1
|
Fungaro Rissatti L, Wilson D, Palace-Berl F, de Mello Ponteciano B, Sardela de Miranda F, Alece Arantes Moreno I, dos Santos Vieira T, Pereira Sorroche B, Rebolho Batista Arantes LM, Madeira Alvares da Silva A, D'Almeida V, Demarzo M, Rodrigues de Oliveira D. BDNF methylation associated with stress in women: Novel insights in epigenetics and inflammation. Brain Behav Immun Health 2024; 42:100900. [PMID: 39552782 PMCID: PMC11565430 DOI: 10.1016/j.bbih.2024.100900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/16/2024] [Accepted: 10/27/2024] [Indexed: 11/19/2024] Open
Abstract
The brain-derived neurotrophic factor (BDNF) gene plays an important role in modulating the stress-response axis and inflammation, which can be regulated by epigenetic mechanisms. BNDF methylation has been associated with stress-related psychiatric disorders such as depression, anxiety and post-traumatic stress. Previous studies have reported that stressful events are involved with long-lasting alterations in DNA methylation (DNAm) of the BNDF exon IV promoter, suggesting that glucocorticoids and inflammatory cytokines can regulate this process. We previously found that perceived psychological stress is modulated by inflammatory cytokines, such as interleukin (IL)-6, IL-8 and IL-10, and IL-12p70, suggesting their role in mediating the stress response. However, the epigenetic mechanism mediating this response has yet to be fully understood. In this study, we propose that high perceived stress and high serum levels of inflammatory cytokines may correlate with specific methylation sites within the BNDF exon IV promoter. To address these questions, we conducted a cross-sectional study of 82 adult women teachers working in basic education in Brazil. The perceived stress scale was used to assess stress and blood samples were collected for the measurement of inflammatory markers and BNDF methylation through flow cytometry assay and DNA pyrosequencing, respectively. We detected differentially methylated CpG sites in the BNDF gene, where 5 CpG sites were directly correlated with high stress levels. However, 4 CpG sites showed inverse effects, indicating that changes in methylation levels in those sites could lead to a protective effect on perceived stress. About inflammatory markers, IL-6 and IL-8 were associated with high perceived stress. However, only IL-8 and IL-10 showed simultaneous modulation of perceived stress, while IL-10 and IL12p70 correlated with DNAm. We found that higher levels in IL-10 and IL-12p70 serum decrease methylation in CpG11. A direct relationship was also found to IL-12p70, where higher levels in serum increase methylation in CpG5 and 13, respectively. Taken as a whole, our findings reinforce the hypothesis regarding stress-sensitive regions within the BDNF gene, mainly for CpG5, 11, and 13. In addition to these results, CpG7 and 9 may be regarded as stress-protective regions. Our data suggest that BDNF DNAm in the blood may represent a novel biomarker for early detection of adverse effects of chronic exposure to stress in healthy individuals.
Collapse
Affiliation(s)
- Luciana Fungaro Rissatti
- Department of Pathology, Graduate Program in Pathology, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - David Wilson
- Department of Preventive Medicine, Graduate Program in Collective Health, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Fanny Palace-Berl
- Department of Pathology, Graduate Program in Pathology, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Bárbara de Mello Ponteciano
- Department of Pathology, Graduate Program in Pathology, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Flávia Sardela de Miranda
- Laboratory of Imunomodulation, Department of Imunology, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Ivana Alece Arantes Moreno
- Biotechnology/Renorbio Postgraduate Program, Universidade Federal do Espírito Santo, Vitória, ES, Brazil
| | - Tamires dos Santos Vieira
- Biotechnology/Renorbio Postgraduate Program, Universidade Federal do Espírito Santo, Vitória, ES, Brazil
| | - Bruna Pereira Sorroche
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, Brazil
| | | | | | - Vânia D'Almeida
- Department of Psychobiology, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Marcelo Demarzo
- Department of Preventive Medicine, Graduate Program in Collective Health, Universidade Federal de São Paulo, São Paulo, SP, Brazil
- Mente Aberta - Brazilian Center for Mindfulness and Health Promotion, Departamento de Medicina Preventiva, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Daniela Rodrigues de Oliveira
- Department of Pathology, Graduate Program in Pathology, Universidade Federal de São Paulo, São Paulo, SP, Brazil
- Department of Preventive Medicine, Graduate Program in Collective Health, Universidade Federal de São Paulo, São Paulo, SP, Brazil
- Mente Aberta - Brazilian Center for Mindfulness and Health Promotion, Departamento de Medicina Preventiva, Universidade Federal de São Paulo, São Paulo, SP, Brazil
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
2
|
Karlbauer VN, Martins J, Rex-Haffner M, Sauer S, Roeh S, Dittrich K, Doerr P, Klawitter H, Entringer S, Buss C, Winter SM, Heim C, Czamara D, Binder EB. Prenatal exposures and cell type proportions are main drivers of FKBP5 DNA methylation in maltreated and non-maltreated children. Neurobiol Stress 2024; 33:100687. [PMID: 39640002 PMCID: PMC11617920 DOI: 10.1016/j.ynstr.2024.100687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/22/2024] [Accepted: 11/04/2024] [Indexed: 12/07/2024] Open
Abstract
DNA methylation in peripheral tissues may be a relevant biomarker of risk for developing mental disorders after exposure to early life adversity. Genes involved in HPA axis regulation, such as FKBP5, might play a key role. In this study, we aimed to identify the main drivers of salivary FKBP5 methylation in a cohort of 162 maltreated and non-maltreated children aged 3-5 years at two measurement timepoints. We combined data from a targeted bisulfite sequencing approach for fine-mapping 49 CpGs in regulatory regions of FKBP5 and epigenetic scores for exposure to alcohol, cigarette smoke, and glucocorticoids derived from the EPICv1 microarray. Most variability of methylation in the FKBP5 locus was explained by estimated cell type proportions as well as epigenetic exposure scores, most prominently by the glucocorticoid exposure score. While not surviving correction for multiple testing, we replicated previously reported associations of FKBP5 methylation with CM. We also detected synergistic effects of both rs1360780 genotype and the glucocorticoid exposure score on FKBP5 hypomethylation. These effects were identified in the 3'TAD, a distal regulatory region of FKBP5 which is not extensively covered in Illumina arrays, emphasizing the need for fine mapping approaches. Additionally, the epigenetic glucocorticoid exposure score was associated with childhood maltreatment, maternal mental disorders, and pregnancy complications, thereby highlighting the role of glucocorticoid signaling in the epigenetic consequences of early adversity. These results underscore the need to assess cell type heterogeneity in targeted assessments of DNA methylation and show the impact of exposures beyond just childhood maltreatment such as glucocorticoid exposure.
Collapse
Affiliation(s)
- Vera N. Karlbauer
- Dept. Genes and Environment, Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany
- Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität Munich, Germany
| | - Jade Martins
- Dept. Genes and Environment, Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany
| | - Monika Rex-Haffner
- Dept. Genes and Environment, Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany
| | - Susann Sauer
- Dept. Genes and Environment, Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany
| | - Simone Roeh
- Dept. Genes and Environment, Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany
| | - Katja Dittrich
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Department of Child and Adolescent Psychiatry, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Peggy Doerr
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Department of Child and Adolescent Psychiatry, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Heiko Klawitter
- Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Medical Psychology, Campus Charité Mitte, Luisenstraße 57, 10117 Berlin, Germany
| | - Sonja Entringer
- Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Medical Psychology, Campus Charité Mitte, Luisenstraße 57, 10117 Berlin, Germany
- Deutsches Zentrum für Psychische Gesundheit (DZPG), LMU Klinikum. Klinik für Psychiatrie und Psychotherapie, Nußbaumstr, 80336 München & Virchowweg 23, 10117 Berlin, Germany
- Development, Health and Disease Research Program, Department of Pediatrics, University of California Irvine, Irvine, USA
| | - Claudia Buss
- Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Medical Psychology, Campus Charité Mitte, Luisenstraße 57, 10117 Berlin, Germany
- Deutsches Zentrum für Psychische Gesundheit (DZPG), LMU Klinikum. Klinik für Psychiatrie und Psychotherapie, Nußbaumstr, 80336 München & Virchowweg 23, 10117 Berlin, Germany
- Development, Health and Disease Research Program, Department of Pediatrics, University of California Irvine, Irvine, USA
| | - Sibylle M. Winter
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Department of Child and Adolescent Psychiatry, Augustenburger Platz 1, 13353 Berlin, Germany
- Deutsches Zentrum für Psychische Gesundheit (DZPG), LMU Klinikum. Klinik für Psychiatrie und Psychotherapie, Nußbaumstr, 80336 München & Virchowweg 23, 10117 Berlin, Germany
| | - Christine Heim
- Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Medical Psychology, Campus Charité Mitte, Luisenstraße 57, 10117 Berlin, Germany
- Deutsches Zentrum für Psychische Gesundheit (DZPG), LMU Klinikum. Klinik für Psychiatrie und Psychotherapie, Nußbaumstr, 80336 München & Virchowweg 23, 10117 Berlin, Germany
- Cluster of Excellence NeuroCure (EXC25), Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, 30329, USA
| | - Darina Czamara
- Dept. Genes and Environment, Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany
| | - Elisabeth B. Binder
- Dept. Genes and Environment, Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany
- Deutsches Zentrum für Psychische Gesundheit (DZPG), LMU Klinikum. Klinik für Psychiatrie und Psychotherapie, Nußbaumstr, 80336 München & Virchowweg 23, 10117 Berlin, Germany
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, 30329, USA
| |
Collapse
|
3
|
Knauer-Arloth J, Hryhorzhevska A, Binder EB. Multiomics Analysis of the Molecular Response to Glucocorticoids: Insights Into Shared Genetic Risk From Psychiatric to Medical Disorders. Biol Psychiatry 2024:S0006-3223(24)01653-6. [PMID: 39393618 DOI: 10.1016/j.biopsych.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 09/24/2024] [Accepted: 10/02/2024] [Indexed: 10/13/2024]
Abstract
BACKGROUND Alterations in the effects of glucocorticoids have been implicated in mediating some of the negative health effects associated with chronic stress, including increased risk for psychiatric disorders and cardiovascular and metabolic diseases. In this study, we investigated how genetic variants influence gene expression and DNA methylation in response to glucocorticoid receptor (GR) activation and their association with disease risk. METHODS We measured DNA methylation (n = 199) and gene expression (n = 297) in peripheral blood before and after GR activation with dexamethasone, with matched genotype data available for all samples. A comprehensive molecular quantitative trait locus (QTL) analysis was conducted, mapping GR-response methylation (me)QTLs, GR-response expression (e)QTLs, and GR-response expression quantitative trait methylation (eQTMs). A multilevel network analysis was employed to map the complex relationships between the transcriptome, epigenome, and genetic variation. RESULTS We identified 3772 GR-response meCpGs corresponding to 104,828 local GR-response meQTLs that did not strongly overlap with baseline meQTLs. eQTM and eQTL analyses revealed distinct genetic influences on gene expression and DNA methylation. Multilevel network analysis uncovered GR-response network trio QTLs, characterized by SNP-CpG-transcript combinations where meQTLs act as both eQTLs and eQTMs. GR-response trio variants were enriched in a genome-wide association study for psychiatric, respiratory, autoimmune, and cardiovascular diseases and conferred a higher relative heritability per SNP than GR-response meQTL and baseline QTL SNPs. CONCLUSIONS Genetic variants modulating the molecular effects of glucocorticoids are associated with psychiatric as well as medical diseases and not uncovered in baseline QTL analyses.
Collapse
Affiliation(s)
- Janine Knauer-Arloth
- Department Genes and Environment, Max Planck Institute of Psychiatry, Munich, Germany; Institute of Computational Biology, Helmholtz Munich, Neuherberg, Germany.
| | | | - Elisabeth B Binder
- Department Genes and Environment, Max Planck Institute of Psychiatry, Munich, Germany; Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia.
| |
Collapse
|
4
|
Eichenauer H, Fischer S, Gardini E, Onsongo S, Ehlert U. Effects of improved on-farm crop storage on DNA methylation of mothers and their infants: evidence from a randomized controlled trial in Kenya. Clin Epigenetics 2024; 16:90. [PMID: 38978139 PMCID: PMC11232227 DOI: 10.1186/s13148-024-01693-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/06/2024] [Indexed: 07/10/2024] Open
Abstract
BACKGROUND Stress during pregnancy can lead to adverse maternal and infant health outcomes through epigenetic changes in the hypothalamic-pituitary-adrenal axis. Among farmers in low-income countries, one important stressor is food insecurity, which can be reduced using hermetic storage bags. This study aimed to determine, for the first time, whether a hermetic storage bag intervention during pregnancy positively affects maternal and infant DNA methylation of the hypothalamic-pituitary-adrenal axis-related genes FKBP5 and NR3C1. We further analyzed whether anthropometrics, stress, and mental health were associated with DNA methylation. METHODS This study was part of a larger matched-pair randomized controlled trial focusing on the impact of improved on-farm storage on food security, poverty, and net income of smallholder farming households. A total of N = 149 mothers were recruited by telephone and invited to attend a study appointment at health facilities in Kakamega County, Western Kenya, with their infants in April or May 2021. During the appointment, anthropometric measurements were taken, questionnaires on stress and mental health were administered, and saliva samples were collected. Logistic and multiple linear regression were used to examine the effect of the intervention and related measures on DNA methylation. RESULTS Mothers in the intervention group showed higher mean NR3C1 methylation levels than those in the control group, corrected for multiple testing. Maternal postpartum body mass index was positively associated with infant NR3C1 CpG3 DNA methylation. The more stressful life events a mother had experienced in the previous 12 months (including during pregnancy), the lower her FKBP5 CpG3 methylation levels. CONCLUSIONS Food insecurity and stressful life events during pregnancy seem to exert significant effects on maternal DNA methylation. While these stressors did not appear to impact infant DNA methylation in the present study, maternal postpartum body mass index was significantly related to infant methylation. These findings suggest that while infants may be protected from excessive maternal glucocorticoids by placental barrier activity, maternal metabolic status is still reflected in their epigenetic make-up. Trial registration This study was part of a larger matched-pair randomized controlled trial on the impact of improved on-farm crop storage on welfare, nutrition, and human health. Registration can be found in the American Economic Association (AEA) RCT Registry, RCT ID: AEARCTR-0005845.
Collapse
Affiliation(s)
- Heike Eichenauer
- Institute of Psychology, Clinical Psychology and Psychotherapy, University of Zurich, Binzmuehlestrasse 14/Box 26, 8050, Zurich, Switzerland
| | - Susanne Fischer
- Institute of Psychology, Clinical Psychology and Psychotherapy, University of Zurich, Binzmuehlestrasse 14/Box 26, 8050, Zurich, Switzerland
| | - Elena Gardini
- Institute of Psychology, Clinical Psychology and Psychotherapy, University of Zurich, Binzmuehlestrasse 14/Box 26, 8050, Zurich, Switzerland
| | | | - Ulrike Ehlert
- Institute of Psychology, Clinical Psychology and Psychotherapy, University of Zurich, Binzmuehlestrasse 14/Box 26, 8050, Zurich, Switzerland.
| |
Collapse
|
5
|
Schwandt ML, Cullins E, Ramchandani VA. The role of resilience in the relationship between stress and alcohol. Neurobiol Stress 2024; 31:100644. [PMID: 38827175 PMCID: PMC11140813 DOI: 10.1016/j.ynstr.2024.100644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/12/2024] [Accepted: 05/15/2024] [Indexed: 06/04/2024] Open
Abstract
Stress plays a well-documented role in alcohol consumption and the risk for developing alcohol use disorder. The concept of resilience - coping with and successfully adapting to stressful life experiences - has received increasing attention in the field of addiction research in recent decades, and there has been an accumulation of evidence for resilience as a protective factor against problematic alcohol consumption, risk for alcohol use disorder, disorder severity, and relapse. The conceptual and methodological approaches used in the generation of this evidence vary considerably across investigations, however. In light of this, we carried out this review in order to provide a more thorough understanding of the meaning and scope of resilience, what factors contribute to resilience, how it is measured, and how it relates to alcohol-associated phenotypes. Implications for treatment through the use of resilience-building interventions are likewise discussed, as well as implications for future research on the role of resilience in the etiology and clinical outcomes of alcohol use disorder.
Collapse
Affiliation(s)
- Melanie L. Schwandt
- Office of the Clinical Director, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - Eva Cullins
- Human Psychopharmacology Laboratory, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - Vijay A. Ramchandani
- Human Psychopharmacology Laboratory, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| |
Collapse
|
6
|
Hodge KM, Zhabotynsky V, Burt AA, Carter BS, Fry RC, Helderman J, Hofheimer JA, McGowan EC, Neal CR, Pastyrnak SL, Smith LM, DellaGrotta SA, Dansereau LM, Lester BM, Marsit CJ, O'Shea TM, Everson TM. Epigenetic associations in HPA axis genes related to bronchopulmonary dysplasia and antenatal steroids. Pediatr Res 2024; 96:510-518. [PMID: 38480856 DOI: 10.1038/s41390-024-03116-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/26/2024] [Accepted: 02/17/2024] [Indexed: 03/18/2024]
Abstract
BACKGROUND Bronchopulmonary dysplasia (BPD), a common morbidity among very preterm infants, is associated with chronic disease and neurodevelopmental impairments. A hypothesized mechanism for these outcomes lies in altered glucocorticoid (GC) activity. We hypothesized that BPD and its treatments may result in epigenetic differences in the hypothalamic-pituitary-adrenal (HPA) axis, which is modulated by GC, and could be ascertained using an established GC risk score and DNA methylation (DNAm) of HPA axis genes. METHODS DNAm was quantified from buccal tissue (ECHO-NOVI) and from neonatal blood spots (ELGAN ECHO) via the EPIC microarray. Prenatal maternal characteristics, pregnancy complication, and neonatal medical complication data were collected from medical record review and maternal interviews. RESULTS The GC score was not associated with steroid exposure or BPD. However, six HPA genes involved in stress response regulation demonstrated differential methylation with antenatal steroid exposure; two CpGs within FKBP5 and POMC were differentially methylated with BPD severity. These findings were sex-specific in both cohorts; males had greater magnitude of differential methylation within these genes. CONCLUSIONS These findings suggest that BPD severity and antenatal steroids are associated with DNAm at some HPA genes in very preterm infants and the effects appear to be sex-, tissue-, and age-specific. IMPACT This study addresses bronchopulmonary dysplasia (BPD), an important health outcome among preterm neonates, and interrogates a commonly studied pathway, the hypothalamic-pituitary-adrenal (HPA) axis. The combination of BPD, the HPA axis, and epigenetic markers has not been previously reported. In this study, we found that BPD itself was not associated with epigenetic responses in the HPA axis in infants born very preterm; however, antenatal treatment with steroids was associated with epigenetic responses.
Collapse
Affiliation(s)
- Kenyaita M Hodge
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Vasyl Zhabotynsky
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Amber A Burt
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Brian S Carter
- Department of Pediatrics-Neonatology, Children's Mercy Hospital, Kansas City, MO, USA
| | - Rebecca C Fry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Pediatrics, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Jennifer Helderman
- Department of Pediatrics, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Julie A Hofheimer
- Department of Pediatrics, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Elisabeth C McGowan
- Department of Pediatrics, Warren Alpert Medical School of Brown University and Women and Infants Hospital, Providence, RI, USA
| | - Charles R Neal
- Department of Pediatrics, University of Hawaii John A. Burns School of Medicine, Honolulu, HI, USA
| | - Steven L Pastyrnak
- Department of Pediatrics, Spectrum Health-Helen Devos Hospital, Grand Rapids, MI, USA
| | - Lynne M Smith
- Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Sheri A DellaGrotta
- Brown Center for the Study of Children at Risk, Women and Infants Hospital, Providence, RI, USA
| | - Lynne M Dansereau
- Brown Center for the Study of Children at Risk, Women and Infants Hospital, Providence, RI, USA
| | - Barry M Lester
- Department of Pediatrics, Warren Alpert Medical School of Brown University and Women and Infants Hospital, Providence, RI, USA
- Brown Center for the Study of Children at Risk, Women and Infants Hospital, Providence, RI, USA
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Carmen J Marsit
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - T Michael O'Shea
- Department of Pediatrics, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Todd M Everson
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA.
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA.
| |
Collapse
|
7
|
Yusupov N, Roeh S, Sotillos Elliott L, Chang S, Loganathan S, Urbina-Treviño L, Fröhlich AS, Sauer S, Ködel M, Matosin N, Czamara D, Deussing JM, Binder EB. DNA methylation patterns of FKBP5 regulatory regions in brain and blood of humanized mice and humans. Mol Psychiatry 2024; 29:1510-1520. [PMID: 38317011 PMCID: PMC11189813 DOI: 10.1038/s41380-024-02430-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/19/2023] [Accepted: 01/11/2024] [Indexed: 02/07/2024]
Abstract
Humanized mouse models can be used to explore human gene regulatory elements (REs), which frequently lie in non-coding and less conserved genomic regions. Epigenetic modifications of gene REs, also in the context of gene x environment interactions, have not yet been explored in humanized mouse models. We applied high-accuracy measurement of DNA methylation (DNAm) via targeted bisulfite sequencing (HAM-TBS) to investigate DNAm in three tissues/brain regions (blood, prefrontal cortex and hippocampus) of mice carrying the human FK506-binding protein 5 (FKBP5) gene, an important candidate gene associated with stress-related psychiatric disorders. We explored DNAm in three functional intronic glucocorticoid-responsive elements (at introns 2, 5, and 7) of FKBP5 at baseline, in cases of differing genotype (rs1360780 single nucleotide polymorphism), and following application of the synthetic glucocorticoid dexamethasone. We compared DNAm patterns in the humanized mouse (N = 58) to those in human peripheral blood (N = 447 and N = 89) and human postmortem brain prefrontal cortex (N = 86). Overall, DNAm patterns in the humanized mouse model seem to recapitulate DNAm patterns observed in human tissue. At baseline, this was to a higher extent in brain tissue. The animal model also recapitulated effects of dexamethasone on DNAm, especially in peripheral blood and to a lesser extent effects of genotype on DNAm. The humanized mouse model could thus assist in reverse translation of human findings in psychiatry that involve genetic and epigenetic regulation in non-coding elements.
Collapse
Affiliation(s)
- Natan Yusupov
- Department Genes and Environment, Max Planck Institute of Psychiatry, Munich, Germany
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, Germany
| | - Simone Roeh
- Department Genes and Environment, Max Planck Institute of Psychiatry, Munich, Germany
| | - Laura Sotillos Elliott
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, Germany
- Molecular Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Simon Chang
- Molecular Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Srivaishnavi Loganathan
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, Germany
- Molecular Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | | | - Anna S Fröhlich
- Department Genes and Environment, Max Planck Institute of Psychiatry, Munich, Germany
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, Germany
| | - Susann Sauer
- Department Genes and Environment, Max Planck Institute of Psychiatry, Munich, Germany
| | - Maik Ködel
- Department Genes and Environment, Max Planck Institute of Psychiatry, Munich, Germany
| | - Natalie Matosin
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Darina Czamara
- Department Genes and Environment, Max Planck Institute of Psychiatry, Munich, Germany
| | - Jan M Deussing
- Molecular Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Elisabeth B Binder
- Department Genes and Environment, Max Planck Institute of Psychiatry, Munich, Germany.
| |
Collapse
|
8
|
Arroum T, Hish GA, Burghardt KJ, McCully JD, Hüttemann M, Malek MH. Mitochondrial Transplantation's Role in Rodent Skeletal Muscle Bioenergetics: Recharging the Engine of Aging. Biomolecules 2024; 14:493. [PMID: 38672509 PMCID: PMC11048484 DOI: 10.3390/biom14040493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Mitochondria are the 'powerhouses of cells' and progressive mitochondrial dysfunction is a hallmark of aging in skeletal muscle. Although different forms of exercise modality appear to be beneficial to attenuate aging-induced mitochondrial dysfunction, it presupposes that the individual has a requisite level of mobility. Moreover, non-exercise alternatives (i.e., nutraceuticals or pharmacological agents) to improve skeletal muscle bioenergetics require time to be effective in the target tissue and have another limitation in that they act systemically and not locally where needed. Mitochondrial transplantation represents a novel directed therapy designed to enhance energy production of tissues impacted by defective mitochondria. To date, no studies have used mitochondrial transplantation as an intervention to attenuate aging-induced skeletal muscle mitochondrial dysfunction. The purpose of this investigation, therefore, was to determine whether mitochondrial transplantation can enhance skeletal muscle bioenergetics in an aging rodent model. We hypothesized that mitochondrial transplantation would result in sustained skeletal muscle bioenergetics leading to improved functional capacity. METHODS Fifteen female mice (24 months old) were randomized into two groups (placebo or mitochondrial transplantation). Isolated mitochondria from a donor mouse of the same sex and age were transplanted into the hindlimb muscles of recipient mice (quadriceps femoris, tibialis anterior, and gastrocnemius complex). RESULTS The results indicated significant increases (ranging between ~36% and ~65%) in basal cytochrome c oxidase and citrate synthase activity as well as ATP levels in mice receiving mitochondrial transplantation relative to the placebo. Moreover, there were significant increases (approx. two-fold) in protein expression of mitochondrial markers in both glycolytic and oxidative muscles. These enhancements in the muscle translated to significant improvements in exercise tolerance. CONCLUSIONS This study provides initial evidence showing how mitochondrial transplantation can promote skeletal muscle bioenergetics in an aging rodent model.
Collapse
Affiliation(s)
- Tasnim Arroum
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA; (T.A.); (M.H.)
| | - Gerald A. Hish
- Unit for Laboratory Animal Medicine (ULAM), University of Michigan, Ann Arbor, MI 48109, USA
| | - Kyle J. Burghardt
- Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - James D. McCully
- Department of Cardiac Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Maik Hüttemann
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA; (T.A.); (M.H.)
| | - Moh H. Malek
- Physical Therapy Program, Department of Health Care Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
- Integrative Physiology of Exercise Laboratory, Department of Health Care Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
9
|
Zimmer C, Jimeno B, Martin LB. HPA flexibility and FKBP5: promising physiological targets for conservation. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220512. [PMID: 38310934 PMCID: PMC10838639 DOI: 10.1098/rstb.2022.0512] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/22/2023] [Indexed: 02/06/2024] Open
Abstract
Hypothalamic-pituitary-adrenal axis (HPA) flexibility is an emerging concept recognizing that individuals that will cope best with stressors will probably be those using their hormones in the most adaptive way. The HPA flexibility concept considers glucocorticoids as molecules that convey information about the environment from the brain to the body so that the organismal phenotype comes to complement prevailing conditions. In this context, FKBP5 protein appears to set the extent to which circulating glucocorticoid concentrations can vary within and across stressors. Thus, FKBP5 expression, and the HPA flexibility it causes, seem to represent an individual's ability to regulate its hormones to orchestrate organismal responses to stressors. As FKBP5 expression can also be easily measured in blood, it could be a worthy target of conservation-oriented research attention. We first review the known and likely roles of HPA flexibility and FKBP5 in wildlife. We then describe putative genetic, environmental and epigenetic causes of variation in HPA flexibility and FKBP5 expression among and within individuals. Finally, we hypothesize how HPA flexibility and FKBP5 expression should affect organismal fitness and hence population viability in response to human-induced rapid environmental changes, particularly urbanization. This article is part of the theme issue 'Endocrine responses to environmental variation: conceptual approaches and recent developments'.
Collapse
Affiliation(s)
- Cédric Zimmer
- Laboratoire d'Ethologie Expérimentale et Comparée, LEEC, Université Sorbonne Paris Nord, UR 4443, 93430 Villetaneuse, France
| | - Blanca Jimeno
- Instituto Pirenaico de Ecologia (IPE), CSIC, Avenida Nuestra Señora de la Victoria, 16, 22700 Jaca, Spain
| | - Lynn B. Martin
- Center for Global Health and Infectious Disease Research and Center for Genomics, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
10
|
Eachus H, Ryu S. Glucocorticoid effects on the brain: from adaptive developmental plasticity to allostatic overload. J Exp Biol 2024; 227:jeb246128. [PMID: 38449327 PMCID: PMC10949071 DOI: 10.1242/jeb.246128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Exposure to stress during early life may alter the developmental trajectory of an animal by a mechanism known as adaptive plasticity. For example, to enhance reproductive success in an adverse environment, it is known that animals accelerate their growth during development. However, these short-term fitness benefits are often associated with reduced longevity, a phenomenon known as the growth rate-lifespan trade-off. In humans, early life stress exposure compromises health later in life and increases disease susceptibility. Glucocorticoids (GCs) are major stress hormones implicated in these processes. This Review discusses the evidence for GC-mediated adaptive plasticity in development, leading to allostatic overload in later life. We focus on GC-induced effects on brain structure and function, including neurogenesis; highlight the need for longitudinal studies; and discuss approaches to identify molecular mechanisms mediating GC-induced alteration of the brain developmental trajectory leading to adult dysfunctions. Further understanding of how stress and GC exposure can alter developmental trajectories at the molecular and cellular level is of critical importance to reduce the burden of mental and physical ill health across the life course.
Collapse
Affiliation(s)
- Helen Eachus
- Living Systems Institute & Department of Clinical and Biomedical Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Soojin Ryu
- Living Systems Institute & Department of Clinical and Biomedical Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| |
Collapse
|
11
|
Coppens G, Vanhorebeek I, Güiza F, Derese I, Wouters PJ, Téblick A, Dulfer K, Joosten KF, Verbruggen SC, Van den Berghe G. Abnormal DNA methylation within HPA-axis genes years after paediatric critical illness. Clin Epigenetics 2024; 16:31. [PMID: 38395991 PMCID: PMC10893716 DOI: 10.1186/s13148-024-01640-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Critically ill children suffer from impaired physical/neurocognitive development 2 years later. Glucocorticoid treatment alters DNA methylation within the hypothalamus-pituitary-adrenal (HPA) axis which may impair normal brain development, cognition and behaviour. We tested the hypothesis that paediatric-intensive-care-unit (PICU) patients, sex- and age-dependently, show long-term abnormal DNA methylation within the HPA-axis layers, possibly aggravated by glucocorticoid treatment in the PICU, which may contribute to the long-term developmental impairments. RESULTS In a pre-planned secondary analysis of the multicentre PEPaNIC-RCT and its 2-year follow-up, we identified differentially methylated positions and differentially methylated regions within HPA-axis genes in buccal mucosa DNA from 818 former PICU patients 2 years after PICU admission (n = 608 no glucocorticoid treatment; n = 210 glucocorticoid treatment) versus 392 healthy children and assessed interaction with sex and age, role of glucocorticoid treatment in the PICU and associations with long-term developmental impairments. Adjusting for technical variation and baseline risk factors and correcting for multiple testing (false discovery rate < 0.05), former PICU patients showed abnormal DNA methylation of 26 CpG sites (within CRHR1, POMC, MC2R, NR3C1, FKBP5, HSD11B1, SRD5A1, AKR1D1, DUSP1, TSC22D3 and TNF) and three DNA regions (within AVP, TSC22D3 and TNF) that were mostly hypomethylated. These abnormalities were sex-independent and only partially age-dependent. Abnormal methylation of three CpG sites within FKBP5 and one CpG site within SRD5A1 and AKR1D1 was partly attributable to glucocorticoid treatment during PICU stay. Finally, abnormal methylation within FKBP5 and AKR1D1 was most robustly associated with long-term impaired development. CONCLUSIONS Two years after critical illness in children, abnormal methylation within HPA-axis genes was present, predominantly within FKBP5 and AKR1D1, partly attributable to glucocorticoid treatment in the PICU, and explaining part of the long-term developmental impairments. These data call for caution regarding liberal glucocorticoid use in the PICU.
Collapse
Affiliation(s)
- Grégoire Coppens
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Ilse Vanhorebeek
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Fabian Güiza
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Inge Derese
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Pieter J Wouters
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Arno Téblick
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Karolijn Dulfer
- Division of Paediatric Intensive Care Unit, Department of Neonatal and Paediatric ICU, Erasmus Medical Centre, Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Koen F Joosten
- Division of Paediatric Intensive Care Unit, Department of Neonatal and Paediatric ICU, Erasmus Medical Centre, Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Sascha C Verbruggen
- Division of Paediatric Intensive Care Unit, Department of Neonatal and Paediatric ICU, Erasmus Medical Centre, Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Greet Van den Berghe
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium.
| |
Collapse
|
12
|
Großmann NL, Weihs A, Kühn L, Sauer S, Röh S, Wiechmann T, Rex-Haffner M, Völzke H, Völker U, Binder EB, Teumer A, Homuth G, Klinger-König J, Grabe HJ. Methylation Patterns of the FKBP5 Gene in Association with Childhood Maltreatment and Depressive Disorders. Int J Mol Sci 2024; 25:1485. [PMID: 38338761 PMCID: PMC10855893 DOI: 10.3390/ijms25031485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/16/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Childhood maltreatment is an important risk factor for adult depression and has been associated with changes in the hypothalamic pituitary adrenal (HPA) axis, including cortisol secretion and methylation of the FKBP5 gene. Furthermore, associations between depression and HPA changes have been reported. This study investigated the associations of whole-blood FKBP5 mRNA levels, serum cortisol levels, childhood maltreatment, and depressive symptoms with the whole-blood methylation status (assessed via target bisulfite sequencing) of 105 CpGs at the FKBP5 locus using data from the general population-based Study of Health in Pomerania (SHIP) (N = 203). Both direct and interaction effects with the rs1360780 single-nucleotide polymorphism were investigated. Nominally significant associations of main effects on methylation of a single CpG site were observed at intron 3, intron 7, and the 3'-end of the gene. Additionally, methylation at two clusters at the 3'-end and intron 7 were nominally associated with childhood maltreatment × rs1360780 and depressive symptoms × rs1360780, respectively. The results add to the understanding of molecular mechanisms underlying the emergence of depression and could aid the development of personalised depression therapy and drug development.
Collapse
Affiliation(s)
- Nora L Großmann
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Antoine Weihs
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, 17475 Greifswald, Germany
- German Center for Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, 17489 Greifswald, Germany
| | - Luise Kühn
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Susann Sauer
- Department Genes and Environment, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Simone Röh
- Department Genes and Environment, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Tobias Wiechmann
- Department Genes and Environment, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Monika Rex-Haffner
- Department Genes and Environment, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Henry Völzke
- Institute for Community Medicine, University Medicine Greifswald, 17475 Greifswald, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Uwe Völker
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, University Medicine Greifswald, 17475 Greifswald, Germany
- Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Elisabeth B Binder
- Department Genes and Environment, Max Planck Institute of Psychiatry, 80804 Munich, Germany
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Alexander Teumer
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, 17475 Greifswald, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Georg Homuth
- Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Johanna Klinger-König
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Hans J Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, 17475 Greifswald, Germany
- German Center for Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, 17489 Greifswald, Germany
| |
Collapse
|
13
|
Menke A. The HPA Axis as Target for Depression. Curr Neuropharmacol 2024; 22:904-915. [PMID: 37581323 PMCID: PMC10845091 DOI: 10.2174/1570159x21666230811141557] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/30/2022] [Accepted: 01/04/2023] [Indexed: 08/16/2023] Open
Abstract
Major depressive disorder (MDD) is a stress-related mental disorder with a lifetime prevalence of 20% and, thus, is one of the most prevalent mental health disorders worldwide. Many studies with a large number of patients support the notion that abnormalities of the hypothalamus-pituitaryadrenal (HPA) axis are crucial for the development of MDD. Therefore, a number of strategies and drugs have been investigated to target different components of the HPA axis: 1) corticotrophinreleasing hormone (CRH) 1 receptor antagonists; 2) vasopressin V1B receptor antagonists, 3) glucocorticoid receptor antagonists, and 4) FKBP5 antagonists. Until now, V1B receptor antagonists and GR antagonists have provided the most promising results. Preclinical data also support antagonists of FKBP5, which seem to be partly responsible for the effects exerted by ketamine. However, as HPA axis alterations occur only in a subset of patients, specific treatment approaches that target only single components of the HPA axis will be effective only in this subset of patients. Companion tests that measure the function of the HPA axis and identify patients with an impaired HPA axis, such as the dexamethasone-corticotrophin-releasing hormone (dex-CRH) test or the molecular dexamethasonesuppression (mDST) test, may match the patient with an effective treatment to enable patient-tailored treatments in terms of a precision medicine approach.
Collapse
Affiliation(s)
- Andreas Menke
- Department of Psychosomatic Medicine and Psychotherapy, Medical Park Chiemseeblick, Rasthausstr, 25, 83233 Bernau am Chiemsee, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| |
Collapse
|
14
|
Strelevitz H, Dehaqani AA, Balasco L, Bozzi Y. Obtaining novel data-driven hypotheses from teaching activities: An example assessing the role of the FKBP5 gene in major depression. Eur J Neurosci 2023; 58:3595-3604. [PMID: 37649449 DOI: 10.1111/ejn.16133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 08/13/2023] [Indexed: 09/01/2023]
Abstract
Many clinical and research efforts aim to develop antidepressant drugs for those suffering from major depressive disorder (MDD). Yet, even today, the available treatments are suboptimal and unpredictable, with a significant proportion of patients enduring multiple drug attempts and adverse side effects before a successful response, and, for many patients, no response at all. Thus, a clearer understanding of the mechanisms underlying MDD is necessary. In the 'Brain Development and Disease' class of our Master's program in Cognitive Sciences, we ask students to collect data about the expression of a gene whose altered expression and/or function is related to a brain disorder. The students' final exam assignment consists of writing a research article in which the collected data are discussed in relation to the relevant disorder. In the course of one of these assignments, we identified the FKBP5 gene as a key player uniting two major hypotheses of MDD pathogenesis and treatment response. FKBP5 controls biological processes including immunoregulation and glucocorticoid function, both of which are separately implicated in the development and prognosis of MDD. Gene expression analyses from the human, non-human primate and mouse Allen Brain Atlases revealed that FKBP5 is expressed in brain regions involved in MDD, particularly at ages susceptible to early-life stressors. Data re-analysis from published studies confirmed that FKBP5 expression is upregulated in relevant brain regions in human MDD and preclinical mouse models of MDD. Our experience shows that classes engaging students in data collection and analysis projects may effectively result in novel data-driven hypotheses.
Collapse
Affiliation(s)
- Heather Strelevitz
- Master in Cognitive Sciences, Center for Mind/Brain Sciences (CIMeC), University of Trento, Rovereto, Trento, Italy
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Rovereto, Trento, Italy
| | - Alireza A Dehaqani
- Master in Cognitive Sciences, Center for Mind/Brain Sciences (CIMeC), University of Trento, Rovereto, Trento, Italy
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Rovereto, Trento, Italy
- Italian Institute of Technology, Rovereto, Trento, Italy
| | - Luigi Balasco
- Master in Cognitive Sciences, Center for Mind/Brain Sciences (CIMeC), University of Trento, Rovereto, Trento, Italy
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Rovereto, Trento, Italy
| | - Yuri Bozzi
- Master in Cognitive Sciences, Center for Mind/Brain Sciences (CIMeC), University of Trento, Rovereto, Trento, Italy
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Rovereto, Trento, Italy
| |
Collapse
|
15
|
Allen PC, Roberts K, Rubio JE, Tiwari HK, Absher DM, Cooper SJ, Myers RM, Brown EE. Genome-wide DNA methylation analysis implicates enrichment of interferon pathway in African American patients with Systemic Lupus Erythematosus and European Americans with lupus nephritis. J Autoimmun 2023; 139:103089. [PMID: 37506491 PMCID: PMC10529132 DOI: 10.1016/j.jaut.2023.103089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/29/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023]
Abstract
Systemic Lupus Erythematosus (SLE) is a chronic, multisystem, inflammatory autoimmune disease that disproportionately affects women. Trends in SLE prevalence and clinical course differ by ancestry, with those of African American ancestry presenting with more active, severe and rapidly progressive disease than European Americans. Previous research established altered epigenetic signatures in SLE patients compared to controls. However, the contribution of aberrant DNA methylation (DNAm) to the risk of SLE by ancestry and differences among patients with SLE-associated Lupus Nephritis (LN) has not been well described. We evaluated the DNA methylomes of 87 individuals including 41 SLE patients, with and without LN, and 46 controls enrolled in an ancestry diverse, well-characterized cohort study of established SLE (41 SLE patients [20 SLE-LN+, 21 SLE-LN-] and 46 sex-, race- and age-matched controls; 55% African American, 45% European American). Participants were genotyped using the Infinium Global Diversity Array (GDA), and genetic ancestry was estimated using principal components. Genome-wide DNA methylation was initially measured using the Illumina MethylationEPIC 850K Beadchip array followed by methylation-specific qPCR to validate the methylation status at putative loci. Differentially Methylated Positions (DMP) were identified using a case-control approach adjusted for ancestry. We identified a total of 51 DMPs in CpGs among SLE patients compared to controls. Genes proximal to these CpGs were highly enriched for involvement in type I interferon signaling. DMPs among European American SLE patients with LN were similar to African American SLE patients with and without LN. Our findings were validated using an orthogonal, methyl-specific PCR for three SLE-associated DMPs near or proximal to MX1, USP18, and IFITM1. Our study confirms previous reports that DMPs in CpGs associated with SLE are enriched in type I interferon genes. However, we show that European American SLE patients with LN have similar DNAm patterns to African American SLE patients irrespective of LN, suggesting that aberrant DNAm alters activity of type I interferon pathway leading to more severe disease independent of ancestry.
Collapse
Affiliation(s)
- Peter C Allen
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA; HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Kevin Roberts
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Jose E Rubio
- Department of Rheumatology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hemant K Tiwari
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Devin M Absher
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Sara J Cooper
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Richard M Myers
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA.
| | - Elizabeth E Brown
- Department of Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
16
|
Yusupov N, van Doeselaar L, Röh S, Wiechmann T, Ködel M, Sauer S, Rex-Haffner M, Schmidt MV, Binder EB. Extensive evaluation of DNA methylation of functional elements in the murine Fkbp5 locus using high-accuracy DNA methylation measurement via targeted bisulfite sequencing. Eur J Neurosci 2023; 58:2662-2676. [PMID: 37414581 DOI: 10.1111/ejn.16078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/15/2023] [Accepted: 06/13/2023] [Indexed: 07/08/2023]
Abstract
FKBP5 is an important stress-regulatory gene implicated in stress-related psychiatric diseases. Single nucleotide polymorphisms of the FKBP5 gene were shown to interact with early life stress to alter the glucocorticoid-related stress response and moderate disease risk. Demethylation of cytosine-phosphate-guanine-dinucleotides (CpGs) in regulatory glucocorticoid-responsive elements was suggested to be the mediating epigenetic mechanism for long-term stress effects, but studies on Fkbp5 DNA methylation (DNAm) in rodents are so far limited. We evaluated the applicability of high-accuracy DNA methylation measurement via targeted bisulfite sequencing (HAM-TBS), a next-generation sequencing-based technology, to allow a more in-depth characterisation of the DNA methylation of the murine Fkbp5 locus in three different tissues (blood, frontal cortex and hippocampus). In this study, we not only increased the number of evaluated sites in previously described regulatory regions (in introns 1 and 5), but also extended the evaluation to novel, possibly relevant regulatory regions of the gene (in intron 8, the transcriptional start site, the proximal enhancer and CTCF-binding sites within the 5'UTR). We here describe the assessment of HAM-TBS assays for a panel of 157 CpGs with possible functional relevance in the murine Fkbp5 gene. DNAm profiles were tissue-specific, with lesser differences between the two brain regions than between the brain and blood. Moreover, we identified DNAm changes in the Fkbp5 locus after early life stress exposure in the frontal cortex and blood. Our findings indicate that HAM-TBS is a valuable tool for broader exploration of the DNAm of the murine Fkbp5 locus and its involvement in the stress response.
Collapse
Affiliation(s)
- Natan Yusupov
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
- International Max Planck Research School for Translational Psychiatry, Munich, Germany
| | - Lotte van Doeselaar
- International Max Planck Research School for Translational Psychiatry, Munich, Germany
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, Munich, Germany
| | - Simone Röh
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Tobias Wiechmann
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Maik Ködel
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Susann Sauer
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Monika Rex-Haffner
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Mathias V Schmidt
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, Munich, Germany
| | - Elisabeth B Binder
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| |
Collapse
|
17
|
Matosin N, Arloth J, Czamara D, Edmond KZ, Maitra M, Fröhlich AS, Martinelli S, Kaul D, Bartlett R, Curry AR, Gassen NC, Hafner K, Müller NS, Worf K, Rehawi G, Nagy C, Halldorsdottir T, Cruceanu C, Gagliardi M, Gerstner N, Ködel M, Murek V, Ziller MJ, Scarr E, Tao R, Jaffe AE, Arzberger T, Falkai P, Kleinmann JE, Weinberger DR, Mechawar N, Schmitt A, Dean B, Turecki G, Hyde TM, Binder EB. Associations of psychiatric disease and ageing with FKBP5 expression converge on superficial layer neurons of the neocortex. Acta Neuropathol 2023; 145:439-459. [PMID: 36729133 PMCID: PMC10020280 DOI: 10.1007/s00401-023-02541-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 02/03/2023]
Abstract
Identification and characterisation of novel targets for treatment is a priority in the field of psychiatry. FKBP5 is a gene with decades of evidence suggesting its pathogenic role in a subset of psychiatric patients, with potential to be leveraged as a therapeutic target for these individuals. While it is widely reported that FKBP5/FKBP51 mRNA/protein (FKBP5/1) expression is impacted by psychiatric disease state, risk genotype and age, it is not known in which cell types and sub-anatomical areas of the human brain this occurs. This knowledge is critical to propel FKBP5/1-targeted treatment development. Here, we performed an extensive, large-scale postmortem study (n = 1024) of FKBP5/1, examining neocortical areas (BA9, BA11 and ventral BA24/BA24a) derived from subjects that lived with schizophrenia, major depression or bipolar disorder. With an extensive battery of RNA (bulk RNA sequencing, single-nucleus RNA sequencing, microarray, qPCR, RNAscope) and protein (immunoblot, immunohistochemistry) analysis approaches, we thoroughly investigated the effects of disease state, ageing and genotype on cortical FKBP5/1 expression including in a cell type-specific manner. We identified consistently heightened FKBP5/1 levels in psychopathology and with age, but not genotype, with these effects strongest in schizophrenia. Using single-nucleus RNA sequencing (snRNAseq; BA9 and BA11) and targeted histology (BA9, BA24a), we established that these disease and ageing effects on FKBP5/1 expression were most pronounced in excitatory superficial layer neurons of the neocortex, and this effect appeared to be consistent in both the granular and agranular areas examined. We then found that this increase in FKBP5 levels may impact on synaptic plasticity, as FKBP5 gex levels strongly and inversely correlated with dendritic mushroom spine density and brain-derived neurotrophic factor (BDNF) levels in superficial layer neurons in BA11. These findings pinpoint a novel cellular and molecular mechanism that has potential to open a new avenue of FKBP51 drug development to treat cognitive symptoms in psychiatric disorders.
Collapse
Affiliation(s)
- Natalie Matosin
- Department of Translational Research in Psychiatry, Max-Planck Institute of Psychiatry, Munich, Germany.
- Molecular Horizons, School of Chemistry and Molecular Biosciences, Faculty of Science, Medicine and Health, University of Wollongong, Northfields Ave, Wollongong, 2522, Australia.
- Illawarra Health and Medical Research Institute, Northfields Ave, Wollongong, 2522, Australia.
| | - Janine Arloth
- Department of Translational Research in Psychiatry, Max-Planck Institute of Psychiatry, Munich, Germany
- Institute of Computational Biology, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Darina Czamara
- Department of Translational Research in Psychiatry, Max-Planck Institute of Psychiatry, Munich, Germany
| | - Katrina Z Edmond
- Molecular Horizons, School of Chemistry and Molecular Biosciences, Faculty of Science, Medicine and Health, University of Wollongong, Northfields Ave, Wollongong, 2522, Australia
- Illawarra Health and Medical Research Institute, Northfields Ave, Wollongong, 2522, Australia
| | - Malosree Maitra
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Montreal, QC, Canada
| | - Anna S Fröhlich
- Department of Translational Research in Psychiatry, Max-Planck Institute of Psychiatry, Munich, Germany
- International Max Planck Research School for Translational Psychiatry, Munich, Germany
| | - Silvia Martinelli
- Department of Translational Research in Psychiatry, Max-Planck Institute of Psychiatry, Munich, Germany
- International Max Planck Research School for Translational Psychiatry, Munich, Germany
| | - Dominic Kaul
- Molecular Horizons, School of Chemistry and Molecular Biosciences, Faculty of Science, Medicine and Health, University of Wollongong, Northfields Ave, Wollongong, 2522, Australia
- Illawarra Health and Medical Research Institute, Northfields Ave, Wollongong, 2522, Australia
| | - Rachael Bartlett
- Molecular Horizons, School of Chemistry and Molecular Biosciences, Faculty of Science, Medicine and Health, University of Wollongong, Northfields Ave, Wollongong, 2522, Australia
- Illawarra Health and Medical Research Institute, Northfields Ave, Wollongong, 2522, Australia
| | - Amber R Curry
- Molecular Horizons, School of Chemistry and Molecular Biosciences, Faculty of Science, Medicine and Health, University of Wollongong, Northfields Ave, Wollongong, 2522, Australia
- Illawarra Health and Medical Research Institute, Northfields Ave, Wollongong, 2522, Australia
| | - Nils C Gassen
- Department of Translational Research in Psychiatry, Max-Planck Institute of Psychiatry, Munich, Germany
- Neurohomeostasis Research Group, Institute of Psychiatry, Clinical Centre, University of Bonn, Bonn, Germany
| | - Kathrin Hafner
- Department of Translational Research in Psychiatry, Max-Planck Institute of Psychiatry, Munich, Germany
| | - Nikola S Müller
- Institute of Computational Biology, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Karolina Worf
- Institute of Computational Biology, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Ghalia Rehawi
- Department of Translational Research in Psychiatry, Max-Planck Institute of Psychiatry, Munich, Germany
- Institute of Computational Biology, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Corina Nagy
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Montreal, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | | | - Cristiana Cruceanu
- Department of Translational Research in Psychiatry, Max-Planck Institute of Psychiatry, Munich, Germany
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Miriam Gagliardi
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Nathalie Gerstner
- Department of Translational Research in Psychiatry, Max-Planck Institute of Psychiatry, Munich, Germany
- Institute of Computational Biology, Helmholtz Zentrum München, 85764, Neuherberg, Germany
- International Max Planck Research School for Translational Psychiatry, Munich, Germany
| | - Maik Ködel
- Department of Translational Research in Psychiatry, Max-Planck Institute of Psychiatry, Munich, Germany
| | - Vanessa Murek
- Department of Translational Research in Psychiatry, Max-Planck Institute of Psychiatry, Munich, Germany
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Michael J Ziller
- Department of Translational Research in Psychiatry, Max-Planck Institute of Psychiatry, Munich, Germany
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Elizabeth Scarr
- Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
- Synaptic Neurobiology and Cognition Laboratory, Florey Institute for Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Ran Tao
- The Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, MD, USA
| | - Andrew E Jaffe
- The Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, MD, USA
| | - Thomas Arzberger
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig-Maximilians University Munich, Nussbaumstrasse 7, 80336, Munich, Germany
- Centre for Neuropathology and Prion Research, Ludwig-Maximilians University Munich, Nussbaumstrasse 7, 80336, Munich, Germany
| | - Peter Falkai
- Department of Translational Research in Psychiatry, Max-Planck Institute of Psychiatry, Munich, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig-Maximilians University Munich, Nussbaumstrasse 7, 80336, Munich, Germany
| | - Joel E Kleinmann
- The Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Daniel R Weinberger
- The Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Naguib Mechawar
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Montreal, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Andrea Schmitt
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig-Maximilians University Munich, Nussbaumstrasse 7, 80336, Munich, Germany
- Laboratory of Neuroscience (LIM27), Institute of Psychiatry, University of Sao Paulo, Rua Dr. Ovidio Pires de Campos 785, São Paulo, 05453-010, Brazil
| | - Brian Dean
- Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
- Synaptic Neurobiology and Cognition Laboratory, Florey Institute for Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Gustavo Turecki
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Montreal, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Thomas M Hyde
- The Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Elisabeth B Binder
- Department of Translational Research in Psychiatry, Max-Planck Institute of Psychiatry, Munich, Germany.
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, USA.
| |
Collapse
|
18
|
Frohman DFT, Nnah K, Tsirka SE. Intersection of Sex and Depression: Pathogenesis, Presentation, and Treatments. Handb Exp Pharmacol 2023; 282:163-180. [PMID: 37439845 PMCID: PMC11519624 DOI: 10.1007/164_2023_670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Major Depressive Disorder (MDD) is a highly prevalent, debilitating disorder. According to the World Health Organization, approximately 5% of adults suffer from depression worldwide and more women than men are affected. Yet, we have a very limited understanding of the pathogenesis of the disease, how sex and genetics influence the pathophenotype of MDD, and how they contribute to the responses to pharmacological treatment. This chapter addresses key theories about the etiology of depression, the variations in epidemiology and presentation, and the treatment options with respect to sex and gender. Additionally, we discuss the emerging wave of treatment modalities, diagnosis, and research focusing on MDD.
Collapse
Affiliation(s)
- Dafni F T Frohman
- Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Kimberly Nnah
- Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
- Program in Neuroscience, Stony Brook, NY, USA
- Department of Pharmacological Sciences, Stony Brook, NY, USA
| | - Stella E Tsirka
- Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA.
- Program in Neuroscience, Stony Brook, NY, USA.
- Department of Pharmacological Sciences, Stony Brook, NY, USA.
| |
Collapse
|
19
|
Pierron F, Heroin D, Daffe G, Daramy F, Barré A, Bouchez O, Romero-Ramirez A, Gonzalez P, Nikolski M. Genetic and epigenetic interplay allows rapid transgenerational adaptation to metal pollution in zebrafish. ENVIRONMENTAL EPIGENETICS 2022; 8:dvac022. [PMID: 36474803 PMCID: PMC9716877 DOI: 10.1093/eep/dvac022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/21/2022] [Accepted: 10/21/2022] [Indexed: 05/26/2023]
Abstract
Despite still being a matter of debate, there is growing evidence that pollutant-induced epigenetic changes can be propagated across generations. Whereas such modifications could have long-lasting effects on organisms and even on population, environmentally relevant data from long-term exposure combined with follow-up through multiple generations remain scarce for non-mammalian species. We performed a transgenerational experiment comprising four successive generations of zebrafish. Only fish from the first generation were exposed to an environmentally realistic concentration of cadmium (Cd). Using a whole methylome analysis, we first identified the DNA regions that were differentially methylated in response to Cd exposure and common to fish of the first two generations. Among them, we then focused our investigations on the exon 3 (ex3) of the cep19 gene. We indeed recorded transgenerational growth disorders in Cd-exposed fish, and a mutation in this exon is known to cause morbid obesity in mammals. Its methylation level was thus determined in zebrafish from all the four generations by means of a targeted and base resolution method. We observed a transgenerational inheritance of Cd-induced DNA methylation changes up to the fourth generation. However, these changes were closely associated with genetic variations, mainly a single nucleotide polymorphism. This single nucleotide polymorphism was itself at the origin of the creation or deletion of a methylation site and deeply impacted the methylation level of neighboring methylation sites. Cd-induced epigenetic changes were associated with different mRNA transcripts and an improved condition of Cd fish. Our results emphasize a tight relationship between genetic and epigenetic mechanisms and suggest that their interplay and pre-existing diversity can allow rapid adaptation to anthropogenic environmental changes.
Collapse
Affiliation(s)
- Fabien Pierron
- *Correspondence address. UMR 5805 EPOC – OASU, Station Marine d’Arcachon, Université de Bordeaux, Place du Docteur Bertrand Peyneau, Arcachon 33120, France. Tel: +335 56 22 39 33; Fax: +335 40 70 85 04; E-mail:
| | - Débora Heroin
- University of Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, Pessac 33600, France
| | - Guillemine Daffe
- University of Bordeaux, CNRS, INRAE, La Rochelle University, UMS 2567 POREA, Pessac 33615, France
| | - Flore Daramy
- University of Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, Pessac 33600, France
| | - Aurélien Barré
- University of Bordeaux, Bordeaux Bioinformatics Center, Bordeaux, 33076, France
| | - Olivier Bouchez
- INRAE, US 1426, GeT-PlaGe, Genotoul, Castanet-Tolosan 31326, France
| | | | - Patrice Gonzalez
- University of Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, Pessac 33600, France
| | - Macha Nikolski
- University of Bordeaux, Bordeaux Bioinformatics Center, Bordeaux, 33076, France
- University of Bordeaux, CNRS, IBGC, UMR 5095, Bordeaux 33077, France
| |
Collapse
|
20
|
Womersley JS, Roeh S, Martin L, Ahmed-Leitao F, Sauer S, Rex-Haffner M, Hemmings SMJ, Binder EB, Seedat S. FKBP5 intron 7 methylation is associated with higher anxiety proneness and smaller right thalamus volume in adolescents. Brain Struct Funct 2022; 227:2809-2820. [PMID: 36197505 DOI: 10.1007/s00429-022-02577-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 09/23/2022] [Indexed: 11/28/2022]
Abstract
Dysregulation of stress response systems may mediate the detrimental effects of childhood trauma (CT) on mental health. FKBP5 regulates glucocorticoid receptor sensitivity and exerts pleiotropic effects on intracellular signaling, neurobiology and behavior. We investigated whether CT, alone and in combination with rs1360780 genotype, is associated with altered FKBP5 methylation and whether CT-associated methylation profiles are associated with anxiety proneness (AP) and structural brain volumes. Ninety-four adolescents completed the Childhood Trauma Questionnaire, and a composite AP score was generated from the Childhood Anxiety Sensitivity Index and the State-Trait Anxiety Inventory-Trait measure. Mean methylation values for 12 regulatory regions and 25 individual CpG sites were determined using high-accuracy measurement via targeted bisulfite sequencing. FKBP5 rs1360780 genotype and structural MRI data were available for a subset of participants (n = 71 and n = 75, respectively). Regression models revealed an inverse association between methylation of three intron 7 CpG sites (35558438, 35558566 and 35558710) and right thalamus volume. CpG35558438 methylation was positively associated with AP scores. Our data indicate that an intron 7 methylation profile, consistent with lower FKBP5 expression and elevated high sensitivity glucocorticoid receptor levels, is associated with higher AP and smaller right thalamus volume. Research into the mechanisms underlying the intron 7 methylation-thalamus volume relationship, and whether it confers increased risk for long-term psychopathology by altering the regulatory threshold of stress responding, is required.
Collapse
Affiliation(s)
- Jacqueline S Womersley
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa. .,South African Medical Research Council/Stellenbosch University Genomics of Brain Disorders Research Unit, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa. .,Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany.
| | - Simone Roeh
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Lindi Martin
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Fatima Ahmed-Leitao
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Susann Sauer
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Monika Rex-Haffner
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Sian M J Hemmings
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.,South African Medical Research Council/Stellenbosch University Genomics of Brain Disorders Research Unit, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Elisabeth B Binder
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany.,Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Soraya Seedat
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.,South African Medical Research Council/Stellenbosch University Genomics of Brain Disorders Research Unit, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.,South African Research Chairs Initiative (SARChI) in PTSD, Department of Psychiatry, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
21
|
Hanson HE, Liebl AL. The Mutagenic Consequences of DNA Methylation within and across Generations. EPIGENOMES 2022; 6:33. [PMID: 36278679 PMCID: PMC9624357 DOI: 10.3390/epigenomes6040033] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/20/2022] [Accepted: 09/28/2022] [Indexed: 12/28/2022] Open
Abstract
DNA methylation is an epigenetic modification with wide-ranging consequences across the life of an organism. This modification can be stable, persisting through development despite changing environmental conditions. However, in other contexts, DNA methylation can also be flexible, underlying organismal phenotypic plasticity. One underappreciated aspect of DNA methylation is that it is a potent mutagen; methylated cytosines mutate at a much faster rate than other genetic motifs. This mutagenic property of DNA methylation has been largely ignored in eco-evolutionary literature, despite its prevalence. Here, we explore how DNA methylation induced by environmental and other factors could promote mutation and lead to evolutionary change at a more rapid rate and in a more directed manner than through stochastic genetic mutations alone. We argue for future research on the evolutionary implications of DNA methylation driven mutations both within the lifetime of organisms, as well as across timescales.
Collapse
Affiliation(s)
- Haley E. Hanson
- Global and Planetary Health, University of South Florida, Tampa, FL 33620, USA
| | - Andrea L. Liebl
- Department of Biology, University of South Dakota, Vermillion, SD 57069, USA
| |
Collapse
|
22
|
Microglia involvement in sex-dependent behaviors and schizophrenia occurrence in offspring with maternal dexamethasone exposure. SCHIZOPHRENIA 2022; 8:71. [PMID: 36075925 PMCID: PMC9458670 DOI: 10.1038/s41537-022-00280-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/27/2022] [Indexed: 12/30/2022]
Abstract
Fetal microglia that are particularly sensitive cells to the changes in utero environment might be involved in the sex-biased onset and vulnerability to psychiatric disorders. To address this issue, we administered a 50 µg/kg dexamethasone (DEX) to dams subcutaneously from gestational days 16 to 18 and a series of behavioral assessments were performed in the offspring. Prenatal exposure to dexamethasone (PN-DEX) induced schizophrenia (SCZ)-relevant behaviors in male mice and depressive-like behavior in female mice. SCZ-relevant behavioral patterns occurred in 10-week-old (10 W) male mice but not in 4-week-old (4 W) male mice. Microglia in the medial prefrontal cortex (mPFC) and the striatum (STR) of 10 W males prenatally treated with dexamethasone (10 W PN-DEX-M) showed hyper-ramified morphology and dramatically reduced spine density in mPFC. Immunofluorescence studies indicated that microglia in the mPFC of the 10 W PN-DEX-M group interacted with pre-synaptic Bassoon and post-synaptic density 95 (PSD95) puncta. PN-DEX-M also showed significantly changed dopamine system proteins. However, a testosterone surge during adolescence was not a trigger on SCZ-relevant behavior occurrence in 10 W PN-DEX-M. Furthermore, females prenatally treated with dexamethasone (PN-DEX-F) displayed depressive-like behavior, in addition to HPA-axis activation and inflammatory microglial phenotypes in their hippocampus (HPC). We propose that altered microglial function, such as increased synaptic pruning, may be involved in the occurrence of SCZ-relevant behavior in PN-DEX-M and sex-biased abnormal behavior in the PN-DEX model.
Collapse
|
23
|
Chronic stress-driven glucocorticoid receptor activation programs key cell phenotypes and functional epigenomic patterns in human fibroblasts. iScience 2022; 25:104960. [PMID: 36065188 PMCID: PMC9440308 DOI: 10.1016/j.isci.2022.104960] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/16/2022] [Accepted: 08/11/2022] [Indexed: 11/27/2022] Open
Abstract
Chronic environmental stress can profoundly impact cell and body function. Although the underlying mechanisms are poorly understood, epigenetics has emerged as a key link between environment and health. The genomic effects of stress are thought to be mediated by the action of glucocorticoid stress hormones, primarily cortisol in humans, which act via the glucocorticoid receptor (GR). To dissect how chronic stress-driven GR activation influences epigenetic and cell states, human fibroblasts underwent prolonged exposure to physiological stress levels of cortisol and/or a selective GR antagonist. Cortisol was found to drive robust changes in cell proliferation, migration, and morphology, which were abrogated by concomitant GR blockade. The GR-driven cell phenotypes were accompanied by widespread, yet genomic context-dependent, changes in DNA methylation and mRNA expression, including gene loci with known roles in cell proliferation and migration. These findings provide insights into how chronic stress-driven functional epigenomic patterns become established to shape key cell phenotypes. Physiological stress levels of cortisol drive robust changes in key cell phenotypes Stress-driven changes in cell phenotypes are abrogated by concomitant GR blockade GR activation induces functional and phenotypically relevant epigenomic changes
Collapse
|
24
|
An X, Guo W, Wu H, Fu X, Li M, Zhang Y, Li Y, Cui R, Yang W, Zhang Z, Zhao G. Sex Differences in Depression Caused by Early Life Stress and Related Mechanisms. Front Neurosci 2022; 16:797755. [PMID: 35663561 PMCID: PMC9157793 DOI: 10.3389/fnins.2022.797755] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 03/02/2022] [Indexed: 11/26/2022] Open
Abstract
Depression is a common psychiatric disease caused by various factors, manifesting with continuous low spirits, with its precise mechanism being unclear. Early life stress (ELS) is receiving more attention as a possible cause of depression. Many studies focused on the mechanisms underlying how ELS leads to changes in sex hormones, neurotransmitters, hypothalamic pituitary adrenocortical (HPA) axis function, and epigenetics. The adverse effects of ELS on adulthood are mainly dependent on the time window when stress occurs, sex and the developmental stage when evaluating the impacts. Therefore, with regard to the exact sex differences of adult depression, we found that ELS could lead to sex-differentiated depression through multiple mechanisms, including 5-HT, sex hormone, HPA axis, and epigenetics.
Collapse
Affiliation(s)
- Xianquan An
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, China
- Department of Anesthesiology, Second Hospital of Jilin University, Changchun, China
| | - Wanxu Guo
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Huiying Wu
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Xiying Fu
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Ming Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Yizhi Zhang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Yanlin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Wei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Zhuo Zhang
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, China
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
- *Correspondence: Zhuo Zhang,
| | - Guoqing Zhao
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, China
- Guoqing Zhao,
| |
Collapse
|
25
|
Armignacco R, Jouinot A, Bouys L, Septier A, Lartigue T, Neou M, Gaspar C, Perlemoine K, Braun L, Riester A, Bonnet-Serrano F, Blanchard A, Amar L, Scaroni C, Ceccato F, Rossi GP, Williams TA, Larsen CK, Allassonnière S, Zennaro MC, Beuschlein F, Reincke M, Bertherat J, Assié G. Identification of glucocorticoid-related molecular signature by whole blood methylome analysis. Eur J Endocrinol 2022; 186:297-308. [PMID: 34914631 PMCID: PMC8789024 DOI: 10.1530/eje-21-0907] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/16/2021] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Cushing's syndrome represents a state of excessive glucocorticoids related to glucocorticoid treatments or to endogenous hypercortisolism. Cushing's syndrome is associated with high morbidity, with significant inter-individual variability. Likewise, adrenal insufficiency is a life-threatening condition of cortisol deprivation. Currently, hormone assays contribute to identify Cushing's syndrome or adrenal insufficiency. However, no biomarker directly quantifies the biological glucocorticoid action. The aim of this study was to identify such markers. DESIGN We evaluated whole blood DNA methylome in 94 samples obtained from patients with different glucocorticoid states (Cushing's syndrome, eucortisolism, adrenal insufficiency). We used an independent cohort of 91 samples for validation. METHODS Leukocyte DNA was obtained from whole blood samples. Methylome was determined using the Illumina methylation chip array (~850 000 CpG sites). Both unsupervised (principal component analysis) and supervised (Limma) methods were used to explore methylome profiles. A Lasso-penalized regression was used to select optimal discriminating features. RESULTS Whole blood methylation profile was able to discriminate samples by their glucocorticoid status: glucocorticoid excess was associated with DNA hypomethylation, recovering within months after Cushing's syndrome correction. In Cushing's syndrome, an enrichment in hypomethylated CpG sites was observed in the region of FKBP5 gene locus. A methylation predictor of glucocorticoid excess was built on a training cohort and validated on two independent cohorts. Potential CpG sites associated with the risk for specific complications, such as glucocorticoid-related hypertension or osteoporosis, were identified, needing now to be confirmed on independent cohorts. CONCLUSIONS Whole blood DNA methylome is dynamically impacted by glucocorticoids. This biomarker could contribute to better assessment of glucocorticoid action beyond hormone assays.
Collapse
Affiliation(s)
- Roberta Armignacco
- Université de Paris, Institut Cochin, INSERM U1016, CNRS UMR8104, Paris, France
- Correspondence should be addressed to R Armignacco or G Assié; or
| | - Anne Jouinot
- Université de Paris, Institut Cochin, INSERM U1016, CNRS UMR8104, Paris, France
| | - Lucas Bouys
- Université de Paris, Institut Cochin, INSERM U1016, CNRS UMR8104, Paris, France
| | - Amandine Septier
- Université de Paris, Institut Cochin, INSERM U1016, CNRS UMR8104, Paris, France
| | - Thomas Lartigue
- ARAMIS Project-Team, Inria Paris, France
- CMAP, UMR 7641, CNRS, École polytechnique, I.P. Paris, France
| | - Mario Neou
- Université de Paris, Institut Cochin, INSERM U1016, CNRS UMR8104, Paris, France
| | - Cassandra Gaspar
- Sorbonne Université, Inserm, UMS Pass, Plateforme Post-génomique de la Pitié-Salpêtrière, P3S, Paris, France
| | - Karine Perlemoine
- Université de Paris, Institut Cochin, INSERM U1016, CNRS UMR8104, Paris, France
| | - Leah Braun
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Anna Riester
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Fidéline Bonnet-Serrano
- Université de Paris, Institut Cochin, INSERM U1016, CNRS UMR8104, Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Cochin, Service d’Hormonologie, Paris, France
| | - Anne Blanchard
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Centre d’Investigations Cliniques 9201, Paris, France
| | - Laurence Amar
- Université de Paris, PARCC, INSERM, Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Unité Hypertension Artérielle, Paris, France
| | - Carla Scaroni
- UOC Endocrinologia, Dipartimento di Medicina DIMED, Azienda Ospedaliera-Università di Padova, Padua, Italy
| | - Filippo Ceccato
- UOC Endocrinologia, Dipartimento di Medicina DIMED, Azienda Ospedaliera-Università di Padova, Padua, Italy
| | - Gian Paolo Rossi
- Clinica dell’Ipertensione Arteriosa, Department of Medicine-DIMED, University of Padua, Padua, Italy
| | - Tracy Ann Williams
- Division of Internal Medicine and Hypertension Unit, Department of Medical Sciences, University of Turin, Turin, Italy
| | | | | | - Maria-Christina Zennaro
- Université de Paris, PARCC, INSERM, Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Génétique, Paris, France
| | - Felix Beuschlein
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität, Ludwig-Maximilians-Universität München, Munich, Germany
- Klinik für Endokrinologie, Diabetologie und Klinische Ernährung, UniversitätsSpital Zürich, Zürich, Switzerland
| | - Martin Reincke
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Jérôme Bertherat
- Université de Paris, Institut Cochin, INSERM U1016, CNRS UMR8104, Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Cochin, Service d’Endocrinologie, Center for Rare Adrenal Diseases, Paris, France
| | - Guillaume Assié
- Université de Paris, Institut Cochin, INSERM U1016, CNRS UMR8104, Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Cochin, Service d’Endocrinologie, Center for Rare Adrenal Diseases, Paris, France
- Correspondence should be addressed to R Armignacco or G Assié; or
| |
Collapse
|
26
|
Liu W, Mohan SP, Nagaraj NR, Sundar Jaganathan S, Wen Y, Ramasubramanyan S, Irudayaraj J. Epigenetic alterations associated with dexamethasone sodium phosphate through DNMT and TET in RPE cells. Mol Vis 2021; 27:643-655. [PMID: 34924744 PMCID: PMC8645185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 11/18/2021] [Indexed: 11/29/2022] Open
Abstract
PURPOSE To elucidate the mechanism behind epigenetic alteration associated with dexamethasone (DEX) sodium phosphate treatment. METHODS We performed enzyme-linked immunosorbent assay to quantify changes in global DNA methylation and hydroxymethylation, quantitative real-time PCR (qRT-PCR) of the DNA methylation- and hydroxymethylation-related gene, in vitro DNA methyltransferase (DNMT) enzymatic activity assays with purified DNMTs, and DNA hydroxymethylation pattern with super-resolution imaging. RESULTS We identified global DNA hypomethylation and hyper-hydroxymethylation upon DEX treatment, associated with aberrant mRNA expression levels of DNMT and ten-eleven translocation (TET) proteins. Additionally, DEX exposure could directly hinder DNMT activities. CONCLUSIONS We showed that DEX-induced epigenetic alterations are linked to aberrant DNMT and TET expression, potentially through an essential role of DNMT.
Collapse
Affiliation(s)
- Wenjie Liu
- Department of Bioengineering, Cancer Center at Illinois, Micro and Nanotechnology Laboratory. University of Illinois at Urbana-Champaign, Urbana, IL,Biomedical Research Center in Mills Breast Cancer Institute, Carles Foundation Hospital, Urbana, IL
| | - Sruthi Priya Mohan
- R.S. Mehta Jain Department of Biochemistry and Cell Biology, KBIRVO, Vision Research Foundation, Chennai, TN, India
| | | | - Shyam Sundar Jaganathan
- R.S. Mehta Jain Department of Biochemistry and Cell Biology, KBIRVO, Vision Research Foundation, Chennai, TN, India
| | - Yi Wen
- Department of Bioengineering, Cancer Center at Illinois, Micro and Nanotechnology Laboratory. University of Illinois at Urbana-Champaign, Urbana, IL,Biomedical Research Center in Mills Breast Cancer Institute, Carles Foundation Hospital, Urbana, IL
| | - Sharada Ramasubramanyan
- R.S. Mehta Jain Department of Biochemistry and Cell Biology, KBIRVO, Vision Research Foundation, Chennai, TN, India
| | - Joseph Irudayaraj
- Department of Bioengineering, Cancer Center at Illinois, Micro and Nanotechnology Laboratory. University of Illinois at Urbana-Champaign, Urbana, IL,Biomedical Research Center in Mills Breast Cancer Institute, Carles Foundation Hospital, Urbana, IL
| |
Collapse
|
27
|
Cahill B, Poelker-Wells S, Prather JF, Li Y. A Glimpse Into the Sexual Dimorphisms in Major Depressive Disorder Through Epigenetic Studies. Front Neural Circuits 2021; 15:768571. [PMID: 34744641 PMCID: PMC8564393 DOI: 10.3389/fncir.2021.768571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 09/28/2021] [Indexed: 11/13/2022] Open
Abstract
Depression is an umbrella term used to describe a mood disorder with a broad spectrum of symptoms including a persistent feeling of sadness, loss of interest, and deficits in social behavior. Epigenetic research bridges the environmental and genetic landscape and has the potential to exponentially improve our understanding of such a complex disorder. Depression is also a sexually dimorphic disorder and variations exist within epigenetic modification sites between sexes. These sex-specific mediators may impact behavioral symptomology and could serve as therapeutic targets for treatments to improve behavioral deficits. This mini review will focus on the social behavior perspective of depression and specifically explore the sexually different epigenetic modifications on depression.
Collapse
Affiliation(s)
- Branden Cahill
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY, United States
| | - Samuel Poelker-Wells
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY, United States
| | - Jonathan F Prather
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY, United States
| | - Yun Li
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY, United States
| |
Collapse
|
28
|
Kusumanchi P, Liang T, Zhang T, Ross RA, Han S, Chandler K, Oshodi A, Jiang Y, Dent AL, Skill NJ, Huda N, Ma J, Yang Z, Liangpunsakul S. Stress-Responsive Gene FK506-Binding Protein 51 Mediates Alcohol-Induced Liver Injury Through the Hippo Pathway and Chemokine (C-X-C Motif) Ligand 1 Signaling. Hepatology 2021; 74:1234-1250. [PMID: 33710653 PMCID: PMC8435051 DOI: 10.1002/hep.31800] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS Chronic alcohol drinking is a major risk factor for alcohol-associated liver disease (ALD). FK506-binding protein 51 (FKBP5), a cochaperone protein, is involved in many key regulatory pathways. It is known to be involved in stress-related disorders, but there are no reports regarding its role in ALD. This present study aimed to examine the molecular mechanism of FKBP5 in ALD. APPROACH AND RESULTS We found a significant increase in hepatic FKBP5 transcripts and protein expression in patients with ALD and mice fed with chronic-plus-single binge ethanol. Loss of Fkbp5 in mice protected against alcohol-induced hepatic steatosis and inflammation. Transcriptomic analysis revealed a significant reduction of Transcriptional enhancer factor TEF-1 (TEA) domain transcription factor 1 (Tead1) and chemokine (C-X-C motif) ligand 1 (Cxcl1) mRNA in ethanol-fed Fkbp5-/- mice. Ethanol-induced Fkbp5 expression was secondary to down-regulation of methylation level at its 5' untranslated promoter region. The increase in Fkbp5 expression led to induction in transcription factor TEAD1 through Hippo signaling pathway. Fkbp5 can interact with yes-associated protein (YAP) upstream kinase, mammalian Ste20-like kinase 1 (MST1), affecting its ability to phosphorylate YAP and the inhibitory effect of hepatic YAP phosphorylation by ethanol leading to YAP nuclear translocation and TEAD1 activation. Activation of TEAD1 led to increased expression of its target, CXCL1, a chemokine-mediated neutrophil recruitment, causing hepatic inflammation and neutrophil infiltration in our mouse model. CONCLUSIONS We identified an FKBP5-YAP-TEAD1-CXCL1 axis in the pathogenesis of ALD. Loss of FKBP5 ameliorates alcohol-induced liver injury through the Hippo pathway and CXCL1 signaling, suggesting its potential role as a target for the treatment of ALD.
Collapse
Affiliation(s)
- Praveen Kusumanchi
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Tiebing Liang
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Ting Zhang
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Ruth Ann Ross
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Sen Han
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Kristina Chandler
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Adepeju Oshodi
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Yanchao Jiang
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Alexander L Dent
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN
| | - Nicholas J Skill
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN
| | - Nazmul Huda
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Jing Ma
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Zhihong Yang
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Suthat Liangpunsakul
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN
- Roudebush Veterans Administration Medical Center, Indianapolis, IN
| |
Collapse
|
29
|
Zimmer C, Hanson HE, Martin LB. FKBP5 expression is related to HPA flexibility and the capacity to cope with stressors in female and male house sparrows. Horm Behav 2021; 135:105038. [PMID: 34280702 DOI: 10.1016/j.yhbeh.2021.105038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 07/06/2021] [Accepted: 07/08/2021] [Indexed: 12/16/2022]
Abstract
The hypothalamic-pituitary-adrenal (HPA) axis and its end products, the glucocorticoids, are critical to responding appropriately to stressors. Subsequently, many studies have sought relationships between glucocorticoids and measures of health or fitness, but such relationships are at best highly context dependent. Recently, some endocrinologists have started to suggest that a focus on HPA flexibility, the ability of an individual to mount appropriate responses to different stressors, could be useful. Here, we tested the hypothesis that expression of FKBP5, a cochaperone in the glucocorticoid receptor complex, is a simple and reliable proxy of HPA flexibility in a wild songbird, the house sparrow (Passer domesticus). We quantified HPA flexibility in a novel way, using guidance from research on heart rhythm regulation. As predicted, we found that adult sparrows with low stress-induced FKBP5 expression in the hypothalamus exhibited high HPA flexibility. Moreover, low FKBP5 expression was associated with greater exploratory disposition and were better at maintaining body mass under stressful conditions. Altogether, these results suggest that FKBP5 may be important in the regulation of HPA flexibility, potentially affecting how individuals cope with natural and anthropogenic adversity.
Collapse
Affiliation(s)
- Cedric Zimmer
- Global Health and Infectious Disease Research, University of South Florida, Tampa, FL, USA.
| | - Haley E Hanson
- Global Health and Infectious Disease Research, University of South Florida, Tampa, FL, USA
| | - Lynn B Martin
- Global Health and Infectious Disease Research, University of South Florida, Tampa, FL, USA
| |
Collapse
|
30
|
Czamara D, Dieckmann L, Röh S, Kraemer S, Rancourt RC, Sammallahti S, Kajantie E, Laivuori H, Eriksson JG, Räikkönen K, Henrich W, Plagemann A, Binder EB, Braun T, Entringer S. Betamethasone administration during pregnancy is associated with placental epigenetic changes with implications for inflammation. Clin Epigenetics 2021; 13:165. [PMID: 34446099 PMCID: PMC8393766 DOI: 10.1186/s13148-021-01153-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/12/2021] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Glucocorticoids (GCs) play a pivotal role in fetal programming. Antenatal treatment with synthetic GCs (sGCs) in individuals in danger of preterm labor is common practice. Adverse short- and long-term effects of antenatal sGCs have been reported, but their effects on placental epigenetic characteristics have never been systematically studied in humans. RESULTS We tested the association between exposure to the sGC betamethasone (BET) and placental DNA methylation (DNAm) in 52 exposed cases and 84 gestational-age-matched controls. We fine-mapped associated loci using targeted bisulfite sequencing. The association of placental DNAm with gene expression and co-expression analysis on implicated genes was performed in an independent cohort including 494 placentas. Exposure to BET was significantly associated with lower placenta DNAm at an enhancer of FKBP5. FKBP5 (FK506-binding protein 51) is a co-chaperone that modulates glucocorticoid receptor activity. Lower DNAm at this enhancer site was associated with higher expression of FKBP5 and a co-expressed gene module. This module is enriched for genes associated with preeclampsia and involved in inflammation and immune response. CONCLUSIONS Our findings suggest that BET exposure during pregnancy associates with few but lasting changes in placental DNAm and may promote a gene expression profile associated with placental dysfunction and increased inflammation. This may represent a pathway mediating GC-associated negative long-term consequences and health outcomes in offspring.
Collapse
Affiliation(s)
- Darina Czamara
- Department of Translational Research in Psychiatry, Max-Planck-Institute of Psychiatry, 80804 Munich, Germany
| | - Linda Dieckmann
- Department of Translational Research in Psychiatry, Max-Planck-Institute of Psychiatry, 80804 Munich, Germany
- International Max Planck Research School for Translational Psychiatry, München, Germany
| | - Simone Röh
- Department of Translational Research in Psychiatry, Max-Planck-Institute of Psychiatry, 80804 Munich, Germany
| | - Sarah Kraemer
- Institute of Medical Psychology, Charité − Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health (BIH), Luisenstr. 57, 10117 Berlin, Germany
| | - Rebecca C. Rancourt
- Department of Experimental Obstetrics, Charité − Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health (BIH), Augustenburger Platz 1, 13353 Berlin, Germany
| | - Sara Sammallahti
- Department of Child and Adolescent Psychiatry, Erasmus MC, Sophia Children’s Hospital, Rotterdam, The Netherlands
| | - Eero Kajantie
- Finnish Institute for Health and Welfare, Helsinki, Finland
- Children’s Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- Faculty of Medicine, PEDEGO Research Unit, MRC Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Hannele Laivuori
- Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Helsinki, Finland
- Medical and Clinical Genetics, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Department of Obstetrics and Gynecology, Tampere University Hospital and Tampere University, Faculty of Medicine and Health Technology, Tampere, Finland
| | - Johan G. Eriksson
- Department of General Practice and Primary Care, University of Helsinki, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
- Department of Obstetrics and Gynaecology and Human Potential Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Katri Räikkönen
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Wolfgang Henrich
- Department of Obstetrics, Charité − Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health (BIH), Augustenburger Platz 1, 13353 Berlin, Germany
| | - Andreas Plagemann
- Department of Experimental Obstetrics, Charité − Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health (BIH), Augustenburger Platz 1, 13353 Berlin, Germany
- Department of Obstetrics, Charité − Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health (BIH), Augustenburger Platz 1, 13353 Berlin, Germany
| | - Elisabeth B. Binder
- Department of Translational Research in Psychiatry, Max-Planck-Institute of Psychiatry, 80804 Munich, Germany
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30329 USA
| | - Thorsten Braun
- Department of Experimental Obstetrics, Charité − Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health (BIH), Augustenburger Platz 1, 13353 Berlin, Germany
- Department of Obstetrics, Charité − Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health (BIH), Augustenburger Platz 1, 13353 Berlin, Germany
| | - Sonja Entringer
- Institute of Medical Psychology, Charité − Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health (BIH), Luisenstr. 57, 10117 Berlin, Germany
- Development, Health, and Disease Research Program, University of California, Irvine, Orange, CA USA
| |
Collapse
|
31
|
Naturalistic Stress Hormone Levels Drive Cumulative Epigenomic Changes along the Cellular Lifespan. Int J Mol Sci 2021; 22:ijms22168778. [PMID: 34445485 PMCID: PMC8395735 DOI: 10.3390/ijms22168778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/13/2021] [Accepted: 08/14/2021] [Indexed: 11/17/2022] Open
Abstract
Environmental stress is ubiquitous in modern societies and can exert a profound and cumulative impact on cell function and health phenotypes. This impact is thought to be in large part mediated by the action of glucocorticoid stress hormones, primarily cortisol in humans. While the underlying molecular mechanisms are unclear, epigenetics-the chemical changes that regulate genomic function without altering the genetic code-has emerged as a key link between environmental exposures and phenotypic outcomes. The present study assessed genome-wide DNA (CpG) methylation, one of the key epigenetic mechanisms, at three timepoints during prolonged (51-day) exposure of cultured human fibroblasts to naturalistic cortisol levels, which can be reached in human tissues during in vivo stress. The findings support a spatiotemporal model of profound and widespread stress hormone-driven methylomic changes that emerge at selected CpG sites, are more likely to spread to nearby located CpGs, and quantitatively accrue at open sea, glucocorticoid receptor binding, and chromatin-accessible sites. Taken together, these findings provide novel insights into how prolonged stress may impact the epigenome, with potentially important implications for stress-related phenotypes.
Collapse
|
32
|
The role of epigenetics in psychological resilience. Lancet Psychiatry 2021; 8:620-629. [PMID: 33915083 PMCID: PMC9561637 DOI: 10.1016/s2215-0366(20)30515-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 12/20/2022]
Abstract
There is substantial variation in people's responses to adversity, with a considerable proportion of individuals displaying psychological resilience. Epigenetic mechanisms are hypothesised to be one molecular pathway of how adverse and traumatic events can become biologically embedded and contribute to individual differences in resilience. However, not much is known regarding the role of epigenetics in the development of psychological resilience. In this Review, we propose a new conceptual model for the different functions of epigenetic mechanisms in psychological resilience. The model considers the initial establishment of the epigenome, epigenetic modification due to adverse and protective environments, the role of protective factors in counteracting adverse influences, and genetic moderation of environmentally induced epigenetic modifications. After reviewing empirical evidence for the various components of the model, we identify research that should be prioritised and discuss practical implications of the proposed model for epigenetic research on resilience.
Collapse
|
33
|
Womersley JS, Nothling J, Toikumo S, Malan-Müller S, van den Heuvel LL, McGregor NW, Seedat S, Hemmings SMJ. Childhood trauma, the stress response and metabolic syndrome: A focus on DNA methylation. Eur J Neurosci 2021; 55:2253-2296. [PMID: 34169602 DOI: 10.1111/ejn.15370] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 05/13/2021] [Accepted: 06/12/2021] [Indexed: 12/12/2022]
Abstract
Childhood trauma (CT) is well established as a potent risk factor for the development of mental disorders. However, the potential of adverse early experiences to exert chronic and profound effects on physical health, including aberrant metabolic phenotypes, has only been more recently explored. Among these consequences is metabolic syndrome (MetS), which is characterised by at least three of five related cardiometabolic traits: hypertension, insulin resistance/hyperglycaemia, raised triglycerides, low high-density lipoprotein and central obesity. The deleterious effects of CT on health outcomes may be partially attributable to dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis, which coordinates the response to stress, and the consequent fostering of a pro-inflammatory environment. Epigenetic tags, such as DNA methylation, which are sensitive to environmental influences provide a means whereby the effects of CT can be biologically embedded and persist into adulthood to affect health and well-being. The methylome regulates the transcription of genes involved in the stress response, metabolism and inflammation. This narrative review examines the evidence for DNA methylation in CT and MetS in order to identify shared neuroendocrine and immune correlates that may mediate the increased risk of MetS following CT exposure. Our review specifically highlights differential methylation of FKBP5, the gene that encodes FK506-binding protein 51 and has pleiotropic effects on stress responding, inflammation and energy metabolism, as a central candidate to understand the molecular aetiology underlying CT-associated MetS risk.
Collapse
Affiliation(s)
- Jacqueline S Womersley
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.,South African Medical Research Council/Stellenbosch University Genomics of Brain Disorders Research Unit, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Jani Nothling
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.,South African Medical Research Council/Stellenbosch University Genomics of Brain Disorders Research Unit, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.,Gender and Health Research Unit, South African Medical Research Council, Cape Town, South Africa
| | - Sylvanus Toikumo
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Stefanie Malan-Müller
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Leigh L van den Heuvel
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.,South African Medical Research Council/Stellenbosch University Genomics of Brain Disorders Research Unit, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Nathaniel W McGregor
- Systems Genetics Working Group, Department of Genetics, Faculty of Agriculture, Stellenbosch University, Stellenbosch, South Africa
| | - Soraya Seedat
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.,South African Medical Research Council/Stellenbosch University Genomics of Brain Disorders Research Unit, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Sîan M J Hemmings
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.,South African Medical Research Council/Stellenbosch University Genomics of Brain Disorders Research Unit, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
34
|
Mourtzi N, Sertedaki A, Charmandari E. Glucocorticoid Signaling and Epigenetic Alterations in Stress-Related Disorders. Int J Mol Sci 2021; 22:5964. [PMID: 34073101 PMCID: PMC8198182 DOI: 10.3390/ijms22115964] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/26/2021] [Accepted: 05/29/2021] [Indexed: 12/31/2022] Open
Abstract
Stress is defined as a state of threatened or perceived as threatened homeostasis. The well-tuned coordination of the stress response system is necessary for an organism to respond to external or internal stressors and re-establish homeostasis. Glucocorticoid hormones are the main effectors of stress response and aberrant glucocorticoid signaling has been associated with an increased risk for psychiatric and mood disorders, including schizophrenia, post-traumatic stress disorder and depression. Emerging evidence suggests that life-stress experiences can alter the epigenetic landscape and impact the function of genes involved in the regulation of stress response. More importantly, epigenetic changes induced by stressors persist over time, leading to increased susceptibility for a number of stress-related disorders. In this review, we discuss the role of glucocorticoids in the regulation of stress response, the mechanism through which stressful experiences can become biologically embedded through epigenetic alterations, and we underline potential associations between epigenetic changes and the development of stress-related disorders.
Collapse
Affiliation(s)
- Niki Mourtzi
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, “Aghia Sophia” Children’s Hospital, National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece; (N.M.); (A.S.)
| | - Amalia Sertedaki
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, “Aghia Sophia” Children’s Hospital, National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece; (N.M.); (A.S.)
| | - Evangelia Charmandari
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, “Aghia Sophia” Children’s Hospital, National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece; (N.M.); (A.S.)
- Division of Endocrinology and Metabolism, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| |
Collapse
|
35
|
The dynamicity of acute ozone-induced systemic leukocyte trafficking and adrenal-derived stress hormones. Toxicology 2021; 458:152823. [PMID: 34051339 DOI: 10.1016/j.tox.2021.152823] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/06/2021] [Accepted: 05/24/2021] [Indexed: 12/16/2022]
Abstract
Ozone exposure induces neuroendocrine stress response, which causes lymphopenia. It was hypothesized that ozone-induced increases in stress hormones will temporally follow changes in circulating granulocytes, monocytes- and lymphocyte subpopulations. The goal of this study was to chronicle the changes in circulating stress hormones, cytokines, and leukocyte trafficking during 4 h exposure to ozone. Male Wistar Kyoto rats were exposed to air or ozone (0.4 or 0.8 ppm) for 0.5, 1, 2, or 4 h. After each time point, circulating stress hormones, cytokines, and lung gene expression were assessed along with live and apoptotic granulocytes, monocytes (classical and non-classical), and lymphocytes (B, Th, and Tc) in blood, thymus, and spleen using flow cytometry. Circulating stress hormones began to increase at 1 h of ozone exposure. Lung expression of inflammatory cytokines (Cxcl2, Il6, and Hmox1) and glucocorticoid-responsive genes (Nr3c1, Fkbp5 and Tsc22d3) increased in both a time- and ozone concentration-dependent manner. Circulating granulocytes increased at 0.5 h of ozone exposure but tended to decrease at 2 and 4 h, suggesting a rapid egress and then margination to the lung. Classical monocytes decreased over 4 h of exposure periods (∼80 % at 0.8 ppm). B and Tc lymphocytes significantly decreased after ozone exposure at 2 and 4 h. Despite dynamic shifts in circulating immune cell populations, few differences were measured in serum cytokines. Ozone neither increased apoptotic cells nor altered thymus and spleen lymphocytes. The data show that ozone-induced increases in adrenal-derived stress hormones precede the dynamic migration of circulating immune cells, likely to the lung to mediate inflammation.
Collapse
|
36
|
Zhang C, Cui X, Feng L, Han Z, Peng D, Fu W, Xing Y. The deficiency of FKBP-5 inhibited hepatocellular progression by increasing the infiltration of distinct immune cells and inhibiting obesity-associated gut microbial metabolite. J Gastrointest Oncol 2021; 12:711-721. [PMID: 34012660 DOI: 10.21037/jgo-21-71] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Gut microbiota has a number of essential roles in nutrition metabolism and immune homeostasis, and is closely related to hepatocellular progression. In recent years, studies have also shown that FK506 binding protein 5 (FKBP-5) plays a crucial role in immune regulation. However, it is not yet clear whether FKBP-5 promotes the development of hepatocellular carcinoma (HCC) by affecting immune function and gut microbiota. Methods FKBP-5 expression was verified by immunochemistry and western blot and reverse transcription polymerase chain reaction (RT-qPCR) assays. After treatment in WT and FKBP-5-/- mice, the histological characteristic of mice liver tissue was assessed by H&E staining, and hepatic leukocytes and hepatic NKT cells were identified by flow cytometer. Meanwhile, primary bile acids (BAs), secondary BAs, serum total cholesterol, and the weight of abdomen adipose tissues were examined, and the gut microbiota was evaluated by 16S ribosomal ribonucleic acid (rRNA) sequencing. Results We discovered that FKBP-5 was highly expressed in HCC tissues. Meanwhile, FKBP-5 deletion inhibited tumor progression by increasing CD8+ T, CD4+ T, NKT and CD4+NKT cells in mice after diethylnitrosamine (DEN) injection. Besides, we proved that FKBP-5 deletion generated rapid and significant reductions in the intestinal BAs, the weight of abdomen adipose tissues and the serum total cholesterol. FKBP-5 deletion also led to a change in the composition of gut microbiota, suggesting that BAs are the main dietary factor regulating gut microbiota, which could be affected by FKBP-5 deletion. Further, we uncovered that anti-CD4 and anti-CD8 treatments facilitated hepatocellular progression by modulating gut microbiota composition in FKBP-5-/- mice. Conclusions Therefore, we demonstrated that FKBP-5 deletion inhibited hepatocellular progression by modulating immune response and gut microbiome-mediated BAs metabolism.
Collapse
Affiliation(s)
- Chuantao Zhang
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiang Cui
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Lian Feng
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Zhiyi Han
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Deti Peng
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Wenjun Fu
- South China Research Center for Acupuncture and Moxibustion, School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yufeng Xing
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| |
Collapse
|
37
|
Abstract
Aim: Social scientists have placed particularly high expectations on the study of epigenomics to explain how exposure to adverse social factors like poverty, child maltreatment and racism - particularly early in childhood - might contribute to complex diseases. However, progress has stalled, reflecting many of the same challenges faced in genomics, including overhype, lack of diversity in samples, limited replication and difficulty interpreting significance of findings. Materials & methods: This review focuses on the future of social epigenomics by discussing progress made, ongoing methodological and analytical challenges and suggestions for improvement. Results & conclusion: Recommendations include more diverse sample types, cross-cultural, longitudinal and multi-generational studies. True integration of social and epigenomic data will require increased access to both data types in publicly available databases, enhanced data integration frameworks, and more collaborative efforts between social scientists and geneticists.
Collapse
Affiliation(s)
- Amy L Non
- Department of Anthropology at the University of California, San Diego, 92093 CA, USA
| |
Collapse
|
38
|
Menke A, Nitschke F, Hellmuth A, Helmel J, Wurst C, Stonawski S, Blickle M, Weiß C, Weber H, Hommers L, Domschke K, Deckert J. Stress impairs response to antidepressants via HPA axis and immune system activation. Brain Behav Immun 2021; 93:132-140. [PMID: 33422640 DOI: 10.1016/j.bbi.2020.12.033] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 10/22/2022] Open
Abstract
Childhood trauma as well as severe events occurring later in life have been associated with the development of major depressive disorder (MDD). However, the interaction of early and later occurring adverse events in patients with MDD is understudied. This study aims to disentangle this interaction by investigating the effects on two of the main stress-response systems of the body, the hypothalamic-pituitaryadrenal (HPA-) axis and the immune system in depressed patients. The function of the HPA-axis was assessed by measuring FKBP5, SGK1 and NR3C1 mRNA-expression in peripheral blood after an in vivo glucocorticoid receptor (GR) challenge with 1.5 mg dexamethasone in 150 depressed in-patients (47.4% females). Childhood trauma was evaluated using the Childhood Trauma Questionnaire (CTQ), severe life events occurring one year prior to hospital admission were assessed with the List of Threatening Experiences (LTE). Multiple childhood traumata, i.e. ≥ 3, were present in 68 (45.5%) patients, 59 (39.3%) experienced ≥ 3 severe recent life events. The history of ≥ 3 severe recent life events was associated with an impaired GR-induction of SGK1 (F = 10.455; df = 1; p = 0.002) and FKBP5 mRNA expression (F = 8.720; df = 1; p = 0.004), and with elevated measures of the immune system such as CRP and lymphocyte count. In addition, severe recent life events were associated with a substantially impaired treatment response to antidepressants (F = 7.456; df = 1; p = 0.008). These effects could not be observed in relation to childhood trauma. Severe life events occurring prior to MDD development substantially impaired the stress-response systems and the response to treatment with antidepressants. This finding may indicate the need to employ additional treatment options such as psychotherapy right at the beginning of treatment or immune-modulating approaches.
Collapse
Affiliation(s)
- Andreas Menke
- Center of Mental Health, Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Würzburg, Margarete-Höppel-Platz 1, 97080 Würzburg, Germany; Interdisciplinary Center for Clinical Research, University Hospital of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany; Comprehensive Hearth Failure Center (CHFC), University Hospital of Würzburg, Am Schwarzenberg 15, 97078 Würzburg, Germany; Medical Park Chiemseeblick, Department of Psychosomatic Medicine and Psychotherapy, Rasthausstr. 25, 83233 Bernau am Chiemsee; Department of Psychiatry and Psychotherapy, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany.
| | - Felix Nitschke
- Center of Mental Health, Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Würzburg, Margarete-Höppel-Platz 1, 97080 Würzburg, Germany
| | - Anna Hellmuth
- Center of Mental Health, Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Würzburg, Margarete-Höppel-Platz 1, 97080 Würzburg, Germany
| | - Jacqueline Helmel
- Center of Mental Health, Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Würzburg, Margarete-Höppel-Platz 1, 97080 Würzburg, Germany
| | - Catherina Wurst
- Center of Mental Health, Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Würzburg, Margarete-Höppel-Platz 1, 97080 Würzburg, Germany; Interdisciplinary Center for Clinical Research, University Hospital of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany; Comprehensive Hearth Failure Center (CHFC), University Hospital of Würzburg, Am Schwarzenberg 15, 97078 Würzburg, Germany
| | - Saskia Stonawski
- Center of Mental Health, Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Würzburg, Margarete-Höppel-Platz 1, 97080 Würzburg, Germany; Interdisciplinary Center for Clinical Research, University Hospital of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany; Comprehensive Hearth Failure Center (CHFC), University Hospital of Würzburg, Am Schwarzenberg 15, 97078 Würzburg, Germany
| | - Manuel Blickle
- Center of Mental Health, Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Würzburg, Margarete-Höppel-Platz 1, 97080 Würzburg, Germany
| | - Carolin Weiß
- Center of Mental Health, Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Würzburg, Margarete-Höppel-Platz 1, 97080 Würzburg, Germany
| | - Heike Weber
- Center of Mental Health, Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Würzburg, Margarete-Höppel-Platz 1, 97080 Würzburg, Germany
| | - Leif Hommers
- Center of Mental Health, Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Würzburg, Margarete-Höppel-Platz 1, 97080 Würzburg, Germany; Interdisciplinary Center for Clinical Research, University Hospital of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany; Comprehensive Hearth Failure Center (CHFC), University Hospital of Würzburg, Am Schwarzenberg 15, 97078 Würzburg, Germany
| | - Katharina Domschke
- Department of Psychiatry and Psychotherapy, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Hauptstr. 5, 79104 Freiburg, Germany; Center for Basics in NeuroModulation, Faculty of Medicine, University of Freiburg, Breisacher Str.64, 79106 Freiburg, Germany
| | - Jürgen Deckert
- Center of Mental Health, Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Würzburg, Margarete-Höppel-Platz 1, 97080 Würzburg, Germany
| |
Collapse
|
39
|
Misiak B, Karpiński P, Szmida E, Grąźlewski T, Jabłoński M, Cyranka K, Rymaszewska J, Piotrowski P, Kotowicz K, Frydecka D. Adverse Childhood Experiences and Methylation of the FKBP5 Gene in Patients with Psychotic Disorders. J Clin Med 2020; 9:jcm9123792. [PMID: 33255215 PMCID: PMC7759816 DOI: 10.3390/jcm9123792] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/15/2020] [Accepted: 11/19/2020] [Indexed: 01/07/2023] Open
Abstract
Altered methylation of the FKBP5 gene has been observed in various mental disorders and attributed to the effects of adverse childhood experiences (ACEs). However, the level of FKBP5 methylation has not been investigated in patients with psychotic disorders. Therefore, in this study we aimed to determine the FKBP5 methylation in patients with psychosis and controls, taking into account the effects of ACEs. Participants were 85 patients with psychotic disorders, including first-episode psychosis (FEP) patients and acutely relapsed schizophrenia (SCZ-AR) patients, as well as 56 controls. The level of four CpG sites at the FKBP5 gene was determined in the peripheral blood leukocytes using pyrosequencing. After controlling for potential confounding factors, the level of FKBP5 methylation at one out of four tested CpG sites was significantly lower in FEP patients compared to other groups of participants. Significant main effects of parental antipathy and sexual abuse on the level of FKBP5 methylation were observed at the differentially methylated CpG site. Participants reporting this category of ACEs had significantly lower levels of FKBP5 methylation at this CpG site. Lower levels of FKBP5 methylation were associated with better cognitive performance and higher functional capacity in patients with psychosis. In controls, lower methylation of FKBP5 was related to worse performance of immediate memory and language skills. Our findings suggest that hypomethylation of the FKBP5 appears at early stages of psychosis and might be associated with a history of ACEs as well as less severe clinical manifestation.
Collapse
Affiliation(s)
- Błażej Misiak
- Department of Psychiatry, Wroclaw Medical University, Pasteura 10 Street, 50-367 Wroclaw, Poland; (J.R.); (P.P.); (K.K.); (D.F.)
- Correspondence:
| | - Paweł Karpiński
- Department of Genetics, Wroclaw Medical University, Marcinkowskiego 1 Street, 50-368 Wroclaw, Poland; (P.K.); (E.S.)
- Laboratory of Genomics & Bioinformatics, Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12 Street, 53-114 Wroclaw, Poland
| | - Elżbieta Szmida
- Department of Genetics, Wroclaw Medical University, Marcinkowskiego 1 Street, 50-368 Wroclaw, Poland; (P.K.); (E.S.)
| | - Tomasz Grąźlewski
- Department of Psychiatry, Pomeranian Medical University, Broniewskiego 26 Street, 71-460 Szczecin, Poland; (T.G.); (M.J.)
| | - Marcin Jabłoński
- Department of Psychiatry, Pomeranian Medical University, Broniewskiego 26 Street, 71-460 Szczecin, Poland; (T.G.); (M.J.)
| | - Katarzyna Cyranka
- Department of Psychiatry, Jagiellonian University, Kopernika 21a Street, 31-501 Cracow, Poland;
| | - Joanna Rymaszewska
- Department of Psychiatry, Wroclaw Medical University, Pasteura 10 Street, 50-367 Wroclaw, Poland; (J.R.); (P.P.); (K.K.); (D.F.)
| | - Patryk Piotrowski
- Department of Psychiatry, Wroclaw Medical University, Pasteura 10 Street, 50-367 Wroclaw, Poland; (J.R.); (P.P.); (K.K.); (D.F.)
| | - Kamila Kotowicz
- Department of Psychiatry, Wroclaw Medical University, Pasteura 10 Street, 50-367 Wroclaw, Poland; (J.R.); (P.P.); (K.K.); (D.F.)
| | - Dorota Frydecka
- Department of Psychiatry, Wroclaw Medical University, Pasteura 10 Street, 50-367 Wroclaw, Poland; (J.R.); (P.P.); (K.K.); (D.F.)
| |
Collapse
|
40
|
Suarez A, Lahti J, Lahti-Pulkkinen M, Girchenko P, Czamara D, Arloth J, Malmberg ALK, Hämäläinen E, Kajantie E, Laivuori H, Villa PM, Reynolds RM, Provençal N, Binder EB, Räikkönen K. A polyepigenetic glucocorticoid exposure score at birth and childhood mental and behavioral disorders. Neurobiol Stress 2020; 13:100275. [PMID: 33344728 PMCID: PMC7739178 DOI: 10.1016/j.ynstr.2020.100275] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Maternal depression and anxiety during pregnancy may enhance fetal exposure to glucocorticoids (GCs) and harm neurodevelopment. We tested whether a novel cross-tissue polyepigenetic biomarker indicative of in utero exposure to GC is associated with mental and behavioral disorders and their severity in children, possibly mediating the associations between maternal prenatal depressive and anxiety symptoms and these child outcomes. METHODS Children (n = 814) from the Prediction and Prevention of Preeclampsia and Intrauterine Growth Restriction (PREDO) study were followed-up from birth to age 7.1-10.7 years. A weighted polyepigenetic GC exposure score was calculated based on the methylation profile of 24 CpGs from umbilical cord blood. Child diagnosis of mental and behavioral disorder (n = 99) and its severity, defined as the number of days the child had received treatment (all 99 had received outpatient treatment and 8 had been additionally in inpatient treatment) for mental or behavioral disorder as the primary diagnosis, came from the Care Register for Health Care. Mothers (n = 408) reported on child total behavior problems at child's age of 2.3-5.8 years and their own depressive and anxiety symptoms during pregnancy (n = 583). RESULTS The fetal polyepigenetic GC exposure score at birth was not associated with child hazard of mental and behavioral disorder (HR = 0.82, 95% CI 0.54; 1.24, p = 0.35) or total behavior problems (unstandardized beta = -0.10, 95% CI -0.31; 0.10, p = 0.33). However, for one standard deviation decrease in the polyepigenetic score, the child had spent 2.94 (95%CI 1.59; 5.45, p < 0.001) more days in inpatient or outpatient treatment with any mental and behavioral disorder as the primary diagnosis. Criteria for mediation tests were not met. CONCLUSIONS These findings suggest that fetal polyepigenetic GC exposure score at birth was not associated with any mental or behavioral disorder diagnosis or mother-rated total behavior problems, but it may contribute to identifying children at birth who are at risk for more severe mental or behavioral disorders.
Collapse
Key Words
- 11β-HSD2, 11-beta-hydroxysteroid-dehydrogenase type 2
- ADHD, Attention deficit/hyperactivity disorder
- BMI, Body-mass index
- CES‐D, Center for epidemiologic studies depression scale
- Childhood mental health
- Cord blood methylation
- DNAm, DNA methylation
- GC, Glucocorticoid
- GR, Glucocorticoid receptor
- GRE, Glucocorticoid response element
- Glucocorticoids
- HILMO, Care register for health care
- HPA-axis, Hypothalamic-pituitary-adrenal axis
- PREDO, Prediction and prevention of preeclampsia and intrauterine growth restriction
- Polyepigenetic biomarker
- Prenatal psychopathology
- Prospective study
- STAI, Spielberger state anxiety inventory
- ZINB, Zero-inflated negative binomial regression
Collapse
Affiliation(s)
- Anna Suarez
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Finland
| | - Jari Lahti
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Finland
- Turku Institute for Advanced Studies, University of Turku, Turku, Finland
| | - Marius Lahti-Pulkkinen
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Finland
- National Institute for Health and Welfare, Helsinki, Finland
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Polina Girchenko
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Finland
| | - Darina Czamara
- Department of Translational Research in Psychiatry, Max-Planck Institute of Psychiatry, Munich, Germany
| | - Janine Arloth
- Department of Translational Research in Psychiatry, Max-Planck Institute of Psychiatry, Munich, Germany
- Institute of Computational Biology, Helmholtz Zentrum München, Germany
| | - Anni LK. Malmberg
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Finland
| | - Esa Hämäläinen
- Department of Clinical Chemistry, University of Eastern Finland, Kuopio, Finland
| | - Eero Kajantie
- National Institute for Health and Welfare, Helsinki, Finland
- PEDEGO Research Unit, MRC Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
- Department of Clinical and Molecular Medicine, Norwegian University for Science and Technology, Trondheim, Norway
- Children's Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Hannele Laivuori
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- Department of Obstetrics and Gynecology, Tampere University Hospital and Faculty of Medicine and Health Technology, University of Tampere, Tampere, Finland
- Medical and Clinical Genetics, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Pia M. Villa
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Department of Obstetrics and Gynecology, Hyvinkää Hospital, Helsinki and Uusimaa Hospital District, Finland
| | - Rebecca M. Reynolds
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Nadine Provençal
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
- BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Elisabeth B. Binder
- Department of Translational Research in Psychiatry, Max-Planck Institute of Psychiatry, Munich, Germany
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, USA
| | - Katri Räikkönen
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Finland
| |
Collapse
|
41
|
Zimmer C, Hanson HE, Wildman DE, Uddin M, Martin LB. FKBP5: A Key Mediator of How Vertebrates Flexibly Cope with Adversity. Bioscience 2020. [DOI: 10.1093/biosci/biaa114] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Abstract
Flexibility in the regulation of the hypothalamic–pituitary–adrenal (HPA) axis is an important mediator of stress resilience as it helps organisms adjust to, avoid, or compensate for acute and chronic challenges across changing environmental contexts. Glucocorticoids remain the favorite metric from medicine to conservation biology to attempt to quantify stress resilience despite the skepticism around their consistency in relation to individual health, welfare, and fitness. We suggest that a cochaperone molecule related to heat shock proteins and involved in glucocorticoid receptor activity, FKBP5, may mediate HPA flexibility and therefore stress resilience because it affects how individuals can regulate glucocorticoids and therefore capacitates their abilities to adjust phenotypes appropriately to prevailing, adverse conditions. Although the molecule is well studied in the biomedical literature, FKBP5 research in wild vertebrates is limited. In the present article, we highlight the potential major role of FKBP5 as mediator of HPA axis flexibility in response to adversity in humans and lab rodents.
Collapse
Affiliation(s)
- Cedric Zimmer
- Global and Planetary Health Department of the College of Public Health, University of South Florida, Tampa, Florida
| | - Haley E Hanson
- Global and Planetary Health Department of the College of Public Health, University of South Florida, Tampa, Florida
| | - Derek E Wildman
- Global and Planetary Health Department of the College of Public Health, University of South Florida, Tampa, Florida
| | - Monica Uddin
- Global and Planetary Health Department of the College of Public Health, University of South Florida, Tampa, Florida
| | - Lynn B Martin
- Global and Planetary Health Department of the College of Public Health, University of South Florida, Tampa, Florida
| |
Collapse
|
42
|
Willmer T, Goedecke JH, Dias S, Louw J, Pheiffer C. DNA methylation of FKBP5 in South African women: associations with obesity and insulin resistance. Clin Epigenetics 2020; 12:141. [PMID: 32958048 PMCID: PMC7507280 DOI: 10.1186/s13148-020-00932-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 09/01/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Disruption of the hypothalamic-pituitary-adrenal (HPA) axis, a neuroendocrine system associated with the stress response, has been hypothesized to contribute to obesity development. This may be mediated through epigenetic modulation of HPA axis-regulatory genes in response to metabolic stressors. The aim of this study was to investigate adipose tissue depot-specific DNA methylation differences in the glucocorticoid receptor (GR) and its co-chaperone, FK506-binding protein 51 kDa (FKBP5), both key modulators of the HPA axis. METHODS Abdominal subcutaneous adipose tissue (ASAT) and gluteal subcutaneous adipose tissue (GSAT) biopsies were obtained from a sample of 27 obese and 27 normal weight urban-dwelling South African women. DNA methylation and gene expression were measured by pyrosequencing and quantitative real-time PCR, respectively. Spearman's correlation coefficients, orthogonal partial least-squares discriminant analysis and multivariable linear regression were performed to evaluate the associations between DNA methylation, messenger RNA (mRNA) expression and key indices of obesity and metabolic dysfunction. RESULTS Two CpG dinucleotides within intron 7 of FKBP5 were hypermethylated in both ASAT and GSAT in obese compared to normal weight women, while no differences in GR methylation were observed. Higher percentage methylation of the two FKBP5 CpG sites correlated with adiposity (body mass index and waist circumference), insulin resistance (homeostasis model for insulin resistance, fasting insulin and plasma adipokines) and systemic inflammation (c-reactive protein) in both adipose depots. GR and FKBP5 mRNA levels were lower in GSAT, but not ASAT, of obese compared to normal weight women. Moreover, FKBP5 mRNA levels were inversely correlated with DNA methylation and positively associated with adiposity, metabolic and inflammatory parameters. CONCLUSIONS These findings associate dysregulated FKBP5 methylation and mRNA expression with obesity and insulin resistance in South African women. Additional studies are required to assess the longitudinal association of FKBP5 with obesity and associated co-morbidities in large population-based samples.
Collapse
Affiliation(s)
- Tarryn Willmer
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, 7505, South Africa.
- Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg, 7505, South Africa.
| | - Julia H Goedecke
- Non-Communicable Diseases Research Unit, South African Medical Research Council, Tygerberg, 7505, South Africa
- Division of Exercise Science and Sports Medicine, Department of Human Biology, University of Cape Town, Boundary Road, Newlands, 7700, South Africa
| | - Stephanie Dias
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, 7505, South Africa
| | - Johan Louw
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, 7505, South Africa
- Department of Biochemistry and Microbiology, University of Zululand, Kwa-Dlangezwa, 3886, South Africa
| | - Carmen Pheiffer
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, 7505, South Africa
- Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg, 7505, South Africa
| |
Collapse
|
43
|
Keverne J, Binder EB. A Review of epigenetics in psychiatry: focus on environmental risk factors. MED GENET-BERLIN 2020. [DOI: 10.1515/medgen-2020-2004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Abstract
Epigenetic modifications play a key role in development and cell type specificity. These modifications seem to be particularly critical for brain development, where mutations in epigenetic enzymes have been associated with neurodevelopmental disorders as well as with the function of post-mitotic neurons. Epigenetic modifications can be influenced by genetic and environmental factors, both known major risk factors for psychiatric disorders. Epigenetic modifications may thus be an important mediator of the effects of genetic and environmental risk factors on cell function.
This review summarizes the different types of epigenetic regulation and then focuses on the mechanisms transducing environmental signals, especially adverse life events that are major risk factors for psychiatric disorders, into lasting epigenetic changes. This is followed by examples of how the environment can induce epigenetic changes that relate to the risk of psychiatric disorders.
Collapse
Affiliation(s)
| | - Elisabeth B. Binder
- Dept. of Translational Research in Psychiatry , Max Planck Institute of Psychiatry , Kraepelinstr. 2-10 , Munich , Germany
| |
Collapse
|
44
|
Abstract
The risk for major depression is both genetically and environmentally determined. It has been proposed that epigenetic mechanisms could mediate the lasting increases in depression risk following exposure to adverse life events and provide a mechanistic framework within which genetic and environmental factors can be integrated. Epigenetics refers to processes affecting gene expression and translation that do not involve changes in the DNA sequence and include DNA methylation (DNAm) and microRNAs (miRNAs) as well as histone modifications. Here we review evidence for a role of epigenetics in the pathogenesis of depression from studies investigating DNAm, miRNAs, and histone modifications using different tissues and various experimental designs. From these studies, a model emerges where underlying genetic and environmental risk factors, and interactions between the two, could drive aberrant epigenetic mechanisms targeting stress response pathways, neuronal plasticity, and other behaviorally relevant pathways that have been implicated in major depression.
.
Collapse
Affiliation(s)
- Signe Penner-Goeke
- Dept of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Elisabeth B Binder
- Dept of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| |
Collapse
|
45
|
Galbally M, Watson SJ, van IJzendoorn M, Saffery R, Ryan J, de Kloet ER, Oberlander TF, Lappas M, Lewis AJ. The role of glucocorticoid and mineralocorticoid receptor DNA methylation in antenatal depression and infant stress regulation. Psychoneuroendocrinology 2020; 115:104611. [PMID: 32087522 DOI: 10.1016/j.psyneuen.2020.104611] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 12/02/2019] [Accepted: 02/03/2020] [Indexed: 12/12/2022]
Abstract
Understanding fetal programming pathways that underpin the relationship between maternal and offspring mental health necessitates an exploration of potential role of epigenetic variation in early development. Two genes involved in stress response regulation, the glucocorticoid and mineralocorticoid receptors (NR3C1 and NR3C2) have been a focus in understanding stressful exposures and mental health outcomes. Data were obtained from 236 pregnant women from the Mercy Pregnancy Emotional Wellbeing Study (MPEWS), a selected pregnancy cohort, recruited in early pregnancy. Depression was measured using the Structured Clinical Interview for DSM-IV (SCID-IV) and repeated measures of the Edinburgh Postnatal Depression Scale (EPDS). Antidepressant use, stressful events and anxiety symptoms were measured. NR3C1 and NR3C2 DNA methylation was measured in placental and infant buccal samples. Infant cortisol was measured in repeat saliva samples across a task. This study found maternal early pregnancy depressive disorder and symptoms were associated with lower DNA methylation at NR3C2 CpG_24 in placental tissue. There were no significant differences for depression or antidepressant use for DNA methylation of NR3C1. Antenatal depression was associated with lower infant cortisol reactivity at 12 months. DNA methylation in CpG_24 site in NR3C2 in placental samples suppressed the relationship between early maternal depressive symptoms and infant cortisol reactivity. These findings show a relationship between antenatal depression, NR3C2 DNA methylation and infant cortisol response providing support for a specific fetal programming pathway. Further research is required to examine the stability of this epigenetic mark across childhood and long-term mental health outcomes.
Collapse
Affiliation(s)
- Megan Galbally
- School of Psychology and Exercise Science, Murdoch University, Australia; School of Medicine, University of Notre Dame, Australia; King Edward Memorial Hospital, Australia.
| | - Stuart J Watson
- School of Psychology and Exercise Science, Murdoch University, Australia; School of Medicine, University of Notre Dame, Australia
| | - Marinus van IJzendoorn
- Department of Psychology, Education and Child Studies, Erasmus University Rotterdam, Netherlands
| | - Richard Saffery
- Murdoch Children's Research Institute & Department of Paediatrics, The University of Melbourne, Australia
| | - Joanne Ryan
- Murdoch Children's Research Institute & Department of Paediatrics, The University of Melbourne, Australia; Department of Epidemiology & Preventive Medicine, Monash University, Australia
| | | | - Tim F Oberlander
- Department of Pediatrics and School of Population and Public Health, Univeristy of British Columbia, Vancouver, BC, Canada
| | - Martha Lappas
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Victoria, Australia
| | - Andrew J Lewis
- School of Psychology and Exercise Science, Murdoch University, Australia
| |
Collapse
|
46
|
Krontira AC, Cruceanu C, Binder EB. Glucocorticoids as Mediators of Adverse Outcomes of Prenatal Stress. Trends Neurosci 2020; 43:394-405. [PMID: 32459992 DOI: 10.1016/j.tins.2020.03.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/10/2020] [Accepted: 03/15/2020] [Indexed: 02/06/2023]
Abstract
A number of prenatal experiences are associated with adverse outcomes after birth, ranging from cardiovascular problems to psychiatric disease. Prenatal stress is associated with neurodevelopmental alterations that persist after birth and manifest at the behavioral level, for example, increased fearfulness, and at the physiological one, that is, brain structural and functional changes. Understanding the mechanisms that drive these lasting effects may help in preventing long-term negative outcomes of prenatal stress. Elevated glucocorticoid signaling in utero may be one of the key mediators of prenatal stress effects on the offspring. In this review, we summarize how prenatal glucocorticoids may impact the activity of the fetal hypothalamic-pituitary-adrenal (HPA) axis, disrupt neurodevelopmental processes and alter the epigenetic landscape of the fetus. We also discuss the need to take into consideration the interaction of these processes with the offspring's genetic landscape.
Collapse
Affiliation(s)
- Anthi C Krontira
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany; International Max Planck Research School for Translational Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Cristiana Cruceanu
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Elisabeth B Binder
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany.
| |
Collapse
|
47
|
Scherf-Clavel M, Wurst C, Nitschke F, Stonawski S, Burschka C, Friess L, Unterecker S, Hommers L, Deckert J, Domschke K, Menke A. Extent of cortisol suppression at baseline predicts improvement in HPA axis function during antidepressant treatment. Psychoneuroendocrinology 2020; 114:104590. [PMID: 32006918 DOI: 10.1016/j.psyneuen.2020.104590] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 12/18/2019] [Accepted: 01/21/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND A dysregulation in the hypothalamic-pituitary-adrenal (HPA)-axis function has been repeatedly observed in major depressive disorders (MDD). Normalization of this dysregulation, i.e. of cortisol suppression after glucocorticoid receptor (GR)-stimulation, may be mandatory for clinical remission in some patient subgroups. However, there are no biological measures applied in the clinical setting to identify patient subgroups with HPA axis alterations. OBJECTIVE We aimed to define a suppression index of cortisol concentrations before and after GR stimulation with dexamethasone to predict the variability in improvement of HPA axis activity during antidepressant treatment. METHODS A modified dexamethasone suppression test (mDST) was performed with blood withdrawal for cortisol and ACTH measurement before and 3 h after 1.5 mg dexamethasone intake at 18:00 in two cohorts of depressed patients treated in a naturalistic setting. The discovery sample consisted of 106 patients, the replication sample of 117 patients. The suppression index was defined as cCORTpreDEXcCORTpostDEX. RESULTS The baseline suppression index explained 27.4 % of the variance in changes of HPA axis activity before and after treatment with antidepressants. Age, cCORTpreDEXcACTHpreDEX at baseline and sex explained further variance up to 56.2 % (stepwise linear regression, p = 7.8e-8). A threshold of the suppression index at baseline was determined by ROC analysis and revealed, that only patients with a maximum index of 2.32 achieved a normalization of the HPA axis activity after antidepressant treatment. In the replication sample, the threshold was 2.86. However, the estimated suppression index was not associated with treatment response. CONCLUSION For the first time, by establishing a short-term suppression index of cortisol before and after GR-stimulation a threshold could be identified to predict improvement of HPA axis activity during antidepressant therapy. After replication in further studies this index may help to identify patients who benefit from a specific treatment that targets components of the HPA axis in the future.
Collapse
Affiliation(s)
- Maike Scherf-Clavel
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany.
| | - Catherina Wurst
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany; Interdisciplinary Center for Clinical Research, University of Würzburg, Josef-Schneider-Strasse 2, 97080, Würzburg, Germany; Comprehensive Heart Failure Center, University Hospital of Würzburg, Am Schwarzenberg 15, Würzburg, 97080, Germany
| | - Felix Nitschke
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany
| | - Saskia Stonawski
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany; Interdisciplinary Center for Clinical Research, University of Würzburg, Josef-Schneider-Strasse 2, 97080, Würzburg, Germany; Comprehensive Heart Failure Center, University Hospital of Würzburg, Am Schwarzenberg 15, Würzburg, 97080, Germany
| | - Carolin Burschka
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany
| | - Lisa Friess
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany
| | - Stefan Unterecker
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany
| | - Leif Hommers
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany; Interdisciplinary Center for Clinical Research, University of Würzburg, Josef-Schneider-Strasse 2, 97080, Würzburg, Germany; Comprehensive Heart Failure Center, University Hospital of Würzburg, Am Schwarzenberg 15, Würzburg, 97080, Germany
| | - Jürgen Deckert
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany
| | - Katharina Domschke
- Department of Psychiatry and Psychotherapy, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Hauptstrasse 5, 79104, Freiburg, Germany
| | - Andreas Menke
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany; Interdisciplinary Center for Clinical Research, University of Würzburg, Josef-Schneider-Strasse 2, 97080, Würzburg, Germany; Comprehensive Heart Failure Center, University Hospital of Würzburg, Am Schwarzenberg 15, Würzburg, 97080, Germany
| |
Collapse
|
48
|
Cecil CAM, Zhang Y, Nolte T. Childhood maltreatment and DNA methylation: A systematic review. Neurosci Biobehav Rev 2020; 112:392-409. [PMID: 32081689 DOI: 10.1016/j.neubiorev.2020.02.019] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 02/14/2020] [Accepted: 02/15/2020] [Indexed: 12/20/2022]
Abstract
DNA methylation (DNAm) - an epigenetic process that regulates gene expression - may represent a mechanism for the biological embedding of early traumatic experiences, including childhood maltreatment. Here, we conducted the first systematic review of human studies linking childhood maltreatment to DNAm. In total, 72 studies were included in the review (2008-2018). The majority of extant studies (i) were based on retrospective data in adults, (ii) employed a candidate gene approach (iii) focused on global maltreatment, (iv) were based on easily accessible peripheral tissues, typically blood; and (v) were cross-sectional. Two-thirds of studies (n = 48) also examined maltreatment-related outcomes, such as stress reactivity and psychiatric symptoms. While findings generally support an association between childhood maltreatment and altered patterns of DNAm, factors such as the lack of longitudinal data, low comparability across studies as well as potential genetic and 'pre-exposure' environmental confounding currently limit the conclusions that can be drawn. Key challenges are discussed and concrete recommendations for future research are provided to move the field forward.
Collapse
Affiliation(s)
- Charlotte A M Cecil
- Department of Child and Adolescent Psychiatry, Erasmus Medical Centre, Rotterdam, The Netherlands; Department of Epidemiology, Erasmus Medical Centre, Rotterdam, The Netherlands; Department of Psychology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.
| | - Yuning Zhang
- Centre for Innovation in Mental Health, University of Southampton; State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Tobias Nolte
- The Wellcome Centre for Human Neuroimaging, University College London, London, United Kingdom; Anna Freud National Centre for Children and Families, London, United Kingdom
| |
Collapse
|
49
|
Prenatal maternal stress is associated with increased sensitivity to neuropathic pain and sex-specific changes in supraspinal mRNA expression of epigenetic- and stress-related genes in adulthood. Behav Brain Res 2020; 380:112396. [DOI: 10.1016/j.bbr.2019.112396] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/27/2019] [Accepted: 11/28/2019] [Indexed: 12/15/2022]
|