1
|
Stout J, Austin K, Bonnes S, DuBroff J, Muratore A. Celiac Disease and Gluten Cross-Contact: How Much is too Much? Curr Nutr Rep 2025; 14:41. [PMID: 40038204 DOI: 10.1007/s13668-025-00621-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2025] [Indexed: 03/06/2025]
Abstract
PURPOSE OF REVIEW This review aimed to examine the variability in the susceptibility of the small intestine to injury when exposed to gluten among patients with celiac disease, particularly in the context of gluten cross-contact. It sought to address whether clinicians could recommend individualized gluten exposure levels based on current research to improve patient outcomes and quality of life, given the difficulties of maintaining a strict gluten-free diet. RECENT FINDINGS While some evidence suggests variability in small intestine susceptibility to injury, no current studies offer a reliable method for clinicians to stratify patients or recommend safe gluten levels. Research points to possible roles of the microbiome and immune responses in susceptibility to injury, though no definitive conclusions have been made. There is insufficient evidence to safely recommend varying gluten thresholds for celiac patients. While factors like the microbiome and cytokine responses may influence the small intestine's susceptibility to injury when exposed to gluten, the recommendation of a strict gluten-free diet remains the best approach until more conclusive research emerges. Future studies may help tailor dietary advice and improve quality of life for individuals with celiac disease.
Collapse
Affiliation(s)
- Jessica Stout
- Department of Gastroenterology, Hepatology & Nutrition, University of Utah, Salt Lake City, USA.
- Division of Gastroenterology, Hepatology & Nutrition, University of Utah, 30 North 1900 East, SOM 4C418, Salt Lake City, UT, 84132, USA.
| | - Kerstin Austin
- Department of Gastroenterology and Hepatology, University of Wisconsin, Madison, USA
| | - Sara Bonnes
- Department of Internal Medicine, Mayo Clinic, Rochester, USA
| | - Jason DuBroff
- Department of Gastroenterology, Hepatology & Nutrition, University of Utah, Salt Lake City, USA
| | - Alicia Muratore
- Department of Gastroenterology and Hepatology, University of North Carolina, Chapel Hill, USA
| |
Collapse
|
2
|
Daveson AJM, Stubbs R, Polasek TM, Isola J, Anderson R, Tye-Din JA, Schoeman M, Lionnet C, Mei SLCY, Mihajlović J, Wirth M, Peelen E, Schreieck A, Kohlhof H, Vitt D, Muehler A, Buriánek F. Safety, clinical activity, pharmacodynamics, and pharmacokinetics of IMU-856, a SIRT6 modulator, in coeliac disease: a first-in-human, randomised, double-blind, placebo-controlled, phase 1 trial. Lancet Gastroenterol Hepatol 2025; 10:44-54. [PMID: 39521016 DOI: 10.1016/s2468-1253(24)00248-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/18/2024] [Accepted: 07/25/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND IMU-856 is an orally available and systemically acting small molecule modulator of sirtuin 6 (SIRT6), a protein that serves as a transcriptional regulator of bowel epithelium regeneration. We aimed to evaluate the safety, clinical activity, pharmacodynamics, and pharmacokinetics of IMU-856 in healthy participants and in patients with coeliac disease. METHODS This study reports the results from a completed first-in-human, three-part, double-blind, randomised, placebo-controlled, clinical trial of IMU-856 in healthy participants and patients with coeliac disease done in Australia and New Zealand. In part A, healthy participants were enrolled in six cohorts and randomly assigned (3:1) using a block randomisation algorithm to receive single ascending doses of IMU-856 ranging from 10 mg to 160 mg or matching placebo. Based on the results from part A, three doses were selected for part B to evaluate the safety, tolerability, and pharmacokinetics of IMU-856 once daily for 14 days using the same randomisation algorithm. Part C enrolled patients with well controlled coeliac disease. Participants were centrally randomised 1:1:1 using an interactive web response system to receive either low dose or high dose of IMU-856 or placebo once daily for 28 days that included a 15-day gluten challenge starting on day 14. The primary objective was safety and tolerability of IMU-856. Safety analyses were done on all patients who received at least one dose of the study drug. The trial is registered with the ANZCTR registry (ACTRN12620000901909). FINDINGS Between July 27, 2020, and Oct 28, 2022, 71 healthy participants were enrolled in part A and B and assigned to either placebo (n=19) or IMU-856 (n=52). In part A and B, the IMU-856 doses were 10 mg (n=6), 20 mg (n=6), 40 mg (n=13), 80 mg (n=12), 120 mg (n=4), 160 mg (n=11). 43 patients with coeliac disease were enrolled in part C and assigned to either placebo (n=14), IMU-856 80 mg (n=14), or IMU-856 160 mg (n=15). Treatment-emergent adverse events (TEAEs) occurred in 24 (73%) of 33 participants in part A and 15 (79%) of 19 participants in part B receiving any dose of IMU-856 compared with six (50%) of 12 participants in part A and five (71%) of seven participants in part B with placebo. TEAEs were mainly mild in severity. In part C, TEAEs occured in 26 (90%) of 29 patients on any dose of IMU-856 and ten (71%) of 14 receiving placebo; the most common TEAEs with any dose of IMU-856 by preferred term were headache (13 [45%] of 29), nausea (nine [31%]), diarrhoea (eight [28%]), and abdominal distension (seven [24%]). Two serious adverse events occurred with IMU-856 treatment (one in part B [bacterial myocarditis] and one in part C [biliary colic]), both of which were unrelated to IMU-856. No dose-limiting toxicities, systematic safety laboratory changes, or deaths occurred during the study. In part C, mean decrease in villous height was -20·9 μm (SD 34·8) among patients who received IMU-856 80 mg, -22·5 μm (51·1) among those who received IMU-856 160 mg, and -60·3 μm (52·2) among those who received placebo. INTERPRETATION The favourable safety profile, along with preliminary activity, suggests that IMU-856 should be studied in future trials of coeliac disease. FUNDING Immunic Australia.
Collapse
Affiliation(s)
- A James M Daveson
- Wesley Research Institute, Auchenflower, QLD, Australia; Coral Sea Clinical Research Institute, North Mackay, QLD, Australia
| | | | - Thomas M Polasek
- CMAX Clinical Research, Adelaide, SA, Australia; Center for Medicine Use and Safety, Monash University, Melbourne, VIC, Australia
| | - Jorma Isola
- Tampere University, Tampere, Finland; Jilab, Tampere, Finland
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Santos AJM, van Unen V, Lin Z, Chirieleison SM, Ha N, Batish A, Chan JE, Cedano J, Zhang ET, Mu Q, Guh-Siesel A, Tomaske M, Colburg D, Varma S, Choi SS, Christophersen A, Baghdasaryan A, Yost KE, Karlsson K, Ha A, Li J, Dai H, Sellers ZM, Chang HY, Dunn JCY, Zhang BM, Mellins ED, Sollid LM, Fernandez-Becker NQ, Davis MM, Kuo CJ. A human autoimmune organoid model reveals IL-7 function in coeliac disease. Nature 2024; 632:401-410. [PMID: 39048815 PMCID: PMC11747932 DOI: 10.1038/s41586-024-07716-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/14/2024] [Indexed: 07/27/2024]
Abstract
In vitro models of autoimmunity are constrained by an inability to culture affected epithelium alongside the complex tissue-resident immune microenvironment. Coeliac disease (CeD) is an autoimmune disease in which dietary gluten-derived peptides bind to the major histocompatibility complex (MHC) class II human leukocyte antigen molecules (HLA)-DQ2 or HLA-DQ8 to initiate immune-mediated duodenal mucosal injury1-4. Here, we generated air-liquid interface (ALI) duodenal organoids from intact fragments of endoscopic biopsies that preserve epithelium alongside native mesenchyme and tissue-resident immune cells as a unit without requiring reconstitution. The immune diversity of ALI organoids spanned T cells, B and plasma cells, natural killer (NK) cells and myeloid cells, with extensive T-cell and B-cell receptor repertoires. HLA-DQ2.5-restricted gluten peptides selectively instigated epithelial destruction in HLA-DQ2.5-expressing organoids derived from CeD patients, and this was antagonized by blocking MHC-II or NKG2C/D. Gluten epitopes stimulated a CeD organoid immune network response in lymphoid and myeloid subsets alongside anti-transglutaminase 2 (TG2) autoantibody production. Functional studies in CeD organoids revealed that interleukin-7 (IL-7) is a gluten-inducible pathogenic modulator that regulates CD8+ T-cell NKG2C/D expression and is necessary and sufficient for epithelial destruction. Furthermore, endogenous IL-7 was markedly upregulated in patient biopsies from active CeD compared with remission disease from gluten-free diets, predominantly in lamina propria mesenchyme. By preserving the epithelium alongside diverse immune populations, this human in vitro CeD model recapitulates gluten-dependent pathology, enables mechanistic investigation and establishes a proof of principle for the organoid modelling of autoimmunity.
Collapse
MESH Headings
- Humans
- Autoantibodies/immunology
- Autoimmunity
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- Biopsy
- Celiac Disease/immunology
- Celiac Disease/pathology
- Celiac Disease/metabolism
- Duodenum/immunology
- Duodenum/pathology
- Duodenum/metabolism
- Epitopes/immunology
- Glutens/immunology
- Glutens/metabolism
- GTP-Binding Proteins/metabolism
- GTP-Binding Proteins/immunology
- HLA-DQ Antigens/immunology
- HLA-DQ Antigens/metabolism
- Interleukin-7/metabolism
- Intestinal Mucosa/immunology
- Intestinal Mucosa/metabolism
- Intestinal Mucosa/pathology
- Killer Cells, Natural/immunology
- Models, Biological
- Myeloid Cells/immunology
- Organoids/immunology
- Organoids/metabolism
- Organoids/pathology
- Protein Glutamine gamma Glutamyltransferase 2/immunology
- Receptors, Antigen, B-Cell/immunology
- Receptors, Antigen, B-Cell/metabolism
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
Collapse
Affiliation(s)
- António J M Santos
- Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Vincent van Unen
- Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - Zhongqi Lin
- Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Steven M Chirieleison
- Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Nhi Ha
- Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Arpit Batish
- Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Joshua E Chan
- Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Jose Cedano
- Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Elisa T Zhang
- Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Qinghui Mu
- Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Alexander Guh-Siesel
- Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Madeline Tomaske
- Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Deana Colburg
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Sushama Varma
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Shannon S Choi
- Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Asbjørn Christophersen
- K. G. Jebsen Coeliac Disease Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Immunology, Oslo University Hospital, Oslo, Norway
- Department of Rheumatology, Dermatology and Infectious Diseases, Oslo University Hospital, Oslo, Norway
| | - Ani Baghdasaryan
- Department of Chemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - Kathryn E Yost
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA, USA
- Department of Dermatology, Stanford University School of Medicine, Stanford, CA, USA
| | - Kasper Karlsson
- Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Andrew Ha
- Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Jing Li
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - Hongjie Dai
- Department of Chemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - Zachary M Sellers
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Howard Y Chang
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA, USA
- Department of Dermatology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - James C Y Dunn
- Department of Pediatric Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Bing M Zhang
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Elizabeth D Mellins
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Ludvig M Sollid
- K. G. Jebsen Coeliac Disease Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Immunology, Oslo University Hospital, Oslo, Norway
| | - Nielsen Q Fernandez-Becker
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Mark M Davis
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Calvin J Kuo
- Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
4
|
Flores-Marin DL, Linden J, Frank E, Pena R, Silvester JA, Therrien A. HLA-DQ7 haplotype among individuals with suspected celiac disease. Dig Liver Dis 2024; 56:1414-1416. [PMID: 38825411 DOI: 10.1016/j.dld.2024.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 05/15/2024] [Indexed: 06/04/2024]
Affiliation(s)
- David Leonardo Flores-Marin
- Celiac Center Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA 02215 USA; Celiac Research Program, Harvard Medical School, 330 Brookline Ave, Boston, MA 02215 USA
| | - Justin Linden
- Celiac Center Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA 02215 USA; Celiac Research Program, Harvard Medical School, 330 Brookline Ave, Boston, MA 02215 USA
| | - Emma Frank
- Celiac Center Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA 02215 USA; Celiac Research Program, Harvard Medical School, 330 Brookline Ave, Boston, MA 02215 USA
| | - Ryan Pena
- Department of Pathology, Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA 02215 USA
| | - Jocelyn Anne Silvester
- Celiac Center Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA 02215 USA; Celiac Research Program, Harvard Medical School, 330 Brookline Ave, Boston, MA 02215 USA; Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, 300 Longwood Ave, Boston, MA 02215 USA
| | - Amelie Therrien
- Celiac Center Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA 02215 USA; Celiac Research Program, Harvard Medical School, 330 Brookline Ave, Boston, MA 02215 USA.
| |
Collapse
|
5
|
Risnes LF, Reims HM, Doyle RM, Qiao SW, Sollid LM, Lundin KEA, Christophersen A. Gluten-Free Diet Induces Rapid Changes in Phenotype and Survival Properties of Gluten-Specific T Cells in Celiac Disease. Gastroenterology 2024; 167:250-263. [PMID: 38552723 DOI: 10.1053/j.gastro.2024.03.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 03/16/2024] [Accepted: 03/18/2024] [Indexed: 04/29/2024]
Abstract
BACKGROUND & AIMS The treatment of celiac disease (CeD) with gluten-free diet (GFD) normalizes gut inflammation and disease-specific antibodies. CeD patients have HLA-restricted, gluten-specific T cells persisting in the blood and gut even after decades of GFD, which are reactivated and disease driving upon gluten exposure. Our aim was to examine the transition of activated gluten-specific T cells into a pool of persisting memory T cells concurrent with normalization of clinically relevant biomarkers during the first year of treatment. METHODS We followed 17 CeD patients during their initial GFD year, leading to disease remission. We assessed activation and frequency of gluten-specific CD4+ blood and gut T cells with HLA-DQ2.5:gluten tetramers and flow cytometry, disease-specific serology, histology, and symptom scores. We assessed gluten-specific blood T cells within the first 3 weeks of GFD in 6 patients and serology in an additional 9 patients. RESULTS Gluten-specific CD4+ T cells peaked in blood at day 14 while up-regulating Bcl-2 and down-regulating Ki-67 and then decreased in frequency within 10 weeks of GFD. CD38, ICOS, HLA-DR, and Ki-67 decreased in gluten-specific cells within 3 days. PD-1, CD39, and OX40 expression persisted even after 12 months. IgA-transglutaminase 2 decreased significantly within 4 weeks. CONCLUSIONS GFD induces rapid changes in the phenotype and number of gluten-specific CD4+ blood T cells, including a peak of nonproliferating, nonapoptotic cells at day 14. Subsequent alterations in T-cell phenotype associate with the quiescent but chronic nature of treated CeD. The rapid changes affecting gluten-specific T cells and disease-specific antibodies offer opportunities for clinical trials aiming at developing nondietary treatments for patients with newly diagnosed CeD.
Collapse
Affiliation(s)
- Louise F Risnes
- KG Jebsen Coeliac Disease Research Centre, University of Oslo, Oslo, Norway; Faculty of Medicine, University of Oslo, Oslo, Norway; Department of Immunology, Oslo University Hospital, Oslo, Norway
| | - Henrik M Reims
- Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Ronan M Doyle
- Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Shuo-Wang Qiao
- Faculty of Medicine, University of Oslo, Oslo, Norway; Department of Immunology, Oslo University Hospital, Oslo, Norway
| | - Ludvig M Sollid
- KG Jebsen Coeliac Disease Research Centre, University of Oslo, Oslo, Norway; Faculty of Medicine, University of Oslo, Oslo, Norway; Department of Immunology, Oslo University Hospital, Oslo, Norway
| | - Knut E A Lundin
- KG Jebsen Coeliac Disease Research Centre, University of Oslo, Oslo, Norway; Faculty of Medicine, University of Oslo, Oslo, Norway; Department of Gastroenterology, Oslo University Hospital, Oslo, Norway
| | - Asbjørn Christophersen
- KG Jebsen Coeliac Disease Research Centre, University of Oslo, Oslo, Norway; Faculty of Medicine, University of Oslo, Oslo, Norway; Department of Immunology, Oslo University Hospital, Oslo, Norway; Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.
| |
Collapse
|
6
|
Anderson RP, Verma R, Schumann M. A Look Into the Future: Are We Ready for an Approved Therapy in Celiac Disease? Gastroenterology 2024; 167:183-193. [PMID: 38355059 DOI: 10.1053/j.gastro.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/16/2024]
Abstract
As it appears that we are currently at the cusp of an era in which drugs that are new, re-purposed, or "supplements" will be introduced to the management of celiac disease, we need to reflect on whether the framework is set for celiac disease to be treated increasingly with pharmaceuticals as well as diet. This refers to reflecting on the rigor of current diagnostic practices; the limitations of the current standard of care, which is a gluten-free diet; and that we lack objective markers of disease severity. Investigating these issues will help us to identify gaps in technology and practices that could be critical for selecting patients with a well-defined need for an improved or alternative treatment. Both aspects, circumscribed limitations of the gluten-free diet and diagnostics helping to define celiac disease target groups, together with the guiding requirements by the responsible regulatory authorities, will contribute to defining the subgroups of patients with confirmed celiac disease eligible for distinct pharmacologic strategies. Because many patients with celiac disease are diagnosed in childhood, these aspects need to be differentially discussed for the pediatric setting. In this perspective, we aimed to describe these contextual issues and then looked ahead to the future. What might be the major challenges in celiac disease clinics in the coming years once drugs are an option alongside diet? And what will be the future objectives for researchers who further decipher the mucosal immunology of celiac disease? Speculating on the answers to these questions is as stimulating as it is fascinating to be part of this turning point.
Collapse
Affiliation(s)
- Robert P Anderson
- Gastroenterology Service, Mackay Base Hospital, West Mackay, Queensland, Australia
| | - Ritu Verma
- University of Chicago, Comer Children's Hospital, Chicago, Illinois
| | - Michael Schumann
- Department of Gastroenterology, Infectious Diseases and Rheumatology, Charité Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
7
|
Abadie V, Han AS, Jabri B, Sollid LM. New Insights on Genes, Gluten, and Immunopathogenesis of Celiac Disease. Gastroenterology 2024; 167:4-22. [PMID: 38670280 PMCID: PMC11283582 DOI: 10.1053/j.gastro.2024.03.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/10/2024] [Accepted: 03/11/2024] [Indexed: 04/28/2024]
Abstract
Celiac disease (CeD) is a gluten-induced enteropathy that develops in genetically susceptible individuals upon consumption of cereal gluten proteins. It is a unique and complex immune disorder to study as the driving antigen is known and the tissue targeted by the immune reaction can be interrogated. This review integrates findings gained from genetic, biochemical, and immunologic studies, which together have revealed mechanisms of gluten peptide modification and HLA binding, thereby enabling a maladapted anti-gluten immune response. Observations in human samples combined with experimental mouse models have revealed that the gluten-induced immune response involves CD4+ T cells, cytotoxic CD8+ T cells, and B cells; their cross-talks are critical for the tissue-damaging response. The emergence of high-throughput technologies is increasing our understanding of the phenotype, location, and presumably function of the gluten-specific cells, which are all required to identify novel therapeutic targets and strategies for CeD.
Collapse
Affiliation(s)
- Valérie Abadie
- Department of Medicine, University of Chicago, Chicago, Illinois; Section of Gastroenterology, Nutrition and Hepatology, University of Chicago, Chicago, Illinois; Committee on Immunology, University of Chicago, Chicago, Illinois.
| | - Arnold S Han
- Columbia Center for Translational Immunology, Columbia University, New York, New York; Department of Microbiology and Immunology, Columbia University, New York, New York; Department of Medicine, Digestive and Liver Diseases, Columbia University, New York, New York
| | - Bana Jabri
- Department of Medicine, University of Chicago, Chicago, Illinois; Section of Gastroenterology, Nutrition and Hepatology, University of Chicago, Chicago, Illinois; Committee on Immunology, University of Chicago, Chicago, Illinois; Department of Pathology, University of Chicago, Chicago, Illinois; Department of Pediatrics, University of Chicago, Chicago, Illinois
| | - Ludvig M Sollid
- Norwegian Coeliac Disease Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Immunology, Oslo University Hospital-Rikshospitalet, Oslo, Norway
| |
Collapse
|
8
|
Adams DW, Moleski S, Jossen J, Tye-Din JA. Clinical Presentation and Spectrum of Gluten Symptomatology in Celiac Disease. Gastroenterology 2024; 167:51-63. [PMID: 38636679 DOI: 10.1053/j.gastro.2024.01.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/31/2023] [Accepted: 01/02/2024] [Indexed: 04/20/2024]
Abstract
Views on the clinical presentation and symptomatology of celiac disease have evolved alongside advances in disease detection and understanding of disease pathogenesis. Although historically regarded as a pediatric illness characterized by malabsorption, it is now better viewed as an immune illness of gluten-specific T cells with systemic manifestations affecting all ages. Its broad presentation, including frequent extraintestinal manifestations and asymptomatic disease, contributes to suboptimal disease detection. Adverse symptoms greatly impact patient quality of life and can result from chronic gluten exposure in untreated disease or those poorly responsive to the gluten-free diet. They can also present as acute symptoms after episodic gluten exposure. Functional gastrointestinal disease is a common comorbidity. Biomarkers like interleukin-2 that are highly sensitive and specific for celiac disease highlight a role for gluten-specific T cells in acute gluten symptomatology. A mechanistic understanding of symptoms will inform approaches to better measure and treat them effectively.
Collapse
Affiliation(s)
- Dawn W Adams
- Gastroenterology, Hepatology, and Nutrition, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Stephanie Moleski
- Department of Medicine, Division of Gastroenterology and Hepatology, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania
| | - Jacqueline Jossen
- Departments of Medicine and Pediatrics, The Celiac Disease Center at Columbia University, New York, New York
| | - Jason A Tye-Din
- Immunology Division, Walter and Eliza Hall Institute, Melbourne, Victoria, Australia; Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia; Department of Gastroenterology, The Royal Melbourne Hospital, Melbourne, Victoria, Australia.
| |
Collapse
|
9
|
Lebwohl B, Ma C, Lagana SM, Pai RK, Baker KA, Zayadi A, Hogan M, Bouma G, Cellier C, Goldsmith JD, Lundin KEA, Pinto-Sanchez MI, Robert ME, Rubio-Tapia A, Sanders DS, Schaeffer DF, Semrad CE, Silvester JA, Verdú EF, Verma R, Wu TT, Feagan BG, Crowley E, Jairath V, Murray JA. Standardizing Randomized Controlled Trials in Celiac Disease: An International Multidisciplinary Appropriateness Study. Gastroenterology 2024; 166:88-102. [PMID: 37704112 DOI: 10.1053/j.gastro.2023.08.051] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/22/2023] [Accepted: 08/30/2023] [Indexed: 09/15/2023]
Abstract
BACKGROUND & AIMS There is a need to develop safe and effective pharmacologic options for the treatment of celiac disease (CeD); however, consensus on the appropriate design and configuration of randomized controlled trials (RCTs) in this population is lacking. METHODS A 2-round modified Research and Development/University of California Los Angeles Appropriateness Method study was conducted. Eighteen gastroenterologists (adult and pediatric) and gastrointestinal pathologists voted on statements pertaining to the configuration of CeD RCTs, inclusion and exclusion criteria, gluten challenge, and trial outcomes. Two RCT designs were considered, representing the following distinct clinical scenarios for which pharmacotherapy may be used: trials incorporating a gluten challenge to simulate exposure; and trials evaluating reversal of histologic changes, despite attempted adherence to a gluten-free diet. Each statement was rated as appropriate, uncertain, or inappropriate, using a 9-point Likert scale. RESULTS For trials evaluating prevention of relapse after gluten challenge, participants adherent to a gluten-free diet for 12 months or more with normal or near-normal-sized villi should be enrolled. Gluten challenge should be FODMAPS (fermentable oligosaccharides, disaccharides, monosaccharides, and polyols) free, and efficacy evaluated using histology with a secondary patient-reported outcome measure. For trials evaluating reversal of villus atrophy, the panel voted it appropriate to enroll participants with a baseline villus height to crypt depth ratio ≤2 and measure efficacy using a primary histologic end point. Guidance for measuring histologic, endoscopic, and patient-reported outcomes in adult and pediatric patients with CeD are provided, along with recommendations regarding the merits and limitations of different end points. CONCLUSIONS We developed standardized recommendations for clinical trial design, eligibility criteria, outcome measures, gluten challenge, and disease evaluations for RCTs in patients with CeD.
Collapse
Affiliation(s)
- Benjamin Lebwohl
- Celiac Disease Center, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York; Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York.
| | - Christopher Ma
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Calgary, Calgary, Alberta, Canada; Department of Community Health Sciences, University of Calgary, Calgary, Alberta, Canada; Alimentiv Inc, London, Ontario, Canada.
| | - Stephen M Lagana
- Department of Pathology and Cell Biology, Columbia University, New York, New York
| | - Rish K Pai
- Department of Pathology and Laboratory Medicine, Mayo Clinic Arizona, Scottsdale, Arizona
| | | | | | | | - Gerd Bouma
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam Gastroenterology Endocrinology Metabolism Research Institute, Amsterdam, The Netherlands
| | - Christophe Cellier
- Department of Gastroenterology, University of Paris-Cité, Georges-Pompidou European Hospital, Assistance Publique des Hôpitaux de Paris, Paris, France
| | | | - Knut E A Lundin
- Norwegian Coeliac Disease Research Centre, University of Oslo Faculty of Medicine, Oslo, Norway; Department of Gastroenterology, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Maria I Pinto-Sanchez
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Marie E Robert
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| | - Alberto Rubio-Tapia
- Celiac Disease Program, Division of Gastroenterology, Hepatology, and Nutrition, Digestive Disease and Surgery Institute, Cleveland Clinic, Cleveland, Ohio
| | - David S Sanders
- Academic Unit of Gastroenterology, Royal Hallamshire Hospital, Sheffield, United Kingdom
| | - David F Schaeffer
- Department of Pathology and Laboratory Medicine, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Carol E Semrad
- Department of Gastroenterology, University of Chicago, Chicago, Illinois
| | - Jocelyn A Silvester
- Harvard Celiac Research Program, Harvard Medical School, Boston, Massachusetts; Division of Gastroenterology, Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts; Celiac Disease Center, Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Elena F Verdú
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Ritu Verma
- Department of Pediatrics, Section of Gastroenterology, Hepatology and Nutrition, The University of Chicago, Chicago, Illinois
| | - Tsung-Teh Wu
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Brian G Feagan
- Alimentiv Inc, London, Ontario, Canada; Division of Gastroenterology, Department of Medicine, Western University, London, Ontario, Canada; Department of Epidemiology and Biostatistics, Western University, London, Ontario, Canada
| | - Eileen Crowley
- Alimentiv Inc, London, Ontario, Canada; Division of Pediatric Gastroenterology, Department of Pediatrics, Children's Hospital Western Ontario, London Health Sciences Centre, Western University, London, Ontario, Canada
| | - Vipul Jairath
- Alimentiv Inc, London, Ontario, Canada; Division of Gastroenterology, Department of Medicine, Western University, London, Ontario, Canada; Department of Epidemiology and Biostatistics, Western University, London, Ontario, Canada
| | - Joseph A Murray
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
10
|
Crepaldi M, Palo M, Maniero D, Bertin L, Savarino EV, Anderson RP, Zingone F. Emerging Pharmaceutical Therapies to Address the Inadequacy of a Gluten-Free Diet for Celiac Disease. Pharmaceuticals (Basel) 2023; 17:4. [PMID: 38275990 PMCID: PMC10821495 DOI: 10.3390/ph17010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
Celiac disease (CeD) is a chronic autoimmune disorder triggered by the ingestion of gluten, affecting around 1% of the global population. It is a multifactorial disease involving both genetics and environmental factors. Nowadays, the only available treatment for CeD is a life-long gluten-free diet (GFD), which can cause a significant burden for patients, since symptoms and mucosal injury can persist despite apparent compliance with a GFD. This could also lead to psychological consequences and affect the quality of life of these patients. Thankfully, recent advances in understanding the pathogenesis of CeD and the availability of various targets have made it feasible to explore pharmaceutical treatments specific to CeD. Recently, the FDA has highlighted the unmet needs of adult patients on a GFD who experience ongoing symptoms attributed to CeD and also show persistent duodenal villous atrophy. This review will outline the limitations of a GFD, describe the targets of potential novel treatment of CeD and provide an overview of the primary clinical trials involving oral and injectable agents for a non-dietary treatment of CeD.
Collapse
Affiliation(s)
- Martina Crepaldi
- Department of Surgery, Oncology and Gastroenterology, University of Padua, 35128 Padua, Italy; (M.C.); (M.P.); (D.M.); (L.B.); (E.V.S.)
- Gastroenterology Unit, Azienda Ospedale—Università Padova, 35128 Padua, Italy
| | - Michela Palo
- Department of Surgery, Oncology and Gastroenterology, University of Padua, 35128 Padua, Italy; (M.C.); (M.P.); (D.M.); (L.B.); (E.V.S.)
| | - Daria Maniero
- Department of Surgery, Oncology and Gastroenterology, University of Padua, 35128 Padua, Italy; (M.C.); (M.P.); (D.M.); (L.B.); (E.V.S.)
| | - Luisa Bertin
- Department of Surgery, Oncology and Gastroenterology, University of Padua, 35128 Padua, Italy; (M.C.); (M.P.); (D.M.); (L.B.); (E.V.S.)
- Gastroenterology Unit, Azienda Ospedale—Università Padova, 35128 Padua, Italy
| | - Edoardo Vincenzo Savarino
- Department of Surgery, Oncology and Gastroenterology, University of Padua, 35128 Padua, Italy; (M.C.); (M.P.); (D.M.); (L.B.); (E.V.S.)
- Gastroenterology Unit, Azienda Ospedale—Università Padova, 35128 Padua, Italy
| | - Robert P. Anderson
- Gastroenterology Department, Mackay Base Hospital, Mackay, QLD 4740, Australia
| | - Fabiana Zingone
- Department of Surgery, Oncology and Gastroenterology, University of Padua, 35128 Padua, Italy; (M.C.); (M.P.); (D.M.); (L.B.); (E.V.S.)
- Gastroenterology Unit, Azienda Ospedale—Università Padova, 35128 Padua, Italy
| |
Collapse
|
11
|
Syage J, Ramos A, Loskutov V, Norum A, Bledsoe A, Choung RS, Dickason M, Sealey-Voyksner J, Murray J. Dynamics of Serologic Change to Gluten in Celiac Disease Patients. Nutrients 2023; 15:5083. [PMID: 38140342 PMCID: PMC10746107 DOI: 10.3390/nu15245083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/25/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
Serologic measures of tissue transglutaminase (tTG) immunoglobulin A (IgA) and deamidated gliadin peptide (DGP) IgA and immunoglobulin G (IgG) are hallmark tests utilized when diagnosing individuals for celiac disease (CeD) and for monitoring adherence to a gluten-free diet (GFD), currently the only available treatment for CeD. We address two issues in this study: (i) the relapse to seropositivity for CeD patients who resume a gluten containing diet and (ii) the correlation between two different tTG-IgA assays near the upper limit of normal (ULN) designated thresholds. Regarding the first issue, often a suspected CeD individual is put back on a gluten diet to return to their serologic levels. However, we show it requires a substantial amount of gluten for serology to return to a positive level. For example, in one study of 22 patients treated with placebo and taking 84 g of gluten over 6 weeks, only two converted from seronegative to seropositive for tTG-IgA. Regarding the second topic, we compare the relationship for different serologic assays, namely tTG-IgA AB (recombinant, ULN = 4 units/mL) vs. tTG-IgA (non-recombinant, ULN = 20 units). There is a strong correlation between both measurements as evidenced by a Pearson coefficient of R = 0.8584; however, we observed that the cross-correlation in terms of sensitivity and specificity improved substantially by using an ULN value of three instead of four for the tTG-IgA AB (recombinant) assay. This result suggests that assay thresholds used for initial diagnosis in patients who have not yet started a GFD may need to be adjusted for monitoring and in the setting of a diagnostic gluten challenge.
Collapse
Affiliation(s)
- Jack Syage
- ImmunogenX, Inc., 1600 Dove Street, Suite 330, Newport Beach, CA 92660, USA; (A.R.); (V.L.); (M.D.)
| | - Ana Ramos
- ImmunogenX, Inc., 1600 Dove Street, Suite 330, Newport Beach, CA 92660, USA; (A.R.); (V.L.); (M.D.)
| | - Vasiliy Loskutov
- ImmunogenX, Inc., 1600 Dove Street, Suite 330, Newport Beach, CA 92660, USA; (A.R.); (V.L.); (M.D.)
| | - Anna Norum
- ImmunogenX, Inc., 1600 Dove Street, Suite 330, Newport Beach, CA 92660, USA; (A.R.); (V.L.); (M.D.)
| | - Adam Bledsoe
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| | - Rok Seon Choung
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| | - Matthew Dickason
- ImmunogenX, Inc., 1600 Dove Street, Suite 330, Newport Beach, CA 92660, USA; (A.R.); (V.L.); (M.D.)
| | - Jennifer Sealey-Voyksner
- ImmunogenX, Inc., 1600 Dove Street, Suite 330, Newport Beach, CA 92660, USA; (A.R.); (V.L.); (M.D.)
| | - Joseph Murray
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
12
|
Seitz V, Gennermann K, Elezkurtaj S, Groth D, Schaper S, Dröge A, Lachmann N, Berg E, Lenze D, Kühl AA, Husemann C, Kleo K, Horst D, Lennerz V, Hennig S, Hummel M, Schumann M. Specific T-cell receptor beta-rearrangements of gluten-triggered CD8 + T-cells are enriched in celiac disease patients' duodenal mucosa. Clin Immunol 2023; 256:109795. [PMID: 37769786 DOI: 10.1016/j.clim.2023.109795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/12/2023] [Accepted: 09/25/2023] [Indexed: 10/02/2023]
Abstract
Celiac disease (CeD) is an autoimmune disorder affecting the small intestine with gluten as disease trigger. Infections including Influenza A, increase the CeD risk. While gluten-specific CD4+ T-cells, recognizing HLA-DQ2/DQ8 presented gluten-peptides, initiate and sustain the celiac immune response, CD8+ α/β intraepithelial T-cells elicit mucosal damage. Here, we subjected TCRs from a cohort of 56 CeD patients and 22 controls to an analysis employing 749 published CeD-related TCRβ-rearrangements derived from gluten-specific CD4+ T-cells and gluten-triggered peripheral blood CD8+ T-cells. We show, that in addition to TCRs from gluten-specific CD4+ T-cells, TCRs of gluten-triggered CD8+ T-cells are significantly enriched in CeD duodenal tissue samples. TCRβ-rearrangements of gluten-triggered CD8+ T-cells were even more expanded in patients than TCRs from gluten-specific CD4+ T-cells (p < 0.0002) and highest in refractory CeD. Sequence alignments with TCR-antigen databases suggest that a subgroup of these most likely indirectly gluten-triggered TCRs recognize microbial, viral, and autoantigens.
Collapse
Affiliation(s)
- V Seitz
- Institute of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; HS Diagnomics GmbH, Berlin, Germany
| | | | - S Elezkurtaj
- Institute of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - D Groth
- Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | | | - A Dröge
- HS Diagnomics GmbH, Berlin, Germany
| | - N Lachmann
- Centre for Tumor Medicine, Histocompatibility & Immunogenetics Laboratory, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - E Berg
- Institute of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - D Lenze
- Institute of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - A A Kühl
- iPATH.Berlin - Core Unit of the Charité Universitätsmedizin Berlin, corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - C Husemann
- Institute of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; German Cancer Consortium (DKTK), Partner Site Berlin, Berlin, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - K Kleo
- Institute of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - D Horst
- Institute of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | | | - S Hennig
- HS Diagnomics GmbH, Berlin, Germany
| | - M Hummel
- Institute of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; German Cancer Consortium (DKTK), Partner Site Berlin, Berlin, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - M Schumann
- Medizinische Klinik m. S. Gastroenterologie, Infektiologie und Rheumatologie, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
13
|
Ahonen I, Laurikka P, Koskimaa S, Huhtala H, Lindfors K, Kaukinen K, Kurppa K, Kivelä L. Prevalence of vomiting and nausea and associated factors after chronic and acute gluten exposure in celiac disease. BMC Gastroenterol 2023; 23:301. [PMID: 37674120 PMCID: PMC10481613 DOI: 10.1186/s12876-023-02934-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/25/2023] [Indexed: 09/08/2023] Open
Abstract
BACKGROUND Vomiting and nausea seem to be relatively specific symptoms related to gluten ingestion in treated celiac disease. However, the overall prevalence and associated factors of these symptoms after chronic gluten exposure at celiac disease diagnosis and acute re-exposure during gluten challenge remain obscure. METHODS Medical data on 815 adult celiac disease patients were collected at diagnosis from the medical records and through supplementary interviews. An additional 74 patients underwent a three-day (10 g/day) gluten challenge (wheat, barley, rye or a combination of the three grains) while in remission. Prevalence of vomiting/nausea and associated factors were evaluated in both cohorts. A literature review was conducted to summarize earlier studies. RESULTS Twenty-eight (3%) patients presented with vomiting at diagnosis. They were less often screen-detected and suffered from extra-intestinal symptoms, and had more often abdominal pain (71% vs. 49%, p = 0.021), diarrhea (61% vs. 40%, p = 0.031), weight loss (36% vs. 17%, p = 0.019) and childhood symptoms (61% vs. 33%, p = 0.002) than those without vomiting (n = 787). The groups were comparable in other clinical-demographic data and in genetic, serological, and histological findings. Short-term gluten challenge provoked vomiting/nausea in 14/74 (19%) patients. They consumed gluten-free oats less often than those without these symptoms (64% vs. 92%, p = 0.017), whereas the groups did not differ in clinical-demographic features at diagnosis, presence of comorbidities, duration of gluten-free diet, or in other symptoms or grain used ingested during the challenge. According to the literature, prevalence of vomiting/nausea at celiac disease diagnosis has varied 3-46% and during gluten challenge 13-61%. CONCLUSIONS In chronic gluten exposure at celiac disease diagnosis, vomiting was associated with other gastrointestinal symptoms and onset of symptoms already in childhood, whereas regular consumption of oats may increase the tolerance against vomiting/nausea after acute re-exposure in treated celiac disease.
Collapse
Affiliation(s)
- Iida Ahonen
- Celiac Disease Research Center, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Pilvi Laurikka
- Celiac Disease Research Center, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Internal Medicine, Tampere University Hospital, Tampere, Finland
| | - Sara Koskimaa
- Celiac Disease Research Center, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Tampere Center for Child, Adolescent and Maternal Health Research, Tampere University and Tampere University Hospital, Tampere, Finland
| | - Heini Huhtala
- Faculty of Social Sciences, Tampere University, Tampere, Finland
| | - Katri Lindfors
- Celiac Disease Research Center, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Katri Kaukinen
- Celiac Disease Research Center, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Internal Medicine, Tampere University Hospital, Tampere, Finland
| | - Kalle Kurppa
- Celiac Disease Research Center, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Tampere Center for Child, Adolescent and Maternal Health Research, Tampere University and Tampere University Hospital, Tampere, Finland
- The University Consortium of Seinäjoki, Seinäjoki, Finland
| | - Laura Kivelä
- Celiac Disease Research Center, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
- Tampere Center for Child, Adolescent and Maternal Health Research, Tampere University and Tampere University Hospital, Tampere, Finland.
- Children's Hospital and Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
| |
Collapse
|
14
|
Murray JA, Wassaf D, Dunn K, Arora S, Winkle P, Stacey H, Cooper S, Goldstein KE, Manchanda R, Kontos S, Grebe KM. Safety and tolerability of KAN-101, a liver-targeted immune tolerance therapy, in patients with coeliac disease (ACeD): a phase 1 trial. Lancet Gastroenterol Hepatol 2023; 8:735-747. [PMID: 37329900 DOI: 10.1016/s2468-1253(23)00107-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/30/2023] [Accepted: 04/03/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Coeliac disease management is limited to strict adherence to a gluten-free diet with no approved therapies. This first-in-human phase 1 study evaluated the safety and tolerability of KAN-101, a liver-targeting glycosylation signature conjugated to a deaminated gliadin peptide designed to induce immune tolerance to gliadin. METHODS Adults (aged 18-70 years) with biopsy-confirmed, HLA-DQ2.5 genotype coeliac disease were enrolled from clinical research units and hospitals in the USA. Part A of the trial was an open-label, single ascending dose study of intravenous KAN-101 using sentinel dosing in evaluation of the following cohorts: 0·15 mg/kg, 0·3 mg/kg, 0·6 mg/kg, 1·2 mg/kg, and 1·5 mg/kg. Following safety monitoring committee review of the 0·3 mg/kg dose level in part A, part B was initiated as a randomised, placebo-controlled, multiple ascending dose study. In part B, interactive response technology was used to randomly assign (5:1) patients to receive intravenous KAN-101 (0·15 mg/kg, 0·3 mg/kg, or 0·6 mg/kg) or placebo following a 1:1 assignment of the first two eligible patients in each cohort for sentinel dosing. Patients in part B received three administrations of KAN-101 or placebo followed by a 3-day oral gluten challenge (9 g per day) 1 week after completing dosing. Study personnel and patients were masked to treatment assignments in part B, and not in part A. The primary endpoint was the incidence and severity of adverse events with escalating doses of KAN-101, assessed in all patients who received any amount of study drug based on dose level received. The secondary endpoint was assessment of plasma concentrations and pharmacokinetic parameters of KAN-101 following single and multiple doses, assessed in all patients who received at least one dose and had one or more values for drug concentration. This study is registered with ClinicalTrials.gov, NCT04248855, and is completed. FINDINGS Between Feb 7, 2020, and Oct 8, 2021, 41 patients were enrolled at ten US sites. 14 patients were assigned to part A (four 0·15 mg/kg, three 0·3 mg/kg, three 0·6 mg/kg, three 1·2 mg/kg, one 1·5 mg/kg) and 27 patients to part B (six 0·15 mg/kg with two placebo, seven 0·3 mg/kg with two placebo, and eight 0·6 mg/kg with two placebo). Treatment-related adverse events were reported in 11 (79%) of 14 patients in part A and 18 (67%) of 27 in part B (placebo two [33%] of six patients; KAN-101 16 [76%] of 21 patients), were grade 2 or lower, and were mild to moderate in severity. The most commonly observed adverse events were nausea, diarrhoea, abdominal pain, and vomiting, consistent with symptoms had by patients with coeliac disease on gluten ingestion. No grade 3-4 adverse events, serious adverse events, dose-limiting toxicities, or deaths occurred. Pharmacokinetic analyses showed KAN-101 was cleared from systemic circulation within roughly 6 h with a geometric mean half-life of 3·72 min (CV% 6·5%) to 31·72 min (83·7%), and no accumulation with repeated dosing. INTERPRETATION KAN-101 has an acceptable safety profile in patients with coeliac disease with no dose-limiting toxicities and no maximum tolerated dose was observed. Rapid systemic clearance of KAN-101 was observed and no accumulation on repeated dosing. A future study will evaluate the safety and efficacy, including biomarker responses with a gluten challenge, of KAN-101 at doses 0·6 mg/kg and greater in patients with coeliac disease. FUNDING Kanyos Bio.
Collapse
Affiliation(s)
- Joseph A Murray
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | | | - Karen Dunn
- North Carolina Clinical Research, Raleigh, NC, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Galipeau HJ, Verdu EF. Reset after RESET: insights from a negative trial in coeliac disease. Lancet Gastroenterol Hepatol 2023; 8:395-396. [PMID: 36898392 DOI: 10.1016/s2468-1253(23)00007-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 03/09/2023]
Affiliation(s)
- Heather J Galipeau
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Elena F Verdu
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8N 3Z5, Canada.
| |
Collapse
|
16
|
Efficacy and safety of gluten peptide-based antigen-specific immunotherapy (Nexvax2) in adults with coeliac disease after bolus exposure to gluten (RESET CeD): an interim analysis of a terminated randomised, double-blind, placebo-controlled phase 2 study. Lancet Gastroenterol Hepatol 2023; 8:446-457. [PMID: 36898393 DOI: 10.1016/s2468-1253(22)00428-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 12/03/2022] [Accepted: 12/07/2022] [Indexed: 03/09/2023]
Abstract
BACKGROUND A gluten-free diet is insufficient to treat coeliac disease because intestinal injury persists and acute reactions with cytokine release follow gluten exposure. Nexvax2 is a specific immunotherapy using immunodominant peptides recognised by gluten-specific CD4+ T cells that might modify gluten-induced disease in coeliac disease. We aimed to assess the effects of Nexvax2 on gluten-induced symptoms and immune activation in patients with coeliac disease. METHODS This was a randomised, double-blind, placebo-controlled phase 2 trial done at 41 sites (29 community, one secondary, and 11 tertiary centres) in the USA, Australia, and New Zealand. Patients with coeliac disease aged 18-70 years who had excluded gluten for at least 1 year, were HLA-DQ2.5 positive, and had a worsening of symptoms after an unmasked 10 g vital gluten challenge were eligible for inclusion. Patients were stratified by HLA-DQ2.5 status (HLA-DQ2.5 non-homozygous vs homozygous). Patients who were non-homozygous were centrally (ICON; Dublin, Ireland) randomly assigned (1:1) to receive subcutaneous Nexvax2 (non-homozygous Nexvax2 group) or saline (0·9% sodium chloride; non-homozygous placebo group) twice a week escalating from 1 μg to 750 μg during the first 5 weeks followed by 11 weeks of maintenance therapy at 900 μg per dose. The exploratory homozygous group was centrally randomly assigned (2:1) to receive Nexvax2 (homozygous Nexvax2 group) or placebo (homozygous placebo group); patients who were homozygous received the same doseage as those who were non-homozygous. The primary endpoint was change in coeliac disease patient reported outcomes (total gastrointestinal domain) from pretreatment baseline to the day of masked bolus 10 g vital gluten challenge given in week 14 analysed in the non-homozygous intention-to-treat population. The trial is registered with ClinicalTrials.gov, NCT03644069. FINDINGS Between Sept 21, 2018, and April 24, 2019, 383 volunteers were screened for inclusion, of whom 179 (47%; 133 [74%] women, 46 [26%] men; median age 41 years [IQR 33-55]) were randomly assigned. One (1%) of 179 patients was excluded from analysis due to misassignment of genotype. The non-homozygous Nexvax2 group included 76 patients, the non-homozygous placebo group included 78 patients, the homozygous Nexvax2 group included 16 patients, and the homozygous placebo group included eight patients. The study was discontinued after planned interim analysis of 66 patients who were non-homozygous. We report an unmasked post-hoc analysis of all available data for the primary endpoint and secondary symptom-based endpoints combining data from 67 (66 were assessed in the planned interim analysis for the primary endpoint). Mean change from baseline to day of first masked gluten challenge in total gastrointestinal score for the non-homozygous Nexvax2 group was 2·86 (SD 2·28) compared with 2·63 (2·07) for the non-homozygous placebo group (p=0·43). Adverse events were similar between all patients who received Nexvax2 and those who received placebo. Serious adverse events were reported in five (3%) of 178 patients (two [2%] of 92 who received Nexvax2 and three [4%] of 82 who received placebo). One patient in the non-homozygous Nexvax2 group had a serious adverse event that occurred during gluten challenge (left-sided mid-back muscle strain with imaging suggestive of partial left kidney infarction). Serious adverse events were reported for three (4%) of 78 patients in the non-homozygous placebo group (one each with exacerbation of asthma and appendicitis, and one who had forehead abscess, conjunctivitis, and folliculitis) and one (1%) patient in the non-homozygous Nexvax2 group developed a pulmonary embolism. The most frequent adverse events in all 92 patients who received Nexvax2 compared with all 86 patients who received placebo were nausea (44 [48%] of 92 patients who received Nexvax2 vs 29 (34%) of 86 patients who received placebo), diarrhoea (32 [35%] vs 25 [29%]), abdominal pain (31 [34%] vs 27 [31%]), headache 32 [35%] vs 20 [23%]), and fatigue (24 [26%] vs 31 [36%]). INTERPRETATION Nexvax2 did not reduce acute gluten-induced symptoms. Masked bolus vital gluten challenge provides an alternative to extended gluten challenge in efficacy studies for coeliac disease. FUNDING ImmusanT.
Collapse
|
17
|
Tamai T, Ihara K. Celiac Disease Genetics, Pathogenesis, and Standard Therapy for Japanese Patients. Int J Mol Sci 2023; 24:ijms24032075. [PMID: 36768398 PMCID: PMC9916540 DOI: 10.3390/ijms24032075] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/14/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
Celiac disease is an autoimmune disease primarily affecting the small intestine that is caused by the ingestion of gluten in genetically susceptible individuals. The development of celiac disease is based on a complex immune response to gluten proteins. The global average prevalence in the general population is about 1%. In recent years, it has become clear that celiac disease is not less common in Asian countries than in Western countries but often remains undiagnosed. Although the number of patients with celiac disease in Asia is expected to increase with improving disease recognition and advances in diagnostic techniques, there remain few reports of celiac disease in the Far East region of Asia, especially in Japan. In this paper, we outline the epidemiology, diagnosis, and treatment of celiac disease. In addition, we summarize the reported Japanese cases of celiac disease with an overview in Japan.
Collapse
|
18
|
Dieckman T, Koning F, Bouma G. Celiac disease: New therapies on the horizon. Curr Opin Pharmacol 2022; 66:102268. [DOI: 10.1016/j.coph.2022.102268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/24/2022] [Accepted: 06/14/2022] [Indexed: 11/03/2022]
|
19
|
Chang D, O’Shea D, Therrien A, Silvester JA. Review article: Becoming and being coeliac-special considerations for childhood, adolescence and beyond. Aliment Pharmacol Ther 2022; 56 Suppl 1:S73-S85. [PMID: 35815825 PMCID: PMC9441244 DOI: 10.1111/apt.16851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/10/2022] [Accepted: 02/13/2022] [Indexed: 12/09/2022]
Abstract
Classically considered a disease of early childhood characterised by malabsorption and failure to thrive, coeliac disease is now recognised to arise in genetically susceptible individuals at any age. Although permissive HLA genotypes are the strongest predictor of coeliac disease, they are not sufficient. Several prospective cohort studies enrolling genetically at-risk infants have investigated the role of potential triggers of coeliac disease autoimmunity, such as timing of gluten introduction, viral infections and dietary patterns. Much less is known about triggers of coeliac disease in adulthood. Better understanding of factors leading to coeliac disease may be helpful in the management of those with potential coeliac disease (elevated serum celiac antibodies without villous atrophy in the small intestine), many of whom initiate a gluten-free diet without demonstration of villous atrophy. There are a range of clinical presentations of celiac disease in childhood and patterns of coeliac serology, including fluctuation and spontaneous reversion on a gluten-containing diet, vary. There is a current debate over best strategies to manage adults and children with potential coeliac disease to avoid over-treatment and under-treatment. Childhood and adolescence carry unique issues pertaining to the diagnosis and management of coeliac disease, and include nutrition and growth, rescreening, repeat biopsy, dietary adherence concerns and transition to adult care. In conclusion, while coeliac disease has similar pathogenesis and general clinical manifestations in paediatric and adult populations, diagnostic and management approaches need to adapt to the developmental stages.
Collapse
Affiliation(s)
- Denis Chang
- 1. Boston Children’s Hospital, Boston, MA,2. Harvard Celiac Research Program, Harvard Medical School, Boston, MA
| | - Delia O’Shea
- 1. Boston Children’s Hospital, Boston, MA,2. Harvard Celiac Research Program, Harvard Medical School, Boston, MA
| | - Amelie Therrien
- 2. Harvard Celiac Research Program, Harvard Medical School, Boston, MA,3. Beth Israel Deaconess Medical Center, Boston, MA
| | - Jocelyn A Silvester
- 1. Boston Children’s Hospital, Boston, MA,2. Harvard Celiac Research Program, Harvard Medical School, Boston, MA,3. Beth Israel Deaconess Medical Center, Boston, MA
| |
Collapse
|
20
|
Anderson RP. Review article: Diagnosis of coeliac disease: a perspective on current and future approaches. Aliment Pharmacol Ther 2022; 56 Suppl 1:S18-S37. [PMID: 35815826 DOI: 10.1111/apt.16840] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/08/2022] [Accepted: 02/08/2022] [Indexed: 12/09/2022]
Abstract
Diagnostics will play a central role in addressing the ongoing dramatic rise in global prevalence of coeliac disease, and in deploying new non-dietary therapeutics. Clearer understanding of the immunopathogenesis of coeliac disease and the utility of serology has led to partial acceptance of non-biopsy diagnosis in selected cases. Non-biopsy diagnosis may expand further because research methods for measuring gluten-specific CD4+ T cells and the acute recall response to gluten ingestion in patients is now relatively straightforward. This perspective on diagnosis in the context of the immunopathogenesis of coeliac disease sets out to highlight current consensus, limitations of current practices, gluten food challenge for diagnosis and the potential for diagnostics that measure the underlying cause for coeliac disease, gluten-specific immunity.
Collapse
|
21
|
Klonarakis M, Andrews CN, Raman M, Panaccione R, Ma C. Review article: therapeutic targets for the pharmacologic management of coeliac disease-the future beyond a gluten-free diet. Aliment Pharmacol Ther 2022; 55:1277-1296. [PMID: 35229332 DOI: 10.1111/apt.16846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/03/2021] [Accepted: 02/13/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Coeliac disease (CeD) is an immune-mediated small bowel enteropathy resulting from dietary gluten exposure. Presently, the only effective treatment is adoption of a gluten-free diet (GFD), although strict adherence is challenging to maintain, and inadvertent gluten exposures are inevitable for most patients. Hence, there is substantial interest in drug development in CeD and multiple novel therapies are under investigation. AIMS To review existing and upcoming clinical trial programmes for pharmacologic agents for CeD. METHODS A narrative review was performed, informed by a search of MEDLINE, Embase, the Cochrane CENTRAL Library and clinicaltrials.gov. RESULTS We summarise the pathophysiology of CeD and the specific steps that are potentially amenable to pharmacologic treatment. We evaluate the evidence supporting existing and future drug targets, including trials of peptidases, gluten sequestrants, tight junction regulators, anti-transglutaminase 2 therapies, immune tolerizing agents, advanced biologics and small molecules, and microbiome-targeted strategies. We highlight unique considerations for conducting CeD trials, including identifying appropriate study populations, assessing results in the context of a gluten challenge, and interpreting CeD-specific clinical and histologic outcomes. Understanding these factors is crucial for accurately appraising the evidence. Finally, we outline what the future of CeD therapy may hold with the introduction of pharmacotherapies. CONCLUSIONS There is a need for pharmacologic options for CeD, either used adjunctively with a GFD for accidental or intentional gluten exposures or for refractory disease. Multiple promising agents are in development, and these trials are likely to lead to approvals for the first generation of pharmacologic agents for CeD within the next 5 years.
Collapse
Affiliation(s)
| | - Christopher N Andrews
- Division of Gastroenterology & Hepatology, University of Calgary, Calgary, Alberta, Canada
| | - Maitreyi Raman
- Division of Gastroenterology & Hepatology, University of Calgary, Calgary, Alberta, Canada.,Alberta's Collaboration of Excellence for Nutrition in Digestive Diseases, Calgary, Alberta, Canada
| | - Remo Panaccione
- Division of Gastroenterology & Hepatology, University of Calgary, Calgary, Alberta, Canada
| | - Christopher Ma
- Division of Gastroenterology & Hepatology, University of Calgary, Calgary, Alberta, Canada.,Department of Community Health Sciences, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
22
|
Pinto-Sanchez MI, Silvester JA, Lebwohl B, Leffler DA, Anderson RP, Therrien A, Kelly CP, Verdu EF. Society for the Study of Celiac Disease position statement on gaps and opportunities in coeliac disease. Nat Rev Gastroenterol Hepatol 2021; 18:875-884. [PMID: 34526700 PMCID: PMC8441249 DOI: 10.1038/s41575-021-00511-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/04/2021] [Indexed: 02/08/2023]
Abstract
Progress has been made in understanding coeliac disease, a relatively frequent and underappreciated immune-mediated condition that occurs in genetically predisposed individuals. However, several gaps remain in knowledge related to diagnosis and management. The gluten-free diet, currently the only available management, is not curative or universally effective (some adherent patients have ongoing duodenal injury). Unprecedented numbers of emerging therapies, including some with novel tolerogenic mechanisms, are currently being investigated in clinical trials. In March 2020, the Celiac Disease Foundation and the Society for the Study of Celiac Disease convened a consensus workshop to identify high-yield areas of research that should be prioritized. Workshop participants included leading experts in clinical practice, academia, government and pharmaceutical development, as well as representatives from patient support groups in North America. This Roadmap summarizes key advances in the field of coeliac disease and provides information on important discussions from the consensus approach to address gaps and opportunities related to the pathogenesis, diagnosis and management of coeliac disease. The morbidity of coeliac disease is often underestimated, which has led to an unmet need to improve the management of these patients. Expanded research funding is needed as coeliac disease is a potentially curable disease.
Collapse
Affiliation(s)
- M Ines Pinto-Sanchez
- Farncombe Family Digestive Health Research Institute, Hamilton, Ontario, Canada
- McMaster University Medical Center, Hamilton, Ontario, Canada
| | - Jocelyn A Silvester
- Harvard Medical School Celiac Research Program, Boston, MA, USA
- Boston Children's Hospital, Boston, MA, USA
- Celiac Center, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | | | - Daniel A Leffler
- Harvard Medical School Celiac Research Program, Boston, MA, USA
- Celiac Center, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Takeda Pharmaceuticals, Cambridge Massachusetts, Cambridge, MA, USA
| | - Robert P Anderson
- Wesley Medical Research, The Wesley Hospital, Auchenflower, Queensland, Australia
| | - Amelie Therrien
- Harvard Medical School Celiac Research Program, Boston, MA, USA
- Celiac Center, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Ciaran P Kelly
- Harvard Medical School Celiac Research Program, Boston, MA, USA
- Celiac Center, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Elena F Verdu
- Farncombe Family Digestive Health Research Institute, Hamilton, Ontario, Canada.
- McMaster University Medical Center, Hamilton, Ontario, Canada.
| |
Collapse
|
23
|
Anderson RP. Emergence of an adaptive immune paradigm to explain celiac disease: a perspective on new evidence and implications for future interventions and diagnosis. Expert Rev Clin Immunol 2021; 18:75-91. [PMID: 34767744 DOI: 10.1080/1744666x.2021.2006636] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Recent patient studies have shown that gluten-free diet is less effective in treating celiac disease than previously believed, and additionally patients remain vulnerable to gluten-induced acute symptoms and systemic cytokine release. Safe and effective pharmacological adjuncts to gluten-free diet are in preclinical and clinical development. Clear understanding of the pathogenesis of celiac disease is critical for drug target identification, establishing efficacy endpoints and to develop non-invasive biomarkers suitable to monitor and potentially diagnose celiac disease. AREAS COVERED The role and clinical effects of CD4+ T cells directed against deamidated gluten in the context of an "adaptive immune paradigm" are reviewed. Alternative hypotheses of gluten toxicity are discussed and contrasted. In the context of recent patient studies, implications of the adaptive immune paradigm for future strategies to prevent, diagnose, and treat celiac disease are outlined. EXPERT OPINION Effective therapeutics for celiac disease are likely to be approved and necessitate a variety of new clinical instruments and tests to stratify patient need, monitor remission, and confirm diagnosis in uncertain cases. Sensitive assessments of CD4+ T cells specific for deamidated gluten are likely to play a central role in clinical management, and to facilitate research and pharmaceutical development.
Collapse
|
24
|
Fernández-Bañares F, López-Palacios N, Corzo M, Arau B, Rubio M, Fernández-Prieto M, Tristán E, Pujals M, Farrais S, Horta S, Hernández JM, Gomez-Perosanz M, Reche PA, Esteve M, Núñez C. Activated gut-homing CD8 + T cells for coeliac disease diagnosis on a gluten-free diet. BMC Med 2021; 19:237. [PMID: 34610833 PMCID: PMC8493675 DOI: 10.1186/s12916-021-02116-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 09/01/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The diagnosis of coeliac disease (CD) in individuals that have started a gluten-free diet (GFD) without an adequate previous diagnostic work-out is a challenge. Several immunological assays such as IFN-γ ELISPOT have been developed to avoid the need of prolonged gluten challenge to induce the intestinal damage. We aimed to evaluate the diagnostic accuracy of activated gut-homing CD8+ and TCRγδ+ T cells in blood after a 3-day gluten challenge and to compare it with the performance of IFN-γ ELISPOT in a HLA-DQ2.5 subsample. METHODS A total of 22 CD patients and 48 non-CD subjects, all of them following a GFD, underwent a 3-day 10-g gluten challenge. The percentage of two T cell subsets (CD8+ CD103+ β7hi CD38+/total CD8+ and TCRγδ+ CD103+ β7hi CD38+/total TCRγδ+) in fresh peripheral blood drawn baseline and 6 days after the challenge was determined by flow cytometry. IFN-γ ELISPOT assays were also performed in HLA-DQ2.5 participants. ROC curve analysis was used to assess the diagnostic performance of the CD8+ T cell response and IFN-γ ELISPOT. RESULTS Significant differences between the percentage of the two studied subsets of CD8+ and TCRγδ+ cells at days 0 and 6 were found only when considering CD patients (p < 10-3 vs. non-CD subjects). Measuring activated CD8+ T cells provided accurate CD diagnosis with 95% specificity and 97% sensitivity, offering similar results than IFN-γ ELISPOT. CONCLUSIONS The results provide a highly accurate blood test for CD diagnosis in patients on a GFD of easy implementation in daily clinical practice.
Collapse
Affiliation(s)
- Fernando Fernández-Bañares
- Department of Gastroenterology, Hospital Universitari Mutua Terrassa, Terrassa, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Natalia López-Palacios
- Servicio de Aparato Digestivo, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040, Madrid, Spain
| | - María Corzo
- Laboratorio de Investigación en Genética de enfermedades complejas, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040, Madrid, Spain
| | - Beatriz Arau
- Department of Gastroenterology, Hospital Universitari Mutua Terrassa, Terrassa, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Mercedes Rubio
- Laboratorio de Investigación en Genética de enfermedades complejas, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040, Madrid, Spain
| | - Marta Fernández-Prieto
- Laboratorio de Investigación en Genética de enfermedades complejas, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040, Madrid, Spain
| | - Eva Tristán
- Department of Gastroenterology, Hospital Universitari Mutua Terrassa, Terrassa, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Mar Pujals
- Department of Gastroenterology, Hospital Universitari Mutua Terrassa, Terrassa, Barcelona, Spain
| | - Sergio Farrais
- Servicio de Aparato Digestivo, Hospital Universitario Fundación Jiménez Díaz, 28040, Madrid, Spain
| | - Saúl Horta
- Laboratorio de Investigación en Genética de enfermedades complejas, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040, Madrid, Spain
| | - Juana María Hernández
- Department of Gastroenterology, Hospital Universitari Mutua Terrassa, Terrassa, Barcelona, Spain
| | - Marta Gomez-Perosanz
- Facultad de Medicina, Laboratorio de Inmunomedicina, Departamento de Inmunología, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Pedro A Reche
- Facultad de Medicina, Laboratorio de Inmunomedicina, Departamento de Inmunología, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - María Esteve
- Department of Gastroenterology, Hospital Universitari Mutua Terrassa, Terrassa, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Concepción Núñez
- Laboratorio de Investigación en Genética de enfermedades complejas, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040, Madrid, Spain.
| |
Collapse
|
25
|
Smithson G, Siegelman J, Oki T, Maxwell JR, Leffler DA. The Evolving Landscape of Biomarkers in Celiac Disease: Leading the Way to Clinical Development. Front Immunol 2021; 12:665756. [PMID: 33897715 PMCID: PMC8060282 DOI: 10.3389/fimmu.2021.665756] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/19/2021] [Indexed: 12/17/2022] Open
Abstract
Celiac disease is a common immune-mediated disease characterized by abnormal T-cell responses to gluten. For many patients, symptoms and intestinal damage can be controlled by a gluten-free diet, but, for some, this approach is not enough, and celiac disease progresses, with serious medical consequences. Multiple therapies are now under development, increasing the need for biomarkers that allow identification of specific patient populations and monitoring of therapeutic activity and durability. The advantage of identifying biomarkers in celiac disease is that the underlying pathways driving disease are well characterized and the histological, cellular, and serological changes with gluten response have been defined in gluten challenge studies. However, there is room for improvement. Biomarkers that measure histological changes require duodenal biopsies and are invasive. Less invasive peripheral blood cell and cytokine biomarkers are transient and dependent upon gluten challenge. Here, we discuss established biomarkers and new approaches for biomarkers that may overcome current limitations.
Collapse
Affiliation(s)
- Glennda Smithson
- Research and Development, Takeda Pharmaceuticals Inc. Co., Cambridge, MA, United States
| | - Jenifer Siegelman
- Research and Development, Takeda Pharmaceuticals Inc. Co., Cambridge, MA, United States
| | - Toshihiko Oki
- Research and Development, Takeda Pharmaceuticals Inc. Co., Cambridge, MA, United States
| | - Joseph R Maxwell
- Research and Development, Takeda Pharmaceuticals Inc. Co., Cambridge, MA, United States
| | - Daniel A Leffler
- Research and Development, Takeda Pharmaceuticals Inc. Co., Cambridge, MA, United States.,Celiac Disease Research Program, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
26
|
Anderson RP, Goel G, Hardy MY, Russell AK, Wang S, Szymczak E, Zhang R, Goldstein KE, Neff K, Truitt KE, Williams LJ, Dzuris JL, Tye-Din JA. Whole blood interleukin-2 release test to detect and characterize rare circulating gluten-specific T cell responses in coeliac disease. Clin Exp Immunol 2021; 204:321-334. [PMID: 33469922 DOI: 10.1111/cei.13578] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/01/2021] [Accepted: 01/04/2021] [Indexed: 02/07/2023] Open
Abstract
Whole blood cytokine release assays (CRA) assessing cellular immunity to gluten could simplify the diagnosis and monitoring of coeliac disease (CD). We aimed to determine the effectiveness of electrochemiluminescence CRA to detect responses to immunodominant gliadin peptides. HLA-DQ2·5+ CD adults (cohort 1, n = 6; cohort 2, n = 12) and unaffected controls (cohort 3, n = 9) were enrolled. Cohort 1 had 3-day gluten challenge (GC). Blood was collected at baseline, and for cohort 1 also at 3 h, 6 h and 6 days after commencing 3-day GC. Gliadin peptide-stimulated proliferation, interferon (IFN)-γ enzyme-linked immunospot (ELISPOT) and 14- and 3-plex electrochemiluminescence CRA were performed. Poisson distribution analysis was used to estimate responding cell frequencies. In cohort 1, interleukin (IL)-2 dominated the gliadin peptide-stimulated cytokine release profile in whole blood. GC caused systemic IL-2 release acutely and increased gliadin peptide-stimulated IFN-γ ELISPOT and whole blood CRA responses. Whole blood CRA after GC was dominated by IL-2, but also included IFN-γ, C-X-C motif chemokine ligand 10/IFN-γ-induced protein 10 (CXCL10/IP-10), CXCL9/monokine induced by IFN-γ (MIG), IL-10, chemokine (C-C motif) ligand 3/macrophage inflammatory protein 1-alpha (CCL3/MIP-1α), TNF-α and IL-8/CXCL8. In cohorts 2 and 3, gliadin peptide-stimulated whole blood IL-2 release was 100% specific and 92% sensitive for CD patients on a gluten-free diet; the estimated frequency of cells in CD blood secreting IL-2 to α-gliadin peptide was 0·5 to 11 per ml. Whole blood IL-2 release successfully mapped human leucocyte antigen (HLA)-DQ2·5-restricted epitopes in an α-gliadin peptide library using CD blood before and after GC. Whole blood IL-2 release assay using electrochemiluminescence is a sensitive test for rare gliadin-specific T cells in CD, and could aid in monitoring and diagnosis. Larger studies and validation with tetramer-based assays are warranted.
Collapse
Affiliation(s)
| | - G Goel
- ImmusanT, Inc., Cambridge, MA, USA
| | - M Y Hardy
- Immunology Division, Department of Medical Biology, The Walter and Eliza Hall Institute, Parkville, VIC, Australia.,University of Melbourne, Parkville, VIC, Australia
| | - A K Russell
- Immunology Division, Department of Medical Biology, The Walter and Eliza Hall Institute, Parkville, VIC, Australia.,University of Melbourne, Parkville, VIC, Australia
| | - S Wang
- ImmusanT, Inc., Cambridge, MA, USA
| | | | - R Zhang
- ImmusanT, Inc., Cambridge, MA, USA
| | | | - K Neff
- ImmusanT, Inc., Cambridge, MA, USA
| | | | | | | | - J A Tye-Din
- Immunology Division, Department of Medical Biology, The Walter and Eliza Hall Institute, Parkville, VIC, Australia.,University of Melbourne, Parkville, VIC, Australia.,Department of Gastroenterology, The Royal Melbourne Hospital, Parkville, VIC, Australia
| |
Collapse
|
27
|
Asri N, Rostami-Nejad M, Anderson RP, Rostami K. The Gluten Gene: Unlocking the Understanding of Gluten Sensitivity and Intolerance. APPLICATION OF CLINICAL GENETICS 2021; 14:37-50. [PMID: 33603437 PMCID: PMC7886246 DOI: 10.2147/tacg.s276596] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 01/18/2021] [Indexed: 12/14/2022]
Abstract
Wheat flour is one of the most important food ingredients containing several essential nutrients including proteins. Gluten is one of the major protein components of wheat consisted of glutenin (encoded on chromosome 1) and gliadin (encoded on chromosome 1 and 6) and there are around hundred genes encoding it in wheat. Gluten proteins have the ability of eliciting the pathogenic immune responses and hypersensitivity reactions in susceptible individuals called “gluten-related disorders (GRDs)”, which include celiac disease (CD), wheat allergy (WA), and non-celiac gluten sensitivity (NCGS). Currently removing gluten from the diet is the only effective treatment for mentioned GRDs and studies for the appropriate and alternative therapeutic approaches are ongoing. Accordingly, several genetic studies have focused on breeding wheat with low immunological properties through gene editing methods. The present review considers genetic characteristics of gluten protein components, focusing on their role in the incidence of gluten-related diseases, and genetic modifications conducted to produce wheat with less immunological properties.
Collapse
Affiliation(s)
- Nastaran Asri
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Rostami-Nejad
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Robert P Anderson
- Wesley Medical Research - The Wesley Hospital, Brisbane, Queensland, Australia
| | - Kamran Rostami
- Department of Gastroenterology, MidCentral DHB, Palmerston North, New Zealand
| |
Collapse
|