per 10,000 person-months, 95% CI: -0.27, 0.99). Conclusion: The declining trend of antipsychotic initiation seen between 2013 and 2018 (pre-SUAY trial) may have naturally reached a level at which prescribing was clinically warranted and appropriate, resulting in a floor effect. The COVID-19 pandemic, which began in the final three quarters of the posttrial period, may also be related to increased antipsychotic medication initiation.
Collapse
Affiliation(s)
- Laura M West
- Department of Epidemiology, University of Washington Seattle, Seattle, Washington, USA
- Kaiser Permanente Washington Health Research Institute, Seattle, Washington, USA
| | - Stephen J Mooney
- Department of Epidemiology, University of Washington Seattle, Seattle, Washington, USA
- Harborview Injury Prevention & Research Center, University of Washington, Seattle, Washington, USA
| | - Laura Chavez
- Center for Child Health Equity and Outcomes Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Arne Beck
- Kaiser Permanente Colorado, Institute for Health Research, Denver, Colorado, USA
| | - Gregory N Clarke
- Kaiser Permanente Northwest Center for Health Research, Portland, Oregon, USA
| | - Chester J Pabiniak
- Kaiser Permanente Washington Health Research Institute, Seattle, Washington, USA
| | - Anne D Renz
- Kaiser Permanente Washington Health Research Institute, Seattle, Washington, USA
| | - Robert B Penfold
- Kaiser Permanente Washington Health Research Institute, Seattle, Washington, USA
- Department of Health Systems and Population Health, University of Washington, Seattle, Washington, USA
| |
Collapse
|
7
|
Rawani NS, Chan AW, Dursun SM, Baker GB. The Underlying Neurobiological Mechanisms of Psychosis: Focus on Neurotransmission Dysregulation, Neuroinflammation, Oxidative Stress, and Mitochondrial Dysfunction. Antioxidants (Basel) 2024; 13:709. [PMID: 38929148 PMCID: PMC11200831 DOI: 10.3390/antiox13060709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/16/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Psychosis, defined as a set of symptoms that results in a distorted sense of reality, is observed in several psychiatric disorders in addition to schizophrenia. This paper reviews the literature relevant to the underlying neurobiology of psychosis. The dopamine hypothesis has been a major influence in the study of the neurochemistry of psychosis and in development of antipsychotic drugs. However, it became clear early on that other factors must be involved in the dysfunction involved in psychosis. In the current review, it is reported how several of these factors, namely dysregulation of neurotransmitters [dopamine, serotonin, glutamate, and γ-aminobutyric acid (GABA)], neuroinflammation, glia (microglia, astrocytes, and oligodendrocytes), the hypothalamic-pituitary-adrenal axis, the gut microbiome, oxidative stress, and mitochondrial dysfunction contribute to psychosis and interact with one another. Research on psychosis has increased knowledge of the complexity of psychotic disorders. Potential new pharmacotherapies, including combinations of drugs (with pre- and probiotics in some cases) affecting several of the factors mentioned above, have been suggested. Similarly, several putative biomarkers, particularly those related to the immune system, have been proposed. Future research on both pharmacotherapy and biomarkers will require better-designed studies conducted on an all stages of psychotic disorders and must consider confounders such as sex differences and comorbidity.
Collapse
Affiliation(s)
| | | | | | - Glen B. Baker
- Neurochemical Research Unit and Bebensee Schizophrenia Research Unit, Department of Psychiatry and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2G3, Canada; (N.S.R.); (A.W.C.); (S.M.D.)
| |
Collapse
|
8
|
Dias MF, Nogueira YJDA, Romano-Silva MA, Marques de Miranda D. Effects of antipsychotics on the gastrointestinal microbiota: A systematic review. Psychiatry Res 2024; 336:115914. [PMID: 38663221 DOI: 10.1016/j.psychres.2024.115914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 05/07/2024]
Abstract
Antipsychotics (APs) have been increasingly prescribed for psychiatric disorders from schizophrenia to disruptive behavioral conditions. These drugs have been associated with considerable side effects, such as weight gain, and increasing evidence has also indicated that its use impacts gut microbiota (GM), although this connection is still little understood. To assess APs effects on the GM of patients starting or ongoing treatment, a systematic review was carried out in PubMed and Scopus databases. Twelve articles were considered eligible for the review, which investigated the effects of risperidone (5 studies), quetiapine (3), amilsupride (1), olanzapine (1), and unspecified atypical drugs (2). Eleven reported changes in GM in response to APs, and associations between the abundance of bacterial groups and different metabolic parameters were described by most of them. However, the studies were noticeably heterogeneous considering design, methods, and results. In this way, the effects of APs on GM composition and diversity were inconclusive. Despite the uncertain interactions, a more comprehensive understanding on how microbiota is affected by APs may help to optimize treatment, potentially minimizing side effects and improving adherence to treatment.
Collapse
Affiliation(s)
- Marcela França Dias
- Molecular Medicine Lab, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | | | - Marco Aurélio Romano-Silva
- Department of Mental Health, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Débora Marques de Miranda
- Department of Pediatrics, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
9
|
Kong L, Wang H, Yan N, Xu C, Chen Y, Zeng Y, Guo X, Lu J, Hu S. Effect of antipsychotics and mood stabilisers on metabolism in bipolar disorder: a network meta-analysis of randomised-controlled trials. EClinicalMedicine 2024; 71:102581. [PMID: 38618207 PMCID: PMC11015341 DOI: 10.1016/j.eclinm.2024.102581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/17/2024] [Accepted: 03/19/2024] [Indexed: 04/16/2024] Open
Abstract
Background Antipsychotics and mood stabilisers are gathering attention for the disturbance of metabolism. This network meta-analysis aims to evaluate and rank the metabolic effects of the commonly used antipsychotics and mood stabilisers in treating bipolar disorder (BD). Methods Registries including PubMed, Embase, Cochrane Library, Web of Science, Ovid, and Google Scholar were searched before February 15th, 2024, for randomised controlled trials (RCTs) applying antipsychotics or mood stabilisers for BD treatment. The observed outcomes were twelve metabolic indicators. The data were extracted by two reviewers independently, and confirmed by another four reviewers and a corresponding author. The above six reviewers all participated in data analyses. Data extraction was based on PRISMA guidelines, and quality assessment was conducted according to the Cochrane Handbook. Use a random effects model for data pooling. The PROSPERO registration number is CRD42023466669. Findings Together, 5421 records were identified, and 41 publications with 11,678 complete-trial participants were confirmed eligible. After eliminating possible sensitivity, risperidone ranked 1st in elevating fasting serum glucose (SUCRA = 90.7%) and serum insulin (SUCRA = 96.6%). Lurasidone was most likely to elevate HbA1c (SUCRA = 82.1%). Olanzapine ranked 1st in elevating serum TC (SUCRA = 93.3%), TG (SUCRA = 89.6%), and LDL (SUCRA = 94.7%). Lamotrigine ranked 1st in reducing HDL (SUCRA = 82.6%). Amisulpride ranked 1st in elevating body weight (SUCRA = 100.0%). For subgroup analyses, quetiapine is more likely to affect indicators of glucose metabolism among male adult patients with bipolar mania, while long-term lurasidone tended to affect glucose metabolism among female patients with bipolar depression. Among patients under 18, divalproex tended to affect glucose metabolism, with lithium affecting lipid metabolism. In addition, most observed antipsychotics performed higher response and remission rates than placebo, and displayed a similar dropout rate with placebo, while no between-group significance of rate was observed among mood stabilisers. Interpretation Our findings suggest that overall, antipsychotics are effective in treating BD, while they are also more likely to disturb metabolism than mood stabilisers. Attention should be paid to individual applicability in clinical practice. The results put forward evidence-based information and clinical inspiration for drug compatibility and further research of the BD mechanism. Funding The National Key Research and Development Program of China (2023YFC2506200), and the Research Project of Jinan Microecological Biomedicine Shandong Laboratory (No. JNL-2023001B).
Collapse
Affiliation(s)
- Lingzhuo Kong
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Huaizhi Wang
- School of Psychiatry, Wenzhou Medical University, Wenzhou, 325000, China
| | - Ning Yan
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- Shanghai Jing ‘an District Mental Health Centre, Shanghai, 200040, China
| | - Chenyue Xu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yiqing Chen
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yuanyuan Zeng
- Hangzhou Medical College, School of Clinical Medicine, Hangzhou, 310003, China
| | - Xiaonan Guo
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Jing Lu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- Zhejiang Key Laboratory of Precision Psychiatry, Hangzhou, 310003, China
- Brain Research Institute of Zhejiang University, Hangzhou, 310003, China
- Zhejiang Engineering Centre for Mathematical Mental Health, Hangzhou, 310003, China
- MOE Frontier Science Centre for Brain Science & Brain-Machine Integration, Zhejiang University, Hangzhou, 310003, China
| | - Shaohua Hu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- School of Psychiatry, Wenzhou Medical University, Wenzhou, 325000, China
- Zhejiang Key Laboratory of Precision Psychiatry, Hangzhou, 310003, China
- Brain Research Institute of Zhejiang University, Hangzhou, 310003, China
- Zhejiang Engineering Centre for Mathematical Mental Health, Hangzhou, 310003, China
- MOE Frontier Science Centre for Brain Science & Brain-Machine Integration, Zhejiang University, Hangzhou, 310003, China
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, 310003, China
| |
Collapse
|
10
|
Merino D, Gérard AO, Destere A, Saidessalam H, Askenazy F, Montastruc F, Drici MD, Thümmler S. Cardiac and metabolic safety profile of antipsychotics in youths: A WHO safety database analysis. Psychiatry Res 2024; 334:115786. [PMID: 38387164 DOI: 10.1016/j.psychres.2024.115786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 02/03/2024] [Accepted: 02/10/2024] [Indexed: 02/24/2024]
Abstract
A significant heterogeneity prevails in antipsychotics (APs) safety monitoring recommendations. Youths are deemed more vulnerable to cardiometabolic side effects. We aimed to assess age-dependent reporting of cardiac and metabolic disorders in youths, relying on the WHO safety database (VigiBase®). VigiBase® was queried for all reports of cardiac, glucose, lipid and nutritional disorders involving APs. Patients <18 years were classified as pediatric population. Disproportionality analyses relied on the Information Component (IC): the positivity of the lower end of its 95 % confidence interval was required to suspect a signal. We yielded 4,672 pediatric reports. In disproportionality analysis, nutritional disorders were leading in youths (IC 3.9 [3.9-4.0]). Among healthcare professionals' reports, stronger signals were detected in youths than in adults. Children had the greatest signal with nutritional disorders (IC 4.7 [4.6-4.8]). In adolescents, aripiprazole was ascribed to non-alcoholic steatohepatitis (NASH). Our findings, based on real-world data, support the hypothesis of a greater propensity for nutritional disorders in youths, despite limitations of pharmacovigilance studies. We suggest specific safety profiles, such as aripiprazole and NASH. Pending more answers from population-based studies, a careful anamnesis should seek for risk factors before AP initiation. A cautious monitoring is warranted to allow earlier identification of side effects.
Collapse
Affiliation(s)
- Diane Merino
- University Department of Child and Adolescent Psychiatry, Children's Hospitals of Nice, CHU-Lenval, Nice, France; Department of Pharmacology and Pharmacovigilance Center of Nice, University Hospital CHU de Nice, Nice, France; Université Côte d'Azur, CoBTeK, Nice, France
| | - Alexandre O Gérard
- Department of Pharmacology and Pharmacovigilance Center of Nice, University Hospital CHU de Nice, Nice, France; Université Côte d'Azur, Laboratory of Molecular Physio Medicine (LP2M), UMR 7370, CNRS, Nice, France
| | - Alexandre Destere
- Department of Pharmacology and Pharmacovigilance Center of Nice, University Hospital CHU de Nice, Nice, France; Université Côte d'Azur, Inria, CNRS, Laboratoire J.A. Dieudonné, Maasai team, Nice, France
| | - Haitam Saidessalam
- Department of Pharmacology and Pharmacovigilance Center of Nice, University Hospital CHU de Nice, Nice, France
| | - Florence Askenazy
- University Department of Child and Adolescent Psychiatry, Children's Hospitals of Nice, CHU-Lenval, Nice, France; Université Côte d'Azur, CoBTeK, Nice, France
| | - François Montastruc
- Department of Medical and Clinical Pharmacology, Centre of PharmacoVigilance and Pharmacoepidemiology, Faculty of Medicine, Toulouse University Hospital, Toulouse, France
| | - Milou-Daniel Drici
- Department of Pharmacology and Pharmacovigilance Center of Nice, University Hospital CHU de Nice, Nice, France
| | - Susanne Thümmler
- University Department of Child and Adolescent Psychiatry, Children's Hospitals of Nice, CHU-Lenval, Nice, France; Université Côte d'Azur, CoBTeK, Nice, France.
| |
Collapse
|
11
|
Ward K, Citrome L. Tolerability and safety outcomes of first-line oral second-generation antipsychotics in patients with schizophrenia. Expert Opin Drug Saf 2024; 23:399-409. [PMID: 38467517 DOI: 10.1080/14740338.2024.2328812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 03/05/2024] [Indexed: 03/13/2024]
Abstract
INTRODUCTION Antipsychotics are the foundation of pharmacologic treatment for schizophrenia. There are many oral antipsychotics available and given that these medications are generally considered comparably efficacious when titrated to an adequate dose, their varied tolerability, and safety profiles become critically important for medication selection. AREAS COVERED This paper reviews tolerability and safety considerations for first-line second-generation oral antipsychotics currently approved for the treatment of schizophrenia in the USA. Excluded from consideration are clozapine and non-oral formulations. EXPERT OPINION Among antipsychotics, there are many differences in adverse reactions observed in clinical trials, such as variable likelihood to cause sedation vs insomnia, weight gain and abnormalities in glucose/lipid metabolism, hyperprolactinemia, potential for impact on the QT interval, and motoric adverse effects. Additional safety data that can help with medication selection include safety in pregnancy and lactation, and potential for drug-drug interactions. Ultimately, working with patients to personalize treatment by focusing on safety and individual tolerability considerations for various adverse effects can help in building a therapeutic alliance and improving patients' outcomes.
Collapse
Affiliation(s)
- Kristen Ward
- Clinical Pharmacy Department, University of Michigan College of Pharmacy, Ann Arbor, MI, USA
| | - Leslie Citrome
- Department of Psychiatry and Behavioral Science, New York Medical College, Valhalla, NY, USA
| |
Collapse
|
12
|
McVey Neufeld SF, Ahn M, Kunze WA, McVey Neufeld KA. Adolescence, the Microbiota-Gut-Brain Axis, and the Emergence of Psychiatric Disorders. Biol Psychiatry 2024; 95:310-318. [PMID: 37839790 DOI: 10.1016/j.biopsych.2023.10.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/06/2023] [Accepted: 10/07/2023] [Indexed: 10/17/2023]
Abstract
Second only to early life, adolescence is a period of dramatic change and growth. For the developing young adult, this occurs against a backdrop of distinct environmental challenges and stressors. A significant body of work has identified an important role for the microbiota-gut-brain (MGB) axis in the development and function of the brain. Given that the MGB axis is both highly plastic during the teenage years and vulnerable to environmental stressors, more attention needs to be drawn to its potential role in the emergence of psychiatric illnesses, many of which first manifest during adolescence. Here, we review the current literature surrounding the developing microbiome, enteric nervous system, vagus nerve, and brain during the adolescent period. We also examine preclinical and clinical research involving the MGB axis during this dynamic developmental window and argue that more research is needed to further understand the role of the MGB in the pathogenesis of brain disorders. Greater understanding of the adolescent MGB axis will open up the exciting potential for new microbial-based therapeutics for the treatment of these often-refractory psychiatric illnesses.
Collapse
Affiliation(s)
| | - Matthew Ahn
- McMaster Brain-Body Institute at St Joseph's Healthcare, McMaster University, Hamilton, Ontario, Canada
| | - Wolfgang A Kunze
- McMaster Brain-Body Institute at St Joseph's Healthcare, McMaster University, Hamilton, Ontario, Canada
| | - Karen-Anne McVey Neufeld
- McMaster Brain-Body Institute at St Joseph's Healthcare, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
13
|
Michaelis L, Berg L, Maier L. Confounder or Confederate? The Interactions Between Drugs and the Gut Microbiome in Psychiatric and Neurological Diseases. Biol Psychiatry 2024; 95:361-369. [PMID: 37331548 DOI: 10.1016/j.biopsych.2023.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/20/2023]
Abstract
The gut microbiome is emerging as an important factor in signaling along the gut-brain axis. The intimate physiological connection between the gut and the brain allows perturbations in the microbiome to be directly transmitted to the central nervous system and thereby contribute to psychiatric and neurological diseases. Common microbiome perturbations result from the ingestion of xenobiotic compounds including pharmaceuticals such as psychotropic drugs. In recent years, a variety of interactions between these drug classes and the gut microbiome have been reported, ranging from direct inhibitory effects on gut bacteria to microbiome-mediated drug degradation or sequestration. Consequently, the microbiome may play a critical role in influencing the intensity, duration, and onset of therapeutic effects, as well as in influencing the side effects that patients may experience. Furthermore, because the composition of the microbiome varies from person to person, the microbiome may contribute to the frequently observed interpersonal differences in the response to these drugs. In this review, we first summarize the known interactions between xenobiotics and the gut microbiome. Then, for psychopharmaceuticals, we address the question of whether these interactions with gut bacteria are irrelevant for the host (i.e., merely confounding factors in metagenomic analyses) or whether they may even have therapeutic or adverse effects.
Collapse
Affiliation(s)
- Lena Michaelis
- Interfaculty Institute for Microbiology and Infection Medicine Tübingen, University of Tübingen, Tübingen, Germany; and the Cluster of Excellence EXC 2124 (Controlling Microbes to Fight Infections), University of Tübingen, Tübingen, Germany
| | - Lara Berg
- Interfaculty Institute for Microbiology and Infection Medicine Tübingen, University of Tübingen, Tübingen, Germany; and the Cluster of Excellence EXC 2124 (Controlling Microbes to Fight Infections), University of Tübingen, Tübingen, Germany
| | - Lisa Maier
- Interfaculty Institute for Microbiology and Infection Medicine Tübingen, University of Tübingen, Tübingen, Germany; and the Cluster of Excellence EXC 2124 (Controlling Microbes to Fight Infections), University of Tübingen, Tübingen, Germany.
| |
Collapse
|
14
|
Mötteli S, Vetter S, Colla M, Hotzy F. Are probiotics effective in reducing the metabolic side effects of psychiatric medication? A scoping review of evidence from clinical studies. Transl Psychiatry 2024; 14:26. [PMID: 38225232 PMCID: PMC10789870 DOI: 10.1038/s41398-024-02735-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 12/19/2023] [Accepted: 01/02/2024] [Indexed: 01/17/2024] Open
Abstract
The psychopharmacological treatment of patients with schizophrenia or depression is often accompanied by serious side effects. In particular, the clinical findings of weight gain are worrying, as this side effect can lead to various medical sequelae in the future. However, the treatment of metabolic changes in psychiatric patients is often neglected or unsuccessful. An improved knowledge of possible therapeutic approaches is needed. The aim of this study was to provide an overview of the utilisation and effectiveness of probiotics in reducing weight gain in patients with severe mental illness. A scoping review of studies published until 15 June 2022 was conducted to identify studies using probiotics in people with schizophrenia or depression. We systematically searched the databases EMBASE, PubMed (MEDLINE), Web of Science and SCOPUS with a predefined search string. In addition, reference lists of relevant publications were examined for additional studies. The studies were assessed by two reviewers. The primary outcomes were weight-related measurements. The secondary outcomes were metabolic blood parameters and gut microbiota. Four studies ultimately met the inclusion criteria. Two studies in which probiotics were administered did not find significant effects on pharmacologically induced weight gain. The other two studies examined the effects of synbiotics (a combination of probiotics and prebiotics). Interestingly, less weight gain was observed in individuals with this combined intervention. Adjustments in diet can be helpful and are generally well-accepted interventions in the fight against pharmacologically induced weight gain. The clinical use of probiotics and prebiotics (or synbiotics) as dietary interventions may represent a promising additional strategy in this regard. However, the few studies available showed no clear conclusions.
Collapse
Affiliation(s)
- Sonja Mötteli
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital of the University of Zurich, Zurich, Switzerland
| | - Stefan Vetter
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital of the University of Zurich, Zurich, Switzerland
| | - Michael Colla
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital of the University of Zurich, Zurich, Switzerland
| | - Florian Hotzy
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital of the University of Zurich, Zurich, Switzerland.
| |
Collapse
|
15
|
McIntyre RS, Kwan ATH, Rosenblat JD, Teopiz KM, Mansur RB. Psychotropic Drug-Related Weight Gain and Its Treatment. Am J Psychiatry 2024; 181:26-38. [PMID: 38161305 DOI: 10.1176/appi.ajp.20230922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Psychotropic drug-related weight gain (PDWG) is a common occurrence and is highly associated with non-initiation, discontinuation, and dissatisfaction with psychiatric drugs. Moreover, PDWG intersects with the elevated risk for obesity and associated morbidity that has been amply reported in the psychiatric population. Evidence indicates that differential liability for PDWG exists for antipsychotics, antidepressants, and anticonvulsants. During the past two decades, agents within these classes have become available with significantly lower or no liability for PDWG and as such should be prioritized. Although lithium is associated with weight gain, the overall extent of weight gain is significantly lower than previously estimated. The benefit of lifestyle and behavioral modification for obesity and/or PDWG in psychiatric populations is established, with effectiveness similar to that in the general population. Metformin is the most studied pharmacological treatment in the prevention and treatment of PDWG, and promising data are emerging for glucagon-like peptide-1 (GLP-1) receptor agonists (e.g., liraglutide, exenatide, semaglutide). Most pharmacologic antidotes for PDWG are supported with low-confidence data (e.g., topiramate, histamine-2 receptor antagonists). Future vistas for pharmacologic treatment for PDWG include large, adequately controlled studies with GLP-1 receptor agonists and possibly GLP-1/glucose-dependent insulinotropic polypeptide co-agonists (e.g., tirzepatide) as well as specific dietary modifications.
Collapse
Affiliation(s)
- Roger S McIntyre
- Department of Psychiatry (McIntyre, Rosenblat, Mansur) and Department of Pharmacology and Toxicology (McIntyre, Rosenblat, Mansur), University of Toronto, Toronto; Brain and Cognition Discovery Foundation, Toronto (McIntyre, Kwan, Teopiz); Faculty of Medicine, University of Ottawa, Ottawa (Kwan)
| | - Angela T H Kwan
- Department of Psychiatry (McIntyre, Rosenblat, Mansur) and Department of Pharmacology and Toxicology (McIntyre, Rosenblat, Mansur), University of Toronto, Toronto; Brain and Cognition Discovery Foundation, Toronto (McIntyre, Kwan, Teopiz); Faculty of Medicine, University of Ottawa, Ottawa (Kwan)
| | - Joshua D Rosenblat
- Department of Psychiatry (McIntyre, Rosenblat, Mansur) and Department of Pharmacology and Toxicology (McIntyre, Rosenblat, Mansur), University of Toronto, Toronto; Brain and Cognition Discovery Foundation, Toronto (McIntyre, Kwan, Teopiz); Faculty of Medicine, University of Ottawa, Ottawa (Kwan)
| | - Kayla M Teopiz
- Department of Psychiatry (McIntyre, Rosenblat, Mansur) and Department of Pharmacology and Toxicology (McIntyre, Rosenblat, Mansur), University of Toronto, Toronto; Brain and Cognition Discovery Foundation, Toronto (McIntyre, Kwan, Teopiz); Faculty of Medicine, University of Ottawa, Ottawa (Kwan)
| | - Rodrigo B Mansur
- Department of Psychiatry (McIntyre, Rosenblat, Mansur) and Department of Pharmacology and Toxicology (McIntyre, Rosenblat, Mansur), University of Toronto, Toronto; Brain and Cognition Discovery Foundation, Toronto (McIntyre, Kwan, Teopiz); Faculty of Medicine, University of Ottawa, Ottawa (Kwan)
| |
Collapse
|
16
|
Chen AI, Ebisu K, Benmarhnia T, Basu R. Emergency department visits associated with wildfire smoke events in California, 2016-2019. ENVIRONMENTAL RESEARCH 2023; 238:117154. [PMID: 37716386 DOI: 10.1016/j.envres.2023.117154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/09/2023] [Accepted: 09/13/2023] [Indexed: 09/18/2023]
Abstract
Wildfire smoke has been associated with adverse respiratory outcomes, but the impacts of wildfire on other health outcomes and sensitive subpopulations are not fully understood. We examined associations between smoke events and emergency department visits (EDVs) for respiratory, cardiovascular, diabetes, and mental health outcomes in California during the wildfire season June-December 2016-2019. Daily, zip code tabulation area-level wildfire-specific fine particulate matter (PM2.5) concentrations were aggregated to air basins. A "smoke event" was defined as an air basin-day with a wildfire-specific PM2.5 concentration at or above the 98th percentile across all air basin-days (threshold = 13.5 μg/m3). We conducted a two-stage time-series analysis using quasi-Poisson regression considering lag effects and random effects meta-analysis. We also conducted analyses stratified by race/ethnicity, age, and sex to assess potential effect modification. Smoke events were associated with an increased risk of EDVs for all respiratory diseases at lag 1 [14.4%, 95% confidence interval (CI): (6.8, 22.5)], asthma at lag 0 [57.1% (44.5, 70.8)], and chronic lower respiratory disease at lag 0 [12.7% (6.2, 19.6)]. We also found positive associations with EDVs for all cardiovascular diseases at lag 10. Mixed results were observed for mental health outcomes. Stratified results revealed potential disparities by race/ethnicity. Short-term exposure to smoke events was associated with increased respiratory and schizophrenia EDVs. Cardiovascular impacts may be delayed compared to respiratory outcomes.
Collapse
Affiliation(s)
- Annie I Chen
- Air and Climate Epidemiology Section, Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Keita Ebisu
- Air and Climate Epidemiology Section, Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - Tarik Benmarhnia
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Rupa Basu
- Air and Climate Epidemiology Section, Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA.
| |
Collapse
|
17
|
Darwish M, Bugarski-Kirola D, Jaworowicz D, Owen J, Al Qaraghuli F, Barry A, DeKarske D. Population Pharmacokinetic Modeling and Stochastic Simulations to Support Pediatric Dose Selection of Pimavanserin. J Clin Pharmacol 2023; 63:1408-1416. [PMID: 37471636 DOI: 10.1002/jcph.2315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 07/17/2023] [Indexed: 07/22/2023]
Abstract
Pimavanserin is a selective serotonin-modulating agent with inverse agonist/antagonist activity at the 5-hydroxytryptamine2A (5-HT2A ) receptor. The safety and efficacy of pimavanserin 34 mg once daily were studied in adults with hallucinations and delusions associated with Parkinson's disease psychosis and other neuropsychiatric conditions. This analysis used model-based simulations of pimavanserin steady-state exposures to identify a dose that generated pediatric exposures comparable with adult exposures achieved with 34 mg pimavanserin. A population pharmacokinetics model was developed using pooled plasma drug concentration (ie, actual) data from 13 clinical studies, including a phase 1 study of adolescent pediatric patients (aged 13-17 years) with various psychiatric conditions. Stochastic simulations were performed to predict exposures in a virtual (ie, simulated) group of pediatric patients (aged 5-17 years). Steady-state measures of the area under the plasma concentration-time curve (AUC) and maximum drug concentration (Cmax ) were simulated for relevant age and weight stratifications and compared with simulated exposures in adults (aged 18-49 years). The simulated mean AUC ranged from 47.41 to 54.73 ng d/mL and the mean Cmax ranged from 41.13 to 50.07 ng/mL in adults receiving pimavanserin 34 mg. The simulated mean (SD) Cmax of 56.54 (24.58) ng/mL with pimavanserin 34 mg in patients aged 10-17 years was similar to that in adults. Pimavanserin 20 mg yielded a mean (SD) Cmax of 45.30 (21.31) ng/mL in patients aged 5-9 years and 49.18 (22.91) ng/mL in the pediatric patient weight group of 14-25 kg, which are values close to the Cmax in adults treated with 34 mg. Pimavanserin 20 and 34 mg in pediatric patients aged 5-9 and 10-17 years, respectively, yielded exposures similar to daily pimavanserin 34 mg in adults aged 18-49 years.
Collapse
Affiliation(s)
| | | | - David Jaworowicz
- Cognigen Corporation, a Simulations-Plus company, Buffalo, NY, USA
| | - Joel Owen
- Cognigen Corporation, a Simulations-Plus company, Buffalo, NY, USA
| | | | - Alida Barry
- Acadia Pharmaceuticals Inc., San Diego, CA, USA
| | | |
Collapse
|
18
|
Wang F, Yang Y, Tan WY, Lin HC, Yang CJ, Lin YQ, Jia FJ, Wang SB, Hou CL. Patterns and correlates of insight among patients with schizophrenia in China:A network perspective. Asian J Psychiatr 2023; 88:103735. [PMID: 37591116 DOI: 10.1016/j.ajp.2023.103735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/09/2023] [Accepted: 08/09/2023] [Indexed: 08/19/2023]
Abstract
OBJECTIVE To explore the patterns and correlates of insight among patients with schizophrenia in a large Chinese population. METHOD A multi-center cross-sectional study was conducted in Guangdong province, China. Patients with schizophrenia were included. Basic socio-demographic and clinical characteristics were collected in this study. Univariate analyses, multivariate logistic regression, and network analysis were conducted. RESULTS A total of 6090 participants (58.8% were male, and 41.2% were female) met the study criteria and completed all the assessments. 63.5% (n = 3869) patients with schizophrenia had impaired insight. Fewer drug sides effect, higher psychological and environment domains scores in quality of life have a positive significant impact on insight in patients with schizophrenia. Younger age, higher BPRS scores have a negative significant impact on insight in patients with schizophrenia. The node ITAQ 8 (strength=1.17) was the most central node within the ITAQ network, while node ITAQ 3 was the least central node (strength=0.69). The edge ITAQ 1-ITAQ 2 was the thickest and most saturated edge in network model. CONCLUSIONS Considering patterns and correlation of insight, it is necessary to ensure adherence to medications and engagement with mental health services for patients with schizophrenia, which could also improve their quality of life. Taking medication actively is more central to identify ITAQ and might be the potential targets for future interventions.
Collapse
Affiliation(s)
- Fei Wang
- Guangdong Mental Health Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yuan Yang
- Guangdong Mental Health Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Wen-Yan Tan
- Guangdong Mental Health Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Hai-Cheng Lin
- Guangdong Mental Health Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Cheng-Jia Yang
- Guangdong Mental Health Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yong-Qiang Lin
- Guangdong Mental Health Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Fu-Jun Jia
- Guangdong Mental Health Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Shi-Bin Wang
- Guangdong Mental Health Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China; School of Health, Zhuhai College of Science and Technology, Zhuhai, China.
| | - Cai-Lan Hou
- Guangdong Mental Health Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.
| |
Collapse
|
19
|
Yin F, Shi Z, Ma X, Ding K, Zhang Y, Ma S. Impact of clozapine monotherapy on gut microbiota and metabolism in people with schizophrenia. Front Microbiol 2023; 14:1253156. [PMID: 37744899 PMCID: PMC10512059 DOI: 10.3389/fmicb.2023.1253156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 08/22/2023] [Indexed: 09/26/2023] Open
Abstract
Background Clozapine is considered one of the most effective antipsychotic drugs, but it is most likely to cause metabolic abnormalities. Researchers have studied the causes of metabolic abnormalities caused by clozapine from multiple perspectives, but the reasons remain unclear. Purpose Characterize the gut microbiota of people with schizophrenia taking clozapine, exploring the association between gut microbiota and glucose lipid metabolic markers in schizophrenia patients taking clozapine. Research design Sixty-one long-term inpatients with schizophrenia in clozapine monotherapy were selected as study subjects. We got four subgroups by sex and the presence of metabolic syndrome. Data analysis 16s analysis technology was applied at the genus level to determine the classification of gut microbiota. Then we compared the characteristics of gut microbiota and the association of gut microbiota with glucose lipid metabolic markers in each group. Findings We found differences in the diversity of gut microbiota among groups. The association between gut microbiota and glucose lipid metabolic markers was complicated. Gender was an important differentiating factor. Oscillibacter has a low abundance. However, it was the only genus associated with glycemic or lipids in each group. Among metabolic syndromes, Gemmiger was positively correlated with most lipids in females but negatively correlated in males, showing gender differences. In female non-metabolic syndromes, Bifidobacterium lost its probiotic character; instead, showing pathogenicity, which has strong positive correlations with fasting blood glucose and low-density lipoprotein but negative correlations with Apolipoprotein A1. Maybe schizophrenia, taking clozapine, and gender factors influenced the gut microbiota, which complicated our findings. The significance of the results remains to be determined by in-depth studies.
Collapse
Affiliation(s)
- Feiyan Yin
- Clinical Research Center for Mental Disorders, Shanghai Pudong New Area Mental Health Center, School of Medicine, Tongji University, Shanghai, China
| | - Zhidao Shi
- Clinical Research Center for Mental Disorders, Shanghai Pudong New Area Mental Health Center, School of Medicine, Tongji University, Shanghai, China
| | - Xiquan Ma
- Department of Developmental and Behavioral Pediatrics, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Kai Ding
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Yuan Zhang
- Clinical Research Center for Mental Disorders, Shanghai Pudong New Area Mental Health Center, School of Medicine, Tongji University, Shanghai, China
| | - Sha Ma
- Clinical Research Center for Mental Disorders, Shanghai Pudong New Area Mental Health Center, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
20
|
Xing M, Gao H, Yao L, Wang L, Zhang C, Zhu L, Cui D. Profiles and diagnostic value of intestinal microbiota in schizophrenia patients with metabolic syndrome. Front Endocrinol (Lausanne) 2023; 14:1190954. [PMID: 37576972 PMCID: PMC10415044 DOI: 10.3389/fendo.2023.1190954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/26/2023] [Indexed: 08/15/2023] Open
Abstract
Aims/hypothesis It is widely thought that the intestinal microbiota plays a significant role in the pathogenesis of metabolic disorders. However, the gut microbiota composition and characteristics of schizophrenia patients with metabolic syndrome (MetS) have been largely understudied. Herein, we investigated the association between the metabolic status of mainland Chinese schizophrenia patients with MetS and the intestinal microbiome. Methods Fecal microbiota communities from 115 male schizophrenia patients (57 with MetS and 58 without MetS) were assessed by 16S ribosomal RNA gene sequencing. We assessed the variations of gut microbiome between both groups and explored potential associations between intestinal microbiota and parameters of MetS. In addition, the Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) based on the KEGG database was used to predict the function of intestinal microbiota. We also conducted Decision Tree Analysis to develop a diagnostic model for the MetS in patients with schizophrenia based on the composition of intestinal microbiota. Results The fecal microbial diversity significantly differed between groups with or without MetS (α-diversity (Shannon index and Simpson index): p=0.0155, p=0.0089; β-diversity: p=0.001). Moreover, the microbial composition was significantly different between the two groups, involving five phyla and 38 genera (p<0.05). In addition, a significant correlation was observed between the metabolic-related parameters and abundance of altered microbiota including HDL-c (r2 = 0.203, p=0.0005), GLU (r2 = 0.286, p=0.0005) and WC (r2 = 0.061, p=0.037). Furthermore, KEGG pathway analysis showed that 16 signaling pathways were significantly enriched between the two groups (p<0.05). Importantly, our diagnostic model based on five microorganisms established by decision tree analysis could effectively distinguish between patients with and without MetS (AUC = 0.94). Conclusions/interpretation Our study established the compositional and functional characteristics of intestinal microbiota in schizophrenia patients with MetS. These new findings provide novel insights into a better understanding of this disease and provide the theoretical basis for implementing new interventional therapies in clinical practice.
Collapse
Affiliation(s)
- Mengjuan Xing
- Department of General Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Hui Gao
- The First Minzheng Mental Health Center, Shanghai, China
| | - Lili Yao
- The First Minzheng Mental Health Center, Shanghai, China
| | - Li Wang
- The First Minzheng Mental Health Center, Shanghai, China
| | - Chengfang Zhang
- Shanghai Pudong New Area Mental Health Center, Tongji University School of Medicine, Shanghai, China
| | - Liping Zhu
- Department of General Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Donghong Cui
- Department of General Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
- Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
21
|
Ticinesi A, Parise A, Nouvenne A, Cerundolo N, Prati B, Meschi T. The possible role of gut microbiota dysbiosis in the pathophysiology of delirium in older persons. MICROBIOME RESEARCH REPORTS 2023; 2:19. [PMID: 38046817 PMCID: PMC10688815 DOI: 10.20517/mrr.2023.15] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/15/2023] [Accepted: 05/23/2023] [Indexed: 12/05/2023]
Abstract
Delirium is a clinical syndrome characterized by an acute change in attention, awareness and cognition with fluctuating course, frequently observed in older patients during hospitalization for acute medical illness or after surgery. Its pathogenesis is multifactorial and still not completely understood, but there is general consensus on the fact that it results from the interaction between an underlying predisposition, such as neurodegenerative diseases, and an acute stressor acting as a trigger, such as infection or anesthesia. Alterations in brain insulin sensitivity and metabolic function, increased blood-brain barrier permeability, neurotransmitter imbalances, abnormal microglial activation and neuroinflammation have all been involved in the pathophysiology of delirium. Interestingly, all these mechanisms can be regulated by the gut microbiota, as demonstrated in experimental studies investigating the microbiota-gut-brain axis in dementia. Aging is also associated with profound changes in gut microbiota composition and functions, which can influence several aspects of disease pathophysiology in the host. This review provides an overview of the emerging evidence linking age-related gut microbiota dysbiosis with delirium, opening new perspectives for the microbiota as a possible target of interventions aimed at delirium prevention and treatment.
Collapse
Affiliation(s)
- Andrea Ticinesi
- Microbiome Research Hub, University of Parma, Parma 43124, Italy
- Department of Medicine and Surgery, University of Parma, Parma 43126, Italy
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Parma 43126, Italy
| | - Alberto Parise
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Parma 43126, Italy
| | - Antonio Nouvenne
- Microbiome Research Hub, University of Parma, Parma 43124, Italy
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Parma 43126, Italy
| | - Nicoletta Cerundolo
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Parma 43126, Italy
| | - Beatrice Prati
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Parma 43126, Italy
| | - Tiziana Meschi
- Microbiome Research Hub, University of Parma, Parma 43124, Italy
- Department of Medicine and Surgery, University of Parma, Parma 43126, Italy
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Parma 43126, Italy
| |
Collapse
|
22
|
Ye W, Xing J, Yu Z, Hu X, Zhao Y. Mechanism and treatments of antipsychotic-induced weight gain. Int J Obes (Lond) 2023; 47:423-433. [PMID: 36959286 DOI: 10.1038/s41366-023-01291-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/26/2023] [Accepted: 02/28/2023] [Indexed: 03/25/2023]
Abstract
The long-term use of antipsychotics (APs) may cause a variety of diseases, such as metabolic syndrome, antipsychotic-induced weight gain (AIWG), and even obesity. This paper reviews the various mechanisms of AIWG and obesity in detail, involving genetics, the central nervous system, the neuroendocrine system, and the gut microbiome. The common drug and non-drug therapies used in clinical practice are also introduced, providing the basis for research on the molecular mechanisms and the future selection of treatments.
Collapse
Affiliation(s)
- Wujie Ye
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jingyu Xing
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Zekai Yu
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xingang Hu
- Internal encephalopathy of traditional Chinese medicine, Dongfang Hospital of Beijing University of Chinese Medicine, Beijing, 100078, China.
| | - Yan Zhao
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
23
|
Elwyn R, Mitchell J, Kohn MR, Driver C, Hay P, Lagopoulos J, Hermens DF. Novel ketamine and zinc treatment for anorexia nervosa and the potential beneficial interactions with the gut microbiome. Neurosci Biobehav Rev 2023; 148:105122. [PMID: 36907256 DOI: 10.1016/j.neubiorev.2023.105122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/04/2023] [Accepted: 03/07/2023] [Indexed: 03/13/2023]
Abstract
Anorexia nervosa (AN) is a severe illness with diverse aetiological and maintaining contributors including neurobiological, metabolic, psychological, and social determining factors. In addition to nutritional recovery, multiple psychological and pharmacological therapies and brain-based stimulations have been explored; however, existing treatments have limited efficacy. This paper outlines a neurobiological model of glutamatergic and γ-aminobutyric acid (GABA)-ergic dysfunction, exacerbated by chronic gut microbiome dysbiosis and zinc depletion at a brain and gut level. The gut microbiome is established early in development, and early exposure to stress and adversity contribute to gut microbial disturbance in AN, early dysregulation to glutamatergic and GABAergic networks, interoceptive impairment, and inhibited caloric harvest from food (e.g., zinc malabsorption, competition for zinc ions between gut bacteria and host). Zinc is a key part of glutamatergic and GABAergic networks, and also affects leptin and gut microbial function; systems dysregulated in AN. Low doses of ketamine in conjunction with zinc, could provide an efficacious combination to act on NMDA receptors and normalise glutamatergic, GABAergic and gut function in AN.
Collapse
Affiliation(s)
- Rosiel Elwyn
- Thompson Institute, University of the Sunshine Coast, Birtinya, QLD, Australia; SouthWest Sydney Local Health District, Liverpool Hospital, Liverpool, NSW, Australia.
| | - Jules Mitchell
- Thompson Institute, University of the Sunshine Coast, Birtinya, QLD, Australia; SouthWest Sydney Local Health District, Liverpool Hospital, Liverpool, NSW, Australia
| | - Michael R Kohn
- AYA Medicine Westmead Hospital, CRASH (Centre for Research into Adolescent's Health) Western Sydney Local Health District, Sydney University, Australia; SouthWest Sydney Local Health District, Liverpool Hospital, Liverpool, NSW, Australia
| | - Christina Driver
- Thompson Institute, University of the Sunshine Coast, Birtinya, QLD, Australia; SouthWest Sydney Local Health District, Liverpool Hospital, Liverpool, NSW, Australia
| | - Phillipa Hay
- Translational Health Research Institute (THRI) School of Medicine, Western Sydney University, Campbelltown, NSW, Australia; SouthWest Sydney Local Health District, Liverpool Hospital, Liverpool, NSW, Australia
| | - Jim Lagopoulos
- Thompson Institute, University of the Sunshine Coast, Birtinya, QLD, Australia; SouthWest Sydney Local Health District, Liverpool Hospital, Liverpool, NSW, Australia
| | - Daniel F Hermens
- Thompson Institute, University of the Sunshine Coast, Birtinya, QLD, Australia; SouthWest Sydney Local Health District, Liverpool Hospital, Liverpool, NSW, Australia
| |
Collapse
|
24
|
Misera A, Łoniewski I, Palma J, Kulaszyńska M, Czarnecka W, Kaczmarczyk M, Liśkiewicz P, Samochowiec J, Skonieczna-Żydecka K. Clinical significance of microbiota changes under the influence of psychotropic drugs. An updated narrative review. Front Microbiol 2023; 14:1125022. [PMID: 36937257 PMCID: PMC10014913 DOI: 10.3389/fmicb.2023.1125022] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/13/2023] [Indexed: 03/05/2023] Open
Abstract
Relationship between drugs and microbiota is bilateral. Proper composition thus function of microbiota is a key to some medications used in modern medicine. However, there is also the other side of the coin. Pharmacotherapeutic agents can modify the microbiota significantly, which consequently affects its function. A recently published study showed that nearly 25% of drugs administered to humans have antimicrobial effects. Multiple antidepressants are antimicrobials,. and antibiotics with proven antidepressant effects do exist. On the other hand, antibiotics (e.g., isoniaside, minocycline) confer mental phenotype changes, and adverse effects caused by some antibiotics include neurological and psychological symptoms which further supports the hypothesis that intestinal microbiota may affect the function of the central nervous system. Here we gathered comprehensively data on drugs used in psychiatry regarding their antimicrobial properties. We believe our data has strong implications for the treatment of psychiatric entities. Nevertheless the study of ours highlights the need for more well-designed trials aimed at analysis of gut microbiota function.
Collapse
Affiliation(s)
- Agata Misera
- Department of Psychiatry, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Igor Łoniewski
- Department of Biochemical Science, Pomeranian Medical University in Szczecin, Szczecin, Poland
- Sanprobi sp. z o.o. sp.k., Szczecin, Poland
| | - Joanna Palma
- Department of Biochemical Science, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Monika Kulaszyńska
- Department of Biochemical Science, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Wiktoria Czarnecka
- Department of Biochemical Science, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | | | - Paweł Liśkiewicz
- Department of Psychiatry, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Jerzy Samochowiec
- Department of Psychiatry, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | | |
Collapse
|
25
|
Repurposing Antidepressants and Phenothiazine Antipsychotics as Efflux Pump Inhibitors in Cancer and Infectious Diseases. Antibiotics (Basel) 2023; 12:antibiotics12010137. [PMID: 36671340 PMCID: PMC9855052 DOI: 10.3390/antibiotics12010137] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/29/2022] [Accepted: 01/05/2023] [Indexed: 01/13/2023] Open
Abstract
Multidrug resistance (MDR) is a major obstacle in the therapy of infectious diseases and cancer. One of the major mechanisms of MDR is the overexpression of efflux pumps (EPs) that are responsible for extruding antimicrobial and anticancer agents. EPs have additional roles of detoxification that may aid the development of bacterial infection and the progression of cancer. Therefore, targeting EPs may be an attractive strategy to treat bacterial infections and cancer. The development and discovery of a new drug require a long timeline and may come with high development costs. A potential alternative to reduce the time and costs of drug development is to repurpose already existing drugs. Antidepressants and antipsychotic agents are widely used in clinical practice in the treatment of psychiatric disorders and some somatic diseases. Antidepressants and antipsychotics have demonstrated various beneficial activities that may be utilized in the treatment of infections and cancer. This review aims to provide a brief overview of antibacterial and anticancer effects of selective serotonin reuptake inhibitors (SSRIs), tricyclic antidepressants (TCAs) and phenothiazine antipsychotics, while focusing on EPs. However, it should be noted that the antimicrobial activity of a traditionally non-antibiotic drug may have clinical implications regarding dysbiosis and bacterial MDR.
Collapse
|
26
|
Ramos-Marcuse F, Kverno K. Evidence-Based Use of Atypical Antipsychotics in the Care of Children and Adolescents. J Psychosoc Nurs Ment Health Serv 2023; 61:8-11. [PMID: 36595307 DOI: 10.3928/02793695-20221207-01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Atypical antipsychotics are increasingly used to treat children and adolescents with a variety of mental and behavioral symptoms, despite restrictive U.S. Food and Drug Administration indications. A recent taskforce advocates for a symptom-based approach to atypical antipsychotic use, rather than by diagnosis alone. Cautious prescribing of atypical antipsychotics should only take place after careful diagnostic assessment, review of prior treatments, and trials of other evidence-based medications. When used, monitoring metabolic indicators is crucial for the health and safety of patients. Risperidone and aripiprazole are highlighted as two different types of atypical antipsychotics commonly used to treat youth. [Journal of Psychosocial Nursing and Mental Health Services, 61(1), 8-11.].
Collapse
|
27
|
Glucose and Lipid Profiles Predict Anthropometric Changes in Drug-Naïve Adolescents Starting Treatment with Risperidone or Sertraline: A Pilot Study. Biomedicines 2022; 11:biomedicines11010048. [PMID: 36672556 PMCID: PMC9855642 DOI: 10.3390/biomedicines11010048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 12/29/2022] Open
Abstract
Psychiatric disorders are associated with cardiometabolic diseases, partly due to adverse drug effects with individual risk variabilities. Risperidone and sertraline are widely used for youths. Although they may be exposed to anthropometric changes, few data about this population exist. We evaluated the correlation between several blood parameters and body changes in a very small group of drug-naïve adolescents who had started risperidone or sertraline. We examined weight, waist circumference (WC), WC/height ratio and body mass index (BMI) at baseline (T0) and after at least three months of therapy (T1), and blood glucose and lipid profiles at T0. Here, we show significant increases in several anthropometric parameters in both groups, a negative correlation between HDL and ΔWC in the risperidone group and positive correlations between insulin and ΔBMI and between HOMA-IR and ΔBMI in the sertraline group. Despite the sample size, these results are important because it is difficult to study adolescents who are long-term-compliant with psychotropic drugs. This pilot study supports the importance of future large-scale investigations to understand the metabolic risk profiles of psychotropic drugs, their individual vulnerabilities and their underlying mechanisms. Simultaneous guideline-based psychiatric and metabolic interventions should be part of daily practice.
Collapse
|
28
|
Amisulpride steady-state plasma concentration and adverse reactions in patients with schizophrenia: a study based on therapeutic drug monitoring data. Int Clin Psychopharmacol 2022; 37:255-262. [PMID: 35779068 DOI: 10.1097/yic.0000000000000420] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The aim of the study was to evaluate the reference range of amisulpride for Chinese patients with schizophrenia and to assess its possible influencing factors based on therapeutic drug monitoring information. The relative adverse reactions of patients induced by amisulpride were also systematically investigated. A total of 425 patients with schizophrenia were assessed, including Positive and Negative Syndrome Scales, Treatment Emergent Symptom Scale, blood routine examination, hepatorenal function, lipids, hormones, as well as myocardial enzymes at baseline, and following treatment with amisulpride for 8 weeks. The steady-state plasma concentration of amisulpride was assayed using two-dimensional liquid chromatography. At the same dose, the amisulpride plasma concentration of patients combined with clozapine was higher than that without clozapine. The therapeutic reference range of amisulpride can be defined as 230.3-527.1 ng/ml for Chinese patients with schizophrenia. The potential side effects appear to be associated with significantly increased levels of LDH, CK, creatine kinase isoenzyme (CK-MB), TC and decreased level of E 2 , relative to the amisulpride plasma concentration. These findings could provide individualized medication and reduce the adverse effects of amisulpride for Chinese patients with schizophrenia.
Collapse
|
29
|
Ellezian L, Jhawar A, Kyono Y, Flowers SA. Psychotropic Drugs in the Discussion of Antimicrobial-Resistant Microorganisms. DNA Cell Biol 2022; 41:919-923. [DOI: 10.1089/dna.2022.0471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Lori Ellezian
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Archana Jhawar
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, USA
- Department of Pharmacy, Jesse Brown VA Medical Center, Chicago, Illinois, USA
| | - Yasuhiro Kyono
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Stephanie A. Flowers
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
30
|
Florida Medicaid Children's Receipt of First-Line Psychosocial Care Prior to Antipsychotic Initiation. Acad Pediatr 2022; 22:S100-S107. [PMID: 35339236 DOI: 10.1016/j.acap.2021.11.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/05/2021] [Accepted: 11/21/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND AND OBJECTIVE First-line, nonpharmacological therapy is recommended for many pediatric mental health (MH) conditions prior to initiating antipsychotic prescription therapies. Many children do not receive these recommended services, despite the known association between antipsychotic medications and metabolic dysfunction. The main objective of this study was to quantify the association among children's MH diagnosis categories, sociodemographic characteristics and receipt of first-line psychosocial care among children in Florida Medicaid METHODS: Florida Medicaid enrollment, healthcare and pharmacy claims were used for this multivariate analysis. Children were assigned to condition clusters wherein related diagnoses were grouped into clinically relevant categories. A total of 7704 children were included in the final analysis. RESULTS Twenty-four percent of children in Florida Medicaid do not receive first-line, nonpharmacological psychosocial care. Age was significantly associated with not receiving psychosocial services, with older children less likely to receive. Non-Hispanic White children as well as those living in rural areas had lower odds of receiving behavioral intervention prior to initiating antipsychotics. Children with mood-disorders, behavior problems, anxiety and stress related disorders were more likely to receive first-line psychosocial care. CONCLUSIONS This study provides an important understanding of the variability in receipt of first-line psychosocial care before antipsychotic medication initiation among children in Medicaid based on sociodemographic and MH health characteristics. These analyses can be used to develop quality improvement initiatives targeted toward children that are most vulnerable for not receiving recommended care.
Collapse
|
31
|
Nocera A, Nasrallah HA. The Association of the Gut Microbiota with Clinical Features in Schizophrenia. Behav Sci (Basel) 2022; 12:bs12040089. [PMID: 35447661 PMCID: PMC9025473 DOI: 10.3390/bs12040089] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 02/05/2023] Open
Abstract
The connection between gut microbiota and schizophrenia has become a fertile area of research. The relationship is bidirectional and quite complex, but is likely to lead to practical clinical applications. For example, commensal microbiota have been shown to produce inflammatory metabolites that can cross the blood–brain barrier—a possible neurobiological precursor of psychosis. Antipsychotics that treat these individuals have been shown to alter gut microbiota. On the other hand, life style in schizophrenia, such as diet and decreased exercise, can be disruptive to the normal microbiome diversity. In the present paper, we conduct a review of PubMed literature focusing on the relationship of gut microbiota with clinical symptoms of schizophrenia, which, to our knowledge, has not yet been reviewed. Numerous clinical characteristics were identified correlating to gut microbial changes, such as violence, negative symptoms, treatment resistance, and global functioning. The most consistently demonstrated correlations to gut microbial changes across studies were for the overall symptom severity and negative symptom severity. Although numerous studies found changes in these domains, there is much variability between the bacteria that change in abundance between studies, likely due to the regional and methodological differences between studies. The current literature shows promising correlations between gut microbiota profiles and several clinical features of schizophrenia, but initial studies require replication.
Collapse
|
32
|
Choo TH, Xu Q, Budimirovic D, Lozano R, Esler AN, Frye RE, Andrews H, Velinov M. Height and BMI in fragile X syndrome: A longitudinal assessment. Obesity (Silver Spring) 2022; 30:743-750. [PMID: 35174658 PMCID: PMC11047757 DOI: 10.1002/oby.23368] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 12/01/2021] [Accepted: 12/03/2021] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Previously reported data regarding growth parameters in individuals with fragile X syndrome (FXS) are inconsistent. A longitudinal analysis of height and BMI in a large number of individuals with FXS was conducted. METHODS Age- and sex-specific z scores for height and BMI of 1,223 individuals with FXS were calculated based on published normative data. Mixed-effect linear regression models were fit separately for males and females, and z scores for height and weight were regressed against age and adjusted for intellectual disability (ID) and psychotropic medication use. RESULTS Mean height z score for both sexes decreased with age and was lower than normative data. Mean BMI z score was greater than normative data in both sexes, and this disparity increased with age. BMI z score in females was greater for those with moderate or severe ID than those with no or mild ID. Individuals taking antipsychotics had higher BMI z scores than those taking no or other medications; those taking anticonvulsants or stimulants had lower BMI z scores. CONCLUSIONS Individuals with FXS are at elevated risk for overweight and obesity. The risk is higher in individuals taking antipsychotics and among females with severe ID. These findings warrant increased attention to obesity prevention for all individuals with FXS.
Collapse
Affiliation(s)
- Tse-Hwei Choo
- Department of Psychiatry, Columbia University, New York, New York, USA
| | - Qing Xu
- Department of Psychiatry, Columbia University, New York, New York, USA
| | - Dejan Budimirovic
- Department of Psychiatry, Fragile X Clinic, Kennedy Krieger Institute/JHMI, Baltimore, Maryland, USA
- Department of Psychiatry and Behavioral Sciences-Child Psychiatry, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Reymundo Lozano
- Department of Genetics and Genomic Sciences, Pediatrics and Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Amy N Esler
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Richard E Frye
- Section of Neurodevelopmental Disorders, Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, Arizona, USA
- Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, Arizona, USA
| | - Howard Andrews
- Data Coordinating Center, Columbia University-Mailman School of Public Health, New York State Psychiatric Institute, New York, New York, USA
| | - Milen Velinov
- Department of Pediatrics, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| |
Collapse
|
33
|
Mukherjee S, Skrede S, Milbank E, Andriantsitohaina R, López M, Fernø J. Understanding the Effects of Antipsychotics on Appetite Control. Front Nutr 2022; 8:815456. [PMID: 35047549 PMCID: PMC8762106 DOI: 10.3389/fnut.2021.815456] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/10/2021] [Indexed: 12/16/2022] Open
Abstract
Antipsychotic drugs (APDs) represent a cornerstone in the treatment of schizophrenia and other psychoses. The effectiveness of the first generation (typical) APDs are hampered by so-called extrapyramidal side effects, and they have gradually been replaced by second (atypical) and third-generation APDs, with less extrapyramidal side effects and, in some cases, improved efficacy. However, the use of many of the current APDs has been limited due to their propensity to stimulate appetite, weight gain, and increased risk for developing type 2 diabetes and cardiovascular disease in this patient group. The mechanisms behind the appetite-stimulating effects of the various APDs are not fully elucidated, partly because their diverse receptor binding profiles may affect different downstream pathways. It is critical to identify the molecular mechanisms underlying drug-induced hyperphagia, both because this may lead to the development of new APDs, with lower appetite-stimulating effects but also because such insight may provide new knowledge about appetite regulation in general. Hence, in this review, we discuss the receptor binding profile of various APDs in relation to the potential mechanisms by which they affect appetite.
Collapse
Affiliation(s)
- Sayani Mukherjee
- Hormone Laboratory, Haukeland University Hospital, Bergen, Norway
| | - Silje Skrede
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Section of Clinical Pharmacology, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
| | - Edward Milbank
- NeurObesity Group, Department of Physiology, Center for Research in Molecular Medicine and Chronic Diseases, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición, Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición, Madrid, Spain.,SOPAM, U1063, INSERM, University of Angers, SFR ICAT, Bat IRIS-IBS, Angers, France
| | | | - Miguel López
- NeurObesity Group, Department of Physiology, Center for Research in Molecular Medicine and Chronic Diseases, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición, Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición, Madrid, Spain
| | - Johan Fernø
- Hormone Laboratory, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
34
|
Wu H, Wang X, Liu X, Sang H, Bo Q, Yang X, Xun Z, Li K, Zhang R, Sun M, Cai D, Deng H, Zhao G, Li J, Liu X, Zhan G, Chen J. Safety and Effectiveness of Blonanserin in Chinese Patients with Schizophrenia: An Interim Analysis of a 12-Week Open-Label Prospective Multi-Center Post-marketing Surveillance. Front Psychiatry 2022; 13:935769. [PMID: 36061293 PMCID: PMC9435526 DOI: 10.3389/fpsyt.2022.935769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/21/2022] [Indexed: 11/13/2022] Open
Abstract
Schizophrenia is an unexplained, complex and serious mental illness. Blonanserin (BNS) is a new antipsychotic drug widely used in the treatment of schizophrenia. However, large-scale clinical studies have not been conducted in China. A multi-center, prospective, open-label, 12-week surveillance was carried out to evaluate the safety and effectiveness of BNS in patients with schizophrenia in China. Safety assessments included adverse drug reactions (ADRs), extrapyramidal symptoms (EPS), akathisia, concomitant medications for EPS by the end of treatment, and the changes in body weight from baseline by the end of treatment. The effectiveness was evaluated by the Brief Psychiatric Rating Scale (BPRS). From September 2018 to May 2020, of the 1,060 patients enrolled, 1,018 were included in the full analysis set (FAS) and safety set (SS), respectively. ADRs were developed in 205 patients among the included, the incidence being 20.1%. ADRs of EPS occurred in 169 patients, the incidence being 16.6%, ADRs of akathisia occurred in 90 patients, the incidence being 8.8%; concomitant therapeutic and prophylactic agents for EPS accounts for 19.2%; 4.0% of patients had a ≥7% increase in body weight from baseline at 12 weeks after initiating treatment. Using the last-observation-carried-forward (LOCF) method, the changes in total BPRS scores were -11.2 ± 10.17 (N = 1,018), -16.8 ± 12.69 (N = 1,018) and -20.6 ± 13.99 (N = 1,018) after 2/4, 6/8, or 12 weeks, respectively. 53.5% (545/1,018) patients showed response to blonanserin treatment in week 12. The post-marketing surveillance results of BNS demonstrates safety profile and effectiveness of the drug.
Collapse
Affiliation(s)
- Haishan Wu
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xijin Wang
- The First Psychiatric Hospital of Harbin, Harbin, China
| | - Xuejun Liu
- Brain Hospital of Hunan Province, Changsha, China
| | - Hong Sang
- Changchun Sixth Hospital, Changchun, China
| | - Qijing Bo
- Beijing Anding Hospital, Capital Medical University, Beijing, China
| | | | | | - Keqing Li
- Hebei Provincial Mental Health Center, Baoding, China
| | | | | | - Duanfang Cai
- The Fifth People's Hospital of Zigong, Zigong, China
| | - Huaili Deng
- Psychiatric Hospital of Taiyuan, Taiyuan, China
| | - Guijun Zhao
- Guangyuan Mental Health Center, Guangyuan, China
| | - Juhong Li
- The Fourth People's Hospital of Chengdu, Chengdu, China
| | - Xianglai Liu
- Hainan Provincial Anning Hospital, Haikou, China
| | | | - Jindong Chen
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
35
|
Haghshenas M, Arman S. Metabolic effects of adding Topiramate on Aripiprazole in bipolar patients aged between 6-18 years, a randomized, double-blind, placebo-controlled trial. JOURNAL OF RESEARCH IN MEDICAL SCIENCES 2022; 27:23. [PMID: 35419064 PMCID: PMC8995310 DOI: 10.4103/jrms.jrms_672_21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/26/2021] [Accepted: 12/11/2021] [Indexed: 11/04/2022]
|
36
|
Turjeman S, Koren O. Using the microbiome in clinical practice. Microb Biotechnol 2022; 15:129-134. [PMID: 34767683 PMCID: PMC8719822 DOI: 10.1111/1751-7915.13971] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 10/31/2021] [Indexed: 12/13/2022] Open
Affiliation(s)
| | - Omry Koren
- Azrieli Faculty of MedicineBar‐Ilan UniversitySafedIsrael
| |
Collapse
|
37
|
Stutzman DL. Long-term use of antidepressants, mood stabilizers, and antipsychotics in pediatric patients with a focus on appropriate deprescribing. Ment Health Clin 2021; 11:320-333. [PMID: 34824957 PMCID: PMC8582767 DOI: 10.9740/mhc.2021.11.320] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 08/09/2021] [Indexed: 11/13/2022] Open
Abstract
It is estimated that 8% to 12% of youth are prescribed psychotropic medications. Those in foster care, juvenile justice systems, residential treatment facilities, and with developmental or intellectual disabilities are more likely to be prescribed high-risk regimens. The use of psychotropic medications in this age group is often off-label and can be associated with significant risk, warranting critical evaluation of their role. Landmark trials, pediatric-specific guidelines, and state-driven initiatives play critical roles in supporting evidence-based use of psychotropic medications in children. Overall, there is a lack of literature describing the long-term use of psychotropic medications in youth—particularly with regard to neurobiological, physical, and social changes that occur throughout development. Deprescribing is an important practice in child and adolescent psychiatry, given concerns for over-prescribing, inappropriate polytherapy, and the importance of reevaluating the role of psychotropic medications as children develop.
Collapse
|
38
|
Kemp AJ, Kazi SE, Megna JL, Leontieva LV. Synergistic Effects of Psychotropics Leading to Extraordinary Weight Gain. Cureus 2021; 13:e17978. [PMID: 34660157 PMCID: PMC8507601 DOI: 10.7759/cureus.17978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2021] [Indexed: 12/03/2022] Open
Abstract
A 22-year-old woman had significant weight gain after being on two atypical antipsychotics, an antiepileptic, and an antidepressant for 12 months, with her weight increasing from 70 kg to 160 kg, or by 90 kg, over 16 months. This case report examines the possible synergistic effects of psychotropics, particularly two atypical antipsychotics, leading to adverse side effects, particularly severe obesity, in the context of other examined pharmacological and non-pharmacologic risk factors. Psychotropic monotherapy is the advised prescribing treatment guideline. The extraordinary weight gain resulting in severe obesity in this case demonstrates just one of the many concerns for psychotropic polypharmacy from the same sub-class of psychiatric drugs leading to increased morbidity and mortality in the psychiatric population.
Collapse
Affiliation(s)
- Allyson J Kemp
- Psychiatry and Behavioral Sciences, State University of New York Upstate Medical University, Syracuse, USA
| | - Sana E Kazi
- Psychiatry and Behavioral Sciences, State University of New York Upstate Medical University, Syracuse, USA
| | - James L Megna
- Psychiatry and Behavioral Sciences, State University of New York Upstate Medical University, Syracuse, USA
| | - Lubov V Leontieva
- Psychiatry and Behavioral Sciences, State University of New York Upstate Medical University, Syracuse, USA
| |
Collapse
|
39
|
Hidden Role of Gut Microbiome Dysbiosis in Schizophrenia: Antipsychotics or Psychobiotics as Therapeutics? Int J Mol Sci 2021; 22:ijms22147671. [PMID: 34299291 PMCID: PMC8307070 DOI: 10.3390/ijms22147671] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 02/06/2023] Open
Abstract
Schizophrenia is a chronic, heterogeneous neurodevelopmental disorder that has complex symptoms and uncertain etiology. Mounting evidence indicates the involvement of genetics and epigenetic disturbances, alteration in gut microbiome, immune system abnormalities, and environmental influence in the disease, but a single root cause and mechanism involved has yet to be conclusively determined. Consequently, the identification of diagnostic markers and the development of psychotic drugs for the treatment of schizophrenia faces a high failure rate. This article surveys the etiology of schizophrenia with a particular focus on gut microbiota regulation and the microbial signaling system that correlates with the brain through the vagus nerve, enteric nervous system, immune system, and production of postbiotics. Gut microbially produced molecules may lay the groundwork for further investigations into the role of gut microbiota dysbiosis and the pathophysiology of schizophrenia. Current treatment of schizophrenia is limited to psychotherapy and antipsychotic drugs that have significant side effects. Therefore, alternative therapeutic options merit exploration. The use of psychobiotics alone or in combination with antipsychotics may promote the development of novel therapeutic strategies. In view of the individual gut microbiome structure and personalized response to antipsychotic drugs, a tailored and targeted manipulation of gut microbial diversity naturally by novel prebiotics (non-digestible fiber) may be a successful alternative therapeutic for the treatment of schizophrenia patients.
Collapse
|
40
|
Munawar N, Ahsan K, Muhammad K, Ahmad A, Anwar MA, Shah I, Al Ameri AK, Al Mughairbi F. Hidden Role of Gut Microbiome Dysbiosis in Schizophrenia: Antipsychotics or Psychobiotics as Therapeutics? Int J Mol Sci 2021. [DOI: https://doi.org/10.3390/ijms22147671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Schizophrenia is a chronic, heterogeneous neurodevelopmental disorder that has complex symptoms and uncertain etiology. Mounting evidence indicates the involvement of genetics and epigenetic disturbances, alteration in gut microbiome, immune system abnormalities, and environmental influence in the disease, but a single root cause and mechanism involved has yet to be conclusively determined. Consequently, the identification of diagnostic markers and the development of psychotic drugs for the treatment of schizophrenia faces a high failure rate. This article surveys the etiology of schizophrenia with a particular focus on gut microbiota regulation and the microbial signaling system that correlates with the brain through the vagus nerve, enteric nervous system, immune system, and production of postbiotics. Gut microbially produced molecules may lay the groundwork for further investigations into the role of gut microbiota dysbiosis and the pathophysiology of schizophrenia. Current treatment of schizophrenia is limited to psychotherapy and antipsychotic drugs that have significant side effects. Therefore, alternative therapeutic options merit exploration. The use of psychobiotics alone or in combination with antipsychotics may promote the development of novel therapeutic strategies. In view of the individual gut microbiome structure and personalized response to antipsychotic drugs, a tailored and targeted manipulation of gut microbial diversity naturally by novel prebiotics (non-digestible fiber) may be a successful alternative therapeutic for the treatment of schizophrenia patients.
Collapse
|
41
|
Zhang X, Han Y, Huang W, Jin M, Gao Z. The influence of the gut microbiota on the bioavailability of oral drugs. Acta Pharm Sin B 2021; 11:1789-1812. [PMID: 34386321 PMCID: PMC8343123 DOI: 10.1016/j.apsb.2020.09.013] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/27/2020] [Accepted: 08/20/2020] [Indexed: 02/07/2023] Open
Abstract
Due to its safety, convenience, low cost and good compliance, oral administration attracts lots of attention. However, the efficacy of many oral drugs is limited to their unsatisfactory bioavailability in the gastrointestinal tract. One of the critical and most overlooked factors is the symbiotic gut microbiota that can modulate the bioavailability of oral drugs by participating in the biotransformation of oral drugs, influencing the drug transport process and altering some gastrointestinal properties. In this review, we summarized the existing research investigating the possible relationship between the gut microbiota and the bioavailability of oral drugs, which may provide great ideas and useful instructions for the design of novel drug delivery systems or the achievement of personalized medicine.
Collapse
Key Words
- 5-ASA, 5-aminosalicylic acid
- AA, ascorbic acid
- ABC, ATP-binding cassette
- ACS, amphipathic chitosan derivative
- AMI, amiodarone
- AQP4, aquaporin 4
- AR, azoreductase
- ASP, amisulpride
- BBR, berberine
- BCRP, breast cancer resistance protein
- BCS, biopharmaceutics classification system
- BDDCS, the biopharmaceutics drug disposition classification system
- BDEPT, the bacteria-directed enzyme prodrug therapy
- BSH, bile salt hydrolase
- Bioavailability
- CA, cholic acid
- CDCA, chenodeoxycholic acid
- CPP, cell-penetrating peptide
- CS, chitosan
- Colon-specific drug delivery system
- DCA, deoxycholic acid
- DRPs, digoxin reduction products
- EcN, Escherichia coli Nissle 1917
- FA, folate
- FAO, Food and Agriculture Organization of the United Nations
- GCDC, glycochenodeoxycholate
- GL, glycyrrhizic acid
- Gut microbiota
- HFD, high fat diet
- HTC, hematocrit
- IBD, inflammatory bowel disease
- LCA, lithocholic acid
- LPS, lipopolysaccharide
- MATEs, multidrug and toxin extrusion proteins
- MDR1, multidrug resistance gene 1
- MDR1a, multidrug resistance protein-1a
- MKC, monoketocholic acid
- MPA, mycophenolic acid
- MRP2, multidrug resistance-associated protein 2
- NEC, necrotizing enterocolitis
- NMEs, new molecular entities
- NRs, nitroreductases
- NSAIDs, non-steroidal anti-inflammatory drugs
- NaDC, sodium deoxycholate
- NaGC, sodium glycholate
- OATs, organic anion transporters
- OCTNs, organic zwitterion/cation
- OCTs, organic cation transporters
- Oral drugs
- P-gp, P-glycoprotein
- PD, Parkinson's disease
- PPIs, proton pump inhibitors
- PT, pectin
- PWSDs, poorly water-soluble drugs
- Probiotics
- RA, rheumatoid arthritis
- RBC, red blood cell
- SCFAs, short-chain fatty acids
- SGLT-1, sodium-coupled glucose transporter 1
- SLC, solute carrier
- SLN, solid lipid nanoparticle
- SP, sulfapyridine
- SSZ, sulfasalazine
- SVCT-1/2, the sodium-dependent vitamin C transporter-1/2
- T1D, type 1 diabetes
- T1DM, type 1 diabetes mellitus
- T2D, type 2 diabetes
- TCA, taurocholate
- TCDC, taurochenodeoxycholate
- TDCA, taurodeoxycholate
- TLCA, taurolithocholate
- TME, the tumor microenvironment
- UDC, ursodeoxycholic acid
- WHO, World Health Organization
- an OTC drug, an over-the-counter drug
- cgr operon, cardiac glycoside reductase operon
- dhBBR, dihydroberberine
- pKa, dissociation constant
- the GI tract, the gastrointestinal tract
Collapse
Affiliation(s)
- Xintong Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ying Han
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Wei Huang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Mingji Jin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhonggao Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
42
|
Therapeutic Drug Monitoring of Second- and Third-Generation Antipsychotic Drugs-Influence of Smoking Behavior and Inflammation on Pharmacokinetics. Pharmaceuticals (Basel) 2021; 14:ph14060514. [PMID: 34071813 PMCID: PMC8230242 DOI: 10.3390/ph14060514] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/21/2021] [Accepted: 05/21/2021] [Indexed: 01/08/2023] Open
Abstract
Both inflammation and smoking can influence a drug’s pharmacokinetic properties, i.e., its liberation, absorption, distribution, metabolism, and elimination. Depending on, e.g., pharmacogenetics, these changes may alter treatment response or cause serious adverse drug reactions and are thus of clinical relevance. Antipsychotic drugs, used in the treatment of psychosis and schizophrenia, should be closely monitored due to multiple factors (e.g., the narrow therapeutic window of certain psychotropic drugs, the chronicity of most mental illnesses, and the common occurrence of polypharmacotherapy in psychiatry). Therapeutic drug monitoring (TDM) aids with drug titration by enabling the quantification of patients’ drug levels. Recommendations on the use of TDM during treatment with psychotropic drugs are presented in the Consensus Guidelines for Therapeutic Drug Monitoring in Neuropsychopharmacology; however, data on antipsychotic drug levels during inflammation or after changes in smoking behavior—both clinically relevant in psychiatry—that can aid clinical decision making are sparse. The following narrative review provides an overview of relevant literature regarding TDM in psychiatry, particularly in the context of second- and third-generation antipsychotic drugs, inflammation, and smoking behavior. It aims to spread awareness regarding TDM (most pronouncedly of clozapine and olanzapine) as a tool to optimize drug safety and provide patient-tailored treatment.
Collapse
|
43
|
Therapeutic Drug Monitoring of Second- and Third-Generation Antipsychotic Drugs—Influence of Smoking Behavior and Inflammation on Pharmacokinetics. Pharmaceuticals (Basel) 2021. [DOI: 10.3390/ph14060514
expr 938544256 + 801362328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Both inflammation and smoking can influence a drug’s pharmacokinetic properties, i.e., its liberation, absorption, distribution, metabolism, and elimination. Depending on, e.g., pharmacogenetics, these changes may alter treatment response or cause serious adverse drug reactions and are thus of clinical relevance. Antipsychotic drugs, used in the treatment of psychosis and schizophrenia, should be closely monitored due to multiple factors (e.g., the narrow therapeutic window of certain psychotropic drugs, the chronicity of most mental illnesses, and the common occurrence of polypharmacotherapy in psychiatry). Therapeutic drug monitoring (TDM) aids with drug titration by enabling the quantification of patients’ drug levels. Recommendations on the use of TDM during treatment with psychotropic drugs are presented in the Consensus Guidelines for Therapeutic Drug Monitoring in Neuropsychopharmacology; however, data on antipsychotic drug levels during inflammation or after changes in smoking behavior—both clinically relevant in psychiatry—that can aid clinical decision making are sparse. The following narrative review provides an overview of relevant literature regarding TDM in psychiatry, particularly in the context of second- and third-generation antipsychotic drugs, inflammation, and smoking behavior. It aims to spread awareness regarding TDM (most pronouncedly of clozapine and olanzapine) as a tool to optimize drug safety and provide patient-tailored treatment.
Collapse
|
44
|
Moschny N, Hefner G, Grohmann R, Eckermann G, Maier HB, Seifert J, Heck J, Francis F, Bleich S, Toto S, Meissner C. Therapeutic Drug Monitoring of Second- and Third-Generation Antipsychotic Drugs-Influence of Smoking Behavior and Inflammation on Pharmacokinetics. Pharmaceuticals (Basel) 2021; 14:514. [PMID: 34071813 PMCID: PMC8230242 DOI: 10.3390/ph14060514&set/a 947965394+957477086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Both inflammation and smoking can influence a drug's pharmacokinetic properties, i.e., its liberation, absorption, distribution, metabolism, and elimination. Depending on, e.g., pharmacogenetics, these changes may alter treatment response or cause serious adverse drug reactions and are thus of clinical relevance. Antipsychotic drugs, used in the treatment of psychosis and schizophrenia, should be closely monitored due to multiple factors (e.g., the narrow therapeutic window of certain psychotropic drugs, the chronicity of most mental illnesses, and the common occurrence of polypharmacotherapy in psychiatry). Therapeutic drug monitoring (TDM) aids with drug titration by enabling the quantification of patients' drug levels. Recommendations on the use of TDM during treatment with psychotropic drugs are presented in the Consensus Guidelines for Therapeutic Drug Monitoring in Neuropsychopharmacology; however, data on antipsychotic drug levels during inflammation or after changes in smoking behavior-both clinically relevant in psychiatry-that can aid clinical decision making are sparse. The following narrative review provides an overview of relevant literature regarding TDM in psychiatry, particularly in the context of second- and third-generation antipsychotic drugs, inflammation, and smoking behavior. It aims to spread awareness regarding TDM (most pronouncedly of clozapine and olanzapine) as a tool to optimize drug safety and provide patient-tailored treatment.
Collapse
Affiliation(s)
- Nicole Moschny
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (H.B.M.); (J.S.); (F.F.); (S.B.); (S.T.); (C.M.)
- Correspondence: ; Tel.: +49-511-532-3656
| | - Gudrun Hefner
- Department of Psychiatry and Psychotherapy, Vitos Clinic for Forensic Psychiatry, Kloster-Eberbach-Str. 4, 65346 Eltville, Germany;
| | - Renate Grohmann
- Department of Psychiatry and Psychotherapy, Ludwig Maximilian University of Munich, Nussbaum-Str. 7, 80336 Munich, Germany;
| | - Gabriel Eckermann
- Department of Forensic Psychiatry and Psychotherapy, Hospital Kaufbeuren, Kemnater-Str. 16, 87600 Kaufbeuren, Germany;
| | - Hannah B Maier
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (H.B.M.); (J.S.); (F.F.); (S.B.); (S.T.); (C.M.)
| | - Johanna Seifert
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (H.B.M.); (J.S.); (F.F.); (S.B.); (S.T.); (C.M.)
| | - Johannes Heck
- Institute for Clinical Pharmacology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany;
| | - Flverly Francis
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (H.B.M.); (J.S.); (F.F.); (S.B.); (S.T.); (C.M.)
| | - Stefan Bleich
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (H.B.M.); (J.S.); (F.F.); (S.B.); (S.T.); (C.M.)
| | - Sermin Toto
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (H.B.M.); (J.S.); (F.F.); (S.B.); (S.T.); (C.M.)
| | - Catharina Meissner
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (H.B.M.); (J.S.); (F.F.); (S.B.); (S.T.); (C.M.)
| |
Collapse
|
45
|
Gawlik-Kotelnicka O, Strzelecki D. Probiotics as a Treatment for "Metabolic Depression"? A Rationale for Future Studies. Pharmaceuticals (Basel) 2021; 14:ph14040384. [PMID: 33924064 PMCID: PMC8074252 DOI: 10.3390/ph14040384] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/16/2021] [Accepted: 04/18/2021] [Indexed: 02/06/2023] Open
Abstract
Depression and metabolic diseases often coexist, having several features in common, e.g., chronic low-grade inflammation and intestinal dysbiosis. Different microbiota interventions have been proposed to be used as a treatment for these disorders. In the paper, we review the efficacy of probiotics in depressive disorders, obesity, metabolic syndrome and its liver equivalent based on the published experimental studies, clinical trials and meta-analyses. Probiotics seem to be effective in reducing depressive symptoms when administered in addition to antidepressants. Additionally, probiotics intake may ameliorate some of the clinical components of metabolic diseases. However, standardized methodology regarding probiotics use in clinical trials has not been established yet. In this narrative review, we discuss current knowledge on the recently used methodology with its strengths and limitations and propose criteria that may be implemented to create a new study of the effectiveness of probiotics in depressive disorders comorbid with metabolic abnormalities. We put across our choice on type of study population, probiotics genus, strains, dosages and formulations, intervention period, as well as primary and secondary outcome measures.
Collapse
|
46
|
Gawlik-Kotelnicka O, Skowrońska A, Margulska A, Czarnecka-Chrebelska KH, Łoniewski I, Skonieczna-Żydecka K, Strzelecki D. The Influence of Probiotic Supplementation on Depressive Symptoms, Inflammation, and Oxidative Stress Parameters and Fecal Microbiota in Patients with Depression Depending on Metabolic Syndrome Comorbidity-PRO-DEMET Randomized Study Protocol. J Clin Med 2021; 10:jcm10071342. [PMID: 33804999 PMCID: PMC8036404 DOI: 10.3390/jcm10071342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/17/2021] [Accepted: 03/20/2021] [Indexed: 12/14/2022] Open
Abstract
There is a huge need to search for new treatment options and potential biomarkers of therapeutic response to antidepressant treatment. Depression and metabolic syndrome often coexist, while a pathophysiological overlap, including microbiota changes, may play a role. The paper presents a study protocol that aims to assess the effect of probiotic supplementation on symptoms of depression, anxiety and stress, metabolic parameters, inflammatory and oxidative stress markers, as well as fecal microbiota in adult patients with depressive disorders depending on the co-occurrence of metabolic syndrome. The trial will be a four-arm, parallel-group, prospective, randomized, double-blind, controlled design that will include 200 participants and will last 20 weeks (ClinicalTrials.gov identifier: NCT04756544). The probiotic preparation will contain Lactobacillus helveticus Rosell®-52, Bifidobacterium longum Rosell®-175. We will assess the level of depression, anxiety and stress, quality of life, blood pressure, body mass index and waist circumference, white blood cells count, serum levels of C-reactive protein, high-density lipoprotein (HDL) cholesterol, triglycerides, fasting glucose, fecal microbiota composition and the level of some fecal microbiota metabolites, as well as serum inflammatory markers and oxidative stress parameters. The proposed trial may establish a safe and easy-to-use adjunctive treatment option in a subpopulation of depressive patients only partially responsive to pharmacologic therapy.
Collapse
Affiliation(s)
- Oliwia Gawlik-Kotelnicka
- Department of Affective and Psychotic Disorders, Medical University of Lodz, 92-216 Lodz, Poland; (A.S.); (D.S.)
- Correspondence:
| | - Anna Skowrońska
- Department of Affective and Psychotic Disorders, Medical University of Lodz, 92-216 Lodz, Poland; (A.S.); (D.S.)
| | - Aleksandra Margulska
- Admission Department, Central Teaching Hospital of Medical University of Lodz, 92-216 Lodz, Poland;
| | | | - Igor Łoniewski
- Department of Biochemical Sciences, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland; (I.Ł.); (K.S.-Ż.)
| | - Karolina Skonieczna-Żydecka
- Department of Biochemical Sciences, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland; (I.Ł.); (K.S.-Ż.)
| | - Dominik Strzelecki
- Department of Affective and Psychotic Disorders, Medical University of Lodz, 92-216 Lodz, Poland; (A.S.); (D.S.)
| |
Collapse
|
47
|
Libowitz MR, Nurmi EL. The Burden of Antipsychotic-Induced Weight Gain and Metabolic Syndrome in Children. Front Psychiatry 2021; 12:623681. [PMID: 33776816 PMCID: PMC7994286 DOI: 10.3389/fpsyt.2021.623681] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/17/2021] [Indexed: 12/13/2022] Open
Abstract
Antipsychotic medications are critical to child and adolescent psychiatry, from the stabilization of psychotic disorders like schizophrenia, bipolar disorder, and psychotic depression to behavioral treatment of autism spectrum disorder, tic disorders, and pediatric aggression. While effective, these medications carry serious risk of adverse events-most commonly, weight gain and cardiometabolic abnormalities. Negative metabolic consequences affect up to 60% of patients and present a major obstacle to long-term treatment. Since antipsychotics are often chronically prescribed beginning in childhood, cardiometabolic risk accumulates. An increased susceptibility to antipsychotic-induced weight gain (AIWG) has been repeatedly documented in children, particularly rapid weight gain. Associated cardiometabolic abnormalities include central obesity, insulin resistance, dyslipidemia, and systemic inflammation. Lifestyle interventions and medications such as metformin have been proposed to reduce risk but remain limited in efficacy. Furthermore, antipsychotic medications touted to be weight-neutral in adults can cause substantial weight gain in children. A better understanding of the biological underpinnings of AIWG could inform targeted and potentially more fruitful treatments; however, little is known about the underlying mechanism. As yet, modest genetic studies have nominated a few risk genes that explain only a small percentage of the risk. Recent investigations have begun to explore novel potential mechanisms of AIWG, including a role for gut microbiota and microbial metabolites. This article reviews the problem of AIWG and AP metabolic side effects in pediatric populations, proposed mechanisms underlying this serious side effect, and strategies to mitigate adverse impact. We suggest future directions for research efforts that may advance the field and lead to improved clinical interventions.
Collapse
Affiliation(s)
| | - Erika L. Nurmi
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
48
|
Bioque M, González-Rodríguez A, Garcia-Rizo C, Cobo J, Monreal JA, Usall J, Soria V, Labad J. Targeting the microbiome-gut-brain axis for improving cognition in schizophrenia and major mood disorders: A narrative review. Prog Neuropsychopharmacol Biol Psychiatry 2021; 105:110130. [PMID: 33045322 DOI: 10.1016/j.pnpbp.2020.110130] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/29/2020] [Accepted: 10/04/2020] [Indexed: 02/07/2023]
Abstract
Cognitive impairment has been consistently found to be a core feature of serious mental illnesses such as schizophrenia and major mood disorders (major depression and bipolar disorder). In recent years, a great effort has been made in elucidating the biological causes of cognitive deficits and the search for new biomarkers of cognition. Microbiome and gut-brain axis (MGB) hormones have been postulated to be potential biomarkers of cognition in serious mental illnesses. The main aim of this review was to synthesize current evidence on the association of microbiome and gut-brain hormones on cognitive processes in schizophrenia and major mood disorders and the association of MGB hormones with stress and the immune system. Our review underscores the role of the MGB axis on cognitive aspects of serious mental illnesses with the potential use of agents targeting the gut microbiota as cognitive enhancers. However, the current evidence for clinical trials focused on the MGB axis as cognitive enhancers in these clinical populations is scarce. Future clinical trials using probiotics, prebiotics, antibiotics, or faecal microbiota transplantation need to consider potential mechanistic pathways such as the HPA axis, the immune system, or gut-brain axis hormones involved in appetite control and energy homeostasis.
Collapse
Affiliation(s)
- Miquel Bioque
- Barcelona Clinic Schizophrenia Unit (BCSU), Neuroscience Institute, Hospital Clinic of Barcelona, University of Barcelona (UB), IDIBAPS, CIBERSAM, Barcelona, Spain
| | - Alexandre González-Rodríguez
- Department of Mental Health, Parc Tauli University Hospital, I3PT. Sabadell, Autonomous University of Barcelona (UAB), CIBERSAM, Barcelona, Spain
| | - Clemente Garcia-Rizo
- Barcelona Clinic Schizophrenia Unit (BCSU), Neuroscience Institute, Hospital Clinic of Barcelona, University of Barcelona (UB), IDIBAPS, CIBERSAM, Barcelona, Spain.
| | - Jesús Cobo
- Department of Mental Health, Parc Tauli University Hospital, I3PT. Sabadell, Autonomous University of Barcelona (UAB), CIBERSAM, Barcelona, Spain
| | - José Antonio Monreal
- Department of Mental Health, Parc Tauli University Hospital, I3PT. Sabadell, Autonomous University of Barcelona (UAB), CIBERSAM, Barcelona, Spain
| | - Judith Usall
- Parc Sanitari Sant Joan de Déu, Sant Boi de Llobregat, University of Barcelona (UB), CIBERSAM, Barcelona, Spain
| | - Virginia Soria
- Department of Psychiatry, Hospital Universitari Bellvitge, Hospitalet de Llobregat, University of Barcelona (UB), IDIBELL, CIBERSAM, Spain
| | | | - Javier Labad
- Department of Mental Health, Parc Tauli University Hospital, I3PT. Sabadell, Autonomous University of Barcelona (UAB), CIBERSAM, Barcelona, Spain
| |
Collapse
|
49
|
Zeng C, Yang P, Cao T, Gu Y, Li N, Zhang B, Xu P, Liu Y, Luo Z, Cai H. Gut microbiota: An intermediary between metabolic syndrome and cognitive deficits in schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2021; 106:110097. [PMID: 32916223 DOI: 10.1016/j.pnpbp.2020.110097] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/29/2020] [Accepted: 09/01/2020] [Indexed: 12/12/2022]
Abstract
Gut microbiome interacts with the central nervous system tract through the gut-brain axis. Such communication involves neuronal, endocrine, and immunological mechanisms, which allows for the microbiota to affect and respond to various behaviors and psychiatric conditions. In addition, the use of atypical antipsychotic drugs (AAPDs) may interact with and even change the abundance of microbiome to potentially cause adverse effects or aggravate the disorders inherent in the disease. The regulate effects of gut microbiome has been described in several psychiatric disorders including anxiety and depression, but only a few reports have discussed the role of microbiota in AAPDs-induced Metabolic syndrome (MetS) and cognitive disorders. The following review systematically summarizes current knowledge about the gut microbiota in behavior and psychiatric illness, with the emphasis of an important role of the microbiome in the metabolism of schizophrenia and the potential for AAPDs to change the gut microbiota to promote adverse events. Prebiotics and probiotics are microbiota-management tools with documented efficacy for metabolic disturbances and cognitive deficits. Novel therapies for targeting microbiota for alleviating AAPDs-induced adverse effects are also under fast development.
Collapse
Affiliation(s)
- CuiRong Zeng
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, China; The Institute of Clinical Pharmacy, Central South University, Changsha 410011, Hunan Province, China
| | - Ping Yang
- Department of Psychiatry, The Second People's Hospital of Hunan Province, Changsha 410007, Hunan Province, China
| | - Ting Cao
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, China; The Institute of Clinical Pharmacy, Central South University, Changsha 410011, Hunan Province, China
| | - YuXiu Gu
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, China; The Institute of Clinical Pharmacy, Central South University, Changsha 410011, Hunan Province, China
| | - NaNa Li
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, China; The Institute of Clinical Pharmacy, Central South University, Changsha 410011, Hunan Province, China
| | - BiKui Zhang
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, China; The Institute of Clinical Pharmacy, Central South University, Changsha 410011, Hunan Province, China
| | - Ping Xu
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, China; The Institute of Clinical Pharmacy, Central South University, Changsha 410011, Hunan Province, China
| | - YiPing Liu
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, China; The Institute of Clinical Pharmacy, Central South University, Changsha 410011, Hunan Province, China
| | - ZhiYing Luo
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, China; The Institute of Clinical Pharmacy, Central South University, Changsha 410011, Hunan Province, China
| | - HuaLin Cai
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, China; The Institute of Clinical Pharmacy, Central South University, Changsha 410011, Hunan Province, China.
| |
Collapse
|
50
|
Speyer H, Westergaard C, Albert N, Karlsen M, Stürup AE, Nordentoft M, Krogh J. Reversibility of Antipsychotic-Induced Weight Gain: A Systematic Review and Meta-Analysis. Front Endocrinol (Lausanne) 2021; 12:577919. [PMID: 34393989 PMCID: PMC8355990 DOI: 10.3389/fendo.2021.577919] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 06/07/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND AIMS Weight gain is a major adverse effect of antipsychotic medication, negatively affecting physical and mental well-being. The objective of this study was to explore if dose reduction, discontinuation, switch to a partial agonist, or switch from polypharmacy to monotherapy will lead to weight loss. METHODS Controlled and uncontrolled studies reporting the effects of discontinuation, dose reduction, switch to a partial agonist, or switch from polypharmacy to monotherapy on weight were included. Primary outcome was difference in weight compared to maintenance groups based on controlled studies. Secondary outcome was change in weight from initiation of one of the included interventions until follow-up in a pre-post analysis. RESULTS We identified 40 randomized controlled trials and 15 uncontrolled studies including 12,279 individuals. The effect of the interventions, i.e. dose reduction, drug discontinuation, or switch to a partial agonis, reduced the weight with 1.5 kg (95% CI -2.03 to -0.98; P < 0.001) compared to maintenance treatment. The weight change from pre to post was a reduction of 1.13 kg (95% CI -1.36 to -0.90; P < 0.001). CONCLUSION We found a significant but small reduction in weight, suggesting that antipsychotic-induced weight gain can be reversed to some degree. Only a few studies were designed to address the question as primary outcome, which limits the generalizability of our findings.
Collapse
Affiliation(s)
- Helene Speyer
- Mental Health Centre Copenhagen, Copenhagen Research Center for Mental Health (CORE) Research Unit, Copenhagen University Hospital, Hellerup, Denmark
- *Correspondence: Helene Speyer,
| | - Casper Westergaard
- Department of First Episode Psychosis, Psychiatric Centre, Glostrup, Denmark
| | - Nikolai Albert
- Mental Health Centre Copenhagen, Copenhagen Research Center for Mental Health (CORE) Research Unit, Copenhagen University Hospital, Hellerup, Denmark
| | - Mette Karlsen
- Mental Health Centre Copenhagen, Copenhagen Research Center for Mental Health (CORE) Research Unit, Copenhagen University Hospital, Hellerup, Denmark
| | - Anne Emilie Stürup
- Mental Health Centre Copenhagen, Copenhagen Research Center for Mental Health (CORE) Research Unit, Copenhagen University Hospital, Hellerup, Denmark
| | - Merete Nordentoft
- Mental Health Centre Copenhagen, Copenhagen Research Center for Mental Health (CORE) Research Unit, Copenhagen University Hospital, Hellerup, Denmark
| | - Jesper Krogh
- Department of Endocrinology and Metabolism, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|