1
|
Krezanoski P, Musiime A, Oruni A, McClure M, Kyagamba P, Otto G, Adiga J, Wilfred O, Semakula M, Rwatooro JA, Maxwell K, Lobo NF, Arinaitwe E, Nankabirwa JI, Kamya M, Dorsey G, Thomsen EK. Adjusting vector surveillance for human behaviors reveals Anopheles funestus drove a resurgence in malaria despite IRS with clothianidin in Uganda. Sci Rep 2025; 15:17728. [PMID: 40404702 PMCID: PMC12098675 DOI: 10.1038/s41598-025-00623-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 04/29/2025] [Indexed: 05/24/2025] Open
Abstract
After remarkable success following the implementation of indoor residual spraying (IRS) and repeated rounds of universal distribution of insecticidal treated nets in Tororo District, eastern Uganda, a switch to clothianidin-based IRS in March 2020 was associated with a resurgence of malaria transmission. A previous study suggested Anopheles funestus may be driving the resurgence. This study was undertaken to assess the role of An. funestus in the resurgence and improve our understanding of how human-vector interaction affects malaria transmission in settings with extensive vector control. Using human landing catches and human behavioral observations, we found An. funestus infective biting, calculated from human-behavior adjusted biting rates and species-specific sporozoite rates, was 4.3 (95% Confidence Interval [CI]: 1.81 to 10.33) times higher after multiple rounds of clothianidin-based IRS when transmission was high and then dropped off markedly with a switch back to the organophosphate Actellic in March 2023. This finding was bolstered by a causal analysis showing a link between clothianidin-based IRS and 8.6 (95% CI: 2.0 to 37.0) times higher human-behavior adjusted human biting rates due to An. funestus. These findings highlight the importance of integrating monitoring of human-vector interaction and vector bionomics when introducing or evaluating changes in vector control interventions.
Collapse
Affiliation(s)
| | - Alex Musiime
- National Malaria Control Division, Ministry of Health, Kampala, Uganda
| | - Ambrose Oruni
- Liverpool School of Tropical Medicine, Liverpool, UK
| | - Max McClure
- University of California, San Francisco, CA, USA
| | | | - Geoffrey Otto
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - James Adiga
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Odol Wilfred
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Moses Semakula
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | | | - Kilama Maxwell
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Neil F Lobo
- University of California, San Francisco, CA, USA
- University of Notre Dame, Notre Dame, IN, USA
| | | | - Joaniter I Nankabirwa
- Infectious Diseases Research Collaboration, Kampala, Uganda
- Makerere University College of Health Sciences, Kampala, Uganda
| | - Moses Kamya
- Infectious Diseases Research Collaboration, Kampala, Uganda
- Makerere University College of Health Sciences, Kampala, Uganda
| | - Grant Dorsey
- University of California, San Francisco, CA, USA
| | | |
Collapse
|
2
|
Acford-Palmer H, Tadesse FG, Manko E, Phelan JE, Higgins M, Osborne A, Kristan M, Walker T, Bousema T, Messenger LA, Clark TG, Campino S. Genome wide population genetics and molecular surveillance of insecticide resistance in Anopheles stephensi mosquitoes from Awash Sebat Kilo in Ethiopia. Sci Rep 2025; 15:16443. [PMID: 40355632 PMCID: PMC12069653 DOI: 10.1038/s41598-025-95814-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 03/24/2025] [Indexed: 05/14/2025] Open
Abstract
Since the detection of the Asian mosquito Anopheles stephensi in Dijbouti in 2012, it has spread throughout the Horn of Africa. This invasive vector continues to expand across the continent and is a significant threat to malaria control programs. Vector control methods, including insecticide-treated nets and indoor residual spraying, have substantially reduced the malaria burden. However, the increasing prevalence of mosquitoes resistant to insecticides, including An. stephensi populations, undermines ongoing malaria elimination efforts. Understanding population structure, gene flow between populations, and the distribution of insecticide resistance mutations is essential for guiding effective malaria control strategies. Here, we generated whole genome sequencing data for An. stephensi sourced from Awash Sebat Kilo, Ethiopia (n = 27) and compared with South Asian populations (n = 45; India and Pakistan) to assess genomic diversity, population structure, and uncovering insecticide resistance mutations. Population structure analysis using genome-wide single nucleotide polymorphisms (n = 15,533,476) revealed Ethiopian isolates clustering as a distinct ancestral group, separate from South Asian isolates. Three insecticide resistance-associated SNPs (gaba gene: A296S and V327I; vgsc L1014F) were detected. Evidence of ongoing selection was found in several loci, including genes previously associated with neonicotinoids, ivermectin, DDT, and pyrethroid resistance. This study represents the first whole genome population genetics study of invasive An. stephensi, revealing genomic differences from South Asian populations, which can be used for future assessments of vector population dispersal and detection of insecticide resistance mechanisms.
Collapse
Affiliation(s)
- Holly Acford-Palmer
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Fitsum G Tadesse
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
- Malaria and NTD Directorate, Armauer Hansen Research Institute, ALERT Hospital Compound, Addis Ababa, Ethiopia
| | - Emilia Manko
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Jody E Phelan
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Matthew Higgins
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Ashley Osborne
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Mojca Kristan
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Thomas Walker
- School of Life Sciences, Gibbet Hill Campus, University of Warwick, Coventry, CV4 7AL, UK
| | - Teun Bousema
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Louisa A Messenger
- Department of Environmental and Occupational Health, School of Public Health, University of Nevada, Las Vegas, Las Vegas, USA
- Parasitology and Vector Biology (PARAVEC), School of Public Health, University of Nevada, Las Vegas, NV, USA
| | - Taane G Clark
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
- Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK
| | - Susana Campino
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK.
| |
Collapse
|
3
|
Barasa S, Aemro M, Abebe W, Daka D, Addisu B, Tamene E, Woldesenbet D, Zeleke AJ. Assessing insecticide susceptibility status of Anopheles mosquitoes in Gondar zuria district, Northwest Ethiopia. Sci Rep 2025; 15:14452. [PMID: 40280999 PMCID: PMC12032162 DOI: 10.1038/s41598-025-96370-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 03/27/2025] [Indexed: 04/29/2025] Open
Abstract
Insecticide-based vector control, which comprises the use of insecticide-treated bed nets (ITNs) and indoor residual spraying (IRS), is the key method of malaria control in Ethiopia. However, its effectiveness is threatened as malaria vectors become resistant to insecticides. Thus, the aim of this study was to monitor the insecticide susceptibility status of malaria vectors. WHO susceptibility tests were used to detect knock-down and mortality rate in the wild malaria vectors collected in Gondar zuria woreda, Northwest Ethiopia. The WHO diagnostic doses of 0.75% permethrin, 0.05% deltamethrin, 0.05% alpha-cypermethrin, 0.1% propoxur and 0.25% pirimiphos-methyl were used. The major malaria vectors in Ethiopia, Anopheles gambiae s.l Anopheles funestus group, and Anopheles Pharoensis, were susceptible, to pirimiphos-methyl and propoxur. However, resistant to permethrin (mortality rate of 88.8%), alphacypermethrin (mortality rate of 67.5%), and deltamethrin (mortality rate of 73.8%). Although permethrin restoration was only 96% in permethrin resistant Anopheles mosquitoes, the efficacy of alphacypermethrin and deltamethrin was totally restored by pre-exposure to PBO. The susceptibility of malaria vectors to pirimiphos-methyl, propoxur, and PBO + pyrethroid insecticides is encouraging for successful malaria control. Further investigations are needed to better understand the molecular basis of pyrethroids insecticide resistant-malaria vectors.
Collapse
Affiliation(s)
- Silesh Barasa
- Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Arba Minch University, Arba Minch, Ethiopia.
| | - Mulugeta Aemro
- Department of Medical Parasitology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Wagaw Abebe
- Department of Medical Laboratory Sciences, College of Health Sciences, Woldia University, Woldia, Ethiopia
| | - Deresse Daka
- Department of Medical Microbiology, College of Medicine and Health Sciences, Hawassa University, Hawassa, Ethiopia
| | - Bedasa Addisu
- Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Debre Brihan University, Debre Brihan, Ethiopia
| | - Elias Tamene
- Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Wachamo University, Wachamo, Ethiopia
| | - Dagmawi Woldesenbet
- Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Wachamo University, Wachamo, Ethiopia
| | - Ayalew Jejaw Zeleke
- Department of Medical Parasitology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
4
|
Pita S, Rico-Porras JM, Lorite P, Mora P. Genome assemblies and other genomic tools for understanding insect adaptation. CURRENT OPINION IN INSECT SCIENCE 2025; 68:101334. [PMID: 39842546 DOI: 10.1016/j.cois.2025.101334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/26/2024] [Accepted: 01/17/2025] [Indexed: 01/24/2025]
Abstract
Insects, the most diverse group of animals, exhibit remarkable adaptability, playing both crucial and problematic roles in ecosystems. Recent advancements in genomic technologies, such as high-throughput sequencing, have provided unprecedented insights into the genetic foundations of insect adaptation. This review explores key methodologies, including de novo and reference-guided genome assemblies, and highlights cutting-edge technologies like second- and third-generation sequencing and hybrid techniques. The article delves into the genetic mechanisms underlying insect adaptations, focusing on structural variants. Case studies, such as the Anopheles gambiae genome assembly and the genomic research on Drosophila melanogaster, demonstrate the practical applications of these technologies in understanding pesticide resistance, climate adaptation, and other evolutionary traits. This review underscores the transformative role of genomic tools in insect research, with significant implications for pest management, agriculture, and biodiversity conservation.
Collapse
Affiliation(s)
- Sebastián Pita
- Evolutionary Genetic Section, Faculty of Science, University of the Republic, Iguá 4225, Montevideo 11400, Uruguay
| | - José M Rico-Porras
- Department of Experimental Biology, Genetics Area, University of Jaén, Paraje las Lagunillas s/n, 23071 Jaén, Spain
| | - Pedro Lorite
- Department of Experimental Biology, Genetics Area, University of Jaén, Paraje las Lagunillas s/n, 23071 Jaén, Spain
| | - Pablo Mora
- Department of Experimental Biology, Genetics Area, University of Jaén, Paraje las Lagunillas s/n, 23071 Jaén, Spain; Department of General and Applied Biology, Institute of Biosciences/IB, UNESP - São Paulo State University, Rio Claro, São Paulo 13506-900, Brazil.
| |
Collapse
|
5
|
Orikpete OF, Kikanme KN, Falade TDO, Dennis NM, Ejike Ewim DR, Fadare OO. Neonicotinoid pesticides in African agriculture: What do we know and what should be the focus for future research? CHEMOSPHERE 2025; 372:144057. [PMID: 39746486 DOI: 10.1016/j.chemosphere.2024.144057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/19/2024] [Accepted: 12/30/2024] [Indexed: 01/04/2025]
Abstract
This review provides a comprehensive overview of the direct and indirect effects of neonicotinoid pesticides (NEO-P) within African agricultural ecosystems and identifies research gaps, particularly in the monitoring and regulation of pesticide use. We observed a decline in the numbers of NEO-P studies conducted in Africa since 2019 with 40.7% of the countries reporting at least one study to date. Imidacloprid (33.5%), acetamiprid (23.3%), and thiamethoxam (25.0%) are the most reported NEO-P across the continent with concentrations range from 9.0 × 10-5 to 7.2 × 107 mg kg-1, 1.7 × 10-5 to 2.1 × 103 mg kg-1, and 1.0 × 10-5 to 4.7 × 104 mg kg-1, respectively. NEO-P have been reported in honey, water, vegetables, fruits, and staple foods in most countries and in 92-100% of human urine samples collected in Ghana and Cameroon. This widespread presence indicates a potential food safety and public health concern, warranting further study. Studies on NEO-P interactions with bees have emanated mainly from North Africa (35.3% published studies) while Central/Middle, and Southern Africa accounted for 11.8% each of these studies, all of which were conducted in Cameroon and South Africa, respectively. It is important to have contextual evidence to understand neonicotinoids-pollinator interactions across specific African regions and countries; however, literature regarding the extent of NEO-P toxicities/effects on pollinators is required in 44 African countries. The environmental persistence of NEO-P and their broad-spectrum impact necessitate a re-evaluation of current regulatory practices and adoption of more sustainable pest management strategies across the continent. Furthermore, future studies should focus on investigating the long-term exposure to NEO-P, advanced computational methods in ecological risk assessments and eco-friendly alternatives to NEO-P.
Collapse
Affiliation(s)
- Ochuko Felix Orikpete
- Centre for Occupational Health, Safety and Environment (COHSE), University of Port Harcourt, Choba, Rivers State, 500102, Nigeria
| | - Kenneth N Kikanme
- Department of Environmental Toxicology, Texas Tech University, Lubbock, TX, 79416, USA
| | - Titilayo D O Falade
- International Institute of Tropical Agriculture, Ibadan, Oyo State, 200001, Nigeria
| | - Nicole M Dennis
- Department of Environmental and Global Health, University of Florida, Gainesville, FL, 32610, USA
| | | | - Oluniyi O Fadare
- Department of Environmental Sciences, University of California, Riverside, CA, 92521, USA.
| |
Collapse
|
6
|
Mohamed MJ, Matiya DJ, Chibwana FD, Kidima W, Mahande AM, Kweka EJ. The Comparative Performance of Klypson 500WG and 2GARD-WP Sprayed on Different Wall Surfaces Against Anopheles gambiae s.l. in Lower Moshi, Northern Tanzania. Trop Med Infect Dis 2025; 10:63. [PMID: 40137817 PMCID: PMC11945669 DOI: 10.3390/tropicalmed10030063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/22/2025] [Accepted: 02/26/2025] [Indexed: 03/29/2025] Open
Abstract
The emergence of insecticide resistance among malaria vector populations poses a significant threat to existing malaria vector control tools. This phenomenon necessitates an increased pace of developing and deploying new effective compounds in insecticides for vector control. Therefore, this study investigated the comparative performance of newly formulated indoor residual spray compounds, Klypson 500WG (Clothianidin alone) and 2GARD-WP (a mixture of Clothianidin 50% and Deltamethrin 6.25%) against An. gambiae in the lower Moshi area of the rural Moshi district, Tanzania. Before the wall cone bioassay tests, the susceptibility of field-collected adult An. gambiae s.l. to 0.75% Permethrin, 2% Klypson 500WG, 0.05% Deltamethrin, and 0.25% Pirimiphos-methyl was assessed following WHO procedures. For the cone-bioassay testing, 160 houses were randomly selected and sprayed with Klypson 500WG and 2GARD-WP. For the walls sprayed with Klypson 500WG and 2GARD-WP, the knockdown rate of Anopheles gambiae after 60 min of exposure over six months ranged from 70% to 98%, with mortality rates after 24 to 168 h consistently exceeding 90% across all villages and wall types throughout the six months. The susceptibility of wild-collected mosquitoes to Pirimiphos-Methyl, Permethrin, Deltamethrin, and Klypson 500WG was 61, 81, 86, and 93%, respectively. These findings suggest that Klypson 500WG and 2GARD-WP are suitable alternative insecticides that can be incorporated in the vector control toolbox used for malaria control.
Collapse
Affiliation(s)
- Maua J. Mohamed
- Department of Zoology and Wildlife Conservation, University of Dar es Salaam (UDSM), Dar es Salaam P.O. Box 35064, Tanzania; (M.J.M.); (D.J.M.); (F.D.C.); (W.K.)
| | - Deokary J. Matiya
- Department of Zoology and Wildlife Conservation, University of Dar es Salaam (UDSM), Dar es Salaam P.O. Box 35064, Tanzania; (M.J.M.); (D.J.M.); (F.D.C.); (W.K.)
- Faculty of Science, Dar es Salaam University College of Education (DUCE), Dar es Salaam P.O. Box 2329, Tanzania
| | - Fred D. Chibwana
- Department of Zoology and Wildlife Conservation, University of Dar es Salaam (UDSM), Dar es Salaam P.O. Box 35064, Tanzania; (M.J.M.); (D.J.M.); (F.D.C.); (W.K.)
| | - Winfrida Kidima
- Department of Zoology and Wildlife Conservation, University of Dar es Salaam (UDSM), Dar es Salaam P.O. Box 35064, Tanzania; (M.J.M.); (D.J.M.); (F.D.C.); (W.K.)
| | - Aneth M. Mahande
- Tanzania Plant Health and Pesticide Authority, Pesticides Bioefficacy Section, Arusha P.O. Box 3024, Tanzania
| | - Eliningaya J. Kweka
- Tanzania Plant Health and Pesticide Authority, Pesticides Bioefficacy Section, Arusha P.O. Box 3024, Tanzania
- Department of Medical Parasitology and Entomology, School of Medicine, Catholic University of Health Sciences, Mwanza P.O. Box 1464, Tanzania
- Bugando Medical Center, Mwanza P.O. Box 1370, Tanzania
| |
Collapse
|
7
|
Hougbe SZ, Sovi A, Koumodji K, Ahouandjinou MJ, Affolabi ZK, Towakinou L, Chitou S, Agbo-Ola A, Tokponnon F, Zoungbédji DM, Sagbohan H, Kpanou C, Padonou GG, Baba-Moussa L, Ossé RA. Susceptibility of Anopheles gambiae s.l. to the neonicotinoid insecticide clothianidin in eighteen sites located along the south-north transect of Benin. Trop Med Health 2025; 53:21. [PMID: 39940041 DOI: 10.1186/s41182-025-00694-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 01/22/2025] [Indexed: 02/14/2025] Open
Abstract
BACKGROUND The widespread resistance of malaria vectors to traditional neurotoxic insecticides has stimulated the search for new insecticide classes with novel modes of action. For that, the present study was designed to collect data on the susceptibility of field-collected Anopheles gambiae sensu lato (s.l.) to clothianidin, a neonicotinoid insecticide used in agriculture and that recently received WHO approval for use in indoor residual spraying. METHODS An. gambiae s.l. were collected as larvae and pupae from 18 sites located along the south-north transect of Benin, and reared to adulthood. Female mosquitoes aged 2-5 days were exposed to clothianidin-impregnated papers (2% weight by volume (w/v) of SumiShield™ 50WG dissolved in distilled water). Due to the delayed action of clothianidin, mortality was daily recorded over 7 days. Polymerase chain reaction was used to assess the molecular species composition in the An. gambiae s.l. complex and the frequency of knockdown resistance (kdr) and insensitive acetylcholinesterase (Ace-1R) mutations. RESULTS Mortality rates of field-collected An. gambiae s.l. were very high (≥98%) between 2- and 7-day post-exposure, indicating full susceptibility to clothianidin. Molecular species identification revealed the presence of An. coluzzii (53.7%), An. gambiae sensu stricto (s.s.) (42.5%), and An. arabiensis (3.8%) in the An. gambiae s.l. complex. kdr and Ace-1R mean frequencies were 84% (95% CI 82-86) and 3% (95% CI 2-4) in An. coluzzii, and 88% (95% CI 87-90) and 4% (95% CI 3-6) in An. gambiae s.s., respectively. CONCLUSIONS Findings of the present study indicates that An. gambiae s.l. populations collected along the north-south transect of Benin remain susceptible to clothianidin. This broadens the portfolio of indoor residual spraying products that the national malaria control programme can deploy to better control pyrethroid-resistant populations of vectors.
Collapse
Affiliation(s)
- Steve Zinsou Hougbe
- Laboratoire de Biologie et de Typage Moléculaire en Microbiologie (LBTMM), Département de Biochimie et de Biologie Cellulaire (BBC), Université de Abomey-Calavi (UAC), Abomey-Calavi, Benin.
- Faculté des Sciences et Techniques de l'Université d'Abomey Calavi, Abomey-Calavi, Benin.
| | - Arthur Sovi
- Faculty of Agronomy, University of Parakou, Parakou, Benin
- Faculty of Infectious and Tropical Diseases, The London School of Hygiene and Tropical Medicine, London, UK
| | - Koffi Koumodji
- Laboratoire de Biologie et de Typage Moléculaire en Microbiologie (LBTMM), Département de Biochimie et de Biologie Cellulaire (BBC), Université de Abomey-Calavi (UAC), Abomey-Calavi, Benin
- Faculté des Sciences et Techniques de l'Université d'Abomey Calavi, Abomey-Calavi, Benin
| | - Minassou Juvénal Ahouandjinou
- Laboratoire des Sciences Animales et Halieutiques, Unité de Recherche en Santé Animale et Biosécurité, Université Nationale d'Agriculture, Kétou, Bénin
- École de Gestion et d'Exploitation des Systèmes d'Elevage, Université Nationale d'Agriculture, Kétou, Benin
| | - Zul-Kifl Affolabi
- Laboratoire des Sciences Animales et Halieutiques, Unité de Recherche en Santé Animale et Biosécurité, Université Nationale d'Agriculture, Kétou, Bénin
- École de Gestion et d'Exploitation des Systèmes d'Elevage, Université Nationale d'Agriculture, Kétou, Benin
| | - Linda Towakinou
- Centre de Recherche Entomologique de Cotonou, Cotonou, Benin
| | - Saïd Chitou
- Centre de Recherche Entomologique de Cotonou, Cotonou, Benin
| | - Andil Agbo-Ola
- Centre de Recherche Entomologique de Cotonou, Cotonou, Benin
| | - Filémon Tokponnon
- Centre de Recherche Entomologique de Cotonou, Cotonou, Benin
- Ecole Polytechnique d'Abomey-Calavi, Université d'Abomey-Calavi, Abomey-Calavi, Benin
| | | | | | - Casimir Kpanou
- Centre de Recherche Entomologique de Cotonou, Cotonou, Benin
| | - Germain Gil Padonou
- Faculté des Sciences et Techniques de l'Université d'Abomey Calavi, Abomey-Calavi, Benin
- Centre de Recherche Entomologique de Cotonou, Cotonou, Benin
| | - Lamine Baba-Moussa
- Laboratoire de Biologie et de Typage Moléculaire en Microbiologie (LBTMM), Département de Biochimie et de Biologie Cellulaire (BBC), Université de Abomey-Calavi (UAC), Abomey-Calavi, Benin
- Faculté des Sciences et Techniques de l'Université d'Abomey Calavi, Abomey-Calavi, Benin
| | - Razaki A Ossé
- Laboratoire des Sciences Animales et Halieutiques, Unité de Recherche en Santé Animale et Biosécurité, Université Nationale d'Agriculture, Kétou, Bénin
- École de Gestion et d'Exploitation des Systèmes d'Elevage, Université Nationale d'Agriculture, Kétou, Benin
- Centre de Recherche Entomologique de Cotonou, Cotonou, Benin
| |
Collapse
|
8
|
Kabula B, Mlacha YP, Serbantez N, Nhiga SL, Mkude S, Kiware S, Michael JS, Mero V, Ballard SB, Chan A, Abbasi S, Mwalimu CD, Govella NJ. Pyrethroid-resistant malaria vector Anopheles gambiae restored susceptibility after pre-exposure to piperonyl-butoxide: results from country-wide insecticide resistance monitoring in Tanzania, 2023. Malar J 2024; 23:395. [PMID: 39709444 DOI: 10.1186/s12936-024-05211-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 12/03/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND Effective vector control interventions, notably insecticide-treated nets (ITNs) and indoor residual spraying (IRS) are indispensable for malaria control in Tanzania and elsewhere. However, the emergence of widespread insecticide resistance threatens the efficacy of these interventions. Monitoring of insecticide resistance is, therefore, critical for the selection and assessment of the programmatic impact of insecticide-based interventions. METHODS The study was conducted country-wide across 22 sentinel districts of Tanzania between May and July 2023 using standard World Health Organization susceptibility test with 1×, 5×, and 10× of deltamethrin, permethrin, and alpha-cypermethrin and discriminating concentrations of 0.25% pirimiphos-methyl. Synergist assays were conducted to explore the underlying mechanisms of the observed phenotypic pyrethroid-resistant mosquitoes. Three- to five-day-old wild adult females in the first filiar generation of Anopheles gambiae sensu lato (s.l.) were used for the susceptibility bioassays. RESULTS Anopheles gambiae s.l. were resistant to all pyrethroids at the discriminating dose in most sentinel districts except in Rorya, which remains fully susceptible, and Ushetu, which remains susceptible to deltamethrin but not permethrin. In 5 sites (Bukombe, Ukerewe, Kilwa, Kibondo, and Kakonko), the An. gambiae s.l. species exhibited strong resistance to pyrethroids surviving the 10 X concentrations (mortality rate < 98%). However, they remained fully susceptible to pirimiphos-methyl in almost all the sites except in Kibondo and Shinyanga. Likewise, there was full restoration to susceptibility to pyrethroid following pre-exposure of An. gambiae s.l. to piperonyl-butoxide (PBO) in 13 out of 16 sites. The 3 sites that exhibited partial restoration include Kakonko, Tandahimba, and Newala. CONCLUSION The evidence of widespread pyrethroid resistance of the major malaria vector justifies the decision made by the Tanzania National Malaria Control Programme to transition to PBO-based ITNs. Without this switch, the gains achieved in malaria control could be compromised. Equally important, the lack of full restoration to susceptibility observed in three sentinel districts upon pre-exposure to PBO merits close monitoring, as there could be other underlying resistance mechanisms besides oxidase metabolic resistance.
Collapse
Affiliation(s)
- Bilali Kabula
- Amani Medical Research Centre, National Institute for Medical Research, Muheza, Tanzania
| | - Yeromin P Mlacha
- Environmental Health and Ecological Science Department, Ifakara Health Institute, Mikocheni, Dar es Salaam, Tanzania.
| | - Naomi Serbantez
- U.S. President's Malaria Initiative, US Agency for International Development, Dar es Salaam, Tanzania
| | - Samwel L Nhiga
- National Malaria Control Programme, Ministry of Health, Community Development, Gender, Elderly and Children, Dodoma, Tanzania
| | - Sigsbert Mkude
- University of Dar es Salaam, College of Information and Communication Technologies, Department of Electronics & Telecommunication Engineering, P.O. Box 33335, Dar es Salaam, Tanzania
| | - Samson Kiware
- Environmental Health and Ecological Science Department, Ifakara Health Institute, Mikocheni, Dar es Salaam, Tanzania
| | - James S Michael
- Environmental Health and Ecological Science Department, Ifakara Health Institute, Mikocheni, Dar es Salaam, Tanzania
- PMI Dhibiti (Control) Malaria Project, Population Services International, Dar es Salaam, Tanzania
| | - Victor Mero
- Environmental Health and Ecological Science Department, Ifakara Health Institute, Mikocheni, Dar es Salaam, Tanzania
| | - Sarah-Blythe Ballard
- U.S. President's Malaria Initiative, US Centers for Disease Control and Prevention, Dar es Salaam, Tanzania
| | - Adeline Chan
- U.S. President's Malaria Initiative, US Centers for Disease Control and Prevention, Atlanta, USA
| | - Said Abbasi
- Environmental Health and Ecological Science Department, Ifakara Health Institute, Mikocheni, Dar es Salaam, Tanzania
| | - Charles D Mwalimu
- National Malaria Control Programme, Ministry of Health, Community Development, Gender, Elderly and Children, Dodoma, Tanzania
| | - Nicodem J Govella
- Environmental Health and Ecological Science Department, Ifakara Health Institute, Mikocheni, Dar es Salaam, Tanzania
- University of Dar es Salaam, College of Information and Communication Technologies, Department of Electronics & Telecommunication Engineering, P.O. Box 33335, Dar es Salaam, Tanzania
| |
Collapse
|
9
|
Praulins G, Murphy-Fegan A, Gillespie J, Mechan F, Gleave K, Lees R. Unpacking WHO and CDC Bottle Bioassay Methods: A Comprehensive Literature Review and Protocol Analysis Revealing Key Outcome Predictors. Gates Open Res 2024; 8:56. [PMID: 39170853 PMCID: PMC11335745 DOI: 10.12688/gatesopenres.15433.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2024] [Indexed: 08/23/2024] Open
Abstract
Background Resistance monitoring is a key element in controlling vector-borne diseases. The World Health Organization (WHO) and Centres for Disease Control and Prevention (CDC) have each developed bottle bioassay methods for determining insecticide susceptibility in mosquito vectors which are used globally. Methods This study aimed to identify variations in bottle bioassay methodologies and assess the potential impact on the data that is generated. Our approach involved a systematic examination of existing literature and protocols from WHO and CDC, with a focus on the specifics of reported methodologies, variation between versions, and reported outcomes. Building on this, we experimentally evaluated the impact of several variables on bioassay results. Results Our literature review exposed a significant inconsistency in the how bioassay methods are reported, hindering reliable interpretation of data and the ability to compare results between studies. The experimental research provided further insight by specifically identifying two key factors that influence the outcomes of bioassays: mosquito dry weight and relative humidity (RH). This finding not only advances our comprehension of these assays but also underscores the importance of establishing precisely defined methodologies for resistance monitoring. The study also demonstrates the importance of controlling bioassay variables, noting the significant influence of wing length, as an indicator of mosquito size, on mortality rates in standardized bioassays. Conclusions Generating data with improved protocol consistency and precision will not only deepen our understanding of resistance patterns but also better inform vector control measures. We call for continued research and collaboration to refine and build consensus on bioassay techniques, to help bolster the global effort against vector-borne diseases like malaria.
Collapse
Affiliation(s)
- Giorgio Praulins
- Innovation to Impact (I2I), Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Annabel Murphy-Fegan
- Innovation to Impact (I2I), Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Jack Gillespie
- Innovation to Impact (I2I), Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Frank Mechan
- Innovation to Impact (I2I), Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Katherine Gleave
- Innovation to Impact (I2I), Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Rosemary Lees
- Innovation to Impact (I2I), Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| |
Collapse
|
10
|
Koto Yérima Gounou Boukari M, Djègbè I, Tepa-Yotto GT, Hessou-Djossou D, Tchigossou G, Tossou E, Lontsi-Demano M, Adanzounon D, Gbankoto A, Djogbénou L, Djouaka R. Cross-Resistance to Pyrethroids and Neonicotinoids in Malaria Vectors from Vegetable Farms in the Northern Benin. Trop Med Infect Dis 2024; 9:305. [PMID: 39728832 DOI: 10.3390/tropicalmed9120305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/07/2024] [Accepted: 08/14/2024] [Indexed: 12/28/2024] Open
Abstract
Agricultural pesticides may play a crucial role in the selection of resistance in field populations of mosquito vectors. This study aimed to determine the susceptibility level of An. gambiae s.l. to pyrethroids and neonicotinoids in vegetable farms in northern Benin, in West Africa, and the underlying insecticide resistance mechanisms. A survey on agricultural practices was carried out on 85 market gardeners chosen randomly in Malanville and Parakou. Anopheles gambiae s.l. larvae were collected, reared to adult stages, and identified to species level. Susceptibility was tested with impregnated papers (WHO bioassays) or CDC bottles according to the insecticides. Synergists (PBO, DEM, and DEF) were used to screen resistance mechanisms. Allelic frequencies of the kdr (L1014F), kdr (L1014S), N1575Y, and ace-1R G119S mutations were determined in mosquitoes using Taqman PCR. Fertilizers and pesticides were the agrochemicals most used with a rate of 97.78% and 100%, respectively, in Malanville and Parakou. Anopheles coluzzii was the predominant species in Malanville, while An. gambiae was the only species found in Parakou. Bioassays revealed a high resistance of An. gambiae s.l. to pyrethroids and DDT, while a susceptibility to bendiocarb, pyrimiphos-methyl, malathion, and clothianidin was recorded. Resistance to acetamiprid was suspected in mosquitoes from both localities. A lower resistance level was observed when mosquitoes were pre-treated with synergists, then exposed to insecticides. The kdr L1014F mutation was observed in both locations at moderate frequencies (0.50 in Malanville and 0.55 in Parakou). The allelic frequencies of N1575Y and G119S were low in both study sites. This study confirmed the resistance of An. gambiae s.l. to insecticides used in agriculture and public health. It reveals a susceptibility of vectors to bendiocarb, pyrimiphos-methyl, malathion, and clothianidin, thus indicating that these insecticides can be used as an alternative in Benin to control malaria vectors.
Collapse
Affiliation(s)
- Massioudou Koto Yérima Gounou Boukari
- Département des Sciences de la Vie et de la Terre, Ecole Normale Supérieure de Natitingou, Natitingou P.O. Box 72, Benin
- Agroecohealth Unit, International Institute of Tropical Agriculture (IITA), 08 Tri-Postal, Cotonou P.O. Box 0932, Benin
| | - Innocent Djègbè
- Département des Sciences de la Vie et de la Terre, Ecole Normale Supérieure de Natitingou, Natitingou P.O. Box 72, Benin
| | - Ghislain T Tepa-Yotto
- Biorisk Management Facility (BIMAF), International Institute of Tropical Agriculture (IITA-Benin), 08 Tri-Postal, Cotonou P.O. Box 0932, Benin
- Ecole de Gestion et de Production Végétale et Semencière (EGPVS), Université Nationale d'Agriculture (UNA-Benin), Kétou BP 43, Benin
| | - Donald Hessou-Djossou
- Département des Sciences de la Vie et de la Terre, Ecole Normale Supérieure de Natitingou, Natitingou P.O. Box 72, Benin
| | - Genevieve Tchigossou
- Agroecohealth Unit, International Institute of Tropical Agriculture (IITA), 08 Tri-Postal, Cotonou P.O. Box 0932, Benin
| | - Eric Tossou
- Agroecohealth Unit, International Institute of Tropical Agriculture (IITA), 08 Tri-Postal, Cotonou P.O. Box 0932, Benin
| | - Michel Lontsi-Demano
- Agroecohealth Unit, International Institute of Tropical Agriculture (IITA), 08 Tri-Postal, Cotonou P.O. Box 0932, Benin
| | - Danahé Adanzounon
- Agroecohealth Unit, International Institute of Tropical Agriculture (IITA), 08 Tri-Postal, Cotonou P.O. Box 0932, Benin
| | - Adam Gbankoto
- Laboratory of Experimental Physiology and Pharmacology, Faculty of Sciences and Technology, University of Abomey-Calavi, Cotonou 01 BP 526, Benin
| | - Luc Djogbénou
- Regional Institute of Public Health, University of Abomey-Calavi, Ouidah P.O. Box 384, Benin
| | - Rousseau Djouaka
- Agroecohealth Unit, International Institute of Tropical Agriculture (IITA), 08 Tri-Postal, Cotonou P.O. Box 0932, Benin
| |
Collapse
|
11
|
Fouet C, Pinch MJ, Ashu FA, Ambadiang MM, Bouaka C, Batronie AJ, Hernandez CA, Rios DE, Penlap-Beng V, Kamdem C. Field-evolved resistance to neonicotinoids in the mosquito, Anopheles gambiae, is associated with mutations of nicotinic acetylcholine receptor subunits combined with cytochrome P450-mediated detoxification. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 206:106205. [PMID: 39672618 DOI: 10.1016/j.pestbp.2024.106205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/28/2024] [Accepted: 11/03/2024] [Indexed: 12/15/2024]
Abstract
New insecticides prequalified for malaria control interventions include modulators of nicotinic acetylcholine receptors that act selectively on different subunits leading to variable sensitivity among arthropods. This study aimed to investigate the molecular mechanisms underlying contrasting susceptibility to neonicotinoids observed in wild populations of two mosquito sibling species. Bioassays and a synergist test with piperonyl butoxide revealed that the sister taxa, Anopheles gambiae and An. coluzzii, from Yaounde, Cameroon, both have the potential to develop resistance to acetamiprid through cytochrome P450-mediated detoxification. However, contrary to An. coluzzii, An. gambiae populations are evolving cross-resistance to several active ingredients facilitated by mutations of nicotinic acetylcholine receptors (nAChRs). We sequenced coding regions on the β1 and α6 nAChR subunits where variants associated with resistance to neonicotinoids or to spinosyns have been found in agricultural pests and detected no mutation in An. coluzzii. By contrast, six nucleotide substitutions including an amino acid change in one of the loops that modulate ligand binding and affect sensitivity were present in the resistant species, An. gambiae. Allele frequency distributions were consistent with the spread of beneficial mutations that likely reduce the affinity of An. gambiae nAChRs for synthetic modulators. Our findings provide critical information for the application and resistance management of nAChR modulators in malaria prevention.
Collapse
Affiliation(s)
- Caroline Fouet
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX, USA
| | - Matthew J Pinch
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX, USA
| | - Fred A Ashu
- Department of Entomology, Centre for Research in Infectious Diseases, Yaounde, Cameroon; Department of Biochemistry, Faculty of Science, University of Yaoundé 1, Yaounde, Cameroon
| | - Marilene M Ambadiang
- Department of Entomology, Centre for Research in Infectious Diseases, Yaounde, Cameroon; Department of Biochemistry, Faculty of Science, University of Yaoundé 1, Yaounde, Cameroon
| | - Calmes Bouaka
- Department of Vector Biology, Liverpool School of Tropical Medicine, UK
| | - Anthoni J Batronie
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX, USA
| | - Cesar A Hernandez
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX, USA
| | - Desiree E Rios
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX, USA
| | - Véronique Penlap-Beng
- Department of Biochemistry, Faculty of Science, University of Yaoundé 1, Yaounde, Cameroon
| | - Colince Kamdem
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX, USA.
| |
Collapse
|
12
|
Kamya MR, Nankabirwa JI, Arinaitwe E, Rek J, Zedi M, Maiteki-Sebuguzi C, Opigo J, Staedke SG, Oruni A, Donnelly MJ, Greenhouse B, Briggs J, Krezanoski PJ, Bousema T, Rosenthal PJ, Olwoch P, Jagannathan P, Rodriguez-Barraquer I, Dorsey G. Dramatic resurgence of malaria after 7 years of intensive vector control interventions in Eastern Uganda. PLOS GLOBAL PUBLIC HEALTH 2024; 4:e0003254. [PMID: 39208072 PMCID: PMC11361418 DOI: 10.1371/journal.pgph.0003254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/07/2024] [Indexed: 09/04/2024]
Abstract
Tororo District, Uganda experienced a dramatic decrease in malaria burden from 2015-19 during 5 years of indoor residual spraying (IRS) with carbamate (Bendiocarb) and then organophosphate (Actellic) insecticides. However, a marked resurgence occurred in 2020, which coincided with a change to a clothianidin-based IRS formulations (Fludora Fusion/SumiShield). To quantify the magnitude of the resurgence, investigate causes, and evaluate the impact of a shift back to IRS with Actellic in 2023, we assessed changes in malaria metrics in regions within and near Tororo District. Malaria surveillance data from Nagongera Health Center, Tororo District was included from 2011-2023. In addition, a cohort of 667 residents from 84 houses was followed from August 2020 through September 2023 from an area bordering Tororo and neighboring Busia District, where IRS has never been implemented. Cohort participants underwent passive surveillance for clinical malaria and active surveillance for parasitemia every 28 days. Mosquitoes were collected in cohort households every 2 weeks using CDC light traps. Female Anopheles were speciated and tested for sporozoites and phenotypic insecticide resistance. Temporal comparisons of malaria metrics were stratified by geographic regions. At Nagongera Health Center average monthly malaria cases varied from 419 prior to implementation of IRS; to 56 after 5 years of IRS with Bendiocarb and Actellic; to 1591 after the change in IRS to Fludora Fusion/SumiShield; to 155 after a change back to Actellic. Among cohort participants living away from the border in Tororo, malaria incidence increased over 8-fold (0.36 vs. 2.97 episodes per person year, p<0.0001) and parasite prevalence increased over 4-fold (17% vs. 70%, p<0.0001) from 2021 to 2022 when Fludora Fusion/SumiShield was used. Incidence decreased almost 5-fold (2.97 vs. 0.70, p<0.0001) and prevalence decreased by 39% (70% vs. 43%, p<0.0001) after shifting back to Actellic. There was a similar pattern among those living near the border in Tororo, with increased incidence between 2021 and 2022 (0.93 vs. 2.40, p<0.0001) followed by a decrease after the change to Actellic (2.40 vs. 1.33, p<0.001). Among residents of Busia, malaria incidence did not change significantly over the 3 years of observation. Malaria resurgence in Tororo was temporally correlated with the replacement of An. gambiae s.s. by An. funestus as the primary vector, with a marked decrease in the density of An. funestus following the shift back to IRS with Actellic. In Busia, An. gambiae s.s. remained the primary vector throughout the observation period. Sporozoite rates were approximately 50% higher among An. funestus compared to the other common malaria vectors. Insecticide resistance phenotyping of An. funestus revealed high tolerance to clothianidin, but full susceptibility to Actellic. A dramatic resurgence of malaria in Tororo was temporally associated with a change to clothianidin-based IRS formulations and emergence of An. funestus as the predominant vector. Malaria decreased after a shift back to IRS with Actellic. This study highlights the ability of malaria vectors to rapidly circumvent control efforts and the importance of high-quality surveillance systems to assess the impact of malaria control interventions and generate timely, actionable data.
Collapse
Affiliation(s)
- Moses R. Kamya
- Infectious Diseases Research Collaboration, Kampala, Uganda
- School of Medicine, Makerere University Kampala, Kampala, Uganda
| | - Joaniter I. Nankabirwa
- Infectious Diseases Research Collaboration, Kampala, Uganda
- School of Medicine, Makerere University Kampala, Kampala, Uganda
| | | | - John Rek
- Infectious Diseases Research Collaboration, Kampala, Uganda
- National Malaria Control Division, Ministry of Health, Kampala, Uganda
| | - Maato Zedi
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Catherine Maiteki-Sebuguzi
- Infectious Diseases Research Collaboration, Kampala, Uganda
- National Malaria Control Division, Ministry of Health, Kampala, Uganda
| | - Jimmy Opigo
- National Malaria Control Division, Ministry of Health, Kampala, Uganda
| | - Sarah G. Staedke
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Ambrose Oruni
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Martin J. Donnelly
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Bryan Greenhouse
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Jessica Briggs
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Paul J. Krezanoski
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Teun Bousema
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Philip J. Rosenthal
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Peter Olwoch
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Prasanna Jagannathan
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, California, United States of America
| | - Isabel Rodriguez-Barraquer
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Grant Dorsey
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| |
Collapse
|
13
|
Fouet C, Pinch MJ, Ashu FA, Ambadiang MM, Bouaka C, Batronie AJ, Hernandez CA, Rios DE, Penlap-Beng V, Kamdem C. Field-evolved resistance to neonicotinoids in the mosquito, Anopheles gambiae, is associated with downregulation and mutations of nicotinic acetylcholine receptor subunits combined with cytochrome P450-mediated detoxification. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.17.608399. [PMID: 39185195 PMCID: PMC11343199 DOI: 10.1101/2024.08.17.608399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Neonicotinoid insecticides act selectively on their nicotinic receptor targets leading to variable sensitivity among arthropods. This study aimed to investigate the molecular mechanisms underlying contrasting susceptibility to neonicotinoids observed in wild populations of two mosquito sibling species. Bioassays and a synergism test revealed that the sister taxa, Anopheles gambiae and An. coluzzii, from Yaounde, Cameroon, rely on cytochrome P450s to detoxify neonicotinoids and develop resistance. However, contrary to An. coluzzii, An. gambiae populations are evolving stronger resistance to several active ingredients facilitated by mutations and reduced expression of nicotinic acetylcholine receptors. Six mutations were detected in coding sequences of the β1 and α6 subunits, including two substitutions in one of the loops that modulate ligand binding and sensitivity. Allele frequencies were strongly correlated with a susceptibility gradient between An. coluzzii and An. gambiae suggesting that the mutations may play a key role in sensitivity. Messenger RNA expression levels of the β1, α3, and α7 subunits decreased dramatically, on average by 23.27, 17.50, 15.80-fold, respectively, in wild An. gambiae populations compared to a susceptible insectary colony. By contrast, only the β2 and α9-1 subunits were moderately downregulated (5.28 and 2.67-fold change, respectively) in field-collected An. coluzzii adults relative to susceptible colonized mosquitoes. Our findings provide critical information for the application and resistance management of neonicotinoids in malaria prevention.
Collapse
Affiliation(s)
- Caroline Fouet
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, Texas, USA
| | - Matthew J. Pinch
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, Texas, USA
| | - Fred A. Ashu
- Department of Entomology, Centre for Research in Infectious Diseases, Yaounde, Cameroon
- Department of Biochemistry, Faculty of Science, University of Yaoundé 1, Yaounde, Cameroon
| | - Marilene M. Ambadiang
- Department of Entomology, Centre for Research in Infectious Diseases, Yaounde, Cameroon
- Department of Biochemistry, Faculty of Science, University of Yaoundé 1, Yaounde, Cameroon
| | - Calmes Bouaka
- Department of Vector Biology, Liverpool School of Tropical Medicine
| | - Anthoni J. Batronie
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, Texas, USA
| | - Cesar A. Hernandez
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, Texas, USA
| | - Desiree E. Rios
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, Texas, USA
| | - Véronique Penlap-Beng
- Department of Biochemistry, Faculty of Science, University of Yaoundé 1, Yaounde, Cameroon
| | - Colince Kamdem
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, Texas, USA
| |
Collapse
|
14
|
Hancock PA, Ochomo E, Messenger LA. Genetic surveillance of insecticide resistance in African Anopheles populations to inform malaria vector control. Trends Parasitol 2024; 40:604-618. [PMID: 38760258 DOI: 10.1016/j.pt.2024.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/19/2024]
Abstract
Insecticide resistance in malaria vector populations poses a major threat to malaria control, which relies largely on insecticidal interventions. Contemporary vector-control strategies focus on combatting resistance using multiple insecticides with differing modes of action within the mosquito. However, diverse genetic resistance mechanisms are present in vector populations, and continue to evolve. Knowledge of the spatial distribution of these genetic mechanisms, and how they impact the efficacy of different insecticidal products, is critical to inform intervention deployment decisions. We developed a catalogue of genetic-resistance mechanisms in African malaria vectors that could guide molecular surveillance. We highlight situations where intervention deployment has led to resistance evolution and spread, and identify challenges in understanding and mitigating the epidemiological impacts of resistance.
Collapse
Affiliation(s)
- Penelope A Hancock
- Department of Infectious Disease Epidemiology, Imperial College London, London, UK.
| | - Eric Ochomo
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya; Vector Group, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK
| | - Louisa A Messenger
- Department of Environmental and Occupational Health, School of Public Health, University of Nevada, Las Vegas, USA; Parasitology and Vector Biology (PARAVEC) Laboratory, School of Public Health, University of Nevada, Las Vegas, USA
| |
Collapse
|
15
|
Ito R, Kamiya M, Takayama K, Mori S, Matsumoto R, Takebayashi M, Ojima H, Fujimura S, Yamamoto H, Ohno M, Ihara M, Okajima T, Yamashita A, Colman F, Lycett GJ, Sattelle DB, Matsuda K. Unravelling nicotinic receptor and ligand features underlying neonicotinoid knockdown actions on the malaria vector mosquito Anopheles gambiae. Open Biol 2024; 14:240057. [PMID: 39043224 PMCID: PMC11265914 DOI: 10.1098/rsob.240057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/21/2024] [Indexed: 07/25/2024] Open
Abstract
With the spread of resistance to long-established insecticides targeting Anopheles malaria vectors, understanding the actions of compounds newly identified for vector control is essential. With new commercial vector-control products containing neonicotinoids under development, we investigate the actions of 6 neonicotinoids (imidacloprid, thiacloprid, clothianidin, dinotefuran, nitenpyram and acetamiprid) on 13 Anopheles gambiae nicotinic acetylcholine receptor (nAChR) subtypes produced by expression of combinations of the Agα1, Agα2, Agα3, Agα8 and Agβ1 subunits in Xenopus laevis oocytes, the Drosophila melanogaster orthologues of which we have previously shown to be important in neonicotinoid actions. The presence of the Agα2 subunit reduces neonicotinoid affinity for the mosquito nAChRs, whereas the Agα3 subunit increases it. Crystal structures of the acetylcholine binding protein (AChBP), an established surrogate for the ligand-binding domain, with dinotefuran bound, shows a unique target site interaction through hydrogen bond formation and CH-N interaction at the tetrahydrofuran ring. This is of interest as dinotefuran is also under trial as the toxic element in baited traps. Multiple regression analyses show a correlation between the efficacy of neonicotinoids for the Agα1/Agα2/Agα8/Agβ1 nAChR, their hydrophobicity and their rate of knockdown of adult female An. gambiae, providing new insights into neonicotinoid features important for malaria vector control.
Collapse
Affiliation(s)
- Ryo Ito
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Masaki Kamiya
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Koichi Takayama
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Sumito Mori
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Rei Matsumoto
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Mayuka Takebayashi
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Hisanori Ojima
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Shota Fujimura
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Haruki Yamamoto
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Masayuki Ohno
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Makoto Ihara
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Toshihide Okajima
- Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Atsuko Yamashita
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Fraser Colman
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Gareth J. Lycett
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - David B. Sattelle
- Centre for Respiratory Biology, UCL Respiratory, Division of Medicine, University College London, London WC1E 6JF, UK
| | - Kazuhiko Matsuda
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
- Agricultural Technology and Innovation Research Institute, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
| |
Collapse
|
16
|
Odjo EM, Akpodji CST, Djènontin A, Salako AS, Padonou GG, Adoha CJ, Yovogan B, Adjottin B, Tokponnon FT, Osse R, Agbangla C, Akogbeto MC. Did the prolonged residual efficacy of clothianidin products lead to a greater reduction in vector populations and subsequent malaria transmission compared to the shorter residual efficacy of pirimiphos-methyl? Malar J 2024; 23:119. [PMID: 38664703 PMCID: PMC11047034 DOI: 10.1186/s12936-024-04949-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 04/13/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND The residual activity of a clothianidin + deltamethrin mixture and clothianidin alone in IRS covered more than the period of malaria transmission in northern Benin. The aim of this study was to show whether the prolonged residual efficacy of clothianidin-based products resulted in a greater reduction in vector populations and subsequent malaria transmission compared with the shorter residual efficacy of pirimiphos-methyl. METHODS Human bait mosquito collections by local volunteers and pyrethrum spray collections were used in 6 communes under IRS monitoring and evaluation from 2019 to 2021. ELISA/CSP and species PCR tests were performed on Anopheles gambiae sensu lato (s.l.) to determine the infectivity rate and subspecies by commune and year. The decrease in biting rate, entomological inoculation rate, incidence, inhibition of blood feeding, resting density of An. gambiae s.l. were studied and compared between insecticides per commune. RESULTS The An. gambiae complex was the major vector throughout the study area, acounting for 98.71% (19,660/19,917) of all Anopheles mosquitoes collected. Anopheles gambiae s.l. collected was lower inside treated houses (45.19%: 4,630/10,245) than outside (54.73%: 5,607/10,245) after IRS (p < 0.001). A significant decrease (p < 0.001) in the biting rate was observed after IRS in all departments except Donga in 2021 after IRS with clothianidin 50 WG. The impact of insecticides on EIR reduction was most noticeable with pirimiphos-methyl 300 CS, followed by the clothianidin + deltamethrin mixture and finally clothianidin 50 WG. A reduction in new cases of malaria was observed in 2020, the year of mass distribution of LLINs and IRS, as well as individual and collective protection measures linked to COVID-19. Anopheles gambiae s.l. blood-feeding rates and parous were high and similar for all insecticides in treated houses. CONCLUSION To achieve the goal of zero malaria, the optimal choice of vector control tools plays an important role. Compared with pirimiphos-methyl, clothianidin-based insecticides induced a lower reductions in entomological indicators of malaria transmission.
Collapse
Affiliation(s)
- Esdras Mahoutin Odjo
- Centre de Recherche Entomologique de Cotonou, Cotonou, Bénin.
- Faculté des Sciences et Techniques, Université d'Abomey- Calavi, Calavi, Bénin.
| | - Christian S T Akpodji
- Centre de Recherche Entomologique de Cotonou, Cotonou, Bénin
- Faculté des Sciences et Techniques, Université d'Abomey- Calavi, Calavi, Bénin
| | - Armel Djènontin
- Centre de Recherche Entomologique de Cotonou, Cotonou, Bénin
- Faculté des Sciences et Techniques, Université d'Abomey- Calavi, Calavi, Bénin
| | | | - Gil Germain Padonou
- Centre de Recherche Entomologique de Cotonou, Cotonou, Bénin
- Faculté des Sciences et Techniques, Université d'Abomey- Calavi, Calavi, Bénin
| | - Constantin Jésukèdè Adoha
- Centre de Recherche Entomologique de Cotonou, Cotonou, Bénin
- Faculté des Sciences et Techniques, Université d'Abomey- Calavi, Calavi, Bénin
| | - Boulais Yovogan
- Centre de Recherche Entomologique de Cotonou, Cotonou, Bénin
- Faculté des Sciences et Techniques, Université d'Abomey- Calavi, Calavi, Bénin
| | - Bruno Adjottin
- Centre de Recherche Entomologique de Cotonou, Cotonou, Bénin
- Faculté des Sciences et Techniques, Université d'Abomey- Calavi, Calavi, Bénin
| | - Filémon T Tokponnon
- Centre de Recherche Entomologique de Cotonou, Cotonou, Bénin
- Faculté des Sciences et Techniques, Université d'Abomey- Calavi, Calavi, Bénin
| | - Razaki Osse
- Centre de Recherche Entomologique de Cotonou, Cotonou, Bénin
- Université Nationale d'Agriculture de Porto-Novo, Porto-Novo, Bénin
| | - Clement Agbangla
- Centre de Recherche Entomologique de Cotonou, Cotonou, Bénin
- Direction Générale de la Recherche Scientifique, Ministère de l'Enseignement Supérieur et de la Recherche Scientifique, Cotonou, Bénin
| | | |
Collapse
|
17
|
Hilton ER, Gning-Cisse N, Assi A, Eyakou M, Koffi J, Gnakou B, Kouassi B, Flatley C, Chabi J, Gbalegba C, Alex Aimain S, Yah Kokrasset C, Antoine Tanoh M, N'Gotta S, Yao O, Egou Assi H, Konan P, Davis K, Constant E, Belemvire A, Yepassis-Zembrou P, Zinzindohoue P, Kouadio B, Burnett S. Reduction of malaria case incidence following the introduction of clothianidin-based indoor residual spraying in previously unsprayed districts: an observational analysis using health facility register data from Côte d'Ivoire, 2018-2022. BMJ Glob Health 2024; 9:e013324. [PMID: 38519096 PMCID: PMC10961507 DOI: 10.1136/bmjgh-2023-013324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 12/21/2023] [Indexed: 03/24/2024] Open
Abstract
BACKGROUND Indoor residual spraying (IRS) using neonicotinoid-based insecticides (clothianidin and combined clothianidin with deltamethrin) was deployed in two previously unsprayed districts of Côte d'Ivoire in 2020 and 2021 to complement standard pyrethroid insecticide-treated nets. This retrospective observational study uses health facility register data to assess the impact of IRS on clinically reported malaria case incidence. METHODS Health facility data were abstracted from consultation registers for the period September 2018 to April 2022 in two IRS districts and two control districts that did not receive IRS. Malaria cases reported by community health workers (CHWs) were obtained from district reports and District Health Information Systems 2. Facilities missing complete data were excluded. Controlled interrupted time series models were used to estimate the effect of IRS on monthly all-ages population-adjusted confirmed malaria cases and cases averted by IRS. Models controlled for transmission season, precipitation, vegetation, temperature, proportion of cases reported by CHWs, proportion of tested out of suspected cases and non-malaria outpatient visits. RESULTS An estimated 10 988 (95% CI 5694 to 18 188) malaria cases were averted in IRS districts the year following the 2020 IRS campaign, representing a 15.9% reduction compared with if IRS had not been deployed. Case incidence in IRS districts dropped by 27.7% (incidence rate ratio (IRR) 0.723, 95% CI 0.592 to 0.885) the month after the campaign. In the 8 months after the 2021 campaign, 14 170 (95% CI 13 133 to 15 025) estimated cases were averted, a 24.7% reduction, and incidence in IRS districts dropped by 37.9% (IRR 0.621, 95% CI 0.462 to 0.835) immediately after IRS. Case incidence in control districts did not change following IRS either year (p>0.05) and the difference in incidence level change between IRS and control districts was significant both years (p<0.05). CONCLUSION Deployment of clothianidin-based IRS was associated with a reduction in malaria case rates in two districts of Côte d'Ivoire following IRS deployment in 2020 and 2021.
Collapse
Affiliation(s)
| | | | - Auguste Assi
- PMI VectorLink Project, Abt Associates, Abidjan, Côte d'Ivoire
| | - Mathieu Eyakou
- PMI VectorLink Project, Abt Associates, Abidjan, Côte d'Ivoire
| | - John Koffi
- PMI VectorLink Project, Abt Associates, Abidjan, Côte d'Ivoire
| | | | - Bernard Kouassi
- PMI VectorLink Project, Abt Associates, Abidjan, Côte d'Ivoire
| | - Cecilia Flatley
- PMI VectorLink Project, Abt Associates, Rockville, Maryland, USA
| | - Joseph Chabi
- PMI VectorLink Project, Abt Associates, Rockville, Maryland, USA
| | - Constant Gbalegba
- Programme National de Lutte Contre le Paludisme, Abidjan, Côte d'Ivoire
| | - Serge Alex Aimain
- Programme National de Lutte Contre le Paludisme, Abidjan, Côte d'Ivoire
| | | | - Mea Antoine Tanoh
- Programme National de Lutte Contre le Paludisme, Abidjan, Côte d'Ivoire
| | - Sylvain N'Gotta
- Programme National de Lutte Contre le Paludisme, Abidjan, Côte d'Ivoire
| | - Octavie Yao
- Programme National de Lutte Contre le Paludisme, Abidjan, Côte d'Ivoire
| | - Hughes Egou Assi
- Direction de l'Informatique et de l'Information Sanitaire, Abidjan, Côte d'Ivoire
| | - Philomène Konan
- Direction de l'Informatique et de l'Information Sanitaire, Abidjan, Côte d'Ivoire
| | - Kelly Davis
- PMI VectorLink Project, PATH, Washington, District of Columbia, USA
| | - Edi Constant
- Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Abidjan, Côte d'Ivoire
| | - Allison Belemvire
- US President's Malaria Initiative, US Agency for International Development, Washington, District of Columbia, USA
| | - Patricia Yepassis-Zembrou
- U.S. President's Malaria Initiative, Centers for Disease Control and Prevention, Abidjan, Côte d'Ivoire
| | - Pascal Zinzindohoue
- U.S. President's Malaria Initiative, U.S. Agency for International Development, Abidjan, Côte d'Ivoire
| | - Blaise Kouadio
- U.S. President's Malaria Initiative, U.S. Agency for International Development, Abidjan, Côte d'Ivoire
| | - Sarah Burnett
- PMI VectorLink Project, PATH, Washington, District of Columbia, USA
| |
Collapse
|
18
|
Kamya MR, Nankabirwa JI, Arinaitwe E, Rek J, Zedi M, Maiteki-Sebuguzi C, Opigo J, Staedke SG, Oruni A, Donnelly MJ, Greenhouse B, Briggs J, Krezanoski PJ, Bousema T, Rosenthal PJ, Olwoch P, Jagannathan P, Rodriguez-Barraquer I, Dorsey G. Dramatic resurgence of malaria after 7 years of intensive vector control interventions in Eastern Uganda. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.03.15.24304352. [PMID: 38559091 PMCID: PMC10980127 DOI: 10.1101/2024.03.15.24304352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Background Tororo District, Uganda experienced a dramatic decrease in malaria burden from 2015-19 following 5 years of indoor residual spraying (IRS) with carbamate (Bendiocarb) and then organophosphate (Actellic) insecticides. However, a marked resurgence occurred in 2020, which coincided with a change to a clothianidin-based IRS formulations (Fludora Fusion/SumiShield). To quantify the magnitude of the resurgence, investigate causes, and evaluate the impact of a shift back to IRS with Actellic in 2023, we assessed changes in malaria metrics in regions within and near Tororo District. Methods Malaria surveillance data from Nagongera Health Center, Tororo District was included from 2011-2023. In addition, a cohort of 667 residents from 84 houses was followed from August 2020 through September 2023 from an area bordering Tororo and neighboring Busia District, where IRS has never been implemented. Cohort participants underwent passive surveillance for clinical malaria and active surveillance for parasitemia every 28 days. Mosquitoes were collected in cohort households every 2 weeks using CDC light traps. Female Anopheles were speciated and tested for sporozoites and phenotypic insecticide resistance. Temporal comparisons of malaria metrics were stratified by geographic regions. Findings At Nagongera Health Center average monthly malaria cases varied from 419 prior to implementation of IRS; to 56 after 5 years of IRS with Bendiocarb and Actellic; to 1591 after the change in IRS to Fludora Fusion/SumiShield; to 155 after a change back to Actellic. Among cohort participants living away from the border in Tororo, malaria incidence increased over 8-fold (0.36 vs. 2.97 episodes per person year, p<0.0001) and parasite prevalence increased over 4-fold (17% vs. 70%, p<0.0001) from 2021 to 2022 when Fludora Fusion/SumiShield was used. Incidence decreased almost 5-fold (2.97 vs. 0.70, p<0.0001) and prevalence decreased by 39% (70% vs. 43%, p<0.0001) after shifting back to Actellic. There was a similar pattern among those living near the border in Tororo, with increased incidence between 2021 and 2022 (0.93 vs. 2.40, p<0.0001) followed by a decrease after the change to Actellic (2.40 vs. 1.33, p<0.001). Among residents of Busia, malaria incidence did not change significantly over the 3 years of observation. Malaria resurgence in Tororo was temporally correlated with the replacement of An. gambiae s.s. by An. funestus as the primary vector, with a marked decrease in the density of An. funestus following the shift back to IRS with Actellic. In Busia, An. gambiae s.s. remained the primary vector throughout the observation period. Sporozoite rates were approximately 50% higher among An. funestus compared to the other common malaria vectors. Insecticide resistance phenotyping of An. funestus revealed high tolerance to clothianidin, but full susceptibility to Actellic. Conclusions A dramatic resurgence of malaria in Tororo was temporally associated with a change to clothianidin-based IRS formulations and emergence of An. funestus as the predominant vector. Malaria decreased after a shift back to IRS with Actellic. This study highlights the ability of malaria vectors to rapidly circumvent control efforts and the importance of high-quality surveillance systems to assess the impact of malaria control interventions and generate timely, actionable data.
Collapse
Affiliation(s)
- Moses R. Kamya
- Infectious Diseases Research Collaboration, Kampala, Uganda
- School of Medicine, Makerere University Kampala, Uganda
| | - Joaniter I. Nankabirwa
- Infectious Diseases Research Collaboration, Kampala, Uganda
- School of Medicine, Makerere University Kampala, Uganda
| | | | - John Rek
- Infectious Diseases Research Collaboration, Kampala, Uganda
- National Malaria Control Division, Ministry of Health, Kampala, Uganda
| | - Maato Zedi
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Catherine Maiteki-Sebuguzi
- Infectious Diseases Research Collaboration, Kampala, Uganda
- National Malaria Control Division, Ministry of Health, Kampala, Uganda
| | - Jimmy Opigo
- National Malaria Control Division, Ministry of Health, Kampala, Uganda
| | - Sarah G. Staedke
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Ambrose Oruni
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Martin J. Donnelly
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Bryan Greenhouse
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Jessica Briggs
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Paul J. Krezanoski
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Teun Bousema
- Department of Medical Microbiology, Radboud University Medical Center, Netherlands
| | - Philip J. Rosenthal
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Peter Olwoch
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Prasanna Jagannathan
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, USA
| | | | - Grant Dorsey
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
19
|
Ashu FA, Fouet C, Ambadiang MM, Penlap-Beng V, Kamdem C. Adult mosquitoes of the sibling species Anopheles gambiae and Anopheles coluzzii exhibit contrasting patterns of susceptibility to four neonicotinoid insecticides along an urban-to-rural gradient in Yaoundé, Cameroon. Malar J 2024; 23:65. [PMID: 38431623 PMCID: PMC10909279 DOI: 10.1186/s12936-024-04876-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 02/10/2024] [Indexed: 03/05/2024] Open
Abstract
BACKGROUND Neonicotinoids are potential alternatives for controlling pyrethroid-resistant mosquitoes, but their efficacy against malaria vector populations of sub-Saharan Africa has yet to be investigated. The aim of the present study was to test the efficacy of four neonicotinoids against adult populations of the sibling species Anopheles gambiae and Anopheles coluzzii sampled along an urban-to-rural gradient. METHODS The lethal toxicity of three active ingredients for adults of two susceptible Anopheles strains was assessed using concentration-response assays, and their discriminating concentrations were calculated. The discriminating concentrations were then used to test the susceptibility of An. gambiae and An. coluzzii mosquitoes collected from urban, suburban and rural areas of Yaoundé, Cameroon, to acetamiprid, imidacloprid, clothianidin and thiamethoxam. RESULTS Lethal concentrations of neonicotinoids were relatively high suggesting that this class of insecticides has low toxicity against Anopheles mosquitoes. Reduced susceptibility to the four neonicotinoids tested was detected in An. gambiae populations collected from rural and suburban areas. By contrast, adults of An. coluzzii that occurred in urbanized settings were susceptible to neonicotinoids except acetamiprid for which 80% mortality was obtained within 72 h of insecticide exposure. The cytochrome inhibitor, piperonyl butoxide (PBO), significantly enhanced the activity of clothianidin and acetamiprid against An. gambiae mosquitoes. CONCLUSIONS These findings corroborate susceptibility profiles observed in larvae and highlight a significant variation in tolerance to neonicotinoids between An. gambiae and An. coluzzii populations from Yaoundé. Further studies are needed to disentangle the role of exposure to agricultural pesticides and of cross-resistance mechanisms in the development of neonicotinoid resistance in some Anopheles species.
Collapse
Affiliation(s)
- Fred A Ashu
- Centre for Research in Infectious Diseases, P.O. Box 13591, Yaoundé 9, Cameroon
- Department of Biochemistry, Faculty of Science, University of Yaoundé 1, P.O. Box 11 812, Yaoundé, Cameroon
| | - Caroline Fouet
- Department of Biological Sciences, The University of Texas at El Paso, 500 W. University Ave., El Paso, TX, 79968, USA
| | - Marilene M Ambadiang
- Centre for Research in Infectious Diseases, P.O. Box 13591, Yaoundé 9, Cameroon
- Department of Biochemistry, Faculty of Science, University of Yaoundé 1, P.O. Box 11 812, Yaoundé, Cameroon
| | - Véronique Penlap-Beng
- Department of Biochemistry, Faculty of Science, University of Yaoundé 1, P.O. Box 11 812, Yaoundé, Cameroon
| | - Colince Kamdem
- Department of Biological Sciences, The University of Texas at El Paso, 500 W. University Ave., El Paso, TX, 79968, USA.
| |
Collapse
|
20
|
Azizi S, Mbewe NJ, Mo H, Edward F, Sumari G, Mwacha S, Msapalla A, Mawa B, Mosha F, Matowo J. Is Anopheles gambiae ( sensu stricto), the principal malaria vector in Africa prone to resistance development against new insecticides? Outcomes from laboratory exposure of An. gambiae ( s.s.) to sub-lethal concentrations of chlorfenapyr and clothianidin. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2024; 5:100172. [PMID: 38444984 PMCID: PMC10912349 DOI: 10.1016/j.crpvbd.2024.100172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/05/2023] [Accepted: 02/17/2024] [Indexed: 03/07/2024]
Abstract
Indiscriminate use of pesticides in the public health and agriculture sectors has contributed to the development of resistance in malaria vectors following exposure to sub-lethal concentrations. To preserve the efficacy of vector control tools and prevent resistance from spreading, early resistance detection is urgently needed to inform management strategies. The introduction of new insecticides for controlling malaria vectors such as clothianidin and chlorfenapyr requires research to identify early markers of resistance which could be used in routine surveillance. This study investigated phenotypic resistance of Anopheles gambiae (sensu stricto) Muleba-Kis strain using both WHO bottle and tube assays following chlorfenapyr, clothianidin, and alpha-cypermethrin selection against larvae and adults under laboratory conditions. High mortality rates were recorded for both chlorfenapyr-selected mosquitoes that were consistently maintained for 10 generations (24-h mortality of 92-100% and 72-h mortality of 98-100% for selected larvae; and 24-h mortality of 95-100% and 72-h mortality of 98-100% for selected adults). Selection with clothianidin at larval and adult stages showed a wide range of mortality (18-91%) compared to unselected progeny where mortality was approximately 99%. On the contrary, mosquitoes selected with alpha-cypermethrin from the adult selection maintained low mortality (28% at Generation 2 and 23% at Generation 4) against discrimination concentration compared to unselected progeny where average mortality was 51%. The observed resistance in the clothianidin-selected mosquitoes needs further investigation to determine the underlying resistance mechanism against this insecticide class. Additionally, further investigation is recommended to develop molecular markers for observed clothianidin phenotypic resistance.
Collapse
Affiliation(s)
- Salum Azizi
- Department of Medical Parasitology and Entomology, Kilimanjaro Christian Medical University College, Tanzania
- Pan African Malaria Vector Research Consortium (PAMVERC), Tanzania
| | - Njelembo J. Mbewe
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Hosiana Mo
- Department of Medical Parasitology and Entomology, Kilimanjaro Christian Medical University College, Tanzania
- Pan African Malaria Vector Research Consortium (PAMVERC), Tanzania
| | - Felista Edward
- Department of Medical Parasitology and Entomology, Kilimanjaro Christian Medical University College, Tanzania
- Pan African Malaria Vector Research Consortium (PAMVERC), Tanzania
| | - Godwin Sumari
- Department of Medical Parasitology and Entomology, Kilimanjaro Christian Medical University College, Tanzania
- Pan African Malaria Vector Research Consortium (PAMVERC), Tanzania
| | - Silvia Mwacha
- Department of Medical Parasitology and Entomology, Kilimanjaro Christian Medical University College, Tanzania
- Pan African Malaria Vector Research Consortium (PAMVERC), Tanzania
| | - Agness Msapalla
- Department of Medical Parasitology and Entomology, Kilimanjaro Christian Medical University College, Tanzania
- Pan African Malaria Vector Research Consortium (PAMVERC), Tanzania
| | - Benson Mawa
- Department of Medical Parasitology and Entomology, Kilimanjaro Christian Medical University College, Tanzania
- Pan African Malaria Vector Research Consortium (PAMVERC), Tanzania
| | - Franklin Mosha
- Department of Medical Parasitology and Entomology, Kilimanjaro Christian Medical University College, Tanzania
| | - Johnson Matowo
- Department of Medical Parasitology and Entomology, Kilimanjaro Christian Medical University College, Tanzania
- Pan African Malaria Vector Research Consortium (PAMVERC), Tanzania
| |
Collapse
|
21
|
Fouet C, Ashu FA, Ambadiang MM, Tchapga W, Wondji CS, Kamdem C. Clothianidin-resistant Anopheles gambiae adult mosquitoes from Yaoundé, Cameroon, display reduced susceptibility to SumiShield® 50WG, a neonicotinoid formulation for indoor residual spraying. BMC Infect Dis 2024; 24:133. [PMID: 38273227 PMCID: PMC10811947 DOI: 10.1186/s12879-024-09030-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND Chronic exposure of mosquito larvae to pesticide residues and cross-resistance mechanisms are major drivers of tolerance to insecticides used for vector control. This presents a concern for the efficacy of clothianidin, an agricultural neonicotinoid prequalified for Indoor Residual Spraying (IRS). METHODS Using standard bioassays, we tested if reduced susceptibility to clothianidin can affect the efficacy of SumiShield® 50WG, one of four new IRS formulations containing clothianidin. We simultaneously monitored susceptibility to clothianidin and to SumiShield 50WG, testing adults of Anopheles gambiae, An. coluzzii and Culex sp sampled from urban, suburban and agricultural areas of Yaoundé, Cameroon. RESULTS We found that in this geographic area, the level of susceptibility to the active ingredient predicted the efficacy of SumiShield 50WG. This formulation was very potent against populations that reached 100% mortality within 72 h of exposure to a discriminating concentration of clothianidin. By contrast, mortality leveled off at 75.4 ± 3.5% within 7 days of exposure to SumiShield 50WG in An. gambiae adults collected from a farm where the spraying of the two neonicotinoids acetamiprid and imidacloprid for crop protection is likely driving resistance to clothianidin. CONCLUSIONS Despite the relatively small geographic extend of the study, the findings suggest that cross-resistance may impact the efficacy of some new IRS formulations and that alternative compounds could be prioritized in areas where neonicotinoid resistance is emerging.
Collapse
Affiliation(s)
- Caroline Fouet
- Department of Biological Sciences, The University of Texas at El Paso, 500 W. University Ave, El Paso, TX, 79968, USA
| | - Fred A Ashu
- Centre for Research in Infectious Diseases (CRID), P.O. Box 13591, Yaoundé, Cameroon
- Department of Biochemistry, Faculty of Science, University of Yaoundé 1, P.O. Box 812, Yaoundé, Cameroon
| | - Marilene M Ambadiang
- Centre for Research in Infectious Diseases (CRID), P.O. Box 13591, Yaoundé, Cameroon
- Department of Biochemistry, Faculty of Science, University of Yaoundé 1, P.O. Box 812, Yaoundé, Cameroon
| | - Williams Tchapga
- Centre for Research in Infectious Diseases (CRID), P.O. Box 13591, Yaoundé, Cameroon
| | - Charles S Wondji
- Centre for Research in Infectious Diseases (CRID), P.O. Box 13591, Yaoundé, Cameroon
- Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Pembroke Place, Liverpool, L3 5QA, UK
| | - Colince Kamdem
- Department of Biological Sciences, The University of Texas at El Paso, 500 W. University Ave, El Paso, TX, 79968, USA.
| |
Collapse
|
22
|
Pambit Zong CM, Coleman S, Mohammed AR, Owusu-Asenso CM, Akuamoah-Boateng Y, Sraku IK, Attah SK, Cui L, Afrane YA. Baseline susceptibility of Anopheles gambiae to clothianidin in northern Ghana. Malar J 2024; 23:12. [PMID: 38195484 PMCID: PMC10777513 DOI: 10.1186/s12936-023-04769-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 10/25/2023] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND Clothianidin, an insecticide with a novel mode of action, has been deployed in the annual indoor residual spraying programme in northern Ghana since March 2021. To inform pragmatic management strategies and guide future studies, baseline data on local Anopheles gambiae sensu lato (s.l.) susceptibility to the clothianidin insecticide were collected in Kpalsogu, a village in the Northern region, Ghana. METHODS Phenotypic susceptibility of An. gambiae mosquitoes to clothianidin was assessed using the World Health Organization (WHO) insecticide resistance monitoring bioassay. The WHO cone bioassays were conducted on mud and cement walls sprayed with Sumishield 50 wettable granules (WG) (with clothianidin active ingredient). Daily mortalities were recorded for up to 7 days to observe for delayed mortalities. Polymerase chain reaction (PCR) technique was used to differentiate the sibling species of the An. gambiae complex and also for the detection of knock down resistance genes (kdr) and the insensitive acetylcholinesterase mutation (ace-1). RESULTS The WHO susceptibility bioassay revealed a delayed killing effect of clothianidin. Mosquitoes exposed to the cone bioassays for 5 min died 120 h after exposure. Slightly higher mortalities were observed in mosquitoes exposed to clothianidin-treated cement wall surfaces than mosquitoes exposed to mud wall surfaces. The kdr target-site mutation L1014F occurred at very high frequencies (0.89-0.94) across all vector species identified whereas the ace-1 mutation occurred at moderate levels (0.32-0.44). Anopheles gambiae sensu stricto was the most abundant species observed at 63%, whereas Anopheles arabiensis was the least observed at 9%. CONCLUSIONS Anopheles gambiae s.l. mosquitoes in northern Ghana were susceptible to clothianidin. They harboured kdr mutations at high frequencies. The ace-1 mutation occurred in moderation. The results of this study confirm that clothianidin is an effective active ingredient and should be utilized in malaria vector control interventions.
Collapse
Affiliation(s)
- Cosmos M Pambit Zong
- Department of Medical Microbiology, University of Ghana Medical School, University of Ghana, Korle-Bu, Accra, Ghana
| | - Sylvester Coleman
- Department of Clinical Microbiology, Department of Clinical Microbiology, College of Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Abdul Rahim Mohammed
- Department of Medical Microbiology, University of Ghana Medical School, University of Ghana, Korle-Bu, Accra, Ghana
| | - Christopher M Owusu-Asenso
- Department of Medical Microbiology, University of Ghana Medical School, University of Ghana, Korle-Bu, Accra, Ghana
| | - Yaw Akuamoah-Boateng
- Department of Medical Microbiology, University of Ghana Medical School, University of Ghana, Korle-Bu, Accra, Ghana
| | - Isaac K Sraku
- Department of Medical Microbiology, University of Ghana Medical School, University of Ghana, Korle-Bu, Accra, Ghana
| | - Simon K Attah
- Department of Medical Microbiology, University of Ghana Medical School, University of Ghana, Korle-Bu, Accra, Ghana
| | - Liwang Cui
- Department of Internal Medicine, University of South Florida, 3720 Spectrum Blvd, Tampa, FL, 33612, USA
| | - Yaw A Afrane
- Department of Medical Microbiology, University of Ghana Medical School, University of Ghana, Korle-Bu, Accra, Ghana.
| |
Collapse
|
23
|
Zoungbédji DM, Padonou GG, Konkon AK, Hougbe S, Sagbohan H, Kpanou C, Salako AS, Ossè R, Aïkpon R, Afoukou C, Sidick A, Akinro B, Chitou S, Gnanguénon V, Condo P, Hassani AS, Impoinvil D, Akogbéto M. Assessing the susceptibility and efficacy of traditional neurotoxic (pyrethroid) and new-generation insecticides (chlorfenapyr, clothianidin, and pyriproxyfen), on wild pyrethroid-resistant populations of Anopheles gambiae from southern Benin. Malar J 2023; 22:245. [PMID: 37626366 PMCID: PMC10463682 DOI: 10.1186/s12936-023-04664-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND The objective of this study was to determine the susceptibility of wild Anopheles gambiae sensu lato (s.l.) from southern Benin to the new insecticides (chlorfenapyr (CFP), pyriproxyfen (PPF), and clothianidin (CTD)) and assess the efficacy of insecticide-treated bed nets (ITNs) that contain these new products. METHODS Wild An. gambiae from the Benin communes of Allada, Ifangni, Akpro-Missérété, and Porto-Novo were tested for their susceptibility to CFP and PPF using the WHO bottle tests, and pyrethroids (alpha-cypermethrin, deltamethrin, and permethrin) and CTD using WHO tube tests. WHO cone tests were used to evaluate the efficacy of Interceptor® (which contains alpha-cypermethrin (ACM) only), Interceptor® G2, (CFP + ACM), and Royal Guard® nets (PPF + ACM). The ovaries of blood-fed An. gambiae from Ifangni exposed to a new PPF net were dissected, and egg development status was examined using Christopher's stages to determine the fertility status of the mosquitoes. Using a standardized protocol, the oviposition rate and oviposition inhibition rate were calculated from live blood-fed An. gambiae placed in oviposition chambers after exposure to PPF. RESULTS In all four mosquito populations, pyrethroid mortality ranged from 5 to 80%, while chlorfenapyr and clothianidin mortality ranged from 98 to 100%. At Ifangni, all mosquitoes exposed to Royal Guard® nets were infertile (100%) while the majority (74.9%) of mosquitoes exposed to Interceptor® nets had fully developed their eggs to Christopher's stage V. The oviposition inhibition rate after exposure of the mosquitoes to the PPF was 99% for the wild population of An. gambiae s.l. and the susceptible laboratory strain, An. gambiae sensu stricto (Kisumu). CONCLUSIONS The results of this study suggest that pyrethroid-resistant An. gambiae from the selected communes in southern Benin are susceptible to chlorfenapyr, clothianidin, and pyriproxyfen. In addition, based on bioassay results, new and unused Interceptor® G2 and Royal Guard® nets were effective on Ifangni's mosquito populations. Despite the availability of new effective insecticides, continued vigilance is needed in Benin. Therefore, monitoring of resistance to these insecticides will continue to periodically update the Benin national insecticide resistance database and management plan.
Collapse
Affiliation(s)
- David Mahouton Zoungbédji
- Centre de Recherche Entomologique de Cotonou (CREC), 06 BP 2604, Cotonou, Benin.
- Faculté des Sciences et Techniques, Université d'Abomey-Calavi, Godomey, Benin.
| | - Germain Gil Padonou
- Centre de Recherche Entomologique de Cotonou (CREC), 06 BP 2604, Cotonou, Benin
- Faculté des Sciences et Techniques, Université d'Abomey-Calavi, Godomey, Benin
| | - Alphonse Keller Konkon
- Centre de Recherche Entomologique de Cotonou (CREC), 06 BP 2604, Cotonou, Benin
- Faculté des Sciences et Techniques, Université d'Abomey-Calavi, Godomey, Benin
| | - Steve Hougbe
- Centre de Recherche Entomologique de Cotonou (CREC), 06 BP 2604, Cotonou, Benin
| | - Hermann Sagbohan
- Centre de Recherche Entomologique de Cotonou (CREC), 06 BP 2604, Cotonou, Benin
- Faculté des Sciences et Techniques, Université d'Abomey-Calavi, Godomey, Benin
| | - Casimir Kpanou
- Centre de Recherche Entomologique de Cotonou (CREC), 06 BP 2604, Cotonou, Benin
| | | | - Razaki Ossè
- Centre de Recherche Entomologique de Cotonou (CREC), 06 BP 2604, Cotonou, Benin
| | - Rock Aïkpon
- Programme National de Lutte Contre Le Paludisme, Cotonou, Benin
| | | | - Aboubakar Sidick
- Centre de Recherche Entomologique de Cotonou (CREC), 06 BP 2604, Cotonou, Benin
| | - Bruno Akinro
- Centre de Recherche Entomologique de Cotonou (CREC), 06 BP 2604, Cotonou, Benin
| | - Saïd Chitou
- Centre de Recherche Entomologique de Cotonou (CREC), 06 BP 2604, Cotonou, Benin
| | - Virgile Gnanguénon
- US President's Malaria Initiative, US Agency for International Development, Cotonou, Benin
| | - Patrick Condo
- US President's Malaria Initiative, US Agency for International Development, Cotonou, Benin
| | - Ahmed Saadani Hassani
- US President's Malaria Initiative, US Centers for Disease Control and Prevention, Cotonou, Benin
| | - Daniel Impoinvil
- US President's Malaria Initiative, US Centers for Disease Control and Prevention, Atlanta, USA
| | - Martin Akogbéto
- Centre de Recherche Entomologique de Cotonou (CREC), 06 BP 2604, Cotonou, Benin
| |
Collapse
|
24
|
Chabi J, Seyoum A, Edi CVA, Kouassi BL, Yihdego Y, Oxborough R, Gbalegba CGN, Johns B, Desale S, Irish SR, Gimnig JE, Carlson JS, Yoshimizu M, Armistead JS, Belemvire A, Gerberg L, George K, Kirby M. Efficacy of partial spraying of SumiShield, Fludora Fusion and Actellic against wild populations of Anopheles gambiae s.l. in experimental huts in Tiassalé, Côte d'Ivoire. Sci Rep 2023; 13:11364. [PMID: 37443329 PMCID: PMC10344869 DOI: 10.1038/s41598-023-38583-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 07/11/2023] [Indexed: 07/15/2023] Open
Abstract
From August 2020 to June 2021, we assessed the efficacy of SumiShield 50WG (clothianidin), Fludora Fusion 56.25WP-SB (mixture of clothianidin and deltamethrin) and Actellic 300CS (pirimiphos-methyl) in experimental huts when partially sprayed against wild, free-flying populations of Anopheles gambiae s.l. in Tiassalé, Côte d'Ivoire. A one-month baseline period of mosquito collections was conducted to determine mosquito density and resting behavior in unsprayed huts, after which two treatments of partial indoor residual spraying (IRS) were tested: spraying only the top half of walls + ceilings or only the bottom half of walls + ceilings. These were compared to fully sprayed applications using the three IRS insecticide formulations, during twenty nights per month of collection for nine consecutive months. Mortality was assessed at the time of collection, and after a 24 h holding period (Actellic) or up to 120 h (SumiShield and Fludora Fusion). Unsprayed huts were used as a negative control. The efficacy of each partially sprayed treatment of each insecticide was compared monthly to the fully sprayed huts over the study period with a non-inferiority margin set at 10%. The residual efficacy of each insecticide sprayed was also monitored. A total of 2197 Anopheles gambiae s.l. were collected during the baseline and 17,835 during the 9-month period after spraying. During baseline, 42.6% were collected on the bottom half versus 24.3% collected on the top half of the walls, and 33.1% on the ceilings. Over the nine-month post treatment period, 73.5% were collected on the bottom half of the wall, 11.6% collected on the top half and 14.8% on the ceilings. For Actellic, the mean mortality over the nine-month period was 88.5% [87.7, 89.3] for fully sprayed huts, 88.3% [85.1, 91.4] for bottom half + ceiling sprayed walls and 80.8% [74.5, 87.1] for the top half + ceiling sprayed huts. For Fludora Fusion an overall mean mortality of 85.6% [81.5, 89.7] was recorded for fully sprayed huts, 83.7% [82.9, 84.5] for bottom half + ceiling sprayed huts and 81.3% [79.6, 83.0] for the top half + ceiling sprayed huts. For SumiShield, the overall mean mortality was 86.7% [85.3, 88.1] for fully sprayed huts, 85.6% [85.4, 85.8] for the bottom half + ceiling sprayed huts and 76.9% [76.6, 77.3] for the top half + ceiling sprayed huts. For Fludora Fusion, both iterations of partial IRS were non-inferior to full spraying. However, for SumiShield and Actellic, this was true only for the huts with the bottom half + ceiling, reflecting the resting site preference of the local vectors. The results of this study suggest that partial spraying may be a way to reduce the cost of IRS without substantially compromising IRS efficacy.
Collapse
Affiliation(s)
- Joseph Chabi
- U.S. President's Malaria Initiative VectorLink Project, Washington, DC, USA.
| | - Aklilu Seyoum
- U.S. President's Malaria Initiative VectorLink Project, Washington, DC, USA
| | - Constant V A Edi
- Swiss Center of Scientific Research in Côte d'Ivoire, Abidjan, Côte d'Ivoire
| | | | - Yemane Yihdego
- U.S. President's Malaria Initiative VectorLink Project, Washington, DC, USA
| | - Richard Oxborough
- U.S. President's Malaria Initiative VectorLink Project, Washington, DC, USA
| | | | - Ben Johns
- U.S. President's Malaria Initiative VectorLink Project, Washington, DC, USA
| | - Sameer Desale
- U.S. President's Malaria Initiative VectorLink Project, Washington, DC, USA
| | - Seth R Irish
- Entomology Branch, U.S. President's Malaria Initiative, U.S. Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - John E Gimnig
- Entomology Branch, U.S. President's Malaria Initiative, U.S. Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Jenny S Carlson
- U.S. President's Malaria Initiative, USAID, Washington, DC, USA
| | | | | | | | - Lilia Gerberg
- U.S. President's Malaria Initiative, USAID, Washington, DC, USA
| | - Kristen George
- U.S. President's Malaria Initiative, USAID, Washington, DC, USA
| | - Matthew Kirby
- U.S. President's Malaria Initiative VectorLink Project, Washington, DC, USA
| |
Collapse
|
25
|
Odjo EM, Salako AS, Padonou GG, Yovogan B, Adoha CJ, Adjottin B, Sominahouin AA, Sovi A, Osse R, Kpanou CD, Sagbohan HW, Djenontin A, Agbangla C, Akogbeto MC. What can be learned from the residual efficacy of three formulations of insecticides (pirimiphos-methyl, clothianidin and deltamethrin mixture, and clothianidin alone) in large-scale in community trial in North Benin, West Africa? Malar J 2023; 22:150. [PMID: 37158866 PMCID: PMC10165746 DOI: 10.1186/s12936-023-04572-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/24/2023] [Indexed: 05/10/2023] Open
Abstract
BACKGROUND In Alibori and Donga, two departments of high malaria incidence of Northern Benin, pirimiphos-methyl, mixture deltamethrin + clothianidin, as well as clothianidin were used at large scale for IRS. The present study aimed to assess the residual efficacy of these products. METHODS Immatures of Anopheles gambiae sensu lato (s.l.) collected in the communes of Kandi and Gogounou (Department of Alibori), Djougou and Copargo (Department of Donga) were reared until adulthood. Females aged 2-5 days were used for susceptibility tube tests following the WHO protocol. The tests were conducted with deltamethrin (0.05%), bendiocarb (0.1%), pirimiphos-methyl (0.25%) and clothianidin (2% weight per volume). For cone tests performed on cement and mud walls, the An. gambiae Kisumu susceptible strain was used. After the quality control of the IRS performed 1-week post-campaign, the evaluation of the residual activity of the different tested insecticides/mixture of insecticides was conducted on a monthly basis. RESULTS Over the three study years, deltamethrin resistance was observed in all the communes. With bendiocarb, resistance or possible resistance was observed. In 2019 and 2020, full susceptibility to pirimiphos-methyl was observed, while possible resistance to the same product was detected in 2021 in Djougou, Gogounou and Kandi. With clothianidin, full susceptibility was observed 4-6 days post-exposure. The residual activity lasted 4-5 months for pirimiphos-methyl, and 8-10 months for clothianidin and the mixture deltamethrin + clothianidin. A slightly better efficacy of the different tested products was observed on cement walls compared to the mud walls. CONCLUSION Overall, An. gambiae s.l. was fully susceptible to clothianidin, while resistance/possible resistance was observed the other tested insecticides. In addition, clothianidin-based insecticides showed a better residual activity compared to pirimiphos-methyl, showing thus their ability to provide an improved and prolonged control of pyrethroid resistant vectors.
Collapse
Affiliation(s)
- Esdras Mahoutin Odjo
- Centre de Recherche Entomologique de Cotonou, Cotonou, Benin.
- Faculté des Sciences et Techniques de l'Université d'Abomey-Calavi, Abomey-Calavi, Benin.
| | | | - Germain Gil Padonou
- Centre de Recherche Entomologique de Cotonou, Cotonou, Benin
- Faculté des Sciences et Techniques de l'Université d'Abomey-Calavi, Abomey-Calavi, Benin
| | - Boulais Yovogan
- Centre de Recherche Entomologique de Cotonou, Cotonou, Benin
- Faculté des Sciences et Techniques de l'Université d'Abomey-Calavi, Abomey-Calavi, Benin
| | - Constantin Jésukèdè Adoha
- Centre de Recherche Entomologique de Cotonou, Cotonou, Benin
- Faculté des Sciences et Techniques de l'Université d'Abomey-Calavi, Abomey-Calavi, Benin
| | - Bruno Adjottin
- Centre de Recherche Entomologique de Cotonou, Cotonou, Benin
- Faculté des Sciences et Techniques de l'Université d'Abomey-Calavi, Abomey-Calavi, Benin
| | | | - Arthur Sovi
- Centre de Recherche Entomologique de Cotonou, Cotonou, Benin
- Department of Disease Control, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
- Faculté d'Agronomie de l'Université de Parakou, Parakou, Benin
| | - Razaki Osse
- Centre de Recherche Entomologique de Cotonou, Cotonou, Benin
- Université Nationale d'Agriculture de Porto-Novo, Porto-Novo, Benin
| | - Casimir D Kpanou
- Centre de Recherche Entomologique de Cotonou, Cotonou, Benin
- Faculté des Sciences et Techniques de l'Université d'Abomey-Calavi, Abomey-Calavi, Benin
| | - Hermann W Sagbohan
- Centre de Recherche Entomologique de Cotonou, Cotonou, Benin
- Faculté des Sciences et Techniques de l'Université d'Abomey-Calavi, Abomey-Calavi, Benin
| | - Armel Djenontin
- Centre de Recherche Entomologique de Cotonou, Cotonou, Benin
- Faculté des Sciences et Techniques de l'Université d'Abomey-Calavi, Abomey-Calavi, Benin
| | - Clement Agbangla
- Centre de Recherche Entomologique de Cotonou, Cotonou, Benin
- Direction Générale de la Recherche Scientifique, Ministère de l'Enseignement Supérieur et de la Recherche Scientifique, Cotonou, Benin
| | | |
Collapse
|
26
|
Fouet C, Ashu F, Ambadiang M, Tchapga W, Wondji C, Kamdem C. Resistance to clothianidin reduces the efficacy of SumiShield ® 50WG, a neonicotinoid formulation for indoor residual spraying, against Anopheles gambiae. RESEARCH SQUARE 2023:rs.3.rs-2847231. [PMID: 37162950 PMCID: PMC10168466 DOI: 10.21203/rs.3.rs-2847231/v1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Chronic exposure of mosquito larvae to pesticide residues in agricultural areas is often associated with evolution of resistance to insecticides used for vector control. This presents a concern for the efficacy of clothianidin, an agricultural neonicotinoid qualified for Indoor Residual Spraying (IRS). Using standard bioassays, we tested if reduced susceptibility to clothianidin affects the efficacy of SumiShield® 50WG, one of the two newly approved formulations, which contains 50% clothianidin. We simultaneously monitored susceptibility to clothianidin and to SumiShield® 50WG, testing adults of Anopheles gambiae, An. coluzzii and Culex sp collected from urban, suburban and agricultural areas of Yaoundé. We found that the level of susceptibility to the active ingredient predicted the efficacy of SumiShield® 50WG. This formulation was very potent against populations that achieved 100% mortality within 72 h of exposure to a discriminating dose of clothianidin. By contrast, mortality leveled off at 75.4 ± 3.5% within 7 days of exposure to SumiShield® 50WG in An. gambiae adults collected from a farm where spraying of acetamiprid and imidacloprid is driving cross-resistance to clothianidin. These findings indicate that more potent formulations of clothianidin or different insecticides should be prioritized in areas where resistance is emerging.
Collapse
|
27
|
Ashu FA, Fouet C, Ambadiang MM, Penlap-Beng V, Kamdem C. Vegetable oil surfactants are synergists that can bias neonicotinoid susceptibility testing in adult mosquitoes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.18.537421. [PMID: 37131639 PMCID: PMC10153115 DOI: 10.1101/2023.04.18.537421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Background The standard operating procedure for testing the susceptibility of adult mosquitoes to clothianidin, a neonicotinoid, recommends using a vegetable oil ester as surfactant. However, it has not yet been determined if the surfactant is an inert ingredient or if it can act as a synergist and bias the test. Methodology/Principal Findings Using standard bioassays, we tested the synergistic effects of a vegetable oil surfactant on a spectrum of active ingredients including four neonicotinoids (acetamiprid, clothianidin, imidacloprid and thiamethoxam) and two pyrethroids (permethrin and deltamethrin). Three different formulations of linseed oil soap used as surfactant were far more effective than the standard insecticide synergist piperonyl butoxide in enhancing neonicotinoid activity in Anopheles mosquitoes. At the concentration used in the standard operating procedure (1% v/v), vegetable oil surfactants lead to more than 10-fold reduction in lethal concentrations, LC 50 and LC 99 , of clothianidin in a multi-resistant field population and in a susceptible strain of Anopheles gambiae . At 1% or 0.5% (v/v), the surfactant restored susceptibility to clothianidin, thiamethoxam and imidacloprid and increased mortality to acetamiprid from 43 ± 5.63% to 89 ± 3.25% (P<0.05) in resistant mosquitoes. By contrast, linseed oil soap had no effect on the level of resistance to permethrin and deltamethrin suggesting that the synergism of vegetable oil surfactants may be specific to neoniconoids. Conclusions/Significance Our findings indicate that vegetable oil surfactants are not inert ingredients in neonicotinoid formulations, and their synergistic effects undermine the ability of standard testing procedures to detect early stages of resistance.
Collapse
|
28
|
Ashu FA, Fouet C, Ambadiang MM, Penlap-Beng V, Kamdem C. Enhancing the efficacy of neonicotinoids against mosquitoes and overcoming resistance issues. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.18.537427. [PMID: 37131663 PMCID: PMC10153211 DOI: 10.1101/2023.04.18.537427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Background Neonicotinoids are potential alternatives for targeting pyrethroid-resistant mosquitoes, but their efficacy against malaria vector populations of Sub-Saharan Africa has yet to be investigated. Here we tested and compared the efficacy of four neonicotinoids alone or in combination with a synergist against two major vectors of Plasmodium . Results Using standard bioassays, we first assessed the lethal toxicity of three active ingredients against adults of two susceptible Anopheles strains and we determined discriminating doses for monitoring susceptibility in wild populations. We then tested the susceptibility of 5532 Anopheles mosquitoes collected from urban and rural areas of Yaoundé, Cameroon, to discriminating doses of acetamiprid, imidacloprid, clothianidin and thiamethoxam. We found that in comparison with some public health insecticides, neonicotinoids have high lethal concentration, LC 99 , reflecting their low toxicity to Anopheles mosquitoes. In addition to this reduced toxicity, resistance to the four neonicotinoids tested was detected in An. gambiae populations collected from agricultural areas where larvae are intensively exposed to crop-protection neonicotinoids. However, adults of another major vector that occurred in urbanized settings, An. coluzzii , were fully susceptible to neonicotinoids except acetamiprid for which 80% mortality was obtained within 72 h of insecticide exposure. Importantly, the cytochrome inhibitor, piperonyl butoxide (PBO), was very effective in enhancing the activity of clothianidin and acetamiprid providing opportunities to create potent neonicotinoid formulations against Anopheles . Conclusion These findings suggest that to successfully repurpose agricultural neonicotinoids for malaria vector control, it is essential to use formulations containing synergists such as PBO or surfactants to ensure optimal efficacy.
Collapse
|
29
|
Mbewe NJ, Kirby MJ, Snetselaar J, Kaaya RD, Small G, Azizi S, Ezekia K, Manunda B, Shirima B, Mosha FW, Rowland MW. A non-inferiority and GLP-compliant study of broflanilide IRS (VECTRON™ T500), a novel meta-diamide insecticide against Anopheles arabiensis. FRONTIERS IN TROPICAL DISEASES 2023. [DOI: 10.3389/fitd.2023.1126869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Management of insecticide resistance in vector control requires development and evaluation of active ingredients (AIs) with new modes of action. VECTRON™ T500 is a wettable powder formulation used for Indoor Residual Spraying (IRS) containing 50% of broflanilide as an AI. This study evaluated the efficacy of VECTRON™ T500 sprayed on blocks of different substrates (concrete, mud and plywood) against pyrethroid susceptible and resistant Anopheles gambiae sensu stricto (s.s.) strains, and wild An. arabiensis. It also assessed the efficacy of VECTRON™ T500 in experimental huts plastered with mud and concrete against wild free-flying An. arabiensis; and non-inferiority to a World Health Organization listed indoor residual spraying product Actellic® 300CS in terms of mortality in Moshi, Tanzania.Monthly cone bioassays on blocks and in experimental huts (against pyrethroid susceptible and resistant An. gambiae s.s.) were conducted over a 12-month period after spraying of VECTRON™ T500 and Actellic® CS300. Collections of wild free-flying An. arabiensis were also done in the sprayed huts. The main outcome for cone bioassays was mortality while for the wild hut trial collections, it was mortality and blood feeding inhibition. Grouped logistic regressions with random effects were used to analyse all dichotomous outcome variables from wild collections.The results showed residual efficacy of VECTRON™ T500 of at least 80% mortality was longest on concrete, followed by plywood and then mud substrates for all mosquito strains. Furthermore, VECTRON™ T500 significantly increased the likelihood of mortality (OR:> 1.37, P<0.001) in wild collections of An. arabiensis compared to Actellic® 300CS. Blood feeding was not significantly different in the wild collection of An. arabiensis between VECTRON™ T500 and Actellic® 300CS arms.These results show that VECTRON™ T500 is efficacious against pyrethroid-resistant An. gambiae s.s. and non-inferior to Actellic® 300CS. Therefore, it should be an important addition to the current arsenal of insecticides used for insecticide resistance management and vector control.
Collapse
|
30
|
Corbel V, Kont MD, Ahumada ML, Andréo L, Bayili B, Bayili K, Brooke B, Pinto Caballero JA, Lambert B, Churcher TS, Duchon S, Etang J, Flores AE, Gunasekaran K, Juntarajumnong W, Kirby M, Davies R, Lees RS, Lenhart A, Lima JBP, Martins AJ, Müller P, N’Guessan R, Ngufor C, Praulins G, Quinones M, Raghavendra K, Verma V, Rus AC, Samuel M, Ying KS, Sungvornyothin S, Uragayala S, Velayudhan R, Yadav RS. A new WHO bottle bioassay method to assess the susceptibility of mosquito vectors to public health insecticides: results from a WHO-coordinated multi-centre study. Parasit Vectors 2023; 16:21. [PMID: 36670470 PMCID: PMC9863080 DOI: 10.1186/s13071-022-05554-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/24/2022] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND The continued spread of insecticide resistance in mosquito vectors of malaria and arboviral diseases may lead to operational failure of insecticide-based interventions if resistance is not monitored and managed efficiently. This study aimed to develop and validate a new WHO glass bottle bioassay method as an alternative to the WHO standard insecticide tube test to monitor mosquito susceptibility to new public health insecticides with particular modes of action, physical properties or both. METHODS A multi-centre study involving 21 laboratories worldwide generated data on the susceptibility of seven mosquito species (Aedes aegypti, Aedes albopictus, Anopheles gambiae sensu stricto [An. gambiae s.s.], Anopheles funestus, Anopheles stephensi, Anopheles minimus and Anopheles albimanus) to seven public health insecticides in five classes, including pyrethroids (metofluthrin, prallethrin and transfluthrin), neonicotinoids (clothianidin), pyrroles (chlorfenapyr), juvenile hormone mimics (pyriproxyfen) and butenolides (flupyradifurone), in glass bottle assays. The data were analysed using a Bayesian binomial model to determine the concentration-response curves for each insecticide-species combination and to assess the within-bioassay variability in the susceptibility endpoints, namely the concentration that kills 50% and 99% of the test population (LC50 and LC99, respectively) and the concentration that inhibits oviposition of the test population by 50% and 99% (OI50 and OI99), to measure mortality and the sterilizing effect, respectively. RESULTS Overall, about 200,000 mosquitoes were tested with the new bottle bioassay, and LC50/LC99 or OI50/OI99 values were determined for all insecticides. Variation was seen between laboratories in estimates for some mosquito species-insecticide combinations, while other test results were consistent. The variation was generally greater with transfluthrin and flupyradifurone than with the other compounds tested, especially against Anopheles species. Overall, the mean within-bioassay variability in mortality and oviposition inhibition were < 10% for most mosquito species-insecticide combinations. CONCLUSION Our findings, based on the largest susceptibility dataset ever produced on mosquitoes, showed that the new WHO bottle bioassay is adequate for evaluating mosquito susceptibility to new and promising public health insecticides currently deployed for vector control. The datasets presented in this study have been used recently by the WHO to establish 17 new insecticide discriminating concentrations (DCs) for either Aedes spp. or Anopheles spp. The bottle bioassay and DCs can now be widely used to monitor baseline insecticide susceptibility of wild populations of vectors of malaria and Aedes-borne diseases worldwide.
Collapse
Affiliation(s)
- Vincent Corbel
- Institut de Recherche pour le Développement (IRD), MIVEGEC, CNRS, IRD, Université de Montpellier, 911 Av Agropolis, 34 394 Montpellier, France
- Laboratório de Fisiologia E Controle de Artrópodes Vetores (Laficave), Instituto Oswaldo Cruz (IOC), Fundacao Oswaldo Cruz (FIOCRUZ), Avenida Brasil, 4365 Manguinhos, Rio de Janeiro, RJ 21040-360 Brazil
| | - Mara D. Kont
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London (ICL), Norfolk Place, London, W2 1PG UK
| | - Martha Liliana Ahumada
- Grupo de Entomología, Instituto Nacional de Salud, Avenida calle 26 No. 51-20—Zona 6 CAN, 111321 Bogotá D.C., Colombia
| | - Laura Andréo
- Institut de Recherche pour le Développement (IRD), MIVEGEC, CNRS, IRD, Université de Montpellier, 911 Av Agropolis, 34 394 Montpellier, France
| | - Bazoma Bayili
- Institut de Recherche en Sciences de la Santé (IRSS), 399 Avenue de la liberte., 01 BP 545, Bobo-Dioulasso 01, Burkina Faso
| | - Koama Bayili
- Institut de Recherche en Sciences de la Santé (IRSS), 399 Avenue de la liberte., 01 BP 545, Bobo-Dioulasso 01, Burkina Faso
| | - Basil Brooke
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases/NHLS and Wits Research Institute for Malaria, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Jesús A. Pinto Caballero
- Laboratorio de Referencia Nacional de Entomología (LRNE), Centro Nacional de Salud Pública, Instituto Nacional de Salud, Av. Defensores del Morro 2268 (Ex Huaylas) Chorrillos, Lima 9-(511) 748-0000, Anexo 1548, Lima, Peru
| | - Ben Lambert
- Department of Mathematics, University of Exeter, North Park Rd, Exeter, EX4 4QF UK
| | - Thomas S. Churcher
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London (ICL), Norfolk Place, London, W2 1PG UK
| | - Stephane Duchon
- Institut de Recherche pour le Développement (IRD), MIVEGEC, CNRS, IRD, Université de Montpellier, 911 Av Agropolis, 34 394 Montpellier, France
| | - Josiane Etang
- Laboratoire de Recherche sur le Paludisme, Institut de Recherche de Yaoundé (IRY)–Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), BP 288, Yaoundé, Cameroun
- Department of Biological Sciences, Faculty of Medicine and Pharmaceutical Sciences, University of Douala, P.O. Box 2701, Douala, Cameroon
| | - Adriana E. Flores
- Facultad de Ciencias Biologicas, Laboratorio de Entomologia Medica, Universidad Autónoma de Nuevo León (UANL), Av. Universidad S/N Ciudad Universitaria, 66455 San Nicolas de los Garza, NL Mexico
| | - Kasinathan Gunasekaran
- Indian Council of Medical Research-Vector Control Research Centre (VCRC), Indira Nagar, Puducherry, 605006 India
| | - Waraporn Juntarajumnong
- Department of Entomology, Faculty of Agriculture, Kasetsart University (KU), 50 Ngam Wong Wan Rd., Lat Yao, Chatuchak, Bangkok, 10900 Thailand
| | - Matt Kirby
- Kilimanjaro Christian Medical Centre (KCMC), Kilimanjaro Christian Medical University College–The Pan African Malaria Vector Research Consortium (KCMUCo-PAMVERC), Off Sokoine Road, PO Box 2228, Moshi, Kilimanjaro Tanzania
- London School of Hygiene and Tropical Medicine (LSHTM), Keppel Street, London, WC1E 7HT UK
| | - Rachel Davies
- Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Pembroke Place, Liverpool, L3 5QA UK
| | - Rosemary Susan Lees
- Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Pembroke Place, Liverpool, L3 5QA UK
| | - Audrey Lenhart
- Entomology Branch, Centers for Disease Control and Prevention (CDC), 1600 Clifton Rd, Atlanta, GA 30329 USA
| | - José Bento Pereira Lima
- Laboratório de Fisiologia E Controle de Artrópodes Vetores (Laficave), Instituto Oswaldo Cruz (IOC), Fundacao Oswaldo Cruz (FIOCRUZ), Avenida Brasil, 4365 Manguinhos, Rio de Janeiro, RJ 21040-360 Brazil
| | - Ademir J. Martins
- Laboratório de Fisiologia E Controle de Artrópodes Vetores (Laficave), Instituto Oswaldo Cruz (IOC), Fundacao Oswaldo Cruz (FIOCRUZ), Avenida Brasil, 4365 Manguinhos, Rio de Janeiro, RJ 21040-360 Brazil
| | - Pie Müller
- Swiss Tropical and Public Health Institute (Swiss TPH), Kreuzstrasse 2, 4312 Allschwil, Switzerland
- University of Basel, Petersplatz 1, PO Box 4001, Basel, Switzerland
| | - Raphael N’Guessan
- London School of Hygiene and Tropical Medicine (LSHTM), Keppel Street, London, WC1E 7HT UK
- Face Ecole des Infirmiers, Institut Pierre Richet (IPR), Institut National de Santé Publique (INSP), 01 BP 1500 Bouaké, Côte d’Ivoire
| | - Corine Ngufor
- London School of Hygiene and Tropical Medicine (LSHTM), Keppel Street, London, WC1E 7HT UK
- Centres de Recherches Entomologiques de Cotonou (CREC), Ministère de la santé du Bénin, BP 2604, Cotonou, Benin
| | - Giorgio Praulins
- Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Pembroke Place, Liverpool, L3 5QA UK
| | - Martha Quinones
- Public Health Department, Faculty of Medicine, Universidad Nacional de Colombia, Bogota, Colombia
| | - Kamaraju Raghavendra
- Indian Council of Medical Research-National Institute of Malaria Research (NIMR), Sector-8, Dwarka, New Delhi 110077 India
| | - Vaishali Verma
- Indian Council of Medical Research-National Institute of Malaria Research (NIMR), Sector-8, Dwarka, New Delhi 110077 India
| | - Adanan Che Rus
- Vector Control Research Unit (VCRU), School of Biological Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - Michael Samuel
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases/NHLS and Wits Research Institute for Malaria, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Koou Sin Ying
- Environmental Health Institute (EHI), National Environmental Agency (NEA), 11 Biopolis Way, #06-05/08 Helios Block, Singapore, 138667 Singapore
| | - Sungsit Sungvornyothin
- Department of Medical Entomology, Faculty of Tropical Medicine, Mahidol University (MU), 420/6 Ratchawithi Road, Ratchathewi, Bangkok, 10400 Thailand
| | - Sreehari Uragayala
- Field Unit, Indian Council of Medical Research (ICMR)-National Institute of Malaria Research (NIMR), Poojanahalli, Kannamangla Post, Devanahalli Taluk, Bengaluru, 562110 India
| | - Raman Velayudhan
- Vector Control, Veterinary Public Health and Environment Unit, Department of Control of Neglected Tropical Diseases, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland
| | - Rajpal S. Yadav
- Vector Control, Veterinary Public Health and Environment Unit, Department of Control of Neglected Tropical Diseases, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland
| |
Collapse
|
31
|
Raghavendra K, Rahi M, Verma V, Velamuri PS, Kamaraju D, Baruah K, Chhibber-Goel J, Sharma A. Insecticide resistance status of malaria vectors in the malaria endemic states of India: implications and way forward for malaria elimination. Heliyon 2022; 8:e11902. [PMID: 36506377 PMCID: PMC9732330 DOI: 10.1016/j.heliyon.2022.e11902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 05/20/2022] [Accepted: 11/17/2022] [Indexed: 11/27/2022] Open
Abstract
Background In 2012, the World Health Organization (WHO) released the Global Plan for Insecticide Resistance Management in malaria vectors to stress the need to address insecticide resistance. In a prospective multi-centric study commissioned by the Indian Council of Medical Research (ICMR), we assessed the insecticide susceptibility status of the primary malaria vectors in India from 2017 through 2019. Methods The insecticide susceptibility status of the prevalent primary malaria vectors - An. culicifacies, An. fluviatilis, An. stephensi, An. minimus and An. baimaii and secondary malaria vectors - An. aconitus, An. annularis and An. philippinensis/nivepes from 328 villages in 79 districts of 15 states of India were assessed following the WHO method mainly to insecticides used in vector control, organochlorine (DDT), organophosphate (malathion), and other pyrethroids (alpha-cypermethrin, cyfluthrin, lambda-cyhalothrin and permethrin). The study sites were selected as suggested by the National Vector Borne Disease Control Programme. Results The primary malaria vector An. culicifacies showed resistance to DDT (50/50 districts including two districts of Northeastern India), malathion (27/44 districts), and deltamethrin (17/44 districts). This species was resistant to DDT alone in 19 districts, double resistant to DDT-malathion in 16 districts, double resistant to DDT-deltamethrin in 6 districts, and triple resistant to DDT-malathion-deltamethrin in 9 districts. An. minimus and An. baimaii were susceptible in Northeastern India while An. fluviatilis and the secondary malaria vector An. annularis was resistant to DDT in Jharkhand. Conclusion In this study we report that among the primary vectors An. culicifacies is predominantly resistant to multiple insecticides. Our data suggest that periodic monitoring of insecticide susceptibility is vital. The national malaria program can take proactive steps for insecticide resistance management to continue its push toward malaria elimination in India.
Collapse
Affiliation(s)
- Kamaraju Raghavendra
- ICMR-National Institute of Malaria Research (NIMR), Sector 8, Dwarka, Delhi, India
| | - Manju Rahi
- Indian Council of Medical Research (ICMR), Ramalingaswami Bhavan, New Delhi, India,Corresponding author.
| | - Vaishali Verma
- ICMR-National Institute of Malaria Research (NIMR), Sector 8, Dwarka, Delhi, India
| | | | - Divya Kamaraju
- Indian Council of Medical Research (ICMR), Ramalingaswami Bhavan, New Delhi, India
| | - Kalpana Baruah
- National Vector Borne Disease Control Programme, Shastri Park, New Delhi, India
| | - Jyoti Chhibber-Goel
- Molecular Medicine, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, India
| | - Amit Sharma
- ICMR-National Institute of Malaria Research (NIMR), Sector 8, Dwarka, Delhi, India,Molecular Medicine, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, India,Corresponding author.
| |
Collapse
|
32
|
Nkya TE, Fillinger U, Sangoro OP, Marubu R, Chanda E, Mutero CM. Six decades of malaria vector control in southern Africa: a review of the entomological evidence-base. Malar J 2022; 21:279. [PMID: 36184603 PMCID: PMC9526912 DOI: 10.1186/s12936-022-04292-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 09/05/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Countries in the southern Africa region have set targets for malaria elimination between 2020 and 2030. Malaria vector control is among the key strategies being implemented to achieve this goal. This paper critically reviews published entomological research over the past six decades in three frontline malaria elimination countries namely, Botswana Eswatini and Namibia, and three second-line malaria elimination countries including Mozambique, Zambia, and Zimbabwe. The objective of the review is to assess the current knowledge and highlight gaps that need further research attention to strengthen evidence-based decision-making toward malaria elimination. METHODS Publications were searched on the PubMed engine using search terms: "(malaria vector control OR vector control OR malaria vector*) AND (Botswana OR Swaziland OR Eswatini OR Zambia OR Zimbabwe OR Mozambique)". Opinions, perspectives, reports, commentaries, retrospective analysis on secondary data protocols, policy briefs, and reviews were excluded. RESULTS The search resulted in 718 publications with 145 eligible and included in this review for the six countries generated over six decades. The majority (139) were from three countries, namely Zambia (59) and Mozambique (48), and Zimbabwe (32) whilst scientific publications were relatively scanty from front-line malaria elimination countries, such as Namibia (2), Botswana (10) and Eswatini (4). Most of the research reported in the publications focused on vector bionomics generated mostly from Mozambique and Zambia, while information on insecticide resistance was mostly available from Mozambique. Extreme gaps were identified in reporting the impact of vector control interventions, both on vectors and disease outcomes. The literature is particularly scanty on important issues such as change of vector ecology over time and space, intervention costs, and uptake of control interventions as well as insecticide resistance. CONCLUSIONS The review reveals a dearth of information about malaria vectors and their control, most noticeable among the frontline elimination countries: Namibia, Eswatini and Botswana. It is of paramount importance that malaria vector research capacity and routine entomological monitoring and evaluation are strengthened to enhance decision-making, considering changing vector bionomics and insecticide resistance, among other determinants of malaria vector control.
Collapse
Affiliation(s)
- Theresia Estomih Nkya
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
- University of Dar es Salaam, Mbeya College of Health and Allied Sciences, Mbeya, Tanzania
| | - Ulrike Fillinger
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
| | | | - Rose Marubu
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
| | - Emmanuel Chanda
- World Health Organization-Regional Office for Africa, Brazzaville, Republic of Congo
| | - Clifford Maina Mutero
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
- School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
33
|
Bisanzio D, Ally M, Ali AS, Kitojo C, Serbantez N, Kisinza WN, Magesa S, Reithinger R. Modelling Insecticide Resistance of Malaria Vector Populations in Tanzania. Am J Trop Med Hyg 2022; 107:308-314. [PMID: 35895397 PMCID: PMC9393459 DOI: 10.4269/ajtmh.21-0262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 03/14/2022] [Indexed: 08/03/2023] Open
Abstract
Anopheline mosquito insecticide resistance is a major threat to malaria control efforts and ultimately countries' ability to eliminate malaria. Using publicly available and published data we conducted spatial analyses to document and model the geo-spatial distribution of Anopheles gambiae s.l. insecticide resistance in Tanzania at national, regional, district and sub-district levels for the 2011 - 2017 period. We document anopheline mosquito resistance to all four major insecticide classes, with overall mosquito mortality declining from 2011 to 2016, and mean reductions of 1.6%, 0.5%, 0.4%, and 9.9% observed for organophosphates, carbamates, organochlorines and pyrethroids, respectively. An insecticide resistance map modeled for 2017 predicted that anopheline vector mortality was still above the 90% susceptibility threshold for all insecticide classes, except for pyrethroids. Using the model's output we calculated that resistance to organophosphates, carbamates, organochlorines, and pyrethroids is expected to exist in 11.6%, 15.6%, 8.1%, and 19.5% of Tanzania's territory, respectively, with areas in the Lake Zone and eastern Tanzania particularly affected. The methodology to predictively model available insecticide resistance data can readily be updated annually, allowing policy makers and malaria program management staff to continuously adjust their vector control approaches and plans, and determine where specific insecticides from various classes should be used to maximize intervention effectiveness.
Collapse
Affiliation(s)
- Donal Bisanzio
- RTI International, Washington, District of Columbia
- School of Medicine, Nottingham University, Nottingham, United Kingdom
| | - Mohamed Ally
- National Malaria Control Program, Dar es Salaam, Tanzania
| | | | - Chonge Kitojo
- US President’s Malaria Initiative, US Agency for International Development, Dar es Salaam, Tanzania
| | - Naomi Serbantez
- US President’s Malaria Initiative, US Agency for International Development, Dar es Salaam, Tanzania
| | - William N. Kisinza
- National Institute for Medical Research, Amani Research Center, Tanzania
| | - Stephen Magesa
- National Institute for Medical Research, Amani Research Center, Tanzania
| | | |
Collapse
|
34
|
Zoh MG, Tutagata J, Fodjo BK, Mouhamadou CS, Sadia CG, McBeath J, Schmitt F, Horstmann S, David JP, Reynaud S. Exposure of Anopheles gambiae larvae to a sub-lethal dose of an agrochemical mixture induces tolerance to adulticides used in vector control management. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 248:106181. [PMID: 35504174 DOI: 10.1016/j.aquatox.2022.106181] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 04/19/2022] [Accepted: 04/24/2022] [Indexed: 06/14/2023]
Abstract
The heavy use of pesticides in agricultural areas often leads to the contamination of nearby mosquito larvae breeding sites. Exposure to complex mixtures of agrochemicals can affect the insecticide sensitivity of mosquito larvae. Our study objective was to determine whether agrochemical residues in Anopheline larval breeding sites can affect the tolerance of adults to commonly used adulticides. We focussed on Fludora® Fusion, a vector control insecticide formulation combining two insecticides (deltamethrin and clothianidin) with different modes of action. An. gambiae larvae were exposed to a sub-lethal dose of a mixture of agrochemical pesticides used in a highly active agricultural area on the Ivory Coast. Comparative bioassays with Fludora Fusion mixture and its two insecticide components (deltamethrin and clothianidin) were carried out between adult mosquitoes exposed or not to the agrochemicals at the larval stage. A transcriptomic analysis using RNA sequencing was then performed on larvae and adults to study the molecular mechanisms underlying the phenotypic changes observed. Bioassays revealed a significantly increased tolerance of adult females to clothianidin (2.5-fold) and Fludora Fusion mixture (2.2-fold) following larval exposure to agrochemicals. Significantly increased tolerance to deltamethrin was not observed suggesting that insecticide exposure affects the adult efficacy of the Fludora Fusion mixture mainly through mechanisms acting on clothianidin. Transcriptomic analysis revealed the potential of agrochemicals to induce various resistance mechanisms including cuticle proteins, detoxification action and altered insecticide sequestration. These results suggest that although the Fludora Fusion mixture is effective for adult vector control, its efficacy may be locally affected by the ecological context. The present study also suggests that, although the complex interactions between the use of agrochemicals and vector control insecticides are difficult to decipher in the field, they still must be considered in the context of insecticide resistance management programmes.
Collapse
Affiliation(s)
- Marius Gonse Zoh
- Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, 38000 Grenoble, France.
| | - Jordan Tutagata
- Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, 38000 Grenoble, France.
| | - Behi K Fodjo
- Centre Suisse de la Recherche Scientifique en Côte d'Ivoire, Côte d'Ivoire
| | | | | | | | | | | | - Jean-Philippe David
- Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, 38000 Grenoble, France.
| | - Stéphane Reynaud
- Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, 38000 Grenoble, France.
| |
Collapse
|
35
|
Lees RS, Armistead JS, Azizi S, Constant E, Fornadel C, Gimnig JE, Hemingway J, Impoinvil D, Irish SR, Kisinza W, Lissenden N, Mawejje HD, Messenger LA, Moore S, Ngufor C, Oxborough R, Protopopoff N, Ranson H, Small G, Wagman J, Weetman D, Zohdy S, Spiers A. Strain Characterisation for Measuring Bioefficacy of ITNs Treated with Two Active Ingredients (Dual-AI ITNs): Developing a Robust Protocol by Building Consensus. INSECTS 2022; 13:434. [PMID: 35621770 PMCID: PMC9144861 DOI: 10.3390/insects13050434] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 02/04/2023]
Abstract
Durability monitoring of insecticide-treated nets (ITNs) containing a pyrethroid in combination with a second active ingredient (AI) must be adapted so that the insecticidal bioefficacy of each AI can be monitored independently. An effective way to do this is to measure rapid knock down of a pyrethroid-susceptible strain of mosquitoes to assess the bioefficacy of the pyrethroid component and to use a pyrethroid-resistant strain to measure the bioefficacy of the second ingredient. To allow robust comparison of results across tests within and between test facilities, and over time, protocols for bioefficacy testing must include either characterisation of the resistant strain, standardisation of the mosquitoes used for bioassays, or a combination of the two. Through a series of virtual meetings, key stakeholders and practitioners explored different approaches to achieving these goals. Via an iterative process we decided on the preferred approach and produced a protocol consisting of characterising mosquitoes used for bioefficacy testing before and after a round of bioassays, for example at each time point in a durability monitoring study. We present the final protocol and justify our approach to establishing a standard methodology for durability monitoring of ITNs containing pyrethroid and a second AI.
Collapse
Affiliation(s)
- Rosemary S. Lees
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK; (J.H.); (N.L.); (H.R.); (D.W.)
- Innovation to Impact, Pembroke Place, Liverpool L3 5QA, UK;
| | - Jennifer S. Armistead
- U.S. President’s Malaria Initiative (PMI), U.S. Agency for International Development (USAID), Washington, DC 20547, USA;
| | - Salum Azizi
- KCMUCo-PAMVERC Test Facility, Department of Medical Parasitology and Entomology, Kilimanjaro Christian Medical University College, Moshi P.O. Box 2240, Tanzania;
| | - Edi Constant
- Centre Suisse de Recherches Scientifiques (CSRS), Abidjan 1303, Côte d’Ivoire;
| | - Christen Fornadel
- Innovative Vector Control Consortium (IVCC), Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK; (C.F.); (G.S.)
| | - John E. Gimnig
- Division of Parasitic Diseases and Malaria, Centers for Disease Control (CDC) and Prevention, Atlanta, GA 30329, USA; (J.E.G.); (D.I.); (S.Z.)
| | - Janet Hemingway
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK; (J.H.); (N.L.); (H.R.); (D.W.)
| | - Daniel Impoinvil
- Division of Parasitic Diseases and Malaria, Centers for Disease Control (CDC) and Prevention, Atlanta, GA 30329, USA; (J.E.G.); (D.I.); (S.Z.)
- U.S. President’s Malaria Initiative (PMI), Centers for Disease Control (CDC) and Prevention, Atlanta, GA 30329, USA;
| | - Seth R. Irish
- U.S. President’s Malaria Initiative (PMI), Centers for Disease Control (CDC) and Prevention, Atlanta, GA 30329, USA;
| | - William Kisinza
- Amani Research Centre, National Institute for Medical Research, Muheza P.O. Box 81, Tanzania;
| | - Natalie Lissenden
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK; (J.H.); (N.L.); (H.R.); (D.W.)
- Innovation to Impact, Pembroke Place, Liverpool L3 5QA, UK;
| | - Henry D. Mawejje
- Infectious Diseases Research Collaboration (IDRC), Plot 2C Nakasero Hill Road, Kampala P.O. Box 7475, Uganda;
| | - Louisa A. Messenger
- Department of Disease Control, Faculty of Infectious Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK; (L.A.M.); (C.N.); (N.P.)
| | - Sarah Moore
- Vector Control Product Testing Unit (VCPTU), Environmental Health and Ecological Science Department, Ifakara Health Institute, Bagamoyo P.O. Box 74, Tanzania;
- Vector Biology Unit, Department of Epidemiology and Public Health, Swiss Tropical & Public Health Institute, Kreuzstrasse 2, Allschwil, 4123 Basel, Switzerland
- Faculty of Science, University of Basel, Petersplatz 1, 4001 Basel, Switzerland
- Nelson Mandela African Institute of Science and Technology (NM-AIST), Tengeru P.O. Box 447, Tanzania
| | - Corine Ngufor
- Department of Disease Control, Faculty of Infectious Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK; (L.A.M.); (C.N.); (N.P.)
- Centre de Recherche Entomologique de Cotonou, Cotonou BP 2604, Benin
| | - Richard Oxborough
- PMI VectorLink Project, Abt Associates, 6130 Executive Blvd., Rockville, MD 20852, USA;
| | - Natacha Protopopoff
- Department of Disease Control, Faculty of Infectious Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK; (L.A.M.); (C.N.); (N.P.)
| | - Hilary Ranson
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK; (J.H.); (N.L.); (H.R.); (D.W.)
| | - Graham Small
- Innovative Vector Control Consortium (IVCC), Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK; (C.F.); (G.S.)
| | - Joseph Wagman
- Malaria and Neglected Tropical Diseases Program, PATH, Washington, DC 20001, USA;
| | - David Weetman
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK; (J.H.); (N.L.); (H.R.); (D.W.)
| | - Sarah Zohdy
- Division of Parasitic Diseases and Malaria, Centers for Disease Control (CDC) and Prevention, Atlanta, GA 30329, USA; (J.E.G.); (D.I.); (S.Z.)
- U.S. President’s Malaria Initiative (PMI), Centers for Disease Control (CDC) and Prevention, Atlanta, GA 30329, USA;
| | - Angus Spiers
- Innovation to Impact, Pembroke Place, Liverpool L3 5QA, UK;
| |
Collapse
|
36
|
Opiyo M, Sherrard-Smith E, Malheia A, Nhacolo A, Sacoor C, Nhacolo A, Máquina M, Jamu L, Cuamba N, Bassat Q, Saúte F, Paaijmans K. Household modifications after the indoor residual spraying (IRS) campaign in Mozambique reduce the actual spray coverage and efficacy. PLOS GLOBAL PUBLIC HEALTH 2022; 2:e0000227. [PMID: 36962153 PMCID: PMC10021718 DOI: 10.1371/journal.pgph.0000227] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 03/02/2022] [Indexed: 11/18/2022]
Abstract
Indoor residual spraying of insecticides (IRS) is a key malaria vector control strategy. Whilst human attitude towards IRS is monitored before or shortly after implementation, human activities leading to the modification of insecticide-treated walls post-IRS are not. This could inadvertently reduce the protective effects of IRS. We monitored the extent of modifications to the sprayed indoor wall surfaces by household owners for six months post-IRS campaigns in two districts targeted for malaria elimination in southern Mozambique. In parallel, we assessed building of any additional rooms onto compounds, and mosquito net use. We quantified the contribution of wall modifications, added rooms, prolonged spray campaigns, and product residual efficacies on actual IRS coverage and relative mosquito bite reduction, using a mechanistic approach. Household owners continually modified insecticide-treated walls and added rooms onto compounds. Household surveys in southern Mozambique showed frequent modification of indoor walls (0-17.2% of households modified rooms monthly) and/or added rooms (0-16.2% of households added rooms monthly). Actual IRS coverage reduced from an assumed 97% to just 39% in Matutuine, but only from 96% to 91% in Boane, translating to 43% and 5.8% estimated increases in relative daily mosquito bites per person. Integrating post-IRS knowledge, attitude, and practice (KAP) surveys into programmatic evaluations to capture these modification and construction trends can help improve IRS program efficiency and product assessment.
Collapse
Affiliation(s)
- Mercy Opiyo
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Ellie Sherrard-Smith
- MRC Centre for Global Infectious Disease Analysis, Imperial College London, London, United Kingdom
| | - Arlindo Malheia
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Arsenio Nhacolo
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Charfudin Sacoor
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Ariel Nhacolo
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Mara Máquina
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Luis Jamu
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Nelson Cuamba
- National Malaria Control Programme of Mozambique (NMCP), Ministry of Health, Maputo, Mozambique
- PMI VectorLink Project, Abt Associates Inc., Maputo, Mozambique
| | - Quique Bassat
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
- ICREA, Barcelona, Spain
- Pediatrics Department, Hospital Sant Joan de Déu, Universitat de Barcelona, Esplugues, Barcelona, Spain
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Francisco Saúte
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Krijn Paaijmans
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
- The Biodesign Center for Immunotherapy, Vaccines, and Virotherapy, Arizona State University, Tempe, Arizona, United States of America
- Simon A. Levin Mathematical, Computational and Modeling Sciences Center, Arizona State University, Tempe, Arizona, United States of America
| |
Collapse
|
37
|
Parsons GJI, Lees RS, Balaska S, Vontas J. A Practical Insecticide Resistance Monitoring Bioassay for Orally Ingested Dinotefuran in Anopheles Malaria Vectors. INSECTS 2022; 13:insects13040311. [PMID: 35447753 PMCID: PMC9025404 DOI: 10.3390/insects13040311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/11/2022] [Accepted: 03/17/2022] [Indexed: 01/27/2023]
Abstract
Attractive Toxic Sugar Baits (ATSB) deployed outdoors are likely to be particularly effective against outdoor biting mosquitoes and, if they contain insecticides with a different mode of action, mosquitoes resistant to pyrethroids. One such ATSB based on the neonicotinoid dinotefuran is currently under evaluation in Africa. As with any insecticide-based intervention, it will be important to monitor for the possible emergence of vector resistance. While methods for detecting resistance to insecticides via tarsal contact are recommended by the World Health Organization (WHO), these may not be applicable for orally ingested insecticides. Here, a new ingestion assay, appropriate for a controlled laboratory setting, is described using fluorescein sodium salt (uranine) as a feeding marker. Conventional topical application bioassays, more appropriate for routine deployment, have also been used to apply dinotefuran to the thorax of adult Anopheles mosquitoes with an organic carrier to bypass lipid cuticle barriers. The two methods were compared by establishing lethal doses (LD) in several Anopheles strains. The similarity of the ratios of susceptibility to dinotefuran between pairs of pyrethroid susceptible and resistant strains validates topical application as a suitable, more practical and field applicable method for monitoring for the emergence of resistance to orally ingested dinotefuran. A discriminating dose is proposed, which will be further validated against field populations and used to routinely monitor for the emergence of resistance alongside ATSB trials.
Collapse
Affiliation(s)
- George John Ian Parsons
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK;
| | - Rosemary Susan Lees
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK;
- Innovation to Impact, Pembroke Place, Liverpool L3 5QA, UK
- Correspondence:
| | - Sofia Balaska
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 73100 Heraklion, Greece; (S.B.); (J.V.)
- Department of Biology, University of Crete, Vassilika Vouton, 71409 Heraklion, Greece
| | - John Vontas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 73100 Heraklion, Greece; (S.B.); (J.V.)
- Pesticide Science Laboratory, Department of Crop Science, Agricultural University of Athens, 11855 Athens, Greece
| |
Collapse
|
38
|
Tungu PK, Rowland MW, Messenger LA, Small GJ, Bradley J, Snetselaar J, Kirby MJ, Mbewe NJ. Large-scale (Phase III) evaluation of broflanilide 50WP (VECTRON™ T500) for indoor residual spraying for malaria vector control in Northeast Tanzania: study protocol for a two-arm, non-inferiority, cluster-randomised community trial. BMC Infect Dis 2022; 22:171. [PMID: 35189830 PMCID: PMC8862469 DOI: 10.1186/s12879-022-07138-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 02/09/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Indoor residual spraying (IRS) is a major method of malaria vector control across sub-Saharan Africa. Effective control is being undermined by the rapid spread of insecticide resistance. There is major investment in development of new insecticides for IRS that possess novel modes of action, long residual activity, low mammalian toxicity and minimal cross-resistance. VECTRON™ T500, a new IRS product containing the active ingredient broflanilide as a 50% wettable powder (WP), has been shown to be efficacious against pyrethroid susceptible and resistant vector species on mud and concrete substrates in experimental hut (Phase II) trials. METHODS A two-arm non-inferiority cluster randomized controlled trial (Phase III) will be undertaken in Muheza District, Tanga Region, Tanzania. VECTRON™ T500 will be compared to the IRS product Fludora® Fusion (clothianidin 50% WP + deltamethrin 6.25% WP). The predominant malaria vectors in the study area are pyrethroid-resistant Anopheles gambiae s.s., An. arabiensis and An. funestus s.s. Sixteen village clusters will be pair-matched on baseline vector densities and allocated to reference and intervention arms. Consenting households in the intervention arm will be sprayed with VECTRON™ T500 and those in the reference arm will be sprayed with Fludora® Fusion. Each month, CDC light traps will collect mosquitoes to estimate changes in vector density, indoor biting, sporozoite and entomological inoculation rates (EIR). Susceptibility to IRS active ingredients will be assessed using World Health Organisation (WHO) bottle bioassays. Target site and metabolic resistance mechanisms will be characterised among Anopheles field populations from both trial arms. Residual efficacy of both IRS products will be monitored for 12 months post intervention. Questionnaire and focus group discussions will explore factors that influence adherence, adverse effects and benefits of IRS. DISCUSSION This protocol describes a large-scale non-inferiority evaluation of a novel IRS product to reduce the density and EIR of pyrethroid-resistant Anopheles vectors. If VECTRON™ T500 proves non-inferior to Fludora® Fusion, it will be considered as an additional vector control product for malaria prevention and insecticide resistance management. TRIAL REGISTRATION ClinicalTrials.gov, NCT05150808, registered on 26 November 2021. Retrospectively registered.
Collapse
Affiliation(s)
- Patrick K Tungu
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, UK.,National Institute for Medical Research, Amani Research Centre, Muheza, Tanzania
| | - Mark W Rowland
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, UK.
| | - Louisa A Messenger
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, UK
| | | | - John Bradley
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, UK
| | - Janneke Snetselaar
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, UK.,Innovative Vector Control Consortium, Liverpool, UK
| | - Matthew J Kirby
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, UK.,Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - Njelembo J Mbewe
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, UK.,Kilimanjaro Christian Medical University College, Moshi, Tanzania
| |
Collapse
|
39
|
Demissew A, Animut A, Kibret S, Tsegaye A, Hawaria D, Degefa T, Getachew H, Lee MC, Yan G, Yewhalaw D. Evidence of pyrethroid resistance in Anopheles amharicus and Anopheles arabiensis from Arjo-Didessa irrigation scheme, Ethiopia. PLoS One 2022; 17:e0261713. [PMID: 35030201 PMCID: PMC8759678 DOI: 10.1371/journal.pone.0261713] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/08/2021] [Indexed: 11/18/2022] Open
Abstract
Background Indoor residual spraying and insecticide-treated nets are among the key malaria control intervention tools. However, their efficacy is declining due to the development and spread of insecticide resistant vectors. In Ethiopia, several studies reported resistance of An. arabiensis to multiple insecticide classes. However, such data is scarce in irrigated areas of the country where insecticides, pesticides and herbicides are intensively used. Susceptibility of An. gambiae s.l. to existing and new insecticides and resistance mechanisms were assessed in Arjo-Didessa sugarcane plantation area, southwestern Ethiopia. Methods Adult An. gambiae s.l. reared from larval/pupal collections of Arjo-Didessa sugarcane irrigation area and its surrounding were tested for their susceptibility to selected insecticides. Randomly selected An. gambiae s.l. (dead and survived) samples were identified to species using species-specific polymerase chain reaction (PCR) and were further analyzed for the presence of knockdown resistance (kdr) alleles using allele-specific PCR. Results Among the 214 An. gambiae s.l. samples analyzed by PCR, 89% (n = 190) were An. amharicus and 9% (n = 20) were An. arabiensis. Mortality rates of the An. gambiae s.l. exposed to deltamethrin and alphacypermethrin were 85% and 86.8%, respectively. On the other hand, mortalities against pirmiphos-methyl, bendiocarb, propoxur and clothianidin were 100%, 99%, 100% and 100%, respectively. Of those sub-samples (An. amharicus and An. arabiensis) examined for presence of kdr gene, none of them were found to carry the L1014F (West African) allelic mutation. Conclusion Anopheles amharicus and An. arabiensis from Arjo-Didessa sugarcane irrigation area were resistant to pyrethroids which might be synergized by extensive use of agricultural chemicals. Occurrence of pyrethroid resistant malaria vectors could challenge the ongoing malaria control and elimination program in the area unless resistance management strategies are implemented. Given the resistance of An. amharicus to pyrethroids, its behavior and vectorial capacity should be further investigated.
Collapse
Affiliation(s)
- Assalif Demissew
- Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Ambo University, Ambo, Ethiopia
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
- * E-mail: ,
| | - Abebe Animut
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Solomon Kibret
- Program in Public Health, University of California at Irvine, Irvine, California, United States of America
| | - Arega Tsegaye
- Department of Biology, College of Natural Science, Jimma University, Jimma, Ethiopia
- Tropical and Infectious Diseases Research Center (TIDRC), Jimma University, Jimma, Ethiopia
| | - Dawit Hawaria
- Tropical and Infectious Diseases Research Center (TIDRC), Jimma University, Jimma, Ethiopia
- Yirgalem Hospital Medical College, Yirgalem, Ethiopia
- School of Medical Laboratory Sciences, Faculty of Health Sciences, Jimma University, Jimma, Ethiopia
| | - Teshome Degefa
- Tropical and Infectious Diseases Research Center (TIDRC), Jimma University, Jimma, Ethiopia
- School of Medical Laboratory Sciences, Faculty of Health Sciences, Jimma University, Jimma, Ethiopia
| | - Hallelujah Getachew
- Tropical and Infectious Diseases Research Center (TIDRC), Jimma University, Jimma, Ethiopia
- School of Medical Laboratory Sciences, Faculty of Health Sciences, Jimma University, Jimma, Ethiopia
- Department of Medical Laboratory Sciences, Arbaminch College of Health Sciences, Arba Minch, Ethiopia
| | - Ming-Chieh Lee
- Program in Public Health, University of California at Irvine, Irvine, California, United States of America
| | - Guiyun Yan
- Program in Public Health, University of California at Irvine, Irvine, California, United States of America
| | - Delenasaw Yewhalaw
- Tropical and Infectious Diseases Research Center (TIDRC), Jimma University, Jimma, Ethiopia
- School of Medical Laboratory Sciences, Faculty of Health Sciences, Jimma University, Jimma, Ethiopia
| |
Collapse
|
40
|
Lees RS, Praulins G, Lissenden N, South A, Carson J, Brown F, Lucas J, Malone D. The Residual Efficacy of SumiShield™ 50WG and K-Othrine® WG250 IRS Formulations Applied to Different Building Materials against Anopheles and Aedes Mosquitoes. INSECTS 2022; 13:insects13020112. [PMID: 35206686 PMCID: PMC8877416 DOI: 10.3390/insects13020112] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/07/2022] [Accepted: 01/09/2022] [Indexed: 12/04/2022]
Abstract
Insecticides with novel modes of action are required to complement the pyrethroids currently relied upon for controlling malaria vectors. One example of this is the neonicotinoid clothianidin, the active ingredient in the indoor residual spray (IRS) SumiShield™ 50WG. In a preliminary experiment, the mortality of insecticide-susceptible and resistant An. gambiae adults exposed to filter papers treated with this IRS product reached 80% by 3 days post-exposure and 100% by 6 days post-exposure. Next, cement, wood, and mud tiles were treated with the clothianidin or a deltamethrin-based IRS formulation (K-Othrine WG250). Insecticide resistant and susceptible Anopheles and Aedes were exposed to these surfaces periodically for up to 18 months. Pyrethroid resistant Cx. quinquefasciatus was also exposed at 9 months. Between exposures, tiles were stored in heat and relative humidity conditions reflecting those found in the field. On these surfaces, the clothianidin IRS was effective at killing both susceptible and resistant An. gambiae for 18 months post-treatment, while mortality amongst the resistant strains when exposed to the deltamethrin IRS was not above that of the negative control. Greater efficacy of clothianidin was also demonstrated against insecticide resistant strains of An. funestus compared to deltamethrin, though the potency was lower when compared with An. gambiae. In general, higher efficacy of the clothianidin IRS was observed on cement and mud compared to wood, though it demonstrated poorer residual activity against Ae.aegypti and Cx. quinquefasciatus.
Collapse
Affiliation(s)
- Rosemary Susan Lees
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK; (G.P.); (N.L.); (A.S.); (J.C.); (F.B.)
- Liverpool Insect Testing Establishment (LITE), Liverpool School of Tropical Medicine, 1 Daulby Street, Liverpool L7 8XZ, UK
- Correspondence: ; Tel.: +44-(0)-151-705-3344
| | - Giorgio Praulins
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK; (G.P.); (N.L.); (A.S.); (J.C.); (F.B.)
| | - Natalie Lissenden
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK; (G.P.); (N.L.); (A.S.); (J.C.); (F.B.)
| | - Andy South
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK; (G.P.); (N.L.); (A.S.); (J.C.); (F.B.)
| | - Jessica Carson
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK; (G.P.); (N.L.); (A.S.); (J.C.); (F.B.)
- Liverpool Insect Testing Establishment (LITE), Liverpool School of Tropical Medicine, 1 Daulby Street, Liverpool L7 8XZ, UK
| | - Faye Brown
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK; (G.P.); (N.L.); (A.S.); (J.C.); (F.B.)
- Institute of Infection, Veterinary and Ecological Sciences, Department of Livestock and One Health, The University of Liverpool, Liverpool L69 3BX, UK
| | - John Lucas
- Environmental Health Division, Sumitomo Chemical (UK) plc, 200 Shepherds Bush Rd, London W6 7NL, UK;
| | - David Malone
- Innovative Vector Control Consortium (IVCC), Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK;
- Bill & Melinda Gates Foundation, 500 5th Ave N, Seattle, WA 98109, USA
| |
Collapse
|
41
|
Epstein A, Maiteki-Sebuguzi C, Namuganga JF, Nankabirwa JI, Gonahasa S, Opigo J, Staedke SG, Rutazaana D, Arinaitwe E, Kamya MR, Bhatt S, Rodríguez-Barraquer I, Greenhouse B, Donnelly MJ, Dorsey G. Resurgence of malaria in Uganda despite sustained indoor residual spraying and repeated long lasting insecticidal net distributions. PLOS GLOBAL PUBLIC HEALTH 2022; 2:e0000676. [PMID: 36962736 PMCID: PMC10022262 DOI: 10.1371/journal.pgph.0000676] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 07/27/2022] [Indexed: 11/19/2022]
Abstract
Five years of sustained indoor residual spraying (IRS) of insecticide from 2014 to 2019, first using a carbamate followed by an organophosphate, was associated with a marked reduction in the incidence of malaria in five districts of Uganda. We assessed changes in malaria incidence over an additional 21 months, corresponding to a change in IRS formulations using clothianidin with and without deltamethrin. Using enhanced health facility surveillance data, our objectives were to 1) estimate the impact of IRS on monthly malaria case counts at five surveillance sites over a 6.75 year period, and 2) compare monthly case counts at five facilities receiving IRS to ten facilities in neighboring districts not receiving IRS. For both objectives, we specified mixed effects negative binomial regression models with random intercepts for surveillance site adjusting for rainfall, season, care-seeking, and malaria diagnostic. Following the implementation of IRS, cases were 84% lower in years 4-5 (adjusted incidence rate ratio [aIRR] = 0.16, 95% CI 0.12-0.22), 43% lower in year 6 (aIRR = 0.57, 95% CI 0.44-0.74), and 39% higher in the first 9 months of year 7 (aIRR = 1.39, 95% CI 0.97-1.97) compared to pre-IRS levels. Cases were 67% lower in IRS sites than non-IRS sites in year 6 (aIRR = 0.33, 95% CI 0.17-0.63) but 38% higher in the first 9 months of year 7 (aIRR = 1.38, 95% CI 0.90-2.11). We observed a resurgence in malaria to pre-IRS levels despite sustained IRS. The timing of this resurgence corresponded to a change of active ingredient. Further research is needed to determine causality.
Collapse
Affiliation(s)
- Adrienne Epstein
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, United States of America
| | | | | | - Joaniter I Nankabirwa
- Infectious Diseases Research Collaboration, Kampala, Uganda
- College of Health Sciences, Makerere University, Kampala, Uganda
| | | | - Jimmy Opigo
- National Malaria Control Division, Ministry of Health, Kampala, Uganda
| | - Sarah G Staedke
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Damian Rutazaana
- National Malaria Control Division, Ministry of Health, Kampala, Uganda
| | | | - Moses R Kamya
- Infectious Diseases Research Collaboration, Kampala, Uganda
- College of Health Sciences, Makerere University, Kampala, Uganda
| | - Samir Bhatt
- Department of Infectious Disease Epidemiology, Imperial College, St Mary's Hospital, London, United Kingdom
- Department of Public Health, Section of Epidemiology, University of Copenhagen, Copenhagen, Denmark
| | - Isabel Rodríguez-Barraquer
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Bryan Greenhouse
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Martin J Donnelly
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Grant Dorsey
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| |
Collapse
|
42
|
Zhu X, Hu CT, Erriah B, Vogt-Maranto L, Yang J, Yang Y, Qiu M, Fellah N, Tuckerman ME, Ward MD, Kahr B. Imidacloprid Crystal Polymorphs for Disease Vector Control and Pollinator Protection. J Am Chem Soc 2021; 143:17144-17152. [PMID: 34634905 DOI: 10.1021/jacs.1c07610] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Imidacloprid, the world's leading insecticide, has been approved recently for controlling infectious disease vectors; yet, in agricultural settings, it has been implicated in the frightening decline of pollinators. This argues for strategies that sharply reduce the environmental impact of imidacloprid. When used as a contact insecticide, the effectiveness of imidacloprid relies on physical contact between its crystal surfaces and insect tarsi. Herein, seven new imidacloprid crystal polymorphs are reported, adding to two known forms. Anticipating that insect uptake of imidacloprid molecules would depend on the respective free energies of crystal polymorph surfaces, measurements of insect knockdown times for the metastable crystal forms were as much as nine times faster acting than the commercial form against Aedes, Anopheles, and Culex mosquitoes as well as Drosophila (fruit flies). These results suggest that replacement of commercially available imidacloprid crystals (a.k.a. Form I) in space-spraying with any one of three new polymorphs, Forms IV, VI, IX, would suppress vector-borne disease transmission while reducing environmental exposure and harm to nontarget organisms.
Collapse
Affiliation(s)
- Xiaolong Zhu
- Department of Chemistry and Molecular Design Institute, New York University, New York, New York 10003 United States
| | - Chunhua T Hu
- Department of Chemistry and Molecular Design Institute, New York University, New York, New York 10003 United States
| | - Bryan Erriah
- Department of Chemistry and Molecular Design Institute, New York University, New York, New York 10003 United States
| | - Leslie Vogt-Maranto
- Department of Chemistry, New York University, New York, New York 10003 United States
| | - Jingxiang Yang
- Department of Chemistry and Molecular Design Institute, New York University, New York, New York 10003 United States
| | - Yongfan Yang
- Department of Chemistry and Molecular Design Institute, New York University, New York, New York 10003 United States
| | - Mengdi Qiu
- Department of Chemistry and Molecular Design Institute, New York University, New York, New York 10003 United States
| | - Noalle Fellah
- Department of Chemistry and Molecular Design Institute, New York University, New York, New York 10003 United States
| | - Mark E Tuckerman
- Department of Chemistry and Molecular Design Institute, New York University, New York, New York 10003 United States
- Courant Institute of Mathematical Sciences, New York University, New York, New York 10012, United States
- NYU-ECNU Center for Computational Chemistry, New York University Shanghai, Shanghai 200062, China
| | - Michael D Ward
- Department of Chemistry and Molecular Design Institute, New York University, New York, New York 10003 United States
| | - Bart Kahr
- Department of Chemistry and Molecular Design Institute, New York University, New York, New York 10003 United States
| |
Collapse
|
43
|
Yokoly FN, Zahouli JBZ, Small G, Ouattara AF, Opoku M, de Souza DK, Koudou BG. Assessing Anopheles vector species diversity and transmission of malaria in four health districts along the borders of Côte d'Ivoire. Malar J 2021; 20:409. [PMID: 34663359 PMCID: PMC8524949 DOI: 10.1186/s12936-021-03938-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 10/01/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Although malaria and Anopheles mosquito vectors are highly prevalent in Côte d'Ivoire, limited data are available to help understand the malaria vector density and transmission dynamics in areas bordering the country. To address this gap, the Anopheles mosquito species diversity, the members of the Anopheles gambiae complex and the transmission of malaria were assessed in four health districts along the borders of Côte d'Ivoire. METHODS From July 2016 through December 2016 and July 2017 through December 2017, adult Anopheles mosquitoes were collected in four health districts of Côte d'Ivoire (Aboisso, Bloléquin, Odienné and Ouangolodougou) using standardized window exit trap (WET) and pyrethrum knockdown spray collection (PSC) methods. The collected mosquitoes were identified morphologically at species level and the members of the An. gambiae complex were separated using short interspersed nuclear element-based polymerase chain reaction (SINE-PCR). Anopheles gambiae sensu lato (s.l.), Anopheles funestus s.l. and Anopheles nili specimens were analysed for malaria Plasmodium parasite detection using the cytochrome oxidase I gene (COX-I), and malaria prevalence among human population through local Ministry of Health (MoH) statistical yearbooks. RESULTS A total of 281 female Anopheles were collected in Aboisso, 754 in Bloléquin, 1319 in Odienné and 2443 in Ouangolodougou. Seven Anopheles species were recorded including An. gambiae s.l. (94.8-99.1%) as the main vector, followed by An. funestus s.l. (0.4-4.3%) and An. nili (0-0.7%). Among An. gambiae s.l., Anopheles coluzzii represented the predominant species in Aboisso (89.2%) and Bloléquin (92.2%), while An. gambiae sensu stricto (s.s.) was the major species in Odienné (96.0%) and Ouangolodougou (94.2%). The Plasmodium sporozoite infection rate in An. gambiae s.l. was highest in Odienné (11.0%; n = 100) followed by Bloléquin (7.8%, n = 115), Aboisso (3.1%; n = 65) and Ouangologoudou (2.5%; n = 120). In An. funestus s.l., Plasmodium falciparum sporozoite infection rate was estimated at 6.2% (n = 32) in Bloléquin, 8.7% (n = 23) in Odienné. No An. funestus s.l. specimens were found infected with P. falciparum sporozoite infection in Ouangolodougou and Aboisso. No P. falciparum sporozoite was detected in An. nili specimens in the four health districts. Among the local human populations, malaria incidence was higher in Odienné (39.7%; n = 45,376) and Bloléquin (37.6%; n = 150,205) compared to that in Ouangolodougou (18.3%; n = 131,629) and Aboisso (19.7%; n = 364,585). CONCLUSION Anopheles vector species diversity, abundance and Plasmodium sporozoite infection were high within the health districts along the borders of the country of Côte d'Ivoire, resulting in high malaria transmission among the local populations. Anopheles gambiae s.l. and An. funestus s.l. were found to be highly infected with Plasmodium in the health districts of Bloléquin and Odienné where higher malaria incidence was observed than the other districts. This study provides important information that can be used to guide Côte d'Ivoire National Malaria Control Programme for vector control decision-making, mainly in districts that are at the country borders.
Collapse
Affiliation(s)
- Firmain N Yokoly
- Unité de Formation et de Recherche Sciences de la Nature, Université Nangui Abrogoua, Abidjan, Côte d'Ivoire. .,Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Abidjan, Côte d'Ivoire.
| | - Julien B Z Zahouli
- Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Abidjan, Côte d'Ivoire.,Centre d'Entomologie Médicale et Vétérinaire, Université Alassane Ouattara, Bouaké, Côte d'Ivoire
| | - Graham Small
- Innovative Vector Control Consortium (IVCC), Pembroke Place, Liverpool, L3 5QA, UK
| | - Allassane F Ouattara
- Unité de Formation et de Recherche Sciences de la Nature, Université Nangui Abrogoua, Abidjan, Côte d'Ivoire.,Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Abidjan, Côte d'Ivoire
| | - Millicent Opoku
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana.,European & Developing Countries Clinical Trials Partnership, Cape Town, South Africa
| | - Dziedzom K de Souza
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana
| | - Benjamin G Koudou
- Unité de Formation et de Recherche Sciences de la Nature, Université Nangui Abrogoua, Abidjan, Côte d'Ivoire.,Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Abidjan, Côte d'Ivoire
| |
Collapse
|
44
|
Zoh MG, Bonneville JM, Tutagata J, Laporte F, Fodjo BK, Mouhamadou CS, Sadia CG, McBeath J, Schmitt F, Horstmann S, Reynaud S, David JP. Experimental evolution supports the potential of neonicotinoid-pyrethroid combination for managing insecticide resistance in malaria vectors. Sci Rep 2021; 11:19501. [PMID: 34593941 PMCID: PMC8484614 DOI: 10.1038/s41598-021-99061-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/20/2021] [Indexed: 11/22/2022] Open
Abstract
The introduction of neonicotinoids for managing insecticide resistance in mosquitoes is of high interest as they interact with a biochemical target not previously used in public health. In this concern, Bayer developed a combination of the neonicotinoid clothianidin and the pyrethroid deltamethrin (brand name Fludora Fusion) as a new vector control tool. Although this combination proved to be efficient against pyrethroid-resistant mosquitoes, its ability to prevent the selection of pyrethroid and neonicotinoid resistance alleles was not investigated. In this context, the objective of this work was to study the dynamics and the molecular mechanisms of resistance of An. gambiae to the separated or combined components of this combination. A field-derived An. gambiae line carrying resistance alleles to multiple insecticides at low frequencies was used as a starting for 33 successive generations of controlled selection. Resistance levels to each insecticide and target site mutation frequencies were monitored throughout the selection process. Cross resistance to other public health insecticides were also investigated. RNA-seq was used to compare gene transcription variations and polymorphisms across all lines. This study confirmed the potential of this insecticide combination to impair the selection of resistance as compared to its two separated components. Deltamethrin selection led to the rapid enrichment of the kdr L1014F target-site mutation. Clothianidin selection led to the over-transcription of multiple cytochrome P450s including some showing high homology with those conferring neonicotinoid resistance in other insects. A strong selection signature associated with clothianidin selection was also observed on a P450 gene cluster previously associated with resistance. Within this cluster, the gene CYP6M1 showed the highest selection signature together with a transcription profile supporting a role in clothianidin resistance. Modelling the impact of point mutations selected by clothianidin on CYP6M1 protein structure showed that selection retained a protein variant with a modified active site potentially enhancing clothianidin metabolism. In the context of the recent deployment of neonicotinoids for mosquito control and their frequent usage in agriculture, the present study highlights the benefit of combining them with other insecticides for preventing the selection of resistance and sustaining vector control activities.
Collapse
Affiliation(s)
- Marius Gonse Zoh
- Laboratoire d'Ecologie Alpine (LECA) UMR 5553 CNRS Grenoble-Alpes University, Grenoble, France
| | - Jean-Marc Bonneville
- Laboratoire d'Ecologie Alpine (LECA) UMR 5553 CNRS Grenoble-Alpes University, Grenoble, France
| | - Jordan Tutagata
- Laboratoire d'Ecologie Alpine (LECA) UMR 5553 CNRS Grenoble-Alpes University, Grenoble, France
| | - Frederic Laporte
- Laboratoire d'Ecologie Alpine (LECA) UMR 5553 CNRS Grenoble-Alpes University, Grenoble, France
| | - Behi K Fodjo
- Centre Suisse de La Recherche Scientifique (CSRS), Abidjan, Côte d'Ivoire
| | | | - Christabelle Gba Sadia
- Centre Suisse de La Recherche Scientifique (CSRS), Abidjan, Côte d'Ivoire.,University of Nangui Abrogoua, Abidjan, Côte d'Ivoire
| | - Justin McBeath
- Bayer CropScience Ltd, Cambridge Science Park, Cambridge, UK
| | | | | | - Stephane Reynaud
- Laboratoire d'Ecologie Alpine (LECA) UMR 5553 CNRS Grenoble-Alpes University, Grenoble, France
| | - Jean-Philippe David
- Laboratoire d'Ecologie Alpine (LECA) UMR 5553 CNRS Grenoble-Alpes University, Grenoble, France.
| |
Collapse
|
45
|
Mavridis K, Michaelidou K, Vontas J. Highly sensitive droplet digital PCR-based diagnostics for the surveillance of malaria vector populations in low transmission and incipient resistance settings. Expert Rev Mol Diagn 2021; 21:1105-1114. [PMID: 34328051 DOI: 10.1080/14737159.2021.1963234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Sensitive monitoring of Plasmodium infective mosquitoes in low malaria transmission settings is of high priority for disease control. Early detection of insecticide resistance at low frequencies is also key for vector monitoring nowadays, when new insecticides are launched to control vector populations. RESEARCH DESIGN AND METHODS An. gambiae mosquitoes with predetermined infection and resistance status were used to produce populations with various malaria infection rates and mutant allelic frequencies (MAFs) of target site insecticide resistance traits. Total RNA and gDNA were isolated and used in droplet Digital PCR (ddPCR) and Reverse Transcription (RT) ddPCR performed in the QX200 ddPCR System. RESULTS We developed a novel ddPCR for detecting P. falciparum DNA in pooled mosquito head-thoraces with infective rate as low as 1.0%. A dissection-free RT-ddPCR assay for specific infective-stage detection was additionally developed and validated (accuracy = 100%) in mosquito pools with infective rates down to 1.0%. A novel ddPCR assay for insecticide resistant alleles, which was able to reliably quantify MAFs as low as 0.050% in pooled mosquito specimens, is also reported. CONCLUSIONS We developed highly sensitive and efficient (RT-) ddPCR assays for contemporary operational needs that require monitoring of low malaria transmission and emerging insecticide resistance.
Collapse
Affiliation(s)
- Konstantinos Mavridis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Kleita Michaelidou
- Laboratory of Translational Oncology, School of Medicine, University of Crete, Heraklion, Greece
| | - John Vontas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece.,Pesticide Science Laboratory, Department of Crop Science, Agricultural University of Athens, Athens, Greece
| |
Collapse
|
46
|
Marti-Soler H, Máquina M, Opiyo M, Alafo C, Sherrard-Smith E, Malheia A, Cuamba N, Sacoor C, Rabinovich R, Aide P, Saúte F, Paaijmans K. Effect of wall type, delayed mortality and mosquito age on the residual efficacy of a clothianidin-based indoor residual spray formulation (SumiShield™ 50WG) in southern Mozambique. PLoS One 2021; 16:e0248604. [PMID: 34351936 PMCID: PMC8341595 DOI: 10.1371/journal.pone.0248604] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 07/06/2021] [Indexed: 11/22/2022] Open
Abstract
Indoor residual spraying (IRS) is one of the main malaria vector control strategies in Mozambique alongside the distribution of insecticide treated nets. As part of the national insecticide resistance management strategy, Mozambique introduced SumiShield™ 50WG, a third generation IRS product, in 2018. Its residual efficacy was assessed in southern Mozambique during the 2018-2019 malaria season. Using a susceptible Anopheles arabiensis strain, residual efficacy was assessed on two different wall surfaces, cement and mud-plastered walls, using standard WHO (World Health Organization) cone bioassay tests at three different heights. Female mosquitoes of two age groups (2-5 and 13-26 day old) were exposed for 30 minutes, after which mortality was observed 24h, 48h, 72h, and 96h and 120h post-exposure to assess (delayed) mortality. Lethal times (LT) 90, LT50 and LT10 were estimated using Bayesian models. Mortality 24h post exposure was consistently below 80%, the current WHO threshold value for effective IRS, in both young and old mosquitoes, regardless of wall surface type. Considering delayed mortality, residual efficacies (mosquito mortality equal or greater than 80%) ranged from 1.5 to ≥12.5 months, with the duration depending on mortality time post exposure, wall type and mosquito age. Looking at mortality 72h after exposure, residual efficacy was between 6.5 and 9.5 months, depending on wall type and mosquito age. The LT50 and LT10 (i.e. 90% of the mosquitoes survive exposure to the insecticides) values were consistently higher for older mosquitoes (except for LT10 values for 48h and 72h post-exposure mortality) and ranged from 0.9 to 5.8 months and 0.2 to 7.8 months for LT50 and LT10, respectively. The present study highlights the need for assessing mosquito mortality beyond the currently recommended 24h post exposure. Failure to do so may lead to underestimation of the residual efficacy of IRS products, as delayed mortality will lead to a further reduction in mosquito vector populations and potentially negatively impact disease transmission. Monitoring residual efficacy on relevant wall surfaces, including old mosquitoes that are ultimately responsible for malaria transmission, and assessing delayed mortalities are critical to provide accurate and actionable data to guide vector control programmes.
Collapse
Affiliation(s)
| | - Mara Máquina
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Mercy Opiyo
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Celso Alafo
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
- Goodbye Malaria, Tchau Tchau Malaria Foundation, Mozambique
| | - Ellie Sherrard-Smith
- MRC Centre for Global Infectious Disease Analysis, Imperial College London, London, United Kingdom
| | - Arlindo Malheia
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Nelson Cuamba
- Programa Nacional de Controlo da Malária, Ministério da Saúde, Maputo, Mozambique
- PMI VectorLink Project, Abt Associates Inc., Maputo, Mozambique
| | - Charfudin Sacoor
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Regina Rabinovich
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Pedro Aide
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
- Instituto Nacional da Saúde, Ministério da Saúde, Maputo, Mozambique
| | - Francisco Saúte
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Krijn Paaijmans
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
- The Biodesign Center for Immunotherapy, Vaccines, and Virotherapy, Arizona State University, Tempe, Arizona, United States of America
| |
Collapse
|
47
|
Orondo PW, Nyanjom SG, Atieli H, Githure J, Ondeto BM, Ochwedo KO, Omondi CJ, Kazura JW, Lee MC, Zhou G, Zhong D, Githeko AK, Yan G. Insecticide resistance status of Anopheles arabiensis in irrigated and non-irrigated areas in western Kenya. Parasit Vectors 2021; 14:335. [PMID: 34174946 PMCID: PMC8235622 DOI: 10.1186/s13071-021-04833-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 06/09/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Malaria control in Kenya is based on case management and vector control using long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS). However, the development of insecticide resistance compromises the effectiveness of insecticide-based vector control programs. The use of pesticides for agricultural purposes has been implicated as one of the sources driving the selection of resistance. The current study was undertaken to assess the status and mechanism of insecticide resistance in malaria vectors in irrigated and non-irrigated areas with varying agrochemical use in western Kenya. METHODS The study was carried out in 2018-2019 in Homa Bay County, western Kenya. The bioassay was performed on adults reared from larvae collected from irrigated and non-irrigated fields in order to assess the susceptibility of malaria vectors to different classes of insecticides following the standard WHO guidelines. Characterization of knockdown resistance (kdr) and acetylcholinesterase-inhibiting enzyme/angiotensin-converting enzyme (Ace-1) mutations within Anopheles gambiae s.l. species was performed using the polymerase chain reaction (PCR) method. To determine the agricultural and public health insecticide usage pattern, a questionnaire was administered to farmers, households, and veterinary officers in the study area. RESULTS Anopheles arabiensis was the predominant species in the irrigated (100%, n = 154) area and the dominant species in the non-irrigated areas (97.5%, n = 162), the rest being An. gambiae sensu stricto. In 2018, Anopheles arabiensis in the irrigated region were susceptible to all insecticides tested, while in the non-irrigated region reduced mortality was observed (84%) against deltamethrin. In 2019, phenotypic mortality was decreased (97.8-84% to 83.3-78.2%). In contrast, high mortality from malathion (100%), DDT (98.98%), and piperonyl butoxide (PBO)-deltamethrin (100%) was observed. Molecular analysis of the vectors from the irrigated and non-irrigated areas revealed low levels of leucine-serine/phenylalanine substitution at position 1014 (L1014S/L1014F), with mutation frequencies of 1-16%, and low-frequency mutation in the Ace-1R gene (0.7%). In addition to very high coverage of LLINs impregnated with pyrethroids and IRS with organophosphate insecticides, pyrethroids were the predominant chemical class of pesticides used for crop and animal protection. CONCLUSION Anopheles arabiensis from irrigated areas showed increased phenotypic resistance, and the intensive use of pesticides for crop protection in this region may have contributed to the selection of resistance genes observed. The susceptibility of these malaria vectors to organophosphates and PBO synergists in pyrethroids offers a promising future for IRS and insecticide-treated net-based vector control interventions. These findings emphasize the need for integrated vector control strategies, with particular attention to agricultural practices to mitigate mosquito resistance to insecticides.
Collapse
Affiliation(s)
- Pauline Winnie Orondo
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya. .,International Center of Excellence for Malaria Research, Tom Mboya University College of Maseno University, Homa Bay, Kenya.
| | - Steven G Nyanjom
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Harrysone Atieli
- International Center of Excellence for Malaria Research, Tom Mboya University College of Maseno University, Homa Bay, Kenya.,School of Public Health and Community Development, Maseno University, Kisumu, Kenya
| | - John Githure
- International Center of Excellence for Malaria Research, Tom Mboya University College of Maseno University, Homa Bay, Kenya
| | - Benyl M Ondeto
- International Center of Excellence for Malaria Research, Tom Mboya University College of Maseno University, Homa Bay, Kenya
| | - Kevin O Ochwedo
- International Center of Excellence for Malaria Research, Tom Mboya University College of Maseno University, Homa Bay, Kenya
| | - Collince J Omondi
- International Center of Excellence for Malaria Research, Tom Mboya University College of Maseno University, Homa Bay, Kenya
| | - James W Kazura
- Center for Global Health & Diseases, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Ming-Chieh Lee
- Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA, USA
| | - Guofa Zhou
- Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA, USA
| | - Daibin Zhong
- Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA, USA
| | - Andrew K Githeko
- International Center of Excellence for Malaria Research, Tom Mboya University College of Maseno University, Homa Bay, Kenya. .,Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya.
| | - Guiyun Yan
- Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA, USA.
| |
Collapse
|
48
|
Kanan SM, Moyet MA. Fabricated metal zeolites as photocatalysts for the degradation of organic pollutants. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-021-04416-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
49
|
Soma DD, Zogo B, Hien DFDS, Hien AS, Kaboré DA, Kientega M, Ouédraogo AG, Pennetier C, Koffi AA, Moiroux N, Dabiré RK. Insecticide resistance status of malaria vectors Anopheles gambiae (s.l.) of southwest Burkina Faso and residual efficacy of indoor residual spraying with microencapsulated pirimiphos-methyl insecticide. Parasit Vectors 2021; 14:58. [PMID: 33461621 PMCID: PMC7814427 DOI: 10.1186/s13071-020-04563-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 12/26/2020] [Indexed: 11/10/2022] Open
Abstract
Background The rapid spread of insecticide resistance in malaria vectors and the rebound in malaria cases observed recently in some endemic areas underscore the urgent need to evaluate and deploy new effective control interventions. A randomized control trial (RCT) was conducted with the aim to investigate the benefit of deploying complementary strategies, including indoor residual spraying (IRS) with pirimiphos-methyl in addition to long-lasting insecticidal nets (LLINs) in Diébougou, southwest Burkina Faso. Methods We measured the susceptibility of the Anopheles gambiae (s.l.) population from Diébougou to conventional insecticides. We further monitored the efficacy and residual activity of pirimiphos-methyl on both cement and mud walls using a laboratory susceptible strain (Kisumu) and the local An. gambiae (s.l.) population. Results An. gambiae (s.l.) from Diébougou was resistant to DDT, pyrethroids (deltamethrin, permethrin and alphacypermethrin) and bendiocarb but showed susceptibility to organophosphates (pirimiphos-methyl and chlorpyrimiphos-methyl). A mixed-effect generalized linear model predicted that pirimiphos-methyl applied on cement or mud walls was effective for 210 days against the laboratory susceptible strain and 247 days against the local population. The residual efficacy of pirimiphos-methyl against the local population on walls made of mud was similar to that of cement (OR = 0.792, [0.55–1.12], Tukey’s test p-value = 0.19). Conclusions If data on malaria transmission and malaria cases (as measured trough the RCT) are consistent with data on residual activity of pirimiphos-methyl regardless of the type of wall, one round of IRS with pirimiphos-methyl would have the potential to control malaria in a context of multi-resistant An. gambiae (s.l.) for at least 7 months.![]()
Collapse
Affiliation(s)
- Dieudonné Diloma Soma
- Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso. .,Université Nazi Boni, BP 109, Bobo-Dioulasso, Burkina Faso. .,MIVEGEC, IRD, CNRS, Univ. Montpellier, Montpellier, France.
| | - Barnabas Zogo
- MIVEGEC, IRD, CNRS, Univ. Montpellier, Montpellier, France.,Institut Pierre Richet, Institut National de Santé Publique, Bouaké, Côte d'Ivoire
| | | | - Aristide Sawdetuo Hien
- Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso.,Université Nazi Boni, BP 109, Bobo-Dioulasso, Burkina Faso
| | - Didier Alexandre Kaboré
- Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso.,Université Nazi Boni, BP 109, Bobo-Dioulasso, Burkina Faso
| | - Mahamadi Kientega
- Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso.,Université Nazi Boni, BP 109, Bobo-Dioulasso, Burkina Faso
| | | | - Cédric Pennetier
- MIVEGEC, IRD, CNRS, Univ. Montpellier, Montpellier, France.,Institut Pierre Richet, Institut National de Santé Publique, Bouaké, Côte d'Ivoire
| | | | - Nicolas Moiroux
- Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso.,MIVEGEC, IRD, CNRS, Univ. Montpellier, Montpellier, France
| | | |
Collapse
|
50
|
Grau-Bové X, Lucas E, Pipini D, Rippon E, van ‘t Hof AE, Constant E, Dadzie S, Egyir-Yawson A, Essandoh J, Chabi J, Djogbénou L, Harding NJ, Miles A, Kwiatkowski D, Donnelly MJ, Weetman D, The Anopheles gambiae 1000 Genomes Consortium. Resistance to pirimiphos-methyl in West African Anopheles is spreading via duplication and introgression of the Ace1 locus. PLoS Genet 2021; 17:e1009253. [PMID: 33476334 PMCID: PMC7853456 DOI: 10.1371/journal.pgen.1009253] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 02/02/2021] [Accepted: 11/03/2020] [Indexed: 12/30/2022] Open
Abstract
Vector population control using insecticides is a key element of current strategies to prevent malaria transmission in Africa. The introduction of effective insecticides, such as the organophosphate pirimiphos-methyl, is essential to overcome the recurrent emergence of resistance driven by the highly diverse Anopheles genomes. Here, we use a population genomic approach to investigate the basis of pirimiphos-methyl resistance in the major malaria vectors Anopheles gambiae and A. coluzzii. A combination of copy number variation and a single non-synonymous substitution in the acetylcholinesterase gene, Ace1, provides the key resistance diagnostic in an A. coluzzii population from Côte d'Ivoire that we used for sequence-based association mapping, with replication in other West African populations. The Ace1 substitution and duplications occur on a unique resistance haplotype that evolved in A. gambiae and introgressed into A. coluzzii, and is now common in West Africa primarily due to selection imposed by other organophosphate or carbamate insecticides. Our findings highlight the predictive value of this complex resistance haplotype for phenotypic resistance and clarify its evolutionary history, providing tools to for molecular surveillance of the current and future effectiveness of pirimiphos-methyl based interventions.
Collapse
Affiliation(s)
- Xavier Grau-Bové
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Eric Lucas
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Dimitra Pipini
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Emily Rippon
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Arjèn E. van ‘t Hof
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Edi Constant
- Centre Suisse de Recherches Scientifiques en Côte d’Ivoire, Abidjan, Côte d’Ivoire
| | - Samuel Dadzie
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | | | - John Essandoh
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Department of Biomedical Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Joseph Chabi
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Luc Djogbénou
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Institut Régional de Santé Publique, Université d’Abomey-Calavi, Benin
| | - Nicholas J. Harding
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, United Kingdom
| | - Alistair Miles
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, United Kingdom
- Wellcome Sanger Institute, Hinxton, United Kingdom
| | - Dominic Kwiatkowski
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, United Kingdom
- Wellcome Sanger Institute, Hinxton, United Kingdom
| | - Martin J. Donnelly
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Wellcome Sanger Institute, Hinxton, United Kingdom
| | - David Weetman
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | | |
Collapse
|