1
|
Mohamed SH, Vanhoffelen E, Shun Fu M, Hei Lau P, Hain S, Seldeslachts L, Cosway E, Anderson G, McCulloch L, Vande Velde G, Drummond RA. CSF1R inhibition by PLX5622 reduces pulmonary fungal infection by depleting MHCII hi interstitial lung macrophages. Mucosal Immunol 2024; 17:1256-1272. [PMID: 39168451 DOI: 10.1016/j.mucimm.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 08/08/2024] [Accepted: 08/14/2024] [Indexed: 08/23/2024]
Abstract
PLX5622 is a small molecular inhibitor of the CSF1 receptor (CSF1R) and is widely used to deplete macrophages within the central nervous system (CNS). We investigated the impact of PLX5622 treatment in wild-type C57BL/6 mice and discovered that one-week treatment with PLX5622 was sufficient to deplete interstitial macrophages in the lung and brain-infiltrating Ly6Clow patrolling monocytes, in addition to CNS-resident macrophages. These cell types were previously indicated to act as infection reservoirs for the pathogenic fungus Cryptococcus neoformans. We found that PLX5622-treated mice had significantly reduced fungal lung infection and reduced extrapulmonary dissemination to the CNS but not to the spleen or liver. Fungal lung infection mapped to MHCIIhi interstitial lung macrophages, which underwent significant expansion during infection following monocyte replenishment and not local division. Although PLX5622 depleted CNS infiltrating patrolling monocytes, these cells did not accumulate in the fungal-infected CNS following pulmonary infection. In addition, Nr4a1-deficient mice, which lack patrolling monocytes, had similar control and dissemination of C. neoformans infection to wild-type controls. PLX5622 did not directly affect CD4 T-cell responses, or significantly affect production of antibody in the lung during infection. However, we found that mice lacking lymphocytes had reduced numbers of MHCIIhi interstitial macrophages in the lung, which correlated with reduced infection load. Accordingly, PLX5622 treatment did not alter fungal burdens in the lungs of lymphocyte-deficient mice. Our data demonstrate that PLX5622 may help reduce lung burden of pathogenic fungi that utilise CSF1R-dependent myeloid cells as infection reservoirs, an effect which is dependent on the presence of lymphocytes.
Collapse
Affiliation(s)
- Sally H Mohamed
- Institute of Immunology & Immunotherapy, University of Birmingham, UK
| | - Eliane Vanhoffelen
- Department of Imaging and Pathology, Biomedical MRI/MoSAIC, KU Leuven, Leuven, Belgium
| | - Man Shun Fu
- Institute of Immunology & Immunotherapy, University of Birmingham, UK
| | - Pui Hei Lau
- Institute of Immunology & Immunotherapy, University of Birmingham, UK
| | - Sofia Hain
- Institute of Immunology & Immunotherapy, University of Birmingham, UK
| | - Laura Seldeslachts
- Department of Imaging and Pathology, Biomedical MRI/MoSAIC, KU Leuven, Leuven, Belgium
| | - Emilie Cosway
- Institute of Immunology & Immunotherapy, University of Birmingham, UK
| | - Graham Anderson
- Institute of Immunology & Immunotherapy, University of Birmingham, UK
| | - Laura McCulloch
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Greetje Vande Velde
- Department of Imaging and Pathology, Biomedical MRI/MoSAIC, KU Leuven, Leuven, Belgium
| | - Rebecca A Drummond
- Institute of Immunology & Immunotherapy, University of Birmingham, UK; Institute of Microbiology & Infection, University of Birmingham, UK.
| |
Collapse
|
2
|
Adhikari A, Pandey A. Discerning potent CSF-1r inhibitors for targeting and therapy of neuroinflammation using computational approaches. J Biomol Struct Dyn 2024:1-12. [PMID: 39535283 DOI: 10.1080/07391102.2024.2427366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 03/27/2024] [Indexed: 11/16/2024]
Abstract
Microglia, the primary cellular mediator of neuroinflammation, plays a pivotal role in numerous neurological disorders. Precise and non-invasive quantification of microglia is of paramount importance. Despite various investigations into cell-specific biomarkers for assessing neuroinflammation, many suffer from poor cellular specificity and low signal-to-noise ratios. Colony-stimulating factor-1 receptor (CSF-1R), also known as FMS kinase, has emerged as a promising neuroinflammation biomarker with significant relevance to inflammatory diseases. Additionally, CSF-1R inhibitors (CSF-1Ri) have shown therapeutic potential in central nervous system (CNS) pathological conditions by depleting microglia. Therefore, the development of more specific CSF-1R inhibitors for targeting and treating various CNS insults and neurological disorders is imperative. This study focuses on the search for novel CSF-1R inhibitors. Based on the literature on CSF-1R inhibitors, we proposed and investigated ten ligands as novel CSF-1R inhibitors. Among these, the top three ligands, selected based on their maximum binding scores in docking calculations, are subjected to 100 nanoseconds of molecular dynamics (MD) simulation, alongside three reference ligands. All protein-ligand complexes remain stable throughout the dynamics and exhibit minimal fluctuations during the analysis. The results obtained through this study may prove significant for the future design of CSF-1R inhibitors with potential applications in the field of biomedicine.
Collapse
Affiliation(s)
- Anupriya Adhikari
- Department of Chemistry, Graphic Era Hill University, Dehradun, India
| | - Anwesh Pandey
- Department of Physics, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| |
Collapse
|
3
|
Wei ZY, Wang LP, Gao D, Zhu L, Wu JF, Shi J, Li YN, Tang XD, Feng YM, Pan XB, Jin YY, Liu YS, Chen JH. Bulk and single-cell RNA-seq analyses reveal canonical RNA editing associated with microglia homeostasis and its role in sepsis-associated encephalopathy. Neuroscience 2024; 560:167-180. [PMID: 39293730 DOI: 10.1016/j.neuroscience.2024.09.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/25/2024] [Accepted: 09/13/2024] [Indexed: 09/20/2024]
Abstract
Previous studies have demonstrated the roles of both microglia homeostasis and RNA editing in sepsis-associated encephalopathy (SAE), yet their relationship remains to be elucidated. In this study, we analyzed bulk and single-cell RNA-seq (scRNA) datasets containing 107 brain tissue and microglia samples from mice with microglial depletion and repopulation to explore canonical RNA editing associated with microglia homeostasis and evaluate its role in SAE. Analysis of mouse brain RNA-Seq revealed hallmarks of microglial repopulation, including peak expressions of Apobec1 and Apobec3 at Day 5 of repopulation and dramatically altered B2m RNA editing. Significant time-dependent changes in brain RNA editing during microglial depletion and repopulation were primarily observed in synapse-related genes, such as Tbc1d24 and Slc1a2. ScRNA-Seq revealed heterogeneous RNA editing among microglia subpopulations and their distinct changes associated with microglia homeostasis. Moreover, repopulated microglia from lipopolysaccharide (LPS)-induced sepsis mice exhibited intensified up-regulation of Apobec1 and Apobec3, with distinct RNA editing responses to LPS, mainly involved in immune-related pathways. The hippocampus from sepsis mice induced by peritoneal contamination and infection showed upregulated Apobec1 and Apobec3 expression, and altered RNA editing in immune-related genes, such as B2m and Mier1, and nervous-related lncRNA Meg3 and Snhg11, both of which were repressed by microglial depletion. Furthermore, the expression of complement-related genes, such as C4b and Cd47, was substantially correlated with RNA editing activity in microglia homeostasis and SAE. Our study demonstrates canonical RNA editing associated with microglia homeostasis and provides new insights into its potential role in SAE.
Collapse
Affiliation(s)
- Zhi-Yuan Wei
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China; Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, Jiangsu 214122, China; MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214022, China
| | - Li-Ping Wang
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China; Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Di Gao
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China; Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Lin Zhu
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China; Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jun-Fan Wu
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China; Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jia Shi
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China; Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yu-Ning Li
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China; Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiao-Dan Tang
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China; Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yan-Meng Feng
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China; Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xu-Bin Pan
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China; Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yun-Yun Jin
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China; Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yan-Shan Liu
- Department of Pediatric Laboratory, Affiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital), Wuxi, Jiangsu 214023, China.
| | - Jian-Huan Chen
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China; Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, Jiangsu 214122, China; MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214022, China.
| |
Collapse
|
4
|
García-García D, Vidal-Gil L, Parain K, Lun J, Audic Y, Chesneau A, Siron L, Van Westendorp D, Lourdel S, Sánchez-Sáez X, Kazani D, Ricard J, Pottin S, Donval A, Bronchain O, Locker M, Roger JE, Borday C, Pla P, Bitard J, Perron M. Neuroinflammation as a cause of differential Müller cell regenerative responses to retinal injury. SCIENCE ADVANCES 2024; 10:eadp7916. [PMID: 39356769 PMCID: PMC11446274 DOI: 10.1126/sciadv.adp7916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/28/2024] [Indexed: 10/04/2024]
Abstract
Unlike mammals, some nonmammalian species recruit Müller glia for retinal regeneration after injury. Identifying the underlying mechanisms may help to foresee regenerative medicine strategies. Using a Xenopus model of retinitis pigmentosa, we found that Müller cells actively proliferate upon photoreceptor degeneration in old tadpoles but not in younger ones. Differences in the inflammatory microenvironment emerged as an explanation for such stage dependency. Functional analyses revealed that enhancing neuroinflammation is sufficient to trigger Müller cell proliferation, not only in young tadpoles but also in mice. In addition, we showed that microglia are absolutely required for the response of mouse Müller cells to mitogenic factors while negatively affecting their neurogenic potential. However, both cell cycle reentry and neurogenic gene expression are allowed when applying sequential pro- and anti-inflammatory treatments. This reveals that inflammation benefits Müller glia proliferation in both regenerative and nonregenerative vertebrates and highlights the importance of sequential inflammatory modulation to create a regenerative permissive microenvironment.
Collapse
Affiliation(s)
- Diana García-García
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Saclay, France
| | - Lorena Vidal-Gil
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Saclay, France
| | - Karine Parain
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Saclay, France
| | - Jingxian Lun
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Saclay, France
| | - Yann Audic
- Univ Rennes, CNRS, IGDR (Institut de Genetique et Developpement de Rennes), Rennes, France
| | - Albert Chesneau
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Saclay, France
| | - Léa Siron
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Saclay, France
| | - Demi Van Westendorp
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Saclay, France
| | - Sophie Lourdel
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Saclay, France
| | - Xavier Sánchez-Sáez
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Saclay, France
| | - Despoina Kazani
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Saclay, France
| | - Julien Ricard
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Saclay, France
| | - Solène Pottin
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Saclay, France
| | - Alicia Donval
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Saclay, France
| | - Odile Bronchain
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Saclay, France
| | - Morgane Locker
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Saclay, France
| | - Jérôme E. Roger
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Saclay, France
| | - Caroline Borday
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Saclay, France
| | - Patrick Pla
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Saclay, France
| | - Juliette Bitard
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Saclay, France
| | - Muriel Perron
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Saclay, France
| |
Collapse
|
5
|
Zhong S, Lian Y, Zhou B, Ren R, Duan L, Pan Y, Gong Y, Wu X, Cheng D, Zhang P, Lu B, Wang X, Ding J. Microglia contribute to polyG-dependent neurodegeneration in neuronal intranuclear inclusion disease. Acta Neuropathol 2024; 148:21. [PMID: 39150562 DOI: 10.1007/s00401-024-02776-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 07/04/2024] [Accepted: 07/27/2024] [Indexed: 08/17/2024]
Abstract
Neuronal intranuclear inclusion disease (NIID) is a neurodegenerative disorder caused by the expansion of GGC trinucleotide repeats in NOTCH2NLC gene. Despite identifying uN2CpolyG, a toxic polyglycine (polyG) protein translated by expanded GGC repeats, the exact pathogenic mechanisms of NIID remain unclear. In this study, we investigated the role of polyG by expressing various forms of NOTCH2NLC in mice: the wild-type, the expanded form with 100 GGC repeats (either translating or not translating into uN2CpolyG), and the mutated form that encodes a pure polyG without GGC-repeat RNA and the C-terminal stretch (uN2CpolyG-dCT). Both uN2CpolyG and uN2CpolyG-dCT induced the formation of inclusions composed by filamentous materials and resulted in neurodegenerative phenotypes in mice, including impaired motor and cognitive performance, shortened lifespan, and pathologic lesions such as white-matter lesions, microgliosis, and astrogliosis. In contrast, expressing GGC-repeat RNA alone was non-pathogenic. Through bulk and single-nuclei RNA sequencing, we identified common molecular signatures linked to the expression of uN2CpolyG and uN2CpolyG-dCT, particularly the upregulation of inflammation and microglia markers, and the downregulation of immediate early genes and splicing factors. Importantly, microglia-mediated inflammation was visualized in NIID patients using positron emission tomography, correlating with levels of white-matter atrophy. Furthermore, microglia ablation ameliorated neurodegenerative phenotypes and transcriptional alterations in uN2CpolyG-expressing mice but did not affect polyG inclusions. Together, these results demonstrate that polyG is crucial for the pathogenesis of NIID and highlight the significant role of microglia in polyG-induced neurodegeneration.
Collapse
Affiliation(s)
- Shaoping Zhong
- Department of Neurology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Yangye Lian
- Department of Neurology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Binbin Zhou
- Department of Neurology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Ruiqing Ren
- Department of Neurology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Lewei Duan
- Shanghai Medical College, Fudan University, Shanghai, China
| | - Yuyin Pan
- Department of Neurology at Huashan Hospital, State Key Laboratory of Medical Neurobiology, School of Life Sciences, Fudan University, Shanghai, China
| | - Yuchen Gong
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoling Wu
- Department of Neurology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Dengfeng Cheng
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Puming Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Boxun Lu
- Department of Neurology at Huashan Hospital, State Key Laboratory of Medical Neurobiology, School of Life Sciences, Fudan University, Shanghai, China
| | - Xin Wang
- Department of Neurology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
- The State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Jing Ding
- Department of Neurology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
- CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai, China.
| |
Collapse
|
6
|
Berki P, Cserép C, Környei Z, Pósfai B, Szabadits E, Domonkos A, Kellermayer A, Nyerges M, Wei X, Mody I, Kunihiko A, Beck H, Kaikai H, Ya W, Lénárt N, Wu Z, Jing M, Li Y, Gulyás AI, Dénes Á. Microglia contribute to neuronal synchrony despite endogenous ATP-related phenotypic transformation in acute mouse brain slices. Nat Commun 2024; 15:5402. [PMID: 38926390 PMCID: PMC11208608 DOI: 10.1038/s41467-024-49773-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Acute brain slices represent a workhorse model for studying the central nervous system (CNS) from nanoscale events to complex circuits. While slice preparation inherently involves tissue damage, it is unclear how microglia, the main immune cells and damage sensors of the CNS react to this injury and shape neuronal activity ex vivo. To this end, we investigated microglial phenotypes and contribution to network organization and functioning in acute brain slices. We reveal time-dependent microglial phenotype changes influenced by complex extracellular ATP dynamics through P2Y12R and CX3CR1 signalling, which is sustained for hours in ex vivo mouse brain slices. Downregulation of P2Y12R and changes of microglia-neuron interactions occur in line with alterations in the number of excitatory and inhibitory synapses over time. Importantly, functional microglia modulate synapse sprouting, while microglial dysfunction results in markedly impaired ripple activity both ex vivo and in vivo. Collectively, our data suggest that microglia are modulators of complex neuronal networks with important roles to maintain neuronal network integrity and activity. We suggest that slice preparation can be used to model time-dependent changes of microglia-neuron interactions to reveal how microglia shape neuronal circuits in physiological and pathological conditions.
Collapse
Affiliation(s)
- Péter Berki
- János Szentágothai Doctoral School of Neuroscience, Semmelweis University, Budapest, H-1083, Hungary
- Laboratory of Cerebral Cortex Research, HUN-REN Institute of Experimental Medicine, Budapest, H-1083, Hungary
- Laboratory of Neuronal Network and Behaviour, HUN-REN Institute of Experimental Medicine, Budapest, H-1083, Hungary
| | - Csaba Cserép
- Momentum Laboratory of Neuroimmunology, HUN-REN Institute of Experimental Medicine, Budapest, H-1083, Hungary
| | - Zsuzsanna Környei
- Momentum Laboratory of Neuroimmunology, HUN-REN Institute of Experimental Medicine, Budapest, H-1083, Hungary
| | - Balázs Pósfai
- Momentum Laboratory of Neuroimmunology, HUN-REN Institute of Experimental Medicine, Budapest, H-1083, Hungary
| | - Eszter Szabadits
- Momentum Laboratory of Neuroimmunology, HUN-REN Institute of Experimental Medicine, Budapest, H-1083, Hungary
| | - Andor Domonkos
- Momentum Laboratory of Neuroimmunology, HUN-REN Institute of Experimental Medicine, Budapest, H-1083, Hungary
- Laboratory of Thalamus Research, HUN-REN Institute of Experimental Medicine, Budapest, H-1083, Hungary
| | - Anna Kellermayer
- Momentum Laboratory of Neuroimmunology, HUN-REN Institute of Experimental Medicine, Budapest, H-1083, Hungary
| | - Miklós Nyerges
- Momentum Laboratory of Neuroimmunology, HUN-REN Institute of Experimental Medicine, Budapest, H-1083, Hungary
| | - Xiaofei Wei
- Department of Neurology, The David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Istvan Mody
- Department of Neurology, The David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Araki Kunihiko
- Institute of Experimental Epileptology and Cognition Research, Medical University of Bonn, Bonn, 53127, Germany
- University Hospital Bonn, Bonn, Germany
| | - Heinz Beck
- Institute of Experimental Epileptology and Cognition Research, Medical University of Bonn, Bonn, 53127, Germany
- University Hospital Bonn, Bonn, Germany
| | - He Kaikai
- State Key Laboratory of Membrane Biology, New Cornerstone Science Laboratory, School of Life Sciences, Peking University, 100871, Beijing, China
| | - Wang Ya
- Chinese Institute for Brain Research, 102206, Beijing, China
| | - Nikolett Lénárt
- Momentum Laboratory of Neuroimmunology, HUN-REN Institute of Experimental Medicine, Budapest, H-1083, Hungary
| | - Zhaofa Wu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Miao Jing
- Chinese Institute for Brain Research, 102206, Beijing, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, New Cornerstone Science Laboratory, School of Life Sciences, Peking University, 100871, Beijing, China
| | - Attila I Gulyás
- Laboratory of Cerebral Cortex Research, HUN-REN Institute of Experimental Medicine, Budapest, H-1083, Hungary
| | - Ádám Dénes
- Momentum Laboratory of Neuroimmunology, HUN-REN Institute of Experimental Medicine, Budapest, H-1083, Hungary.
| |
Collapse
|
7
|
Barclay KM, Abduljawad N, Cheng Z, Kim MW, Zhou L, Yang J, Rustenhoven J, Mazzitelli JA, Smyth LCD, Kapadia D, Brioschi S, Beatty W, Hou J, Saligrama N, Colonna M, Yu G, Kipnis J, Li Q. An inducible genetic tool to track and manipulate specific microglial states reveals their plasticity and roles in remyelination. Immunity 2024; 57:1394-1412.e8. [PMID: 38821054 PMCID: PMC11299637 DOI: 10.1016/j.immuni.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 02/14/2024] [Accepted: 05/07/2024] [Indexed: 06/02/2024]
Abstract
Recent single-cell RNA sequencing studies have revealed distinct microglial states in development and disease. These include proliferative-region-associated microglia (PAMs) in developing white matter and disease-associated microglia (DAMs) prevalent in various neurodegenerative conditions. PAMs and DAMs share a similar core gene signature. However, the extent of the dynamism and plasticity of these microglial states, as well as their functional significance, remains elusive, partly due to the lack of specific tools. Here, we generated an inducible Cre driver line, Clec7a-CreERT2, that targets PAMs and DAMs in the brain parenchyma. Utilizing this tool, we profiled labeled cells during development and in several disease models, uncovering convergence and context-dependent differences in PAM and DAM gene expression. Through long-term tracking, we demonstrated microglial state plasticity. Lastly, we specifically depleted DAMs in demyelination, revealing their roles in disease recovery. Together, we provide a versatile genetic tool to characterize microglial states in CNS development and disease.
Collapse
Affiliation(s)
- Kia M Barclay
- Department of Neuroscience, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA; Neuroscience Graduate Program, Washington University School of Medicine, St. Louis, MO 63110, USA; Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA; Brain Immunology and Glia (BIG) Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Nora Abduljawad
- Department of Neuroscience, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA; Neuroscience Graduate Program, Washington University School of Medicine, St. Louis, MO 63110, USA; Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA; Brain Immunology and Glia (BIG) Center, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Zuolin Cheng
- Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, VA 22203, USA
| | - Min Woo Kim
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA; Brain Immunology and Glia (BIG) Center, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA; Immunology Graduate Program, Washington University School of Medicine, St. Louis, MO 63110, USA; Medical Scientist Training Program, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Lu Zhou
- Department of Neuroscience, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA; Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA; Brain Immunology and Glia (BIG) Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jin Yang
- Department of Neuroscience, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA; Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA; Brain Immunology and Glia (BIG) Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Justin Rustenhoven
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA; Brain Immunology and Glia (BIG) Center, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Jose A Mazzitelli
- Neuroscience Graduate Program, Washington University School of Medicine, St. Louis, MO 63110, USA; Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA; Brain Immunology and Glia (BIG) Center, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA; Medical Scientist Training Program, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Leon C D Smyth
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA; Brain Immunology and Glia (BIG) Center, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Dvita Kapadia
- Department of Neuroscience, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Simone Brioschi
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Wandy Beatty
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, School of Medicine, St. Louis, MO 63110, USA
| | - JinChao Hou
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA; Brain Immunology and Glia (BIG) Center, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Naresha Saligrama
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA; Brain Immunology and Glia (BIG) Center, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA; Department of Neurology, Washington University School of Medicine in St. Louis, School of Medicine, St. Louis, MO 63110, USA; Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine in St. Louis, St. Louis, MO 63112, USA
| | - Marco Colonna
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA; Brain Immunology and Glia (BIG) Center, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Guoqiang Yu
- Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, VA 22203, USA
| | - Jonathan Kipnis
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA; Brain Immunology and Glia (BIG) Center, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Qingyun Li
- Department of Neuroscience, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA; Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA; Brain Immunology and Glia (BIG) Center, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Genetics, Washington University School of Medicine in St. Louis, School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
8
|
Yu H, Shen B, Han R, Zhang Y, Xu S, Zhang Y, Guo Y, Huang P, Huang S, Zhong Y. CX3CL1-CX3CR1 axis protects retinal ganglion cells by inhibiting microglia activation in a distal optic nerve trauma model. Inflamm Regen 2024; 44:30. [PMID: 38844990 PMCID: PMC11154987 DOI: 10.1186/s41232-024-00343-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/28/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND The chemokine CX3CL1 has been reported to play an important role in optic nerve protection, but the underlying mechanism is still unclear. CX3CR1, the only receptor of CX3CL1, is specifically expressed on retinal microglia, whose activation plays a role in the pathological process of optic nerve injury. This study aimed to evaluate whether CX3CL1 exerts optic neuroprotection by affecting the activation of microglia by combining with CX3CR1. METHODS A mouse model of distal optic nerve trauma (ONT) was used to evaluate the effects of the CX3CL1-CX3CR1 axis on the activation of microglia and survival or axonal regeneration of retinal ganglion cells (RGCs). The activation of microglia, loss of RGCs, and damage to visual function were detected weekly till 4 weeks after modeling. CX3CL1 was injected intravitreally immediately or delayed after injury and the status of microglia and RGCs were examined. RESULTS Increases in microglia activation and optic nerve damage were accompanied by a reduced production of the CX3CL1-CX3CR1 axis after the distal ONT modeling. Both immediate and delayed intravitreal injection of CX3CL1 inhibited microglia activation, promoted survival of RGCs, and improved axonal regenerative capacity. Injection with CX3CL1 was no longer effective after 48 h post ONT. The CX3CL1-CX3CR1 axis promotes survival and axonal regeneration, as indicated by GAP43 protein and gene expression, of RGCs by inhibiting the microglial activation after ONT. CONCLUSIONS The CX3CL1-CX3CR1 axis could promote survival and axonal regeneration of RGCs by inhibiting the microglial activation after optic nerve injury. The CX3CL1-CX3CR1 axis may become a potential target for the treatment of optic nerve injury. Forty-eight hours is the longest time window for effective treatment after injury. The study is expected to provide new ideas for the development of targeted drugs for the repair of optic nerve.
Collapse
Affiliation(s)
- Huan Yu
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Bingqiao Shen
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, 197 Ruijin Er Road, Shanghai, 200025, China
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Ruiqi Han
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Yang Zhang
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Shushu Xu
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Yumeng Zhang
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Yanzhi Guo
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Ping Huang
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, 197 Ruijin Er Road, Shanghai, 200025, China.
| | - Shouyue Huang
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, 197 Ruijin Er Road, Shanghai, 200025, China.
| | - Yisheng Zhong
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, 197 Ruijin Er Road, Shanghai, 200025, China.
| |
Collapse
|
9
|
Kline-Schoder AR, Chintamen S, Willner MJ, DiBenedetto MR, Noel RL, Batts AJ, Kwon N, Zacharoulis S, Wu CC, Menon V, Kernie SG, Konofagou EE. Characterization of the responses of brain macrophages to focused ultrasound-mediated blood-brain barrier opening. Nat Biomed Eng 2024; 8:650-663. [PMID: 37857722 PMCID: PMC11734153 DOI: 10.1038/s41551-023-01107-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 09/16/2023] [Indexed: 10/21/2023]
Abstract
The opening of the blood-brain barrier (BBB) by focused ultrasound (FUS) coupled with intravenously injected microbubbles can be leveraged as a form of immunotherapy for the treatment of neurodegenerative disorders. However, how FUS BBB opening affects brain macrophages is not well understood. Here by using single-cell sequencing to characterize the distinct responses of microglia and central nervous system-associated macrophages (CAMs) to FUS-mediated BBB opening in mice, we show that the treatment remodels the immune landscape via the recruitment of CAMs and the proliferation of microglia and via population size increases in disease-associated microglia. Both microglia and CAMs showed early and late increases in population sizes, yet only the proliferation of microglia increased at both timepoints. The population of disease-associated microglia also increased, accompanied by the upregulation of genes associated with gliogenesis and phagocytosis, with the depletion of brain macrophages significantly decreasing the duration of BBB opening.
Collapse
Affiliation(s)
| | - Sana Chintamen
- Department of Neurobiology and Behaviour, Columbia University, New York, NY, USA
| | - Moshe J Willner
- Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | | | - Rebecca L Noel
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Alec J Batts
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Nancy Kwon
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | | | - Cheng-Chia Wu
- Department of Pediatrics, Columbia University, New York, NY, USA
| | - Vilas Menon
- Department of Neurology, Columbia University, New York, NY, USA
| | - Steven G Kernie
- Department of Pediatrics, Columbia University, New York, NY, USA
| | - Elisa E Konofagou
- Department of Biomedical Engineering, Columbia University, New York, NY, USA.
- Department of Radiology, Columbia University, New York, NY, USA.
| |
Collapse
|
10
|
Pallarés-Moratalla C, Bergers G. The ins and outs of microglial cells in brain health and disease. Front Immunol 2024; 15:1305087. [PMID: 38665919 PMCID: PMC11043497 DOI: 10.3389/fimmu.2024.1305087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Microglia are the brain's resident macrophages that play pivotal roles in immune surveillance and maintaining homeostasis of the Central Nervous System (CNS). Microglia are functionally implicated in various cerebrovascular diseases, including stroke, aneurysm, and tumorigenesis as they regulate neuroinflammatory responses and tissue repair processes. Here, we review the manifold functions of microglia in the brain under physiological and pathological conditions, primarily focusing on the implication of microglia in glioma propagation and progression. We further review the current status of therapies targeting microglial cells, including their re-education, depletion, and re-population approaches as therapeutic options to improve patient outcomes for various neurological and neuroinflammatory disorders, including cancer.
Collapse
|
11
|
Bobotis BC, Halvorson T, Carrier M, Tremblay MÈ. Established and emerging techniques for the study of microglia: visualization, depletion, and fate mapping. Front Cell Neurosci 2024; 18:1317125. [PMID: 38425429 PMCID: PMC10902073 DOI: 10.3389/fncel.2024.1317125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/15/2024] [Indexed: 03/02/2024] Open
Abstract
The central nervous system (CNS) is an essential hub for neuronal communication. As a major component of the CNS, glial cells are vital in the maintenance and regulation of neuronal network dynamics. Research on microglia, the resident innate immune cells of the CNS, has advanced considerably in recent years, and our understanding of their diverse functions continues to grow. Microglia play critical roles in the formation and regulation of neuronal synapses, myelination, responses to injury, neurogenesis, inflammation, and many other physiological processes. In parallel with advances in microglial biology, cutting-edge techniques for the characterization of microglial properties have emerged with increasing depth and precision. Labeling tools and reporter models are important for the study of microglial morphology, ultrastructure, and dynamics, but also for microglial isolation, which is required to glean key phenotypic information through single-cell transcriptomics and other emerging approaches. Strategies for selective microglial depletion and modulation can provide novel insights into microglia-targeted treatment strategies in models of neuropsychiatric and neurodegenerative conditions, cancer, and autoimmunity. Finally, fate mapping has emerged as an important tool to answer fundamental questions about microglial biology, including their origin, migration, and proliferation throughout the lifetime of an organism. This review aims to provide a comprehensive discussion of these established and emerging techniques, with applications to the study of microglia in development, homeostasis, and CNS pathologies.
Collapse
Affiliation(s)
- Bianca Caroline Bobotis
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Centre for Advanced Materials and Related Technology, Victoria, BC, Canada
| | - Torin Halvorson
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada
- British Columbia Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Micaël Carrier
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Département de Psychiatrie et de Neurosciences, Faculté de Médecine, Université Laval, Québec City, QC, Canada
- Axe neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Centre for Advanced Materials and Related Technology, Victoria, BC, Canada
- Axe neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada
- Department of Molecular Medicine, Université Laval, Québec City, QC, Canada
| |
Collapse
|
12
|
Islam M, Behura SK. Single-Cell Transcriptional Response of the Placenta to the Ablation of Caveolin-1: Insights into the Adaptive Regulation of Brain-Placental Axis in Mice. Cells 2024; 13:215. [PMID: 38334607 PMCID: PMC10854826 DOI: 10.3390/cells13030215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 02/10/2024] Open
Abstract
Caveolin-1 (Cav1) is a major plasma membrane protein that plays important functions in cellular metabolism, proliferation, and senescence. Mice lacking Cav1 show abnormal gene expression in the fetal brain. Though evidence for placental influence on brain development is emerging, whether the ablation of Cav1 affects the regulation of the brain-placental axis remains unexamined. The current study tests the hypothesis that gene expression changes in specific cells of the placenta and the fetal brain are linked to the deregulation of the brain-placental axis in Cav1-null mice. By performing single-nuclei RNA sequencing (snRNA-seq) analyses, we show that the abundance of the extravillious trophoblast (EVT) and stromal cells, but not the cytotrophoblast (CTB) or syncytiotrophoblast (STB), are significantly impacted due to Cav1 ablation in mice. Interestingly, specific genes related to brain development and neurogenesis were significantly differentially expressed in trophoblast cells due to Cav1 deletion. Comparison of single-cell gene expression between the placenta and the fetal brain further showed that specific genes such as plexin A1 (Plxna1), phosphatase and actin regulator 1 (Phactr1) and amyloid precursor-like protein 2 (Aplp2) were differentially expressed between the EVT and STB cells of the placenta, and also, between the radial glia and ependymal cells of the fetal brain. Bulk RNA-seq analysis of the whole placenta and the fetal brain further identified genes differentially expressed in a similar manner between the placenta and the fetal brain due to the absence of Cav1. The deconvolution of reference cell types from the bulk RNA-seq data further showed that the loss of Cav1 impacted the abundance of EVT cells relative to the stromal cells in the placenta, and that of the glia cells relative to the neuronal cells in the fetal brain. Together, the results of this study suggest that the ablation of Cav1 causes deregulated gene expression in specific cell types of the placenta and the fetal brain in mice.
Collapse
Affiliation(s)
- Maliha Islam
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA;
| | - Susanta K. Behura
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA;
- MU Institute for Data Science and Informatics, University of Missouri, Columbia, MO 65211, USA
- Interdisciplinary Reproduction and Health Group, University of Missouri, Columbia, MO 65211, USA
- Interdisciplinary Neuroscience Program, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
13
|
Barclay KM, Abduljawad N, Cheng Z, Kim MW, Zhou L, Yang J, Rustenhoven J, Perez JM, Smyth L, Beatty W, Hou J, Saligrama N, Colonna M, Yu G, Kipnis J, Li Q. An inducible genetic tool for tracking and manipulating specific microglial states in development and disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.01.569597. [PMID: 38106187 PMCID: PMC10723357 DOI: 10.1101/2023.12.01.569597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Recent single-cell RNA sequencing studies have revealed distinct microglial states in development and disease. These include proliferative region-associated microglia (PAM) in developing white matter and disease-associated microglia (DAM) prevalent in various neurodegenerative conditions. PAM and DAM share a similar core gene signature and other functional properties. However, the extent of the dynamism and plasticity of these microglial states, as well as their functional significance, remains elusive, partly due to the lack of specific tools. Here, we report the generation of an inducible Cre driver line, Clec7a-CreERT2, designed to target PAM and DAM in the brain parenchyma. Utilizing this tool, we profile labeled cells during development and in several disease models, uncovering convergence and context-dependent differences in PAM/DAM gene expression. Through long-term tracking, we demonstrate surprising levels of plasticity in these microglial states. Lastly, we specifically depleted DAM in cuprizone-induced demyelination, revealing their roles in disease progression and recovery.
Collapse
Affiliation(s)
- Kia M. Barclay
- Department of Neuroscience, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
- Neuroscience Graduate Program, Washington University School of Medicine, St. Louis, MO 63110, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
- Center for Brain Immunology and Glia (BIG), Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Nora Abduljawad
- Department of Neuroscience, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
- Neuroscience Graduate Program, Washington University School of Medicine, St. Louis, MO 63110, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
- Center for Brain Immunology and Glia (BIG), Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Zuolin Cheng
- Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, VA 22203, USA
| | - Min Woo Kim
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
- Center for Brain Immunology and Glia (BIG), Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
- Immunology Graduate Program, Washington University School of Medicine, St. Louis, MO 63110, USA
- Medical Scientist Training Program, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Lu Zhou
- Department of Neuroscience, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
- Center for Brain Immunology and Glia (BIG), Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jin Yang
- Department of Neuroscience, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
- Center for Brain Immunology and Glia (BIG), Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Justin Rustenhoven
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
- Center for Brain Immunology and Glia (BIG), Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Jose Mazzitelli Perez
- Neuroscience Graduate Program, Washington University School of Medicine, St. Louis, MO 63110, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
- Center for Brain Immunology and Glia (BIG), Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
- Medical Scientist Training Program, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Leon Smyth
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
- Center for Brain Immunology and Glia (BIG), Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Wandy Beatty
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, School of Medicine, St. Louis, MO 63110, USA
| | - JinChao Hou
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
- Center for Brain Immunology and Glia (BIG), Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Naresha Saligrama
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
- Center for Brain Immunology and Glia (BIG), Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
- Department of Neurology, Washington University School of Medicine in St. Louis, School of Medicine, St. Louis, MO 63110, USA
- Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine in St. Louis, St. Louis, MO 63112, USA
| | - Marco Colonna
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
- Center for Brain Immunology and Glia (BIG), Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Guoqiang Yu
- Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, VA 22203, USA
| | - Jonathan Kipnis
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
- Center for Brain Immunology and Glia (BIG), Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Qingyun Li
- Department of Neuroscience, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
- Center for Brain Immunology and Glia (BIG), Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Genetics, Washington University School of Medicine in St. Louis, School of Medicine, St. Louis, MO 63110, USA
- Lead Contact
| |
Collapse
|
14
|
Evans KT, Blake K, Longworth A, Coburn MA, Insua-Rodríguez J, McMullen TP, Nguyen QH, Ma D, Lev T, Hernandez GA, Oganyan AK, Orujyan D, Edwards RA, Pridans C, Green KN, Villalta SA, Blurton-Jones M, Lawson DA. Microglia promote anti-tumour immunity and suppress breast cancer brain metastasis. Nat Cell Biol 2023; 25:1848-1859. [PMID: 37957324 PMCID: PMC11414741 DOI: 10.1038/s41556-023-01273-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 09/26/2023] [Indexed: 11/15/2023]
Abstract
Breast cancer brain metastasis (BCBM) is a lethal disease with no effective treatments. Prior work has shown that brain cancers and metastases are densely infiltrated with anti-inflammatory, protumourigenic tumour-associated macrophages, but the role of brain-resident microglia remains controversial because they are challenging to discriminate from other tumour-associated macrophages. Using single-cell RNA sequencing, genetic and humanized mouse models, we specifically identify microglia and find that they play a distinct pro-inflammatory and tumour-suppressive role in BCBM. Animals lacking microglia show increased metastasis, decreased survival and reduced natural killer and T cell responses, showing that microglia are critical to promote anti-tumour immunity to suppress BCBM. We find that the pro-inflammatory response is conserved in human microglia, and markers of their response are associated with better prognosis in patients with BCBM. These findings establish an important role for microglia in anti-tumour immunity and highlight them as a potential immunotherapy target for brain metastasis.
Collapse
Affiliation(s)
- Katrina T Evans
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA
| | - Kerrigan Blake
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA
- Center for Complex Biological Systems, University of California, Irvine, Irvine, CA, USA
| | - Aaron Longworth
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA
| | - Morgan A Coburn
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA
| | - Jacob Insua-Rodríguez
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA
| | - Timothy P McMullen
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA
| | - Quy H Nguyen
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA
| | - Dennis Ma
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA
| | - Tatyana Lev
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA
- Center for Complex Biological Systems, University of California, Irvine, Irvine, CA, USA
| | - Grace A Hernandez
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Armani K Oganyan
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA
| | - Davit Orujyan
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA
| | - Robert A Edwards
- Department of Pathology, University of California, Irvine, Irvine, CA, USA
| | - Clare Pridans
- University of Edinburgh Centre for Inflammation Research, Edinburgh, UK
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK
| | - Kim N Green
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA
| | - S Armando Villalta
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA
| | - Mathew Blurton-Jones
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA
| | - Devon A Lawson
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA.
- Center for Complex Biological Systems, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
15
|
Syage A, Pachow C, Cheng Y, Mangale V, Green KN, Lane TE. Microglia influence immune responses and restrict neurologic disease in response to central nervous system infection by a neurotropic murine coronavirus. Front Cell Neurosci 2023; 17:1291255. [PMID: 38099152 PMCID: PMC10719854 DOI: 10.3389/fncel.2023.1291255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/09/2023] [Indexed: 12/17/2023] Open
Abstract
Intracranial (i.c.) inoculation of susceptible mice with a glial-tropic strain of mouse hepatitis virus (JHMV), a murine coronavirus, results in an acute encephalomyelitis followed by viral persistence in white matter tracts accompanied by chronic neuroinflammation and demyelination. Microglia serve numerous functions including maintenance of the healthy central nervous system (CNS) and are among the first responders to injury or infection. More recently, studies have demonstrated that microglia aid in tailoring innate and adaptive immune responses following infection by neurotropic viruses including flaviviruses, herpesviruses, and picornaviruses. These findings have emphasized an important role for microglia in host defense against these viral pathogens. In addition, microglia are also critical in optimizing immune-mediated control of JHMV replication within the CNS while restricting the severity of demyelination and enhancing remyelination. This review will highlight our current understanding of the molecular and cellular mechanisms by which microglia aid in host defense, limit neurologic disease, and promote repair following CNS infection by a neurotropic murine coronavirus.
Collapse
Affiliation(s)
- Amber Syage
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| | - Collin Pachow
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
| | - Yuting Cheng
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
| | - Vrushali Mangale
- Department of Pathology, University of Utah, Salt Lake City, UT, United States
| | - Kim N. Green
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| | - Thomas E. Lane
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
- Center for Virus Research, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
16
|
Yamamoto S, Iwasa K, Yamagishi A, Haruta C, Maruyama K, Yoshikawa K. Microglial depletion exacerbates axonal damage and motor dysfunction in mice with cuprizone-induced demyelination. J Pharmacol Sci 2023; 153:94-103. [PMID: 37770161 DOI: 10.1016/j.jphs.2023.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/20/2023] [Accepted: 08/22/2023] [Indexed: 10/03/2023] Open
Abstract
The cuprizone (CPZ)-induced demyelination model, an animal model of Multiple sclerosis (MS), is characterized by demyelination and motor dysfunction due to microglial-mediated neuroinflammation. To determine the contribution of microglia to motor function during CPZ-induced demyelination, the microglia of mice in the CPZ-model were depleted using PLX3397 (PLX), an orally bioavailable selective colony stimulating factor 1 receptor inhibitor. PLX treatment aggravated motor dysfunction as shown by the pole, beam walk, ladder walk, and rotarod tests. PLX treatment removed microglia from the superior cerebellar peduncle (SCP), but not from the corpus callosum (CC). Although PLX treatment did not affect the degree of demyelination in both of CC and SCP, the expression of axonal damage marker APP (amyloid precursor protein) was increased. Increased TNF-α, IL-1β, and iNOS expressions were observed in PLX-treated mice. These results suggest that microglial depletion exacerbates axonal damage and motor dysfunction in CPZ model mice. In this study, we found that microglia contribute to motor function and axon-protective effects in CPZ-induced demyelination.
Collapse
Affiliation(s)
- Shinji Yamamoto
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, 38 Moro-hongo, Moroyama-machi, Iruma-gun, Saitama 350-0495, Japan; School of Medical Technology, Faculty of Health and Medical Care, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama 350-1241, Japan
| | - Kensuke Iwasa
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, 38 Moro-hongo, Moroyama-machi, Iruma-gun, Saitama 350-0495, Japan
| | - Anzu Yamagishi
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, 38 Moro-hongo, Moroyama-machi, Iruma-gun, Saitama 350-0495, Japan; School of Medical Technology, Faculty of Health and Medical Care, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama 350-1241, Japan
| | - Chikara Haruta
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, 38 Moro-hongo, Moroyama-machi, Iruma-gun, Saitama 350-0495, Japan
| | - Kei Maruyama
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, 38 Moro-hongo, Moroyama-machi, Iruma-gun, Saitama 350-0495, Japan
| | - Keisuke Yoshikawa
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, 38 Moro-hongo, Moroyama-machi, Iruma-gun, Saitama 350-0495, Japan.
| |
Collapse
|
17
|
Hirano Y, Nakagomi T, Nakano-Doi A, Kubo S, Minato Y, Sawano T, Sakagami M, Tsuzuki K. Microglia Negatively Regulate the Proliferation and Neuronal Differentiation of Neural Stem/Progenitor Cells Isolated from Poststroke Mouse Brains. Cells 2023; 12:2040. [PMID: 37626850 PMCID: PMC10453473 DOI: 10.3390/cells12162040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/25/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
We previously demonstrated that neural stem/progenitor cells (NSPCs) were induced within and around the ischemic areas in a mouse model of ischemic stroke. These injury/ischemia-induced NSPCs (iNSPCs) differentiated to electrophysiologically functional neurons in vitro, indicating the presence of a self-repair system following injury. However, during the healing process after stroke, ischemic areas were gradually occupied by inflammatory cells, mainly microglial cells/macrophages (MGs/MΦs), and neurogenesis rarely occurred within and around the ischemic areas. Therefore, to achieve neural regeneration by utilizing endogenous iNSPCs, regulation of MGs/MΦs after an ischemic stroke might be necessary. To test this hypothesis, we used iNSPCs isolated from the ischemic areas after a stroke in our mouse model to investigate the role of MGs/MΦs in iNSPC regulation. In coculture experiments, we show that the presence of MGs/MΦs significantly reduces not only the proliferation but also the differentiation of iNSPCs toward neuronal cells, thereby preventing neurogenesis. These effects, however, are mitigated by MG/MΦ depletion using clodronate encapsulated in liposomes. Additionally, gene ontology analysis reveals that proliferation and neuronal differentiation are negatively regulated in iNSPCs cocultured with MGs/MΦs. These results indicate that MGs/MΦs negatively impact neurogenesis via iNSPCs, suggesting that the regulation of MGs/MΦs is essential to achieve iNSPC-based neural regeneration following an ischemic stroke.
Collapse
Affiliation(s)
- Yoshinobu Hirano
- Department of Otorhinolaryngology—Head & Neck Surgery, Hyogo Medical University, 1-1 Mukogawa, Nishinomiya 663-8501, Japan; (Y.H.); (M.S.); (K.T.)
| | - Takayuki Nakagomi
- Institute for Advanced Medical Sciences, Hyogo Medical University, 1-1 Mukogawacho, Nishinomiya 663-8501, Japan; (A.N.-D.); (S.K.)
- Department of Therapeutic Progress in Brain Diseases, Hyogo Medical University, 1-1 Mukogawacho, Nishinomiya 663-8501, Japan
| | - Akiko Nakano-Doi
- Institute for Advanced Medical Sciences, Hyogo Medical University, 1-1 Mukogawacho, Nishinomiya 663-8501, Japan; (A.N.-D.); (S.K.)
- Department of Therapeutic Progress in Brain Diseases, Hyogo Medical University, 1-1 Mukogawacho, Nishinomiya 663-8501, Japan
| | - Shuji Kubo
- Institute for Advanced Medical Sciences, Hyogo Medical University, 1-1 Mukogawacho, Nishinomiya 663-8501, Japan; (A.N.-D.); (S.K.)
| | - Yusuke Minato
- Department of Anatomy and Cell Biology, Hyogo Medical University, 1-1 Mukogawacho, Nishinomiya 663-8501, Japan;
| | - Toshinori Sawano
- Department of Biomedical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu 525-8577, Japan;
| | - Masafumi Sakagami
- Department of Otorhinolaryngology—Head & Neck Surgery, Hyogo Medical University, 1-1 Mukogawa, Nishinomiya 663-8501, Japan; (Y.H.); (M.S.); (K.T.)
| | - Kenzo Tsuzuki
- Department of Otorhinolaryngology—Head & Neck Surgery, Hyogo Medical University, 1-1 Mukogawa, Nishinomiya 663-8501, Japan; (Y.H.); (M.S.); (K.T.)
| |
Collapse
|
18
|
Kashif M, Waseem M, Vijendra PD, Pandurangan AK. Protective Effects of Cannabis in Neuroinflammation-Mediated Alzheimer's Disease. ADVANCES IN MEDICAL DIAGNOSIS, TREATMENT, AND CARE 2023:48-75. [DOI: 10.4018/978-1-6684-5652-1.ch002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
In recent years, Alzheimer's disease (AD) has been recognized as an age-related neurological disorder wherein neurons degenerate and exhibit abnormal structure and function. Aging is the primary factor in the progression of AD from mild to severe cognitive impairment. No effective targeted therapies are presently available, and treatment is limited to symptomatic management. The neuropathologic hallmarks of the disease include the accumulation of amyloid-beta (Aβ) plaques in brain tissues and the aggregation of hyperphosphorylated-tau proteins (tangles) within neurons. Associated hyperactivation of neuroinflammation results in release of inflammatory molecules from neurons, microglia, and astrocytes, which have been linked with neuronal loss and the worsening neurodegeneration. The anti-inflammatory and neuroprotective properties of cannabis-based medicines may offer benefits in delaying the progression of neurodegenerative diseases including AD. This chapter explores the role of cannabinoids in countering neuroinflammation-mediated AD pathology.
Collapse
Affiliation(s)
- Mohd Kashif
- B.S. Abdur Rahman Crescent Institute of Science and Technology, India
| | | | | | | |
Collapse
|
19
|
Malik S, Wang H, Xavier S, Slayo M, Bozinovski S, Sominsky L, Spencer SJ. The role of microglia and monocytes in the generation and resolution of the immune response in female and male rats. Brain Behav Immun 2023; 107:179-192. [PMID: 36270436 DOI: 10.1016/j.bbi.2022.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/09/2022] [Accepted: 10/13/2022] [Indexed: 11/07/2022] Open
Abstract
Microglia have long been thought to be responsible for the initiation of the central nervous system (CNS) immune response to pathogen exposure. However, we recently reported that depleting CNS microglia and circulating monocytes does not abrogate the sickness response in male rats or mice to bacterial endotoxin, lipopolysaccharide (LPS). How the central immune response to an endotoxin challenge is initiated and resolved in the absence of microglia and monocytes remains unclear. Here we investigated the role of microglia and monocytes in driving the behavioral, febrile and neuroimmune response to LPS using the Cx3cr1-Dtr rat model of conditional microglia/monocyte depletion, assessed if this role is similar in females and males, and examined how the response to an immune challenge might be initiated in the absence of these cells. We show that depletion of microglia and monocytes exacerbates the response to LPS at each phase of the immune cascade. Our data indicate that the changes in the central response to immune challenge may be an indirect effect of excess neutrophil expansion into the bloodstream and infiltration into peripheral organs stimulating a rapid and exacerbated cytokine and prostaglandin response to the LPS that is not curtailed by the usual negative feedback mechanisms. Thus, we show that a demonstrable immune response can be generated (and resolved) in the near complete absence of microglia and monocytes and that these cells play a regulatory role in the initiation and resolution of the response to an immune challenge, rather than being critical for it to occur.
Collapse
Affiliation(s)
- Sajida Malik
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Hao Wang
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Soniya Xavier
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Mary Slayo
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Steve Bozinovski
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Luba Sominsky
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia; Barwon Health Laboratory, Barwon Health, University Hospital, Geelong, VIC, Australia; Institute for Physical and Mental Health and Clinical Transformation, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Sarah J Spencer
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia.
| |
Collapse
|
20
|
Advanced therapeutic strategies targeting microglia: beyond neuroinflammation. Arch Pharm Res 2022; 45:618-630. [PMID: 36166145 DOI: 10.1007/s12272-022-01406-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/19/2022] [Indexed: 11/02/2022]
Abstract
For a long time, microglia have been recognized as the main culprits of neuroinflammatory responses because they are primary phagocytes present in the parenchyma of the central nervous system (CNS). However, with the evolving concept of microglial biology, advanced and precise approaches, rather than the global inhibition of activated microglia, have been proposed in the management of neurological disorders. Yolk sac-derived resident microglia have heterogeneous composition according to brain region, sex, and diseases. They play a key role in the maintenance of CNS homeostasis and as primary phagocytes. The perturbation of microglia development can induce neurodevelopmental disorders. Microglia aggravate or alleviate neuroinflammation according to microenvironment and their spatiotemporal dynamics. They are long-lived cells and repopulate via their proliferation or external monocyte engraft. Based on this evolving concept, understanding advanced therapeutic strategies targeting microglia can give us an opportunity to discover novel therapies for neurological disorders.
Collapse
|
21
|
Zetterberg H. Biofluid-based biomarkers for Alzheimer's disease-related pathologies: An update and synthesis of the literature. Alzheimers Dement 2022; 18:1687-1693. [PMID: 35213777 PMCID: PMC9514308 DOI: 10.1002/alz.12618] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/05/2021] [Accepted: 01/10/2022] [Indexed: 01/24/2023]
Abstract
The past few years have seen an explosion in sensitive and specific assays for cerebrospinal fluid (CSF) and blood biomarkers for Alzheimer's disease (AD) and related disorders, as well as some novel assays based on pathological seed-induced protein misfolding in patient samples. Here, I review this exciting field that promises to transform dementia diagnostics and disease monitoring. I discuss data on biomarkers for amyloid beta (Aβ) and tau pathology, neurodegeneration, and glial activation, mention the most promising biomarkers for α-synuclein and TDP-43 pathology, and highlight the need for further research into common co-pathologies. Finally, I consider practical aspects of blood-based biomarker-supported AD diagnostics and emphasize the importance of biomarker interpretation in a full clinical context.
Collapse
Affiliation(s)
- Henrik Zetterberg
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiologythe Sahlgrenska Academy at the University of GothenburgMölndalSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
- Department of Neurodegenerative DiseaseUCL Institute of NeurologyLondonUK
- UK Dementia Research Institute at UCLLondonUK
- Hong Kong Center for Neurodegenerative DiseasesHong KongChina
| |
Collapse
|
22
|
Yousefizadeh A, Piccioni G, Saidi A, Triaca V, Mango D, Nisticò R. Pharmacological targeting of microglia dynamics in Alzheimer's disease: Preclinical and clinical evidence. Pharmacol Res 2022; 184:106404. [PMID: 35988869 DOI: 10.1016/j.phrs.2022.106404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 10/15/2022]
Abstract
Numerous clinical trials of anti-amyloid agents for Alzheimer's disease (AD) were so far unsuccessful thereby challenging the validity of the amyloid hypothesis. This lack of progress has encouraged researchers to investigate alternative mechanisms in non-neuronal cells, among which microglia represent nowadays an attractive target. Microglia play a key role in the developing brain and contribute to synaptic remodeling in the mature brain. On the other hand, the intimate relationship between microglia and synapses led to the so-called synaptic stripping hypothesis, a process in which microglia selectively remove synapses from injured neurons. Synaptic stripping, along with the induction of a microglia-mediated chronic neuroinflammatory environment, promote the progressive synaptic degeneration in AD. Therefore, targeting microglia may pave the way for a new disease modifying approach. This review provides an overview of the pathophysiological roles of the microglia cells in AD and describes putative targets for pharmacological intervention. It also provides evidence for microglia-targeted strategies in preclinical AD studies and in early clinical trials.
Collapse
Affiliation(s)
- Atrin Yousefizadeh
- School of Pharmacy, Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Gaia Piccioni
- Department of Physiology and Pharmacology "V.Erspamer", Sapienza University of Rome, Rome, Italy; Laboratory Pharmacology of Synaptic Plasticity, European Brain Research (EBRI) Institute, Rome, Italy
| | - Amira Saidi
- Department of Physiology and Pharmacology "V.Erspamer", Sapienza University of Rome, Rome, Italy; Laboratory Pharmacology of Synaptic Plasticity, European Brain Research (EBRI) Institute, Rome, Italy
| | - Viviana Triaca
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Rome, Italy
| | - Dalila Mango
- School of Pharmacy, Department of Biology, University of Rome "Tor Vergata", Rome, Italy; Laboratory Pharmacology of Synaptic Plasticity, European Brain Research (EBRI) Institute, Rome, Italy
| | - Robert Nisticò
- School of Pharmacy, Department of Biology, University of Rome "Tor Vergata", Rome, Italy; Laboratory Pharmacology of Synaptic Plasticity, European Brain Research (EBRI) Institute, Rome, Italy.
| |
Collapse
|
23
|
Aronica E, Binder DK, Drexel M, Ikonomidou C, Kadam SD, Sperk G, Steinhäuser C. A companion to the preclinical common data elements and case report forms for neuropathology studies in epilepsy research. A report of the TASK3 WG2 Neuropathology Working Group of the ILAE/AES Joint Translational Task Force. Epilepsia Open 2022. [PMID: 35938285 DOI: 10.1002/epi4.12638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 01/28/2022] [Indexed: 11/06/2022] Open
Abstract
The International League Against Epilepsy/American Epilepsy Society (ILAE/AES) Joint Translational Task Force initiated the TASK3 working group to create common data elements (CDEs) for various aspects of preclinical epilepsy research studies, which could help improve the standardization of experimental designs. This article addresses neuropathological changes associated with seizures and epilepsy in rodent models of epilepsy. We discuss CDEs for histopathological parameters for neurodegeneration, changes in astrocyte morphology and function, mechanisms of inflammation, and changes in the blood-brain barrier and myelin/oligodendrocytes resulting from recurrent seizures in rats and mice. We provide detailed CDE tables and case report forms (CRFs), and with this companion manuscript, we discuss the rationale and methodological aspects of individual neuropathological examinations. The CDEs, CRFs, and companion paper are available to all researchers, and their use will benefit the harmonization and comparability of translational preclinical epilepsy research. The ultimate hope is to facilitate the development of rational therapy concepts for treating epilepsies, seizures, and comorbidities and the development of biomarkers assessing the pathological state of the disease.
Collapse
Affiliation(s)
- Eleonora Aronica
- Amsterdam UMC, University of Amsterdam, Department of (Neuro) Pathology, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, The Netherlands
| | - Devin K Binder
- Center for Glial-Neuronal Interactions, Division of Biomedical Sciences, School of Medicine, University of California, Riverside, California, USA
| | - Meinrad Drexel
- Department of Genetics and Pharmacology, Institute of Molecular and Cellular Pharmacology, Medical University Innsbruck, Innsbruck, Austria
| | | | - Shilpa D Kadam
- The Hugo Moser Research Institute at Kennedy Krieger, Baltimore, Maryland, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Guenther Sperk
- Department of Pharmacology, Medical University Innsbruck, Innsbruck, Austria
| | - Christian Steinhäuser
- Institute of Cellular Neurosciences, Medical School, University of Bonn, Bonn, Germany
| |
Collapse
|
24
|
Ogaki A, Ikegaya Y, Koyama R. Replacement of Mouse Microglia With Human Induced Pluripotent Stem Cell (hiPSC)-Derived Microglia in Mouse Organotypic Slice Cultures. Front Cell Neurosci 2022; 16:918442. [PMID: 35910250 PMCID: PMC9325970 DOI: 10.3389/fncel.2022.918442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/20/2022] [Indexed: 11/24/2022] Open
Abstract
Microglia, the major immune cells in the brain, are reported to differ in gene expression patterns among species. Therefore, it would be preferable in some cases to use human microglia rather than mouse microglia in microglia-targeted disease research. In the past half a decade, researchers have developed in vivo transplantation methods in which human induced pluripotent stem cell-derived microglia (hiPSC-MG) are transplanted into a living mouse brain. However, in vivo transplantation methods are not necessarily accessible to all researchers due to the difficulty of obtaining the materials needed and the transplantation technique itself. In addition, for in vivo systems for microglia-targeted drug screening, it is difficult to control the pharmacokinetics, especially blood-brain barrier permeability. Therefore, in addition to existing in vivo transplantation systems, the development of an ex vivo transplantation system would help to further evaluate the properties of hiPSC-MG. In this study, we aimed to establish a method to efficiently transplant hiPSC-MG into cultured mouse hippocampal slices. We found that approximately 80% of the total microglia in a cultured slice were replaced by hiPSC-derived microglia when innate microglia were pharmacologically removed prior to transplantation. Furthermore, when neuronal death was induced by applying Kainic acid (KA) to slice cultures, transplanted hiPSC-MG changed their morphology and phagocytosed cell debris. Thus, this study provides a method to transplant hiPSC-MG into the mouse hippocampal slice cultures with a high replacement rate. Because the transplanted microglia survived and exerted phagocytic functions, this method will be useful for evaluating the properties of hiPSC-MG ex vivo.
Collapse
Affiliation(s)
- Ari Ogaki
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo, Japan
| | - Yuji Ikegaya
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo, Japan
- Institute for AI and Beyond, The University of Tokyo, Bunkyo, Japan
- Center for Information and Neural Networks, National Institute of Information and Communications Technology, Suita, Japan
| | - Ryuta Koyama
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo, Japan
- Institute for AI and Beyond, The University of Tokyo, Bunkyo, Japan
- *Correspondence: Ryuta Koyama
| |
Collapse
|
25
|
Karaahmet B, Le L, Mendes MS, Majewska AK, O'Banion MK. Repopulated microglia induce expression of Cxcl13 with differential changes in Tau phosphorylation but do not impact amyloid pathology. J Neuroinflammation 2022; 19:173. [PMID: 35787714 PMCID: PMC9252071 DOI: 10.1186/s12974-022-02532-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/16/2022] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Adult microglia rely on self-renewal through division to repopulate and sustain their numbers. However, with aging, microglia display morphological and transcriptional changes that reflect a heightened state of neuroinflammation. This state threatens aging neurons and other cells and can influence the progression of Alzheimer's disease (AD). In this study, we sought to determine whether renewing microglia through a forced partial depletion/repopulation method could attenuate AD pathology in the 3xTg and APP/PS1 mouse models. METHODS We pharmacologically depleted the microglia of two cohorts of 21- to 22-month-old 3xTg mice and one cohort of 14-month-old APP/PS1 mice using PLX5622 formulated in chow for 2 weeks. Following depletion, we returned the mice to standard chow diet for 1 month to allow microglial repopulation. We assessed the effect of depletion and repopulation on AD pathology, microglial gene expression, and surface levels of homeostatic markers on microglia using immunohistochemistry, single-cell RNAseq and flow cytometry. RESULTS Although we did not identify a significant impact of microglial repopulation on amyloid pathology in either of the AD models, we observed differential changes in phosphorylated-Tau epitopes after repopulation in the 3xTg mice. We provide evidence that repopulated microglia in the hippocampal formation exhibited changes in the levels of homeostatic microglial markers. Lastly, we identified novel subpopulations of microglia by performing single-cell RNAseq analysis on CD45int/+ cells from hippocampi of control and repopulated 3xTg mice. In particular, one subpopulation induced after repopulation is characterized by heightened expression of Cxcl13. CONCLUSION Overall, we found that depleting and repopulating microglia causes overexpression of microglial Cxcl13 with disparate effects on Tau and amyloid pathologies.
Collapse
Affiliation(s)
- Berke Karaahmet
- Department of Neuroscience, Del Monte Institute for Neuroscience, University of Rochester School of Medicine & Dentistry, Rochester, NY, USA
| | - Linh Le
- Department of Neuroscience, Del Monte Institute for Neuroscience, University of Rochester School of Medicine & Dentistry, Rochester, NY, USA
| | - Monique S Mendes
- Department of Neuroscience, Del Monte Institute for Neuroscience, University of Rochester School of Medicine & Dentistry, Rochester, NY, USA
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Ania K Majewska
- Department of Neuroscience, Del Monte Institute for Neuroscience, University of Rochester School of Medicine & Dentistry, Rochester, NY, USA.
| | - M Kerry O'Banion
- Department of Neuroscience, Del Monte Institute for Neuroscience, University of Rochester School of Medicine & Dentistry, Rochester, NY, USA.
| |
Collapse
|
26
|
Marinello WP, Gillera SEA, Fanning MJ, Malinsky LB, Rhodes CL, Horman BM, Patisaul HB. Effects of developmental exposure to FireMaster® 550 (FM 550) on microglia density, reactivity and morphology in a prosocial animal model. Neurotoxicology 2022; 91:140-154. [PMID: 35526706 DOI: 10.1016/j.neuro.2022.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/29/2022] [Accepted: 04/29/2022] [Indexed: 11/20/2022]
Abstract
Microglia are known to shape brain sex differences critical for social and reproductive behaviors. Chemical exposures can disrupt brain sexual differentiation but there is limited data regarding how they may impact microglia distribution and function. We focused on the prevalent flame retardant mixture Firemaster 550 (FM 550) which is used in foam-based furniture and infant products including strollers and nursing pillows because it disrupts sexually dimorphic behaviors. We hypothesized early life FM 550 exposure would disrupt microglial distribution and reactivity in brain regions known to be highly sexually dimorphic or associated with social disorders in humans. We used prairie voles (Microtus ochrogaster) because they display spontaneous prosocial behaviors not seen in rats or mice and are thus a powerful model for studying chemical exposure-related impacts on social behaviors and their underlying neural systems. We have previously demonstrated that perinatal FM 550 exposure sex-specifically impacts socioemotional behaviors in prairie voles. We first established that, unlike in rats, the postnatal colonization of the prairie vole brain is not sexually dimorphic. Vole dams were then exposed to FM 550 (0, 500, 1000, 2000 µg/day) via subcutaneous injections through gestation, and pups were directly exposed beginning the day after birth until weaning. Adult offspring's brains were assessed for number and type (ramified, intermediate, ameboid) of microglia in the medial prefrontal cortex (mPFC), cerebellum (lobules VI-VII) and amygdala. Effects were sex- and dose-specific in the regions of interests. Overall, FM 550 exposure resulted in reduced numbers of microglia in most regions examined, with the 1000 µg FM 550 exposed males particularly affected. To further quantify differences in microglia morphology in the 1000 µg FM 550 group, Sholl and skeleton analysis were carried out on individual microglia. Microglia from control females had a more ramified phenotype compared to control males while 1000 µg FM 550-exposed males had decreased branching and ramification compared to same-sex controls. Future studies will examine the impact on the exposure to FM 550 on microglia during development given the critical role of these cells in shaping neural circuits.
Collapse
Affiliation(s)
- William P Marinello
- Department of Biological Sciences, NC State University, Raleigh, NC 27695, USA
| | | | - Marley J Fanning
- Department of Biological Sciences, NC State University, Raleigh, NC 27695, USA
| | - Lacey B Malinsky
- Department of Biological Sciences, NC State University, Raleigh, NC 27695, USA
| | - Cassie L Rhodes
- Department of Biological Sciences, NC State University, Raleigh, NC 27695, USA
| | - Brian M Horman
- Department of Biological Sciences, NC State University, Raleigh, NC 27695, USA
| | - Heather B Patisaul
- Department of Biological Sciences, NC State University, Raleigh, NC 27695, USA; Center for Human Health and the Environment, NC State University, Raleigh, NC 27695, USA.
| |
Collapse
|
27
|
Region-Specific Characteristics of Astrocytes and Microglia: A Possible Involvement in Aging and Diseases. Cells 2022; 11:cells11121902. [PMID: 35741031 PMCID: PMC9220858 DOI: 10.3390/cells11121902] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/07/2022] [Accepted: 06/10/2022] [Indexed: 11/17/2022] Open
Abstract
Although different regions of the brain are dedicated to specific functions, the intra- and inter-regional heterogeneity of astrocytes and microglia in these regions has not yet been fully understood. Recently, an advancement in various technologies, such as single-cell RNA sequencing, has allowed for the discovery of astrocytes and microglia with distinct molecular fingerprints and varying functions in the brain. In addition, the regional heterogeneity of astrocytes and microglia exhibits different functions in several situations, such as aging and neurodegenerative diseases. Therefore, investigating the region-specific astrocytes and microglia is important in understanding the overall function of the brain. In this review, we summarize up-to-date research on various intra- and inter-regional heterogeneities of astrocytes and microglia, and provide information on how they can be applied to aging and neurodegenerative diseases.
Collapse
|
28
|
Garcia-Hernandez R, Cerdán Cerdá A, Trouve Carpena A, Drakesmith M, Koller K, Jones DK, Canals S, De Santis S. Mapping microglia and astrocyte activation in vivo using diffusion MRI. SCIENCE ADVANCES 2022; 8:eabq2923. [PMID: 35622913 PMCID: PMC9140964 DOI: 10.1126/sciadv.abq2923] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 04/13/2022] [Indexed: 05/04/2023]
Abstract
While glia are increasingly implicated in the pathophysiology of psychiatric and neurodegenerative disorders, available methods for imaging these cells in vivo involve either invasive procedures or positron emission tomography radiotracers, which afford low resolution and specificity. Here, we present a noninvasive diffusion-weighted magnetic resonance imaging (MRI) method to image changes in glia morphology. Using rat models of neuroinflammation, degeneration, and demyelination, we demonstrate that diffusion-weighted MRI carries a fingerprint of microglia and astrocyte activation and that specific signatures from each population can be quantified noninvasively. The method is sensitive to changes in glia morphology and proliferation, providing a quantitative account of neuroinflammation, regardless of the existence of a concomitant neuronal loss or demyelinating injury. We prove the translational value of the approach showing significant associations between MRI and histological microglia markers in humans. This framework holds the potential to transform basic and clinical research by clarifying the role of inflammation in health and disease.
Collapse
Affiliation(s)
| | | | | | - Mark Drakesmith
- CUBRIC, School of Psychology, Cardiff University, Cardiff, UK
| | - Kristin Koller
- CUBRIC, School of Psychology, Cardiff University, Cardiff, UK
| | - Derek K. Jones
- CUBRIC, School of Psychology, Cardiff University, Cardiff, UK
| | - Santiago Canals
- Instituto de Neurociencias, CSIC/UMH, San Juan de Alicante, Alicante, Spain
| | - Silvia De Santis
- Instituto de Neurociencias, CSIC/UMH, San Juan de Alicante, Alicante, Spain
- CUBRIC, School of Psychology, Cardiff University, Cardiff, UK
| |
Collapse
|
29
|
Gentry NW, McMahon T, Yamazaki M, Webb J, Arnold TD, Rosi S, Ptáček LJ, Fu YH. Microglia are involved in the protection of memories formed during sleep deprivation. Neurobiol Sleep Circadian Rhythms 2022; 12:100073. [PMID: 35028489 PMCID: PMC8741522 DOI: 10.1016/j.nbscr.2021.100073] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 12/10/2021] [Accepted: 12/15/2021] [Indexed: 01/09/2023] Open
Abstract
Sleep deprivation can generate inflammatory responses in the central nervous system. In turn, this inflammation increases sleep drive, leading to a rebound in sleep duration. Microglia, the innate immune cells found exclusively in the CNS, have previously been found to release inflammatory signals and exhibit altered characteristics in response to sleep deprivation. Together, this suggests that microglia may be partially responsible for the brain's response to sleep deprivation through their inflammatory activity. In this study, we ablated microglia from the mouse brain and assessed resulting sleep, circadian, and sleep deprivation phenotypes. We find that microglia are dispensable for both homeostatic sleep and circadian function and the sleep rebound response to sleep deprivation. However, we uncover a phenomenon by which microglia appear to be essential for the protection of fear-conditioning memories formed during the recovery sleep period following a period of sleep deprivation. This phenomenon occurs potentially through the upregulation of synaptic-homeostasis related genes to protect nascent dendritic spines that may be otherwise removed or downscaled during recovery sleep. These findings further expand the list of known functions for microglia in synaptic modulation.
Collapse
Affiliation(s)
- Nicholas W. Gentry
- Department of Neurology, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Thomas McMahon
- Department of Neurology, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Maya Yamazaki
- Department of Neurology, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - John Webb
- Department of Neurology, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Thomas D. Arnold
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, 94143, USA
- Department of Physical Rehabilitation Science, University of California, San Francisco, San Francisco, CA, 94143, USA
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Susanna Rosi
- Department of Physical Rehabilitation Science, University of California, San Francisco, San Francisco, CA, 94143, USA
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, 94143, USA
- Weill Institute for Neuroscience, University of California, San Francisco, San Francisco, CA, 94143, USA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Louis J. Ptáček
- Department of Neurology, University of California, San Francisco, San Francisco, CA, 94143, USA
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, 94143, USA
- Weill Institute for Neuroscience, University of California, San Francisco, San Francisco, CA, 94143, USA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Ying-Hui Fu
- Department of Neurology, University of California, San Francisco, San Francisco, CA, 94143, USA
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, 94143, USA
- Weill Institute for Neuroscience, University of California, San Francisco, San Francisco, CA, 94143, USA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, 94143, USA
| |
Collapse
|
30
|
Han J, Chitu V, Stanley ER, Wszolek ZK, Karrenbauer VD, Harris RA. Inhibition of colony stimulating factor-1 receptor (CSF-1R) as a potential therapeutic strategy for neurodegenerative diseases: opportunities and challenges. Cell Mol Life Sci 2022; 79:219. [PMID: 35366105 PMCID: PMC8976111 DOI: 10.1007/s00018-022-04225-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/06/2022] [Accepted: 02/26/2022] [Indexed: 12/12/2022]
Abstract
Microglia are specialized dynamic immune cells in the central nervous system (CNS) that plays a crucial role in brain homeostasis and in disease states. Persistent neuroinflammation is considered a hallmark of many neurodegenerative diseases, including Alzheimer’s disease (AD), Parkinson's disease (PD), Huntington’s disease (HD), amyotrophic lateral sclerosis (ALS) and primary progressive multiple sclerosis (MS). Colony stimulating factor 1-receptor (CSF-1R) is predominantly expressed on microglia and its expression is significantly increased in neurodegenerative diseases. Cumulative findings have indicated that CSF-1R inhibitors can have beneficial effects in preclinical neurodegenerative disease models. Research using CSF-1R inhibitors has now been extended into non-human primates and humans. This review article summarizes the most recent advances using CSF-1R inhibitors in different neurodegenerative conditions including AD, PD, HD, ALS and MS. Potential challenges for translating these findings into clinical practice are presented.
Collapse
Affiliation(s)
- Jinming Han
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Violeta Chitu
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461 USA
| | - E. Richard Stanley
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461 USA
| | | | - Virginija Danylaité Karrenbauer
- Department of Clinical Neuroscience, Center for Molecular Medicine L8:04, Karolinska Institutet, Karolinska University Hospital, 171 76 Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Robert A. Harris
- Applied Immunology and Immunotherapy, Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Solna, Sweden
| |
Collapse
|
31
|
Life and death of microglia: mechanisms governing microglial states and fates. Immunol Lett 2022; 245:51-60. [PMID: 35413354 DOI: 10.1016/j.imlet.2022.04.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/31/2022] [Accepted: 04/05/2022] [Indexed: 12/16/2022]
|
32
|
Zhou K, Harris RA, Shen X. Editorial: Microglia as a Therapeutic Target for Brain Repair: Opportunities and Challenges. Front Cell Neurosci 2022; 16:877567. [PMID: 35370558 PMCID: PMC8965838 DOI: 10.3389/fncel.2022.877567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 02/21/2022] [Indexed: 11/26/2022] Open
Affiliation(s)
- Kai Zhou
- Henan Neurodevelopment Engineering Research Center for Children, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
- *Correspondence: Kai Zhou
| | - Robert Adam Harris
- Applied Immunology and Immunotherapy, Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Xianli Shen
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Immunology, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
33
|
Pharmacological depletion of microglia leads to a dose-dependent reduction in inflammation and senescence in the aged murine brain. Neuroscience 2022; 488:1-9. [PMID: 35217122 DOI: 10.1016/j.neuroscience.2022.02.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 12/16/2022]
Abstract
Chronic macrophage activation was implicated as one of the main culprits for chronical, low-grade inflammation which significantly contributes to development of age-related diseases. Microglia as the brain macrophages have been recently implicated as key players in neuroinflammation and neurodegeneration in the aged brain. Microglial cell functions are indispensable in early development, however, activation or senescence of microglia in aging cells may be detrimental. Depletion of microglia using genetical or pharmacological approaches leads to opposite results regarding effects on brain cognition. In this study we pharmacologically depleted microglia using orally delivered low and high doses of the CSF1R inhibitor PLX5622 and assessed the expression levels of known inflammation markers (TNF-α, IL1-β, IL-6, IL-10), glia markers (Iba-1 and Gfap) and specific senescence marker p16Ink4a in the aged murine brain. Our results indicate that treatment with low and high doses of PLX5622 leads to a dose-dependent depletion of microglial cells with similar levels in young and aged mice. We also show that treatment with low and high PLX5622 differentially affected cytokine levels in young and old brains. By using low doses we could achieve reduction in inflammation circumventing the astrocyte activation. Removal of microglia cells led to decreased expression of the senescence marker p16Ink4a in the aged brain, indicating a relevant contribution of these cells to the expression of this marker and their senescent status in the healthy aging brain. Our results indicate that increased and detrimental brain inflammation in aged murine brain can be impaired by selectively reducing the microglial cell population.
Collapse
|
34
|
Manjally AV, Tay TL. Attack of the Clones: Microglia in Health and Disease. Front Cell Neurosci 2022; 16:831747. [PMID: 35173585 PMCID: PMC8841846 DOI: 10.3389/fncel.2022.831747] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/10/2022] [Indexed: 12/14/2022] Open
Affiliation(s)
- Amritha Vinayak Manjally
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- BrainLinks-BrainTools Centre, University of Freiburg, Freiburg, Germany
- Department of Biology, Boston University, Boston, MA, United States
| | - Tuan Leng Tay
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- BrainLinks-BrainTools Centre, University of Freiburg, Freiburg, Germany
- Department of Biology, Boston University, Boston, MA, United States
- Freiburg Institute of Advanced Studies, University of Freiburg, Freiburg, Germany
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, United States
- *Correspondence: Tuan Leng Tay
| |
Collapse
|
35
|
Christopoulos PF. Hacking macrophages to combat cancer and inflammatory diseases-Current advances and challenges. Scand J Immunol 2022; 95:e13140. [PMID: 35000232 DOI: 10.1111/sji.13140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/23/2021] [Accepted: 01/03/2022] [Indexed: 11/30/2022]
Abstract
Recently, immunotherapy has been served as the treatment of choice for various human pathophysiologies, including inflammatory diseases and cancer. Though most of the current approaches target the lymphoid compartment, macrophages intimately implicated in the induction or resolution of inflammation have rationally gained their place into the therapeutics arena. In this review, I discuss the past and novel groundbreaking strategies focusing on macrophages in different human diseases and highlight the current challenges and considerations underlying their translational potentials.
Collapse
Affiliation(s)
- Panagiotis F Christopoulos
- Department of Pathology, section of Research, Rikshospitalet, Oslo University Hospital and University of Oslo, 0424, Oslo, Norway
| |
Collapse
|
36
|
Šimončičová E, Gonçalves de Andrade E, Vecchiarelli HA, Awogbindin IO, Delage CI, Tremblay MÈ. Present and future of microglial pharmacology. Trends Pharmacol Sci 2022; 43:669-685. [PMID: 35031144 DOI: 10.1016/j.tips.2021.11.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/28/2021] [Accepted: 11/09/2021] [Indexed: 12/14/2022]
Abstract
Microglia, brain resident immune cells, modulate development, activity, and plasticity of the central nervous system. Mechanistically implicated in numerous neurological pathologies, microglia emerge as strong contenders for novel neurotherapies. Shifting away from merely an attenuation of excessive microglial inflammatory and phagocytic activities, current therapies aim toward targeting the complex context-dependent microglial heterogeneity, unveiled by large-scale genetic studies and emerging single-cell analyses. Although lacking the necessary selectivity, initial therapies attempting to target specific state-associated microglial properties and functions (e.g., inflammatory activity, phagocytosis, proliferation, metabolism, or surveillance) are currently under pre- or even clinical (Phase I-IV) investigation. Here, we provide an update on current microglial therapeutic research and discuss what the future in the field might look like.
Collapse
Affiliation(s)
- Eva Šimončičová
- Neuroscience Graduate Program, University of Victoria, Victoria, BC, Canada; Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Elisa Gonçalves de Andrade
- Neuroscience Graduate Program, University of Victoria, Victoria, BC, Canada; Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | | | - Ifeoluwa O Awogbindin
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada; Neuroimmunology Group, Molecular Drug Metabolism and Toxicology Laboratory, Department of Biochemistry, University of Ibadan, Ibadan, Nigeria
| | - Charlotte I Delage
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada; Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada; Neurology and Neurosurgery Department, McGill University, Montréal, QC, Canada; Department of Molecular Medicine, Université Laval, Québec City, QC, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada; Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada.
| |
Collapse
|
37
|
Lin J, Song X, Yin H, Song N, Wang Y, Li Z, Luo F, Tan H, He X, Li J. Citicoline–liposome/polyurethane composite scaffolds regulate the inflammatory response of microglia to promote nerve regeneration. JOURNAL OF MATERIALS SCIENCE 2022; 57:2073-2088. [DOI: 10.1007/s10853-021-06628-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 10/12/2021] [Indexed: 01/03/2025]
|
38
|
Barca C, Foray C, Hermann S, Herrlinger U, Remory I, Laoui D, Schäfers M, Grauer OM, Zinnhardt B, Jacobs AH. The Colony Stimulating Factor-1 Receptor (CSF-1R)-Mediated Regulation of Microglia/Macrophages as a Target for Neurological Disorders (Glioma, Stroke). Front Immunol 2021; 12:787307. [PMID: 34950148 PMCID: PMC8688767 DOI: 10.3389/fimmu.2021.787307] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/17/2021] [Indexed: 12/11/2022] Open
Abstract
Immunomodulatory therapies have fueled interest in targeting microglial cells as part of the innate immune response after infection or injury. In this context, the colony-stimulating factor 1 (CSF-1) and its receptor (CSF-1R) have gained attention in various neurological conditions to deplete and reprogram the microglia/macrophages compartment. Published data in physiological conditions support the use of small-molecule inhibitors to study microglia/macrophages dynamics under inflammatory conditions and as a therapeutic strategy in pathologies where those cells support disease progression. However, preclinical and clinical data highlighted that the complexity of the spatiotemporal inflammatory response could limit their efficiency due to compensatory mechanisms, ultimately leading to therapy resistance. We review the current state-of-art in the field of CSF-1R inhibition in glioma and stroke and provide an overview of the fundamentals, ongoing research, potential developments of this promising therapeutic strategy and further application toward molecular imaging.
Collapse
Affiliation(s)
- Cristina Barca
- European Institute for Molecular Imaging (EIMI), University of Münster, Münster, Germany
| | - Claudia Foray
- European Institute for Molecular Imaging (EIMI), University of Münster, Münster, Germany
| | - Sven Hermann
- European Institute for Molecular Imaging (EIMI), University of Münster, Münster, Germany
| | - Ulrich Herrlinger
- Division of Clinical Neuro-Oncology, Department of Neurology, University Hospital Bonn, Bonn, Germany.,Centre of Integrated Oncology, University Hospital Bonn, Bonn, Germany
| | - Isabel Remory
- In vivo Cellular and Molecular Imaging laboratory (ICMI), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Damya Laoui
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium.,Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Michael Schäfers
- European Institute for Molecular Imaging (EIMI), University of Münster, Münster, Germany.,Department of Nuclear Medicine, University Hospital Münster, Münster, Germany
| | - Oliver M Grauer
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Bastian Zinnhardt
- European Institute for Molecular Imaging (EIMI), University of Münster, Münster, Germany.,Biomarkers & Translational Technologies (BTT), Pharma Research & Early Development (pRED), F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Andreas H Jacobs
- European Institute for Molecular Imaging (EIMI), University of Münster, Münster, Germany.,Centre of Integrated Oncology, University Hospital Bonn, Bonn, Germany.,Department of Geriatrics and Neurology, Johanniter Hospital, Bonn, Germany
| |
Collapse
|
39
|
Wies Mancini VSB, Di Pietro AA, de Olmos S, Silva Pinto P, Vence M, Marder M, Igaz LM, Marcora MS, Pasquini JM, Correale JD, Pasquini LA. Colony-stimulating factor-1 receptor inhibition attenuates microgliosis and myelin loss but exacerbates neurodegeneration in the chronic cuprizone model. J Neurochem 2021; 160:643-661. [PMID: 34935149 DOI: 10.1111/jnc.15566] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/25/2021] [Accepted: 12/15/2021] [Indexed: 11/26/2022]
Abstract
Multiple sclerosis (MS), especially in its progressive phase, involves early axonal and neuronal damage resulting from a combination of inflammatory mediators, demyelination, and loss of trophic support. During progressive disease stages, a microenvironment is created within the central nervous system (CNS) favoring the arrival and retention of inflammatory cells. Active demyelination and neurodegeneration have also been linked to microglia (MG) and astrocyte (AST)-activation in early lesions. While reactive MG can damage tissue, exacerbate deleterious effects, and contribute to neurodegeneration, it should be noted that activated MG possess neuroprotective functions as well, including debris phagocytosis and growth factor secretion. The progressive form of MS can be modelled by the prolonged administration to cuprizone (CPZ) in adult mice, as CPZ induces highly reproducible demyelination of different brain regions through oligodendrocyte (OLG) apoptosis, accompanied by MG and AST activation and axonal damage. Therefore, our goal was to evaluate the effects of a reduction in microglial activation through orally administered brain-penetrant colony-stimulating factor-1 receptor (CSF-1R) inhibitor BLZ945 (BLZ) on neurodegeneration and its correlation with demyelination, astroglial activation and behavior in a chronic CPZ-induced demyelination model. Our results show that BLZ treatment successfully reduced the microglial population and myelin loss. However, no correlation was found between myelin preservation and neurodegeneration, as axonal degeneration was more prominent upon BLZ treatment. Concomitantly, BLZ failed to significantly offset CPZ-induced astroglial activation and behavioral alterations. These results should be taken into account when proposing the modulation of microglial activation in the design of therapies relevant for demyelinating diseases.
Collapse
Affiliation(s)
- Victoria S B Wies Mancini
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Cátedra de Química Biológica Patológica, Universidad de Buenos Aires, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Farmacia y Bioquímica, Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro C. Paladini, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Anabella A Di Pietro
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Cátedra de Química Biológica Patológica, Universidad de Buenos Aires, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Farmacia y Bioquímica, Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro C. Paladini, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Soledad de Olmos
- Instituto de Investigación Médica Mercedes y Martin Ferreyra (INIMEC-CONICET-Universidad Nacional de Córdoba), Córdoba, Argentina
| | - Pablo Silva Pinto
- IFIBIO Houssay, Grupo de Neurociencia de Sistemas, Facultad de Medicina, Universidad de Buenos Aires - CONICET, Buenos Aires, Argentina
| | - Marianela Vence
- Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Farmacia y Bioquímica, Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro C. Paladini, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mariel Marder
- Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Farmacia y Bioquímica, Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro C. Paladini, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Lionel M Igaz
- IFIBIO Houssay, Grupo de Neurociencia de Sistemas, Facultad de Medicina, Universidad de Buenos Aires - CONICET, Buenos Aires, Argentina
| | - María S Marcora
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Cátedra de Química Biológica Patológica, Universidad de Buenos Aires, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Farmacia y Bioquímica, Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro C. Paladini, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Juana M Pasquini
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Cátedra de Química Biológica Patológica, Universidad de Buenos Aires, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Farmacia y Bioquímica, Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro C. Paladini, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | - Laura A Pasquini
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Cátedra de Química Biológica Patológica, Universidad de Buenos Aires, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Farmacia y Bioquímica, Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro C. Paladini, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
40
|
Soto-Diaz K, Vailati-Riboni M, Louie AY, McKim DB, Gaskins HR, Johnson RW, Steelman AJ. Treatment With the CSF1R Antagonist GW2580, Sensitizes Microglia to Reactive Oxygen Species. Front Immunol 2021; 12:734349. [PMID: 34899694 PMCID: PMC8664563 DOI: 10.3389/fimmu.2021.734349] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 11/01/2021] [Indexed: 01/29/2023] Open
Abstract
Microglia activation and proliferation are hallmarks of many neurodegenerative disorders and may contribute to disease pathogenesis. Neurons actively regulate microglia survival and function, in part by secreting the microglia mitogen interleukin (IL)-34. Both IL-34 and colony stimulating factor (CSF)-1 bind colony stimulating factor receptor (CSFR)1 expressed on microglia. Systemic treatment with central nervous system (CNS) penetrant, CSFR1 antagonists, results in microglia death in a dose dependent matter, while others, such as GW2580, suppress activation during disease states without altering viability. However, it is not known how treatment with non-penetrant CSF1R antagonists, such as GW2580, affect the normal physiology of microglia. To determine how GW2580 affects microglia function, C57BL/6J mice were orally gavaged with vehicle or GW2580 (80mg/kg/d) for 8 days. Body weights and burrowing behavior were measured throughout the experiment. The effects of GW2580 on circulating leukocyte populations, brain microglia morphology, and the transcriptome of magnetically isolated adult brain microglia were determined. Body weights, burrowing behavior, and circulating leukocytes were not affected by treatment. Analysis of Iba-1 stained brain microglia indicated that GW2580 treatment altered morphology, but not cell number. Analysis of RNA-sequencing data indicated that genes related to reactive oxygen species (ROS) regulation and survival were suppressed by treatment. Treatment of primary microglia cultures with GW2580 resulted in a dose-dependent reduction in viability only when the cells were concurrently treated with LPS, an inducer of ROS. Pre-treatment with the ROS inhibitor, YCG063, blocked treatment induced reductions in viability. Finally, GW2580 sensitized microglia to hydrogen peroxide induced cell death. Together, these data suggest that partial CSF1R antagonism may render microglia more susceptible to reactive oxygen and nitrogen species.
Collapse
Affiliation(s)
- Katiria Soto-Diaz
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Mario Vailati-Riboni
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Allison Y Louie
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Daniel B McKim
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - H Rex Gaskins
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Department of Biomedical and Translational Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Rodney W Johnson
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Andrew J Steelman
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
41
|
Zhang L, Cao Y, Zhang X, Gu X, Mao Y, Peng B. The origin and repopulation of microglia. Dev Neurobiol 2021; 82:112-124. [PMID: 34874111 DOI: 10.1002/dneu.22862] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/17/2021] [Accepted: 11/20/2021] [Indexed: 12/23/2022]
Abstract
Microglia are important immune cells in the central nervous system. There is growing interest in the study of microglia due to their implication in neurodevelopment, acute injury, and neuropsychiatric disorders. They undergo birth, death, and regeneration during the lifetime. Although data on the ontogeny of microglia have been studied for decades, the birth and repopulation of microglia remain legendary and mysterious. In this review, we discuss recent studies that provide new insights into the origin and regeneration of microglia. Modulating the development of microglia may offer new therapeutic opportunities for preventing deleterious effects of inflammation and controlling excessive inflammation in brain diseases.
Collapse
Affiliation(s)
- Lijuan Zhang
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Yue Cao
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Xin Zhang
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Xinyang Gu
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Bo Peng
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
42
|
Kleidonas D, Vlachos A. Scavenging Tumor Necrosis Factor α Does Not Affect Inhibition of Dentate Granule Cells Following In Vitro Entorhinal Cortex Lesion. Cells 2021; 10:3232. [PMID: 34831454 PMCID: PMC8618320 DOI: 10.3390/cells10113232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/31/2021] [Accepted: 11/16/2021] [Indexed: 11/18/2022] Open
Abstract
Neurons that lose part of their afferent input remodel their synaptic connections. While cellular and molecular mechanisms of denervation-induced changes in excitatory neurotransmission have been identified, little is known about the signaling pathways that control inhibition in denervated networks. In this study, we used mouse entorhino-hippocampal tissue cultures of both sexes to study the role of the pro-inflammatory cytokine tumor necrosis factor α (TNFα) in denervation-induced plasticity of inhibitory neurotransmission. In line with our previous findings in vitro, an entorhinal cortex lesion triggered a compensatory increase in the excitatory synaptic strength of partially denervated dentate granule cells. Inhibitory synaptic strength was not changed 3 days after the lesion. These functional changes were accompanied by a recruitment of microglia in the denervated hippocampus, and experiments in tissue cultures prepared from TNF-reporter mice [C57BL/6-Tg(TNFa-eGFP)] showed increased TNFα expression in the denervated zone. However, inhibitory neurotransmission was not affected by scavenging TNFα with a soluble TNF receptor. In turn, a decrease in inhibition, i.e., decreased frequencies of miniature inhibitory postsynaptic currents, was observed in denervated dentate granule cells of microglia-depleted tissue cultures. We conclude from these results that activated microglia maintain the inhibition of denervated dentate granule cells and that TNFα is not required for the maintenance of inhibition after denervation.
Collapse
Affiliation(s)
- Dimitrios Kleidonas
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany;
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, 79104 Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Andreas Vlachos
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany;
- Center Brain Links Brain Tools, University of Freiburg, 79110 Freiburg, Germany
- Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| |
Collapse
|
43
|
Crapser JD, Arreola MA, Tsourmas KI, Green KN. Microglia as hackers of the matrix: sculpting synapses and the extracellular space. Cell Mol Immunol 2021; 18:2472-2488. [PMID: 34413489 PMCID: PMC8546068 DOI: 10.1038/s41423-021-00751-3] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/26/2021] [Indexed: 02/08/2023] Open
Abstract
Microglia shape the synaptic environment in health and disease, but synapses do not exist in a vacuum. Instead, pre- and postsynaptic terminals are surrounded by extracellular matrix (ECM), which together with glia comprise the four elements of the contemporary tetrapartite synapse model. While research in this area is still just beginning, accumulating evidence points toward a novel role for microglia in regulating the ECM during normal brain homeostasis, and such processes may, in turn, become dysfunctional in disease. As it relates to synapses, microglia are reported to modify the perisynaptic matrix, which is the diffuse matrix that surrounds dendritic and axonal terminals, as well as perineuronal nets (PNNs), specialized reticular formations of compact ECM that enwrap neuronal subsets and stabilize proximal synapses. The interconnected relationship between synapses and the ECM in which they are embedded suggests that alterations in one structure necessarily affect the dynamics of the other, and microglia may need to sculpt the matrix to modify the synapses within. Here, we provide an overview of the microglial regulation of synapses, perisynaptic matrix, and PNNs, propose candidate mechanisms by which these structures may be modified, and present the implications of such modifications in normal brain homeostasis and in disease.
Collapse
Affiliation(s)
- Joshua D. Crapser
- grid.266093.80000 0001 0668 7243Department of Neurobiology and Behavior, University of California, Irvine, CA USA
| | - Miguel A. Arreola
- grid.266093.80000 0001 0668 7243Department of Neurobiology and Behavior, University of California, Irvine, CA USA
| | - Kate I. Tsourmas
- grid.266093.80000 0001 0668 7243Department of Neurobiology and Behavior, University of California, Irvine, CA USA
| | - Kim N. Green
- grid.266093.80000 0001 0668 7243Department of Neurobiology and Behavior, University of California, Irvine, CA USA
| |
Collapse
|
44
|
Hohsfield LA, Najafi AR, Ghorbanian Y, Soni N, Crapser J, Figueroa Velez DX, Jiang S, Royer SE, Kim SJ, Henningfield CM, Anderson A, Gandhi SP, Mortazavi A, Inlay MA, Green KN. Subventricular zone/white matter microglia reconstitute the empty adult microglial niche in a dynamic wave. eLife 2021; 10:66738. [PMID: 34423781 PMCID: PMC8425950 DOI: 10.7554/elife.66738] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 08/22/2021] [Indexed: 02/06/2023] Open
Abstract
Microglia, the brain’s resident myeloid cells, play central roles in brain defense, homeostasis, and disease. Using a prolonged colony-stimulating factor 1 receptor inhibitor (CSF1Ri) approach, we report an unprecedented level of microglial depletion and establish a model system that achieves an empty microglial niche in the adult brain. We identify a myeloid cell that migrates from the subventricular zone and associated white matter areas. Following CSF1Ri, these amoeboid cells migrate radially and tangentially in a dynamic wave filling the brain in a distinct pattern, to replace the microglial-depleted brain. These repopulating cells are enriched in disease-associated microglia genes and exhibit similar phenotypic and transcriptional profiles to white-matter-associated microglia. Our findings shed light on the overlapping and distinct functional complexity and diversity of myeloid cells of the CNS and provide new insight into repopulating microglia function and dynamics in the mouse brain.
Collapse
Affiliation(s)
- Lindsay A Hohsfield
- Department of Neurobiology and Behavior, Irvine, United States.,Institute for Memory Impairments and Neurological Disorders, Irvine, United States
| | - Allison R Najafi
- Department of Neurobiology and Behavior, Irvine, United States.,Institute for Memory Impairments and Neurological Disorders, Irvine, United States
| | - Yasamine Ghorbanian
- Sue and Bill Gross Stem Cell Research Center, Irvine, United States.,Department of Molecular Biology and Biochemistry, Irvine, United States
| | - Neelakshi Soni
- Department of Neurobiology and Behavior, Irvine, United States.,Institute for Memory Impairments and Neurological Disorders, Irvine, United States
| | - Joshua Crapser
- Department of Neurobiology and Behavior, Irvine, United States.,Institute for Memory Impairments and Neurological Disorders, Irvine, United States
| | | | - Shan Jiang
- Department of Developmental and Cell Biology, Irvine, United States
| | - Sarah E Royer
- Department of Neurobiology and Behavior, Irvine, United States.,Sue and Bill Gross Stem Cell Research Center, Irvine, United States.,Department of Anatomy and Neurobiology, Irvine, United States
| | - Sung Jin Kim
- Department of Neurobiology and Behavior, Irvine, United States.,Institute for Memory Impairments and Neurological Disorders, Irvine, United States
| | - Caden M Henningfield
- Department of Neurobiology and Behavior, Irvine, United States.,Institute for Memory Impairments and Neurological Disorders, Irvine, United States
| | - Aileen Anderson
- Department of Neurobiology and Behavior, Irvine, United States.,Institute for Memory Impairments and Neurological Disorders, Irvine, United States.,Sue and Bill Gross Stem Cell Research Center, Irvine, United States.,Department of Anatomy and Neurobiology, Irvine, United States.,Department of Physical Medicine & Rehabilitation, University of California, Irvine, Irvine, United States
| | - Sunil P Gandhi
- Department of Neurobiology and Behavior, Irvine, United States
| | - Ali Mortazavi
- Department of Developmental and Cell Biology, Irvine, United States
| | - Matthew A Inlay
- Department of Neurobiology and Behavior, Irvine, United States.,Sue and Bill Gross Stem Cell Research Center, Irvine, United States.,Department of Molecular Biology and Biochemistry, Irvine, United States
| | - Kim N Green
- Department of Neurobiology and Behavior, Irvine, United States.,Institute for Memory Impairments and Neurological Disorders, Irvine, United States
| |
Collapse
|
45
|
Stoessel MB, Majewska AK. Little cells of the little brain: microglia in cerebellar development and function. Trends Neurosci 2021; 44:564-578. [PMID: 33933255 PMCID: PMC8222145 DOI: 10.1016/j.tins.2021.04.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 02/23/2021] [Accepted: 04/05/2021] [Indexed: 12/31/2022]
Abstract
Microglia are long-lived resident macrophages of the brain with diverse roles that span development, adulthood, and aging. Once thought to be a relatively homogeneous population, there is a growing recognition that microglia are highly specialized to suit their specific brain region. Cerebellar microglia represent an example of such specialization, exhibiting a dynamical, transcriptional, and immunological profile that differs from that of other microglial populations. Here we review the evidence that cerebellar microglia shape the cerebellar environment and are in turn shaped by it. We examine the roles microglia play in cerebellar function, development, and aging. The emerging findings on cerebellar microglia may also provide insights into disease processes involving cerebellar dysfunction.
Collapse
Affiliation(s)
- Mark B Stoessel
- Department of Neuroscience, University of Rochester, Rochester, NY 14642, USA; Neuroscience Graduate Program, University of Rochester, Rochester, NY 14642, USA
| | - Ania K Majewska
- Department of Neuroscience, University of Rochester, Rochester, NY 14642, USA.
| |
Collapse
|
46
|
Zengeler KE, Lukens JR. Innate immunity at the crossroads of healthy brain maturation and neurodevelopmental disorders. Nat Rev Immunol 2021; 21:454-468. [PMID: 33479477 PMCID: PMC9213174 DOI: 10.1038/s41577-020-00487-7] [Citation(s) in RCA: 147] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2020] [Indexed: 12/29/2022]
Abstract
The immune and nervous systems have unique developmental trajectories that individually build intricate networks of cells with highly specialized functions. These two systems have extensive mechanistic overlap and frequently coordinate to accomplish the proper growth and maturation of an organism. Brain resident innate immune cells - microglia - have the capacity to sculpt neural circuitry and coordinate copious and diverse neurodevelopmental processes. Moreover, many immune cells and immune-related signalling molecules are found in the developing nervous system and contribute to healthy neurodevelopment. In particular, many components of the innate immune system, including Toll-like receptors, cytokines, inflammasomes and phagocytic signals, are critical contributors to healthy brain development. Accordingly, dysfunction in innate immune signalling pathways has been functionally linked to many neurodevelopmental disorders, including autism and schizophrenia. This review discusses the essential roles of microglia and innate immune signalling in the assembly and maintenance of a properly functioning nervous system.
Collapse
Affiliation(s)
- Kristine E Zengeler
- Department of Neuroscience, Center for Brain Immunology and Glia (BIG), Charlottesville, VA, USA.
- Neuroscience Graduate Program, Charlottesville, VA, USA.
- Cell and Molecular Biology Training Program, School of Medicine, University of Virginia, Charlottesville, VA, USA.
| | - John R Lukens
- Department of Neuroscience, Center for Brain Immunology and Glia (BIG), Charlottesville, VA, USA.
- Neuroscience Graduate Program, Charlottesville, VA, USA.
- Cell and Molecular Biology Training Program, School of Medicine, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
47
|
Wyatt-Johnson SK, Sommer AL, Shim KY, Brewster AL. Suppression of Microgliosis With the Colony-Stimulating Factor 1 Receptor Inhibitor PLX3397 Does Not Attenuate Memory Defects During Epileptogenesis in the Rat. Front Neurol 2021; 12:651096. [PMID: 34149593 PMCID: PMC8209304 DOI: 10.3389/fneur.2021.651096] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 05/11/2021] [Indexed: 12/03/2022] Open
Abstract
Events of status epilepticus (SE) trigger the development of temporal lobe epilepsy (TLE), a type of focal epilepsy that is commonly drug-resistant and is highly comorbid with cognitive deficits. While SE-induced hippocampal injury, accompanied by gliosis and neuronal loss, typically disrupts cognitive functions resulting in memory defects, it is not definitively known how. Our previous studies revealed extensive hippocampal microgliosis that peaked between 2 and 3 weeks after SE and paralleled the development of cognitive impairments, suggesting a role for reactive microglia in this pathophysiology. Microglial survival and proliferation are regulated by the colony-stimulating factor 1 receptor (CSF1R). The CSF1R inhibitor PLX3397 has been shown to reduce/deplete microglial populations and improve cognitive performance in models of neurodegenerative disorders. Therefore, we hypothesized that suppression of microgliosis with PLX3397 during epileptogenesis may attenuate the hippocampal-dependent spatial learning and memory deficits in the rat pilocarpine model of SE and acquired TLE. Different groups of control and SE rats were fed standard chow (SC) or chow with PLX3397 starting immediately after SE and for 3 weeks. Novel object recognition (NOR) and Barnes maze (BM) were performed to determine memory function between 2 and 3 weeks after SE. Then microglial populations were assessed using immunohistochemistry. Control rats fed with either SC or PLX3397 performed similarly in both NOR and BM tests, differentiating novel vs. familiar objects in NOR, and rapidly learning the location of the hidden platform in BM. In contrast, both SE groups (SC and PLX3397) showed significant deficits in both NOR and BM tests compared to controls. Both PLX3397-treated control and SE groups had significantly decreased numbers of microglia in the hippocampus (60%) compared to those in SC. In parallel, we found that PLX3397 treatment also reduced SE-induced hippocampal astrogliosis. Thus, despite drastic reductions in microglial cells, memory was unaffected in the PLX3397-treated groups compared to those in SC, suggesting that remaining microglia may be sufficient to help maintain hippocampal functions. In sum, PLX3397 did not improve or worsen the memory deficits in rats that sustained pilocarpine-induced SE. Further research is required to determine whether microglia play a role in cognitive decline during epileptogenesis.
Collapse
Affiliation(s)
- Season K Wyatt-Johnson
- Department of Psychological Sciences, Purdue University, West Lafayette, IN, United States
| | - Alexandra L Sommer
- Department of Psychological Sciences, Purdue University, West Lafayette, IN, United States
| | - Kevin Y Shim
- Department of Psychological Sciences, Purdue University, West Lafayette, IN, United States
| | - Amy L Brewster
- Department of Psychological Sciences, Purdue University, West Lafayette, IN, United States.,Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
48
|
Zwart SR, Mulavara AP, Williams TJ, George K, Smith SM. The role of nutrition in space exploration: Implications for sensorimotor, cognition, behavior and the cerebral changes due to the exposure to radiation, altered gravity, and isolation/confinement hazards of spaceflight. Neurosci Biobehav Rev 2021; 127:307-331. [PMID: 33915203 DOI: 10.1016/j.neubiorev.2021.04.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 02/16/2021] [Accepted: 04/23/2021] [Indexed: 12/19/2022]
Abstract
Multi-year crewed space exploration missions are now on the horizon; therefore, it is important that we understand and mitigate the physiological effects of spaceflight. The spaceflight hazards-radiation, isolation, confinement, and altered gravity-have the potential to contribute to neuroinflammation and produce long-term cognitive and behavioral effects-while the fifth hazard, distance from earth, limits capabilities to mitigate these risks. Accumulated evidence suggests that nutrition has an important role in optimizing cognition and reducing the risk of neurodegenerative diseases caused by neuroinflammation. Here we review the nutritional perspective of how these spaceflight hazards affect the astronaut's brain, behavior, performance, and sensorimotor function. We also assess potential nutrient/nutritional countermeasures that could prevent or mitigate spaceflight risks and ensure that crewmembers remain healthy and perform well during their missions. Just as history has taught us the importance of nutrition in terrestrial exploration, we must understand the role of nutrition in the development and mitigation of spaceflight risks before humans can successfully explore beyond low-Earth orbit.
Collapse
Affiliation(s)
- Sara R Zwart
- Univerity of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555, USA.
| | | | - Thomas J Williams
- NASA Johnson Space Center, Mail Code SK3, 2101 NASA Parkway, Houston, TX, 77058, USA
| | - Kerry George
- KBR, 2400 E NASA Parkway, Houston, TX, 77058, USA
| | - Scott M Smith
- NASA Johnson Space Center, Mail Code SK3, 2101 NASA Parkway, Houston, TX, 77058, USA
| |
Collapse
|
49
|
Chen Y, Hong T, Chen F, Sun Y, Wang Y, Cui L. Interplay Between Microglia and Alzheimer's Disease-Focus on the Most Relevant Risks: APOE Genotype, Sex and Age. Front Aging Neurosci 2021; 13:631827. [PMID: 33897406 PMCID: PMC8060487 DOI: 10.3389/fnagi.2021.631827] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 03/18/2021] [Indexed: 12/20/2022] Open
Abstract
As the main immune cells of the central nervous system (CNS), microglia regulates normal development, homeostasis and general brain physiology. These functions put microglia at the forefront of CNS repair and recovery. Uncontrolled activation of microglia is related to the course of neurodegenerative diseases such as Alzheimer’s disease. It is clear that the classic pathologies of amyloid β (Aβ) and Tau are usually accompanied by the activation of microglia, and the activation of microglia also serves as an early event in the pathogenesis of AD. Therefore, during the occurrence and development of AD, the key susceptibility factors for AD—apolipoprotein E (APOE) genotype, sex and age—may further interact with microglia to exacerbate neurodegeneration. In this review, we discuss the role of microglia in the progression of AD related to the three risk factors for AD: APOE genotype, sex and aging. APOE-expressing microglia accumulates around Aβ plaques, and the presence of APOE4 may disrupt the phagocytosis of Aβ aggregates and aggravate neurodegeneration in Tau disease models. In addition, females have a high incidence of AD, and normal female microglia and estrogen have protective effects under normal conditions. However, under the influence of AD, female microglia seem to lose their protective effect and instead accelerate the course of AD. Aging, another major risk factor, may increase the sensitivity of microglia, leading to the exacerbation of microglial dysfunction in elderly AD. Obviously, in the role of microglia in AD, the three main risk factors of APOE, sex, and aging are not independent and have synergistic effects that contribute to the risk of AD. Moreover, new microglia can replace dysfunctional microglia after microglial depletion, which is a new promising strategy for AD treatment.
Collapse
Affiliation(s)
- Yanting Chen
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Tingting Hong
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Feng Chen
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yuanhong Sun
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Yan Wang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Lili Cui
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
50
|
Crews FT, Zou J, Coleman LG. Extracellular microvesicles promote microglia-mediated pro-inflammatory responses to ethanol. J Neurosci Res 2021; 99:1940-1956. [PMID: 33611821 PMCID: PMC8451840 DOI: 10.1002/jnr.24813] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 02/01/2021] [Indexed: 12/11/2022]
Abstract
Alcohol use disorder (AUD) pathology features pro-inflammatory gene induction and microglial activation. The underlying cellular processes that promote this activation remain unclear. Previously considered cellular debris, extracellular vesicles (EVs) have emerged as mediators of inflammatory signaling in several disease states. We investigated the role of microvesicles (MVs, 50 nm-100 µm diameter EVs) in pro-inflammatory and microglial functional gene expression using primary organotypic brain slice culture (OBSC). Ethanol caused a unique immune gene signature that featured: temporal induction of pro-inflammatory TNF-α and IL-1β, reduction of homeostatic microglia state gene Tmem119, progressive increases in purinergic receptor P2RY12 and the microglial inhibitory fractalkine receptor CX3CR1, an increase in the microglial presynaptic gene C1q, and a reduction in the phagocytic gene TREM2. MV signaling was implicated in this response as reduction of MV secretion by imipramine blocked pro-inflammatory TNF-α and IL-1β induction by ethanol, and ethanol-conditioned MVs (EtOH-MVs) reproduced the ethanol-associated immune gene signature in naïve OBSC slices. Depletion of microglia prior to ethanol treatment prevented pro-inflammatory activity of EtOH-MVs, as did incubation of EtOH-MVs with the HMGB1 inhibitor glycyrrhizin. Ethanol caused HMGB1 secretion from cultured BV2 microglia in MVs through activation of PI3 kinase. In summary, these studies find MVs modulate pro-inflammatory gene induction and microglial activation changes associated with ethanol. Thus, MVs may represent a novel therapeutic target to reduce neuroinflammation in the setting of alcohol abuse or other diseases that feature a neuroimmune component. [Correction added on 5 April 2021, after first online publication: The copyright line was changed.].
Collapse
Affiliation(s)
- Fulton T Crews
- Bowles Center for Alcohol Studies, The University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, USA.,Department of Pharmacology, The University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, USA.,Department of Psychiatry, The University of North Carolina, School of Medicine, Chapel Hill, NC, USA
| | - Jian Zou
- Bowles Center for Alcohol Studies, The University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, USA
| | - Leon G Coleman
- Bowles Center for Alcohol Studies, The University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, USA.,Department of Pharmacology, The University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, USA
| |
Collapse
|