1
|
Zhu Y, Wu Q, Guo J, Xu B, Zhao H, Liu C. Ferroptosis-associated alterations in diabetes following ischemic stroke: Insights from RNA sequencing. Brain Res 2024; 1845:149274. [PMID: 39395647 DOI: 10.1016/j.brainres.2024.149274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/14/2024]
Abstract
OBJECTIVE Ferroptosis is an iron-dependent form of programmed cell death associated with lipid peroxidation. Though diabetes worsens cerebral injury and clinical outcomes in stroke, it is poorly understood whether ferroptosis contributes to diabetes-exacerbated stroke. This study aimed to identify ferroptosis-associated differentially expressed genes in ischemic stroke under diabetic condition and then explore their roles using comprehensive bioinformatics analyses. METHODS Type 1 diabetes (T1D) model was established in male mice at 8-10 weeks of age by one intraperitoneal injection of streptozotocin (110 mg/kg). Ischemic stroke was induced by a transient 45-minute middle cerebral artery occlusion and evaluated three days thereafter. Ischemic brain cortex was dissected 24 h after the reperfusion and subjected to bulk tissue RNA sequencing followed by bioinformatics analysis and verification of key findings via quantitative real-time PCR. RESULTS Enlarged infarct size was seen in diabetic, as compared with non-diabetic mice, in conjunction with worsened neurological behaviors. Both body and spleen weights were reduced in diabetic as compared with non-diabetic mice. There was a trend for reduced survival rate in diabetic mice following the stroke. In RNA sequencing analysis, we identified 1299 differentially expressed genes in ischemic brain between diabetic and non-diabetic mice, with upregulation and downregulation for 732 and 567 genes, respectively. Among these genes, 27 genes were associated with ferroptosis. Further analysis reveals that solute carrier family 25 member 28(SLC25A28) and sterol carrier protein 2(SCP2) were the top genes associated with ferroptosis in diabetic mice following ischemic stroke. In several bioinformatics analyses, we found SLC25A28, one of the top ferroptosis-related genes, is involved in several metabolic and regulatory pathways as well as the regulatory complexity of microRNAs and circular RNAs, which demonstrates the potential role of SLC25A28 in diabetes-exacerbated stroke. Drug network analysis suggests SLC25A28 as a potential therapeutic target for ameliorating ischemic injury in diabetes. CONCLUSIONS Our bulk RNA sequencing and bioinformatics analyses show that altered ferroptosis signaling pathway was associated with the exacerbation of experimental stroke injury under diabetic condition. Especially, additional investigation into the mechanisms of SLC25A28 and SCP2 in diabetes-exacerbated stroke will be explored in the future study.
Collapse
Affiliation(s)
- Ying Zhu
- School of Nursing, Capital Medical University, Beijing, China
| | - Qike Wu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Jiayi Guo
- Department of Neurobiology, School of Basic Medical Science, Capital Medical University, Beijing, China
| | - Baohui Xu
- Division of Vascular Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, United States
| | - Heng Zhao
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Cuiying Liu
- School of Nursing, Capital Medical University, Beijing, China.
| |
Collapse
|
2
|
Končeková J, Kotorová K, Némethová M, Bona M, Bonová P. Effectiveness of remote ischaemic conditioning is not affected by hyper-inflammation in a rat model of stroke. Sci Rep 2024; 14:20750. [PMID: 39237655 PMCID: PMC11377586 DOI: 10.1038/s41598-024-71328-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/27/2024] [Indexed: 09/07/2024] Open
Abstract
The inflammation and coagulopathy during coronavirus disease (COVID-19) impairs the efficiency of the current stroke treatments. Remote ischaemic conditioning (RIC) has shown potential in recent years to protect the brain and other organs against pathological conditions. This study aimed to evaluate the efficiency of RIC in brain infarct size using TTC staining and lung injury reduction by H&E staining during the hyper-inflammatory response in rats. The inflammation and coagulopathy were assessed by sedimentation rate, haematocrit, systemic oxidative stress and clotting time. Moreover, we observed changes in the cytokine profile. The results of the first part of the experiment showed that the inflammation and lung injury are fully developed after 24 h of intratracheal LPS administration. At this time, we induced focal brain ischaemia and examined the effect of RIC pre- and post-treatment. Our results showed that RIPre-C reduced the infarct size by about 23%, while RIPost-C by about 30%. The lung injury was also reduced following both treatments. Moreover, RIC modulated systemic inflammation. The level of chemokines CINC-1, LIX and RANTES decreased after 24 h of post-ischaemic reperfusion in treated animals compared to non-treated. The RIC-mediated decrease of inflammation was reflected in improved sedimentation rate and hematocrit, as well as reduced systemic oxidative stress. The results of this work showed neuroprotective and lung protective effects of RIC with a decrease in inflammation response. On the basis of our results, we assume that immunomodulation through the chemokines CINC-1, LIX, and RANTES play a role in RIC-mediated protection.
Collapse
Affiliation(s)
- Jana Končeková
- Institute of Neurobiology, Biomedical Research Center of the Slovak Academy of Sciences, Soltesovej 4-6, 040 01, Kosice, Slovak Republic
| | - Klaudia Kotorová
- Institute of Neurobiology, Biomedical Research Center of the Slovak Academy of Sciences, Soltesovej 4-6, 040 01, Kosice, Slovak Republic
| | - Miroslava Némethová
- Institute of Neurobiology, Biomedical Research Center of the Slovak Academy of Sciences, Soltesovej 4-6, 040 01, Kosice, Slovak Republic
| | - Martin Bona
- Department of Medical Physiology, Faculty of Medicine, University of Pavol Jozef Safarik, Trieda SNP 1, 040 01, Kosice, Slovak Republic
| | - Petra Bonová
- Institute of Neurobiology, Biomedical Research Center of the Slovak Academy of Sciences, Soltesovej 4-6, 040 01, Kosice, Slovak Republic.
| |
Collapse
|
3
|
Wang Q, Li WN, Otkur W, Cui Y, Chen HS. Neutrophil-to-Lymphocyte Ratio, Platelet-to-Lymphocyte Ratio, Systemic Immune Inflammation Index and Efficacy of Remote Ischemic Conditioning in Acute Ischemic Stroke: A Post Hoc Exploratory Analysis of the RICAMIS Study. J Inflamm Res 2024; 17:5543-5553. [PMID: 39185106 PMCID: PMC11344552 DOI: 10.2147/jir.s460928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 07/30/2024] [Indexed: 08/27/2024] Open
Abstract
Background We conducted a post-hoc analysis of the RICAMIS trial to investigate the effect of neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), and systemic immune inflammation index (SII) on the efficacy of remote ischemic conditioning treatment. Methods In this post-hoc analysis, NLR, PLR, and SII were measured before randomization. Patients were divided into two groups based on their cut-off values: high vs low NLR, high vs low PLR, and high vs low SII groups. Each group was further subdivided into RIC and control groups. The primary endpoint was a poor outcome (mRS 2-6 at 90 days). Differences in the primary endpoint between the RIC and control subgroups were compared, and the interactions of treatment assignment with NLR, PLR, and SII were evaluated. Results A total of 1679 patients were included in the final analysis. Compared with the control group, RIC significantly improved functional outcomes regardless of the inflammation status. The improved probability of poor outcome in the RIC vs control group was numerically greater in the high vs low inflammation group (NLR, 7.8% vs 5.1%; PLR, 7% vs 6.5%; SII, 9% vs 5.3%). However, we did not find an interaction effect of an intervention (RIC or control) with different NLR, PLR, or SII on clinical outcomes (P > 0.05). In addition, the NLR and SII were independently associated with functional outcomes in all patients, regardless of whether they received RIC. Conclusion Inflammation may not affect the efficacy of RIC in patients with acute moderate ischemic stroke, although a lower probability of poor outcome at 90 days was identified in patients with a high vs low inflammatory status.
Collapse
Affiliation(s)
- Qi Wang
- Department of Neurology, General Hospital of Northern Theater Command, Shenyang, 110016, People’s Republic of China
- Dalian Medical University, Dalian, People’s Republic of China
| | - Wen-Na Li
- Department of Neurology, Tangshan Central Hospital, Tangshan, People’s Republic of China
| | - Wuxiyar Otkur
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, People’s Republic of China
| | - Yu Cui
- Department of Neurology, General Hospital of Northern Theater Command, Shenyang, 110016, People’s Republic of China
| | - Hui-Sheng Chen
- Department of Neurology, General Hospital of Northern Theater Command, Shenyang, 110016, People’s Republic of China
- Dalian Medical University, Dalian, People’s Republic of China
| |
Collapse
|
4
|
Huang LY, Zhang YD, Liu YN, Liang ZY, Chen J, Wang B, Yin QL, Wang PP, Wang W, Qi SH. Remote Ischemic Postconditioning-Mediated Neuroprotection against Stroke by Promoting Ketone Body-Induced Ferroptosis Inhibition. ACS Chem Neurosci 2024; 15:2223-2232. [PMID: 38634698 DOI: 10.1021/acschemneuro.4c00014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024] Open
Abstract
Neuronal death resulting from ischemic stroke is the primary cause of adult mortality and disability, and effective neuroprotective agents for poststroke intervention are still lacking. Remote ischemic postconditioning (RIPostC) has demonstrated significant protective effects against ischemia in various organs; however, the specific mechanisms are not fully understood. This study investigated the potential neuroprotective mechanisms of RIPostC in the context of ischemic stroke. Using a rat model of middle cerebral artery occlusion, we found that RIPostC mitigated neurological damage, improved movement in the open-field test, and protected against neuronal apoptosis. In terms of energy metabolism, RIPostC enhanced ATP levels, suppressed lactate content, and increased the production of ketone bodies (KBs). In the ferroptosis assay, RIPostC protected against lipoperoxidation, reversed the reduction of glutathione peroxidase 4 (GPX4), and mitigated the excessive expression of long-chain acyl-CoA synthetase family member 4 (ACSL4). In oxygen-glucose deprivation/reoxygenation-treated HT22 cells, KBs maintained GPX4 levels, suppressed ACSL4 expression, and preserved the mitochondrial cristae number. However, the effect of KBs on the expression of GPX4, ACSL4, and the number of mitochondrial cristae was blocked by erastin. Moreover, both RIPostC and KBs reduced total iron and ferrous ion content by repressing iron transporters both in vitro and in vivo. In conclusion, KBs-induced mitigation of ferroptosis could represent a new therapeutic mechanism for RIPostC in treating stroke.
Collapse
Affiliation(s)
- Lin-Yan Huang
- School of Medical Technology, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R China
| | - Yi-de Zhang
- School of Medical Technology, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R China
- Xuzhou Central Hospital, Xuzhou 221000, P.R China
| | - Yi-Ning Liu
- School of Medical Technology, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R China
| | - Zhi-Yan Liang
- School of Medical Technology, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R China
| | - Jie Chen
- School of Medical Technology, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R China
| | - Bin Wang
- Department of Laboratory Medicine, the Affiliated Hospital of Xuzhou Medical University, No.99 Huaihai West Road, Xuzhou 221000, P.R China
| | - Qi-Long Yin
- Department of Laboratory Medicine, the Affiliated Hospital of Xuzhou Medical University, No.99 Huaihai West Road, Xuzhou 221000, P.R China
- Pharmacology College, Xuzhou Medical University, Xuzhou 221004, P.R China
| | - Pei-Pei Wang
- Pharmacology College, Xuzhou Medical University, Xuzhou 221004, P.R China
| | - Wan Wang
- School of Medical Technology, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R China
| | - Su-Hua Qi
- School of Medical Technology, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R China
| |
Collapse
|
5
|
Jones IH, Collins JE, Hall NJ, Heinson AI. Transcriptomic analysis of the effect of remote ischaemic conditioning in an animal model of necrotising enterocolitis. Sci Rep 2024; 14:10783. [PMID: 38734725 PMCID: PMC11088709 DOI: 10.1038/s41598-024-61482-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024] Open
Abstract
Necrotising enterocolitis (NEC) has a complex pathophysiology but the common end-point is ischaemia reperfusion injury (IRI) and intestinal necrosis. We have previously reported that RIC significantly reduces the intestinal injury in a rat model of NEC. Here we describe the changes in intestinal mRNA occurring in the intestine of animals exposed to IRI, both with and without RIC. Related rat-pups were randomly assigned to four groups: SHAM, IRI only, RIC only and RIC + IRI. IRI animals, underwent 40 min of intestinal ischaemia, and 90 min of reperfusion. Animals that underwent RIC had three cycles of 5 min of alternating ischaemia/reperfusion by means of a ligature applied to the hind limb. Samples from the terminal ileum were immediately stored in RNA-preserving media for later next generation sequencing and transciptome analysis using R v 3.6.1. Differential expression testing showed that 868 genes differentially expressed in animals exposed to RIC alone compared to SHAM and 135 in the IRI and RIC group compared to IRI alone. Comparison between these two sets showed that 25 genes were differentially expressed in both groups. Pro-inflammatory molecules: NF-ĸβ2, Cxcl1, SOD2 and Map3k8 all show reduced expression in response to RIC. Targeted gene analysis revealed increased expression in PI3K which is part of the so-called RISK-pathway which is a key part of the protective mechanisms of RIC in the heart. Overall, this transcriptomic analysis shows that RIC provides a protective effect to the intestine via anti-inflammatory pathways. This could be particularly relevant to treating and preventing NEC.
Collapse
Affiliation(s)
- Ian Howard Jones
- University Surgery Unit, Faculty of Medicine, University of Southampton, Tremona Road, Southampton, UK.
- Birmingham Children's Hospital, Steelhouse Lane, Birmingham, UK.
| | - Jane Elizabeth Collins
- University Surgery Unit, Faculty of Medicine, University of Southampton, Tremona Road, Southampton, UK
- Clinical and Experimental Sciences, University of Southampton School of Medicine, Southampton, UK
| | - Nigel John Hall
- University Surgery Unit, Faculty of Medicine, University of Southampton, Tremona Road, Southampton, UK
- Southampton Children's Hospital, Tremona Road, Southampton, UK
| | - Ashley Ivan Heinson
- University Surgery Unit, Faculty of Medicine, University of Southampton, Tremona Road, Southampton, UK
- Clinical Informatics Research Unit, Cancer Sciences, University of Southampton School of Medicine, Southampton, UK
| |
Collapse
|
6
|
Baranova K, Nalivaeva N, Rybnikova E. Neuroadaptive Biochemical Mechanisms of Remote Ischemic Conditioning. Int J Mol Sci 2023; 24:17032. [PMID: 38069355 PMCID: PMC10707673 DOI: 10.3390/ijms242317032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
This review summarizes the currently known biochemical neuroadaptive mechanisms of remote ischemic conditioning. In particular, it focuses on the significance of the pro-adaptive effects of remote ischemic conditioning which allow for the prevention of the neurological and cognitive impairments associated with hippocampal dysregulation after brain damage. The neuroimmunohumoral pathway transmitting a conditioning stimulus, as well as the molecular basis of the early and delayed phases of neuroprotection, including anti-apoptotic, anti-oxidant, and anti-inflammatory components, are also outlined. Based on the close interplay between the effects of ischemia, especially those mediated by interaction of hypoxia-inducible factors (HIFs) and steroid hormones, the involvement of the hypothalamic-pituitary-adrenocortical system in remote ischemic conditioning is also discussed.
Collapse
Affiliation(s)
| | | | - Elena Rybnikova
- I. P. Pavlov Institute of Physiology, Russian Academy of Sciences, 199034 Saint Petersburg, Russia; (K.B.); (N.N.)
| |
Collapse
|
7
|
Zhang Y, Zhang X, Li F, Lin C, Zhang D, Duan B, Zhao Y, Li X, Xu D, Cheng J, Zhao L, Wang J, Wang W. Expression profiles of the CD274 and PLEKHH2 gene and association of its polymorphism with hematologic parameters in sheep. Vet Immunol Immunopathol 2023; 259:110597. [PMID: 37094535 DOI: 10.1016/j.vetimm.2023.110597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 04/10/2023] [Accepted: 04/20/2023] [Indexed: 04/26/2023]
Abstract
CD274 and PLEKHH2 genes have been identified as immune- and multiple diseases-related genes, and have recently garnered significant interest. However, their role in regulating immune functions in sheep remains largely unexplored. In this study, we aimed to investigate the effects of polymorphisms in CD274 and PLEKHH2 on hematologic parameters in 915 sheep. Our results showed that the CD274 and PLEKHH2 genes were most highly expressed in the spleen and tail fat, respectively, as determined by qRT-PCR. We also identified a G to A mutation (g 0.11858 G > A) in the exon 4 region of CD274, and a C to G mutation (g 0.38384 C > G) in the intron 8 region of PLEKH2. Association analysis revealed that CD274 g 0.11858 G > A was significantly associated with RBC, HCT, MCHC, and MCV (P < 0.05), while PLEKHH2 g 0.38384 C > G was significantly associated with HCT, MPV, MCHC, and MCV (P < 0.05). These results suggest that CD274 and PLEKHH2 genes may play a role in regulating blood physiological indicators and could be potential functional candidates for influencing immune traits in sheep breeding programs.
Collapse
Affiliation(s)
- Yukun Zhang
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China; State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, Lanzhou University, Lanzhou 730020, China
| | - Xiaoxue Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Fadi Li
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China; State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, Lanzhou University, Lanzhou 730020, China
| | - Changchun Lin
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Deyin Zhang
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China; State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, Lanzhou University, Lanzhou 730020, China
| | - Benzhen Duan
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai 200433, China; Key Laboratory of Medical Molecular Virology, MOE & NHC, School of Basic Medical Sciences, Fudan University, Shanghai 200433, China
| | - Yuan Zhao
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China; State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, Lanzhou University, Lanzhou 730020, China
| | - Xiaolong Li
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China; State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, Lanzhou University, Lanzhou 730020, China
| | - Dan Xu
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China; State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, Lanzhou University, Lanzhou 730020, China
| | - Jiangbo Cheng
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China; State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, Lanzhou University, Lanzhou 730020, China
| | - Liming Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Jianghui Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Weimin Wang
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China; State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, Lanzhou University, Lanzhou 730020, China.
| |
Collapse
|
8
|
Peng L, Liu J, Song E, Song Y. Polychlorinated biphenyl quinone induces immunotoxicity via lymphocytes apoptosis and Th1-Th2 cell imbalance in C57BL/6 mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 824:153870. [PMID: 35176371 DOI: 10.1016/j.scitotenv.2022.153870] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Polychlorinated biphenyls (PCBs) are a class of persistent organic pollutants distributed worldwide. Existing researches indicated that the immune system is one of the most sensitive indicators of adverse health effects caused by PCBs. We for the first time evaluated the immunotoxic effect of PCB29-pQ, an active quinone-type PCB metabolite. After PCB29-pQ exposure, the body weight of the mice was reduced, but increased the organ index of the spleen and lungs. The morphology and structure of the mouse spleen and lungs were changed, and partial types of lymphocyte subsets in the spleen were significantly reduced. The activation of caspase-3, the significant up-regulation of Bax and the decrease of Bcl-2 indicated occurrence of apoptosis. In addition, mRNA results showed that PCB29-pQ caused the imbalance of Th1/Th2 cytokines and promoted the Th1-type immune response. Taken together, the above results demonstrated that treatment with PCB29-pQ induced spleen immune dysfunction targeting the apoptosis pathway and Th1/Th2 cytokines imbalance in mice. Since the immune system plays a fundamental role in maintaining homeostasis and is strongly involved in the development of diseases, this study provides a new insight into the immunotoxicity mechanism of PCBs.
Collapse
Affiliation(s)
- Lu Peng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Jing Liu
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Erqun Song
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Yang Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
9
|
Mollet I, Martins C, Ângelo-Dias M, Carvalho AS, Aloria K, Matthiesen R, Baptista MV, Borrego LM, Vieira HL. Pilot study in human healthy volunteers on the mechanisms underlying remote ischemic conditioning (RIC) – Targeting circulating immune cells and immune-related proteins. J Neuroimmunol 2022; 367:577847. [DOI: 10.1016/j.jneuroim.2022.577847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/03/2022] [Accepted: 03/15/2022] [Indexed: 11/29/2022]
|
10
|
Guo G, Kong Y, Su J, Wang G, Zhang M, Wang S, Song Z. Immunomodulatory activity of aqueous extract from Crassostrea sikamea in the splenocytes of Sprague-Dawley rats. Food Sci Nutr 2022; 10:813-821. [PMID: 35282010 PMCID: PMC8907723 DOI: 10.1002/fsn3.2710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/27/2021] [Accepted: 12/17/2021] [Indexed: 11/13/2022] Open
Abstract
Crassostrea sikamea (C. sikamea) is used as an important edible and medicinal seafood in China. In the present study, an aqueous extract of C. sikamea (AECs) was prepared, and its immunomodulatory effects on rat splenocytes were studied. 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay revealed that AECs was able to promote splenocyte proliferation. Moreover, flow cytometry revealed that AECs treatment markedly altered the populations of splenic lymphocyte subtypes. Data from real-time quantitative PCR (RT-qPCR) and enzyme-linked immunosorbent assay (ELISA) showed that AECs promoted the mRNA expression and secretion of TNF-α, IL-2, IL-6, IL-12, and IFN-γ. Mechanistically, p38 MAPK phosphorylation in splenocytes was significantly upregulated under AECs treatment and p38 MAPK inhibitor reversed the promoting effect of AECs on the expression of inflammatory cytokines. Collectively, our novel evidence suggests that AECs exhibits immunomodulatory activity in vitro, supporting the further application of C. sikamea as a potential functional food.
Collapse
Affiliation(s)
- Guannan Guo
- National Engineering Laboratory for Druggable Gene and Protein ScreeningSchool of Life SciencesNortheast Normal UniversityChangchunChina
| | - Ying Kong
- NMPA Key Laboratory for Quality Control of Cell and Gene Therapy Medicine ProductsNortheast Normal UniversityChangchunChina
| | - Jie Su
- NMPA Key Laboratory for Quality Control of Cell and Gene Therapy Medicine ProductsNortheast Normal UniversityChangchunChina
| | - Geng Wang
- National Engineering Laboratory for Druggable Gene and Protein ScreeningSchool of Life SciencesNortheast Normal UniversityChangchunChina
| | - Muqing Zhang
- School of Molecular & Cellular BiologyUniversity of Illinois Urbana ChampaignUrbanaIllinoisUSA
| | - Shuyue Wang
- National Engineering Laboratory for Druggable Gene and Protein ScreeningSchool of Life SciencesNortheast Normal UniversityChangchunChina
- NMPA Key Laboratory for Quality Control of Cell and Gene Therapy Medicine ProductsNortheast Normal UniversityChangchunChina
| | - Zhenbo Song
- NMPA Key Laboratory for Quality Control of Cell and Gene Therapy Medicine ProductsNortheast Normal UniversityChangchunChina
| |
Collapse
|
11
|
Guo W, Ren C, Zhang B, Zhao W, Gao Y, Yu W, Ji X. Chronic Limb Remote Ischemic Conditioning may have an Antihypertensive Effect in Patients with Hypertension. Aging Dis 2021; 12:2069-2079. [PMID: 34881086 PMCID: PMC8612623 DOI: 10.14336/ad.2021.0604] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/06/2021] [Indexed: 12/14/2022] Open
Abstract
Hypertension is the leading preventable risk factor for all-cause morbidity and mortality worldwide. Despite antihypertensive medications have been available for decades, a big challenge we are facing is to increase the blood pressure (BP) control rate among the population. Therefore, it is necessary to search for new antihypertensive means to reduce the burden of disease caused by hypertension. Limb remote ischemic conditioning (LRIC) can trigger endogenous protective effects through transient and repeated ischemia on the limb to protect specific organs and tissues including the brain, heart, and kidney. The mechanisms of LRIC involve the regulation of the autonomic nervous system, releasing humoral factors, improvement of vascular endothelial function, and modulation of immune/inflammatory responses. These underlying mechanisms of LRIC may restrain the pathogenesis of hypertension through multiple pathways theoretically, leading to a potential decline in BP. Several existing studies have explored the impact of LRIC on BP, however, controversial findings were reported. To explore the potential antihypertensive effect of LRIC and the underlying mechanisms, we systematically reviewed the relevant articles to provide an insight into the novel therapy of hypertension.
Collapse
Affiliation(s)
- Wenting Guo
- 1Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Changhong Ren
- 2Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical, Beijing, China.,3Beijing Municipal Geriatric Medical Research Center, Beijing, China
| | - Bowei Zhang
- 1Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Wenbo Zhao
- 1Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,2Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical, Beijing, China
| | - Yu Gao
- 5Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Wantong Yu
- 1Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xunming Ji
- 1Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,2Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical, Beijing, China.,4Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
12
|
Torres-Querol C, Quintana-Luque M, Arque G, Purroy F. Preclinical evidence of remote ischemic conditioning in ischemic stroke, a metanalysis update. Sci Rep 2021; 11:23706. [PMID: 34887465 PMCID: PMC8660795 DOI: 10.1038/s41598-021-03003-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 11/12/2021] [Indexed: 01/13/2023] Open
Abstract
Remote ischemic conditioning (RIC) is a promising therapeutic approach for ischemic stroke patients. It has been proven that RIC reduces infarct size and improves functional outcomes. RIC can be applied either before ischemia (pre-conditioning; RIPreC), during ischemia (per-conditioning; RIPerC) or after ischemia (post-conditioning; RIPostC). Our aim was to systematically determine the efficacy of RIC in reducing infarct volumes and define the cellular pathways involved in preclinical animal models of ischemic stroke. A systematic search in three databases yielded 50 peer-review articles. Data were analyzed using random effects models and results expressed as percentage of reduction in infarct size (95% CI). A meta-regression was also performed to evaluate the effects of covariates on the pooled effect-size. 95.3% of analyzed experiments were carried out in rodents. Thirty-nine out of the 64 experiments studied RIPostC (61%), sixteen examined RIPreC (25%) and nine tested RIPerC (14%). In all studies, RIC was shown to reduce infarct volume (- 38.36%; CI - 42.09 to - 34.62%) when compared to controls. There was a significant interaction caused by species. Short cycles in mice significantly reduces infarct volume while in rats the opposite occurs. RIPreC was shown to be the most effective strategy in mice. The present meta-analysis suggests that RIC is more efficient in transient ischemia, using a smaller number of RIC cycles, applying larger length of limb occlusion, and employing barbiturates anesthetics. There is a preclinical evidence for RIC, it is safe and effective. However, the exact cellular pathways and underlying mechanisms are still not fully determined, and its definition will be crucial for the understanding of RIC mechanism of action.
Collapse
Affiliation(s)
- Coral Torres-Querol
- Clinical Neurosciences Group, Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain
| | - Manuel Quintana-Luque
- Epilepsy Unit, Neurology Department, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Gloria Arque
- Clinical Neurosciences Group, Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain
- Experimental Medicine Department, Universitat de Lleida, Lleida, Spain
| | - Francisco Purroy
- Clinical Neurosciences Group, Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain.
- Medicine Department, Universitat de Lleida, Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain.
- Stroke Unit, Department of Neurology, Universitat de Lleida, Hospital Universitari Arnau de Vilanova, Clinical Neurosciences Group IRBLleida, Avda Rovira Roure 80, 25198, Lleida, Spain.
| |
Collapse
|
13
|
Yu HH, Ma XT, Ma X, Chen M, Chu YH, Wu LJ, Wang W, Qin C, Tian DS. Remote Limb Ischemic Postconditioning Protects Against Ischemic Stroke by Promoting Regulatory T Cells Thriving. J Am Heart Assoc 2021; 10:e023077. [PMID: 34726065 PMCID: PMC8751947 DOI: 10.1161/jaha.121.023077] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Remote limb ischemic postconditioning (RLIPoC) has been demonstrated to protect against ischemic stroke. However, the underlying mechanisms of RLIPoC mediating cross-organ protection remain to be fully elucidated. Methods and Results Ischemic stroke was induced by middle cerebral artery occlusion for 60 minutes. RLIPoC was performed with 3 cycles of 10-minute ischemia followed by 10-minute reperfusion of the bilateral femoral arteries immediately after middle cerebral artery reperfusion. The percentage of regulatory T cells (Tregs) in the spleen, blood, and brain was detected using flow cytometry, and the number of Tregs in the ischemic hemisphere was counted using transgenic mice with an enhanced green fluorescent protein-tagged Foxp3. Furthermore, the metabolic status was monitored dynamically using a multispectral optical imaging system. The Tregs were conditionally depleted in the depletion of Treg transgenic mice after the injection of the diphtheria toxin. The inflammatory response and neuronal apoptosis were investigated using immunofluorescent staining. Infarct volume and neurological deficits were evaluated using magnetic resonance imaging and the modified neurological severity score, respectively. The results showed that RLIPoC substantially reduced infarct volume, improved neurological function, and significantly increased Tregs in the spleen, blood, and ischemic hemisphere after middle cerebral artery occlusion. RLIPoC was followed by subsequent alteration in metabolites, such as flavin adenine dinucleotide and nicotinamide adenine dinucleotide hydrate, both in RLIPoC-conducted local tissues and circulating blood. Furthermore, nicotinamide adenine dinucleotide hydrate can mimic RLIPoC in increasing Tregs. Conversely, the depletion of Tregs using depletion of Treg mice compromised the neuroprotective effects conferred by RLIPoC. Conclusions RLIPoC protects against ischemic brain injury, at least in part by activating and maintaining the Tregs through the nicotinamide adenine dinucleotide/nicotinamide adenine dinucleotide hydrate pathway.
Collapse
Affiliation(s)
- Hai-Han Yu
- Department of Neurology Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Xiao-Tong Ma
- Department of Neurology Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China.,Department of Neurology Shandong Provincial Hospital Shandong First Medical University Jinan China
| | - Xue Ma
- Department of Neurology Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Man Chen
- Department of Neurology Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Yun-Hui Chu
- Department of Neurology Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Long-Jun Wu
- Department of Neurology Mayo Clinic Rochester MN
| | - Wei Wang
- Department of Neurology Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Chuan Qin
- Department of Neurology Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Dai-Shi Tian
- Department of Neurology Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| |
Collapse
|
14
|
Mollet I, Marto JP, Mendonça M, Baptista MV, Vieira HLA. Remote but not Distant: a Review on Experimental Models and Clinical Trials in Remote Ischemic Conditioning as Potential Therapy in Ischemic Stroke. Mol Neurobiol 2021; 59:294-325. [PMID: 34686988 PMCID: PMC8533672 DOI: 10.1007/s12035-021-02585-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/29/2021] [Indexed: 12/19/2022]
Abstract
Stroke is one of the main causes of neurological disability worldwide and the second cause of death in people over 65 years old, resulting in great economic and social burden. Ischemic stroke accounts for 85% of total cases, and the approved therapies are based on re-establishment of blood flow, and do not directly target brain parenchyma. Thus, novel therapies are urgently needed. In this review, limb remote ischemic conditioning (RIC) is revised and discussed as a potential therapy against ischemic stroke. The review targets both (i) fundamental research based on experimental models and (ii) clinical research based on clinical trials and human interventional studies with healthy volunteers. Moreover, it also presents two approaches concerning RIC mechanisms in stroke: (i) description of the underlying cerebral cellular and molecular mechanisms triggered by limb RIC that promote neuroprotection against stroke induced damage and (ii) the identification of signaling factors involved in inter-organ communication following RIC procedure. Limb to brain remote signaling can occur via circulating biochemical factors, immune cells, and/or stimulation of autonomic nervous system. In this review, these three hypotheses are explored in both humans and experimental models. Finally, the challenges involved in translating experimentally generated scientific knowledge to a clinical setting are also discussed.
Collapse
Affiliation(s)
- Inês Mollet
- UCIBIO, Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Campus de Caparica, 2829-526, Caparica, Portugal.,CEDOC, Faculdade de Ciências Médicas/NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - João Pedro Marto
- CEDOC, Faculdade de Ciências Médicas/NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal.,Department of Neurology, Hospital de Egas Moniz, Centro Hospitalar Lisboa Ocidental, Lisbon, Portugal
| | - Marcelo Mendonça
- CEDOC, Faculdade de Ciências Médicas/NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal.,Champalimaud Research, Champalimaud Center for the Unknown, Lisbon, Portugal
| | - Miguel Viana Baptista
- CEDOC, Faculdade de Ciências Médicas/NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal.,Department of Neurology, Hospital de Egas Moniz, Centro Hospitalar Lisboa Ocidental, Lisbon, Portugal
| | - Helena L A Vieira
- UCIBIO, Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Campus de Caparica, 2829-526, Caparica, Portugal. .,CEDOC, Faculdade de Ciências Médicas/NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal. .,Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal.
| |
Collapse
|
15
|
Li S, Hua X, Zheng M, Wu J, Ma Z, Xing X, Ma J, Zhang J, Shan C, Xu J. PLXNA2 knockdown promotes M2 microglia polarization through mTOR/STAT3 signaling to improve functional recovery in rats after cerebral ischemia/reperfusion injury. Exp Neurol 2021; 346:113854. [PMID: 34474008 DOI: 10.1016/j.expneurol.2021.113854] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/08/2021] [Accepted: 08/26/2021] [Indexed: 01/04/2023]
Abstract
Ischemic stroke is an acute cerebrovascular disease characterized by high mortality, morbidity and disability rates. Ischemia/reperfusion is a critical pathophysiological basis of motor and cognitive dysfunction caused by ischemic stroke. Microglia, innate immune cells of the central nervous system, mediate the neuroinflammatory response to ischemia/reperfusion. PlexinA2 (PLXNA2) plays an important role in the regulation of neuronal axon guidance, the immune response and angiogenesis. However, it is not clear whether PLXNA2 regulates microglia polarization in ischemic stroke or the underlying mechanism. In the present study, we investigated the role of PLXNA2 in rats with middle cerebral artery occlusion/reperfusion (MCAO/R) and BV2 microglia cells with oxygen and glucose deprivation/reoxygenation (OGD/R). A battery of behavioral tests, including the beam balance test, forelimb placement test, foot fault test, cylinder test, CatWalk gait analysis and Morris water maze test were performed to evaluate sensorimotor function, locomotor activity and cognitive ability. The expression of M1/M2-specific markers in the ischemic penumbra and BV2 microglia cells was detected using immunofluorescence staining, quantitative real-time PCR analysis and Western blot analysis. Our study showed that PLXNA2 knockdown accelerated the recovery of motor function and cognitive ability after MCAO/R. In addition, PLXNA2 knockdown restrained proinflammatory cytokine release and promoted anti-inflammatory cytokine release, and the mammalian target of rapamycin (mTOR)/signal transducer and activator of transcription 3 (STAT3) pathway was involved in PLXNA2 regulated microglia polarization. Taken together, our results indicate that PLXNA2 knockdown reduces neuroinflammation by switching the microglia phenotype from M1 to M2 in the ischemic penumbra of MCAO/R-injured rats, which may be due to the inhibition of mTOR/STAT3 signaling. Treatments targeting PLXNA2 may be a promising therapeutic strategy for ischemic stroke.
Collapse
Affiliation(s)
- Sisi Li
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xuyun Hua
- Department of Traumatology and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Mouxiong Zheng
- Department of Traumatology and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Jiajia Wu
- Center of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Zhenzhen Ma
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiangxin Xing
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jie Ma
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Junpeng Zhang
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Chunlei Shan
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Center of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China; Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai 201203, China
| | - Jianguang Xu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai 201203, China.
| |
Collapse
|
16
|
Liu J, Gu Y, Guo M, Ji X. Neuroprotective effects and mechanisms of ischemic/hypoxic preconditioning on neurological diseases. CNS Neurosci Ther 2021; 27:869-882. [PMID: 34237192 PMCID: PMC8265941 DOI: 10.1111/cns.13642] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 12/20/2022] Open
Abstract
As the organ with the highest demand for oxygen, the brain has a poor tolerance to ischemia and hypoxia. Despite severe ischemia/hypoxia induces the occurrence and development of various central nervous system (CNS) diseases, sublethal insult may induce strong protection against subsequent fatal injuries by improving tolerance. Searching for potential measures to improve brain ischemic/hypoxic is of great significance for treatment of ischemia/hypoxia related CNS diseases. Ischemic/hypoxic preconditioning (I/HPC) refers to the approach to give the body a short period of mild ischemic/hypoxic stimulus which can significantly improve the body's tolerance to subsequent more severe ischemia/hypoxia event. It has been extensively studied and been considered as an effective therapeutic strategy in CNS diseases. Its protective mechanisms involved multiple processes, such as activation of hypoxia signaling pathways, anti-inflammation, antioxidant stress, and autophagy induction, etc. As a strategy to induce endogenous neuroprotection, I/HPC has attracted extensive attention and become one of the research frontiers and hotspots in the field of neurotherapy. In this review, we discuss the basic and clinical research progress of I/HPC on CNS diseases, and summarize its mechanisms. Furthermore, we highlight the limitations and challenges of their translation from basic research to clinical application.
Collapse
Affiliation(s)
- Jia Liu
- Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Institute of Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
| | - Yakun Gu
- Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Institute of Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
| | - Mengyuan Guo
- Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Institute of Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
| | - Xunming Ji
- Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Institute of Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China.,Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
17
|
Myocardial remote ischemic preconditioning: from cell biology to clinical application. Mol Cell Biochem 2021; 476:3857-3867. [PMID: 34125317 DOI: 10.1007/s11010-021-04192-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 05/26/2021] [Indexed: 12/25/2022]
Abstract
Remote ischemic preconditioning (rIPC) is a cardioprotective phenomenon where brief periods of ischemia followed by reperfusion of one organ/tissue can confer subsequent protection against ischemia/reperfusion injury in other organs, such as the heart. It involves activation of humoral, neural or systemic communication pathways inducing different intracellular signals in the heart. The main purpose of this review is to summarize the possible mechanisms involved in the rIPC cardioprotection, and to describe recent clinical trials to establish the efficacy of these strategies in cardioprotection from lethal ischemia/reperfusion injury. In this sense, certain factors weaken the subcellular mechanisms of rIPC in patients, such as age, comorbidities, medication, and anesthetic protocol, which could explain the heterogeneity of results in some clinical trials. For these reasons, further studies, carefully designed, are necessary to develop a clearer understanding of the pathways and mechanism of early and late rIPC. An understanding of the pathways is important for translation to patients.
Collapse
|
18
|
Gao P, Tang S, Chen H, Zhou X, Ou Y, Shen R, He Y. Preconditioning increases brain resistance against acute brain injury via neuroinflammation modulation. Exp Neurol 2021; 341:113712. [PMID: 33819449 DOI: 10.1016/j.expneurol.2021.113712] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/16/2021] [Accepted: 03/26/2021] [Indexed: 01/10/2023]
Abstract
Acute brain injury (ABI) is a broad concept mainly comprised of sudden parenchymal brain injury. Acute brain injury outcomes are dependent not only on the severity of the primary injury, but the delayed secondary injury that subsequently follows as well. These are both taken into consideration when determining the patient's prognosis. Growing clinical and experimental evidence demonstrates that "preconditioning," a prophylactic approach in which the brain is exposed to various pre-injury stressors, can induce varying degrees of "tolerance" against the impact of the ABI by modulating neuroinflammation. In this review, we will summarize the pathophysiology of ABI, and discuss the involved mechanisms of neuroinflammation in ABI, as well as existing experimental and clinical studies demonstrating the efficacy of preconditioning methods in various types of ABI by modulating neuroinflammation.
Collapse
Affiliation(s)
- Pan Gao
- Department of Translational Neurodegeneration, German Centre for Neurodegenerative Diseases (DZNE), Munich 81377, Germany.
| | - Sicheng Tang
- Medical Clinic and Polyclinic IV, Ludwig-Maximilians University Munich (LMU), Munich 80336, Germany
| | - Hanmin Chen
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Xiangyue Zhou
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Yibo Ou
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Ronghua Shen
- Department of Psychological Rehabilitation, Hankou Hospital, Wuhan, Hubei 430010, PR China.
| | - Yue He
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| |
Collapse
|
19
|
Pearce L, Davidson SM, Yellon DM. Does remote ischaemic conditioning reduce inflammation? A focus on innate immunity and cytokine response. Basic Res Cardiol 2021; 116:12. [PMID: 33629195 PMCID: PMC7904035 DOI: 10.1007/s00395-021-00852-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 02/04/2021] [Indexed: 02/07/2023]
Abstract
The benefits of remote ischaemic conditioning (RIC) have been difficult to translate to humans, when considering traditional outcome measures, such as mortality and heart failure. This paper reviews the recent literature of the anti-inflammatory effects of RIC, with a particular focus on the innate immune response and cytokine inhibition. Given the current COVID-19 pandemic, the inflammatory hypothesis of cardiac protection is an attractive target on which to re-purpose such novel therapies. A PubMed/MEDLINE™ search was performed on July 13th 2020, for the key terms RIC, cytokines, the innate immune system and inflammation. Data suggest that RIC attenuates inflammation in animals by immune conditioning, cytokine inhibition, cell survival and the release of anti-inflammatory exosomes. It is proposed that RIC inhibits cytokine release via a reduction in nuclear factor kappa beta (NF-κB)-mediated NLRP3 inflammasome production. In vivo, RIC attenuates pro-inflammatory cytokine release in myocardial/cerebral infarction and LPS models of endotoxaemia. In the latter group, cytokine inhibition is associated with a profound survival benefit. Further clinical trials should establish whether the benefits of RIC in inflammation can be observed in humans. Moreover, we must consider whether uncomplicated MI and elective surgery are the most suitable clinical conditions in which to test this hypothesis.
Collapse
Affiliation(s)
- Lucie Pearce
- The Hatter Cardiovascular Institute, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Sean M Davidson
- The Hatter Cardiovascular Institute, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Derek M Yellon
- The Hatter Cardiovascular Institute, 67 Chenies Mews, London, WC1E 6HX, UK.
| |
Collapse
|
20
|
Li F, Geng X, Lee H, Wills M, Ding Y. Neuroprotective Effects of Exercise Postconditioning After Stroke via SIRT1-Mediated Suppression of Endoplasmic Reticulum (ER) Stress. Front Cell Neurosci 2021; 15:598230. [PMID: 33664650 PMCID: PMC7920953 DOI: 10.3389/fncel.2021.598230] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 01/25/2021] [Indexed: 01/13/2023] Open
Abstract
While it is well-known that pre-stroke exercise conditioning reduces the incidence of stroke and the development of comorbidities, it is unclear whether post-stroke exercise conditioning is also neuroprotective. The present study investigated whether exercise postconditioning (PostE) induced neuroprotection and elucidated the involvement of SIRT1 regulation on the ROS/ER stress pathway. Adult rats were subjected to middle cerebral artery occlusion (MCAO) followed by either: (1) resting; (2) mild exercise postconditioning (MPostE); or (3) intense exercise postconditioning (IPostE). PostE was initiated 24 h after reperfusion and performed on a treadmill. At 1 and 3 days thereafter, we determined infarct volumes, neurological defects, brain edema, apoptotic cell death through measuring pro- (BAX and Caspase-3) and anti-apoptotic (Bcl-2) proteins, and ER stress through the measurement of glucose-regulated protein 78 (GRP78), inositol-requiring 1α (IRE1α), protein kinase RNA-like endoplasmic reticulum kinase (PERK), activating transcription factor 6 (ATF6), C/EBP homologous protein (CHOP), Caspase-12, and SIRT1. Proteins were measured by Western blot. ROS production was detected by flow cytometry.Compared to resting rats, both MPostE and IPostE significantly decreased brain infarct volumes and edema, neurological deficits, ROS production, and apoptotic cell death. MPostE further increased Bcl-2 expression and Bcl-2/BAX ratio as well as BAX and Caspase-3 expressions and ROS production (*p < 0.05). Both PostE groups saw decreases in ER stress proteins, while MPostE demonstrated a further reduction in GRP78 (***p < 0.001) and Caspase-12 (*p < 0.05) expressions at 1 day and IRE1α (**p < 0.01) and CHOP (*p < 0.05) expressions at 3 days. Additionally, both PostE groups saw significant increases in SIRT1 expression.In this study, both mild and intense PostE levels induced neuroprotection after stroke through SIRT1 and ROS/ER stress pathway. Additionally, the results may provide a base for our future study regarding the regulation of SIRT1 on the ROS/ER stress pathway in the biochemical processes underlying post-stroke neuroprotection. The results suggest that mild exercise postconditioning might play a similar neuroprotective role as intensive exercise and could be an effective exercise strategy as well.
Collapse
Affiliation(s)
- Fengwu Li
- China-America Institute of Neuroscience, Luhe Hospital, Capital Medical University, Beijing, China
| | - Xiaokun Geng
- China-America Institute of Neuroscience, Luhe Hospital, Capital Medical University, Beijing, China.,Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, United States
| | - Hangil Lee
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, United States
| | - Melissa Wills
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, United States
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, United States.,Department of Research and Development Center, John D. Dingell VA Medical Center, Detroit, MI, United States
| |
Collapse
|
21
|
Zhong SJ, Cui MM, Gao YT, Cao XY, Chen B, Wen XR. MicroRNA-144 promotes remote limb ischemic preconditioning-mediated neuroprotection against ischemic stroke via PTEN/Akt pathway. Acta Neurol Belg 2021; 121:95-106. [PMID: 32960423 DOI: 10.1007/s13760-020-01500-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 09/10/2020] [Indexed: 12/18/2022]
Abstract
Ischemic stroke is a refractory disease generally caused by cerebral ischemic injury. Remote ischemic preconditioning (RIPC) caused by transient ischemia and reperfusion of the femoral artery exerts a protective effect on ischemic stroke-induced brain injury. This study was designed to investigate the potential molecular mechanism of RIPC-mediated neuroprotection, namely, the biological effects of microRNA-144 on RIPC in mice with ischemic stroke and its effects on PTEN and Akt signaling pathways. Healthy adult C57BL6 mice were selected for the establishment of middle cerebral artery occlusion (MCAO). One hour before the start, remote ischemic preconditioning of limbs was performed in mice. Brain edema and infarct volume were measured. The expressions of microRNA-144, PTEN, and Akt were measured. The results showed that, compared with MCAO group, the RIPC group protected mice from cerebral ischemia-reperfusion injury, systemic accumulation of inflammatory cytokines, and accelerated apoptosis of parenchymal cells. In RIPC group, PTEN expression decreased, and mir-144 and Akt expression increased. The level of phosphorylated PTEN in the transfected microRNA-144 inhibitor group increased and the level of phosphorylated Akt reduced significantly. In conclusion, our results suggest that microRNA-144 may play a protective role in remote ischemic pretreatment by downregulating PTEN and upregulating Akt, suggesting that microRNA-144 via PTEN/Akt pathway may be of therapeutic significance in ischemic stroke.
Collapse
Affiliation(s)
- Si-Jin Zhong
- Department of Clinical, Xuzhou Medical University, Xuzhou, 221004, China
| | - Miao-Miao Cui
- Department of Genetics, Xuzhou Medical University, Xuzhou, 221004, China
| | - Yu-Ting Gao
- Medical Technology School, Xuzhou Medical University, Xuzhou, 221004, China
| | - Xue-Yan Cao
- Department of Clinical, Xuzhou Medical University, Xuzhou, 221004, China
| | - Bin Chen
- Department of Rehabilitation and National Clinical Research Base of Traditional Chinese Medicine, The Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, 350004, China.
| | - Xian-Ru Wen
- Department of Genetics, Xuzhou Medical University, Xuzhou, 221004, China.
| |
Collapse
|
22
|
Han Y, Geng XK, Lee H, Li F, Ding Y. Neuroprotective Effects of Early Hypothermia Induced by Phenothiazines and DHC in Ischemic Stroke. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:1207092. [PMID: 33531913 PMCID: PMC7834782 DOI: 10.1155/2021/1207092] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 12/11/2020] [Accepted: 12/31/2020] [Indexed: 12/27/2022]
Abstract
METHODS Adult male Sprague Dawley rats were studied in 4 groups: (1) sham; (2) stroke; (3) stroke treated with pharmacological hypothermia before reperfusion (interischemia hypothermia); and (4) stroke treated with pharmacological hypothermia after reperfusion is initiated (inter-reperfusion hypothermia). The combination of chlorpromazine and promethazine with dihydrocapsaicin (DHC) was used to induce hypothermia. To compare the neuroprotective effects of drug-induced hypothermia between the interischemia and inter-reperfusion groups, brain damage was evaluated using infarct volume and neurological deficits at 24 h reperfusion. In addition, mRNA expressions of NADPH oxidase (NOX) subunits (gp91phox, p67phox, p47phox, and p22phox) and glucose transporter subtypes (GLUT1 and GLUT3) were determined by real-time PCR at 6 and 24 h reperfusion. ROS production was measured by flow cytometry assay at the same time points. RESULTS In both hypothermia groups, the cerebral infarct volumes and neurological deficits were reduced in the ischemic rats. At 6 and 24 h reperfusion, ROS production and the expressions of NOX subunits and glucose transporter subtypes were also significantly reduced in both hypothermia groups as compared to the ischemic group. While there were no statistically significant differences between the two hypothermia groups at 6 h reperfusion, brain damage was significantly further decreased by interischemia hypothermia at 24 h. CONCLUSION Both interischemia and inter-reperfusion pharmacological hypothermia treatments play a role in neuroprotection after stroke. Interischemia hypothermia treatment may be better able to induce stronger neuroprotection after ischemic stroke. This study provides a new avenue and reference for stronger neuroprotective hypothermia before vascular recanalization in stroke patients.
Collapse
Affiliation(s)
- Yun Han
- Luhe Institute of Neuroscience, Capital Medical University, Beijing, China
- Department of Neurology, Luhe Clinical Institute, Capital Medical University, Beijing, China
| | - Xiao-kun Geng
- Luhe Institute of Neuroscience, Capital Medical University, Beijing, China
- Department of Neurology, Luhe Clinical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Hangil Lee
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Fengwu Li
- Luhe Institute of Neuroscience, Capital Medical University, Beijing, China
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Research & Development Center, John D. Dingell VA Medical Center, Detroit, Michigan, USA
| |
Collapse
|
23
|
Kim E, Cho S. CNS and peripheral immunity in cerebral ischemia: partition and interaction. Exp Neurol 2021; 335:113508. [PMID: 33065078 PMCID: PMC7750306 DOI: 10.1016/j.expneurol.2020.113508] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/28/2020] [Accepted: 10/08/2020] [Indexed: 02/07/2023]
Abstract
Stroke elicits excessive immune activation in the injured brain tissue. This well-recognized neural inflammation in the brain is not just an intrinsic organ response but also a result of additional intricate interactions between infiltrating peripheral immune cells and the resident immune cells in the affected areas. Given that there is a finite number of immune cells in the organism at the time of stroke, the partitioned immune systems of the central nervous system (CNS) and periphery must appropriately distribute the limited pool of immune cells between the two domains, mounting a necessary post-stroke inflammatory response by supplying a sufficient number of immune cells into the brain while maintaining peripheral immunity. Stroke pathophysiology has mainly been neurocentric in focus, but understanding the distinct roles of the CNS and peripheral immunity in their concerted action against ischemic insults is crucial. This review will discuss stroke-induced influences of the peripheral immune system on CNS injury/repair and of neural inflammation on peripheral immunity, and how comorbidity influences each.
Collapse
Affiliation(s)
- Eunhee Kim
- Vivian L. Smith Department of Neurosurgery at University of Texas Health Science Center at Houston, Houston, TX, United States of America
| | - Sunghee Cho
- Burke Neurological Institute, White Plains, NY, United States of America; Feil Brain Mind Research Institute, Weill Cornell Medicine, New York, NY, United States of America.
| |
Collapse
|
24
|
Gaidhani N, Kem WR, Uteshev VV. Spleen is not required for therapeutic effects of 4OH-GTS-21, a selective α7 nAChR agonist, in the sub-acute phase of ischemic stroke in rats. Brain Res 2020; 1751:147196. [PMID: 33159972 DOI: 10.1016/j.brainres.2020.147196] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/29/2020] [Accepted: 10/30/2020] [Indexed: 11/15/2022]
Abstract
Acute ischemic stroke (AIS) causes both central and peripheral inflammation, while activation of α7 nicotinic acetylcholine receptors (nAChRs) provides both central and peripheral anti-inflammatory and anti-apoptotic effects. Here, we provide evidence that 4OH-GTS-21, a selective α7 agonist, produces its therapeutic effects via primarily central sites of action because 4OH-GTS-21 was found equally effective in splenectomized and non-spenectomized rats in the sub-acute phase of ischemic stroke (≤1 week). However, the spleen may boost the therapeutic efficacy of 4OH-GTS-21 in certain behavioral tasks as our data also indicated. In our tests, AIS was modeled by transient middle cerebral artery occlusion (tMCAO). Splenectomy was done 2 weeks before tMCAO. We determined that: 1) Daily 4OH-GTS-21 treatments for 7 days after tMCAO significantly reduced neurological deficits and brain injury in both splenectomized and non-spelenectomized rats demonstrating that the spleen is not required for therapeutic benefits of 4OH-GTS-21; 2) The effects of 4OH-GTS-21 in the adhesive sticker removal test were significantly weaker in splenectomized animals suggesting that the spleen boosts the efficacy of 4OH-GTS-21 in the first week after tMCAO; and 3) Ischemic brain injury was not significantly affected by splenectomy in both vehicle-treated and 4OH-GTS-21-treated animals. These data support the hypothesis that the therapeutic efficacy of sub-chronic (≤1 week) 4OH-GTS-21 primarily originates from central sites of action. These results validate brain availability as a critical factor for developing novel α7 ligands for AIS.
Collapse
Affiliation(s)
- Nikhil Gaidhani
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107, United States
| | - William R Kem
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, 1200 Newell Drive, Gainesville, FL 32610, United States
| | - Victor V Uteshev
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107, United States.
| |
Collapse
|
25
|
Huang L, Wan Y, Dang Z, Yang P, Yang Q, Wu S. Hypoxic preconditioning ameliorated neuronal injury after middle cerebral artery occlusion by promoting neurogenesis. Brain Behav 2020; 10:e01804. [PMID: 32841552 PMCID: PMC7559635 DOI: 10.1002/brb3.1804] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/27/2020] [Accepted: 08/01/2020] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES Sequelae of stroke were mainly caused by neuronal injury. Oxygen is a key factor affecting the microenvironment of neural stem cells (NSCs), and oxygen levels are used to promote NSC neurogenesis. In this study, effects of intermittent hypoxic preconditioning (HPC) on neurogenesis were investigated in a rat model of middle cerebral artery occlusion (MCAO). METHODS SD rats were used to establish the MCAO model. Nissl staining and Golgi staining were used to confirm the neuronal injury status in the MCAO model. Immunofluorescence, transmission electron microscopy, Western blot, and qPCR were used to observe the effects of HPC on neurogenesis. At the same time, the hypothesis that HPC could affect proliferation, apoptosis, differentiation, and migration of NSC was verified in vitro. RESULTS Hypoxic preconditioning significantly ameliorated the neuronal injury induced by MCAO. Compared with MCAO group, the dendrites, Edu+ /SOX2+ , Edu+ /DCX+ , Edu+ /NeuN+ , Edu+ /GFAP+ , and Edu+ /Tubulin+ positive cells in the HPC + MCAO group exhibited significantly difference. Similarly, axonal and other neuronal injuries in the HPC + MCAO group were also ameliorated. In the in vitro experiments, mild HPC significantly enhanced the viability of NSCs, promoted the migration of differentiated cells, and reduced apoptosis. CONCLUSIONS Our results showed that HPC significantly promotes neurogenesis after MCAO and ameliorates neuronal injury.
Collapse
Affiliation(s)
- Lu Huang
- Research Center for High Altitude Medicine, Qinghai University, Xining, China.,Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Xining, China.,Qinghai Provincial People's Hospital, Xining, China
| | - Yaqi Wan
- Qinghai Provincial People's Hospital, Xining, China
| | - Zhancui Dang
- Qinghai University Medical College, Xining, China
| | - Peng Yang
- Qinghai Provincial People's Hospital, Xining, China
| | - Quanyu Yang
- Qinghai University Medical College, Xining, China
| | - Shizheng Wu
- Qinghai Provincial People's Hospital, Xining, China
| |
Collapse
|
26
|
Sharma D, Maslov LN, Singh N, Jaggi AS. Remote ischemic preconditioning-induced neuroprotection in cerebral ischemia-reperfusion injury: Preclinical evidence and mechanisms. Eur J Pharmacol 2020; 883:173380. [PMID: 32693098 DOI: 10.1016/j.ejphar.2020.173380] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/06/2020] [Accepted: 07/13/2020] [Indexed: 12/29/2022]
Abstract
Remote ischemic preconditioning (RIPC) is an intrinsic protective phenomenon in which 3 to 4 interspersed cycles of non-fatal regional ischemia followed by reperfusion to the remote tissues protect the vital organs including brain, heart and kidney against sustained ischemia-reperfusion-induced injury. There is growing preclinical evidence supporting the usefulness of RIPC in eliciting neuroprotection against focal and global cerebral ischemia-reperfusion injury. Scientists have explored the involvement of HIF-1α, oxidative stress, apoptotic pathway, Lcn-2, platelets-derived microparticles, splenic response, adenosine A1 receptors, adenosine monophosphate activated protein kinase and neurogenic pathway in mediating RIPC-induced neuroprotection. The present review discusses the early and late phases of neuroprotection induced by RIPC against cerebral ischemic injury in animals along with the various possible mechanisms.
Collapse
Affiliation(s)
- Diwakar Sharma
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University Patiala, Patiala, 147002, India
| | - Leonid N Maslov
- Labortary of Experimental Cardiology, Institute of Cardiology, Kyevskaya 111, 634012 Tomsk, Russia
| | - Nirmal Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University Patiala, Patiala, 147002, India
| | - Amteshwar Singh Jaggi
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University Patiala, Patiala, 147002, India.
| |
Collapse
|
27
|
Li F, Geng X, Huber C, Stone C, Ding Y. In Search of a Dose: The Functional and Molecular Effects of Exercise on Post-stroke Rehabilitation in Rats. Front Cell Neurosci 2020; 14:186. [PMID: 32670026 PMCID: PMC7330054 DOI: 10.3389/fncel.2020.00186] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 05/28/2020] [Indexed: 12/11/2022] Open
Abstract
Although physical exercise has been demonstrated to augment recovery of the post-stroke brain, the question of what level of exercise intensity optimizes neurological outcomes of post-stroke rehabilitation remains unsettled. In this study, we aim to clarify the mechanisms underlying the intensity-dependent effect of exercise on neurologic function, and thereby to help direct the clinical application of exercise-based neurorehabilitation. To do this, we used a well-established rat model of ischemic stroke consisting of cerebral ischemia induction through middle cerebral artery occlusion (MCAO). Ischemic rats were subsequently assigned either to a control group entailing post-stroke rest or to one of two exercise groups distinguished by the intensity of their accompanying treadmill regimens. After 24 h of reperfusion, exercise was initiated. Infarct volume, apoptotic cell death, and neurological defects were quantified in all groups at 3 days, and motor and cognitive functions were tracked up to day-28. Additionally, Western blotting was used to assess the influence of our interventions on several proteins related to synaptogenesis and neuroplasticity (growth-associated protein 43, a microtubule-associated protein, postsynaptic density-95, synapsin I, hypoxia-inducible factor-1α, brain-derived neurotrophic factor, nerve growth factor, tyrosine kinase B, and cAMP response element-binding protein). Our results were in equal parts encouraging and surprising. Both mild and intense exercise significantly decreased infarct volume, cell death, and neurological deficits. Motor and cognitive function, as determined using an array of tests such as beam balance, forelimb placing, and the Morris water maze, were also significantly improved by both exercise protocols. Interestingly, while an obvious enhancement of neuroplasticity proteins was shown in both exercise groups, mild exercise rats demonstrated a stronger effect on the expressions of Tau (p < 0.01), brain-derived neurotrophic factor (p < 0.01), and tyrosine kinase B (p < 0.05). These findings contribute to the growing body of literature regarding the positive effects of both mild and intense long-term treadmill exercise on brain injury, functional outcome, and neuroplasticity. Additionally, the results may provide a base for our future study regarding the regulation of HIF-1α on the BDNF/TrkB/CREB pathway in the biochemical processes underlying post-stroke synaptic plasticity.
Collapse
Affiliation(s)
- Fengwu Li
- China-America Institute of Neuroscience, Luhe Hospital, Capital Medical University, Beijing, China
| | - Xiaokun Geng
- China-America Institute of Neuroscience, Luhe Hospital, Capital Medical University, Beijing, China.,Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, United States
| | - Christian Huber
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, United States
| | - Christopher Stone
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, United States
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, United States.,Department of Research and Development Center, John D. Dingell VA Medical Center, Detroit, MI, United States
| |
Collapse
|
28
|
Hausenloy DJ, Bøtker HE, Ferdinandy P, Heusch G, Ng GA, Redington A, Garcia-Dorado D. Cardiac innervation in acute myocardial ischaemia/reperfusion injury and cardioprotection. Cardiovasc Res 2020; 115:1167-1177. [PMID: 30796814 DOI: 10.1093/cvr/cvz053] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/21/2018] [Accepted: 02/21/2019] [Indexed: 12/13/2022] Open
Abstract
Acute myocardial infarction (AMI) and the heart failure (HF) that often complicates this condition, are among the leading causes of death and disability worldwide. To reduce myocardial infarct (MI) size and prevent heart failure, novel therapies are required to protect the heart against the detrimental effects of acute ischaemia/reperfusion injury (IRI). In this regard, targeting cardiac innervation may provide a novel therapeutic strategy for cardioprotection. A number of cardiac neural pathways mediate the beneficial effects of cardioprotective strategies such as ischaemic preconditioning and remote ischaemic conditioning, and nerve stimulation may therefore provide a novel therapeutic strategy for cardioprotection. In this article, we provide an overview of cardiac innervation and its impact on acute myocardial IRI, the role of extrinsic and intrinsic cardiac neural pathways in cardioprotection, and highlight peripheral and central nerve stimulation as a cardioprotective strategy with therapeutic potential for reducing MI size and preventing HF following AMI. This article is part of a Cardiovascular Research Spotlight Issue entitled 'Cardioprotection Beyond the Cardiomyocyte', and emerged as part of the discussions of the European Union (EU)-CARDIOPROTECTION Cooperation in Science and Technology (COST) Action, CA16225.
Collapse
Affiliation(s)
- Derek J Hausenloy
- Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore.,National Heart Research Institute Singapore, National Heart Centre, Singapore.,Yong Loo Lin School of Medicine, National University Singapore, Singapore.,The Hatter Cardiovascular Institute, University College London, London, UK.,The National Institute of Health Research University College London Hospitals Biomedical Research Centre, Research & Development, London, UK.,Tecnologico de Monterrey, Centro de Biotecnologia-FEMSA, Nuevo Leon, Mexico
| | - Hans Erik Bøtker
- Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark
| | - Peter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary.,Pharmahungary Group, Szeged, Hungary
| | - Gerd Heusch
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany
| | - G André Ng
- Department of Cardiovascular Sciences, University of Leicester, NIHR Leicester Biomedical Research Centre, Glenfield Hospital, UK
| | - Andrew Redington
- Cincinnati Children's Hospital Medical Center, Heart Institute, Cincinnati, OH, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - David Garcia-Dorado
- Department of Cardiology, Vascular Biology and Metabolism Area, Vall d'Hebron University Hospital and Research Institute (VHIR), Universitat Autónoma de Barcelona, Spain.,Instituto CIBER de Enfermedades Cardiovasculares (CIBERCV): Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
29
|
Du X, Yang J, Liu C, Wang S, Zhang C, Zhao H, Du H, Geng X. Hypoxia-Inducible Factor 1α and 2α Have Beneficial Effects in Remote Ischemic Preconditioning Against Stroke by Modulating Inflammatory Responses in Aged Rats. Front Aging Neurosci 2020; 12:54. [PMID: 32210788 PMCID: PMC7076079 DOI: 10.3389/fnagi.2020.00054] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 02/18/2020] [Indexed: 11/29/2022] Open
Abstract
Limb remote ischemic preconditioning (RIPC) has been proven to alleviate stroke injury in young rats, but its protective effect and its mechanism in aged rats are still unclear. Hypoxia-inducible factor (HIF) is one of the important markers of stroke, and its high expression plays an important role in the pathogenesis of stroke. In this study, we tested the hypothesis that RIPC could regulate the expression of HIF, leading to reduced inflammatory responses in aged rats. Stroke was induced by transient middle cerebral artery occlusion (MCAo) in aged rats, and RIPC was conducted in both hind limbs. The HIF-1α and HIF-2α mRNA and protein were examined by real-time RT-PCR and western blotting (WB). Inflammatory cytokines in the peripheral blood and brain were measured using AimPlex multiplex immunoassays. The protein levels of p-Akt, Akt, p-ERK, and ERK were examined by WB. We investigated that RIPC reduced the infarct size, improved neurological functions, and decreased the expression of HIF-1α and HIF-2α in the ischemic brain. RIPC reduced the levels of IL-1β, IL-6 and IFN-γ in the peripheral blood and the levels of IL-1β and IFN-γ in the ischemic brain 48 h post-stroke. Moreover, intraperitoneal injection of the HIF inhibitor, acriflavine hydrochloride (ACF), abolished the protection of RIPC with respect to infarct size and neurological functions and neutralized the downregulation of pro-inflammatory IL-1β, IL-6 and IFN-γ. ACF also reversed the activation of the Akt signaling pathway induced by RIPC following stroke. HIF may play a key role in RIPC, which was likely mediated by the Akt signaling pathway and systemic modulation of the inflammatory response in aged rats.
Collapse
Affiliation(s)
- Xiangnan Du
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Jian Yang
- China-America Institute of Neuroscience, Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Cuiying Liu
- China-America Institute of Neuroscience, Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Sainan Wang
- China-America Institute of Neuroscience, Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Chencheng Zhang
- China-America Institute of Neuroscience, Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Heng Zhao
- Department of Neurosurgery, School of Medicine, Stanford University, Stanford, CA, United States
| | - Huishan Du
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Xiaokun Geng
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China.,China-America Institute of Neuroscience, Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
30
|
Chen C, Chencheng Z, Cuiying L, Xiaokun G. Plasmacytoid Dendritic Cells Protect Against Middle Cerebral Artery Occlusion Induced Brain Injury by Priming Regulatory T Cells. Front Cell Neurosci 2020; 14:8. [PMID: 32076400 PMCID: PMC7006436 DOI: 10.3389/fncel.2020.00008] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 01/13/2020] [Indexed: 12/20/2022] Open
Abstract
Regulatory T cells (Tregs) play an anti-inflammatory effect to protect against ischemic stroke. Plasmacytoid dendritic cells (pDCs) can induce regulatory T cells tolerance in sterile-inflammation conditions. However, whether and how pDCs-mediated Tregs response play a part in the pathology of ischemic stroke remains unclear. In this study, we showed that pDCs were increased in the brain of middle cerebral artery occlusion (MCAO) mice. Depletion of pDCs with 120G8 exacerbated MCAO-induced brain injury, peripheral pro-inflammation response and decreased the systemic Tregs in mice. Furthermore, the data of mixed lymphocyte reaction (MLR) in vitro demonstrate that splenic pDCs from MCAO mice can significantly promote Tregs proliferation, accompanying with the increased expression of indoleamine 2,3-dioxygenase 1 (IDO1) on pDCs. Taken together, the findings here suggested that under the pathologic state of stroke, pDCs protect against MCAO-induced brain injury by priming Tregs, illustrating that pDCs represented as a therapeutic target for the prevention of ischemic brain injury.
Collapse
Affiliation(s)
- Chen Chen
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Zhang Chencheng
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Liu Cuiying
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Geng Xiaokun
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
31
|
Zhao H, Li G, Wang R, Tao Z, Ma Q, Zhang S, Han Z, Yan F, Li F, Liu P, Ma S, Ji X, Luo Y. Silencing of microRNA-494 inhibits the neurotoxic Th1 shift via regulating HDAC2-STAT4 cascade in ischaemic stroke. Br J Pharmacol 2020; 177:128-144. [PMID: 31465536 PMCID: PMC6976789 DOI: 10.1111/bph.14852] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 08/19/2019] [Accepted: 08/22/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND AND PURPOSE T helper cell 1 (Th1)-skewed neurotoxicity contributes to the poor outcome of stroke in rodents. Here, we have elucidated the mechanism of the Th1/Th2 shift in acute ischaemic stroke (AIS) patients at hyperacute phase and have looked for a miRNA-based therapeutic target. EXPERIMENTAL APPROACH MiR-494 levels in blood from AIS patients and controls were measured by real-time PCR. C57BL/6J mice were subjected to transient middle cerebral artery occlusion, and cortical neurons were subjected to oxygen-glucose deprivation. Luciferase reporter system, chromatin immunoprecipitation sequencing (ChIP-Seq), and ChIP-PCR were used to uncover possible mechanisms. KEY RESULTS In lymphocytes from AIS patients, there was a Th1/Th2 shift and histone deacetylase 2 (HDAC2) was markedly down-regulated. ChIP-seq showed that HDAC2 binding sites were enriched in regulation of Th1 cytokine production, and ChIP-PCR confirmed that HDAC2 binding was changed at the intron of STAT4 and the promoter of T-box transcription factor 21 (T-bet) in lymphocytes from AIS patients. MiR-494 was the most significantly increased miRNA in lymphocytes from AIS patients, and miR-494-3p directly targeted HDAC2. A strong association existed between miR-494 and Th1 cytokines, and neurological deficit as measured by the National Institute of Health Stroke Scale (NIHSS) in AIS patients. In vitro and in vivo experiments showed that antagomir-494 reduced Th1 shift-mediated neuronal and sensorimotor functional damage in the mouse model of ischaemic stroke, via the HDAC2-STAT4 pathway. CONCLUSION AND IMPLICATIONS We demonstrated that miR-494 inhibition prevented Th1-skewed neurotoxicity through regulation of the HDAC2-STAT4 cascade.
Collapse
Affiliation(s)
- Haiping Zhao
- Institute of Cerebrovascular Disease Research and Department of NeurologyXuanwu Hospital of Capital Medical UniversityBeijingChina
- Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular DiseasesBeijingChina
| | - Guangwen Li
- Institute of Cerebrovascular Disease Research and Department of NeurologyXuanwu Hospital of Capital Medical UniversityBeijingChina
- Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular DiseasesBeijingChina
| | - Rongliang Wang
- Institute of Cerebrovascular Disease Research and Department of NeurologyXuanwu Hospital of Capital Medical UniversityBeijingChina
- Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular DiseasesBeijingChina
| | - Zhen Tao
- Institute of Cerebrovascular Disease Research and Department of NeurologyXuanwu Hospital of Capital Medical UniversityBeijingChina
- Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular DiseasesBeijingChina
| | - Qingfeng Ma
- Institute of Cerebrovascular Disease Research and Department of NeurologyXuanwu Hospital of Capital Medical UniversityBeijingChina
| | - Sijia Zhang
- Institute of Cerebrovascular Disease Research and Department of NeurologyXuanwu Hospital of Capital Medical UniversityBeijingChina
| | - Ziping Han
- Institute of Cerebrovascular Disease Research and Department of NeurologyXuanwu Hospital of Capital Medical UniversityBeijingChina
| | - Feng Yan
- Institute of Cerebrovascular Disease Research and Department of NeurologyXuanwu Hospital of Capital Medical UniversityBeijingChina
- Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular DiseasesBeijingChina
| | - Fangfang Li
- Institute of Cerebrovascular Disease Research and Department of NeurologyXuanwu Hospital of Capital Medical UniversityBeijingChina
| | - Ping Liu
- Institute of Cerebrovascular Disease Research and Department of NeurologyXuanwu Hospital of Capital Medical UniversityBeijingChina
| | - Shubei Ma
- Institute of Cerebrovascular Disease Research and Department of NeurologyXuanwu Hospital of Capital Medical UniversityBeijingChina
| | - Xunming Ji
- Institute of Cerebrovascular Disease Research and Department of NeurologyXuanwu Hospital of Capital Medical UniversityBeijingChina
| | - Yumin Luo
- Institute of Cerebrovascular Disease Research and Department of NeurologyXuanwu Hospital of Capital Medical UniversityBeijingChina
- Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular DiseasesBeijingChina
- Beijing Institute for Brain DisordersCapital Medical UniversityBeijingChina
| |
Collapse
|
32
|
Wang H, Li S, Zhang G, Wu H, Chang X. Potential therapeutic effects of cyanidin-3-O-glucoside on rheumatoid arthritis by relieving inhibition of CD38+ NK cells on Treg cell differentiation. Arthritis Res Ther 2019; 21:220. [PMID: 31661005 PMCID: PMC6819496 DOI: 10.1186/s13075-019-2001-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 09/10/2019] [Indexed: 12/19/2022] Open
Abstract
Background CD38+ NK cells are overabundant in rheumatoid arthritis (RA). Cyanidin-3-O-glucoside (C3G) is an inhibitor of CD38. This study investigated the pathogenic role of CD38+ NK cells and the effect of C3G on RA. Methods Rats with bovine type II collagen-induced arthritis (CIA) were injected with C3G. RA synovial fibroblasts (RASFs) or mononuclear cells (MNCs) were cultured with C3G. MNCs were also cocultured with CD38+ NK cells following C3G pretreatment. Results C3G injection significantly alleviated CIA. C3G also significantly increased the level of interleukin (IL)-10 and the regulatory T (Treg) cell proportion, and it decreased the interleukin (IL)-6 and interferon (IFN)-γ levels and CD38+ NK cell proportion in rat peripheral blood and synovial fluid. Additionally, C3G significantly increased RASF apoptosis and decreased RASF proliferation and IL-6 production in the culture medium. Furthermore, C3G stimulated MNCs to increase IL-2 and IL-10 production and the Treg cell proportion, and it caused MNCs to decrease IL-6 and IFN-γ production and the CD38+ NK cell proportion. Although CD38+ NK cells significantly decreased the Treg cell proportion and IL-10 level in MNCs, CD38+ NK cells that had been pretreated with C3G increased the proportion of Treg cells and IL-10 levels and decreased the IL-6 and IFN-γ levels in the coculture. In CD38+ NK cells, C3G significantly increased Sirtuin 6 (Sirt6) expression and the tumor necrosis factor (TNF)-α level, and it decreased natural killer group 2D (NKG2D) expression and the IFN-γ level. However, when CD38+ NK cells were treated with Sirt6 siRNA, C3G did not change the NKG2D expression, the TNF-α level sharply decreased, and the IFN-γ level increased. When MNCs were cocultured with C3G-pretreated CD38+ NK cells in the presence of TNF-α and an anti-IFN-γ antibody, the IL-10+ Treg cell proportion significantly increased. When MNCs were cocultured with C3G-pretreated CD38+ NK cells in the presence of IFN-γ and an anti-TNF-α antibody, the IL-10+ Treg cell proportion sharply decreased. When CIA rats were injected with both C3G and the Sirt6 inhibitor OSS_128167, the rats exhibited joint inflammation and a low Treg cell proportion, but the CD38+ NK proportion was still low. Conclusion C3G has therapeutic effects on CIA and RA. C3G decreased the proportion of CD38+ cells, RASF proliferation, and proinflammatory cytokine secretion, and it increased the Treg cell proportion. C3G also elevated Sirt6 expression to suppress NKG2D expression, increase TNF-α secretion, and decrease IFN-γ secretion in CD38+ NK cells, which stimulates MNCs to differentiate into Treg cells. This study also demonstrates that the inhibition of Treg cell differentiation in MNCs by CD38+ NK cells is a potential cause of the immune imbalance in RA and CIA.
Collapse
Affiliation(s)
- Hongxing Wang
- Shandong Provincial Qianfoshan Hospital, Shandong University, Jingshi Road 16766, Jinan, 250014, Shandong, People's Republic of China
| | - Shutong Li
- Shandong Provincial Qianfoshan Hospital, Shandong University, Jingshi Road 16766, Jinan, 250014, Shandong, People's Republic of China
| | - Guoqing Zhang
- Medical Research Center of The Affiliated Hospital of Qingdao University, Wutaishan Road 1677, Qingdao, 266000, Shandong, People's Republic of China
| | - Hui Wu
- Shandong Provincial Qianfoshan Hospital, Shandong University, Jingshi Road 16766, Jinan, 250014, Shandong, People's Republic of China
| | - Xiaotian Chang
- Medical Research Center of The Affiliated Hospital of Qingdao University, Wutaishan Road 1677, Qingdao, 266000, Shandong, People's Republic of China. .,Qingdao Engineering Technology Center For Major Disease Marker, Wutaishan Road 1677, Qingdao, 266000, Shandong, People's Republic of China.
| |
Collapse
|
33
|
Zhou D, Ding J, Ya J, Pan L, Wang Y, Ji X, Meng R. Remote ischemic conditioning: a promising therapeutic intervention for multi-organ protection. Aging (Albany NY) 2019; 10:1825-1855. [PMID: 30115811 PMCID: PMC6128414 DOI: 10.18632/aging.101527] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 08/10/2018] [Indexed: 12/21/2022]
Abstract
Despite decades of formidable exploration, multi-organ ischemia-reperfusion injury (IRI) encountered, particularly amongst elderly patients with clinical scenarios, such as age-related arteriosclerotic vascular disease, heart surgery and organ transplantation, is still an unsettled conundrum that besets clinicians. Remote ischemic conditioning (RIC), delivered via transient, repetitive noninvasive IR interventions to distant organs or tissues, is regarded as an innovative approach against IRI. Based on the available evidence, RIC holds the potential of affording protection to multiple organs or tissues, which include not only the heart and brain, but also others that are likely susceptible to IRI, such as the kidney, lung, liver and skin. Neuronal and humoral signaling pathways appear to play requisite roles in the mechanisms of RIC-related beneficial effects, and these pathways also display inseparable interactions with each other. So far, several hurdles lying ahead of clinical translation that remain to be settled, such as establishment of biomarkers, modification of RIC regimen, and deep understanding of underlying minutiae through which RIC exerts its powerful function. As this approach has garnered an increasing interest, herein, we aim to encapsulate an overview of the basic concept and postulated protective mechanisms of RIC, highlight the main findings from proof-of-concept clinical studies in various clinical scenarios, and also to discuss potential obstacles that remain to be conquered. More well designed and comprehensive experimental work or clinical trials are warranted in future research to confirm whether RIC could be utilized as a non-invasive, inexpensive and efficient adjunct therapeutic intervention method for multi-organ protection.
Collapse
Affiliation(s)
- Da Zhou
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - Jiayue Ding
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - Jingyuan Ya
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - Liqun Pan
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - Yuan Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - Xunming Ji
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - Ran Meng
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Geriatric Disorders, Beijing, China
| |
Collapse
|
34
|
Lieder HR, Kleinbongard P, Skyschally A, Hagelschuer H, Chilian WM, Heusch G. Vago-Splenic Axis in Signal Transduction of Remote Ischemic Preconditioning in Pigs and Rats. Circ Res 2019; 123:1152-1163. [PMID: 30359199 DOI: 10.1161/circresaha.118.313859] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
RATIONALE The signal transduction of remote ischemic conditioning is still largely unknown. OBJECTIVE Characterization of neurohumoral signal transfer and vago-splenic axis in remote ischemic preconditioning (RIPC). METHODS AND RESULTS Anesthetized pigs were subjected to 60 minutes of coronary occlusion and 180 minutes of reperfusion (placebo+ischemia/reperfusion [PLA+I/R]). RIPC was induced by 4×5/5 minutes of hindlimb I/R 90 minutes before coronary occlusion (RIPC+I/R). Arterial blood samples were taken after placebo or RIPC before I/R. In subgroups of pigs, bilateral cervical vagotomy, splenectomy, or splenic denervation were performed before PLA+I/R or RIPC+I/R, respectively. In pigs with RIPC+I/R, infarct size (percentage of area at risk) was less than in those with PLA+I/R (23±12% versus 45±8%); splenectomy or splenic denervation abrogated (splenectomy+RIPC+I/R: 38±15%; splenic denervation+RIPC+I/R: 43±5%), and vagotomy attenuated (vagotomy+RIPC+I/R: 36±11%) RIPC protection. RIPC increased phosphorylation of STAT3 (signal transducer and activator of transcription 3) in left ventricular biopsies taken at early reperfusion. Splenectomy or splenic denervation, but not vagotomy, abolished this increased phosphorylation. In rats with vagotomy, splenectomy, or splenic denervation, RIPC (3×5/5 minutes of hindlimb occlusion/reperfusion) or placebo was performed, respectively. Hearts were isolated, saline perfused, and subjected to 30/120-minute global I/R. With RIPC, infarct size (percentage of ventricular mass) was less (20±7%) than with placebo (37±6%), and vagotomy, splenectomy, or splenic denervation abrogated RIPC protection (38±12%, 36±9%, and 36±7%), respectively. Rat spleens were isolated, saline perfused, and splenic effluate (SEff) was sampled after infusion with carbachol (SEffcarbachol) or saline (SEffsaline). Pig plasma or SEff was infused into isolated perfused rat hearts subjected to global I/R. Infarct size was less with infusion of RIPC+I/Rplasma+ (24±6%) than with PLA+I/Rplasma (40±8%), vagotomy+PLA+I/Rplasma (39±11%), splenectomy+PLA+I/Rplasma (35±8%), vagotomy+RIPC+I/Rplasma (40±9%), splenectomy+RIPC+I/Rplasma (33±9%), or splenic denervation+RIPC+I/Rplasma (39±8%), respectively. With infusion of SEffcarbachol, infarct size was less than with infusion of SEffsaline (24 [19-27]% versus 35 [32-38]%). CONCLUSIONS Activation of a vago-splenic axis is causally involved in RIPC cardioprotection.
Collapse
Affiliation(s)
- Helmut Raphael Lieder
- From the Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Germany (H.R.L., P.K., A.S., H.H., G.H.)
| | - Petra Kleinbongard
- From the Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Germany (H.R.L., P.K., A.S., H.H., G.H.)
| | - Andreas Skyschally
- From the Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Germany (H.R.L., P.K., A.S., H.H., G.H.)
| | - Helene Hagelschuer
- From the Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Germany (H.R.L., P.K., A.S., H.H., G.H.)
| | | | - Gerd Heusch
- From the Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Germany (H.R.L., P.K., A.S., H.H., G.H.)
| |
Collapse
|
35
|
Liu C, Zhang C, Du H, Geng X, Zhao H. Remote ischemic preconditioning protects against ischemic stroke in streptozotocin-induced diabetic mice via anti-inflammatory response and anti-apoptosis. Brain Res 2019; 1724:146429. [PMID: 31476295 DOI: 10.1016/j.brainres.2019.146429] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 08/15/2019] [Accepted: 08/29/2019] [Indexed: 01/03/2023]
Abstract
OBJECTIVE It has been shown that remote ischemic preconditioning (RIPreC) attenuates ischemic injury after stroke in healthy rats or mice. The present study aims to examine whether RIPreC offers neuroprotection against ischemic stroke in streptozotocin-induced diabetic mice. METHODS Streptozotocin (STZ, 120 mg/kg) was intraperitoneally injected into the mice to induce type 1 diabetic model. The immune and inflammatory changes were analyzed 2 days after reperfusion by flow cytometry and multiplex cytokine assay analysis, respectively. RESULTS We found that RIPreC reduced infarct sizes and alleviated neurological impairment in diabetic mice. RIPreC decreased CD8 T cells infiltrated into the brain, and attenuated the decreases of CD8 T cells in the blood, CD4 T cells and CD8 T cells in the spleen. Results from multiplex cytokine assay showed that RIPreC treatment decreased IL-6, IL-1 beta and TNF alpha levels in the cortex, while it inhibited IL-6 level in the hippocampus and striatum, and TNF alpha level in the hippocampus. RIPreC treatment also downregulated IL-6 and IFN gamma level in the blood, which increased after cerebral ischemic injury. In addition, RIPreC reduced pro-apoptotic protein BAX expression in the ischemic brain. CONCLUSIONS Our results indicate that RIPreC attenuates cerebral injuries in streptozotocin-induced diabetic mice via anti-inflammatory response and anti-apoptosis in the ischemic brain.
Collapse
Affiliation(s)
- Cuiying Liu
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China.
| | - Chencheng Zhang
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Huishan Du
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China; Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Xiaokun Geng
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China; Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China.
| | - Heng Zhao
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| |
Collapse
|
36
|
He JT, Li H, Yang L, Cheng KL. Involvement of Endothelin-1, H 2S and Nrf2 in Beneficial Effects of Remote Ischemic Preconditioning in Global Cerebral Ischemia-Induced Vascular Dementia in Mice. Cell Mol Neurobiol 2019; 39:671-686. [PMID: 31025223 DOI: 10.1007/s10571-019-00670-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 03/12/2019] [Indexed: 12/11/2022]
Abstract
The present study explored the role of endothelin-1, H2S, and Nrf2 in remote preconditioning (RIPC)-induced beneficial effects in ischemia-reperfusion (I/R)-induced vascular dementia. Mice were subjected to 20 min of global ischemia by occluding both carotid arteries to develop vascular dementia, which was assessed using Morris water maze test on 7th day. RIPC was given by subjecting hind limb to four cycles of ischemia (5 min) and reperfusion (5 min) and it significantly restored I/R-induced locomotor impairment, neurological severity score, cerebral infarction, apoptosis markers along with deficits in learning and memory. Biochemically, there was increase in the plasma levels of endothelin-1 along with increase in the brain levels of H2S and its biosynthetic enzymes viz., cystathionine-β-synthase (CBS) and cystathionine-γ-lyase (CLS). There was also an increase in the expression of Nrf2 and glutathione reductase in the brain in response to RIPC. Pretreatment with bosentan (dual blocker of ETA and ETB receptors), amino-oxyacetic acid (CBS synthase inhibitor), and DL-propargylglycine (CLS inhibitor) significantly attenuated RIPC-mediated beneficial effects and biochemical alterations. The effects of bosentan on behavioral and biochemical parameters were more significant than individual treatments with CBS or CLS inhibitors. Moreover, CBS and CLS inhibitors did not alter the endothelin-1 levels possibly suggesting that endothelin-1 may act as upstream mediator of H2S. It is concluded that RIPC may stimulate the release endothelin-1, which may activate CBS and CLS to increase the levels of H2S and latter may increase the expression of Nrf2 to decrease oxidative stress and prevent vascular dementia.
Collapse
Affiliation(s)
- Jin-Ting He
- Department of Neurology, China-Japan Union Hospital, Jilin University, Changchun, 130033, Jilin, China
| | - Haiqi Li
- Department of Neurology, China-Japan Union Hospital, Jilin University, Changchun, 130033, Jilin, China
| | - Le Yang
- Department of Endocrinology, The People's Hospital of Jilin Province, Changchun, 130031, China.
| | - Kai-Liang Cheng
- Department of Radiology, China-Japan Union Hospital, Jilin University, 126 Xiantai Street, Changchun, 130033, Jilin, China.
| |
Collapse
|
37
|
Malone K, Amu S, Moore AC, Waeber C. Immunomodulatory Therapeutic Strategies in Stroke. Front Pharmacol 2019; 10:630. [PMID: 31281252 PMCID: PMC6595144 DOI: 10.3389/fphar.2019.00630] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 05/16/2019] [Indexed: 12/14/2022] Open
Abstract
The role of immunity in all stages of stroke is increasingly being recognized, from the pathogenesis of risk factors to tissue repair, leading to the investigation of a range of immunomodulatory therapies. In the acute phase of stroke, proposed therapies include drugs targeting pro-inflammatory cytokines, matrix metalloproteinases, and leukocyte infiltration, with a key objective to reduce initial brain cell toxicity. Systemically, the early stages of stroke are also characterized by stroke-induced immunosuppression, where downregulation of host defences predisposes patients to infection. Therefore, strategies to modulate innate immunity post-stroke have garnered greater attention. A complementary objective is to reduce longer-term sequelae by focusing on adaptive immunity. Following stroke onset, the integrity of the blood–brain barrier is compromised, exposing central nervous system (CNS) antigens to systemic adaptive immune recognition, potentially inducing autoimmunity. Some pre-clinical efforts have been made to tolerize the immune system to CNS antigens pre-stroke. Separately, immune cell populations that exhibit a regulatory phenotype (T- and B- regulatory cells) have been shown to ameliorate post-stroke inflammation and contribute to tissue repair. Cell-based therapies, established in oncology and transplantation, could become a strategy to treat the acute and chronic stages of stroke. Furthermore, a role for the gut microbiota in ischaemic injury has received attention. Finally, the immune system may play a role in remote ischaemic preconditioning-mediated neuroprotection against stroke. The development of stroke therapies involving organs distant to the infarct site, therefore, should not be overlooked. This review will discuss the immune mechanisms of various therapeutic strategies, surveying published data and discussing more theoretical mechanisms of action that have yet to be exploited.
Collapse
Affiliation(s)
- Kyle Malone
- Department of Pharmacology and Therapeutics, School of Pharmacy, University College Cork, Cork, Ireland
| | - Sylvie Amu
- Cancer Research @UCC, University College Cork, Cork, Ireland
| | - Anne C Moore
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Christian Waeber
- Department of Pharmacology and Therapeutics, School of Pharmacy, University College Cork, Cork, Ireland
| |
Collapse
|
38
|
Yang J, Shakil F, Cho S. Peripheral Mechanisms of Remote Ischemic Conditioning. CONDITIONING MEDICINE 2019; 2:61-68. [PMID: 32313875 PMCID: PMC7169943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Ischemic conditioning induces an endogenous protective mechanism that allows organisms to develop resistance to subsequent insults. The conditioning effect occurs across organs and species. Recently, much attention has been given to remote ischemic limb conditioning due to its non-invasive nature and potential therapeutic applications. While tolerance is induced at the primary injury site (e.g. the heart in cardiac ischemia and the brain in stroke), the site of conditioning application is away from the target organ, suggesting the protective factors are extrinsic in nature rather than intrinsic. This review will focus on the peripheral factors that account for the induction of tolerance. Topics of particular interest are blood flow changes, peripheral neural pathways, humoral factors in circulation, and the peripheral immune system. This review will also discuss how conditioning may negatively affect metabolically compromised conditions, its optimal dose, and window for therapy development.
Collapse
Affiliation(s)
- Jiwon Yang
- Burke Neurological Institute, White Plains, NY 10605
- The Jackson Laboratory, Sacramento, CA 95838
| | | | - Sunghee Cho
- Burke Neurological Institute, White Plains, NY 10605
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065
| |
Collapse
|