1
|
Li R, Yan C, Tian Y, Wu Y, Zhou R, Meng Q, Fang L, Yue Y, Yang Y, Chen H, Yang L, Jiang W. Insights into relationship of oxidative potential of particles in the atmosphere and entering the human respiratory system with particle size, composition and source: A case study in a coastal area in Northern China. JOURNAL OF HAZARDOUS MATERIALS 2024; 485:136842. [PMID: 39673951 DOI: 10.1016/j.jhazmat.2024.136842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/28/2024] [Accepted: 12/09/2024] [Indexed: 12/16/2024]
Abstract
Oxidative potential (OP) of particulate matter (PM) is an important indicator of its health effects. However, the relationship between OP and its key influencing factors remains unclear. In this study, size-segregated PM samples were collected in Qingdao, China, with major components and OP of PM thoroughly examined. The PM composition and sources contributing to OP were determined by hierarchical cluster analysis and positive matrix factorization model, and deposition of size-segregated and source-specific PM in respiratory tract and its resulting OP were assessed by multiple path particle dosimetry model. Dithiothreitol (DTT) activity decreased with increase of particle size in winter, while larger particles (4.2-10.2 μm) also contributed significantly to OP in summer. WSOC strongly correlated with OP in different particle sizes, while water-soluble iron, zinc, lead, and manganese had strong correlations with DTT activity for fine particles, reflecting the co-effects of particle composition and size on OP. Coarse and fine particles were more likely to be deposited in head and pulmonary region, respectively, with traffic and industrial sources contributing significantly to the deposited OP, especially in deeper regions of respiratory tract. This study highlights that the combined effects of different factors on PM OP need to be considered in health-oriented pollution abatement.
Collapse
Affiliation(s)
- Ruiyu Li
- Qingdao Key Laboratory for Prevention and Control of Atmospheric Pollution in Coastal Cities, Environment Research Institute, Shandong University, Qingdao 266237, China; State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Caiqing Yan
- Qingdao Key Laboratory for Prevention and Control of Atmospheric Pollution in Coastal Cities, Environment Research Institute, Shandong University, Qingdao 266237, China.
| | - Yingze Tian
- The State Environmental Protection Key Laboratory of Urban Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yan Wu
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Ruizhi Zhou
- Qingdao Key Laboratory for Prevention and Control of Atmospheric Pollution in Coastal Cities, Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Qingpeng Meng
- Qingdao Key Laboratory for Prevention and Control of Atmospheric Pollution in Coastal Cities, Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Li Fang
- Qingdao Key Laboratory for Prevention and Control of Atmospheric Pollution in Coastal Cities, Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Yang Yue
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Yanjun Yang
- Qingdao Key Laboratory for Prevention and Control of Atmospheric Pollution in Coastal Cities, Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Haibiao Chen
- Qingdao Key Laboratory for Prevention and Control of Atmospheric Pollution in Coastal Cities, Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Lingxiao Yang
- Qingdao Key Laboratory for Prevention and Control of Atmospheric Pollution in Coastal Cities, Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Wei Jiang
- Qingdao Key Laboratory for Prevention and Control of Atmospheric Pollution in Coastal Cities, Environment Research Institute, Shandong University, Qingdao 266237, China
| |
Collapse
|
2
|
Dubey S, Manwani P, Yadav S, Phuleria HC. Variation in oxidative potential of fine particulate matter and its association with chemical constituents at a regional site in India. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176159. [PMID: 39260490 DOI: 10.1016/j.scitotenv.2024.176159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/26/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
Fine particulate matter (PM2.5) constituents are greatly affected by site-specific emission sources and are one of the main reasons for oxidative stress that leads to cardiovascular ailments. This study investigated the temporal, seasonal, and episodic variations in the oxidative potential (OP) of PM2.5 and its association with chemical components. Additionally, we have also examined the effect of filter substrates on OP. Dithiothreitol (DTT) and ascorbic acid (AA) acellular assays were used to estimate the formation of reactive oxygen species (ROS) in PM2.5 samples collected over a year from a regional site in India. PM2.5 morphology and functional groups were also analyzed. Results showed that OPDTTv was at the highest in winter (2.56 ± 0.84 nmol min-1 m-3) and at the lowest during monsoon (0.79 ± 0.65 nmol min-1 m-3). OPAAv exhibited the highest activity in post-monsoon (0.09 ± 0.04 nmol min-1 m-3) and least in summer (0.05 ± 0.04 nmol min-1 m-3). Biomass burning (BB) and open-field burning of crop residue during the rabi and kharif harvesting seasons were associated with significantly elevated PM2.5 toxicity, which is indicative of the contribution of combustion-derived particles. OPDTTv and OPAAv levels from BB in post-monsoon were 21 % and 67 % higher than the levels observed during BB in summer. Flaky irregular agglomerates and porous structures were observed during the BB period. Fourier-transformed infrared spectroscopy revealed that traffic-emitted organic hydrocarbons CH functional group was dominant across the season. Further, chemical species such as organics (OC and EC fractions) and ions (SO42-, NH4+, Cl-, NO3-) were found to be significantly associated with OP. Among the three filter substrates, the Teflon showed higher OP variability for both assays. This study emphasizes the impact of regional toxic aerosols across seasons and during episodic events. It contributes to our understanding of the toxicity of ambient PM2.5, which is crucial for developing targeted air-quality management strategies.
Collapse
Affiliation(s)
- Shreya Dubey
- Environmental Science and Engineering Department, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Pooja Manwani
- Center for Climate Studies, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Suman Yadav
- Center for Climate Studies, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Harish C Phuleria
- Environmental Science and Engineering Department, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India; Center for Climate Studies, Indian Institute of Technology Bombay, Mumbai 400076, India; Koita Centre for Digital Health, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| |
Collapse
|
3
|
Blum OE, DeBlauw JA, Greaves LM, Shostak ES, Ives SJ. Environmental exposure to wildfire smoke may reduce microvascular oxygenation during graded handgrip exercise: A case series. Physiol Rep 2024; 12:e16120. [PMID: 39031617 PMCID: PMC11189769 DOI: 10.14814/phy2.16120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 07/22/2024] Open
Abstract
Wildfire smoke (WFS) is an urgent and rapidly growing threat to global health. Aside from obvious threats to pulmonary function, increases in cardiac abnormalities or myocardial infarction have been documented during WF season, but little is known about the effects of WFS on cardiovascular health. We investigated the effect of nonoccupational WFS exposure on cardiovascular and pulmonary function at rest and during graded handgrip exercise through a case series of young, healthy adults (n = 4, 25 ± 6 years) assessed after ≥3 days of bad or good air quality. Peripheral and estimated central blood pressures, vascular stiffness, and microvascular function (Near infrared spectroscopy, NIRS) were assessed at rest, and during rhythmic handgrip exercise. WFS did not appear to alter resting peripheral, central BP, or vascular stiffness (all, p > 0.05). Slope 1 and slope 2 from the NIRS-vascular occlusion test (NIRS-VOT) were not different between conditions (p > 0.05). The change in SmO2 during exercise was lower (p = 0.02,η p 2 $$ {\eta}_{\mathrm{p}}^2 $$ = 0.62) with bad air quality. These preliminary findings suggest modest effects of environmental WFS exposure on muscle microvascular function during exercise in healthy adults. Future work is needed to elucidate the physiological changes with WFS exposure and the increased risk of cardiovascular events, perhaps exacerbated through physical activity.
Collapse
Affiliation(s)
- Oliver E. Blum
- Department of Health and Human Physiological SciencesSkidmore CollegeSaratoga SpringsNew YorkUSA
| | - Justin A. DeBlauw
- Department of Health and Human Physiological SciencesSkidmore CollegeSaratoga SpringsNew YorkUSA
| | - Lauren M. Greaves
- Department of Health and Human Physiological SciencesSkidmore CollegeSaratoga SpringsNew YorkUSA
| | - Elena S. Shostak
- Department of Health and Human Physiological SciencesSkidmore CollegeSaratoga SpringsNew YorkUSA
| | - Stephen J. Ives
- Department of Health and Human Physiological SciencesSkidmore CollegeSaratoga SpringsNew YorkUSA
| |
Collapse
|
4
|
Xia X, Chan KH, Kwok T, Wu S, Man CL, Ho KF. Effects of long-term indoor air purification intervention on cardiovascular health in elderly: a parallel, double-blinded randomized controlled trial in Hong Kong. ENVIRONMENTAL RESEARCH 2024; 247:118284. [PMID: 38253196 DOI: 10.1016/j.envres.2024.118284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 01/24/2024]
Abstract
Ambient fine particulate matter (PM2.5) is a leading environmental risk factor globally, and over half of the associated disease burden are caused by cardiovascular disease. Numerous randomized controlled trials (RCT) have investigated the short-term cardiovascular benefits of indoor air purifiers (IAPs), but major knowledge gaps remain on their longer-term benefits. In this 1-year, randomized, double-blinded, parallel controlled trial of 47 elderly (ntrue-purification = 24; nsham-purification = 23) aged ≥70 years, true-purification reduced household PM2.5 levels by 28% and maintained lower exposure throughout the year compared to the sham-purification group. After 12 months of intervention, a significant reduction of diastolic blood pressure was found in the true-purification versus sham-purification group (-4.62 [95% CI: -7.28, -1.96] mmHg) compared to baseline measurement prior to the intervention, whereas systolic blood pressure showed directionally consistent but statistically non-significant effect (-2.49 [95% CI: -9.25, 4.28] mmHg). Qualitatively similar patterns of associations were observed for pulse pressure (-2.30 [95% CI: -6.57, 1.96] mmHg) and carotid intima-media thickness (-10.0% [95% CI: -24.8%, 4.7%]), but these were not statistically significant. Overall, we found suggestive evidence of cardiovascular benefits of long-term IAPs use, particularly on diastolic blood pressure. Evidence on other longer-term cardiovascular traits is less clear. Further trials with larger sample sizes and long-term follow-up are needed across diverse populations to evaluate the cardiovascular benefits of IAPs.
Collapse
Affiliation(s)
- Xi Xia
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, China; School of Public Health, Shaanxi University of Chinese Medicine, China; The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong
| | - Ka Hung Chan
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, UK; Oxford British Heart Foundation Centre of Research Excellence, University of Oxford, UK.
| | - Timothy Kwok
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China; The Jockey Club Centre for Osteoporosis Care and Control, The Chinese University of Hong Kong, Hong Kong, China
| | - ShaoWei Wu
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, China
| | - Chung Ling Man
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong
| | - Kin-Fai Ho
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong.
| |
Collapse
|
5
|
Shiraiwa M, Fang T, Wei J, Lakey P, Hwang B, Edwards KC, Kapur S, Mena J, Huang YK, Digman MA, Weichenthal SA, Nizkorodov S, Kleinman MT. Chemical and Cellular Formation of Reactive Oxygen Species from Secondary Organic Aerosols in Epithelial Lining Fluid. Res Rep Health Eff Inst 2023:1-56. [PMID: 38420854 PMCID: PMC10957138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024] Open
Abstract
INTRODUCTION Oxidative stress mediated by reactive oxygen species (ROS) is a key process for adverse aerosol health effects. Secondary organic aerosols (SOA) account for a major fraction of particulate matter with aerodynamic diameter ≤2.5 µm (PM2.5). PM2.5 inhalation and deposition into the respiratory tract causes the formation of ROS by chemical reactions and phagocytosis of macrophages in the epithelial lining fluid (ELF), but their relative contributions are not well quantified and their link to oxidative stress remains uncertain. The specific aims of this project were (1) elucidating the chemical mechanism and quantifying the formation kinetics of ROS in the ELF by SOA; (2) quantifying the relative importance of ROS formation by chemical reactions and macrophages in the ELF. METHODS SOA particles were generated using reaction chambers from oxidation of various precursors including isoprene, terpenes, and aromatic compounds with or without nitrogen oxides (NOx). We collected size-segregated PM at two highway sites in Anaheim, CA, and Long Beach, CA, and at an urban site in Irvine, CA, during two wildfire events. The collected particles were extracted into water or surrogate ELF that contained lung antioxidants. ROS generation was quantified using electron paramagnetic resonance (EPR) spectroscopy with a spin-trapping technique. PM oxidative potential (OP) was also quantified using the dithiothreitol assay. In addition, kinetic modeling was applied for analysis and interpretation of experimental data. Finally, we quantified cellular superoxide release by RAW264.7 macrophage cells upon exposure to quinones and isoprene SOA using a chemiluminescence assay as calibrated with an EPR spin-probing technique. We also applied cellular imaging techniques to study the cellular mechanism of superoxide release and oxidative damage on cell membranes. RESULTS Superoxide radicals (·O2-) were formed from aqueous reactions of biogenic SOA generated by hydroxy radical (·OH) photooxidation of isoprene, β-pinene, α-terpineol, and d-limonene. The temporal evolution of ·OH and ·O2- formation was elucidated by kinetic modeling with a cascade of aqueous reactions, including the decomposition of organic hydroperoxides (ROOH), ·OH oxidation of primary or secondary alcohols, and unimolecular decomposition of α-hydroxyperoxyl radicals. Relative yields of various types of ROS reflected the relative abundance of ROOH and alcohols contained in SOA, which generated under high NOx conditions, exhibited lower ROS yields. ROS formation by SOA was also affected by pH. Isoprene SOA had higher ·OH and organic radical yields at neutral than at acidic pH. At low pH ·O2- was the dominant species generated by all types of SOA. At neutral pH, α-terpineol SOA exhibited a substantial yield of carbon-centered organic radicals (R·), while no radical formation was observed by aromatic SOA. Organic radicals in the ELF were formed by mixtures of Fe2+ and SOA generated from photooxidation of isoprene, α-terpineol, and toluene. The molar yields of organic radicals by SOA were 5-10 times higher in ELF than in water. Fe2+ enhanced organic radical yields by a factor of 20-80. Ascorbate mediated redox cycling of iron ions and sustained organic peroxide decomposition, as supported by kinetic modeling reproducing time- and concentration-dependence of organic radical formation, as well as by additional experiments observing the formation of Fe2+ and ascorbate radicals in mixtures of ascorbate and Fe3+. ·OH and superoxide were found to be efficiently scavenged by antioxidants. Wildfire PM mainly generated ·OH and R· with minor contributions from superoxide and oxygen-centered organic radicals (RO·). PM OP was high in wildfire PM, exhibiting very weak correlation with radical forms of ROS. These results were in stark contrast with PM collected at highway and urban sites, which generated much higher amounts of radicals dominated by ·OH radicals that correlated well with OP. By combining field measurements of size-segregated chemical composition, a human respiratory tract model, and kinetic modeling, we quantified production rates and concentrations of different types of ROS in different regions of the ELF by considering particle-size-dependent respiratory deposition. While hydrogen peroxide (H2O2) and ·O2- production were governed by Fe and Cu ions, ·OH radicals were mainly generated by organic compounds and Fenton-like reactions of metal ions. We obtained mixed results for correlations between PM OP and ROS formation, providing rationale and limitations of the use of oxidative potential as an indicator for PM toxicity in epidemiological and toxicological studies. Quinones and isoprene SOA activated nicotinamide adenine dinucleotide phosphate (NADPH) oxidase in macrophages, releasing massive amounts of superoxide via respiratory burst and overwhelming the superoxide formation by aqueous chemical reactions in the ELF. The threshold dose for macrophage activation was much smaller for quinones compared with isoprene SOA. The released ROS caused lipid peroxidation to increase cell membrane fluidity, inducing oxidative damage and stress. Further increases of doses led to the activation of antioxidant response elements, reducing the net cellular superoxide production. At very high doses and long exposure times, chemical production became comparably important or dominant if the escalation of oxidative stress led to cell death. CONCLUSIONS The mechanistic understandings and quantitative information on ROS generation by SOA particles provided a basis for further elucidation of adverse aerosol health effects and oxidative stress by PM2.5. For a comprehensive assessment of PM toxicity and health effects via oxidative stress, it is important to consider both chemical reactions and cellular processes for the formation of ROS in the ELF. Chemical composition of PM strongly influences ROS formation; further investigations are required to study ROS formation from various PM sources. Such research will provide critical information to environmental agencies and policymakers for the development of air quality policy and regulation.
Collapse
Affiliation(s)
- M Shiraiwa
- Department of Chemistry, University of California, Irvine, CA, USA
| | - T Fang
- Department of Chemistry, University of California, Irvine, CA, USA
| | - J Wei
- Department of Chemistry, University of California, Irvine, CA, USA
| | - Psj Lakey
- Department of Chemistry, University of California, Irvine, CA, USA
| | - Bch Hwang
- Department of Chemistry, University of California, Irvine, CA, USA
| | - K C Edwards
- Department of Chemistry, University of California, Irvine, CA, USA
| | - S Kapur
- Department of Chemistry, University of California, Irvine, CA, USA
| | - Jem Mena
- Division of Occupational and Environmental Medicine, University of California, Irvine, CA, USA
| | - Y-K Huang
- Department of Biomedical Engineering, University of California, Irvine, CA, USA
| | - M A Digman
- Department of Biomedical Engineering, University of California, Irvine, CA, USA
| | - S A Weichenthal
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Canada
| | - S Nizkorodov
- Department of Chemistry, University of California, Irvine, CA, USA
| | - M T Kleinman
- Division of Occupational and Environmental Medicine, University of California, Irvine, CA, USA
| |
Collapse
|
6
|
Borlaza LJS, Uzu G, Ouidir M, Lyon-Caen S, Marsal A, Weber S, Siroux V, Lepeule J, Boudier A, Jaffrezo JL, Slama R. Personal exposure to PM 2.5 oxidative potential and its association to birth outcomes. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2023; 33:416-426. [PMID: 36369373 DOI: 10.1038/s41370-022-00487-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 06/03/2023]
Abstract
BACKGROUND Prenatal exposure to fine particulate matter (PM2.5) assessed through its mass concentration has been associated with foetal growth restriction in studies based on outdoor levels. Oxidative potential of PM2.5 (OP) is an emerging metric a priori relevant to mechanisms of action of PM on health, with very limited evidence to indicate its role on birth outcomes. OBJECTIVES We investigated the association of OP with birth outcomes and compared it with that of PM2.5 mass concentration. METHODS 405 pregnant women from SEPAGES cohort (Grenoble area) carried PM2.5 personal dosimeters for one or two one-week periods. OP was measured using dithiothreitol (DTT) and ascorbic acid (AA) assays from the collected filters. Associations of each exposure metric with offspring weight, height, and head circumference at birth were estimated adjusting for potential confounders. RESULTS The correlation between PM2.5 mass concentration and [Formula: see text] was 0.7. An interquartile range increase in .. was associated with reduced weight (adjusted change, -64 g, -166 to -11, p = 0.02) and height (-4 mm, -6 to -1, p = 0.01) at birth. PM2.5 mass concentration showed similar associations with weight (-53 g, -99 to -8, p = 0.02) and height (-2 mm, -5 to 0, p = 0.05). In birth height models mutually adjusted for the two exposure metrics, the association with [Formula: see text] was less attenuated than that with mass concentration, while for weight both effect sizes attenuated similarly. There was no clear evidence of associations with head circumference for any metric, nor for [Formula: see text] with any growth parameter. IMPACT PM2.5 pregnancy exposure assessed from personal dosimeters was associated with altered foetal growth. Personal OP exposure was associated with foetal growth restrictions, specifically decreased weight and height at birth, possibly to a larger extent than PM2.5 mass concentration alone. These results support OP assessed from DTT as being a health-relevant metric. Larger scale cohort studies are recommended to support our findings.
Collapse
Affiliation(s)
| | - Gaëlle Uzu
- University of Grenoble Alpes, CNRS, IRD, INP-G, IGE (UMR 5001), F-38000, Grenoble, France.
| | - Marion Ouidir
- University of Grenoble Alpes, Inserm, CNRS, IAB, Team of Environmental Epidemiology applied to Reproduction and Respiratory Health, Grenoble, France
| | - Sarah Lyon-Caen
- University of Grenoble Alpes, Inserm, CNRS, IAB, Team of Environmental Epidemiology applied to Reproduction and Respiratory Health, Grenoble, France
| | - Anouk Marsal
- University of Grenoble Alpes, CNRS, IRD, INP-G, IGE (UMR 5001), F-38000, Grenoble, France
| | - Samuël Weber
- University of Grenoble Alpes, CNRS, IRD, INP-G, IGE (UMR 5001), F-38000, Grenoble, France
| | - Valérie Siroux
- University of Grenoble Alpes, Inserm, CNRS, IAB, Team of Environmental Epidemiology applied to Reproduction and Respiratory Health, Grenoble, France
| | - Johanna Lepeule
- University of Grenoble Alpes, Inserm, CNRS, IAB, Team of Environmental Epidemiology applied to Reproduction and Respiratory Health, Grenoble, France
| | - Anne Boudier
- University of Grenoble Alpes, Inserm, CNRS, IAB, Team of Environmental Epidemiology applied to Reproduction and Respiratory Health, Grenoble, France
- Pediatrics, CHU Grenoble-Alpes, Grenoble, France
| | - Jean-Luc Jaffrezo
- University of Grenoble Alpes, CNRS, IRD, INP-G, IGE (UMR 5001), F-38000, Grenoble, France
| | - Rémy Slama
- University of Grenoble Alpes, Inserm, CNRS, IAB, Team of Environmental Epidemiology applied to Reproduction and Respiratory Health, Grenoble, France.
| |
Collapse
|
7
|
Xing C, Wang Y, Yang X, Zeng Y, Zhai J, Cai B, Zhang A, Fu TM, Zhu L, Li Y, Wang X, Zhang Y. Seasonal variation of driving factors of ambient PM 2.5 oxidative potential in Shenzhen, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160771. [PMID: 36513240 DOI: 10.1016/j.scitotenv.2022.160771] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/01/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Reactive oxygen species (ROS) play a central role in health effects of ambient fine particulate matter (PM2.5). In this work, we screened for efficient and complementary oxidative potential (OP) measurements by comparing the response values of multiple chemical probes (OPDTT, OPOH, OPGSH) to ambient PM2.5 in Shenzhen, China. Combined with meteorological condition and PM2.5 chemical composition analysis, we explored the effects of different chemical components and emission sources on the ambient PM2.5 OP and analyzed their seasonal variations. The results show that OPmDTT(mass-normalized) and OPmGSH-SLF were highly correlated (r = 0.77). OPDTT was mainly influenced by organic carbon, while OPOH was highly dominated by heavy metals. The combination of OPDTT and OPOH provides an efficient and comprehensive measurement of OP. Temporally, the OPs were substantially higher in winter than in summer (1.4 and 4 times higher for OPmDTT and OPmOH, respectively). The long-distance transported biomass burning sources from the north dominated the OPDTT in winter, while the ship emissions mainly influenced the summer OP. The OPmDTT increased sharply with the decrease of PM2.5 mass concentration, especially when the PM2.5 concentration was lower than 30 μg/m3. The huge differences in wind fields between the winter and summer cause considerable variations in PM2.5 concentrations, components, and OP. Our work emphasizes the necessity of long-term, multi-method, multi-component assessment of the OP of PM2.5.
Collapse
Affiliation(s)
- Chunbo Xing
- School of Environment, Harbin Institute of Technology, Harbin 150001, China; Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yixiang Wang
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xin Yang
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, Shenzhen, Guangdong 518055, China.
| | - Yaling Zeng
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jinghao Zhai
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Baohua Cai
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Antai Zhang
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Tzung-May Fu
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Lei Zhu
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ying Li
- Department of Ocean Sciences and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xinming Wang
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Yanli Zhang
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
8
|
Li J, Liu F, Liang F, Yang Y, Lu X, Gu D. Air pollution exposure and vascular endothelial function: a systematic review and meta-analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:28525-28549. [PMID: 36702984 DOI: 10.1007/s11356-023-25156-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 01/02/2023] [Indexed: 06/18/2023]
Abstract
Vascular endothelial dysfunction is an early stage to cardiovascular diseases (CVDs), but whether air pollution exposure has an effect on it remains unknown. We conducted a systematic review and meta-analysis to summarize epidemiological evidence between air pollution and endothelial dysfunction. We searched the database of PubMed, EMBASE, the Cochrane Library, and Web of Science up to November 10, 2022. Fixed and random effect models were used to pool the effect change or percent change (% change) and 95% confidence interval (95% CI) of vascular function associated with particulate matter (PM) and gaseous pollutants. I2 statistics, funnel plot, and Egger's test were used to evaluate heterogeneity and publication bias. There were 34 articles included in systematic review, and 25 studies included in meta-analysis. For each 10 µg/m3 increment in short-term PM2.5 exposure, augmentation index (AIx) and pulse wave velocity (PWV) increased by 2.73% (95% CI: 1.89%, 3.57%) and 0.56% (95% CI: 0.22%, 0.89%), and flow-mediated dilation (FMD) decreased by 0.17% (95% CI: - 0.33%, - 0.00%). For each 10 µg/m3 increment in long-term PM2.5 exposure, FMD decreased by 0.99% (95% CI: - 1.41%, - 0.57%). The associations between remaining pollutants and outcomes were not statistically significant. The effect of short-term PM2.5 exposure on FMD change was stronger in population with younger age, lower female proportion, higher mean body mass index and higher PM2.5 exposure. Cardiac or vasoactive medication might attenuate this effect. Our study provides evidence that PM2.5 exposure had adverse impact on vascular endothelial function, indicating the importance of air quality improvement for early CVD prevention.
Collapse
Affiliation(s)
- Jinyue Li
- Department of Epidemiology, National Center for Cardiovascular Diseases, Fuwai Hospital, Key Laboratory of Cardiovascular Epidemiology, Chinese Academy of Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 10037, China
| | - Fangchao Liu
- Department of Epidemiology, National Center for Cardiovascular Diseases, Fuwai Hospital, Key Laboratory of Cardiovascular Epidemiology, Chinese Academy of Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 10037, China
| | - Fengchao Liang
- Department of Epidemiology, National Center for Cardiovascular Diseases, Fuwai Hospital, Key Laboratory of Cardiovascular Epidemiology, Chinese Academy of Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 10037, China
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yuxin Yang
- Department of Epidemiology, National Center for Cardiovascular Diseases, Fuwai Hospital, Key Laboratory of Cardiovascular Epidemiology, Chinese Academy of Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 10037, China
| | - Xiangfeng Lu
- Department of Epidemiology, National Center for Cardiovascular Diseases, Fuwai Hospital, Key Laboratory of Cardiovascular Epidemiology, Chinese Academy of Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 10037, China
| | - Dongfeng Gu
- Department of Epidemiology, National Center for Cardiovascular Diseases, Fuwai Hospital, Key Laboratory of Cardiovascular Epidemiology, Chinese Academy of Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 10037, China.
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen, 518055, China.
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
9
|
Anand A, Yadav S, Phuleria HC. Chemical characteristics and oxidative potential of indoor and outdoor PM 2.5 in densely populated urban slums. ENVIRONMENTAL RESEARCH 2022; 212:113562. [PMID: 35623440 DOI: 10.1016/j.envres.2022.113562] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 05/16/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
A significant proportion of population in metropolitan cities in India live in slums which are highly dense and crowded informal housing settlements with poor environmental conditions including high exposure to air pollution. Recent studies report that toxicity is induced by oxidative processes, mediated by the water-soluble PM chemical components leading to reactive oxygen species production thereby causing inflammatory disorders. Hence, for the first time, this study assessed the chemical characteristics and oxidative potential (OP) of indoor and outdoor PM2.5 in two slums in Mumbai, India. Daily gravimetric PM2.5 was measured in ∼40 homes each in a low- and a high-traffic slum and analysed for 18 water-soluble elements and organic carbon (WSOC). Subsequently, OP was assessed through the Dithiothreitol (DTT) assay. Average WSOC was similar in indoor and outdoor environments while the water-soluble concentrations of total elements ranged 4.5-6.5 μg/m3 indoors and 6.4-19.2 μg/m3 outdoors, with S, Ca, K, Na and Zn being the most abundant elements. Spatial distributions of indoor concentrations were influenced by outdoor sources such as local traffic emissions for Cd, Fe, Al and Zn. The influence of outdoor-origin particles was enhanced in homes reporting high air exchange rates. OP was higher outdoors than indoors in both low-traffic slum (0.04-0.51 nmol min-1m-3 outdoors and 0.02-0.38 nmol min-1m-3 indoors) and high-traffic slum (0.03-1.06 nmol min-1m-3 outdoors and 0.04-0.77 nmol min-1m-3 indoors). Outdoor and indoor OP was also more influenced by outdoor road dust showing significant correlation with tracer elements Cu and Al (r ≥ 0.45; p < 0.05). Similar to OP, the non-carcinogenic health risk associated with indoor PM2.5 were also higher in high-traffic slum (Hazard Index, HI = 1.60) than in low-traffic slum (HI = 0.43). Overall, this study shows that the indoor PM2.5 and its chemical constituents in Mumbai slums are primarily of outdoor origin with higher toxicity and non-carcinogenic health risk in high-traffic slums.
Collapse
Affiliation(s)
- Abhay Anand
- Environmental Science and Engineering Department, IIT Bombay, Mumbai, 400076, India
| | - Suman Yadav
- Environmental Science and Engineering Department, IIT Bombay, Mumbai, 400076, India
| | - Harish C Phuleria
- Environmental Science and Engineering Department, IIT Bombay, Mumbai, 400076, India; Interdisciplinary Programme in Climate Studies, IIT Bombay, Mumbai, 400076, India.
| |
Collapse
|
10
|
Tang Z, Sarnat JA, Weber RJ, Russell AG, Zhang X, Li Z, Yu T, Jones DP, Liang D. The Oxidative Potential of Fine Particulate Matter and Biological Perturbations in Human Plasma and Saliva Metabolome. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:7350-7361. [PMID: 35075906 PMCID: PMC9177558 DOI: 10.1021/acs.est.1c04915] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Particulate oxidative potential may comprise a key health-relevant parameter of particulate matter (PM) toxicity. To identify biological perturbations associated with particulate oxidative potential and examine the underlying molecular mechanisms, we recruited 54 participants from two dormitories near and far from a congested highway in Atlanta, GA. Fine particulate matter oxidative potential ("FPMOP") levels at the dormitories were measured using dithiothreitol assay. Plasma and saliva samples were collected from participants four times for longitudinal high-resolution metabolic profiling. We conducted metabolome-wide association studies to identify metabolic signals with FPMOP. Leukotriene metabolism and galactose metabolism were top pathways associated with ≥5 FPMOP-related indicators in plasma, while vitamin E metabolism and leukotriene metabolism were found associated with most FPMOP indicators in saliva. We observed different patterns of perturbed pathways significantly associated with water-soluble and -insoluble FPMOPs, respectively. We confirmed five metabolites directly associated with FPMOP, including hypoxanthine, histidine, pyruvate, lactate/glyceraldehyde, and azelaic acid, which were implications of perturbations in acute inflammation, nucleic acid damage and repair, and energy perturbation. The unique metabolic signals were specific to FPMOP, but not PM mass, providing initial indication that FPMOP might constitute a more sensitive, health-relevant measure for elucidating etiologies related to PM2.5 exposures.
Collapse
Affiliation(s)
- Ziyin Tang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia 30322, United States
| | - Jeremy A Sarnat
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia 30322, United States
| | - Rodney J Weber
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia 30322, United States
| | - Armistead G Russell
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30322, United States
| | - Xiaoyue Zhang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia 30322, United States
| | - Zhenjiang Li
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia 30322, United States
| | - Tianwei Yu
- School of Data Science, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Dean P Jones
- Department of Medicine, School of Medicine, Emory University, Atlanta, Georgia 30322, United States
| | - Donghai Liang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
11
|
Liu Y, Chan CK. The oxidative potential of fresh and aged elemental carbon-containing airborne particles: a review. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:525-546. [PMID: 35333266 DOI: 10.1039/d1em00497b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Elemental carbon is often found in ambient particulate matter (PM), and it contributes to the PM's oxidative potential (OP) and thus poses great health concerns. Previous review articles mainly focused on the methodologies in evaluating OP in PM and its relationship with selected chemical constituents, including metal ions, PAHs, and inorganic species. In recent years, growing attention has been paid to the effect of atmospheric aging processes on the OP of EC-containing airborne particles (ECCAPs). This review investigates more than 150 studies concerning the OP measurements and physico-chemical properties of both fresh and aged ECCAPs such as laboratory-generated elemental carbon (LGEC), carbon black (CB), soot (black carbon), and engineered carbon-containing nanomaterials (ECCBNs). Specifically, we summarize the characteristics of water-soluble and insoluble organic species, PAHs, quinone, and oxygen-containing functional groups (OFGs), and EC crystallinity. Both water-soluble organic carbon (WSOC) and water-insoluble organic carbon (WIOC) contribute to the OP. Low molecular weight (MW) PAHs show a higher correlation with OP than high MW PAHs. Furthermore, oxidative aging processes introduce OFGs, where quinone (CO) and epoxide (O-C-O) increase the OP of ECCAPs. In contrast, carboxyl (-COOH) and hydroxyl (-OH) slightly change the OP. The low crystallinity of EC favors the oxygen addition and forms active OFG quinone, thus increasing the OP. More detailed analyses for the EC microstructures and the organic coatings are needed to predict the OP of ECCAPs.
Collapse
Affiliation(s)
- Yangyang Liu
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.
| | - Chak K Chan
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.
| |
Collapse
|
12
|
Ding S, Sun S, Ding R, Song S, Cao Y, Zhang L. Association between exposure to air pollutants and the risk of inflammatory bowel diseases visits. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:17645-17654. [PMID: 34669131 DOI: 10.1007/s11356-021-17009-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
The topic of inflammatory bowel disease (IBD) has attracted more and more attention. Accumulating evidence suggests that exposure to air pollutants is associated with IBD, yet the results are inconsistent and study about daily exposure is few. This study evaluated the association between daily air pollution and IBD in Hefei, China. Daily IBD admission data were obtained from two hospitals in Hefei from January 1, 2019, to December 31, 2019. Daily concentrations of major air pollutants were provided by the Hefei Environmental Protection Bureau. Meteorological data were collected from China Meteorological Data Network. Distributed lag nonlinear model (DLNM) considering both the lag effects of exposure factors and nonlinear relationship of exposure-reaction was used to assess the effect of daily air pollutants exposure on IBD admission. During the study period, totally 886 cases of IBD were recruited, including 313 cases of ulcerative colitis (UC) and 573 cases of Crohn's disease (CD). The findings showed PM2.5, O3, and CO exposure significantly increased the risk of IBD. Mean concentrations of PM2.5, O3, and CO in Hefei were 43.85ug/m3, 100.78ug/m3, and 0.76 mg/m3, respectively. Each increase of 10 mg/m3 in PM2.5/O3 and 0.1 mg/m3 in CO increased the risk of IBD. The strongest effects of these three pollutants on IBD were observed in lag2-lag3 (RR = 1.037, 95% CI: 1.005-1.070%), lag3 (RR = 1.020, 95% CI: 1.002-1.038%), and lag2 (RR = 1.036, 95% CI: 1.003-1.071%), respectively. In warm seasons, PM2.5, O3, and CO had a stronger effect increased the risk of IBD, which were observed in lag2 (RR = 1.104, 95% CI: 1.032-1.181%), lag2 and lag5 (RR = 1.023, 95% CI: 1.002-1.044%; RR = 1.036, 95% CI: 1.004-1.069%), and lag2 (RR = 1.071, 95% CI: 1.012-1.133%), respectively. Air pollutant (PM2.5, O3, and CO) exposure could increase the risk of IBD, while the most susceptibility seasons for the exposure were mainly in warm seasons. The results of this study suggest that air pollutants increase the risk of IBD patients in Hefei, China, providing a basis for developing countries to improve effective prevention of IBD, and a potential opportunity to avoid part of the risk of the onset or recurrence of IBD. This study contributes to the knowledge of the association between air pollution and IBD, but the associations need to be verified by further studies.
Collapse
Affiliation(s)
- Siwen Ding
- Department of Gastroenterology, School of the Second Clinical Medical, Anhui Medical University, 15 Furong Road, Hefei, 230601, Anhui, China
| | - Shu Sun
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Rui Ding
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Shasha Song
- Department of Gastroenterology, the Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, 230601, Anhui, China
| | - Yi Cao
- Department of Pharmacy, School of Public Health, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Lijiu Zhang
- Department of Gastroenterology, the Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, 230601, Anhui, China.
| |
Collapse
|
13
|
Contribution of Physical and Chemical Properties to Dithiothreitol-Measured Oxidative Potentials of Atmospheric Aerosol Particles at Urban and Rural Sites in Japan. ATMOSPHERE 2022. [DOI: 10.3390/atmos13020319] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Dithiothreitol-measured oxidative potential (OPDTT) can chemically quantify the adverse health effects of atmospheric aerosols. Some chemical species are characterized with DTT activities, and the particle diameter and surface area control DTT oxidizability; however, the physical contribution to OPDTT by atmospheric aerosols is controversial. Therefore, we performed field observations and aerosol sampling at urban and rural sites in Japan to investigate the effect of both physical and chemical properties on the variation in OPDTT of atmospheric aerosols. The shifting degree of the representative diameter to the ultrafine range (i.e., the predominance degree of ultrafine particles) was retrieved from the ratio between the lung-deposited surface area and mass concentrations. The chemical components and OPDTT were also elucidated. We discerned strong positive correlations of K, Mn, Pb, NH4+, SO42−, and pyrolyzable organic carbon with OPDTT. Hence, anthropogenic combustion, the iron–steel industry, and secondary organic aerosols were the major emission sources governing OPDTT variations. The increased specific surface area did not lead to the increase in the OPDTT of atmospheric aerosols, despite the existing relevance of the surface area of water-insoluble particles to DTT oxidizability. Overall, the OPDTT of atmospheric aerosols can be estimated by the mass of chemical components related to OPDTT variation, owing to numerous factors controlling DTT oxidizability (e.g., strong contribution of water-soluble particles). Our findings can be used to estimate OPDTT via several physicochemical parameters without its direct measurement.
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW With cardiovascular disease (CVD) being the top cause of deaths worldwide, it is important to ensure healthy cardiovascular aging through enhanced understanding and prevention of adverse health effects exerted by external factors. This review aims to provide an updated understanding of environmental influences on cardiovascular aging, by summarizing epidemiological and mechanistic evidence for the cardiovascular health impact of major environmental stressors, including air pollution, endocrine-disrupting chemicals (EDCs), metals, and climate change. RECENT FINDINGS Recent studies generally support positive associations of exposure to multiple chemical environmental stressors (air pollution, EDCs, toxic metals) and extreme temperatures with increased risks of cardiovascular mortality and morbidity in the population. Environmental stressors have also been associated with a number of cardiovascular aging-related subclinical changes including biomarkers in the population, which are supported by evidence from relevant experimental studies. The elderly and patients are the most vulnerable demographic groups to majority environmental stressors. Future studies should account for the totality of individuals' exposome in addition to single chemical pollutants or environmental factors. Specific factors most responsible for the observed health effects related to cardiovascular aging remain to be elucidated.
Collapse
Affiliation(s)
- Yang Lan
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Yanta District, Xi'an City, Shaanxi Province, 710061, People's Republic of China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi, China
- Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, China
| | - Shaowei Wu
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Yanta District, Xi'an City, Shaanxi Province, 710061, People's Republic of China.
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi, China.
- Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, China.
| |
Collapse
|
15
|
Hsiao TC, Chou LT, Pan SY, Young LH, Chi KH, Chen AY. Chemically and temporally resolved oxidative potential of urban fine particulate matter. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 291:118206. [PMID: 34740290 DOI: 10.1016/j.envpol.2021.118206] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
Vehicle emissions are an important source of particulate matter (PM) in urban areas and have well-known adverse health effects on human health. Oxidative potential (OP) is used as a quantification metric for indexing PM toxicity. In this study, by using a liquid spot sampler (LSS) and the dithiothreitol (DTT) assay, the diurnal OP variation was assessed at a ground-level urban monitoring station. Besides, since the monitoring station was adjacent to the main road, the correlation between OP and traffic volume was also evaluated. PM components, including metals, water-soluble inorganic aerosols (WSIAs), black carbon (BC), and polycyclic aromatic hydrocarbons (PAHs), were also simultaneously monitored. The daytime and evening mean ± std volume-normalized OP (OPv) were 0.46 ± 0.27 and 0.48 ± 0.26 nmol/min/m3, and exhibited good correlations with PM1.0 and BC; however, these concentrations were only weakly correlated with mass-normalized OP (OPm). The mean ± std OPm was higher in the daytime (41.3 ± 13.8 pmol/min/μg) than in the evening (36.1 ± 11.5 pmol/min/μg). According to the PMF analysis, traffic emissions dominated the diurnal OP contribution. Organic matter and individual metals associated with non-exhaust traffic emissions, such as Mn, Fe, and Cu, contributed substantially to OP. Diurnal variations of PAH concentrations suggest that photochemical reactions could enhance OP, highlighting the importance of atmospheric aging on PM toxicity.
Collapse
Affiliation(s)
- Ta-Chih Hsiao
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan; Research Centre for Environmental Changes, Academia Sinica, Taipei, Taiwan.
| | - Li-Ti Chou
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan
| | - Shih-Yu Pan
- Institute of Environmental and Occupational Health Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan; College of Medicine, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Li-Hao Young
- Department of Occupational Safety and Health, College of Public Health, China Medical University, Taichung, Taiwan
| | - Kai-Hsien Chi
- Institute of Environmental and Occupational Health Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan; College of Medicine, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Albert Y Chen
- Department of Civil Engineering, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
16
|
Korsiak J, Perepeluk KL, Peterson NG, Kulka R, Weichenthal S. Air pollution and retinal vessel diameter and blood pressure in school-aged children in a region impacted by residential biomass burning. Sci Rep 2021; 11:12790. [PMID: 34140605 PMCID: PMC8211781 DOI: 10.1038/s41598-021-92269-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/07/2021] [Indexed: 11/08/2022] Open
Abstract
Little is known about the early-life cardiovascular health impacts of fine particulate air pollution (PM2.5) and oxidant gases. A repeated-measures panel study was used to evaluate associations between outdoor PM2.5 and the combined oxidant capacity of O3 and NO2 (using a redox-weighted average, Ox) and retinal vessel diameter and blood pressure in children living in a region impacted by residential biomass burning. A median of 6 retinal vessel and blood pressure measurements were collected from 64 children (ages 4-12 years), for a total of 344 retinal measurements and 432 blood pressure measurements. Linear mixed-effect models were used to estimate associations between PM2.5 or Ox (same-day, 3-day, 7-day, and 21-day means) and retinal vessel diameter and blood pressure. Interactions between PM2.5 and Ox were also examined. Ox was inversely associated with retinal arteriolar diameter; the strongest association was observed for 7-day mean exposures, where each 10 ppb increase in Ox was associated with a 2.63 μm (95% CI - 4.63, - 0.63) decrease in arteriolar diameter. Moreover, Ox modified associations between PM2.5 and arteriolar diameter, with weak inverse associations observed between PM2.5 and arteriolar diameter only at higher concentrations of Ox. Our results suggest that outdoor air pollution impacts the retinal microvasculature of children and interactions between PM2.5 and Ox may play an important role in determining the magnitude and direction of these associations.
Collapse
Affiliation(s)
- Jill Korsiak
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, 1100 Pine Avenue West, Montreal, QC, H3A 1A3, Canada
| | - Kay-Lynne Perepeluk
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, 1100 Pine Avenue West, Montreal, QC, H3A 1A3, Canada
| | - Nicholas G Peterson
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, 1100 Pine Avenue West, Montreal, QC, H3A 1A3, Canada
| | - Ryan Kulka
- Air Health Science Division, Health Canada, 269 Laurier Ave West, Ottawa, ON, K1A 0K9, Canada
| | - Scott Weichenthal
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, 1100 Pine Avenue West, Montreal, QC, H3A 1A3, Canada.
- Air Health Science Division, Health Canada, 269 Laurier Ave West, Ottawa, ON, K1A 0K9, Canada.
| |
Collapse
|
17
|
Vilcassim MJR, Callahan AE, Zierold KM. Travelling to polluted cities: a systematic review on the harm of air pollution on international travellers' health. J Travel Med 2021; 28:6210993. [PMID: 33823002 DOI: 10.1093/jtm/taab055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 03/23/2021] [Accepted: 03/30/2021] [Indexed: 01/22/2023]
Abstract
RATIONALE FOR REVIEW In 2019, approximately, 1.4 billion people travelled internationally. Many individuals travel to megacities where air pollution concentrations can vary significantly. Short-term exposure to air pollutants can cause morbidity and mortality related to cardiovascular and respiratory disease, with the literature clearly reporting a strong association between short-term exposure to particulate matter ≤2.5 μm and ozone with adverse health outcomes in resident populations. However, limited research has been conducted on the health impacts of short-term exposure to air pollution in individuals who travel internationally. The objective of this systematic review was to review the evidence for the respiratory and cardiovascular health impacts from exposure to air pollution during international travel to polluted cities in adults aged ≥18 years old. KEY FINDINGS We searched PubMed, Scopus and EMBASE for studies related to air pollution and the health impacts on international travellers. Of the initially identified 115 articles that fit the search criteria, 6 articles were selected for the final review. All six studies found indications of adverse health impacts of air pollution exposure on international travellers, with most of the changes being reversible upon return to their home country/city. However, none of these studies contained large populations nor investigated vulnerable populations, such as children, elderly or those with pre-existing conditions. CONCLUSIONS More research is warranted to clearly understand the impacts of air pollution related changes on travellers' health, especially on vulnerable groups who may be at higher risk of adverse impacts during travel to polluted cities.
Collapse
Affiliation(s)
- M J Ruzmyn Vilcassim
- Department of Environmental Health Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Amy E Callahan
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kristina M Zierold
- Department of Environmental Health Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
18
|
Shkirkova K, Lamorie-Foote K, Connor M, Patel A, Barisano G, Baertsch H, Liu Q, Morgan TE, Sioutas C, Mack WJ. Effects of ambient particulate matter on vascular tissue: a review. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2020; 23:319-350. [PMID: 32972334 PMCID: PMC7758078 DOI: 10.1080/10937404.2020.1822971] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Fine and ultra-fine particulate matter (PM) are major constituents of urban air pollution and recognized risk factors for cardiovascular diseases. This review examined the effects of PM exposure on vascular tissue. Specific mechanisms by which PM affects the vasculature include inflammation, oxidative stress, actions on vascular tone and vasomotor responses, as well as atherosclerotic plaque formation. Further, there appears to be a greater PM exposure effect on susceptible individuals with pre-existing cardiovascular conditions.
Collapse
Affiliation(s)
| | - Krista Lamorie-Foote
- Zilkha Neurogenetic Institute, University of Southern California
- Keck School of Medicine, University of Southern California
| | - Michelle Connor
- Zilkha Neurogenetic Institute, University of Southern California
- Keck School of Medicine, University of Southern California
| | - Arati Patel
- Zilkha Neurogenetic Institute, University of Southern California
- Keck School of Medicine, University of Southern California
| | | | - Hans Baertsch
- Zilkha Neurogenetic Institute, University of Southern California
- Keck School of Medicine, University of Southern California
| | - Qinghai Liu
- Zilkha Neurogenetic Institute, University of Southern California
| | - Todd E. Morgan
- Leonard Davis School of Gerontology, University of Southern California
| | - Constantinos Sioutas
- Department of Civil and Environmental Engineering, Viterbi School of Engineering, University of Southern California
| | - William J. Mack
- Zilkha Neurogenetic Institute, University of Southern California
- Leonard Davis School of Gerontology, University of Southern California
| |
Collapse
|
19
|
Münzel T, Steven S, Frenis K, Lelieveld J, Hahad O, Daiber A. Environmental Factors Such as Noise and Air Pollution and Vascular Disease. Antioxid Redox Signal 2020; 33:581-601. [PMID: 32245334 DOI: 10.1089/ars.2020.8090] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Significance: According to the World Health Organization, noncommunicable diseases are the globally leading cause of mortality. Recent Advances: About 71% of 56 million deaths that occurred worldwide are due to noncommunicable cardiovascular risk factors, including tobacco smoking, unhealthy diets, lack of physical activity, overweight, arterial hypertension, diabetes, and hypercholesterolemia, which can be either avoided or substantially reduced. Critical Issues: Thus, it is estimated that 80% of premature heart disease, stroke, and diabetes can be prevented. More recent evidence indicates that environmental stressors such as noise and air pollution contribute significantly to the global burden of cardiovascular disease. In the present review, we focus primarily on important environmental stressors such as transportation noise and air pollution. We discuss the pathophysiology of vascular damage caused by these environmental stressors, with emphasis on early subclinical damage of the vasculature such as endothelial dysfunction and the role of oxidative stress. Future Directions: Lower legal thresholds and mitigation measures should be implemented and may help to prevent vascular damage.
Collapse
Affiliation(s)
- Thomas Münzel
- Center of Cardiology 1, Molecular Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Berlin, Germany
| | - Sebastian Steven
- Center of Cardiology 1, Molecular Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Katie Frenis
- Center of Cardiology 1, Molecular Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | | | - Omar Hahad
- Center of Cardiology 1, Molecular Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Berlin, Germany
| | - Andreas Daiber
- Center of Cardiology 1, Molecular Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Berlin, Germany
| |
Collapse
|
20
|
Gangwar RS, Bevan GH, Palanivel R, Das L, Rajagopalan S. Oxidative stress pathways of air pollution mediated toxicity: Recent insights. Redox Biol 2020; 34:101545. [PMID: 32505541 PMCID: PMC7327965 DOI: 10.1016/j.redox.2020.101545] [Citation(s) in RCA: 174] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/01/2020] [Accepted: 04/16/2020] [Indexed: 02/08/2023] Open
Abstract
Ambient air pollution is a leading environmental cause of morbidity and mortality globally with most of the outcomes of cardiovascular origin. While numerous mechanisms are proposed to explain the link between air pollutants and cardiovascular events, the evidence supports a role for oxidative stress as a critical intermediary pathway in the transduction of systemic responses in the cardiovascular system. Indeed, alterations in vascular function are a critical step in the development of cardiometabolic disorders such as hypertension, diabetes, and atherosclerosis. This review will provide an overview of the impact of particulate and gaseous pollutants on oxidative stress from human and animal studies published in the last five years. We discuss current gaps in knowledge and evidence to date implicating the role of oxidative stress with an emphasis on inhalational exposures. We conclude with the identification of gaps, and an exhortation for further studies to elucidate the impact of oxidative stress in air pollution mediated effects. Particulate matter air pollution is the leading risk factor for cardiovascular morbidity and mortality globally. Mechanisms of oxidative stress mediated pathways. How does lung inflammation crucial to inhalational exposure mediate systemic toxicity? Review of recent animal and human exposure studies providing insights into oxidative stress pathways.
Collapse
Affiliation(s)
- Roopesh Singh Gangwar
- Cardiovascular Research Institute, University Hospitals, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Graham H Bevan
- Cardiovascular Research Institute, University Hospitals, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Rengasamy Palanivel
- Cardiovascular Research Institute, University Hospitals, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Lopa Das
- Cardiovascular Research Institute, University Hospitals, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Sanjay Rajagopalan
- Cardiovascular Research Institute, University Hospitals, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
21
|
Miller MR. Oxidative stress and the cardiovascular effects of air pollution. Free Radic Biol Med 2020; 151:69-87. [PMID: 31923583 PMCID: PMC7322534 DOI: 10.1016/j.freeradbiomed.2020.01.004] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/31/2019] [Accepted: 01/03/2020] [Indexed: 12/11/2022]
Abstract
Cardiovascular causes have been estimated to be responsible for more than two thirds of the considerable mortality attributed to air pollution. There is now a substantial body of research demonstrating that exposure to air pollution has many detrimental effects throughout the cardiovascular system. Multiple biological mechanisms are responsible, however, oxidative stress is a prominent observation at many levels of the cardiovascular impairment induced by pollutant exposure. This review provides an overview of the evidence that oxidative stress is a key pathway for the different cardiovascular actions of air pollution.
Collapse
Affiliation(s)
- Mark R Miller
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH4 3RL, United Kingdom.
| |
Collapse
|
22
|
Gao D, Ripley S, Weichenthal S, Godri Pollitt KJ. Ambient particulate matter oxidative potential: Chemical determinants, associated health effects, and strategies for risk management. Free Radic Biol Med 2020; 151:7-25. [PMID: 32430137 DOI: 10.1016/j.freeradbiomed.2020.04.028] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 04/27/2020] [Indexed: 12/14/2022]
Abstract
Exposure to ambient air pollution has an adverse influence on human health. There is increasing evidence that oxidative potential (OP), the capacity of airborne pollutants to oxidize target molecules by generating redox oxidizing species, is a plausible metric for particulate matter (PM) toxicity. Here we describe the commonly used acellular techniques for measuring OP (respiratory tract lining fluid, dithiothreitol, ascorbic acid, and electron paramagnetic resonance assays) and review the PM chemical constituents that have been identified to drive the OP response. We further perform a review of the epidemiologic literature to identify studies that reported an association between exposure to ambient PM and a health outcome in a human population, and in which exposure was measured by both PM mass concentration and OP. Laboratory studies have shown that specific redox-active metals and quinones are able to contribute OP directly. However, interactions among PM species may alter the redox properties of PM components. In ambient PM measurements, all OP assays were found to be correlated with metals (Fe, Cu) and organic species (photochemically aged organics). Across the epidemiological studies reviewed, associations between fine PM (PM2.5) mass and cardio-respiratory outcomes were found to be stronger at elevated OP levels but findings varied across the different OP measurement techniques. Future work should aim to identify specific situations in which PM OP can improve air pollution exposure assessment and/or risk management. This may be particularly useful in countries with low PM2.5 mass concentrations over broad spatial scales where such information may greatly improve the efficiency of risk management activities.
Collapse
Affiliation(s)
- Dong Gao
- Department of Environmental Health Sciences, School of Public Health, Yale University, New Haven, CT, United States
| | - Susannah Ripley
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Quebec, Canada
| | - Scott Weichenthal
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Quebec, Canada; Air Health Science Division, Health Canada, Ottawa, Ontario, Canada
| | - Krystal J Godri Pollitt
- Department of Environmental Health Sciences, School of Public Health, Yale University, New Haven, CT, United States; Yale Center for Perinatal, Pediatric, and Environmental Epidemiology, Yale School of Public Health, New Haven, CT, United States.
| |
Collapse
|
23
|
Crobeddu B, Baudrimont I, Deweirdt J, Sciare J, Badel A, Camproux AC, Bui LC, Baeza-Squiban A. Lung Antioxidant Depletion: A Predictive Indicator of Cellular Stress Induced by Ambient Fine Particles. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:2360-2369. [PMID: 31961142 DOI: 10.1021/acs.est.9b05990] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Regulations on ambient particulate matter (PM) are becoming more stringent because of adverse health effects arising from PM exposure. PM-induced oxidant production is a key mechanism behind the observed health effects and is heavily dependent on PM composition. Measurement of the intrinsic oxidative potential (OP) of PM could provide an integrated indicator of PM bioreactivity and could serve as a better metric of PM hazard exposure than PM mass concentration. The OP of two chemically contrasted PM2.5 samples was compared through four acellular assays, and OP predictive capability was evaluated in different cellular assays on two in vitro lung cell models. PM2.5 collected in Paris at a site close to the traffic exhibited a systematically higher OP in all assays compared to PM2.5 enriched in particles from domestic wood burning. Similar results were obtained for oxidative stress, expression of antioxidant enzymes, and pro-inflammatory chemokine in human bronchial epithelial and endothelial cells. The strongest correlations between OP assays and cellular responses were observed with the antioxidant (ascorbic acid and glutathione) depletion (OPAO) assay. Multivariate regression analysis from OP daily measurements suggested that OPAO was strongly correlated with polycyclic aromatic hydrocarbons at the traffic site while it was correlated with potassium for the domestic wood burning sample.
Collapse
Affiliation(s)
- Belinda Crobeddu
- Université de Paris, BFA, UMR 8251 CNRS , F-75013 Paris , France
| | - Isabelle Baudrimont
- Université de Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux U1045 , F-33604 Pessac , France
| | - Juliette Deweirdt
- Université de Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux U1045 , F-33604 Pessac , France
| | - Jean Sciare
- Laboratoire des Sciences du Climat et de l'Environnement, CEA-CNRS-UVSQ , F-91190 Gif-sur-Yvette , France
- Energy, Environment and Water Research Center , The Cyprus Institute , 2121 Aglantzia , Cyprus
| | - Anne Badel
- Université de Paris, BFA, UMR 8251, CNRS, ERL 1133, Inserm , F-75013 Paris , France
| | - Anne-Claude Camproux
- Université de Paris, BFA, UMR 8251, CNRS, ERL 1133, Inserm , F-75013 Paris , France
| | - Linh Chi Bui
- Université de Paris, BFA, UMR 8251 CNRS , F-75013 Paris , France
| | | |
Collapse
|
24
|
Riggs DW, Zafar N, Krishnasamy S, Yeager R, Rai SN, Bhatnagar A, O'Toole TE. Exposure to airborne fine particulate matter is associated with impaired endothelial function and biomarkers of oxidative stress and inflammation. ENVIRONMENTAL RESEARCH 2020; 180:108890. [PMID: 31718786 PMCID: PMC6899204 DOI: 10.1016/j.envres.2019.108890] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 10/30/2019] [Accepted: 11/01/2019] [Indexed: 05/16/2023]
Abstract
Epidemiological evidence suggests that exposure to air pollution is a leading risk factor for cardiovascular disease (CVD). However, there is little direct evidence linking exposure to vascular dysfunction. We conducted a cross-sectional study of 100 participants, recruited from the University of Louisville Clinics. Endothelial function was assessed by calculating the reactive hyperemia index (RHI). Oxidative stress was indexed by measuring urinary levels of isoprostanes (n = 91). Inflammatory biomarkers were measured in the plasma (n = 80). Daily average PM2.5 levels were obtained from regional monitoring stations. Adjusted associations between PM2.5 levels and measured outcomes were tested using generalized linear models. The average age of participants was 48 years (44% male, 62% white); 52% had a diagnosis of hypertension, and 44% had type-2 diabetes. A 12.4% decrease in RHI was associated with 10 μg/m3 increase in PM2.5 (95% CI: 21.0, -2.7). The F-2 isoprostane metabolite showed a positive association of 28.4% (95% CI: 2.7, 60.3) per 10 μg/m3 increase in PM2.5. Positive associations were observed with angiopoietin 1 (17.4%; 95% CI: 2.8, 33.8), vascular endothelial growth factor (10.4%; 95% CI: 0.6, 21.0), placental growth factor (31.7%; 95% CI: 12.2, 54.5), intracellular adhesion molecule-1 (24.6%; 95% CI: 1.6, 52.8), and matrix metalloproteinase-9 (30.3%; 95% CI: 8.0, 57.5) per 10 μg/m3 increase in PM2.5. Additionally, a 10 μg/m3 increase in PM2.5 was associated with 15.9% decrease in vascular cell adhesion molecule-1 (95% CI: 28.3, -1.3). These findings suggest that exposure to PM2.5 is associated with impaired vascular function, which may result from oxidative stress and inflammation, thereby leading to a pro-atherogenic state.
Collapse
Affiliation(s)
- Daniel W Riggs
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, 40292, USA; Department of Bioinformatics and Biostatics, University of Louisville, Louisville, KY, 40292, USA
| | - Nagma Zafar
- Department of Pediatrics, University of Louisville, Louisville, KY, 40292, USA
| | - Sathya Krishnasamy
- Department of Medicine, Division of Endocrinology, Metabolism, and Diabetes, University of Louisville, Louisville, KY, 40292, USA
| | - Ray Yeager
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, 40292, USA
| | - Shesh N Rai
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, 40292, USA; Department of Bioinformatics and Biostatics, University of Louisville, Louisville, KY, 40292, USA; Biostatistics and Bioinformatics Facility, JG Brown Cancer Center, University of Louisville, Louisville, KY, 40292, USA
| | - Aruni Bhatnagar
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, 40292, USA
| | - Timothy E O'Toole
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, 40292, USA.
| |
Collapse
|
25
|
Abstract
The microcirculation maintains tissue homeostasis through local regulation of blood flow and oxygen delivery. Perturbations in microvascular function are characteristic of several diseases and may be early indicators of pathological changes in the cardiovascular system and in parenchymal tissue function. These changes are often mediated by various reactive oxygen species and linked to disruptions in pathways such as vasodilation or angiogenesis. This overview compiles recent advances relating to redox regulation of the microcirculation by adopting both cellular and functional perspectives. Findings from a variety of vascular beds and models are integrated to describe common effects of different reactive species on microvascular function. Gaps in understanding and areas for further research are outlined. © 2020 American Physiological Society. Compr Physiol 10:229-260, 2020.
Collapse
Affiliation(s)
- Andrew O Kadlec
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Medical Scientist Training Program, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - David D Gutterman
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Department of Medicine-Division of Cardiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
26
|
Jung EJ, Na W, Lee KE, Jang JY. Elderly Mortality and Exposure to Fine Particulate Matter and Ozone. J Korean Med Sci 2019; 34:e311. [PMID: 31833266 PMCID: PMC6911868 DOI: 10.3346/jkms.2019.34.e311] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 10/15/2019] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The effects on particulate matter (PM) and ozone on health are being reported by a number of studies. The effects of these air pollutants are likely to be stronger in the elderly population, but studies in this regard are scarce. The purpose of this study was to study the effects of PM ≤ 2.5 μ and ozone on chronic health effects of the elderly population. METHODS In order to analyze the health status of the elderly population, National Statistical Office Mortality records were used. In this study, we calculated the number of deaths in Seoul of people who were 60 years or older between 2002 and 2012. The current study analyzed each disorder separately and the lag effect. PM and ozone were analyzed using the single exposure model, as well as the adjusted multi exposure model. RESULTS In the single exposure analysis with PM2.5 as the exposure variable, with the increase of 10 μ/m³, the number of deaths increased by 1.0039 fold, and vascular disease 1.0053 fold. In the multi exposure model adjusting for ozone, the number of deaths increased by 1.0037 fold, and vascular disease 1.0049 fold. In the single exposure analysis with ozone as the exposure variable, with the increase of 10 ppb, the number of deaths increased by 1.0038 fold, and in the multi exposure model adjusting for PM2.5, the number of deaths increased by 1.0027 fold. These results differed depending on the period or season. There was a 5-day lag effect between PM2.5 and deaths in the multi exposure model, and 1.0028 fold when adjusted for ozone. There was a 1-day lag effect in single exposure models with ozone as the main variable, and 1.0027 fold increase in deaths. CONCLUSION In our study, an increase in the number of deaths in the elderly population in accordance with the increase in the PM2.5 and ozone was found. The association found in our study could also influence socioeconomic burden. Future studies need to be performed in regards to younger population, as well as other air pollutants.
Collapse
Affiliation(s)
- En Joo Jung
- Department of Preventive Medicine, Ajou University School of Medicine, Suwon, Korea.
| | | | - Kyung Eun Lee
- Occupational Safety and Health Research Institute, Korea Occupational Safety and Health Agency, Ulsan, Korea
| | - Jae Yeon Jang
- Department of Preventive Medicine, Ajou University School of Medicine, Suwon, Korea
| |
Collapse
|
27
|
Bugge MD, Ulvestad B, Berlinger B, Stockfelt L, Olsen R, Ellingsen DG. Reactive hyperemia and baseline pulse amplitude among smelter workers exposed to fine and ultrafine particles. Int Arch Occup Environ Health 2019; 93:399-407. [PMID: 31773255 PMCID: PMC7078172 DOI: 10.1007/s00420-019-01491-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 11/15/2019] [Indexed: 11/24/2022]
Abstract
Objective Ambient exposure to fine particles is associated with increased cardiovascular morbidity and mortality. Associations between occupational particulate matter (PM) exposure and cardiovascular disease have been studied less. The objective of this study was to examine associations between PM exposure and endothelial function among workers in Norwegian smelters. Methods We examined endothelial function with Endo-PAT equipment after a working day (WD) and on a day off (DO) in 59 furnace workers recruited from three metal smelters in Norway. The difference in baseline pulse amplitude (BPA) and reactive hyperemia index (RHI) between the 2 days was analysed in relation to individual exposure to PM < 250 nm (PM250) or the respirable aerosol fraction of particles, and adjusted for relevant covariates. Results The exposure to PM250 ranged from 0.004 to 5.7 mg/m3. The mean BPA was significantly higher on WD relative to DO (772 vs. 535, p = 0.001). This difference was associated with PM concentrations among participants ≥ 34 years, but not among the younger workers. Reactive hyperemia was significantly lower on workdays relative to days off (1.70 vs. 1.84, p = 0.05). This difference was observed only among participants above the age 34. No associations with PM exposure were observed. Conclusions PM exposure was associated with higher BPA among participants older than 34 years. BPA reflects microvessel pulsatility. Our results may indicate an age-dependent cardiovascular susceptibility to PM exposure. Endothelial function measured by RHI was reduced on WD among participants 34 years and older, but we found no associations between PM exposure and RHI.
Collapse
Affiliation(s)
| | - B Ulvestad
- National Institute of Occupational Health, Oslo, Norway
| | - B Berlinger
- National Institute of Occupational Health, Oslo, Norway
| | - L Stockfelt
- Unit of Occupational and Environmental Medicine, Department of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - R Olsen
- National Institute of Occupational Health, Oslo, Norway
| | - D G Ellingsen
- National Institute of Occupational Health, Oslo, Norway
| |
Collapse
|
28
|
Morishita M, Wang L, Speth K, Zhou N, Bard RL, Li F, Brook JR, Rajagopalan S, Brook RD. Acute Blood Pressure and Cardiovascular Effects of Near-Roadway Exposures With and Without N95 Respirators. Am J Hypertens 2019; 32:1054-1065. [PMID: 31350540 PMCID: PMC7962899 DOI: 10.1093/ajh/hpz113] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/03/2019] [Accepted: 07/18/2019] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND The risk for cardiovascular events increases within hours of near-roadway exposures. We aimed to determine the traffic-related air pollution (TRAP) and biological mechanisms involved and if reducing particulate matter <2.5 µm (PM2.5) inhalation is protective. METHODS Fifty healthy-adults underwent multiple 2-hour near-roadway exposures (Tuesdays to Fridays) in Ann Arbor during 2 separate weeks (randomized to wear an N95 respirator during 1 week). Monday both weeks, participants rested 2 hours in an exam room (once wearing an N95 respirator). Brachial blood pressure, aortic hemodynamics, and heart rate variability were repeatedly measured during exposures. Endothelial function (reactive hyperemia index [RHI]) was measured post-exposures (Thursdays). Black carbon (BC), total particle count (PC), PM2.5, noise and temperature were measured throughout exposures. RESULTS PM2.5 (9.3 ± 7.7 µg/m3), BC (1.3 ± 0.6 µg/m3), PC (8,375 ± 4,930 particles/cm3) and noise (69.2 ± 4.2 dB) were higher (P values <0.01) and aortic hemodynamic parameters trended worse while near-roadway (P values<0.15 vs. exam room). Other outcomes were unchanged. Aortic hemodynamics trended towards improvements with N95 respirator usage while near-roadway (P values<0.15 vs. no-use), whereas other outcomes remained unaffected. Higher near-roadway PC and BC exposures were associated with increases in aortic augmentation pressures (P values<0.05) and trends toward lower RHI (P values <0.2). N95 respirator usage did not mitigate these adverse responses (nonsignificant pollutant-respirator interactions). Near-roadway outdoor-temperature and noise were also associated with cardiovascular changes. CONCLUSIONS Exposure to real-world combustion-derived particulates in TRAP, even at relatively low concentrations, acutely worsened aortic hemodynamics. Our mixed findings regarding the health benefits of wearing N95 respirators support that further studies are needed to validate if they adequately protect against TRAP given their growing worldwide usage.
Collapse
Affiliation(s)
- Masako Morishita
- Department of Family Medicine, College of Human Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Lu Wang
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Kelly Speth
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Nina Zhou
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Robert L Bard
- Division of Cardiovascular Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Fengyao Li
- Department of Family Medicine, College of Human Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Jeffrey R Brook
- Dalla Lana School of Public Health, University of Toronto, Ontario, Canada
| | - Sanjay Rajagopalan
- Division of Cardiovascular Medicine, Case Western Reserve Medical School, Cleveland, Ohio, USA
| | - Robert D Brook
- Division of Cardiovascular Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
29
|
Oxidative Potential Versus Biological Effects: A Review on the Relevance of Cell-Free/Abiotic Assays as Predictors of Toxicity from Airborne Particulate Matter. Int J Mol Sci 2019; 20:ijms20194772. [PMID: 31561428 PMCID: PMC6801578 DOI: 10.3390/ijms20194772] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/20/2019] [Accepted: 09/24/2019] [Indexed: 12/20/2022] Open
Abstract
Background and Objectives: The oxidative potential (OP) of particulate matter (PM) in cell-free/abiotic systems have been suggested as a possible measure of their biological reactivity and a relevant exposure metric for ambient air PM in epidemiological studies. The present review examined whether the OP of particles correlate with their biological effects, to determine the relevance of these cell-free assays as predictors of particle toxicity. Methods: PubMed, Google Scholar and Web of Science databases were searched to identify relevant studies published up to May 2019. The main inclusion criteria used for the selection of studies were that they should contain (1) multiple PM types or samples, (2) assessment of oxidative potential in cell-free systems and (3) assessment of biological effects in cells, animals or humans. Results: In total, 50 independent studies were identified assessing both OP and biological effects of ambient air PM or combustion particles such as diesel exhaust and wood smoke particles: 32 in vitro or in vivo studies exploring effects in cells or animals, and 18 clinical or epidemiological studies exploring effects in humans. Of these, 29 studies assessed the association between OP and biological effects by statistical analysis: 10 studies reported that at least one OP measure was statistically significantly associated with all endpoints examined, 12 studies reported that at least one OP measure was significantly associated with at least one effect outcome, while seven studies reported no significant correlation/association between any OP measures and any biological effects. The overall assessment revealed considerable variability in reported association between individual OP assays and specific outcomes, but evidence of positive association between intracellular ROS, oxidative damage and antioxidant response in vitro, and between OP assessed by the dithiothreitol (DDT) assay and asthma/wheeze in humans. There was little support for consistent association between OP and any other outcome assessed, either due to repeated lack of statistical association, variability in reported findings or limited numbers of available studies. Conclusions: Current assays for OP in cell-free/abiotic systems appear to have limited value in predicting PM toxicity. Clarifying the underlying causes may be important for further advancement in the field.
Collapse
|
30
|
Jiang H, Liu Y, Xie Y, Liu J, Chen T, Ma Q, He H. Oxidation Potential Reduction of Carbon Nanomaterials during Atmospheric-Relevant Aging: Role of Surface Coating. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:10454-10461. [PMID: 31403290 DOI: 10.1021/acs.est.9b02062] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Carbon nanomaterials from various sources are the important component of PM2.5 and have many adverse effects on human health. They are prone to interact with other pollutants and subsequently age, defined here as changes in chemical properties. In this work, we investigated the aging process of various carbon nanoparticle samples such as Special Black 4A, Printex U, single-walled carbon nanotubes, and hexane flame soot by ambient air and studied the evolution of their oxidation potential. We found that coatings of inorganic and organic species dominated the aging process of carbonaceous particles by ambient air. The amounts of disordered carbon and C-H functional groups of aged carbonaceous particles decreased during the aging process; meanwhile, the contents of sulfate and nitrate showed significant increases. In addition, the oxidation potential measured by the dithiothreitol assay remarkably declined as a function of aging time with ambient air evidently because of heterogeneous reactions between SO2 and NO2, as well as the coating with organic vapors. This work is important for understanding the oxidation potential changes of carbonaceous particles during atmospheric transport.
Collapse
Affiliation(s)
- Haotian Jiang
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Yongchun Liu
- Aerosol and Haze Laboratory, Advanced Innovation Center for Soft Matter Science and Engineering , Beijing University of Chemical Technology , Beijing 100029 , China
| | - Yun Xie
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | | | - Tianzeng Chen
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Qingxin Ma
- University of Chinese Academy of Sciences , Beijing 100049 , China
- Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment , Chinese Academy of Sciences , Xiamen 361021 , China
| | - Hong He
- University of Chinese Academy of Sciences , Beijing 100049 , China
- Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment , Chinese Academy of Sciences , Xiamen 361021 , China
| |
Collapse
|
31
|
Kirrane EF, Luben TJ, Benson A, Owens EO, Sacks JD, Dutton SJ, Madden M, Nichols JL. A systematic review of cardiovascular responses associated with ambient black carbon and fine particulate matter. ENVIRONMENT INTERNATIONAL 2019; 127:305-316. [PMID: 30953813 PMCID: PMC8517909 DOI: 10.1016/j.envint.2019.02.027] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 02/07/2019] [Accepted: 02/10/2019] [Indexed: 05/20/2023]
Abstract
BACKGROUND Exposure to fine particulate matter (PM2.5), an ambient air pollutant with mass-based standards promulgated under the Clean Air Act, and black carbon (BC), a common component of PM2.5, are both associated with cardiovascular health effects. OBJECTIVES To elucidate whether BC is associated with distinct, or stronger, cardiovascular responses compared to PM2.5, we conducted a systematic review. We evaluated the associations of short- and long-term BC, or the related component elemental carbon (EC), with cardiovascular endpoints including heart rate variability, heart rhythm, blood pressure and vascular function, ST segment depression, repolarization abnormalities, atherosclerosis and heart function, in the context of what is already known about PM2.5. DATA SOURCES We conducted a stepwise systematic literature search of the PubMed, Web of Science and TOXLINE databases and applied Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) guidelines for reporting our results. STUDY ELIGIBILITY CRITERIA Studies reporting effect estimates for the association of quantitative measurements of ambient BC (or EC) and PM2.5, with relevant cardiovascular endpoints (i.e. meeting inclusion criteria) were included in the review. Included studies were evaluated for risk of bias in study design and results. STUDY APPRAISAL AND SYNTHESIS METHODS Risk of bias evaluations assessed aspects of internal validity of study findings based on study design, conduct, and reporting to identify potential issues related to confounding or other biases. Study results are presented to facilitate comparison of the consistency of associations with PM2.5 and BC within and across studies. RESULTS Our results demonstrate similar associations for BC (or EC) and PM2.5 with the cardiovascular endpoints examined. Across studies, associations for BC and PM2.5 varied in their magnitude and precision, and confidence intervals were generally overlapping within studies. Where differences in the magnitude of the association between BC or EC and PM2.5 within a study could be discerned, no consistent pattern across the studies examined was apparent. LIMITATIONS We were unable to assess the independence of the effect of BC, relative the effect of PM2.5, on the cardiovascular system, nor was information available to understand the impact of differential exposure misclassification. CONCLUSIONS Overall, the evidence indicates that both BC (or EC) and PM2.5 are associated with cardiovascular effects but the available evidence is not sufficient to distinguish the effect of BC (or EC) from that of PM2.5 mass.
Collapse
Affiliation(s)
- E F Kirrane
- National Center for Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA.
| | - T J Luben
- National Center for Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - A Benson
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
| | - E O Owens
- National Center for Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA; National Center for Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, OH, USA
| | - J D Sacks
- National Center for Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - S J Dutton
- National Center for Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - M Madden
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA; Economics Department, Duke University, Durham, NC, USA
| | - J L Nichols
- National Center for Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| |
Collapse
|
32
|
Sources and Temporal Variations of Coarse Particulate Matter (PM) in Central Tehran, Iran. ATMOSPHERE 2019. [DOI: 10.3390/atmos10050291] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In this study, we used the positive matrix factorization (PMF) model to evaluate the sources of ambient coarse particulate matter (PM) and their temporal variations in two sampling sites, i.e., a school dormitory and a retirement home, located in central Tehran. 24-h ambient PM samples were collected using low-volume air samplers from May 2012 to June 2013. The collected filters were analyzed for their chemical components, including water-soluble ions, metals, and trace elements, which were used as the input to the PMF model. Our results indicated annual averages of 45.7 ± 3.8 µg/m3 and 36.2. ± 4.0 µg/m3 for coarse PM at the School dormitory and Tohid retirement home, respectively. Moreover, higher ambient coarse PM mass concentrations were observed in the warm season (53.3 ± 5.8 µg/m3 for school dormitory and 43.1 ± 6.1 µg/m3 for Tohid retirement home) as opposed to the cold season (41.4 ± 4.7 µg/m3 for school dormitory and 28.7 ± 4.6 µg/m3 for Tohid retirement home). Our PMF analysis also identified road dust, soil, and industry, and atmospherically processed coarse PM as the three sources of ambient coarse PM in central Tehran. Road dust, soil, and industry were the major sources of ambient coarse PM, contributing respectively to 74 ± 9% and 19 ± 2% of the total coarse PM mass concentration, while atmospherically aged aerosols had a rather minimal contribution of 7 ± 1% to total coarse PM mass concentration. The temporal trends of the resolved factors also revealed higher contributions of road dust to total ambient coarse PM during warm season as opposed to cold season, due to the increased resuspension rate from road surfaces as a result of higher wind speeds, and temperatures, combined with lower relative humidity. Similarly, higher resuspension rate of mechanically originated particulates resulted in higher warm-season time contributions of the soil factor. Results of this study clearly revealed the key role of road dust and non-tail pipe emissions on ambient coarse PM mass concentrations in crowded areas of central Tehran, and have important implications on the potential health impacts that can be caused by these difficult to mitigate sources of coarse PM.
Collapse
|
33
|
Bates JT, Fang T, Verma V, Zeng L, Weber RJ, Tolbert PE, Abrams JY, Sarnat SE, Klein M, Mulholland JA, Russell AG. Review of Acellular Assays of Ambient Particulate Matter Oxidative Potential: Methods and Relationships with Composition, Sources, and Health Effects. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:4003-4019. [PMID: 30830764 DOI: 10.1021/acs.est.8b03430] [Citation(s) in RCA: 250] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Oxidative stress is a potential mechanism of action for particulate matter (PM) toxicity and can occur when the body's antioxidant capacity cannot counteract or detoxify harmful effects of reactive oxygen species (ROS) due to an excess presence of ROS. ROS are introduced to the body via inhalation of PM with these species present on and/or within the particles (particle-bound ROS) and/or through catalytic generation of ROS in vivo after inhaling redox-active PM species (oxidative potential, OP). The recent development of acellular OP measurement techniques has led to a surge in research across the globe. In this review, particle-bound ROS techniques are discussed briefly while OP measurements are the focus due to an increasing number of epidemiologic studies using OP measurements showing associations with adverse health effects in some studies. The most common OP measurement techniques, including the dithiothreitol assay, glutathione assay, and ascorbic acid assay, are discussed along with evidence for utility of OP measurements in epidemiologic studies and PM characteristics that drive different responses between assay types (such as species composition, emission source, and photochemistry). Overall, most OP assays respond to metals like copper than can be found in emission sources like vehicles. Some OP assays respond to organics, especially photochemically aged organics, from sources like biomass burning. Select OP measurements have significant associations with certain cardiorespiratory end points, such as asthma, congestive heart disease, and lung cancer. In fact, multiple studies have found that exposure to OP measured using the dithiothreitol and glutathione assays drives higher risk ratios for certain cardiorespiratory outcomes than PM mass, suggesting OP measurements may be integrating the health-relevant fraction of PM and will be useful tools for future health analyses. The compositional impacts, including species and emission sources, on OP could have serious implications for health-relevant PM exposure. Though more work is needed, OP assays show promise for health studies as they integrate the impacts of PM species and properties on catalytic redox reactions into one measurement, and current work highlights the importance of metals, organic carbon, vehicles, and biomass burning emissions to PM exposures that could impact health.
Collapse
Affiliation(s)
- Josephine T Bates
- Civil and Environmental Engineering , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Ting Fang
- Department of Chemistry , University of California Irvine , Irvine , California 92697 , United States
| | - Vishal Verma
- Civil and Environmental Engineering , University of Illinois at Urbana-Champaign , Champaign , Illinois 61820 , United States
| | - Linghan Zeng
- Earth and Atmospheric Sciences , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Rodney J Weber
- Earth and Atmospheric Sciences , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Paige E Tolbert
- Rollins School of Public Health , Emory University , Atlanta , Georgia 30322 , United States
| | - Joseph Y Abrams
- Center for Disease Control and Prevention, Atlanta , Georgia 30329 , United States
| | - Stefanie E Sarnat
- Rollins School of Public Health , Emory University , Atlanta , Georgia 30322 , United States
| | - Mitchel Klein
- Rollins School of Public Health , Emory University , Atlanta , Georgia 30322 , United States
| | - James A Mulholland
- Civil and Environmental Engineering , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Armistead G Russell
- Civil and Environmental Engineering , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| |
Collapse
|
34
|
Acute Effects of Air Pollution and Noise from Road Traffic in a Panel of Young Healthy Adults. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16050788. [PMID: 30836690 PMCID: PMC6427505 DOI: 10.3390/ijerph16050788] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/20/2019] [Accepted: 02/26/2019] [Indexed: 01/04/2023]
Abstract
Panel studies are an efficient means to assess short-term effects of air pollution and other time-varying environmental exposures. Repeated examinations of volunteers allow for an in-depth analysis of physiological responses supporting the biological interpretation of environmental impacts. Twenty-four healthy students walked for 1 h at a minimum of four separate occasions under each of the following four settings: along a busy road, along a busy road wearing ear plugs, in a park, and in a park but exposed to traffic noise (65 dB) through headphones. Particle mass (PM2.5, PM1), particle number, and noise levels were measured throughout each walk. Lung function and exhaled nitrogen oxide (NO) were measured before, immediately after, 1 h after, and approximately 24 h after each walk. Blood pressure and heart rate variability were measured every 15 min during each walk. Recorded air pollution levels were found to correlate with reduced lung function. The effects were clearly significant for end-expiratory flows and remained visible up to 24 h after exposure. While immediate increases in airway resistance could be interpreted as protective (muscular) responses to particulate air pollution, the persisting effects indicate an induced inflammatory reaction. Noise levels reduced systolic blood pressure and heart rate variability. Maybe due to the small sample size, no effects were visible per specific setting (road vs. park).
Collapse
|
35
|
Cakmak S, Hebbern C, Vanos J, Crouse DL, Tjepkema M. Exposure to traffic and mortality risk in the 1991-2011 Canadian Census Health and Environment Cohort (CanCHEC). ENVIRONMENT INTERNATIONAL 2019; 124:16-24. [PMID: 30639904 DOI: 10.1016/j.envint.2018.12.045] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 12/18/2018] [Accepted: 12/20/2018] [Indexed: 06/09/2023]
Abstract
There is evidence that local traffic density and living near major roads can adversely affect health outcomes. We aimed to assess the relationship between local road length, proximity to primary highways, and cause-specific mortality in the 1991 Canadian Census Health and Environment Cohort (CanCHEC). In this long-term study of 2.6 million people, based on completion of the long-form census in 1991 and followed until 2011, we used annual residential addresses to determine the total length of local roads within 200 m of postal code representative points and the postal code's distance to primary highways. The association between exposure to traffic and cause-specific non-accidental mortality was estimated using Cox proportional hazards models, adjusting for individual covariates and contextual factors, including census division-level proportion in high school, the percentage of recent immigrants, and neighborhood income. We performed sensitivity analyses, including adjustment for exposure to PM2.5, NO2, or O3, restricting to subjects in core urban areas, and spatial variation by climatic zone. The hazard ratio (HR) for all non-accidental mortality associated with an interquartile increase in length of local roads was 1.05 (95% CI 1.04, 1.05), while for an interquartile range increase in proximity to primary highways, the HR was 1.03 (95% CI 1.02, 1.04). HRs by traffic quartile increased with increasing lengths of local roads, as well as with closer proximity to primary highways, for all mortality causes. The associations were stronger within subjects' resident in urban core areas, attenuated by adjustment for PM2.5, and HRs showed limited spatial variation by climatic zone. In the CanCHEC cohort, exposure to higher road density and proximity to major traffic roads was associated with increased mortality risk from cerebrovascular and cardiovascular disease, ischemic heart disease, COPD, respiratory disease, and lung cancer, with unclear results for diabetes.
Collapse
Affiliation(s)
- Sabit Cakmak
- Population Studies Division, Environmental Health Science & Research Bureau, Health Canada, 101 Tunney's Pasture Driveway, Ottawa, ON K1A 0K9, Canada.
| | - Chris Hebbern
- Climate Change and Innovation Bureau, Health Canada, 269 Laurier Avenue, Ottawa, ON K1A 0K9, Canada
| | - Jennifer Vanos
- Climate, Atmospheric Science & Physical Oceanography, Scripps Institution of Oceanography, University of California at San Diego, 9500 Gilman Drive #0206, USA; Arizona State University, School of Sustainability, Tempe, AZ 85281, USA
| | - Dan Lawson Crouse
- New Brunswick Institute for Research, Data, and Training (NB-IRDT) and Department of Sociology University of New Brunswick Fredericton, NB PO Box 4400, E3B 5A3, Canada
| | | |
Collapse
|
36
|
Stevens JS, Padilla S, DeMarini DM, Hunter DL, Martin WK, Thompson LC, Gilmour MI, Hazari MS, Farraj AK. Zebrafish Locomotor Responses Reveal Irritant Effects of Fine Particulate Matter Extracts and a Role for TRPA1. Toxicol Sci 2019; 161:290-299. [PMID: 29048608 DOI: 10.1093/toxsci/kfx217] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Exposure to fine particulate matter (PM) air pollution causes adverse cardiopulmonary outcomes. Yet, the limited capacity to readily identify contributing PM sources and associated PM constituents in any given ambient air shed impedes risk assessment efforts. The health effects of PM have been attributed in part to its capacity to elicit irritant responses. A variety of chemicals trigger irritant behavior responses in zebrafish that can be easily measured. The purposes of this study were to examine the utility of zebrafish locomotor responses in the toxicity assessment of fine PM and its chemical fractions and uncover mechanisms of action. Locomotor responses were recorded in 6-day-old zebrafish exposed for 60 min in the dark at 26 °C to the extractable organic matter of a compressor-generated diesel exhaust PM (C-DEP) and 4 of its fractions (F1-F4) containing varying chemical classes of increasing polarity. The role of the transient receptor potential (TRP) cation channel TRPA1, a chemical sensor in mammals and zebrafish, in locomotor responses to C-DEP, was also examined. Acrolein, an environmental irritant and known activator of TRPA1, and all extracts induced concentration-dependent locomotor responses whose potencies ranked as follows: polar F3 > weakly polar F2 > C-DEP > highly polar F4 > nonpolar F1, indicating that polar and weakly polar fractions that included nitro- and oxy-polyaromatic hydrocarbons (PAHs), drove C-DEP responses. Irritant potencies in fish positively correlated with mutagenic potencies of the same extracts in strains of Salmonella sensitive to nitro- and oxy-PAHs, further implicating these chemical classes in the zebrafish responses to C-DEP. Pharmacologic inhibition of TRPA1 blocked locomotor responses to acrolein and the extracts. Taken together, these data indicate that the zebrafish locomotor assay may help expedite toxicity screening of fine PM sources, identify causal chemical classes, and uncover plausible biological mechanisms.
Collapse
Affiliation(s)
- Joey S Stevens
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee 37830
| | | | | | | | - W Kyle Martin
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee 37830
| | - Leslie C Thompson
- Environmental Public Health Division, USEPA, Research Triangle Park, North Carolina 27711
| | - M Ian Gilmour
- Environmental Public Health Division, USEPA, Research Triangle Park, North Carolina 27711
| | - Mehdi S Hazari
- Environmental Public Health Division, USEPA, Research Triangle Park, North Carolina 27711
| | - Aimen K Farraj
- Environmental Public Health Division, USEPA, Research Triangle Park, North Carolina 27711
| |
Collapse
|
37
|
Zhang HW, Lin CW, Kok VC, Tseng CH, Lin YP, Li TC, Sung FC, Wen CP, Hsiung CA, Hsu CY. Incidence of retinal vein occlusion with long-term exposure to ambient air pollution. PLoS One 2019; 14:e0222895. [PMID: 31550294 PMCID: PMC6759191 DOI: 10.1371/journal.pone.0222895] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 09/08/2019] [Indexed: 02/07/2023] Open
Abstract
This study aimed to investigate whether long-term exposure to airborne hydrocarbons, including volatile organic compounds, increases the risk of developing retinal vein occlusion (RVO) among the population of Taiwan. A retrospective cohort study involving 855,297 people was conducted. Cox proportional hazards regression analysis fitted the multiple pollutant models for two targeted pollutants, including total hydrocarbons (THC), nonmethane hydrocarbons (NMHC) were used, and the risk of RVO was estimated. The chi-squared test and one-way analysis of variance were used to test differences in demographics and comorbidity distribution among tertiles of the targeted pollutants. Before controlling for multiple pollutants, hazard ratios for the overall population were 19.88 (95% CI: 17.56-22.50) at 0.51-ppm increases in THC and 4.33 (95% CI: 3.97-4.73) at 0.27-ppm increases in NMHC. The highest adjusted hazard ratios for different multiple pollutant models of each targeted pollutant were statistically significant (all p values were ≤0.05) for all patients at 29.67 (95% CI: 25.57-34.42) for THC and 16.24 (95% CI: 14.14-18.65) for NMHC. Our findings suggest that long-term exposure to THC and NMHC contribute to RVO development.
Collapse
Affiliation(s)
- Han-Wei Zhang
- PhD Program for Aging, China Medical University, Taichung, Taiwan
- Institute of Electrical Control Engineering, Department of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu, Taiwan
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan
- * E-mail:
| | - Chao-Wen Lin
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
| | - Victor C. Kok
- Disease Informatics Research Group, Asia University Taiwan, Taichung, Taiwan
- Department of Internal Medicine, Kuang Tien General Hospital, Taichung, Taiwan
| | - Chun-Hung Tseng
- Department of Neurology, China Medical University Hospital, and School of Medicine, China Medical University, Taichung, Taiwan
| | - Yuan-Pei Lin
- Institute of Electrical Control Engineering, Department of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu, Taiwan
| | - Tsai-Chung Li
- Graduate Institute of Biostatistics, College of Public Health, China Medical University, Taichung, Taiwan
- Department of Healthcare Administration, College of Health Science, Asia University, Taichung, Taiwan
| | - Fung-Chang Sung
- Graduate Institute of Clinical Medical Science and School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| | - Chi Pang Wen
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan
| | - Chao A. Hsiung
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan
| | - Chung Y. Hsu
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan
| |
Collapse
|
38
|
|
39
|
Wang Y, Tang M. Review of in vitro toxicological research of quantum dot and potentially involved mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 625:940-962. [PMID: 29996464 DOI: 10.1016/j.scitotenv.2017.12.334] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 12/28/2017] [Accepted: 12/29/2017] [Indexed: 06/08/2023]
Abstract
Quantum dots (QDs) are one of emerging engineering nanomaterials (NMs) with advantageous properties which can act as candidates for clinical imaging and diagnosis. Nevertheless, toxicological studies have proved that QDs for better or worse pose threats to diverse systems which are attributed to the release of metal ion and specific characteristics of nanoparticles (NPs), hampering the wide use of QDs to biomedical area. It has been postulated that mechanisms of toxicity evoked by QDs have implications in oxidative stress, reactive oxygen species (ROS), inflammation and release of metal ion. Meanwhile, DNA damage and disturbance of subcellular structures would occur during QDs treatment. This review is intended to conclude the cytotoxicity of QDs in multiple systems, as well as the potential mechanisms on the basis of recent literatures. Finally, toxicity-related factors are clarified, among which chirality seems to be a newly proposed influence factor that determines the destiny of cells in response to QDs. However, details of interaction between QDs and cells have not been well elucidated. Given that molecular mechanisms of QDs-induced toxicity are still not clearly elucidated, further research should be required for this meaningful topic.
Collapse
Affiliation(s)
- Yan Wang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, Jiangsu, 210009, China; Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Meng Tang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, Jiangsu, 210009, China; Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, Jiangsu, 210009, China.
| |
Collapse
|
40
|
Reis H, Reis C, Sharip A, Reis W, Zhao Y, Sinclair R, Beeson L. Diesel exhaust exposure, its multi-system effects, and the effect of new technology diesel exhaust. ENVIRONMENT INTERNATIONAL 2018; 114:252-265. [PMID: 29524921 DOI: 10.1016/j.envint.2018.02.042] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 02/24/2018] [Accepted: 02/24/2018] [Indexed: 11/07/2023]
Abstract
Exposure to diesel exhaust (DE) from vehicles and industry is hazardous and affects proper function of organ systems. DE can interfere with normal physiology after acute and chronic exposure to particulate matter (PM). Exposure leads to potential systemic disease processes in the central nervous, visual, hematopoietic, respiratory, cardiovascular, and renal systems. In this review, we give an overview of the epidemiological evidence supporting the harmful effects of diesel exhaust, and the numerous animal studies conducted to investigate the specific pathophysiological mechanisms behind DE exposure. Additionally, this review includes a summary of studies that used biomarkers as an indication of biological plausibility, and also studies evaluating new technology diesel exhaust (NTDE) and its systemic effects. Lastly, this review includes new approaches to improving DE emissions, and emphasizes the importance of ongoing study in this field of environmental health.
Collapse
Affiliation(s)
- Haley Reis
- Loma Linda University School of Medicine, 11175 Campus Street, Loma Linda, CA 92350, USA
| | - Cesar Reis
- Department of Preventive Medicine, Loma Linda University Medical Center, 24785 Stewart Street, Suite 204, Loma Linda, CA 92354, USA; Loma Linda University School of Medicine, 11175 Campus Street, Loma Linda, CA 92350, USA.
| | - Akbar Sharip
- Department of Occupational Medicine, Loma Linda University Medical Center, 328 East Commercial Road, Suite 101, San Bernardino, CA 92408, USA
| | - Wenes Reis
- Department of Preventive Medicine, Loma Linda University Medical Center, 24785 Stewart Street, Suite 204, Loma Linda, CA 92354, USA
| | - Yong Zhao
- School of Public Health and Management, Chongqing Medical University, Chongqing, China; Research Center for Medicine and Social Development, Chongqing Medical University, Chongqing, China; The Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, China
| | - Ryan Sinclair
- Center for Community Resilience, School of Public Health, Loma Linda University, Loma Linda, CA 92350, USA
| | - Lawrence Beeson
- Center for Nutrition, Healthy Lifestyle, and Disease Prevention, School of Public Health, Loma Linda University, Loma Linda, CA 92350, USA.
| |
Collapse
|
41
|
Choi J, Oh JY, Lee YS, Min KH, Hur GY, Lee SY, Kang KH, Shim JJ. Harmful impact of air pollution on severe acute exacerbation of chronic obstructive pulmonary disease: particulate matter is hazardous. Int J Chron Obstruct Pulmon Dis 2018; 13:1053-1059. [PMID: 29681728 PMCID: PMC5881527 DOI: 10.2147/copd.s156617] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Introduction Particulate matter and air pollution in Korea are becoming worse. There is a lack of research regarding the impact of particulate matter on patients with COPD. Therefore, the purpose of this study was to investigate the effects of various air pollution factors, including particulate matter, on the incidence rate of severe acute exacerbations of COPD (AECOPD) events. Methods We analyzed the relationship between air pollutants and AECOPD events that required hospitalization at Guro Hospital in Korea from January 1, 2015 to May 31, 2017. We used general linear models with Poisson distribution and log-transformation to obtain adjusted relative risk (RR). We conducted further analysis through the Comprehensive Air-quality Index (CAI) that is used in Korea. Results Among various other air pollutants, particulate matter was identified as a major source of air pollution in Korea. When the CAI score was over 50, the incidence rate of severe AECOPD events was statistically significantly higher [RR 1.612, 95% CI, 1.065-2.440, P=0.024]. Additionally, the particulate matter levels 3 days before hospitalization were statistically significant [RR 1.003, 95% CI, 1.001-1.005, P=0.006]. Conclusion Particulate matter and air pollution increase the incidence rate of severe AECOPD events. COPD patients should be cautioned against outdoor activities when particulate matter levels are high.
Collapse
Affiliation(s)
- Juwhan Choi
- Division of Respiratory, Allergy and Critical Care Medicine, Department of Internal Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jee Youn Oh
- Division of Respiratory, Allergy and Critical Care Medicine, Department of Internal Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Young Seok Lee
- Division of Respiratory, Allergy and Critical Care Medicine, Department of Internal Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Kyung Hoon Min
- Division of Respiratory, Allergy and Critical Care Medicine, Department of Internal Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Gyu Young Hur
- Division of Respiratory, Allergy and Critical Care Medicine, Department of Internal Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Sung Yong Lee
- Division of Respiratory, Allergy and Critical Care Medicine, Department of Internal Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Kyung Ho Kang
- Division of Respiratory, Allergy and Critical Care Medicine, Department of Internal Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jae Jeong Shim
- Division of Respiratory, Allergy and Critical Care Medicine, Department of Internal Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
42
|
Van den Eeden L, Lambrechts N, Verheyen V, Berth M, Schoeters G, Jacquemyn Y. Impact of particulate matter on mothers and babies in Antwerp (IPANEMA): a prospective cohort study on the impact of pollutants and particulate matter in pregnancy. BMJ Open 2018; 8:e020028. [PMID: 29525771 PMCID: PMC5855181 DOI: 10.1136/bmjopen-2017-020028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
INTRODUCTION Air pollution is a hot topic and is known to cause multiple health issues. Especially pregnant women seem to be vulnerable to environmental issues. There are data suggesting that exposure contributes to hypertensive disorders.This study aims to evaluate the effects of exposure to particulate matter (PM) and outdoor air pollutants on the clinical pregnancy outcome for mother and child and to determine which biochemical changes in maternal, placental and cord blood best explain this effect. METHODS AND ANALYSIS This study is a prospective cohort study. We aim to recruit 200 pregnant women. The outcome measurements will include maternal parameters, labour parameters and neonatal parameters.Multiple samples will be analysed such as maternal urine samples (8-oxo-deoxyguanosine), maternal blood samples (routine blood sampling, biomarkers of pre-eclampsia and transcript markers), maternal hair samples, neonatal blood samples (transcript markers) combined with extensive questionnaires. ETHICS AND DISSEMINATION We obtain informed consent from each participant prior to enrolment in the study.The study has received approval by the Ethical Committee of the Antwerp University Hospital (14/40/411).IPANEMA is the first prospective study to assess the impact of PM on mothers and babies in Antwerp, Belgium.Findings from this study will contribute to improve knowledge on the impact of exposure to air pollution on mothers and babies and will also define biomarkers as predictors for pregnant women at risk. TRIAL REGISTRATION ClinicalTrials.gov: 14/40/411. Registered 22-10-2015.
Collapse
Affiliation(s)
- Lena Van den Eeden
- Thomas More University College, Lier, Belgium
- Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, UA, Belgium
| | | | - Veerle Verheyen
- VITO, Boeretang, Mol, Belgium
- Department of Biomedical Sciences, University of Antwerp, Wilrijk, Belgium
| | - Mario Berth
- Algemeen Medisch Laboratorium, Antwerp, Belgium
| | - Greet Schoeters
- VITO, Boeretang, Mol, Belgium
- Department of Biomedical Sciences, University of Antwerp, Wilrijk, Belgium
- University of Southern Denmark, Odense, Denmark
| | - Yves Jacquemyn
- Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, UA, Belgium
- Departement of Gynaecology and Obstetrics, Antwerp University Hospital, Edegem, Belgium
| |
Collapse
|
43
|
Ye D, Klein M, Mulholland JA, Russell AG, Weber R, Edgerton ES, Chang HH, Sarnat JA, Tolbert PE, Ebelt Sarnat S. Estimating Acute Cardiovascular Effects of Ambient PM 2.5 Metals. ENVIRONMENTAL HEALTH PERSPECTIVES 2018; 126:027007. [PMID: 29467104 PMCID: PMC6066344 DOI: 10.1289/ehp2182] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 10/05/2017] [Accepted: 12/08/2017] [Indexed: 05/19/2023]
Abstract
BACKGROUND Few epidemiologic studies have investigated health effects of water-soluble fractions of PM2.5 metals, the more biologically accessible fractions of metals, in their attempt to identify health-relevant components of ambient PM2.5. OBJECTIVES In this study, we estimated acute cardiovascular effects of PM2.5 components in an urban population, including a suite of water-soluble metals that are not routinely measured at the ambient level. METHODS Ambient concentrations of criteria gases, PM2.5, and PM2.5 components were measured at a central monitor in Atlanta, Georgia, during 1998-2013, with some PM2.5 components only measured during 2008-2013. In a time-series framework using Poisson regression, we estimated associations between these pollutants and daily counts of emergency department (ED) visits for cardiovascular diseases in the five-county Atlanta area. RESULTS Among the PM2.5 components we examined during 1998-2013, water-soluble iron had the strongest estimated effect on cardiovascular outcomes [R͡R=1.012 (95% CI: 1.005, 1.019), per interquartile range increase (20.46ng/m3)]. The associations for PM2.5 and other PM2.5 components were consistent with the null when controlling for water-soluble iron. Among PM2.5 components that were only measured during 2008-2013, water-soluble vanadium was associated with cardiovascular ED visits [R͡R=1.012 (95% CI: 1.000, 1.025), per interquartile range increase (0.19ng/m3)]. CONCLUSIONS Our study suggests cardiovascular effects of certain water-soluble metals, particularly water-soluble iron. The observed associations with water-soluble iron may also point to certain aspects of traffic pollution, when processed by acidifying sulfate, as a mixture harmful for cardiovascular health. https://doi.org/10.1289/EHP2182.
Collapse
Affiliation(s)
- Dongni Ye
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Mitchel Klein
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - James A Mulholland
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Armistead G Russell
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Rodney Weber
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Eric S Edgerton
- Atmospheric Research & Analysis, Inc., Cary, North Carolina, USA
| | - Howard H Chang
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Jeremy A Sarnat
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Paige E Tolbert
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Stefanie Ebelt Sarnat
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
44
|
Shiraiwa M, Ueda K, Pozzer A, Lammel G, Kampf CJ, Fushimi A, Enami S, Arangio AM, Fröhlich-Nowoisky J, Fujitani Y, Furuyama A, Lakey PSJ, Lelieveld J, Lucas K, Morino Y, Pöschl U, Takahama S, Takami A, Tong H, Weber B, Yoshino A, Sato K. Aerosol Health Effects from Molecular to Global Scales. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:13545-13567. [PMID: 29111690 DOI: 10.1021/acs.est.7b04417] [Citation(s) in RCA: 231] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Poor air quality is globally the largest environmental health risk. Epidemiological studies have uncovered clear relationships of gaseous pollutants and particulate matter (PM) with adverse health outcomes, including mortality by cardiovascular and respiratory diseases. Studies of health impacts by aerosols are highly multidisciplinary with a broad range of scales in space and time. We assess recent advances and future challenges regarding aerosol effects on health from molecular to global scales through epidemiological studies, field measurements, health-related properties of PM, and multiphase interactions of oxidants and PM upon respiratory deposition. Global modeling combined with epidemiological exposure-response functions indicates that ambient air pollution causes more than four million premature deaths per year. Epidemiological studies usually refer to PM mass concentrations, but some health effects may relate to specific constituents such as bioaerosols, polycyclic aromatic compounds, and transition metals. Various analytical techniques and cellular and molecular assays are applied to assess the redox activity of PM and the formation of reactive oxygen species. Multiphase chemical interactions of lung antioxidants with atmospheric pollutants are crucial to the mechanistic and molecular understanding of oxidative stress upon respiratory deposition. The role of distinct PM components in health impacts and mortality needs to be clarified by integrated research on various spatiotemporal scales for better evaluation and mitigation of aerosol effects on public health in the Anthropocene.
Collapse
Affiliation(s)
- Manabu Shiraiwa
- Department of Chemistry, University of California , Irvine, California 92697, United States
| | - Kayo Ueda
- Kyoto University , Kyoto 606-8501, Japan
| | | | - Gerhard Lammel
- Research Centre for Toxic Compounds in the Environment, Masaryk University , 625 00 Brno, Czech Republic
| | - Christopher J Kampf
- Institute for Organic Chemistry, Johannes Gutenberg University , 55122 Mainz, Germany
| | - Akihiro Fushimi
- National Institute for Environmental Studies , Tsukuba 305-8506, Japan
| | - Shinichi Enami
- National Institute for Environmental Studies , Tsukuba 305-8506, Japan
| | - Andrea M Arangio
- Swiss Federal Institute of Technology in Lausanne (EPFL) , Lausanne 1015, Switzerland
| | | | - Yuji Fujitani
- National Institute for Environmental Studies , Tsukuba 305-8506, Japan
| | - Akiko Furuyama
- National Institute for Environmental Studies , Tsukuba 305-8506, Japan
| | - Pascale S J Lakey
- Department of Chemistry, University of California , Irvine, California 92697, United States
| | | | | | - Yu Morino
- National Institute for Environmental Studies , Tsukuba 305-8506, Japan
| | | | - Satoshi Takahama
- Swiss Federal Institute of Technology in Lausanne (EPFL) , Lausanne 1015, Switzerland
| | - Akinori Takami
- National Institute for Environmental Studies , Tsukuba 305-8506, Japan
| | | | | | - Ayako Yoshino
- National Institute for Environmental Studies , Tsukuba 305-8506, Japan
| | - Kei Sato
- National Institute for Environmental Studies , Tsukuba 305-8506, Japan
| |
Collapse
|
45
|
Provost EB, Int Panis L, Saenen ND, Kicinski M, Louwies T, Vrijens K, De Boever P, Nawrot TS. Recent versus chronic fine particulate air pollution exposure as determinant of the retinal microvasculature in school children. ENVIRONMENTAL RESEARCH 2017; 159:103-110. [PMID: 28783615 DOI: 10.1016/j.envres.2017.07.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/31/2017] [Accepted: 07/13/2017] [Indexed: 05/22/2023]
Abstract
BACKGROUND Microvascular changes may represent an underlying mechanism through which exposure to fine particulate matter with a diameter ≤ 2.5µm (PM2.5) contributes to age-related disease development. We investigated the effect of recent and chronic exposure to PM2.5 on the microcirculation, exemplified by retinal vessel diameters, using repeated measurements in 8- to 12-year-old children. METHODS 221 children (49.1% girls; mean age 9.9 years) were examined repeatedly (25 one, 124 two, and 72 three times) adding up to 489 retinal vessel examinations. Same-day exposure to PM2.5 was measured at school. In addition, recent (same and previous day) and chronic (yearly mean) exposure was modelled at the child's residence using a high-resolution interpolation model. Residential proximity to major roads was also assessed. Changes in retinal vessel diameters associated with recent and chronic exposures were estimated using mixed models, while adjusting for other known covariates such as sex, age, BMI, blood pressure and birth weight. RESULTS Each 10µg/m³ increment in same-day exposure to PM2.5 measured at school was associated with 0.35µm (95% CI: 0.09-0.61µm) narrower retinal arterioles and 0.35µm (-0.03 to 0.73µm) wider venules. Children living 100m closer to a major road had 0.30µm (0.05-0.54µm) narrower arterioles. CONCLUSIONS Blood vessel diameters of the retinal microcirculation of healthy school-aged children respond to same-day PM2.5 exposure. Furthermore, children living closer to major roads had smaller arteriolar diameters. Our results suggest that the microcirculation, with retinal microvasculature as a proxy in this study, is a pathophysiological target for air pollution in children.
Collapse
Affiliation(s)
- Eline B Provost
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium; Environmental Risk and Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Luc Int Panis
- Environmental Risk and Health, Flemish Institute for Technological Research (VITO), Mol, Belgium; School for Mobility, Hasselt University, Hasselt, Belgium
| | - Nelly D Saenen
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Michal Kicinski
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Tijs Louwies
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium; Environmental Risk and Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Karen Vrijens
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Patrick De Boever
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium; Environmental Risk and Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium; Department of Public Health & Primary Care, Leuven University, Leuven, Belgium.
| |
Collapse
|
46
|
Kelly FJ, Fussell JC. Role of oxidative stress in cardiovascular disease outcomes following exposure to ambient air pollution. Free Radic Biol Med 2017; 110:345-367. [PMID: 28669628 DOI: 10.1016/j.freeradbiomed.2017.06.019] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 06/02/2017] [Accepted: 06/28/2017] [Indexed: 12/19/2022]
Abstract
Exposure to ambient air pollution is associated with adverse cardiovascular outcomes. These are manifested through several, likely overlapping, pathways including at the functional level, endothelial dysfunction, atherosclerosis, pro-coagulation and alterations in autonomic nervous system balance and blood pressure. At numerous points within each of these pathways, there is potential for cellular oxidative imbalances to occur. The current review examines epidemiological, occupational and controlled exposure studies and research employing healthy and diseased animal models, isolated organs and cell cultures in assessing the importance of the pro-oxidant potential of air pollution in the development of cardiovascular disease outcomes. The collective body of data provides evidence that oxidative stress (OS) is not only central to eliciting specific cardiac endpoints, but is also implicated in modulating the risk of succumbing to cardiovascular disease, sensitivity to ischemia/reperfusion injury and the onset and progression of metabolic disease following ambient pollution exposure. To add to this large research effort conducted to date, further work is required to provide greater insight into areas such as (a) whether an oxidative imbalance triggers and/or worsens the effect and/or is representative of the consequence of disease progression, (b) OS pathways and cardiac outcomes caused by individual pollutants within air pollution mixtures, or as a consequence of inter-pollutant interactions and (c) potential protection provided by nutritional supplements and/or pharmacological agents with antioxidant properties, in susceptible populations residing in polluted urban cities.
Collapse
Affiliation(s)
- Frank J Kelly
- NIHR Health Protection Research Unit in Health Impact of Environmental Hazards, Facility of Life Sciences and Medicine, King's College London, 150 Stamford Street, London SE1 9NH, UK.
| | - Julia C Fussell
- NIHR Health Protection Research Unit in Health Impact of Environmental Hazards, Facility of Life Sciences and Medicine, King's College London, 150 Stamford Street, London SE1 9NH, UK
| |
Collapse
|
47
|
The Interaction Effects of Meteorological Factors and Air Pollution on the Development of Acute Coronary Syndrome. Sci Rep 2017; 7:44004. [PMID: 28276507 PMCID: PMC5343658 DOI: 10.1038/srep44004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 02/02/2017] [Indexed: 11/08/2022] Open
Abstract
This study investigated the interaction effects of meteorological factors and air pollutants on the onset of acute coronary syndrome (ACS). Data of ACS patients were obtained from the Taiwan ACS Full Spectrum Registry and comprised 3164 patients with a definite onset date during the period October 2008 and January 2010 at 39 hospitals. Meteorological conditions and air pollutant concentrations at the 39 locations during the 488-day period were obtained. Time-lag Poisson and logistic regression were used to explore their association with ACS incidence. One-day lag atmospheric pressure (AP), humidity, particulate matter (PM2.5, and PM10), and carbon monoxide (CO) all had significant interaction effects with temperature on ACS occurrence. Days on which high temperatures (>26 °C) and low AP (<1009 hPa) occurred the previous day were associated with a greater likelihood of increased incidence of developing ACS. Typhoon Morakot was an example of high temperature with extremely low AP associated with higher ACS incidence than the daily average. Combinations of high concentrations of PM or CO with low temperatures (<21 °C) and high humidity levels with low temperatures were also associated with increased incidence of ACS. Atmospheric pollution and weather factors have synergistic effects on the incidence of ACS.
Collapse
|