1
|
Shang J, Yan M, Zhang X, Liu W, Wu S, Wang Z, Yi L, Wang C, Feng E, Cheng Y, Luo G. Preparation and preliminary application of fluorescent microsphere test strips for feline parvovirus antibodies. BMC Biotechnol 2024; 24:65. [PMID: 39333983 PMCID: PMC11429854 DOI: 10.1186/s12896-024-00900-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
This study introduces a novel diagnostic modality for the detection of feline panleukopenia virus (FPV) antibodies in feline serum by using fluorescent microsphere immunochromatographic test strips (FM-ICTS). Leveraging the inherent specificity of antigen-antibody interactions, the FM-ICTS approach demonstrates considerable potential for efficient and accurate FPV antibody detection within a short timeframe. The FM-ICTS method demonstrates strong diagnostic performance, with consistent accuracy and stability over time. PBS buffer dilution enables detection across the range of FPV antibody haemagglutination inhibition (HI) titres in both healthy and immunized or infected cats. A high correlation (R² = 0.9733) between the T/C ratio and FPV antibody titres confirms the method's effectiveness in quantifying these titres. Clinical validation with 84 samples supports its reliability by matching results with HI assays. Additionally, stability tests show that the test strips maintain performance during storage, with a coefficient of variation (CV) below 12% over three months at 25℃. This innovative FM-ICTS framework emerges as a promising avenue for expedient and dependable disease diagnosis within the realm of veterinary science, offering implications for timely disease management and surveillance.
Collapse
Affiliation(s)
- Jinyuan Shang
- Key Laboratory of Economic Animal Diseases, Ministry of Agriculture, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Manping Yan
- Key Laboratory of Economic Animal Diseases, Ministry of Agriculture, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Xiaohao Zhang
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, China
| | - Wei Liu
- Xinuo BioTechnology Co., Ltd, Changchun, China
| | - Shun Wu
- Key Laboratory of Economic Animal Diseases, Ministry of Agriculture, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Zhenjun Wang
- Key Laboratory of Economic Animal Diseases, Ministry of Agriculture, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Li Yi
- Key Laboratory of Economic Animal Diseases, Ministry of Agriculture, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Chunxia Wang
- Key Laboratory of Economic Animal Diseases, Ministry of Agriculture, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Erkai Feng
- Key Laboratory of Economic Animal Diseases, Ministry of Agriculture, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China.
| | - Yuening Cheng
- Key Laboratory of Economic Animal Diseases, Ministry of Agriculture, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China.
| | - Guoliang Luo
- Key Laboratory of Economic Animal Diseases, Ministry of Agriculture, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China.
| |
Collapse
|
2
|
Eid AAM, Lebdah MA, Helal SS, Seadawy MG, El-Gohary A, Mousa MR, El-Deeb AH, Mohamed FF, ElBakrey RM. Short beak and dwarfism syndrome among Pekin ducks: First detection, full genome sequencing, and immunohistochemical signals of novel goose parvovirus in tongue tissue. Vet Pathol 2024; 61:829-838. [PMID: 38712876 DOI: 10.1177/03009858241249108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Novel goose parvovirus (NGPV) is continuously threatening the global duck industry, as it causes short beak and dwarfism syndrome among different duck breeds. In this study, we investigated the viral pathogenesis in the tongue of affected ducks, as a new approach for deeper understanding of the syndrome. Seventy-three, 14- to 60-day-old commercial Pekin ducks were clinically examined. Thirty tissue pools of intestine and tongue (15 per tissue) were submitted for molecular identification. Clinical signs in the examined ducks were suggestive of parvovirus infection. All examined ducks had short beaks. Necrotic, swollen, and congested protruding tongues were recorded in adult ducks (37/73, 51%). Tongue protrusion without any marked congestion or swelling was observed in 20-day-old ducklings (13/73, 18%), and no tongue protrusion was observed in 15-day-old ducklings (23/73, 32%). Microscopically, the protruding tongues of adult ducks showed necrosis of the superficial epithelial layer with vacuolar degeneration. Glossitis was present in the nonprotruding tongues of young ducks, which was characterized by multifocal lymphoplasmacytic aggregates and edema in the propria submucosa. Immunohistochemical examination displayed parvovirus immunolabeling, mainly in the tongue propria submucosa. Based on polymerase chain reaction, goose parvovirus was detected in 9 out of 15 tongue sample pools (60%). Next-generation sequencing confirmed the presence of a variant goose parvovirus that is globally named NGPV and closely related to Chinese NGPV isolates. Novel insights are being gained from the study of NGPV pathogenesis in the tongue based on molecular and immunohistochemical identification.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ayman H El-Deeb
- Cairo University, Giza, Egypt
- King Salman International University, Ras Sudr, Egypt
| | | | | |
Collapse
|
3
|
Chacón RD, Sánchez-Llatas CJ, da Costa AC, Valdeiglesias Ichillumpa S, Cea-Callejo P, Marín-Sánchez O, Astolfi-Ferreira CS, Santander-Parra S, Nuñez LFN, Piantino Ferreira AJ. Molecular and Evolutionary Characteristics of Chicken Parvovirus (ChPV) Genomes Detected in Chickens with Runting-Stunting Syndrome. Viruses 2024; 16:1389. [PMID: 39339865 PMCID: PMC11436221 DOI: 10.3390/v16091389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/13/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024] Open
Abstract
Chicken Parvovirus (ChPV) belongs to the genus Aveparvovirus and is implicated in enteric diseases like runting-stunting syndrome (RSS) in poultry. In RSS, chicken health is affected by diarrhea, depression, and increased mortality, causing significant economic losses in the poultry industry. This study aimed to characterize the ChPV genomes detected in chickens with RSS through a metagenomic approach and compare the molecular and evolutionary characteristics within the Aveparvovirus galliform1 species. The intestinal content of broiler flocks affected with RSS was submitted to viral metagenomics. The assembled prevalent genomes were identified as ChPV after sequence and phylogenetic analysis, which consistently clustered separately from Turkey Parvovirus (TuPV). The strain USP-574-A presented signs of genomic recombination. The selective pressure analysis indicated that most of the coding genes in A. galliform1 are evolving under diversifying (negative) selection. Protein modeling of ChPV and TuPV viral capsids identified high conservancy over the VP2 region. The prediction of epitopes identified several co-localized antigenic peptides from ChPV and TuPV, especially for T-cell epitopes, highlighting the immunological significance of these sites. However, most of these peptides presented host-specific variability, obeying an adaptive scenario. The results of this study show the evolutionary path of ChPV and TuPV, which are influenced by diversifying events such as genomic recombination and selective pressure, as well as by adaptation processes, and their subsequent immunological impact.
Collapse
Affiliation(s)
- Ruy D Chacón
- Department of Pathology, School of Veterinary Medicine, University of São Paulo, São Paulo 05508-270, Brazil
| | - Christian J Sánchez-Llatas
- Department of Genetics, Physiology, and Microbiology, Faculty of Biology, Complutense University of Madrid, 28040 Madrid, Spain
| | - Antonio Charlys da Costa
- Laboratory of Virology (LIM 52), Department of Infectious Diseases, Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, São Paulo 05403-000, Brazil
| | - Stefhany Valdeiglesias Ichillumpa
- Laboratorio de Fisiología Molecular, Instituto de Investigación en Ganadería y Biotecnología, Facultad de Ingeniería Zootecnista, Agronegocios y Biotecnología, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru
| | - Pablo Cea-Callejo
- Department of Genetics, Physiology, and Microbiology, Faculty of Biology, Complutense University of Madrid, 28040 Madrid, Spain
| | - Obert Marín-Sánchez
- Departamento Académico de Microbiología Médica, Facultad de Medicina, Universidad Nacional Mayor de San Marcos, Lima 15081, Peru
| | - Claudete S Astolfi-Ferreira
- Department of Pathology, School of Veterinary Medicine, University of São Paulo, São Paulo 05508-270, Brazil
| | - Silvana Santander-Parra
- Facultad de Ciencias de la Salud, Carrera de Medicina Veterinaria, Universidad de Las Américas, Quito EC 170124, Ecuador
| | - Luis F N Nuñez
- Facultad de Ciencias de la Salud, Carrera de Medicina Veterinaria, Universidad de Las Américas, Quito EC 170124, Ecuador
- One Health Research Group, Universidad de Las Américas, Quito EC 170124, Ecuador
| | - Antonio J Piantino Ferreira
- Department of Pathology, School of Veterinary Medicine, University of São Paulo, São Paulo 05508-270, Brazil
| |
Collapse
|
4
|
Khrustalev VV, Khrustaleva OV, Stojarov AN, Akunevich AA, Baranov OE, Popinako AV, Samoilovich EO, Yermolovich MA, Semeiko GV, Cheprasova VI, Sapon EG, Shalygo NV, Poboinev VV, Khrustaleva TA, Ranishenka BV, Kharytonova UV, Bush D. Conjugation with the Carrier Helped to Reveal acidification-Induced Structural Shift in the Peptide from Phospholipase Domain of Parvovirus B19. Protein J 2024; 43:805-818. [PMID: 38980534 DOI: 10.1007/s10930-024-10209-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2024] [Indexed: 07/10/2024]
Abstract
Spectroscopic studies on domains and peptides of large proteins are complicated because of the tendency of short peptides to form oligomers in aquatic buffers, but conjugation of a peptide with a carrier protein may be helpful. In this study we approved that a fragment of SK30 peptide from phospholipase A2 domain of VP1 Parvovirus B19 capsid protein (residues: 144-159; 164; 171-183; sequence: SAVDSAARIHDFRYSQLAKLGINPYTHWTVADEELLKNIK) turns from random coil to alpha helix in the acidic medium only in case if it had been conjugated with BSA (through additional N-terminal Cys residue, turning it into CSK31 peptide, and SMCC linker) according to CD-spectroscopy results. In contrast, unconjugated SK30 peptide does not undergo such shift because it forms stable oligomers connected by intermolecular antiparallel beta sheet, according to IR-spectroscopy, CD-spectroscopy, blue native gel electrophoresis and centrifugal ultrafiltration, as, probably, the whole isolated phospholipase domain of VP1 protein does. However, being a part of the long VP1 capsid protein, phospholipase domain may change its fold during the acidification of the medium in the endolysosome by the way of the formation of contacts between protonated His153 and Asp175, promoting the shift from random coil to alpha helix in its N-terminal part. This study opens up a perspective of vaccine development, since rabbit polyclonal antibodies against the conjugate of CSK31 peptide with BSA, in which the structure of the second alpha helix from the phospholipase A2 domain should be reproduced, can bind epitopes of the complete recombinant unique part of VP1 Parvovirus B19 capsid (residues: 1-227).
Collapse
Affiliation(s)
| | - Olga Victorovna Khrustaleva
- Department of General Chemistry, Belarusian State Medical University, Dzerzhinskogo 83, Minsk, 220045, 220083, Belarus
| | | | | | - Oleg Evgenyevich Baranov
- Bach Institute of Biochemistry, Shared-Access Equipment Centre "Industrial Biotechnology" of Russian Academy of Science, Leninskiy prospect, 33/2, Moscow, 119071, Russian Federation
| | - Anna Vladimirovna Popinako
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninskiy prospect, 33/2, Moscow, 119071, Russian Federation
| | - Elena Olegovna Samoilovich
- Laboratory of Vaccine-controlled Infections, Republican Research and Practical Center for Epidemiology and Microbiology, Filimonova 23, Minsk, 220114, Belarus
| | - Marina Anatolyevna Yermolovich
- Laboratory of Vaccine-controlled Infections, Republican Research and Practical Center for Epidemiology and Microbiology, Filimonova 23, Minsk, 220114, Belarus
| | - Galina Valeryevna Semeiko
- Laboratory of Vaccine-controlled Infections, Republican Research and Practical Center for Epidemiology and Microbiology, Filimonova 23, Minsk, 220114, Belarus
| | - Victoria Igorevna Cheprasova
- Laboratory of infra-red spectroscopy and infra-red microscopy, Belarusian State Technological University, Sverdlova 13a, Minsk, 220006, Belarus
| | - Egor Gennadyevich Sapon
- Laboratory of infra-red spectroscopy and infra-red microscopy, Belarusian State Technological University, Sverdlova 13a, Minsk, 220006, Belarus
| | - Nikolai Vladimirovich Shalygo
- Department of General Chemistry, Belarusian State Medical University, Dzerzhinskogo 83, Minsk, 220045, 220083, Belarus
| | - Victor Vitoldovich Poboinev
- Department of General Chemistry, Belarusian State Medical University, Dzerzhinskogo 83, Minsk, 220045, 220083, Belarus
| | - Tatyana Aleksandrovna Khrustaleva
- Laboratory of Biomedical Technologies and Medical Rehabilitation, Institute of Physiology of the National Academy of Sciences of Belarus, Academicheskaya 28, Minsk, 220072, Belarus
| | - Bahdan Vyacheslavovich Ranishenka
- Laboratory of Chemistry of Bioconjugates, Institute of Physical-organic Chemistry of the National Academy of Sciences of Belarus, Surganova 13, Minsk, 220072, Belarus
| | - Ulyana Vitalyevna Kharytonova
- Department of General Chemistry, Belarusian State Medical University, Dzerzhinskogo 83, Minsk, 220045, 220083, Belarus
| | - Daniel Bush
- Department of General Chemistry, Belarusian State Medical University, Dzerzhinskogo 83, Minsk, 220045, 220083, Belarus
| |
Collapse
|
5
|
Zhan G, Liu N, Fan X, Jiang W, Yuan M, Liu Y, Dong S. Genome cloning and genetic evolution analysis of eight duck-sourced novel goose parvovirus strains in China in 2023. Front Microbiol 2024; 15:1373601. [PMID: 38765684 PMCID: PMC11101215 DOI: 10.3389/fmicb.2024.1373601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 04/03/2024] [Indexed: 05/22/2024] Open
Abstract
Introduction There are three major categories of waterfowl parvoviruses, namely goose parvovirus (GPV), Muscovy duck parvovirus, and novel goose parvovirus (NGPV). NGPV can infect both Cherry Valley ducks and mule ducks, resulting in short beaks and dwarfism syndrome, and the incidence of short beaks and dwarfism syndrome rises annually, posing a significant threat to the waterfowl breeding and the animal husbandry. Therefore, clarifying the biological characteristics and genetic evolution of NGPV is very important for the prevention and control of NGPV. Methods Ducks with short beaks and dwarfism syndrome from Shandong and Henan Province were investigated by dissection and the tissue samples were collected for study. The NGPV genome was amplified by PCR, and the genome was analyzed for genetic evolution. Results Eight strains of NGPV were isolated, which were designated as HZ0512, HZ0527, HZ0714, HZ0723, HZ0726, HZ0811, HZ0815, and HN0403. The nucleotide homology among these strains ranged from 99.9% to 100%. The eight strains, along with other NGPVs, belong to GPV. The eight strains showed a 92.5%-98.9% nucleotide homology with the classical GPV, while a 96.0%-99.9% homology with NGPV.Therefore, it can be deduced that there have been no major mutations of NGPV in Shandong and Henan provinces in recent years. Discussion This study lays a theoretical foundation for further studying the genetic evolution and pathogenicity of NGPV, thereby facilitating the prevention and control of NGPV.
Collapse
Affiliation(s)
- Guangjian Zhan
- College of Veterinary Medicine & Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei Province, China
- Xintai Jianyuan Breeding Poultry Limited Company, Taian, Shandong Province, China
- Jiangsu Yike Food Group Limited Company, Suqian, Jiangsu Province, China
| | - Nan Liu
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an, Shandong Province, China
| | - Xiaole Fan
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an, Shandong Province, China
| | - Wansi Jiang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an, Shandong Province, China
| | - Mengxue Yuan
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an, Shandong Province, China
| | - Yunwang Liu
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an, Shandong Province, China
| | - Shishan Dong
- College of Veterinary Medicine & Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei Province, China
| |
Collapse
|
6
|
Yadhav Y, Selvaraj K, Ramasamy S, Venkataraman S. Computational studies on rep and capsid proteins of CRESS DNA viruses. Virusdisease 2024; 35:17-26. [PMID: 38817400 PMCID: PMC11133267 DOI: 10.1007/s13337-024-00858-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/29/2024] [Indexed: 06/01/2024] Open
Abstract
The circular rep-encoding single-stranded DNA viruses (CRESS DNA viruses) are among the smallest, with 2-6 kb ssDNA genomes that encode for a coat protein (C) and a replication protein (R). To comprehend the complexity and divergence of the C and R proteins, we have created predictive structural models of representative viruses infecting unique hosts from each family using the neural network-based method AlphaFold2 and carried out molecular dynamic simulations to assess their stability. The structural characteristics indicate that differences in loops and amino-terminus may play a significant role in facilitating adaptations to multiple hosts and vectors. In comparison to the C, the Rs show a high degree of conservation and structural mimicry of the nuclease-helicase domains of plasmids. A phylogenetic analysis based on the structures and sequences of the C and R proteins reveals evolutionary variances. Our study also highlights the conservation of structural components involved in the interaction of R with the conserved intergenic region of the genome. Further, we envisage that the adaptability of R's central linker may be crucial for establishing interactions with multiple protein partners, including C. Supplementary Information The online version contains supplementary material available at 10.1007/s13337-024-00858-x.
Collapse
Affiliation(s)
- Yagavi Yadhav
- Department of Biotechnology, Anna University, Guindy, Chennai, 600025 India
| | - Karthiga Selvaraj
- Department of Biotechnology, Anna University, Guindy, Chennai, 600025 India
| | | | | |
Collapse
|
7
|
Charoenkul K, Thaw YN, Phyu EM, Jairak W, Nasamran C, Chamsai E, Chaiyawong S, Amonsin A. First detection and genetic characterization of canine bufavirus in domestic dogs, Thailand. Sci Rep 2024; 14:4773. [PMID: 38413640 PMCID: PMC10899236 DOI: 10.1038/s41598-024-54914-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 02/18/2024] [Indexed: 02/29/2024] Open
Abstract
Canine bufavirus (CBuV) was reported in domestic dogs worldwide. We conducted a survey of canine bufavirus in domestic dogs in Thailand from September 2016 to October 2022. Rectal swab samples (n = 531) were collected from asymptomatic dogs and dogs with gastroenteritis signs. The samples were tested for CBuV using PCR with specific primers to the VP1/VP2 gene, and 9.42% (50/531) was CBuV positive. Our findings showed that CBuVs could be detected in both symptomatic and healthy dogs. The Thai CBuVs were found in dogs from different age groups, with a significant presence in those under 1 year (12.60%) and dogs aged 1-5 years (7.34%) (p < 0.05), suggesting a high prevalence of Thai CBuVs in dogs under 5 years of age. We performed complete genome sequencing (n = 15) and partial VP1/VP2 sequencing (n = 5) of Thai CBuVs. Genetic and phylogenetic analyses showed that whole genomes of Thai CBuVs were closely related to Chinese and Italian CBuVs, suggesting the possible origin of Thai CBuVs. The analysis of VP1 and VP2 genes in Thai CBuVs showed that 18 of them were placed in subgroup A, while only 2 belonged to subgroup B. This study is the first to report the detection and genetic characterization of CBuVs in domestic dogs in Thailand. Additionally, surveillance and genetic characterization of CBuVs in domestic animals should be further investigated on a larger scale to elucidate the dynamic, evolution, and distribution of CBuVs.
Collapse
Affiliation(s)
- Kamonpan Charoenkul
- Faculty of Veterinary Science, Center of Excellence for Emerging and Re-Emerging Infectious Diseases in Animals, Chulalongkorn University, Bangkok, Thailand
- Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Yu Nandi Thaw
- Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Eaint Min Phyu
- Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Waleemas Jairak
- Faculty of Veterinary Science, Center of Excellence for Emerging and Re-Emerging Infectious Diseases in Animals, Chulalongkorn University, Bangkok, Thailand
- Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Chanakarn Nasamran
- Faculty of Veterinary Science, Center of Excellence for Emerging and Re-Emerging Infectious Diseases in Animals, Chulalongkorn University, Bangkok, Thailand
- Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Ekkapat Chamsai
- Faculty of Veterinary Science, Center of Excellence for Emerging and Re-Emerging Infectious Diseases in Animals, Chulalongkorn University, Bangkok, Thailand
| | - Supassama Chaiyawong
- Faculty of Veterinary Science, Center of Excellence for Emerging and Re-Emerging Infectious Diseases in Animals, Chulalongkorn University, Bangkok, Thailand
- Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Alongkorn Amonsin
- Faculty of Veterinary Science, Center of Excellence for Emerging and Re-Emerging Infectious Diseases in Animals, Chulalongkorn University, Bangkok, Thailand.
- Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
8
|
Lopes TS, Lunge VR, Streck AF. Antiviral alternatives against important members of the subfamily Parvovirinae: a review. Arch Virol 2024; 169:52. [PMID: 38378929 DOI: 10.1007/s00705-024-05995-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/04/2024] [Indexed: 02/22/2024]
Abstract
Parvoviruses are responsible for multiple diseases, and there is a critical need for effective antiviral therapies. Specific antiviral treatments for parvovirus infections are currently lacking, and the available options are mostly supportive and symptomatic. In recent years, significant research efforts have been directed toward understanding the molecular mechanisms of parvovirus replication and identifying potential targets for antiviral interventions. This review highlights the structure, pathogenesis, and treatment options for major viruses of the subfamily Parvovirinae, such as parvovirus B19 (B19V), canine parvovirus type 2 (CPV-2), and porcine parvovirus (PPV) and also describes different approaches in the development of antiviral alternatives against parvovirus, including drug repurposing, serendipity, and computational tools (molecular docking and artificial intelligence) in drug discovery. These advances greatly increase the likelihood of discoveries that will lead to potent antiviral strategies against different parvovirus infections.
Collapse
|
9
|
Salmanli E, Tezcan T, Karaoglu T. A novel lateral flow immunochromatographic assay using a recombinant VP2 antigen for total antibody detection of canine parvovirus-2. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:551-557. [PMID: 38186287 DOI: 10.1039/d3ay01870a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Canine parvovirus-2 (CPV-2) is a viral disease of dogs causing acute hemorrhagic gastroenteritis and myocarditis with high morbidity and mortality rates. The infection is still widespread all over the world. Vaccines developed against infection have great importance in preventing infection. However, it is difficult to recommend a practical vaccination program without knowing the antibody level of a puppy. Despite widespread vaccination, difficulties in detecting the maternal antibodies in puppies remain the main cause of vaccination failure. The hemagglutination inhibition (HAI) test is the gold standard to determine the immune status of dogs for canine parvovirus 2, but the HAI test has several disadvantages such as the need for fresh porcine blood, well-equipped laboratory, and long incubation periods. In this study, for the first time we developed a colloidal gold-based competitive lateral flow assay (cLFA) system for the rapid detection of total antibodies in canine serum using CPV-2b-VP2 derived from field isolates. The recombinantly expressed capsid protein of CPV-2 in the prokaryotic expression system was used as a labeled molecule in cLFA. We carried out studies on our cLFA system using the standard antibody solution and the clinical samples from vaccinated puppy serum. We compared the results of the LFAs with the HAI test. Competitive lateral flow assay results showed good correlation with the gold standard method, the HAI test. In the developed platform, the limit of detection of the standard antibody was determined to be 375 ng mL-1, while the cut-off level of antibodies was observed to be 1 : 40 HAI titer in clinical samples. Our reported system will be a strong alternative for CPV-2 antibody-based detection applications.
Collapse
Affiliation(s)
- Ezgi Salmanli
- Department of Virology, Graduate School of Health Sciences, Ankara University, Ankara, Turkey
- Virology Department, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey.
- METU MEMS Research and Application Center, Ankara, Turkey
| | - Tugba Tezcan
- Department of Analytical Chemistry, Faculty of Pharmacy, Gazi University, Ankara, Turkey.
| | - Taner Karaoglu
- Virology Department, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey.
| |
Collapse
|
10
|
Sánchez-Moguel I, Montiel C, Bustos-Jaimes I. Therapeutic Potential of Engineered Virus-like Particles of Parvovirus B19. Pathogens 2023; 12:1007. [PMID: 37623967 PMCID: PMC10458557 DOI: 10.3390/pathogens12081007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/26/2023] Open
Abstract
Virus-like particles (VLPs) comprise one or many structural components of virions, except their genetic material. Thus, VLPs keep their structural properties of cellular recognition while being non-infectious. VLPs of Parvovirus B19 (B19V) can be produced by the heterologous expression of their structural proteins VP1 and VP2 in bacteria. These proteins are purified under denaturing conditions, refolded, and assembled into VLPs. Moreover, chimeric forms of VP2 have been constructed to harbor peptides or functional proteins on the surface of the particles without dropping their competence to form VLPs, serving as presenting nanoparticles. The in-vitro assembly approach offers exciting possibilities for the composition of VLPs, as more than one chimeric form of VP2 can be included in the assembly stage, producing multifunctional VLPs. Here, the heterologous expression and in-vitro assembly of B19V structural proteins and their chimeras are reviewed. Considerations for the engineering of the structural proteins of B19V are also discussed. Finally, the construction of multifunctional VLPs and their future potential as innovative medical tools are examined.
Collapse
Affiliation(s)
- Ignacio Sánchez-Moguel
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico;
| | - Carmina Montiel
- Departamento de Alimentos y Biotecnología, Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico;
| | - Ismael Bustos-Jaimes
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico;
| |
Collapse
|
11
|
Chu W, Shastry S, Barbieri E, Prodromou R, Greback-Clarke P, Smith W, Moore B, Kilgore R, Cummings C, Pancorbo J, Gilleskie G, Daniele MA, Menegatti S. Peptide ligands for the affinity purification of adeno-associated viruses from HEK 293 cell lysates. Biotechnol Bioeng 2023; 120:2283-2300. [PMID: 37435968 PMCID: PMC10440015 DOI: 10.1002/bit.28495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/15/2023] [Accepted: 06/30/2023] [Indexed: 07/13/2023]
Abstract
Adeno-associated viruses (AAVs) are the vector of choice for delivering gene therapies that can cure inherited and acquired diseases. Clinical research on various AAV serotypes significantly increased in recent years alongside regulatory approvals of AAV-based therapies. The current AAV purification platform hinges on the capture step, for which several affinity resins are commercially available. These adsorbents rely on protein ligands-typically camelid antibodies-that provide high binding capacity and selectivity, but suffer from low biochemical stability and high cost, and impose harsh elution conditions (pH < 3) that can harm the transduction activity of recovered AAVs. Addressing these challenges, this study introduces peptide ligands that selectively capture AAVs and release them under mild conditions (pH = 6.0). The peptide sequences were identified by screening a focused library and modeled in silico against AAV serotypes 2 and 9 (AAV2 and AAV9) to select candidate ligands that target homologous sites at the interface of the VP1-VP2 and VP2-VP3 virion proteins with mild binding strength (KD ~ 10-5 -10- 6 M). Selected peptides were conjugated to Toyopearl resin and evaluated via binding studies against AAV2 and AAV9, demonstrating the ability to target both serotypes with values of dynamic binding capacity (DBC10% > 1013 vp/mL of resin) and product yields (~50%-80%) on par with commercial adsorbents. The peptide-based adsorbents were finally utilized to purify AAV2 from a HEK 293 cell lysate, affording high recovery (50%-80%), 80- to 400-fold reduction of host cell proteins (HCPs), and high transduction activity (up to 80%) of the purified viruses.
Collapse
Affiliation(s)
- Wenning Chu
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Shriarjun Shastry
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, North Carolina, USA
| | - Eduardo Barbieri
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Raphael Prodromou
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Paul Greback-Clarke
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, North Carolina, USA
| | - Will Smith
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, North Carolina, USA
| | - Brandyn Moore
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Ryan Kilgore
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Christopher Cummings
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, North Carolina, USA
| | - Jennifer Pancorbo
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, North Carolina, USA
| | - Gary Gilleskie
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, North Carolina, USA
| | - Michael A Daniele
- North Carolina Viral Vector Initiative in Research and Learning (NC-VVIRAL), North Carolina State University, Raleigh, North Carolina, USA
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, North Carolina, USA
| | - Stefano Menegatti
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, North Carolina, USA
- North Carolina Viral Vector Initiative in Research and Learning (NC-VVIRAL), North Carolina State University, Raleigh, North Carolina, USA
- LigaTrap Technologies LLC, Raleigh, North Carolina, USA
| |
Collapse
|
12
|
López-Astacio RA, Adu OF, Lee H, Hafenstein SL, Parrish CR. The Structures and Functions of Parvovirus Capsids and Missing Pieces: the Viral DNA and Its Packaging, Asymmetrical Features, Nonprotein Components, and Receptor or Antibody Binding and Interactions. J Virol 2023; 97:e0016123. [PMID: 37367301 PMCID: PMC10373561 DOI: 10.1128/jvi.00161-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023] Open
Abstract
Parvoviruses are among the smallest and superficially simplest animal viruses, infecting a broad range of hosts, including humans, and causing some deadly infections. In 1990, the first atomic structure of the canine parvovirus (CPV) capsid revealed a 26-nm-diameter T=1 particle made up of two or three versions of a single protein, and packaging about 5,100 nucleotides of single-stranded DNA. Our structural and functional understanding of parvovirus capsids and their ligands has increased as imaging and molecular techniques have advanced, and capsid structures for most groups within the Parvoviridae family have now been determined. Despite those advances, significant questions remain unanswered about the functioning of those viral capsids and their roles in release, transmission, or cellular infection. In addition, the interactions of capsids with host receptors, antibodies, or other biological components are also still incompletely understood. The parvovirus capsid's apparent simplicity likely conceals important functions carried out by small, transient, or asymmetric structures. Here, we highlight some remaining open questions that may need to be answered to provide a more thorough understanding of how these viruses carry out their various functions. The many different members of the family Parvoviridae share a capsid architecture, and while many functions are likely similar, others may differ in detail. Many of those parvoviruses have not been experimentally examined in detail (or at all in some cases), so we, therefore, focus this minireview on the widely studied protoparvoviruses, as well as the most thoroughly investigated examples of adeno-associated viruses.
Collapse
Affiliation(s)
- Robert A. López-Astacio
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Oluwafemi F. Adu
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Hyunwook Lee
- Department of Biochemistry and Molecular Biology, Penn State University, University Park, Pennsylvania, USA
| | - Susan L. Hafenstein
- Department of Biochemistry and Molecular Biology, Penn State University, University Park, Pennsylvania, USA
| | - Colin R. Parrish
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| |
Collapse
|
13
|
Fuertes MA, López Mateos D, Valiente L, Rodríguez Huete A, Valbuena A, Mateu MG. Electrostatic Screening, Acidic pH and Macromolecular Crowding Increase the Self-Assembly Efficiency of the Minute Virus of Mice Capsid In Vitro. Viruses 2023; 15:v15051054. [PMID: 37243141 DOI: 10.3390/v15051054] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/14/2023] [Accepted: 04/22/2023] [Indexed: 05/28/2023] Open
Abstract
The hollow protein capsids from a number of different viruses are being considered for multiple biomedical or nanotechnological applications. In order to improve the applied potential of a given viral capsid as a nanocarrier or nanocontainer, specific conditions must be found for achieving its faithful and efficient assembly in vitro. The small size, adequate physical properties and specialized biological functions of the capsids of parvoviruses such as the minute virus of mice (MVM) make them excellent choices as nanocarriers and nanocontainers. In this study we analyzed the effects of protein concentration, macromolecular crowding, temperature, pH, ionic strength, or a combination of some of those variables on the fidelity and efficiency of self-assembly of the MVM capsid in vitro. The results revealed that the in vitro reassembly of the MVM capsid is an efficient and faithful process. Under some conditions, up to ~40% of the starting virus capsids were reassembled in vitro as free, non aggregated, correctly assembled particles. These results open up the possibility of encapsidating different compounds in VP2-only capsids of MVM during its reassembly in vitro, and encourage the use of virus-like particles of MVM as nanocontainers.
Collapse
Affiliation(s)
- Miguel Angel Fuertes
- Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Diego López Mateos
- Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Luis Valiente
- Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Alicia Rodríguez Huete
- Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Alejandro Valbuena
- Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Mauricio G Mateu
- Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
14
|
Winter SL, Chlanda P. The Art of Viral Membrane Fusion and Penetration. Subcell Biochem 2023; 106:113-152. [PMID: 38159225 DOI: 10.1007/978-3-031-40086-5_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
As obligate pathogens, viruses have developed diverse mechanisms to deliver their genome across host cell membranes to sites of virus replication. While enveloped viruses utilize viral fusion proteins to accomplish fusion of their envelope with the cellular membrane, non-enveloped viruses rely on machinery that causes local membrane ruptures and creates an opening through which the capsid or viral genome is released. Both membrane fusion and membrane penetration take place at the plasma membrane or in intracellular compartments, often involving the engagement of the cellular machinery and antagonism of host restriction factors. Enveloped and non-enveloped viruses have evolved intricate mechanisms to enable virus uncoating and modulation of membrane fusion in a spatiotemporally controlled manner. This chapter summarizes and discusses the current state of understanding of the mechanisms of viral membrane fusion and penetration. The focus is on the role of lipids, viral scaffold uncoating, viral membrane fusion inhibitors, and host restriction factors as physicochemical modulators. In addition, recent advances in visualizing and detecting viral membrane fusion and penetration using cryo-electron microscopy methods are presented.
Collapse
Affiliation(s)
- Sophie L Winter
- Schaller Research Group, Department of Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany
| | - Petr Chlanda
- Schaller Research Group, Department of Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany.
| |
Collapse
|
15
|
Sallam HM, Halim Nour AA, Zanaty AM. Involvement of Goose Parvovirus in Induction of Angel Wing Syndrome in Muscovy Ducks. Avian Dis 2022; 66:373-380. [PMID: 36715467 DOI: 10.1637/aviandiseases-d-22-00014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/28/2022] [Indexed: 11/16/2022]
Abstract
Dietary, environmental, and hereditary causes were reported as causative agents of angel wing syndrome in waterfowl. Since 2017, several Muscovy duck flocks at Behira governorate were found to exhibit this syndrome associated with the clinical symptoms of goose parvovirus (GPV) infection. Four strains of goose parvovirus named HS1-HS4 were isolated and identified from diseased ducks at some of these flocks. Phylogenetic analysis revealed clustering of these strains together and within a distinct monophyletic group in relation to GPV strains of Derzsy's disease and short beak and dwarfism syndrome (SBDS). Nucleotide identities with goose parvovirus strain B of Derzsy's disease were 95.7%-96.6%, and with the strain JS1603 of SBDS they were 96.8%-97.4%. However, nucleotide identities with Muscovy duck parvovirus strain FM were 74.1%-74.6%. The disease was reproduced experimentally via oral-route artificial infection with HS1 strain, and both clinical symptoms of goose parvovirus and angel wing syndrome were observed in the artificially infected Muscovy ducks, but with less severity in geese. This study demonstrated clear evidence for induction of angel wing syndrome, at least partially, with GPV infection in Muscovy duck. To the authors' knowledge, this is the first work to mention a viral cause of angel wing syndrome in waterfowl.
Collapse
Affiliation(s)
- Hamdi Mohamed Sallam
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Damanhour Branch, Animal Health Research Institute, Agricultural Research Center, Egypt 22511,
| | - Ahmed Abdel Halim Nour
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agricultural Research Center, Egypt 12611
| | - Ali Mahmoud Zanaty
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agricultural Research Center, Egypt 12611
| |
Collapse
|
16
|
Gandhi L, Maisnam D, Rathore D, Chauhan P, Bonagiri A, Venkataramana M. Respiratory illness virus infections with special emphasis on COVID-19. Eur J Med Res 2022; 27:236. [PMID: 36348452 PMCID: PMC9641310 DOI: 10.1186/s40001-022-00874-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 10/26/2022] [Indexed: 11/10/2022] Open
Abstract
Viruses that emerge pose challenges for treatment options as their uniqueness would not know completely. Hence, many viruses are causing high morbidity and mortality for a long time. Despite large diversity, viruses share common characteristics for infection. At least 12 different respiratory-borne viruses are reported belonging to various virus taxonomic families. Many of these viruses multiply and cause damage to the upper and lower respiratory tracts. The description of these viruses in comparison with each other concerning their epidemiology, molecular characteristics, disease manifestations, diagnosis and treatment is lacking. Such information helps diagnose, differentiate, and formulate the control measures faster. The leading cause of acute illness worldwide is acute respiratory infections (ARIs) and are responsible for nearly 4 million deaths every year, mostly in young children and infants. Lower respiratory tract infections are the fourth most common cause of death globally, after non-infectious chronic conditions. This review aims to present the characteristics of different viruses causing respiratory infections, highlighting the uniqueness of SARS-CoV-2. We expect this review to help understand the similarities and differences among the closely related viruses causing respiratory infections and formulate specific preventive or control measures.
Collapse
Affiliation(s)
- Lekha Gandhi
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India
| | - Deepti Maisnam
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India
| | - Deepika Rathore
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India
| | - Preeti Chauhan
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India
| | - Anvesh Bonagiri
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India
| | - Musturi Venkataramana
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India.
| |
Collapse
|
17
|
Vereecke N, Kvisgaard LK, Baele G, Boone C, Kunze M, Larsen LE, Theuns S, Nauwynck H. Molecular Epidemiology of Porcine Parvovirus Type 1 (PPV1) and the Reactivity of Vaccine-Induced Antisera Against Historical and Current PPV1 Strains. Virus Evol 2022; 8:veac053. [PMID: 35815310 PMCID: PMC9252332 DOI: 10.1093/ve/veac053] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/13/2022] [Accepted: 06/14/2022] [Indexed: 11/14/2022] Open
Abstract
Porcine Parvovirus Type 1 (PPV1) contributes to important losses in the swine industry worldwide. During a PPV1 infection, embryos and fetuses are targeted, resulting in stillbirth, mummification, embryonic death, and infertility (SMEDI syndrome). Even though vaccination is common in gilts and sows, strains mainly belonging to the 27a-like group have been spreading in Europe since early 2000s, resulting in SMEDI problems and requiring in-depth studies into the molecular epidemiology and vaccination efficacy of commercial vaccines. Here, we show that PPV1 has evolved since 1855 [1737, 1933] at a rate of 4.71 × 10−5 nucleotide substitutions per site per year. Extensive sequencing allowed evaluating and reassessing the current PPV1 VP1-based classifications, providing evidence for the existence of four relevant phylogenetic groups. While most European strains belong to the PPV1a (G1) or PPV1b (G2 or 27a-like) group, most Asian and American G2 strains and some European strains were divided into virulent PPV1c (e.g. NADL-8) and attenuated PPV1d (e.g. NADL-2) groups. The increase in the swine population, vaccination degree, and health management (vaccination and biosafety) influenced the spread of PPV1. The reactivity of anti-PPV1 antibodies from sows vaccinated with Porcilis© Parvo, Eryseng© Parvo, or ReproCyc© ParvoFLEX against different PPV1 field strains was the highest upon vaccination with ReproCyc© ParvoFLEX, followed by Eryseng© Parvo, and Porcilis© Parvo. Our findings contribute to the evaluation of the immunogenicity of existing vaccines and support the development of new vaccine candidates. Finally, the potential roles of cluster-specific hallmark amino acids in elevated pathogenicity and viral entry are discussed.
Collapse
Affiliation(s)
- Nick Vereecke
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University , Merelbeke, Belgium
- PathoSense BV , Lier, Belgium
| | - Lise Kirstine Kvisgaard
- Veterinary Clinical Microbiology, Department of Veterinary and Animal Sciences, University of Copenhagen , Copenhagen, Denmark
| | - Guy Baele
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Carine Boone
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University , Merelbeke, Belgium
| | - Marius Kunze
- Boehringer Ingelheim Vetmedica GmbH , Binger Str. 173, 55216 Ingelheim am Rhein, Germany
| | - Lars Erik Larsen
- Veterinary Clinical Microbiology, Department of Veterinary and Animal Sciences, University of Copenhagen , Copenhagen, Denmark
| | | | - Hans Nauwynck
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University , Merelbeke, Belgium
| |
Collapse
|
18
|
Tuteja D, Banu K, Mondal B. Canine parvovirology - A brief updated review on structural biology, occurrence, pathogenesis, clinical diagnosis, treatment and prevention. Comp Immunol Microbiol Infect Dis 2022; 82:101765. [PMID: 35182832 DOI: 10.1016/j.cimid.2022.101765] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/06/2022] [Accepted: 02/07/2022] [Indexed: 12/29/2022]
Abstract
Canine parvovirus (CPV) is a major cause of hemorrhagic diarrhea and mortality in puppies worldwide. There are 2 types of Parvovirus which affects canines: Canine parvovirus 2 (CPV-2) and Canine parvovirus 1 (CPV-1) or the Minute Virus of Canine (MVC). CPV-2 originated from Feline panleukopenia virus and has undergone genetic variation to give rise to its three variants (CPV-2a, CPV-2b and CPV-2c). Amino acid substitutions in VP2 capsid protein have led virus to adapt new host range. The original CPV-2 was known to be dominant in Japan, Belgium, Australia as well as USA and later circulated throughout the world. Clinically, CPV-2 infection is characterized by anorexia, lethargy, depression, vomiting, leukopenia and severe hemorrhagic diarrhea. Several diagnostic tests have been developed to detect parvoviral infections which are categorized into immunological tests (latex agglutination test, SIT-SAT and ELISA etc.) and molecular based tests (PCR, mPCR and RT-PCR etc.). To control and manage the disease several treatments like fluid therapies, antibiotics, and adjunctive treatments are available and some are in various stages of development. Apart from this, many vaccines are also commercially available and some are in developmental stages. The present review contains detailed information regarding structural biology, occurrence, pathogenesis, clinical diagnosis, treatments and prevention in order to understand the need and the growing importance of CPV-2.
Collapse
Affiliation(s)
- Deepika Tuteja
- Shankaranarayana Life Sciences LLP, Shankaranarayana Life Sciences, Bommasandra Industrial Area, Bengaluru, Karnataka 560100, India
| | - Kauser Banu
- Shankaranarayana Life Sciences LLP, Shankaranarayana Life Sciences, Bommasandra Industrial Area, Bengaluru, Karnataka 560100, India
| | - Bhairab Mondal
- Shankaranarayana Life Sciences LLP, Shankaranarayana Life Sciences, Bommasandra Industrial Area, Bengaluru, Karnataka 560100, India.
| |
Collapse
|
19
|
Liu F, Lin J, Wang Q, Zhang Y, Shan H. Recovery of Recombinant Canine Distemper Virus That Expresses CPV-2a VP2: Uncovering the Mutation Profile of Recombinant Undergoing 50 Serial Passages In Vitro. Front Cell Infect Microbiol 2022; 11:770576. [PMID: 35096636 PMCID: PMC8795682 DOI: 10.3389/fcimb.2021.770576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 12/16/2021] [Indexed: 12/15/2022] Open
Abstract
Canine distemper and canine parvoviral enteritis are infections caused by the canine distemper virus (CDV) and canine parvovirus type 2 (CPV-2), respectively. They are two common infectious diseases that cause high morbidity and mortality in affected dogs. Combination vaccines have been broadly used to protect dogs from infections of CDV, CPV-2, and other viruses. VP2 is the most abundant protein of the CPV-2 capsid. It elicits potent immunity in animals and, therefore, is widely used for designing subunit antigen-based vaccines. In this study, we rescued a recombinant CDV (QN vaccine strain) using reverse genetics. The recombinant CDV (rCDV-VP2) was demonstrated to express stably the VP2 in cells for at least 33 serial passages in vitro. Unfortunately, a nonsense mutation was initially identified in the VP2 open reading frame (ORF) at passage-34 (P34) and gradually became predominant in rCDV-VP2 quasispecies with passaging. Neither test strip detection nor indirect immunofluorescence assay demonstrated the expression of the VP2 at P50. The P50 rCDV-VP2 was subjected to next-generation sequencing, which totally identified 17 single-nucleotide variations (SNVs), consisting of 11 transitions and 6 transversions. Out of the 17 SNVs, 1 and 9 were identified as nonsense and missense mutations, respectively. Since the nonsense mutation arose in the VP2 ORF as early as P34, an earlier rCDV-VP2 progeny should be selected for the vaccination of animals in future experiments.
Collapse
Affiliation(s)
- Fuxiao Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
- *Correspondence: Hu Shan, ; Fuxiao Liu,
| | - Jiahui Lin
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Qianqian Wang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Youming Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Hu Shan
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
- *Correspondence: Hu Shan, ; Fuxiao Liu,
| |
Collapse
|
20
|
Fakhiri J, Grimm D. Best of most possible worlds: Hybrid gene therapy vectors based on parvoviruses and heterologous viruses. Mol Ther 2021; 29:3359-3382. [PMID: 33831556 PMCID: PMC8636155 DOI: 10.1016/j.ymthe.2021.04.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 01/12/2021] [Accepted: 03/31/2021] [Indexed: 12/12/2022] Open
Abstract
Parvoviruses and especially the adeno-associated virus (AAV) species provide an exciting and versatile platform for the rational design or molecular evolution of human gene-therapy vectors, documented by literature from over half a century, hundreds of clinical trials, and the recent commercialization of multiple AAV gene therapeutics. For the last three decades, the power of these vectors has been further potentiated through various types of hybrid vectors created by intra- or inter-genus juxtaposition of viral DNA and protein cis elements or by synergistic complementation of parvoviral features with those of heterologous, prokaryotic, or eukaryotic viruses. Here, we provide an overview of the history and promise of this rapidly expanding field of hybrid parvoviral gene-therapy vectors, starting with early generations of chimeric particles composed of a recombinant AAV genome encapsidated in shells of synthetic AAVs or of adeno-, herpes-, baculo-, or protoparvoviruses. We then dedicate our attention to two newer, highly promising types of hybrid vectors created via (1) pseudotyping of AAV genomes with bocaviral serotypes and capsid mutants or (2) packaging of AAV DNA into, or tethering of entire vector particles to, bacteriophages. Finally, we conclude with an outlook summarizing critical requirements and improvements toward clinical translation of these original concepts.
Collapse
Affiliation(s)
- Julia Fakhiri
- Department of Infectious Diseases/Virology, Medical Faculty, University of Heidelberg, Heidelberg, Germany; BioQuant, University of Heidelberg, Heidelberg, Germany
| | - Dirk Grimm
- Department of Infectious Diseases/Virology, Medical Faculty, University of Heidelberg, Heidelberg, Germany; BioQuant, University of Heidelberg, Heidelberg, Germany; German Center for Infection Research (DZIF) and German Center for Cardiovascular Research (DZHK), Partner site Heidelberg, Heidelberg, Germany.
| |
Collapse
|
21
|
Jager MC, Tomlinson JE, Lopez-Astacio RA, Parrish CR, Van de Walle GR. Small but mighty: old and new parvoviruses of veterinary significance. Virol J 2021; 18:210. [PMID: 34689822 PMCID: PMC8542416 DOI: 10.1186/s12985-021-01677-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/08/2021] [Indexed: 12/14/2022] Open
Abstract
In line with the Latin expression "sed parva forti" meaning "small but mighty," the family Parvoviridae contains many of the smallest known viruses, some of which result in fatal or debilitating infections. In recent years, advances in metagenomic viral discovery techniques have dramatically increased the identification of novel parvoviruses in both diseased and healthy individuals. While some of these discoveries have solved etiologic mysteries of well-described diseases in animals, many of the newly discovered parvoviruses appear to cause mild or no disease, or disease associations remain to be established. With the increased use of animal parvoviruses as vectors for gene therapy and oncolytic treatments in humans, it becomes all the more important to understand the diversity, pathogenic potential, and evolution of this diverse family of viruses. In this review, we discuss parvoviruses infecting vertebrate animals, with a special focus on pathogens of veterinary significance and viruses discovered within the last four years.
Collapse
Affiliation(s)
- Mason C Jager
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Joy E Tomlinson
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Robert A Lopez-Astacio
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Colin R Parrish
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Gerlinde R Van de Walle
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
22
|
Markarian NM, Abrahamyan L. AMDV Vaccine: Challenges and Perspectives. Viruses 2021; 13:v13091833. [PMID: 34578415 PMCID: PMC8472842 DOI: 10.3390/v13091833] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/09/2021] [Accepted: 09/09/2021] [Indexed: 12/13/2022] Open
Abstract
Aleutian mink disease virus (AMDV) is known to cause the most significant disease in the mink industry. It is globally widespread and manifested as a deadly plasmacytosis and hyperglobulinemia. So far, measures to control the viral spread have been limited to manual serological testing for AMDV-positive mink. Further, due to the persistent nature of this virus, attempts to eradicate Aleutian disease (AD) have largely failed. Therefore, effective strategies to control the viral spread are of crucial importance for wildlife protection. One potentially key tool in the fight against this disease is by the immunization of mink against AMDV. Throughout many years, several researchers have tried to develop AMDV vaccines and demonstrated varying degrees of protection in mink by those vaccines. Despite these attempts, there are currently no vaccines available against AMDV, allowing the continuation of the spread of Aleutian disease. Herein, we summarize previous AMDV immunization attempts in mink as well as other preventative measures with the purpose to shed light on future studies designing such a potentially crucial preventative tool against Aleutian disease.
Collapse
Affiliation(s)
- Nathan M. Markarian
- Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada;
| | - Levon Abrahamyan
- Swine and Poultry Infectious Diseases Research Center (CRIPA), Research Group on Infectious Diseases of Production Animals (GREMIP), Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC J2S 2M2, Canada
- Correspondence:
| |
Collapse
|
23
|
Takano T, Hamaguchi S, Hasegawa N, Doki T, Soma T. Predominance of canine parvovirus 2b in Japan: an epidemiological study during 2014-2019. Arch Virol 2021; 166:3151-3156. [PMID: 34387749 DOI: 10.1007/s00705-021-05200-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/16/2021] [Indexed: 10/20/2022]
Abstract
Canine parvovirus 2 (CPV-2) is an important pathogen of domestic dogs and wild canids. In Japan, CPV-2 infection is one of the most common infectious diseases of dogs. We analyzed samples collected between 2014 and 2019 to identify antigenic variants of CPV-2 in dogs in Japan. Our results demonstrated that the CPV-2b variant was predominant. The CPV-2c variant was not found among our samples. Our findings demonstrate that the distribution of CPV-2 antigenic variants in Japan was more similar to that in Australia than to that in neighboring countries in Asia.
Collapse
Affiliation(s)
- Tomomi Takano
- Laboratory of Veterinary Infectious Disease, School of Veterinary Medicine, Kitasato University, Towada, Aomori, 034-8628, Japan.
| | - Shun Hamaguchi
- Laboratory of Veterinary Infectious Disease, School of Veterinary Medicine, Kitasato University, Towada, Aomori, 034-8628, Japan
| | - Nobuhisa Hasegawa
- Laboratory of Veterinary Infectious Disease, School of Veterinary Medicine, Kitasato University, Towada, Aomori, 034-8628, Japan
| | - Tomoyoshi Doki
- Laboratory of Veterinary Infectious Disease, School of Veterinary Medicine, Kitasato University, Towada, Aomori, 034-8628, Japan
| | - Takehisa Soma
- Veterinary Diagnostic Laboratory, Marupi Lifetech Co., Ltd, Fushio-cho, Ikeda, Osaka, 563-0011, Japan
| |
Collapse
|
24
|
Molecular analysis of goose parvovirus field strains from a Derzsy's disease outbreak reveals local European-associated variants. Arch Virol 2021; 166:1931-1942. [PMID: 33934195 DOI: 10.1007/s00705-021-05086-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 03/19/2021] [Indexed: 10/21/2022]
Abstract
Since its first recognition in the early 1960s, Derzsy's disease has caused significant economic losses in the goose meat industry through the world. Today, Derzsy's disease still maintains its importance for small-scale waterfowl farming, despite not having a significant impact on public health. In the present study, we investigated the distribution of goose parvovirus (GPV) and its potential variants from a 2019 outbreak in Turkey. Tissue samples were obtained from infected eggs and goslings that were raised in distinct farming areas of the various provinces. For this purpose, a novel primer set for amplification of a 630-bp region of VP3 was designed to confirm GPV infection by conventional PCR method. A 4709-base nucleotide sequence including the structural, non-structural, and 5' inverted terminal repeat regions was obtained from three samples from the Central Anatolian region. Multiple sequence comparisons and phylogenetic analysis demonstrated that the field strains clustered with European group 2 and contained a series of unique amino acid substitutions that might affect the virulence of the virus. These results confirmed that European-related field strains caused the outbreak in Asia Minor, and this might assist in understanding the circulation of GPV in Asia and Europe.
Collapse
|
25
|
Abstract
Human bocavirus 1 (HBoV1) and HBoV2-4 infect children and immunocompromised individuals, resulting in respiratory and gastrointestinal infections, respectively. Using cryo-electron microscopy and image reconstruction, the HBoV2 capsid structure was determined to 2.7 Å resolution at pH 7.4 and compared to the previously determined HBoV1, HBoV3, and HBoV4 structures. Consistent with previous findings, surface variable region (VR) III of the capsid protein VP3, proposed as a host tissue-tropism determinant, was structurally similar among the gastrointestinal strains HBoV2-4, but differed from HBoV1 with its tropism for the respiratory tract. Towards understanding the entry and trafficking properties of these viruses, HBoV1 and HBoV2 were further analyzed as species representatives of the two HBoV tropisms. Their cell surface glycan-binding characteristics were analyzed, and capsid structures determined to 2.5-2.7 Å resolution at pH 5.5 and 2.6, conditions normally encountered during infection. The data showed that glycans with terminal sialic acid, galactose, GlcNAc or heparan sulfate moieties do not facilitate HBoV1 or HBoV2 cellular attachment. With respect to trafficking, conformational changes common to both viruses were observed at low pH conditions localized to the VP N-terminus under the 5-fold channel, in the surface loops VR-I and VR-V and specific side-chain residues such as cysteines and histidines. The 5-fold conformational movements provide insight into the potential mechanism of VP N-terminal dynamics during HBoV infection and side-chain modifications highlight pH-sensitive regions of the capsid.IMPORTANCE Human bocaviruses (HBoVs) are associated with disease in humans. However, the lack of an animal model and a versatile cell culture system to study their life cycle limits the ability to develop specific treatments or vaccines. This study presents the structure of HBoV2, at 2.7 Å resolution, determined for comparison to the existing HBoV1, HBoV3, and HBoV4 structures, to enable the molecular characterization of strain and genus-specific capsid features contributing to tissue tropism and antigenicity. Furthermore, HBoV1 and HBoV2 structures determined under acidic conditions provide insight into capsid changes associated with endosomal and gastrointestinal acidification. Structural rearrangements of the capsid VP N-terminus, at the base of the 5-fold channel, demonstrate a disordering of a "basket" motif as pH decreases. These observations begin to unravel the molecular mechanism of HBoV infection and provide information for control strategies.
Collapse
|
26
|
Xiao S, Wang S, Jiang D, Cheng X, Zhu X, Lin F, Yu B, Dong H, Wang X, Munir M, Rohaim MA, Chen S, Chen S. VP2 virus-like particles elicit protective immunity against duckling short beak and dwarfism syndrome in ducks. Transbound Emerg Dis 2021; 69:570-578. [PMID: 33547727 DOI: 10.1111/tbed.14021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/26/2021] [Accepted: 02/01/2021] [Indexed: 11/28/2022]
Abstract
Duckling short beak and dwarfism syndrome virus (SBDSV), an emerging goose parvovirus, has caused short beak and dwarfism syndrome (SBDS) in Chinese duck flocks since 2015. Presently, there is no commercial vaccine against SBDS. In the present study, a virus-like particle (VLP)-based candidate vaccine was developed against this disease. A baculovirus expression system was used to express the SBDSV VP2 protein in Sf9 cells. Immunofluorescence assay, sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and Western blotting were used to confirm protein expression. Furthermore, transmission electron microscopy was used to observe the formation of VLPs. VLPs were formulated into an oil-adjuvanted maternal vaccine to evaluate humoral responses in breeding ducks via latex particle agglutination inhibition assay (LPAI) and microneutralization assay. The offspring were challenged with SBDSV to test the protective efficacy. A single dose of SBDSV was able to induce the high level of LPAI antibodies in ducks, with LPAI and neutralization peak titres of 4.9 ± 1.20 log2 and 7.1 ± 1.20 log2, respectively, at 4 weeks post-vaccination (wpv). The average LPAI titre of yolk antibodies in duck eggs receiving 2 doses (first and boost doses) of the vaccine was 5.3 ± 1.09 log2 at 4 weeks post-boost. The protective efficacy of the maternal vaccine was 87.5%-100%. These results indicate that SBDSV VLPs can be a promising vaccine candidate for controlling SBDS.
Collapse
Affiliation(s)
- Shifeng Xiao
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agriculture Sciences, Fuzhou, China.,Fujian Animal Diseases Control Technology Development Center, Fuzhou, China
| | - Shao Wang
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agriculture Sciences, Fuzhou, China.,Fujian Animal Diseases Control Technology Development Center, Fuzhou, China
| | - Dandan Jiang
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agriculture Sciences, Fuzhou, China
| | - Xiaoxia Cheng
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agriculture Sciences, Fuzhou, China.,Fujian Animal Diseases Control Technology Development Center, Fuzhou, China
| | - Xiaoli Zhu
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agriculture Sciences, Fuzhou, China.,Fujian Animal Diseases Control Technology Development Center, Fuzhou, China
| | - Fengqiang Lin
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agriculture Sciences, Fuzhou, China.,Fujian Animal Diseases Control Technology Development Center, Fuzhou, China
| | - Bo Yu
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agriculture Sciences, Fuzhou, China
| | - Hui Dong
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agriculture Sciences, Fuzhou, China.,Fujian Animal Diseases Control Technology Development Center, Fuzhou, China
| | - Xiuzhen Wang
- Putian Institute of Agricultural Science, Putian, China
| | - Muhammad Munir
- Division of Biomedical and Life Sciences, Lancaster University, Lancaster, UK
| | - Mohammed A Rohaim
- Division of Biomedical and Life Sciences, Lancaster University, Lancaster, UK.,Department of Virology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Shilong Chen
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agriculture Sciences, Fuzhou, China.,Fujian Animal Diseases Control Technology Development Center, Fuzhou, China
| | - Shaoying Chen
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agriculture Sciences, Fuzhou, China.,Fujian Animal Diseases Control Technology Development Center, Fuzhou, China
| |
Collapse
|
27
|
Capsid assembly is regulated by amino acid residues asparagine 47 and 48 in the VP2 protein of porcine parvovirus. Vet Microbiol 2020; 253:108974. [PMID: 33433338 DOI: 10.1016/j.vetmic.2020.108974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 12/26/2020] [Indexed: 11/20/2022]
Abstract
Porcine parvovirus (PPV) is a major cause of reproductive failure in swine and has caused substantial losses throughout the world. Viral protein 2 (VP2) of PPV is a major structural protein that can self-assemble into virus-like particles (VLP) with hemagglutination (HA) activity. In order to identify the essential residues involved in the mechanism of capsid assembly and to further understand the function of HA, we analyzed a series of deletion mutants and site-directed mutations within the N-terminal of VP2 using the Escherichia coli system. Our results showed that deletion of the first 47 amino acids from the N-terminal of the VP2 protein did not affect capsid assembly, and further truncation to residue 48 Asparagine (Asn, N) caused detrimental effects. Site-directed mutagenesis experiments demonstrated that residue 47Asn reduced the assembly efficiency of PPV VLP, while residue 48Asn destroyed the stability, hemagglutination, and self-assembly characteristics of the PPV VP2 protein. Results from native PAGE inferred that macromolecular polymers were critical intermediates of the VP2 protein during the capsid assembly process. Site-directed mutation at 48Asn did not affect the ability of monomers to form into oligomers, but destroyed the ability of oligomers to assemble into macromolecular particles, influencing both capsid assembly and HA activity. Our findings provide valuable information on the mechanisms of PPV capsid assembly and the possibility of chimeric VLP vaccine development by replacing the first 47 amino acids at the N-terminal of the VP2 protein.
Collapse
|
28
|
Liu Y, Wang J, Chen Y, Wang A, Wei Q, Yang S, Feng H, Chai S, Liu D, Zhang G. Identification of a dominant linear epitope on the VP2 capsid protein of porcine parvovirus and characterization of two monoclonal antibodies with neutralizing abilities. Int J Biol Macromol 2020; 163:2013-2022. [PMID: 32931829 DOI: 10.1016/j.ijbiomac.2020.09.055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/06/2020] [Accepted: 09/08/2020] [Indexed: 10/23/2022]
Abstract
Porcine parvovirus (PPV) is a major cause of reproductive failure in swine, and has caused huge losses throughout the world. The structural viral protein VP2, which is able to self-assemble into empty capsids, known as virus-like particles (VLPs), is crucial to induce PPV-specific neutralizing antibodies and protective immunity. In this study, twelve monoclonal antibodies (mAbs) against PPV were generated. The mAbs were characterized by indirect enzyme-linked immunosorbent assay (ELISA), western blotting (WB) and virus neutralization (VN) assay. Two mAbs were defined to be able to neutralize the standard PPV 7909 strain. Subsequently, peptide scanning was applied to identify linear epitopes. The peptide, 89ESGVAGQMV97 was defined as a precise linear epitope. Results from structural analysis showed that the epitope was exposed on the virion surface. Multiple sequence alignment analysis indicated that peptide 89ESGVAGQMV97 was not completely conserved, with a higher amino acid mutation rate at 91G, 92V and 93A position. Alanine-scanning mutagenesis further revealed that residues 89E, 90S, 91G, 92V and 94G were the core sites involved in antibody recognition. These findings may facilitate further understanding the function of the VP2 protein and development of diagnostic tools.
Collapse
Affiliation(s)
- Yunchao Liu
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Jucai Wang
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Yumei Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Aiping Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Qiang Wei
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Suzhen Yang
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Hua Feng
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Shujun Chai
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Dongmin Liu
- Henan Zhongze Biological Engineering Co., Ltd, Zhengzhou, China
| | - Gaiping Zhang
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China; School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Zhongze Biological Engineering Co., Ltd, Zhengzhou, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, China.
| |
Collapse
|
29
|
Areewong C, Rittipornlertrak A, Nambooppha B, Fhaikrue I, Singhla T, Sodarat C, Prachasilchai W, Vongchan P, Sthitmatee N. Evaluation of an in-house indirect enzyme-linked immunosorbent assay of feline panleukopenia VP2 subunit antigen in comparison to hemagglutination inhibition assay to monitor tiger antibody levels by Bayesian approach. BMC Vet Res 2020; 16:275. [PMID: 32762697 PMCID: PMC7409676 DOI: 10.1186/s12917-020-02496-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/27/2020] [Indexed: 11/25/2022] Open
Abstract
Background Feline panleukopenia virus (FPV) is an etiologic pathogen of feline panleukopenia that infects all members of Felidae including tigers (Panthera tigris). Vaccinations against FPV among wild felid species have long been practiced in zoos worldwide. However, few studies have assessed the tiger immune response post-vaccination due to the absence of a serological diagnostic tool. To address these limitations, this study aimed to develop an in-house indirect enzyme-linked immunosorbent assay (ELISA) for the monitoring of tiger antibody levels against the feline panleukopenia vaccine by employing the synthesized subunit capsid protein VP2. An in-house horseradish peroxidase (HRP) conjugated rabbit anti-tiger immunoglobulin G (IgG) polyclonal antibody (HRP-anti-tiger IgG) was produced in this study and employed in the assay. It was then compared to a commercial HRP-conjugated goat anti-cat IgG (HRP-anti-cat IgG). Sensitivity and specificity were evaluated using the Bayesian model with preferential conditional dependence between HRP-conjugated antibody-based ELISAs and hemagglutination-inhibition (HI) tests. Results The posterior estimates for sensitivity and specificity of two indirect ELISA HRP-conjugated antibodies were higher than those of the HI test. The sensitivity and specificity of the indirect ELISA for HRP-anti-tiger IgG and HRP-anti-cat IgG were 86.5, 57.2 and 86.7%, 64.6%, respectively, while the results of the HI test were 79.1 and 54.1%. In applications, 89.6% (198/221) and 89.1% (197/221) of the tiger serum samples were determined to be seropositive by indirect ELISA testing against HRP-anti-tiger and HRP-anti-cat, respectively. Conclusion To the best of our knowledge, the specific serology assays for the detection of the tiger IgG antibody have not yet been established. The HRP-anti-tiger IgG has been produced for the purpose of developing the specific immunoassays for tigers. Remarkably, an in-house indirect ELISA based on VP2 subunit antigen has been successfully developed in this study, providing a potentially valuable serological tool for the effective detection of tiger antibodies.
Collapse
Affiliation(s)
- Chanakan Areewong
- Graduate School of Veterinary Science, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, 50100, Thailand.,Tiger Kingdom, Mae Rim, Chiang Mai, 50180, Thailand
| | - Amarin Rittipornlertrak
- Graduate School of Veterinary Science, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, 50100, Thailand
| | - Boondarika Nambooppha
- Graduate School of Veterinary Science, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, 50100, Thailand
| | - Itsarapan Fhaikrue
- Graduate School of Veterinary Science, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, 50100, Thailand
| | - Tawatchai Singhla
- Graduate School of Veterinary Science, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, 50100, Thailand
| | - Chollada Sodarat
- Graduate School of Veterinary Science, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, 50100, Thailand
| | - Worapat Prachasilchai
- Graduate School of Veterinary Science, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, 50100, Thailand
| | - Preeyanat Vongchan
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nattawooti Sthitmatee
- Graduate School of Veterinary Science, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, 50100, Thailand. .,Excellence Center in Veterinary Bioscience, Chiang Mai University, Chiang Mai, 50100, Thailand. .,Department of Veterinary Bioscience and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, 50100, Thailand.
| |
Collapse
|
30
|
Lu Q, Li X, Zhao J, Zhu J, Luo Y, Duan H, Ji P, Wang K, Liu B, Wang X, Fan W, Sun Y, Zhou EM, Zhao Q. Nanobody‑horseradish peroxidase and -EGFP fusions as reagents to detect porcine parvovirus in the immunoassays. J Nanobiotechnology 2020; 18:7. [PMID: 31910833 PMCID: PMC6945459 DOI: 10.1186/s12951-019-0568-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 12/30/2019] [Indexed: 12/18/2022] Open
Abstract
Background Antibodies are an important reagent to determine the specificity and accuracy of diagnostic immunoassays for various diseases. However, traditional antibodies have several shortcomings due to their limited abundance, difficulty in permanent storage, and required use of a secondary antibody. Nanobodies, which are derived from single-chain camelid antibodies, can circumvent many of these limitations and, thus, appear to be a promising substitute. In the presented study, a sandwich ELISA-like immunoassay and direct fluorescent assay with high sensitivity, good specificity, and easy operation were the first time to develop for detecting porcine parvovirus (PPV). After screening PPV viral particles 2 (VP2) specific nanobodies, horseradish peroxidase (HRP) and enhanced green fluorescent protein (EGFP) fusions were derived from the nanobodies by recombinant technology. Finally, using the nanobody-HRP and -EGFP fusions as probes, the developed immunoassays demonstrate specific, sensitive, and rapid detection of PPV. Results In the study, five PPV-VP2 specific nanobodies screened from an immunised Bactrian camel were successfully expressed with the bacterial system and purified with a Ni–NTA column. Based on the reporter-nanobody platform, HRP and EGFP fusions were separately produced by transfection of HEK293T cells. A sandwich ELISA-like assay for detecting PPV in the samples was firstly developed using PPV-VP2-Nb19 as the capture antibody and PPV-VP2-Nb56-HRP fusions as the detection antibody. The assay showed 92.1% agreement with real-time PCR and can be universally used to surveil PPV infection in the pig flock. In addition, a direct fluorescent assay using PPV-VP2-Nb12-EGFP fusion as a probe was developed to detect PPV in ST cells. The assay showed 81.5% agreement with real-time PCR and can be used in laboratory tests. Conclusions For the first time, five PPV-VP2 specific nanobody-HRP and -EGFP fusions were produced as reagents for developing immunoassays. A sandwich ELISA-like immunoassay using PPV-VP2-Nb19 as the capture antibody and PPV-VP2-Nb56-HRP fusion as the detection antibody was the first time to develop for detecting PPV in different samples. Results showed that the immunoassay can be universally used to surveil PPV infection in pig flock. A direct fluorescent assay using PPV-VP2-Nb12-EGFP as a probe was also developed to detect PPV in ST cells. The two developed immunoassays eliminate the use of commercial secondary antibodies and shorten detection time. Meanwhile, both assays display great developmental prospect for further commercial production and application.
Collapse
Affiliation(s)
- Qizhong Lu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.,Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, 712100, Shaanxi, China
| | - Xiaoxuan Li
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.,Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, 712100, Shaanxi, China
| | - Jiakai Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.,Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, 712100, Shaanxi, China
| | - Jiahong Zhu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.,Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, 712100, Shaanxi, China
| | - Yuhang Luo
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.,Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, 712100, Shaanxi, China
| | - Hong Duan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.,Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, 712100, Shaanxi, China
| | - Pinpin Ji
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.,Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, 712100, Shaanxi, China
| | - Kun Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.,Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, 712100, Shaanxi, China
| | - Baoyuan Liu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.,Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, 712100, Shaanxi, China
| | - Xueting Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.,Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, 712100, Shaanxi, China
| | - Wenqi Fan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.,Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, 712100, Shaanxi, China
| | - Yani Sun
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.,Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, 712100, Shaanxi, China
| | - En-Min Zhou
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China. .,Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, 712100, Shaanxi, China.
| | - Qin Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China. .,Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
31
|
Mechanisms Mediating Nuclear Trafficking Involved in Viral Propagation by DNA Viruses. Viruses 2019; 11:v11111035. [PMID: 31703327 PMCID: PMC6893576 DOI: 10.3390/v11111035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 10/30/2019] [Accepted: 10/31/2019] [Indexed: 02/06/2023] Open
Abstract
Typical viral propagation involves sequential viral entry, uncoating, replication, gene transcription and protein synthesis, and virion assembly and release. Some viral proteins must be transported into host nucleus to facilitate viral propagation, which is essential for the production of mature virions. During the transport process, nuclear localization signals (NLSs) play an important role in guiding target proteins into nucleus through the nuclear pore. To date, some classical nuclear localization signals (cNLSs) and non-classical NLSs (ncNLSs) have been identified in a number of viral proteins. These proteins are involved in viral replication, expression regulation of viral genes and virion assembly. Moreover, other proteins are transported into nucleus with unknown mechanisms. This review highlights our current knowledge about the nuclear trafficking of cellular proteins associated with viral propagation.
Collapse
|
32
|
Kiatmetha P, Chotwiwatthanakun C, Jariyapong P, Santimanawong W, Ounjai P, Weerachatyanukul W. Nanocontainer designed from an infectious hypodermal and hematopoietic necrosis virus (IHHNV) has excellent physical stability and ability to deliver shrimp tissues. PeerJ 2018; 6:e6079. [PMID: 30588400 PMCID: PMC6302783 DOI: 10.7717/peerj.6079] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 11/06/2018] [Indexed: 12/20/2022] Open
Abstract
Background A virus-like particle (VLP) is an excellent tool for a compound delivery system due to its simple composition, symmetrical structure and self-assembly. Its surface modification both chemically and genetically is established, leading to the target-specific delivery and improved encapsulation efficiency. However, its physical stabilities against many harsh conditions that guarantee long term storage and oral administration have been much less studied. Methods IHHNV-VLPs were reconstructed from recombinant IHHNV capsid protein in E. coli. Their physical properties against three strong physical conditions including long term storage (0–30 days) in 4 °C, physical stabilities against broad ranged pH (4–9) and against three types of digestive enzymes were tested. Disassembly and reassembly of VLPs for encapsidating an enhanced green fluorescent protein tagged plasmid DNA (EGFP-VLPs) were controlled by the use of reducing agent (DTT) and calcium specific chelating agent (EGTA). Lastly, delivering ability of EGFP-VLPs was performed in vivo by intramuscular injection and traced the expression of GFP in the shrimp tissues 24 hr post-injection. Results Upon its purification, IHHNV-VLPs were able to be kept at 4 °C up to 30 days with only slight degradation. They were very stable in basic condition (pH 8–9) and to a lesser extent in acidic condition (pH 4–6) while they could stand digestions of trypsin and chymotrypsin better than pepsin. As similar with many other non-enveloped viruses, the assembly of IHHNV-VLPs was dependent on both disulfide bridging and calcium ions which allowed us to control disassembly and reassembly of these VLPs to pack EGFP plasmid DNA. IHHNV-VLPs could deliver EGFP plasmids into shrimp muscles and gills as evident by RT-PCR and confocal microscopy demonstrating the expression of GFP in the targeted tissues. Discussion There are extensive data in which capsid proteins of the non-enveloped viruses in the form of VLPs are constructed and used as nano-containers for therapeutic compound delivery. However, the bottleneck of its application as an excellent delivery container for oral administration would rely solely on physical stability and interacting ability of VLPs to the host cells. These properties are retained for IHHNV-VLPs reported herein. Thus, IHHNV-VLPs would stand as a good applicable nanocontainer to carry therapeutic agents towards the targeting tissues against ionic and digestive conditions via oral administration in aquaculture field.
Collapse
Affiliation(s)
- Pauline Kiatmetha
- Department of Anatomy, Faculty of Science, Mahidol University, Ratchathewi, Bangkok, Thailand
| | | | - Pitchanee Jariyapong
- School of Medicine, Walailak University, Thasala District, Nakhonsrithammarat, Thailand
| | - Wanida Santimanawong
- Centex Shrimp, Faculty of Science, Mahidol University, Ratchathewi, Bangkok, Thailand
| | - Puey Ounjai
- Department of Biology, Faculty of Science, Mahidol University, Ratchathewi, Bangkok, Thailand
| | | |
Collapse
|
33
|
Origin and genetic diversity of canine parvovirus 2c circulating in Mexico. Arch Virol 2018; 164:371-379. [PMID: 30377825 DOI: 10.1007/s00705-018-4072-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 09/26/2018] [Indexed: 01/18/2023]
Abstract
Canine parvovirus type 2 (CPV-2) emerged in the late 1970 s as a pathogen that is capable of causing high rates of morbidity and mortality in dogs. Currently, three genetic variants circulate worldwide (CPV 2a, 2b, and 2c); however, epidemiological studies have not been conducted in all countries to identify its variants. The objectives of this work were to determine which genotypes of CPV-2 circulate in Mexico and to identify the genetic relationships between CPV-2 sequences from Mexico and those from other parts of the world. Samples from five geographical regions of Mexico were analysed by PCR for identification of CPV-2. Here, 1638 bp of the VP2 gene were amplified and sequenced from 50 CPV-2-positive samples, and a phylogenetic network was assembled using these 50 sequences and 150 others obtained from GenBank, representing different countries around the world. The network showed that the most common genotype circulating in the geographic zones of Mexico was CPV-2c. In the network, the 50 samples were organised into two clusters: cluster I, derived from a group of samples of European origin, which belong to genotype 2c, and cluster II, derived from samples belonging to genotype 2b from the USA. Our data suggest that the CPV-2 strains circulating in Mexico originated from two possible virus introduction events. In addition, high genetic diversity was observed among the CPV-2c-derived sequences, which correspond exclusively to the presence of Mexican CPV-2c haplotypes.
Collapse
|
34
|
Evidence of Human Parvovirus B19 Infection in the Post-Mortem Brain Tissue of the Elderly. Viruses 2018; 10:v10110582. [PMID: 30366357 PMCID: PMC6267580 DOI: 10.3390/v10110582] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 10/23/2018] [Accepted: 10/24/2018] [Indexed: 02/06/2023] Open
Abstract
After primary exposure, the human parvovirus B19 (B19V) genome may remain in the central nervous system (CNS), establishing a lifelong latency. The structural characteristics and functions of the infected cells are essential for the virus to complete its life cycle. Although B19V has been detected in the brain tissue by sequencing PCR products, little is known about its in vivo cell tropism and pathogenic potential in the CNS. To detect B19V and investigate the distribution of its target cells in the CNS, we studied brain autopsies of elderly subjects using molecular virology, and optical and electron microscopy methods. Our study detected B19V in brain tissue samples from both encephalopathy and control groups, suggesting virus persistence within the CNS throughout the host’s lifetime. It appears that within the CNS, the main target of B19V is oligodendrocytes. The greatest number of B19V-positive oligodendrocytes was found in the white matter of the frontal lobe. The number was significantly lower in the gray matter of the frontal lobe (p = 0.008) and the gray and white matter of the temporal lobes (p < 0.0001). The morphological changes observed in the encephalopathy group, propose a possible B19V involvement in the demyelination process.
Collapse
|
35
|
Duan Z, Xu H, Ji X, Zhao J, Xu H, Hu Y, Deng S, Hu S, Liu X. Importin α5 negatively regulates importin β1-mediated nuclear import of Newcastle disease virus matrix protein and viral replication and pathogenicity in chicken fibroblasts. Virulence 2018. [PMID: 29532715 PMCID: PMC5955436 DOI: 10.1080/21505594.2018.1449507] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The matrix (M) protein of Newcastle disease virus (NDV) is demonstrated to localize in the nucleus via intrinsic nuclear localization signal (NLS), but cellular proteins involved in the nuclear import of NDV M protein and the role of M's nuclear localization in the replication and pathogenicity of NDV remain unclear. In this study, importin β1 was screened to interact with NDV M protein by yeast two-hybrid screening. This interaction was subsequently confirmed by co-immunoprecipitation and pull-down assays. In vitro binding studies indicated that the NLS region of M protein and the amino acids 336–433 of importin β1 that belonged to the RanGTP binding region were important for binding. Importantly, a recombinant virus with M/NLS mutation resulted in a pathotype change of NDV and attenuated viral replication and pathogenicity in chicken fibroblasts and SPF chickens. In agreement with the binding data, nuclear import of NDV M protein in digitonin-permeabilized HeLa cells required both importin β1 and RanGTP. Interestingly, importin α5 was verified to interact with M protein through binding importin β1. However, importin β1 or importin α5 depletion by siRNA resulted in different results, which showed the obviously cytoplasmic or nuclear accumulation of M protein and the remarkably decreased or increased replication ability and pathogenicity of NDV in chicken fibroblasts, respectively. Our findings therefore demonstrate for the first time the nuclear import mechanism of NDV M protein and the negative regulation role of importin α5 in importin β1-mediated nuclear import of M protein and the replication and pathogenicity of a paramyxovirus.
Collapse
Affiliation(s)
- Zhiqiang Duan
- a Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education , Guizhou University , Guiyang , China.,b College of Animal Science , Guizhou University , Guiyang , China
| | - Haixu Xu
- c Key Laboratory of Animal Infectious Diseases of Ministry of Agriculture , Yangzhou University , Yangzhou , China
| | - Xinqin Ji
- a Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education , Guizhou University , Guiyang , China.,b College of Animal Science , Guizhou University , Guiyang , China
| | - Jiafu Zhao
- a Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education , Guizhou University , Guiyang , China.,b College of Animal Science , Guizhou University , Guiyang , China
| | - Houqiang Xu
- a Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education , Guizhou University , Guiyang , China.,b College of Animal Science , Guizhou University , Guiyang , China
| | - Yan Hu
- b College of Animal Science , Guizhou University , Guiyang , China
| | - Shanshan Deng
- b College of Animal Science , Guizhou University , Guiyang , China
| | - Shunlin Hu
- c Key Laboratory of Animal Infectious Diseases of Ministry of Agriculture , Yangzhou University , Yangzhou , China
| | - Xiufan Liu
- c Key Laboratory of Animal Infectious Diseases of Ministry of Agriculture , Yangzhou University , Yangzhou , China
| |
Collapse
|
36
|
Jang YH, Lim KI. Recent Advances in Mitochondria-Targeted Gene Delivery. Molecules 2018; 23:E2316. [PMID: 30208599 PMCID: PMC6225103 DOI: 10.3390/molecules23092316] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 09/06/2018] [Accepted: 09/08/2018] [Indexed: 11/16/2022] Open
Abstract
Mitochondria are the energy-producing organelles of cells. Mitochondrial dysfunctions link to various syndromes and diseases including myoclonic epilepsy and ragged-red fiber disease (MERRF), Leigh syndrome (LS), and Leber hereditary optic neuropathy (LHON). Primary mitochondrial diseases often result from mutations of mitochondrial genomes and nuclear genes that encode the mitochondrial components. However, complete intracellular correction of the mutated genetic parts relevant to mitochondrial structures and functions is technically challenging. Instead, there have been diverse attempts to provide corrected genetic materials with cells. In this review, we discuss recent novel physical, chemical and biological strategies, and methods to introduce genetic cargos into mitochondria of eukaryotic cells. Effective mitochondria-targeting gene delivery systems can reverse multiple mitochondrial disorders by enabling cells to produce functional mitochondrial components.
Collapse
Affiliation(s)
- Yoon-Ha Jang
- Department of Chemical and Biological Engineering, Sookmyung Women's University, Seoul 04310, Korea.
| | - Kwang-Il Lim
- Department of Chemical and Biological Engineering, Sookmyung Women's University, Seoul 04310, Korea.
- Institute of Advanced Materials and Systems, Sookmyung Women's University, Seoul 04310, Korea.
- Research Institute of ICT Convergence, Sookmyung Women's University, Seoul 04310, Korea.
| |
Collapse
|
37
|
Vadivel K, Mageshbabu R, Sankar S, Jain A, Perumal V, Srikanth P, Ranjan GA, Nair A, Simoes EAF, Nandagopal B, Sridharan G. Detection of parvovirus B19 in selected high-risk patient groups & their phylogenetic & selection analysis. Indian J Med Res 2018; 147:391-399. [PMID: 29998875 PMCID: PMC6057248 DOI: 10.4103/ijmr.ijmr_241_16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Background & objectives: Human parvovirus B19V (B19V) is known to be associated with erythema infectiosum commonly in children, aplastic crisis, especially in persons with underlying haemolytic disorders, hydrops fetalis in pregnancies and arthritis. This cross-sectional study was aimed to determine the presence of B19V infection in childhood febrile illnesses, association of B19V with arthropathies and in adult patients with end-stage renal disease (ESRD) on dialysis. The genetic diversity among the sequences was also analysed. Methods: A nested polymerase chain reaction (nPCR) assay was used for B19V DNA targeting VP1/VP2 region and used for testing 618 patients and 100 healthy controls. Phylogenetic analysis on nucleotide and amino acid sequences was carried out to compare our sequences with other Indian strains and global strains. Results: Among 618 samples tested, seven (1.13%) were found positive. The phylogenetic analysis revealed that all the seven sequences belonged to genotype 1 and showed low genetic diversity. The clustering pattern of seven sequences was similar both by nucleotide and by predicted amino acid sequences. The fixed effects likelihood analysis showed no positive or negatively selected sites. Interpretation & conclusions: Seven samples (4 from non-traumatic arthropathies, 2 from patients with ESRD and 1 from febrile illness patient) were found positive by nPCR. When our seven sequences were compared with global strains, the closest neighbour was other Indian strains followed by the Tunisian strains.
Collapse
Affiliation(s)
- Kumaran Vadivel
- Sri Sakthi Amma Institute of Biomedical Research, Sri Narayani Hospital & Research Centre, Vellore, India
| | - Ramamurthy Mageshbabu
- Sri Sakthi Amma Institute of Biomedical Research, Sri Narayani Hospital & Research Centre, Vellore, India
| | - Sathish Sankar
- Sri Sakthi Amma Institute of Biomedical Research, Sri Narayani Hospital & Research Centre, Vellore, India
| | - Amita Jain
- Department of Microbiology, King George Medical University, Lucknow, India
| | - Vivekanandan Perumal
- Kusuma School of Biological Sciences, Indian Institute of Technology, New Delhi, India
| | - Padma Srikanth
- Department of Microbiology, Sri Ramachandra Medical College & Research Institute, Sri Ramachandra University, Chennai, India
| | | | - Aravindan Nair
- Sri Sakthi Amma Institute of Biomedical Research, Sri Narayani Hospital & Research Centre, Vellore, India
| | - Eric A F Simoes
- School of Medicine & Professor of Pediatrics, University of Colorado, Aurora Colorado, USA
| | - Balaji Nandagopal
- Sri Sakthi Amma Institute of Biomedical Research, Sri Narayani Hospital & Research Centre, Vellore, India
| | - Gopalan Sridharan
- Sri Sakthi Amma Institute of Biomedical Research, Sri Narayani Hospital & Research Centre, Vellore, India
| |
Collapse
|
38
|
Li P, Lin S, Zhang R, Chen J, Sun D, Lan J, Song S, Xie Z, Jiang S. Isolation and characterization of novel goose parvovirus-related virus reveal the evolution of waterfowl parvovirus. Transbound Emerg Dis 2017; 65:e284-e295. [DOI: 10.1111/tbed.12751] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Indexed: 11/28/2022]
Affiliation(s)
- P. Li
- Department of Preventive Veterinary Medicine; College of Veterinary Medicine; Shandong Agricultural University; Taian China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention; Taian China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention; Shandong Agricultural University; Taian China
| | - S. Lin
- Department of Preventive Veterinary Medicine; College of Veterinary Medicine; Shandong Agricultural University; Taian China
| | - R. Zhang
- Department of Preventive Veterinary Medicine; College of Veterinary Medicine; Shandong Agricultural University; Taian China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention; Taian China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention; Shandong Agricultural University; Taian China
| | - J. Chen
- Department of Preventive Veterinary Medicine; College of Veterinary Medicine; Shandong Agricultural University; Taian China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention; Taian China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention; Shandong Agricultural University; Taian China
| | - D. Sun
- Department of Preventive Veterinary Medicine; College of Veterinary Medicine; Shandong Agricultural University; Taian China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention; Taian China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention; Shandong Agricultural University; Taian China
| | - J. Lan
- Department of Preventive Veterinary Medicine; College of Veterinary Medicine; Shandong Agricultural University; Taian China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention; Taian China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention; Shandong Agricultural University; Taian China
| | - S. Song
- Department of Preventive Veterinary Medicine; College of Veterinary Medicine; Shandong Agricultural University; Taian China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention; Taian China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention; Shandong Agricultural University; Taian China
| | - Z. Xie
- Department of Preventive Veterinary Medicine; College of Veterinary Medicine; Shandong Agricultural University; Taian China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention; Taian China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention; Shandong Agricultural University; Taian China
| | - S. Jiang
- Department of Preventive Veterinary Medicine; College of Veterinary Medicine; Shandong Agricultural University; Taian China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention; Taian China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention; Shandong Agricultural University; Taian China
| |
Collapse
|
39
|
Sehata G, Sato H, Yamanaka M, Takahashi T, Kainuma R, Igarashi T, Oshima S, Noro T, Oishi E. Substitutions at residues 300 and 389 of the VP2 capsid protein serve as the minimal determinant of attenuation for canine parvovirus vaccine strain 9985-46. J Gen Virol 2017; 98:2759-2770. [PMID: 28984228 DOI: 10.1099/jgv.0.000936] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Identifying molecular determinants of virulence attenuation in live attenuated canine parvovirus (CPV) vaccines is important for assuring their safety. To this end, we identified mutations in the attenuated CPV 9985-46 vaccine strain that arose during serial passage in Crandell-Rees feline kidney cells by comparison with the wild-type counterpart, as well as minimal determinants of the loss of virulence. Four amino acid substitutions (N93K, G300V, T389N and V562L) in VP2 of strain 9985-46 significantly restricted infection in canine A72 cells. Using an infectious molecular clone system, we constructed isogenic CPVs of the parental virulent 9985 strain carrying single or double mutations. We observed that only a single amino acid substitution in VP2, G300V or T389N, attenuated the virulent parental virus. Combinations of these mutations further attenuated CPV to a level comparable to that of 9985-46. Strains with G300V/T389N substitutions did not induce clinical symptoms in experimentally infected pups, and their ability to infect canine cells was highly restricted. We found that another G300V/V562L double mutation decreased affinity of the virus for canine cells, although its pathogenicity to dogs was maintained. These results indicate that mutation of residue 300, which plays a critical role in host tropism, is not sufficient for viral attenuation in vivo, and that attenuation of 9985-46 strain is defined by at least two mutations in residues 300 and 389 of the VP2 capsid protein. This finding is relevant for quality control of the vaccine and provides insight into the rational design of second-generation live attenuated vaccine candidates.
Collapse
Affiliation(s)
- Go Sehata
- Kyoto Biken Laboratories, Inc., 24-16 Makishima, Uji, Kyoto 611-0041, Japan
| | - Hiroaki Sato
- Kyoto Biken Laboratories, Inc., 24-16 Makishima, Uji, Kyoto 611-0041, Japan
| | - Morimasa Yamanaka
- Kyoto Biken Laboratories, Inc., 24-16 Makishima, Uji, Kyoto 611-0041, Japan
| | - Takuo Takahashi
- Kyoto Biken Laboratories, Inc., 24-16 Makishima, Uji, Kyoto 611-0041, Japan
| | - Risa Kainuma
- Kyoto Biken Laboratories, Inc., 24-16 Makishima, Uji, Kyoto 611-0041, Japan
| | - Tatsuhiko Igarashi
- Kyoto Biken Laboratories, Inc., 24-16 Makishima, Uji, Kyoto 611-0041, Japan
| | - Sho Oshima
- Kyoto Biken Laboratories, Inc., 24-16 Makishima, Uji, Kyoto 611-0041, Japan
| | - Taichi Noro
- Kyoto Biken Laboratories, Inc., 24-16 Makishima, Uji, Kyoto 611-0041, Japan
| | - Eiji Oishi
- Kyoto Biken Laboratories, Inc., 24-16 Makishima, Uji, Kyoto 611-0041, Japan
| |
Collapse
|
40
|
Woo PCY, Lau SKP, Tsoi HW, Patteril NG, Yeung HC, Joseph S, Wong EYM, Muhammed R, Chow FWN, Wernery U, Yuen KY. Two novel dromedary camel bocaparvoviruses from dromedaries in the Middle East with unique genomic features. J Gen Virol 2017; 98:1349-1359. [PMID: 28613145 DOI: 10.1099/jgv.0.000775] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The recent emergence of Middle East respiratory syndrome (MERS) coronavirus and its discovery from dromedary camels has boosted interest in the search for novel viruses in dromedaries. While bocaparvoviruses are known to infect various animals, it was not known that they exist in dromedaries. In this study, we describe the discovery of two novel dromedary camel bocaparvoviruses (DBoVs), DBoV1 and DBoV2, from dromedary faecal samples in Dubai. Among 667 adult dromedaries and 72 dromedary calves, 13.9 % of adult dromedaries and 33.3 % of dromedary calves were positive for DBoV1, while 7.0 % of adult dromedaries and 25.0 % of dromedary calves were positive for DBoV2, as determined by PCR. Sequencing of 21 DBoV1 and 18 DBoV2 genomes and phylogenetic analysis showed that DBoV1 and DBoV2 formed two distinct clusters, with only 32.6-36.3 % amino acid identities between the DBoV1 and DBoV2 strains. Quasispecies were detected in both DBoVs. The amino acid sequences of the NS1 proteins of all the DBoV1 and DBoV2 strains showed <85 % identity to those of all the other bocaparvoviruses, indicating that DBoV1 and DBoV2 are two bocaparvovirus species according to the ICTV criteria. Although the typical genome structure of NS1-NP1-VP1/VP2 was observed in DBoV1 and DBoV2, no phospholipase A2 motif and associated calcium binding site were observed in the predicted VP1 sequences for any of the 18 sequenced DBoV2, and no start codons were found for their VP1. For all 18 DBoV2 genomes, an AT-rich region of variable length and composition was present downstream to NP1. Further studies will be crucial to understand the pathogenic potential of DBoVs in this unique group of animals.
Collapse
Affiliation(s)
- Patrick C Y Woo
- Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong SAR.,State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong SAR.,Department of Microbiology, The University of Hong Kong, Hong Kong SAR.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The University of Hong Kong, Hong Kong SAR.,Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong SAR
| | - Susanna K P Lau
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The University of Hong Kong, Hong Kong SAR.,Department of Microbiology, The University of Hong Kong, Hong Kong SAR.,Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong SAR.,Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong SAR.,State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong SAR
| | - Hoi-Wah Tsoi
- Department of Microbiology, The University of Hong Kong, Hong Kong SAR
| | | | - Hazel C Yeung
- Department of Microbiology, The University of Hong Kong, Hong Kong SAR
| | | | - Emily Y M Wong
- Department of Microbiology, The University of Hong Kong, Hong Kong SAR
| | | | - Franklin W N Chow
- Department of Microbiology, The University of Hong Kong, Hong Kong SAR
| | | | - Kwok-Yung Yuen
- Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong SAR.,State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong SAR.,Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong SAR.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The University of Hong Kong, Hong Kong SAR.,Department of Microbiology, The University of Hong Kong, Hong Kong SAR
| |
Collapse
|
41
|
Fan W, Sun Z, Shen T, Xu D, Huang K, Zhou J, Song S, Yan L. Analysis of Evolutionary Processes of Species Jump in Waterfowl Parvovirus. Front Microbiol 2017; 8:421. [PMID: 28352261 PMCID: PMC5349109 DOI: 10.3389/fmicb.2017.00421] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 02/28/2017] [Indexed: 01/28/2023] Open
Abstract
Waterfowl parvoviruses are classified into goose parvovirus (GPV) and Muscovy duck parvovirus (MDPV) according to their antigenic features and host preferences. A novel duck parvovirus (NDPV), identified as a new variant of GPV, is currently infecting ducks, thus causing considerable economic loss. This study analyzed the molecular evolution and population dynamics of the emerging parvovirus capsid gene to investigate the evolutionary processes concerning the host shift of NDPV. Two important amino acids changes (Asn-489 and Asn-650) were identified in NDPV, which may be responsible for host shift of NDPV. Phylogenetic analysis indicated that the currently circulating NDPV originated from the GPV lineage. The Bayesian Markov chain Monte Carlo tree indicated that the NDPV diverged from GPV approximately 20 years ago. Evolutionary rate analyses demonstrated that GPV evolved with 7.674 × 10-4 substitutions/site/year, and the data for MDPV was 5.237 × 10-4 substitutions/site/year, whereas the substitution rate in NDPV branch was 2.25 × 10-3 substitutions/site/year. Meanwhile, viral population dynamics analysis revealed that the GPV major clade, including NDPV, grew exponentially at a rate of 1.717 year-1. Selection pressure analysis showed that most sites are subject to strong purifying selection and no positively selected sites were found in NDPV. The unique immune-epitopes in waterfowl parvovirus were also estimated, which may be helpful for the prediction of antibody binding sites against NDPV in ducks.
Collapse
Affiliation(s)
- Wentao Fan
- College of Veterinary Medicine, Nanjing Agricultural University Nanjing, China
| | - Zhaoyu Sun
- College of Veterinary Medicine, Nanjing Agricultural UniversityNanjing, China; Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural UniversityNanjing, China
| | - Tongtong Shen
- College of Veterinary Medicine, Nanjing Agricultural University Nanjing, China
| | - Danning Xu
- Waterfowl Healthy Breeding Engineering Research Center, Guangdong Higher Education Institutes Guangzhou, China
| | - Kehe Huang
- College of Veterinary Medicine, Nanjing Agricultural University Nanjing, China
| | - Jiyong Zhou
- College of Veterinary Medicine, Nanjing Agricultural UniversityNanjing, China; Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural UniversityNanjing, China
| | - Suquan Song
- College of Veterinary Medicine, Nanjing Agricultural University Nanjing, China
| | - Liping Yan
- College of Veterinary Medicine, Nanjing Agricultural UniversityNanjing, China; Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural UniversityNanjing, China
| |
Collapse
|
42
|
Matthews PC, Sharp C, Simmonds P, Klenerman P. Human parvovirus 4 'PARV4' remains elusive despite a decade of study. F1000Res 2017; 6:82. [PMID: 28184291 PMCID: PMC5288687 DOI: 10.12688/f1000research.9828.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/23/2017] [Indexed: 12/16/2022] Open
Abstract
Human parvovirus 4 ('PARV4') is a small DNA tetraparvovirus, first reported in 2005. In some populations, PARV4 infection is uncommon, and evidence of exposure is found only in individuals with risk factors for parenteral infection who are infected with other blood-borne viruses. In other settings, seroprevalence studies suggest an endemic, age-associated transmission pattern, independent of any specific risk factors. The clinical impact of PARV4 infection remains uncertain, but reported disease associations include an influenza-like syndrome, encephalitis, acceleration of HIV disease, and foetal hydrops. In this review, we set out to report progress updates from the recent literature, focusing on the investigation of cohorts in different geographical settings, now including insights from Asia, the Middle East, and South America, and discussing whether attributes of viral or host populations underpin the striking differences in epidemiology. We review progress in understanding viral phylogeny and biology, approaches to diagnostics, and insights that might be gained from studies of closely related animal pathogens. Crucial questions about pathogenicity remain unanswered, but we highlight new evidence supporting a possible link between PARV4 and an encephalitis syndrome. The unequivocal evidence that PARV4 is endemic in certain populations should drive ongoing research efforts to understand risk factors and routes of transmission and to gain new insights into the impact of this virus on human health.
Collapse
Affiliation(s)
- Philippa C Matthews
- Nuffield Department of Medicine, University of Oxford, Peter Medawar Building for Pathogen Research, South Parks Road, Oxford, OX1 3SY, UK; Department of Infectious Diseases and Microbiology, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Headley Way, Headington, Oxford, OX3 9DU, UK
| | - Colin Sharp
- Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Peter Simmonds
- Nuffield Department of Medicine, University of Oxford, Peter Medawar Building for Pathogen Research, South Parks Road, Oxford, OX1 3SY, UK
| | - Paul Klenerman
- Nuffield Department of Medicine, University of Oxford, Peter Medawar Building for Pathogen Research, South Parks Road, Oxford, OX1 3SY, UK; Department of Infectious Diseases and Microbiology, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Headley Way, Headington, Oxford, OX3 9DU, UK; NIHR Biomedical Research Centre, John Radcliffe Hospital, Headley Way, Headington, Oxford, OX3 9DU, UK
| |
Collapse
|
43
|
Faz M, Martínez JS, Quijano-Hernández I, Fajardo R. Reliability of clinical diagnosis and laboratory testing techniques currently used for identification of canine parvovirus enteritis in clinical settings. J Vet Med Sci 2016; 79:213-217. [PMID: 27818461 PMCID: PMC5289263 DOI: 10.1292/jvms.16-0227] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Canine parvovirus type 2 (CPV-2) is the main etiological agent of viral enteritis in dogs. Actually in literature, CPV-2 has been reported with clinical signs
that vary from the classical disease, and immunochromatography test and PCR technique have been introduced to veterinary hospitals to confirm CPV-2 diagnosis
and other infections. However, the reliability of these techniques has been poorly analyzed. In this study, we evaluated the sensitivity and specificity of
veterinary clinical diagnosis, immunochromatography test and PCR technique. Our data indicate that variations in the clinical signs of CPV-2 complicate the
gathering of an appropriate diagnosis; and immunochromatography test and PCR technique do not have adequate sensitivity to diagnose positive cases.
Collapse
Affiliation(s)
- Mirna Faz
- Centro de Investigación y Estudios Avanzados en Salud Animal, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Carretera de Cuota Toluca-Atlacomulco kilómetro 15.5, C.P. 50200, Toluca, Estado de México
| | | | | | | |
Collapse
|
44
|
Identification of Goose-Origin Parvovirus as a Cause of Newly Emerging Beak Atrophy and Dwarfism Syndrome in Ducklings. J Clin Microbiol 2016; 54:1999-2007. [PMID: 27194692 DOI: 10.1128/jcm.03244-15] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 05/12/2016] [Indexed: 02/08/2023] Open
Abstract
A recent epizootic outbreak, in China, of duck beak atrophy and dwarfism syndrome (BADS) was investigated using electron microscopic, genetic, and virological studies, which identified a parvovirus with a greater similarity to goose parvovirus (GPV) (97% protein homology) than to Muscovy duck parvovirus (MDPV) (90% protein homology). The new virus, provisionally designated GPV-QH15, was found to be antigenically more closely related to GPV than to MDPV in a virus neutralization assay. These findings were further supported by phylogenetic analysis showing that GPV-QH15 evolved from goose lineage parvoviruses, rather than from Muscovy duck- or other duck species-related parvoviruses. In all, two genetic lineages (GPV I and GPV II) were identified from the GPV samples analyzed, and GPV-QH15 was found to be closely clustered with two known goose-origin parvoviruses (GPVa2006 and GPV1995), together forming a distinctive GPV IIa sublineage. Finally, structural modeling revealed that GPV-QH15 and the closely related viruses GPVa2006 and GPV1995 possessed identical clusters of receptor-interacting amino acid residues in the VP2 protein, a major determinant of viral receptor binding and host specificity. Significantly, these three viruses differed from MDPVs and other GPVs at these positions. Taken together, these results suggest that GPV-QH15 represents a new variant of goose-origin parvovirus that currently circulates in ducklings and causes BADS, a syndrome reported previously in Europe. This new finding highlights the need for future surveillance of GPV-QH15 in poultry in order to gain a better understanding of both the evolution and the biology of this emerging parvovirus.
Collapse
|
45
|
Chen H, Tang Y, Dou Y, Zheng X, Diao Y. Evidence for Vertical Transmission of Novel Duck-Origin Goose Parvovirus-Related Parvovirus. Transbound Emerg Dis 2016; 63:243-7. [PMID: 26890433 DOI: 10.1111/tbed.12487] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Indexed: 12/31/2022]
Abstract
In 2015, novel duck-origin goose parvovirus-related parvovirus (N-GPV) infection progressively appeared in commercial Cherry Valley duck flocks in North China. Diseased ducks were observed to have beak atrophy and dwarfism syndrome (BADS). A previous study showed that a high seropositive rate for N-GPV indicated a latent infection in most breeder duck flocks. To investigate this possibility in hatching eggs collected from N-GPV-infected breeder ducks, 120 eggs were collected at various stages of embryonic development for viral DNA detection and an N-GPV-specific antibody test. N-GPV DNA was present in nine hatching eggs, eleven duck embryo and eight newly hatched ducklings. Of the newly hatched ducklings, 58.33% (21/36) were seropositive. Further, two isolates were obtained from a 12-day-old duck embryo and a newly hatched duckling. N-GPV infection did not reduce the fertilization rate and hatchability. These results indicate possible vertical transmission of N-GPV and suggest that it may be transmitted from breeder ducks to ducklings in ovo.
Collapse
Affiliation(s)
- H Chen
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong, China
| | - Y Tang
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong, China
| | - Y Dou
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong, China
| | - X Zheng
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong, China
| | - Y Diao
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong, China
| |
Collapse
|