1
|
Kariminezhad S, Zomorrodi R, Zrenner C, Blumberger DM, Ameis SH, Lin HY, Lai MC, Rajji TK, Lunsky Y, Sanches M, Desarkar P. Assessing plasticity in the primary sensory cortex and its relation with atypical tactile reactivity in autism: A TMS-EEG protocol. PLoS One 2024; 19:e0305013. [PMID: 39591434 PMCID: PMC11594394 DOI: 10.1371/journal.pone.0305013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 10/25/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Atypical sensory reactivity is a cardinal presentation in autism. Within the tactile domain, atypical tactile reactivity (TR) is common, it emerges early, persists into adulthood, and impedes social interaction and daily functioning. Hence, atypical TR is a key target for biological intervention to improve outcomes. Brain mechanisms informing biological interventions for atypical TR remains elusive. We previously reported hyper-plasticity in the motor cortex in autistic adults and found that repetitive transcranial magnetic stimulation (rTMS), designed to strengthen inhibitory processes in the brain, reduced hyper-plasticity. Whether the primary sensory cortex (S1) is characterized by hyper-plasticity, which may underlie atypical TR in autism is unknown. OBJECTIVES We aim to test whether hyper-plasticity in the S1 underlies atypical TR in autism, and investigate if a single session of rTMS can safely reduce hyper-plasticity in S1 in autistic adults. METHOD Plasticity will be assessed in the left S1 with integrated paired associative stimulation and electroencephalography (PAS-EEG) paradigm in 32 autistic adults and 32 age-, sex-, and intelligence quotient-matched controls. Autistic participants will be further randomized (double-blind, 1:1) to receive a single-session of either sham or active 20 Hz bilateral rTMS over the S1 and the plasticity will be re-assessed over the left S1 on the same day. CONCLUSIONS Atypical TR has been identified as one of the top clinical research priorities that can influence outcome in autistic population. The study findings can be highly valuable to further elucidate the mechanism underlying atypical TR, which in turn can help with developing a mechanism-driven intervention.
Collapse
Affiliation(s)
- Shohreh Kariminezhad
- Azrieli Adult Neurodevelopmental Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Reza Zomorrodi
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Christoph Zrenner
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Daniel M. Blumberger
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Stephanie H. Ameis
- Azrieli Adult Neurodevelopmental Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- The Margaret and Wallace McCain Centre for Child, Youth & Family Mental Health, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Hsiang-Yuan Lin
- Azrieli Adult Neurodevelopmental Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Meng-Chuan Lai
- Azrieli Adult Neurodevelopmental Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- The Margaret and Wallace McCain Centre for Child, Youth & Family Mental Health, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Tarek K. Rajji
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Yona Lunsky
- Azrieli Adult Neurodevelopmental Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Marcos Sanches
- Biostatistical Core, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Pushpal Desarkar
- Azrieli Adult Neurodevelopmental Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Kim H, Park J, Ahn S, Lee H. The impact of sex/gender-specific funding and editorial policies on biomedical research outcomes: a cross-national analysis (2000-2021). Sci Rep 2024; 14:26599. [PMID: 39496696 PMCID: PMC11535369 DOI: 10.1038/s41598-024-77018-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 10/18/2024] [Indexed: 11/06/2024] Open
Abstract
Reflecting sex and gender characteristics in biomedical research is critical to improving health outcomes and reducing adverse effects from medical treatments. This study investigates the impact of sex/gender-specific funding policies and journal editorial standards on the integration of sex/gender analysis in biomedical research publications. Using data from the United States, Canada, the United Kingdom, and other countries between 2000 and 2021, we assessed how these policies influenced research output in the fields of medicine and life sciences. Our findings show that countries with progressive funding policies and journals promoting sex/gender-based reporting have significantly improved research quality and publication rates. This highlights the importance of coordinated policy efforts and editorial practices in advancing integrated sex/gender research. We recommend continued global efforts from policymakers, funding bodies, and journals to embed sex/gender perspectives in scientific inquiry, ensuring more effective and equitable biomedical advancements.
Collapse
Affiliation(s)
- Heajin Kim
- Korea Center for Gendered Innovations for Science and Technology Research, Seoul, Korea
| | - Jinseo Park
- Center for Global R&D Data Analysis, Korea Institute of Science and Technology Information, Seoul, Korea
| | - Sejung Ahn
- Center for Global R&D Data Analysis, Korea Institute of Science and Technology Information, Seoul, Korea
| | - Heisook Lee
- Korea Center for Gendered Innovations for Science and Technology Research, Seoul, Korea.
| |
Collapse
|
3
|
Etienne J, Boutigny A, David DJ, Deflesselle E, Gressier F, Becquemont L, Corruble E, Colle R. Habenular volume changes after venlafaxine treatment in patients with major depression. Psychiatry Clin Neurosci 2024; 78:468-472. [PMID: 38867362 PMCID: PMC11488621 DOI: 10.1111/pcn.13684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 06/14/2024]
Abstract
BACKGROUND Habenula, a hub brain region controlling monoaminergic brain center, has been implicated in major depressive disorder (MDD) and as a possible target of antidepressant response. Nevertheless, the effect of antidepressant drug treatment on habenular volumes remains unknown. The objective of the present research was to study habenular volume change after antidepressant treatment in patients with MDD, and assess whether it is associated with clinical improvement. METHODS Fifty patients with a current major depressive episode (MDE) in the context of MDD, and antidepressant-free for at least 1 month, were assessed for habenula volume (3T MRI with manual segmentation) before and after a 3 months sequence of venlafaxine antidepressant treatment. RESULTS A 2.3% significant increase in total habenular volume (absolute volume: P = 0.0013; relative volume: P = 0.0055) and a 3.3% significant increase in left habenular volume (absolute volume: P = 0.00080; relative volume: P = 0.0028) were observed. A significant greater variation was observed in male patients (4.8%) compared to female patients. No association was observed between habenular volume changes and response and remission. Some habenula volume changes were associated with improvement of olfactory pleasantness. CONCLUSION Habenular volumes increased after 3 months of venlafaxine treatment in depressed patients. Further studies should assess whether cell proliferation and density or dendritic structure variations are implied in these volume changes.
Collapse
Affiliation(s)
- Josselin Etienne
- Service Hospitalo‐Universitaire de Psychiatrie, Assistance Publique‐Hôpitaux de ParisHôpitaux Universitaires Paris‐Saclay, Hôpital de BicêtreLe Kremlin BicêtreFrance
- Equipe Moods, INSERM UMR‐1178, CESPUniversité Paris‐Saclay, Faculté de MédecineLe Kremlin BicêtreFrance
| | - Alexandre Boutigny
- Equipe Moods, INSERM UMR‐1178, CESPUniversité Paris‐Saclay, Faculté de MédecineLe Kremlin BicêtreFrance
| | - Denis J David
- Equipe Moods, INSERM UMR‐1178, CESPUniversité Paris‐Saclay, Faculté de MédecineLe Kremlin BicêtreFrance
| | - Eric Deflesselle
- Equipe Moods, INSERM UMR‐1178, CESPUniversité Paris‐Saclay, Faculté de MédecineLe Kremlin BicêtreFrance
| | - Florence Gressier
- Service Hospitalo‐Universitaire de Psychiatrie, Assistance Publique‐Hôpitaux de ParisHôpitaux Universitaires Paris‐Saclay, Hôpital de BicêtreLe Kremlin BicêtreFrance
- Equipe Moods, INSERM UMR‐1178, CESPUniversité Paris‐Saclay, Faculté de MédecineLe Kremlin BicêtreFrance
| | - Laurent Becquemont
- Equipe Moods, INSERM UMR‐1178, CESPUniversité Paris‐Saclay, Faculté de MédecineLe Kremlin BicêtreFrance
- Centre de Recherche Clinique Paris‐Saclay, Assistance Publique‐Hôpitaux de ParisHôpitaux Universitaires Paris‐Saclay, Hôpital de BicêtreLe Kremlin BicêtreFrance
| | - Emmanuelle Corruble
- Service Hospitalo‐Universitaire de Psychiatrie, Assistance Publique‐Hôpitaux de ParisHôpitaux Universitaires Paris‐Saclay, Hôpital de BicêtreLe Kremlin BicêtreFrance
- Equipe Moods, INSERM UMR‐1178, CESPUniversité Paris‐Saclay, Faculté de MédecineLe Kremlin BicêtreFrance
| | - Romain Colle
- Service Hospitalo‐Universitaire de Psychiatrie, Assistance Publique‐Hôpitaux de ParisHôpitaux Universitaires Paris‐Saclay, Hôpital de BicêtreLe Kremlin BicêtreFrance
- Equipe Moods, INSERM UMR‐1178, CESPUniversité Paris‐Saclay, Faculté de MédecineLe Kremlin BicêtreFrance
| |
Collapse
|
4
|
Tian Y, Qiao H, Zhu LQ, Man HY. Sexually dimorphic phenotypes and the role of androgen receptors in UBE3A-dependent autism spectrum disorder. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.02.592248. [PMID: 38746146 PMCID: PMC11092617 DOI: 10.1101/2024.05.02.592248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Autism spectrum disorders (ASDs) are characterized by social, communication, and behavioral challenges. UBE3A is one of the most common ASD genes. ASDs display a remarkable sex difference with a 4:1 male to female prevalence ratio; however, the underlying mechanism remains largely unknown. Using the UBE3A-overexpressing mouse model for ASD, we studied sex differences at behavioral, genetic, and molecular levels. We found that male mice with extra copies of Ube3A exhibited greater impairments in social interaction, repetitive self-grooming behavior, memory, and pain sensitivity, whereas female mice with UBE3A overexpression displayed greater olfactory defects. Social communication was impaired in both sexes, with males making more calls and females preferring complex syllables. At the molecular level, androgen receptor (AR) levels were reduced in both sexes due to enhanced degradation mediated by UBE3A. However, AR reduction significantly dysregulated AR target genes only in male, not female, UBE3A-overexpressing mice. Importantly, restoring AR levels in the brain effectively normalized the expression of AR target genes, and rescued the deficits in social preference, grooming behavior, and memory in male UBE3A-overexpressing mice, without affecting females. These findings suggest that AR and its signaling cascade play an essential role in mediating the sexually dimorphic changes in UBE3A-dependent ASD.
Collapse
Affiliation(s)
- Yuan Tian
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA
| | - Hui Qiao
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA
| | - Ling-Qiang Zhu
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Heng-Ye Man
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA
- Department of Pharmacology, Physiology & Biophysics, Boston University School of Medicine, 72 East Concord St., Boston, MA 02118, USA
- Center for Systems Neuroscience, Boston University, 610 Commonwealth Ave, Boston, MA 02215, USA
| |
Collapse
|
5
|
Lacroix A, Harquel S, Mermillod M, Garrido M, Barbosa L, Vercueil L, Aleysson D, Dutheil F, Kovarski K, Gomot M. Sex modulation of faces prediction error in the autistic brain. Commun Biol 2024; 7:127. [PMID: 38273091 PMCID: PMC10810845 DOI: 10.1038/s42003-024-05807-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 01/11/2024] [Indexed: 01/27/2024] Open
Abstract
Recent research suggests that autistic females may have superior socio-cognitive abilities compared to autistic males, potentially contributing to underdiagnosis in females. However, it remains unclear whether these differences arise from distinct neurophysiological functioning in autistic males and females. This study addresses this question by presenting 41 autistic and 48 non-autistic adults with a spatially filtered faces oddball paradigm. Analysis of event-related potentials from scalp electroencephalography reveal a neurophysiological profile in autistic females that fell between those of autistic males and non-autistic females, highlighting sex differences in autism from the initial stages of face processing. This finding underscores the urgent need to explore neurophysiological sex differences in autism and encourages efforts toward a better comprehension of compensation mechanism and a clearer definition of what is meant by camouflaging.
Collapse
Affiliation(s)
- Adeline Lacroix
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LPNC, 38000, Grenoble, France.
| | - Sylvain Harquel
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LPNC, 38000, Grenoble, France
- Defitech Chair in Clinical Neuroengineering, Center for Neuroprosthetics and Brain Mind Institute, EPFL, Geneva, Switzerland
| | - Martial Mermillod
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LPNC, 38000, Grenoble, France
| | - Marta Garrido
- Cognitive Neuroscience and Computational Psychiatry Lab, Melbourne School of Psychological Sciences, University of Melbourne, Melbourne, VIC, Australia
- Graeme Clark Institute for Biomedical Engineering, University of Melbourne, Melbourne, VIC, Australia
| | - Leonardo Barbosa
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LPNC, 38000, Grenoble, France
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, 24016, USA
| | - Laurent Vercueil
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LPNC, 38000, Grenoble, France
| | - David Aleysson
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LPNC, 38000, Grenoble, France
| | - Frédéric Dutheil
- Université Clermont Auvergne, CNRS, LaPSCo, CHU Clermont-Ferrand, WittyFit, F-63000, Clermont-Ferrand, France
| | - Klara Kovarski
- Sorbonne Université, Faculté des Lettres, INSPE, Paris, France
- LaPsyDÉ, Université Paris-Cité, CNRS, Paris, France
| | - Marie Gomot
- UMR 1253 iBrain, Université de Tours, Inserm, Tours, France
| |
Collapse
|
6
|
Mezentseva LV. Asymmetry of Characteristics of the Right-Left Hemodynamic Balance of Microcirculation in the Temporal Skin Areas of the Head in Young Male and Female Subjects. Bull Exp Biol Med 2023; 175:734-738. [PMID: 37978150 DOI: 10.1007/s10517-023-05935-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Indexed: 11/19/2023]
Abstract
The indices of asymmetry of microcirculation in the skin of the temporal areas of the head in young male and female subjects were studied. In 20 healthy volunteers (10 men and 10 women, age 18-19 years), synchronous measurements of the microcirculation of the skin of the symmetrical temporal areas of the head were carried out by laser Doppler flowmetry. The coefficients of asymmetry of regression relationships between perfusion changes in each side and initial perfusion values in both the same and opposite sides, the distribution function of perfusion asymmetry coefficients, and variability of perfusion in the studied areas were analyzed. The sex differences of the measured characteristics of asymmetry were revealed. In men, the distribution functions of perfusion asymmetry are pointed, with positive excesses, and in women they were flat, with negative excesses. In female subjects, the contribution of the right microcirculatory bed to the right-left hemodynamic balance was higher. These findings support the hypothesis on greater plasticity of the female brain in comparison with the male brain.
Collapse
Affiliation(s)
- L V Mezentseva
- P. K. Anokhin Research Institute of Normal Physiology, Moscow, Russia.
| |
Collapse
|
7
|
Ziemka-Nalecz M, Pawelec P, Ziabska K, Zalewska T. Sex Differences in Brain Disorders. Int J Mol Sci 2023; 24:14571. [PMID: 37834018 PMCID: PMC10572175 DOI: 10.3390/ijms241914571] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
A remarkable feature of the brain is its sexual dimorphism. Sexual dimorphism in brain structure and function is associated with clinical implications documented previously in healthy individuals but also in those who suffer from various brain disorders. Sex-based differences concerning some features such as the risk, prevalence, age of onset, and symptomatology have been confirmed in a range of neurological and neuropsychiatric diseases. The mechanisms responsible for the establishment of sex-based differences between men and women are not fully understood. The present paper provides up-to-date data on sex-related dissimilarities observed in brain disorders and highlights the most relevant features that differ between males and females. The topic is very important as the recognition of disparities between the sexes might allow for the identification of therapeutic targets and pharmacological approaches for intractable neurological and neuropsychiatric disorders.
Collapse
Affiliation(s)
| | | | | | - Teresa Zalewska
- NeuroRepair Department, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5, A. Pawinskiego Str., 02-106 Warsaw, Poland; (M.Z.-N.); (P.P.); (K.Z.)
| |
Collapse
|
8
|
Brickhill R, Atherton G, Piovesan A, Cross L. Autism, thy name is man: Exploring implicit and explicit gender bias in autism perceptions. PLoS One 2023; 18:e0284013. [PMID: 37611041 PMCID: PMC10446214 DOI: 10.1371/journal.pone.0284013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 03/18/2023] [Indexed: 08/25/2023] Open
Abstract
Males are around three times more likely to possess an autism diagnosis than females. For years this was explained by accounts that considered the male gender more compatible with the autistic phenotype. However, new research suggests that a lack of understanding and recognition of the female autistic phenotype, and a predisposition to associate males with autistic traits, could lead to structural inequalities that hinder the identification of autistic females. To explore how autism and gender are more widely perceived, the present study tested implicit and explicit associations between autism and binary gender using the Implicit Association Test (IAT) and the Autism Quotient (AQ) presented alongside a male or female vignette. A significant association was found on the IAT, identifying an implicit bias towards males and autistic traits. The vignette AQ pairing also revealed some specific items perceived as explicitly male traits, while only reverse-scored items were perceived as female. These findings suggest that current perceptions and even metrics of autism are skewed towards males, which may hinder the identification and understanding of the female autistic phenotype.
Collapse
Affiliation(s)
- Rae Brickhill
- Department of Psychology, Edge Hill University, Liverpool, United Kingdom
| | - Gray Atherton
- Department of Psychology, Edge Hill University, Liverpool, United Kingdom
| | - Andrea Piovesan
- Department of Psychology, Edge Hill University, Liverpool, United Kingdom
| | - Liam Cross
- Department of Psychology, Edge Hill University, Liverpool, United Kingdom
| |
Collapse
|
9
|
Yen TL, Huang TN, Lin MH, Hsu TT, Lu MH, Shih PY, Ellegood J, Lerch J, Hsueh YP. Sex bias in social deficits, neural circuits and nutrient demand in Cttnbp2 autism models. Brain 2023; 146:2612-2626. [PMID: 36385662 PMCID: PMC10232293 DOI: 10.1093/brain/awac429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/04/2022] [Accepted: 11/04/2022] [Indexed: 09/02/2023] Open
Abstract
Autism spectrum disorders caused by both genetic and environmental factors are strongly male-biased neuropsychiatric conditions. However, the mechanism underlying the sex bias of autism spectrum disorders remains elusive. Here, we use a mouse model in which the autism-linked gene Cttnbp2 is mutated to explore the potential mechanism underlying the autism sex bias. Autism-like features of Cttnbp2 mutant mice were assessed via behavioural assays. C-FOS staining identified sex-biased brain regions critical to social interaction, with their roles and connectivity then validated by chemogenetic manipulation. Proteomic and bioinformatic analyses established sex-biased molecular deficits at synapses, prompting our hypothesis that male-biased nutrient demand magnifies Cttnbp2 deficiency. Accordingly, intakes of branched-chain amino acids (BCAA) and zinc were experimentally altered to assess their effect on autism-like behaviours. Both deletion and autism-linked mutation of Cttnbp2 result in male-biased social deficits. Seven brain regions, including the infralimbic area of the medial prefrontal cortex (ILA), exhibit reduced neural activity in male mutant mice but not in females upon social stimulation. ILA activation by chemogenetic manipulation is sufficient to activate four of those brain regions susceptible to Cttnbp2 deficiency and consequently to ameliorate social deficits in male mice, implying an ILA-regulated neural circuit is critical to male-biased social deficits. Proteomics analysis reveals male-specific downregulated proteins (including SHANK2 and PSD-95, two synaptic zinc-binding proteins) and female-specific upregulated proteins (including RRAGC) linked to neuropsychiatric disorders, which are likely relevant to male-biased deficits and a female protective effect observed in Cttnbp2 mutant mice. Notably, RRAGC is an upstream regulator of mTOR that senses BCAA, suggesting that mTOR exerts a beneficial effect on females. Indeed, increased BCAA intake activates the mTOR pathway and rescues neuronal responses and social behaviours of male Cttnbp2 mutant mice. Moreover, mutant males exhibit greatly increased zinc demand to display normal social behaviours. Mice carrying an autism-linked Cttnbp2 mutation exhibit male-biased social deficits linked to specific brain regions, differential synaptic proteomes and higher demand for BCAA and zinc. We postulate that lower demand for zinc and BCAA are relevant to the female protective effect. Our study reveals a mechanism underlying sex-biased social defects and also suggests a potential therapeutic approach for autism spectrum disorders.
Collapse
Affiliation(s)
- Tzu-Li Yen
- Molecular and Cell Biology, Taiwan International Graduate Program, Institute of Molecular Biology, Academia Sinica and Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 11529, Taiwan, ROC
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan, ROC
| | - Tzyy-Nan Huang
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan, ROC
| | - Ming-Hui Lin
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan, ROC
| | - Tsan-Ting Hsu
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan, ROC
| | - Ming-Hsuan Lu
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan, ROC
| | - Pu-Yun Shih
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan, ROC
| | - Jacob Ellegood
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario M5T 3H7, Canada
- Department of Medical Biophysics, The University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Jason Lerch
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario M5T 3H7, Canada
- Department of Medical Biophysics, The University of Toronto, Toronto, Ontario M5G 1L7, Canada
- Wellcome Centre for Integrative Neuroimaging, The University of Oxford, Oxford OX3 9DU, UK
| | - Yi-Ping Hsueh
- Molecular and Cell Biology, Taiwan International Graduate Program, Institute of Molecular Biology, Academia Sinica and Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 11529, Taiwan, ROC
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan, ROC
| |
Collapse
|
10
|
Mottron L, Gagnon D. Prototypical autism: New diagnostic criteria and asymmetrical bifurcation model. Acta Psychol (Amst) 2023; 237:103938. [PMID: 37187094 DOI: 10.1016/j.actpsy.2023.103938] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 05/04/2023] [Accepted: 05/11/2023] [Indexed: 05/17/2023] Open
Abstract
The current "autism spectrum" DSM 5 diagnostic criteria and autism standardized diagnostic instruments promote considerable heterogeneity or clinical indecision and may be detrimental to the advancement of fundamental research on autism mechanisms. To increase clinical specificity and reorient research towards core autistic presentations, we propose new diagnostic criteria for prototypical autism during the age of 2- to 5-years. We include autism within other non-dominant, familiarly aggregated phenomena sharing asymmetrical developmental bifurcations, such as twin pregnancy, left handedness, and breech presentation/delivery. Following this model, nature, trajectory, and positive/negative signs structure of autism would result from the polarized problem of whether or not language and information is processed in a socially biased manner. Prototypical autism would follow a canonical developmental trajectory by which a gradual decline in social bias in the processing of incoming information, overtly beginning at the end of the first year, bifurcates into a prototypical autistic presentation in the second half of the second year of life. This bifurcation event is followed by a plateau, in which these atypicalities show maximal stringency and distinctiveness, and then ultimately, in most cases, by partial normalization. During the plateau period, the orientation towards, and processing of, information is considerably modified, with an absence of bias for social information, contrasting with a high level of interest in complex, unbiased information, independently of its social or non-social nature. Integrating autism into asymmetrical developmental bifurcations would explain the absence of deleterious neurological and genetic markers and the presence of familial transmission in canonical autistic presentations.
Collapse
Affiliation(s)
- Laurent Mottron
- Department of Psychiatry and Addictology, University of Montreal, 2900 blvd Edouard-Montpetit, Montreal, Qc H3T 1J4, Canada; CIUSSS-NIM Research Center, Riviere-des-Prairies Hospital, 7070, blvd Perras, Montreal, QC H1E 1A4, Canada.
| | - David Gagnon
- Department of Psychiatry and Addictology, University of Montreal, 2900 blvd Edouard-Montpetit, Montreal, Qc H3T 1J4, Canada; CIUSSS-NIM Research Center, Riviere-des-Prairies Hospital, 7070, blvd Perras, Montreal, QC H1E 1A4, Canada
| |
Collapse
|
11
|
Bölte S, Neufeld J, Marschik PB, Williams ZJ, Gallagher L, Lai MC. Sex and gender in neurodevelopmental conditions. Nat Rev Neurol 2023; 19:136-159. [PMID: 36747038 PMCID: PMC10154737 DOI: 10.1038/s41582-023-00774-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2023] [Indexed: 02/08/2023]
Abstract
Health-related conditions often differ qualitatively or quantitatively between individuals of different birth-assigned sexes and gender identities, and/or with different gendered experiences, requiring tailored care. Studying the moderating and mediating effects of sex-related and gender-related factors on impairment, disability, wellbeing and health is of paramount importance especially for neurodivergent individuals, who are diagnosed with neurodevelopmental conditions with uneven sex/gender distributions. Researchers have become aware of the myriad influences that sex-related and gender-related variables have on the manifestations of neurodevelopmental conditions, and contemporary work has begun to investigate the mechanisms through which these effects are mediated. Here we describe topical concepts of sex and gender science, summarize current knowledge, and discuss research and clinical challenges related to autism, attention-deficit/hyperactivity disorder and other neurodevelopmental conditions. We consider sex and gender in the context of epidemiology, behavioural phenotypes, neurobiology, genetics, endocrinology and neighbouring disciplines. The available evidence supports the view that sex and gender are important contributors to the biological and behavioural variability in neurodevelopmental conditions. Methodological caveats such as frequent conflation of sex and gender constructs, inappropriate measurement of these constructs and under-representation of specific demographic groups (for example, female and gender minority individuals and people with intellectual disabilities) limit the translational potential of research so far. Future research and clinical implementation should integrate sex and gender into next-generation diagnostics, mechanistic investigations and support practices.
Collapse
Affiliation(s)
- Sven Bölte
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research; Department of Women's and Children's Health, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden.
- Child and Adolescent Psychiatry, Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden.
- Curtin Autism Research Group, Curtin School of Allied Health, Curtin University, Perth, WA, Australia.
| | - Janina Neufeld
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research; Department of Women's and Children's Health, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
- Swedish Collegium for Advanced Study (SCAS), Uppsala, Sweden
| | - Peter B Marschik
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research; Department of Women's and Children's Health, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Medical Center Göttingen and Leibniz ScienceCampus Primate Cognition, Göttingen, Germany
- iDN - interdisciplinary Developmental Neuroscience, Division of Phoniatrics, Medical University of Graz, Graz, Austria
| | - Zachary J Williams
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
- Frist Center for Autism and Innovation, Vanderbilt University, Nashville, TN, USA
| | - Louise Gallagher
- Department of Psychiatry, School of Medicine, Trinity College Dublin, Dublin, Ireland
- Child and Youth Mental Health Collaborative at the Centre for Addiction and Mental Health, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, and Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Meng-Chuan Lai
- Child and Youth Mental Health Collaborative at the Centre for Addiction and Mental Health, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, and Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK.
- Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan.
| |
Collapse
|
12
|
Pedrazzi JFC, Ferreira FR, Silva-Amaral D, Lima DA, Hallak JEC, Zuardi AW, Del-Bel EA, Guimarães FS, Costa KCM, Campos AC, Crippa ACS, Crippa JAS. Cannabidiol for the treatment of autism spectrum disorder: hope or hype? Psychopharmacology (Berl) 2022; 239:2713-2734. [PMID: 35904579 DOI: 10.1007/s00213-022-06196-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 07/18/2022] [Indexed: 11/30/2022]
Abstract
RATIONALE Autism spectrum disorder (ASD) is defined as a group of neurodevelopmental disorders whose symptoms include impaired communication and social interaction, restricted and repetitive patterns of behavior, and varying levels of intellectual disability. ASD is observed in early childhood and is one of the most severe chronic childhood disorders in prevalence, morbidity, and impact on society. It is usually accompanied by attention deficit hyperactivity disorder, anxiety, depression, sleep disorders, and epilepsy. The treatment of ASD has low efficacy, possibly because it has a heterogeneous nature, and its neurobiological basis is not clearly understood. Drugs such as risperidone and aripiprazole are the only two drugs available that are recognized by the Food and Drug Administration, primarily for treating the behavioral symptoms of this disorder. These drugs have limited efficacy and a high potential for inducing undesirable effects, compromising treatment adherence. Therefore, there is great interest in exploring the endocannabinoid system, which modulates the activity of other neurotransmitters, has actions in social behavior and seems to be altered in patients with ASD. Thus, cannabidiol (CBD) emerges as a possible strategy for treating ASD symptoms since it has relevant pharmacological actions on the endocannabinoid system and shows promising results in studies related to disorders in the central nervous system. OBJECTIVES Review the preclinical and clinical data supporting CBD's potential as a treatment for the symptoms and comorbidities associated with ASD, as well as discuss and provide information with the purpose of not trivializing the use of this drug.
Collapse
Affiliation(s)
- João F C Pedrazzi
- Department of Neurosciences and Behavioral Sciences, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | - Frederico R Ferreira
- Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, 21040-900, Brazil
| | - Danyelle Silva-Amaral
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Daniel A Lima
- Department of Neurosciences and Behavioral Sciences, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Jaime E C Hallak
- Department of Neurosciences and Behavioral Sciences, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Antônio W Zuardi
- Department of Neurosciences and Behavioral Sciences, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Elaine A Del-Bel
- Department of Neurosciences and Behavioral Sciences, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- Department of Morphology, Physiology, and Basic Pathology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Francisco S Guimarães
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Karla C M Costa
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Alline C Campos
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Ana C S Crippa
- Graduate Program in Child and Adolescent Health, Neuropediatric Center of the Hospital of Clinics (CENEP), Federal University of Paraná, Curitiba, Paraná, Brazil
| | - José A S Crippa
- Department of Neurosciences and Behavioral Sciences, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
13
|
Grant OA, Wang Y, Kumari M, Zabet NR, Schalkwyk L. Characterising sex differences of autosomal DNA methylation in whole blood using the Illumina EPIC array. Clin Epigenetics 2022; 14:62. [PMID: 35568878 PMCID: PMC9107695 DOI: 10.1186/s13148-022-01279-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 04/18/2022] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Sex differences are known to play a role in disease aetiology, progression and outcome. Previous studies have revealed autosomal epigenetic differences between males and females in some tissues, including differences in DNA methylation patterns. Here, we report for the first time an analysis of autosomal sex differences in DNAme using the Illumina EPIC array in human whole blood by performing a discovery (n = 1171) and validation (n = 2471) analysis. RESULTS We identified and validated 396 sex-associated differentially methylated CpG sites (saDMPs) with the majority found to be female-biased CpGs (74%). These saDMP's are enriched in CpG islands and CpG shores and located preferentially at 5'UTRs, 3'UTRs and enhancers. Additionally, we identified 266 significant sex-associated differentially methylated regions overlapping genes, which have previously been shown to exhibit epigenetic sex differences, and novel genes. Transcription factor binding site enrichment revealed enrichment of transcription factors related to critical developmental processes and sex determination such as SRY and ESR1. CONCLUSION Our study reports a reliable catalogue of sex-associated CpG sites and elucidates several characteristics of these sites using large-scale discovery and validation data sets. This resource will benefit future studies aiming to investigate sex specific epigenetic signatures and further our understanding of the role of DNA methylation in sex differences in human whole blood.
Collapse
Affiliation(s)
- Olivia A Grant
- School of Life Sciences, University of Essex, Colchester, CO4 3SQ, UK
- Institute of Social and Economic Research, University of Essex, Colchester, CO4 3SQ, UK
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, UK
| | - Yucheng Wang
- School of Life Sciences, University of Essex, Colchester, CO4 3SQ, UK
- School of Computer Science and Electronic Engineering, University of Essex, Colchester, CO4 3SQ, UK
| | - Meena Kumari
- Institute of Social and Economic Research, University of Essex, Colchester, CO4 3SQ, UK
| | - Nicolae Radu Zabet
- School of Life Sciences, University of Essex, Colchester, CO4 3SQ, UK.
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, UK.
| | - Leonard Schalkwyk
- School of Life Sciences, University of Essex, Colchester, CO4 3SQ, UK.
| |
Collapse
|
14
|
Lacaille H, Vacher CM, Penn AA. Preterm Birth Alters the Maturation of the GABAergic System in the Human Prefrontal Cortex. Front Mol Neurosci 2022; 14:827370. [PMID: 35185465 PMCID: PMC8852329 DOI: 10.3389/fnmol.2021.827370] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 12/31/2021] [Indexed: 11/13/2022] Open
Abstract
Developmental changes in GABAergic and glutamatergic systems during frontal lobe development have been hypothesized to play a key role in neurodevelopmental disorders seen in children born very preterm or at/with low birth weight, but the associated cellular changes have not yet been identified. Here we studied the molecular development of the GABAergic system specifically in the dorsolateral prefrontal cortex, a region that has been implicated in neurodevelopmental and psychiatric disorders. The maturation state of the GABAergic system in this region was assessed in human post-mortem brain samples, from term infants ranging in age from 0 to 8 months (n = 17 male, 9 female). Gene expression was measured for 47 GABAergic genes and used to calculate a maturation index. This maturation index was significantly more dynamic in male than female infants. To evaluate the impact of premature birth on the GABAergic system development, samples from 1-month-old term (n = 9 male, 4 female) and 1-month corrected-age very preterm (n = 8 male, 6 female) infants, were compared using the same gene list and methodology. The maturation index for the GABAergic system was significantly lower (−50%, p < 0.05) in male preterm infants, with major alterations in genes linked to GABAergic function in astrocytes, suggesting astrocytic GABAergic developmental changes as a new cellular mechanism underlying preterm brain injury.
Collapse
|
15
|
Diviccaro S, Cioffi L, Falvo E, Giatti S, Melcangi RC. Allopregnanolone: An overview on its synthesis and effects. J Neuroendocrinol 2022; 34:e12996. [PMID: 34189791 PMCID: PMC9285581 DOI: 10.1111/jne.12996] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/20/2021] [Accepted: 05/26/2021] [Indexed: 12/23/2022]
Abstract
Allopregnanolone, a 3α,5α-progesterone metabolite, acts as a potent allosteric modulator of the γ-aminobutyric acid type A receptor. In the present review, the synthesis of this neuroactive steroid occurring in the nervous system is discussed with respect to physiological and pathological conditions. In addition, its physiological and neuroprotective effects are also reported. Interestingly, the levels of this neuroactive steroid, as well as its effects, are sex-dimorphic, suggesting a possible gender medicine based on this neuroactive steroid for neurological disorders. However, allopregnanolone presents low bioavailability and extensive hepatic metabolism, limiting its use as a drug. Therefore, synthetic analogues or a different therapeutic strategy able to increase allopregnanolone levels have been proposed to overcome any pharmacokinetic issues.
Collapse
Affiliation(s)
- Silvia Diviccaro
- Dipartimento di Scienze Farmacologiche e BiomolecolariUniversità degli Studi di MilanoMilanoItaly
| | - Lucia Cioffi
- Dipartimento di Scienze Farmacologiche e BiomolecolariUniversità degli Studi di MilanoMilanoItaly
| | - Eva Falvo
- Dipartimento di Scienze Farmacologiche e BiomolecolariUniversità degli Studi di MilanoMilanoItaly
| | - Silvia Giatti
- Dipartimento di Scienze Farmacologiche e BiomolecolariUniversità degli Studi di MilanoMilanoItaly
| | - Roberto Cosimo Melcangi
- Dipartimento di Scienze Farmacologiche e BiomolecolariUniversità degli Studi di MilanoMilanoItaly
| |
Collapse
|
16
|
Calderoni S. Sex/gender differences in children with autism spectrum disorder: A brief overview on epidemiology, symptom profile, and neuroanatomy. J Neurosci Res 2022; 101:739-750. [PMID: 35043482 DOI: 10.1002/jnr.25000] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 11/01/2021] [Accepted: 12/03/2021] [Indexed: 12/11/2022]
Abstract
Autism spectrum disorders (ASD) are a heterogeneous group of neurodevelopmental conditions whose shared core features are impairments in social interaction and communication as well as restricted patterns of behavior, interests, and activities. The significant and consistent male preponderance in ASD prevalence has historically affected the scientific knowledge of autism in females as regards, inter alia, the clinical presentation, the genetic architecture, and the structural brain underpinnings. Indeed, females with ASD are under-investigated as samples recruited for clinical research typically reflect the strong male bias of the disorder. In the last years, the study of the various aspects of sex/gender (s/g) differences in ASD is gaining increased clinical and research interest resulting in a growing number of investigations on this topic. Here, I review and discuss evidence emerged from epidemiological, clinical, and neuroimaging studies in the last decade focusing on s/g differences in children with ASD. These studies are the prerequisites for the development of assessment and treatment practices which take into consideration s/g differences in ASD. Ultimately, a better understanding of s/g differences aims at improving healthcare for both ASD males and females.
Collapse
Affiliation(s)
- Sara Calderoni
- Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, Pisa, Italy.,Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
17
|
Sternberg S. Sex differences in the effects on the brain of early cognitive stimulation. Cogn Neuropsychol 2021; 38:336-348. [PMID: 34839779 DOI: 10.1080/02643294.2021.2004108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
A study by Farah and colleagues (2021) of the effects on the adult brain of a cognitively intense early childhood experience revealed large effects, but primarily in the brains of male subjects, while causing equally large increases of childhood IQ in males and females. The present analysis advances and tests a conjecture about one reason for the sex difference. Among the control subjects, the summed volume of four small regions of the cortex, associated with language and cognitive processes, is proportionally larger in females. Based on these four regions, a new brain measure, the "cognitive ratio", is defined. The cognitive ratio is found to be strongly and negatively correlated with variations in the effect of the early experience on brain volume among the males, and explains a large proportion of the difference between males and females, as well as the greater sensitivity of the male brains to that experience.
Collapse
Affiliation(s)
- Saul Sternberg
- Psychology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
18
|
Rødgaard E, Jensen K, Miskowiak KW, Mottron L. Autism comorbidities show elevated female-to-male odds ratios and are associated with the age of first autism diagnosis. Acta Psychiatr Scand 2021; 144:475-486. [PMID: 34228813 PMCID: PMC9292172 DOI: 10.1111/acps.13345] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/11/2021] [Accepted: 07/05/2021] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To investigate the association between the comorbidity rates in autism and sex, birth year and the age at which autism was first diagnosed and compare the relative impact of each. METHOD Using the Danish National Patient Registry, cumulative incidences up to the age of 16 for 11 comorbid conditions (psychosis, affective disorders, anxiety disorders, conduct disorder, eating disorders, obsessive-compulsive disorder, attention-deficit hyperactivity disorder, epilepsy, tic disorders, sleep disorders or intellectual disability) were calculated for individuals with autism (N = 16,126) and non-autism individuals (N = 654,977). Individuals were further stratified based on the age at the first autism diagnoses and comorbid diagnoses up to the age of 16 were compared. RESULTS Most comorbidities were significantly associated with birth year and sex. Female/male odds ratios for 8 of 11 comorbid conditions were up to 67% higher than the corresponding odds ratios in the non-autism population, including conditions that are generally more common in males than in females as well as conditions that are more common in females. All comorbidity rates were significantly associated with the age at the first autism diagnosis, which was a stronger predictor than sex and birth year for 8 conditions. CONCLUSIONS Comorbidity rates for females exceed what would be expected based on the sex ratios among non-autistic individuals, indicating that the association between autism and comorbidity is stronger in females. Comorbidity rates are also highly dependent on the age at the first autism diagnosis, which may contribute to autism heterogeneity in research and clinical practice.
Collapse
Affiliation(s)
| | - Kristian Jensen
- Department of Psychiatry and AddictologyUniversité de MontréalMontrealQCCanada
| | - Kamilla Woznica Miskowiak
- Department of PsychologyUniversity of CopenhagenKøbenhavn KDenmark,Psychiatric Centre CopenhagenRigshospitaletKøbenhavn ØDenmark
| | - Laurent Mottron
- Department of Psychiatry and AddictologyUniversité de MontréalMontrealQCCanada,Centre de Recherche du CIUSSS‐NIMHôpital Rivière‐des‐PrairiesMontréalQCCanada
| |
Collapse
|
19
|
Gao K, Sun Y, Niu S, Wang L. Unified framework for early stage status prediction of autism based on infant structural magnetic resonance imaging. Autism Res 2021; 14:2512-2523. [PMID: 34643325 PMCID: PMC8665129 DOI: 10.1002/aur.2626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/04/2021] [Accepted: 09/24/2021] [Indexed: 11/25/2022]
Abstract
Autism, or autism spectrum disorder (ASD), is a developmental disability that is diagnosed at about 2 years of age based on abnormal behaviors. Existing neuroimaging‐based methods for the prediction of ASD typically focus on functional magnetic resonance imaging (fMRI); however, most of these fMRI‐based studies include subjects older than 5 years of age. Due to challenges in the application of fMRI for infants, structural magnetic resonance imaging (sMRI) has increasingly received attention in the field for early status prediction of ASD. In this study, we propose an automated prediction framework based on infant sMRI at about 24 months of age. Specifically, by leveraging an infant‐dedicated pipeline, iBEAT V2.0 Cloud, we derived segmentation and parcellation maps from infant sMRI. We employed a convolutional neural network to extract features from pairwise maps and a Siamese network to distinguish whether paired subjects were from the same or different classes. As compared to T1w imaging without segmentation and parcellation maps, our proposed approach with segmentation and parcellation maps yielded greater sensitivity, specificity, and accuracy of ASD prediction, which was validated using two datasets with different imaging protocols/scanners and was confirmed by receiver operating characteristic analysis. Furthermore, comparison with state‐of‐the‐art methods demonstrated the superior effectiveness and robustness of the proposed method. Finally, attention maps were generated to identify subject‐specific autism effects, supporting the reasonability of the predictive results. Collectively, these findings demonstrate the utility of our unified framework for the early‐stage status prediction of ASD by sMRI.
Collapse
Affiliation(s)
- Kun Gao
- Developing Brain Computing Lab, Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Yue Sun
- Developing Brain Computing Lab, Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Sijie Niu
- Developing Brain Computing Lab, Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,School of Information Science and Engineering, University of Jinan, Jinan, China
| | - Li Wang
- Developing Brain Computing Lab, Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
20
|
In Prototypical Autism, the Genetic Ability to Learn Language Is Triggered by Structured Information, Not Only by Exposure to Oral Language. Genes (Basel) 2021; 12:genes12081112. [PMID: 34440286 PMCID: PMC8391732 DOI: 10.3390/genes12081112] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/24/2021] [Accepted: 07/19/2021] [Indexed: 12/24/2022] Open
Abstract
What does the way that autistic individuals bypass, learn, and eventually master language tell us about humans’ genetically encoded linguistic ability? In this theoretical review, we argue that autistic non-social acquisition of language and autistic savant abilities provide a strong argument for an innate, human-specific orientation towards (and mastery of) complex embedded structures. Autistic non-social language learning may represent a widening of the material processed during development beyond oral language. The structure detection and manipulation and generative production of non-linguistic embedded and chained material (savant abilities in calendar calculation, musical composition, musical interpretation, and three-dimensional drawing) may thus represent an application of such innate mechanisms to non-standard materials. Typical language learning through exposure to the child’s mother tongue may represent but one of many possible achievements of the same capacity. The deviation from typical language development in autism may ultimately allow access to oral language, sometimes in its most elaborate forms, and also explain the possibility of the absence of its development when applied exclusively to non-linguistic structured material. Such an extension of human capacities beyond or in parallel to their usual limits call into question what we consider to be specific or expected in humans and therefore does not necessarily represent a genetic “error”. Regardless of the adaptive success or failure of non-social language learning, it is the duty of science and ethical principles to strive to maintain autism as a human potentiality to further foster our vision of a plural society.
Collapse
|
21
|
Kung KTF, Thankamony A, Ong KKL, Acerini CL, Dunger DB, Hughes IA, Hines M. No relationship between prenatal or early postnatal androgen exposure and autistic traits: evidence using anogenital distance and penile length measurements at birth and 3 months of age. J Child Psychol Psychiatry 2021; 62:876-883. [PMID: 33049073 DOI: 10.1111/jcpp.13335] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/10/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Autism is more prevalent in males than in females. Hypotheses related to the extreme male brain theory of autism suggest that heightened androgen exposure during early development contributes to autistic traits. Whilst prior research focused mostly on the prenatal period, the current study tests the influences of androgen exposure during both the prenatal and the early postnatal periods on autistic traits during childhood. METHODS Anthropometric measures that are putative biomarkers of early androgen exposure were employed. Anogenital distance (AGD) was measured at birth and 3 months of age in boys and girls. Penile length at birth and 3 months of age was also measured in boys. When the children were 9-13 years old, a parent-reported questionnaire (the 10-item children's version of the Autism Spectrum Quotient; AQ-10 Child) was used to assess autistic traits in 97 boys and 110 girls. RESULTS There were no significant associations between any of the AGD or penile length measures and scores on the AQ-10 Child in boys, girls or the entire sample. CONCLUSIONS The current study provides the first test of whether early measurements of AGD and/or penile length predict subsequent autistic traits. The current findings do not support a relationship between prenatal or early postnatal androgen exposure and autistic traits. The current study augments prior research showing no consistent relationship between early androgen exposure and autistic traits.
Collapse
Affiliation(s)
- Karson T F Kung
- Department of Psychology, University of Hong Kong, Pokfulam, Hong Kong.,School of Psychology, University of Kent, Canterbury, UK.,Department of Psychology, University of Cambridge, Cambridge, UK
| | - Ajay Thankamony
- Department of Paediatrics, University of Cambridge, Cambridge, UK
| | - Ken K L Ong
- Department of Paediatrics, University of Cambridge, Cambridge, UK
| | - Carlo L Acerini
- Department of Paediatrics, University of Cambridge, Cambridge, UK
| | - David B Dunger
- Department of Paediatrics, University of Cambridge, Cambridge, UK
| | - Ieuan A Hughes
- Department of Paediatrics, University of Cambridge, Cambridge, UK
| | - Melissa Hines
- Department of Psychology, University of Cambridge, Cambridge, UK
| |
Collapse
|
22
|
Walsh MJM, Wallace GL, Gallegos SM, Braden BB. Brain-based sex differences in autism spectrum disorder across the lifespan: A systematic review of structural MRI, fMRI, and DTI findings. Neuroimage Clin 2021; 31:102719. [PMID: 34153690 PMCID: PMC8233229 DOI: 10.1016/j.nicl.2021.102719] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 12/12/2022]
Abstract
Females with autism spectrum disorder (ASD) have been long overlooked in neuroscience research, but emerging evidence suggests they show distinct phenotypic trajectories and age-related brain differences. Sex-related biological factors (e.g., hormones, genes) may play a role in ASD etiology and have been shown to influence neurodevelopmental trajectories. Thus, a lifespan approach is warranted to understand brain-based sex differences in ASD. This systematic review on MRI-based sex differences in ASD was conducted to elucidate variations across the lifespan and inform biomarker discovery of ASD in females We identified articles through two database searches. Fifty studies met criteria and underwent integrative review. We found that regions expressing replicable sex-by-diagnosis differences across studies overlapped with regions showing sex differences in neurotypical cohorts. Furthermore, studies investigating age-related brain differences across a broad age-span suggest distinct neurodevelopmental patterns in females with ASD. Qualitative comparison across youth and adult studies also supported this hypothesis. However, many studies collapsed across age, which may mask differences. Furthermore, accumulating evidence supports the female protective effect in ASD, although only one study examined brain circuits implicated in "protection." When synthesized with the broader literature, brain-based sex differences in ASD may come from various sources, including genetic and endocrine processes involved in brain "masculinization" and "feminization" across early development, puberty, and other lifespan windows of hormonal transition. Furthermore, sex-related biology may interact with peripheral processes, in particular the stress axis and brain arousal system, to produce distinct neurodevelopmental patterns in males and females with ASD. Future research on neuroimaging-based sex differences in ASD would benefit from a lifespan approach in well-controlled and multivariate studies. Possible relationships between behavior, sex hormones, and brain development in ASD remain largely unexamined.
Collapse
Affiliation(s)
- Melissa J M Walsh
- College of Health Solutions, Arizona State University, 975 S. Myrtle Ave, Tempe, AZ 85281, USA
| | - Gregory L Wallace
- Department of Speech, Language, and Hearing Sciences, The George Washington University, 2115 G St. NW, Washington, DC 20052, USA.
| | - Stephen M Gallegos
- College of Health Solutions, Arizona State University, 975 S. Myrtle Ave, Tempe, AZ 85281, USA
| | - B Blair Braden
- College of Health Solutions, Arizona State University, 975 S. Myrtle Ave, Tempe, AZ 85281, USA.
| |
Collapse
|
23
|
Desarkar P, Rajji TK, Ameis SH, Blumberger DM, Lai MC, Lunsky Y, Daskalakis ZJ. Assessing and stabilizing atypical plasticity in autism spectrum disorder using rTMS: Results from a proof-of-principle study. Clin Neurophysiol 2021; 141:109-118. [PMID: 34011467 DOI: 10.1016/j.clinph.2021.03.046] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/08/2021] [Accepted: 03/05/2021] [Indexed: 11/19/2022]
Abstract
OBJECTIVES Emerging evidence implicates atypical plasticity in the neurophysiology of autism spectrum disorder (ASD). Specifically, autistic people demonstrated hyperplasticity in response to theta-burst stimulation (TBS). We hypothesized that autistic adults would display hyperplasticity to TBS and that repetitive transcranial magnetic stimulation (rTMS) - which potentiates brain inhibitory mechanisms - would 'stabilize' hyperplasticity. METHODS Using a randomized, cross-over design, plasticity was assessed using TBS in the left motor cortex (M1) in 31 autistic adults and 30 sex-, intelligence quotient-, and age-matched controls. Autistic adults (n = 29) were further randomized (1:1) to receive a single session of active (n = 14) or sham (n = 15) rTMS (6000 pulses at 20 Hz) over left M1 and plasticity was reassessed on the next day following rTMS. RESULTS Both long-term potentiation (LTP) and long-term depression (LTD) were significantly increased in the ASD group, indicating hyperplasticity. Active, but not sham rTMS, attenuated LTD in autistic adults. CONCLUSIONS We provided further evidence for the presence of brain hyperplasticity in ASD. To our knowledge, this is the first study to show preliminary evidence that an excessive LTD in ASD can be 'stabilized' using rTMS. Such 'stabilizing' effect of rTMS on LTP was not observed, likely due to small sample size or a more specific 'attenuating' effect of rTMS on LTD, compared to LTP. SIGNIFICANCE These findings indicate atypical brain inhibitory mechanisms behind hyperplasticity in ASD. Utilizing a larger sample, future replication studies could investigate therapeutic opportunities of 'mechanism-driven' rTMS.
Collapse
Affiliation(s)
- Pushpal Desarkar
- Azrieli Adult Neurodevelopmental Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.
| | - Tarek K Rajji
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Stephanie H Ameis
- Azrieli Adult Neurodevelopmental Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada; The Margaret and Wallace McCain Centre for Child, Youth & Family Mental Health, Centre for Addiction and Mental Health, Toronto, ON, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Daniel M Blumberger
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Meng-Chuan Lai
- Azrieli Adult Neurodevelopmental Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada; The Margaret and Wallace McCain Centre for Child, Youth & Family Mental Health, Centre for Addiction and Mental Health, Toronto, ON, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Yona Lunsky
- Azrieli Adult Neurodevelopmental Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Zafiris J Daskalakis
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| |
Collapse
|
24
|
A Need for Consistency in Behavioral Phenotyping for ASD: Analysis of the Valproic Acid Model. AUTISM RESEARCH AND TREATMENT 2021; 2021:8863256. [PMID: 33828864 PMCID: PMC8004365 DOI: 10.1155/2021/8863256] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 03/02/2021] [Accepted: 03/08/2021] [Indexed: 12/16/2022]
Abstract
Autism spectrum disorder (ASD) is a highly prevalent and impairing neurodevelopmental disorder that affects 1 : 54 persons. Over the last several decades, the reported incidence of ASD in the US has increased potentially due to increased awareness and improved diagnostic measurement. Although ASD prevalence is increasing, the etiology of ASD remains relatively unknown. To better understand the neurological basis of ASD, rodent models of ASD have been developed for research. Currently, there is not a standardized set of behavioral tests to quantify ASD-like behavior in rodents. The goal of this review is to present an overview of the methodologies used to analyze ASD-like behaviors in rodents, focusing on the valproic acid (VPA) model, and illustrate inconsistencies between different approaches. Despite that the in utero VPA rodent model for ASD is widely used and extensively characterized, behaviors vary substantially between different researchers. Moving forward, consistency in behavioral method analytics would benefit progress in evaluating interventions for all models of ASD and help to uncover unique qualities underlying mechanisms causing ASD signs and symptoms.
Collapse
|
25
|
Bitsika V, Sharpley CF. Symptom profiles and correlates of anxiety and depression among parents of autistic girls and boys. RESEARCH IN DEVELOPMENTAL DISABILITIES 2021; 111:103874. [PMID: 33524737 DOI: 10.1016/j.ridd.2021.103874] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 12/01/2020] [Accepted: 01/20/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Although it has been reported for some time that parenting an autistic child is associated with elevated anxiety and depression, no direct comparison has been published regarding the relative anxiety and depressive states of parents of an autistic son versus an autistic daughter. AIMS To investigate the presence of differences in anxiety and depression in parents of autistic girls and boys, and to identify if there were any meaningful child-based correlates of those states. METHODS AND PROCEDURES A sample of 51 parents of young autistic males (M age = 10.2 yr, SD = 2.8 yr, range to 6-17 yr) and 51 parents of autistic females (M age = 10.1 yr, SD = 2.7 yr, range to 6-17 yr) completed the GAD7 and PHQ9. Autistic children were assessed for IQ and autism severity. OUTCOMES AND RESULTS Although there were no significant differences between the two sets of parents' GAD7 or PHQ9 total scores, there were significant and meaningful differences at the individual GAD7 and PHQ9 item level. Moreover, when examined at the within-child-sex subgroup level, different aspects of the autistic sons' and daughters' age and IQ were correlated with specific items from the GAD7 and PHQ9. CONCLUSIONS AND IMPLICATIONS Because these items were somatic in nature, implications are discussed for possible treatment strategies with these parents.
Collapse
Affiliation(s)
- Vicki Bitsika
- Brain-Behaviour Research Group, University of New England, Armidale, NSW, 2350, Australia
| | - Christopher F Sharpley
- Brain-Behaviour Research Group, University of New England, Armidale, NSW, 2350, Australia.
| |
Collapse
|
26
|
Singh RS, Singh KK, Singh SM. Origin of Sex-Biased Mental Disorders: An Evolutionary Perspective. J Mol Evol 2021; 89:195-213. [PMID: 33630117 PMCID: PMC8116267 DOI: 10.1007/s00239-021-09999-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/06/2021] [Indexed: 12/12/2022]
Abstract
Sexual dimorphism or sex bias in diseases and mental disorders have two biological causes: sexual selection and sex hormones. We review the role of sexual selection theory and bring together decades of molecular studies on the variation and evolution of sex-biased genes and provide a theoretical basis for the causes of sex bias in disease and health. We present a Sexual Selection-Sex Hormone theory and show that male-driven evolution, including sexual selection, leads to: (1) increased male vulnerability due to negative pleiotropic effects associated with male-driven sexual selection and evolution; (2) increased rates of male-driven mutations and epimutations in response to early fitness gains and at the cost of late fitness; and (3) enhanced female immunity due to antagonistic responses to mutations that are beneficial to males but harmful to females, reducing female vulnerability to diseases and increasing the thresholds for disorders such as autism. Female-driven evolution, such as reproduction-related fluctuation in female sex hormones in association with stress and social condition, has been shown to be associated with increased risk of certain mental disorders such as major depression disorder in women. Bodies have history, cells have memories. An evolutionary framework, such as the Sexual Selection–Sex Hormone theory, provides a historical perspective for understanding how the differences in the sex-biased diseases and mental disorders have evolved over time. It has the potential to direct the development of novel preventive and treatment strategies.
Collapse
Affiliation(s)
- Rama S Singh
- Department of Biology, McMaster University, Hamilton, Canada.
| | - Karun K Singh
- Stem Cell and Cancer Research Institute, McMaster University, Hamilton, Canada.,Krembil Research Institute, University Health Network, Toronto, Canada
| | - Shiva M Singh
- Department of Biology, University of Western Ontario, London, Canada
| |
Collapse
|
27
|
Douard E, Zeribi A, Schramm C, Tamer P, Loum MA, Nowak S, Saci Z, Lord MP, Rodríguez-Herreros B, Jean-Louis M, Moreau C, Loth E, Schumann G, Pausova Z, Elsabbagh M, Almasy L, Glahn DC, Bourgeron T, Labbe A, Paus T, Mottron L, Greenwood CMT, Huguet G, Jacquemont S. Effect Sizes of Deletions and Duplications on Autism Risk Across the Genome. Am J Psychiatry 2021; 178:87-98. [PMID: 32911998 PMCID: PMC8931740 DOI: 10.1176/appi.ajp.2020.19080834] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Deleterious copy number variants (CNVs) are identified in up to 20% of individuals with autism. However, levels of autism risk conferred by most rare CNVs remain unknown. The authors recently developed statistical models to estimate the effect size on IQ of all CNVs, including undocumented ones. In this study, the authors extended this model to autism susceptibility. METHODS The authors identified CNVs in two autism populations (Simons Simplex Collection and MSSNG) and two unselected populations (IMAGEN and Saguenay Youth Study). Statistical models were used to test nine quantitative variables associated with genes encompassed in CNVs to explain their effects on IQ, autism susceptibility, and behavioral domains. RESULTS The "probability of being loss-of-function intolerant" (pLI) best explains the effect of CNVs on IQ and autism risk. Deleting 1 point of pLI decreases IQ by 2.6 points in autism and unselected populations. The effect of duplications on IQ is threefold smaller. Autism susceptibility increases when deleting or duplicating any point of pLI. This is true for individuals with high or low IQ and after removing de novo and known recurrent neuropsychiatric CNVs. When CNV effects on IQ are accounted for, autism susceptibility remains mostly unchanged for duplications but decreases for deletions. Model estimates for autism risk overlap with previously published observations. Deletions and duplications differentially affect social communication, behavior, and phonological memory, whereas both equally affect motor skills. CONCLUSIONS Autism risk conferred by duplications is less influenced by IQ compared with deletions. The model applied in this study, trained on CNVs encompassing >4,500 genes, suggests highly polygenic properties of gene dosage with respect to autism risk and IQ loss. These models will help to interpret CNVs identified in the clinic.
Collapse
Affiliation(s)
- Elise Douard
- Université de Montréal, Montreal, Quebec, Canada
- UHC Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - Abderrahim Zeribi
- Université de Montréal, Montreal, Quebec, Canada
- UHC Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - Catherine Schramm
- Université de Montréal, Montreal, Quebec, Canada
- UHC Sainte-Justine Research Center, Montreal, Quebec, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Petra Tamer
- Université de Montréal, Montreal, Quebec, Canada
- UHC Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - Mor Absa Loum
- Université de Montréal, Montreal, Quebec, Canada
- UHC Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - Sabrina Nowak
- Université de Montréal, Montreal, Quebec, Canada
- UHC Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - Zohra Saci
- UHC Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - Marie-Pier Lord
- Université de Montréal, Montreal, Quebec, Canada
- UHC Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - Borja Rodríguez-Herreros
- UHC Sainte-Justine Research Center, Montreal, Quebec, Canada
- Sensory-Motor Laboratory, Jules-Gonin Eye Hospital, University of Lausanne, Lausanne, Switzerland
| | | | - Clara Moreau
- Université de Montréal, Montreal, Quebec, Canada
- UHC Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - Eva Loth
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Gunter Schumann
- Center for Population Neuroscience and Stratified Medicine, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Zdenka Pausova
- The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
- Departments of Physiology and Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Mayada Elsabbagh
- Departments of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Laura Almasy
- Department of Biomedical and Health Informatics (DBHi), Children’s Hospital of Philadelphia, Pennsylvania, United States
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Pennsylvania, United States
| | - David C. Glahn
- Departments of Psychiatry, Boston Children’s Hospital, Boston, Massachusetts, United States
- Harvard Medical School, Boston, Massachusetts, United States
| | - Thomas Bourgeron
- Human Genetics and Cognitive Functions, Institut Pasteur, UMR3571 CNRS, Université de Paris, Paris, France
| | - Aurélie Labbe
- Département de Sciences de la Décision, HEC Montreal, Montreal, Quebec, Canada
| | - Tomas Paus
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Ontario, Canada
- Departments of Psychology and Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Laurent Mottron
- Centre de Recherche de CIUSSS-NIM, Montreal, Quebec, Canada
- Département de Psychiatrie, Université de Montréal, Montreal, Quebec, Canada
| | - Célia M. T. Greenwood
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
- Department of Epidemiology, Biostatistics & Occupational Health, McGill University, Montreal, Quebec, Canada
- Gerald Bronfman Department of Oncology, and Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Guillaume Huguet
- Université de Montréal, Montreal, Quebec, Canada
- UHC Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - Sébastien Jacquemont
- Université de Montréal, Montreal, Quebec, Canada
- UHC Sainte-Justine Research Center, Montreal, Quebec, Canada
| |
Collapse
|
28
|
Arsenault J, Hooper AWM, Gholizadeh S, Kong T, Pacey LK, Koxhioni E, Niibori Y, Eubanks JH, Wang LY, Hampson DR. Interregulation between fragile X mental retardation protein and methyl CpG binding protein 2 in the mouse posterior cerebral cortex. Hum Mol Genet 2020; 29:3744-3756. [PMID: 33084871 PMCID: PMC7861017 DOI: 10.1093/hmg/ddaa226] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/28/2020] [Accepted: 10/12/2020] [Indexed: 12/31/2022] Open
Abstract
Several X-linked neurodevelopmental disorders including Rett syndrome, induced by mutations in the MECP2 gene, and fragile X syndrome (FXS), caused by mutations in the FMR1 gene, share autism-related features. The mRNA coding for methyl CpG binding protein 2 (MeCP2) has previously been identified as a substrate for the mRNA-binding protein, fragile X mental retardation protein (FMRP), which is silenced in FXS. Here, we report a homeostatic relationship between these two key regulators of gene expression in mouse models of FXS (Fmr1 Knockout (KO)) and Rett syndrome (MeCP2 KO). We found that the level of MeCP2 protein in the cerebral cortex was elevated in Fmr1 KO mice, whereas MeCP2 KO mice displayed reduced levels of FMRP, implicating interplay between the activities of MeCP2 and FMRP. Indeed, knockdown of MeCP2 with short hairpin RNAs led to a reduction of FMRP in mouse Neuro2A and in human HEK-293 cells, suggesting a reciprocal coupling in the expression level of these two regulatory proteins. Intra-cerebroventricular injection of an adeno-associated viral vector coding for FMRP led to a concomitant reduction in MeCP2 expression in vivo and partially corrected locomotor hyperactivity. Additionally, the level of MeCP2 in the posterior cortex correlated with the severity of the hyperactive phenotype in Fmr1 KO mice. These results demonstrate that MeCP2 and FMRP operate within a previously undefined homeostatic relationship. Our findings also suggest that MeCP2 overexpression in Fmr1 KO mouse posterior cerebral cortex may contribute to the fragile X locomotor hyperactivity phenotype.
Collapse
Affiliation(s)
- Jason Arsenault
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada.,Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada.,Program in Neurosciences and Mental Health, Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Alexander W M Hooper
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Shervin Gholizadeh
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Tian Kong
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada.,Program in Neurosciences and Mental Health, Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Laura K Pacey
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Enea Koxhioni
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Yosuke Niibori
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - James H Eubanks
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON M5T 0S8, Canada.,Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada.,Department of Surgery, Division of Neurosurgery, University of Toronto, Toronto, ON M5T 1P5, Canada
| | - Lu-Yang Wang
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada.,Program in Neurosciences and Mental Health, Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - David R Hampson
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada.,Department of Pharmacology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
29
|
Williams CM, Peyre H, Toro R, Beggiato A, Ramus F. Adjusting for allometric scaling in ABIDE I challenges subcortical volume differences in autism spectrum disorder. Hum Brain Mapp 2020; 41:4610-4629. [PMID: 32729664 PMCID: PMC7555078 DOI: 10.1002/hbm.25145] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/29/2020] [Accepted: 07/07/2020] [Indexed: 12/17/2022] Open
Abstract
Inconsistencies across studies investigating subcortical correlates of autism spectrum disorder (ASD) may stem from small sample size, sample heterogeneity, and omitting or linearly adjusting for total brain volume (TBV). To properly adjust for TBV, brain allometry—the nonlinear scaling relationship between regional volumes and TBV—was considered when examining subcortical volumetric differences between typically developing (TD) and ASD individuals. Autism Brain Imaging Data Exchange I (ABIDE I; N = 654) data was analyzed with two methodological approaches: univariate linear mixed effects models and multivariate multiple group confirmatory factor analyses. Analyses were conducted on the entire sample and in subsamples based on age, sex, and full scale intelligence quotient (FSIQ). A similar ABIDE I study was replicated and the impact of different TBV adjustments on neuroanatomical group differences was investigated. No robust subcortical allometric or volumetric group differences were observed in the entire sample across methods. Exploratory analyses suggested that allometric scaling and volume group differences may exist in certain subgroups defined by age, sex, and/or FSIQ. The type of TBV adjustment influenced some reported volumetric and scaling group differences. This study supports the absence of robust volumetric differences between ASD and TD individuals in the investigated volumes when adjusting for brain allometry, expands the literature by finding no group difference in allometric scaling, and further suggests that differing TBV adjustments contribute to the variability of reported neuroanatomical differences in ASD.
Collapse
Affiliation(s)
- Camille Michèle Williams
- Laboratoire de Sciences Cognitives et Psycholinguistique, Département d'Etudes Cognitives, École Normale Supérieure, EHESS, CNRS, PSL University, Paris, France
| | - Hugo Peyre
- Laboratoire de Sciences Cognitives et Psycholinguistique, Département d'Etudes Cognitives, École Normale Supérieure, EHESS, CNRS, PSL University, Paris, France.,INSERM UMR 1141, Paris Diderot University, Paris, France.,Department of Child and Adolescent Psychiatry, Robert Debré Hospital, APHP, Paris, France
| | - Roberto Toro
- U1284, Center for Research and Interdisciplinarity (CRI), INSERM, Paris, France.,Unité Mixte de Recherche 3571, Human Genetics and Cognitive Functions, Centre National de la Recherche Scientifique, Institut Pasteur, Paris, France
| | - Anita Beggiato
- Department of Child and Adolescent Psychiatry, Robert Debré Hospital, APHP, Paris, France.,Unité Mixte de Recherche 3571, Human Genetics and Cognitive Functions, Centre National de la Recherche Scientifique, Institut Pasteur, Paris, France
| | - Franck Ramus
- Laboratoire de Sciences Cognitives et Psycholinguistique, Département d'Etudes Cognitives, École Normale Supérieure, EHESS, CNRS, PSL University, Paris, France
| |
Collapse
|
30
|
Merikangas AK, Almasy L. Using the tools of genetic epidemiology to understand sex differences in neuropsychiatric disorders. GENES, BRAIN, AND BEHAVIOR 2020; 19:e12660. [PMID: 32348611 PMCID: PMC7507200 DOI: 10.1111/gbb.12660] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 03/01/2020] [Accepted: 04/24/2020] [Indexed: 02/06/2023]
Abstract
Many neuropsychiatric disorders exhibit differences in prevalence, age of onset, symptoms or course of illness between males and females. For the most part, the origins of these differences are not well understood. In this article, we provide an overview of sex differences in psychiatric disorders including autism spectrum disorder (ASD), attention deficit/hyperactivity disorder (ADHD), anxiety, depression, alcohol and substance abuse, schizophrenia, eating disorders and risk of suicide. We discuss both genetic and nongenetic mechanisms that have been hypothesized to underlie these differences, including ascertainment bias, environmental stressors, X- or Y-linked risk loci, and differential liability thresholds in males and females. We then review the use of twin, family and genome-wide association approaches to study potential genetic mechanisms of sex differences and the extent to which these designs have been employed in studies of psychiatric disorders. We describe the utility of genetic epidemiologic study designs, including classical twin and family studies, large-scale studies of population registries, derived recurrence risks, and molecular genetic analyses of genome-wide variation that may enhance our understanding sex differences in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Alison K. Merikangas
- Department of Biomedical and Health InformaticsChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
- Penn‐CHOP Lifespan Brain InstituteUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of Genetics, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Laura Almasy
- Department of Biomedical and Health InformaticsChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
- Penn‐CHOP Lifespan Brain InstituteUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of Genetics, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
31
|
Cabrera-Mendoza B, Fresno C, Monroy-Jaramillo N, Fries GR, Walss-Bass C, Glahn DC, Ostrosky-Wegman P, Mendoza-Morales RC, García-Dolores F, Díaz-Otañez CE, González-Sáenz EE, Genis-Mendoza AD, Martínez-Magaña JJ, Romero-Pimentel AL, Flores G, Vázquez-Roque RA, Nicolini H. Sex differences in brain gene expression among suicide completers. J Affect Disord 2020; 267:67-77. [PMID: 32063575 DOI: 10.1016/j.jad.2020.01.167] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 12/23/2019] [Accepted: 01/28/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND Suicide rates vary substantially by sex. Suicides committed by males significantly outnumber female suicides. Disparities in community and social factors provide a partial explanation for this phenomenon. Thus, the evaluation of sex differences at a biological level might contribute to the elucidation of the factors involved in this imbalance. The aim of the present study was to evaluate sex-specific gene expression patterns in the suicidal brain. METHODS postmortem samples from the dorsolateral prefrontal cortex (DLPFC) of 75 Latino individuals were analyzed. We considered the following groups: i) male suicides (n = 38), ii) female suicides (n = 10), iii) male controls (n = 20), and iv) female controls (n = 7). Gene expression profiles were evaluated by microarrays. Differentially expressed genes among the groups were identified with a linear model. Similarities and differences in the gene sets between the sexes were identified. RESULTS Differentially expressed genes were identified between suicides and controls of each sex: 1,729 genes in females and 1,997 genes in males. Female-exclusive suicide genes were related to cell proliferation and immune response. Meanwhile, male-exclusive suicide genes were associated to DNA binding and ribonucleic protein complex. Sex-independent suicide genes showed enrichment in mitochondrial and vesicular functions. LIMITATIONS Relatively small sample size. Our diagnosis approach was limited to information found on coroner's records. The analysis was limited to a single brain area (DLPFC) and we used microarrays. CONCLUSION Previously unexplored sex differences in the brain gene expression of suicide completers were identified, providing valuable foundation for the evaluation of sex-specific factors in suicide.
Collapse
Affiliation(s)
- Brenda Cabrera-Mendoza
- Genomics of Psychiatric and Neurodegenerative Diseases Laboratory, National Institute of Genomic Medicine (INMEGEN), Mexico City, Mexico; PECEM, Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Cristóbal Fresno
- Technological Development Department, National Institute of Genomic Medicine (INMEGEN), Mexico City, Mexico
| | - Nancy Monroy-Jaramillo
- Department of Genetics, National Institute of Neurology and Neurosurgery, Mexico City, Mexico
| | - Gabriel Rodrigo Fries
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, TX, United States
| | - Consuelo Walss-Bass
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, TX, United States
| | - David C Glahn
- Tommy Fuss Center for Neuropsychiatric Disease Research, Boston Children's Hospital, Boston, MA, United States; Harvard Medical School, Boston, MA, United States
| | | | | | | | | | | | - Alma Delia Genis-Mendoza
- Genomics of Psychiatric and Neurodegenerative Diseases Laboratory, National Institute of Genomic Medicine (INMEGEN), Mexico City, Mexico
| | - José Jaime Martínez-Magaña
- Genomics of Psychiatric and Neurodegenerative Diseases Laboratory, National Institute of Genomic Medicine (INMEGEN), Mexico City, Mexico
| | - Ana Luisa Romero-Pimentel
- Genomics of Psychiatric and Neurodegenerative Diseases Laboratory, National Institute of Genomic Medicine (INMEGEN), Mexico City, Mexico
| | - Gonzalo Flores
- Neuropsychiatry Laboratory, Institute of Physiology, Meritorious Autonomous University of Puebla, Mexico City, Mexico
| | - Rubén Antonio Vázquez-Roque
- Neuropsychiatry Laboratory, Institute of Physiology, Meritorious Autonomous University of Puebla, Mexico City, Mexico
| | - Humberto Nicolini
- Genomics of Psychiatric and Neurodegenerative Diseases Laboratory, National Institute of Genomic Medicine (INMEGEN), Mexico City, Mexico.
| |
Collapse
|
32
|
Hernandez LM, Lawrence KE, Padgaonkar NT, Inada M, Hoekstra JN, Lowe JK, Eilbott J, Jack A, Aylward E, Gaab N, Van Horn JD, Bernier RA, McPartland JC, Webb SJ, Pelphrey KA, Green SA, Geschwind DH, Bookheimer SY, Dapretto M. Imaging-genetics of sex differences in ASD: distinct effects of OXTR variants on brain connectivity. Transl Psychiatry 2020; 10:82. [PMID: 32127526 PMCID: PMC7054353 DOI: 10.1038/s41398-020-0750-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 12/19/2019] [Accepted: 01/08/2020] [Indexed: 01/07/2023] Open
Abstract
Autism spectrum disorder (ASD) is more prevalent in males than in females, but the neurobiological mechanisms that give rise to this sex-bias are poorly understood. The female protective hypothesis suggests that the manifestation of ASD in females requires higher cumulative genetic and environmental risk relative to males. Here, we test this hypothesis by assessing the additive impact of several ASD-associated OXTR variants on reward network resting-state functional connectivity in males and females with and without ASD, and explore how genotype, sex, and diagnosis relate to heterogeneity in neuroendophenotypes. Females with ASD who carried a greater number of ASD-associated risk alleles in the OXTR gene showed greater functional connectivity between the nucleus accumbens (NAcc; hub of the reward network) and subcortical brain areas important for motor learning. Relative to males with ASD, females with ASD and higher OXTR risk-allele-dosage showed increased connectivity between the NAcc, subcortical regions, and prefrontal brain areas involved in mentalizing. This increased connectivity between NAcc and prefrontal cortex mirrored the relationship between genetic risk and brain connectivity observed in neurotypical males showing that, under increased OXTR genetic risk load, females with ASD and neurotypical males displayed increased connectivity between reward-related brain regions and prefrontal cortex. These results indicate that females with ASD differentially modulate the effects of increased genetic risk on brain connectivity relative to males with ASD, providing new insights into the neurobiological mechanisms through which the female protective effect may manifest.
Collapse
Affiliation(s)
- Leanna M Hernandez
- Ahmanson-Lovelace Brain Mapping Center, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Katherine E Lawrence
- Ahmanson-Lovelace Brain Mapping Center, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - N Tanya Padgaonkar
- Ahmanson-Lovelace Brain Mapping Center, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Marisa Inada
- Ahmanson-Lovelace Brain Mapping Center, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Jackson N Hoekstra
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Jennifer K Lowe
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Jeffrey Eilbott
- Autism & Neurodevelopmental Disorders Institute, The George Washington University, Washington, DC, USA
| | - Allison Jack
- Autism & Neurodevelopmental Disorders Institute, The George Washington University, Washington, DC, USA
| | - Elizabeth Aylward
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Nadine Gaab
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - John D Van Horn
- USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Laboratory of Neuro Imaging, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| | - Raphael A Bernier
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
| | | | - Sara J Webb
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
| | - Kevin A Pelphrey
- University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Shulamite A Green
- Ahmanson-Lovelace Brain Mapping Center, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Daniel H Geschwind
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Susan Y Bookheimer
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Mirella Dapretto
- Ahmanson-Lovelace Brain Mapping Center, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
33
|
Abstract
Neuroinflammation is implicated in contributing to a variety of neurologic and somatic illnesses including Alzheimer's disease (AD), Parkinson's disease (PD), and depression. In this chapter, we focus on the role of neuroinflammation in mediating these three illnesses and portray interactions between the immune response and the central nervous system in the context of sex differences in disease progression. The majority of this chapter is supported by clinical findings; however, we occasionally utilize preclinical models where human studies are currently lacking. We begin by detailing the pathology of neuroinflammation, distinguishing between acute and chronic inflammation, and examining contributions from the innate and adaptive immune systems. Next, we summarize potential mechanisms of immune cell mediators including interleukin-1 beta (IL-1β), tumor necrosis factor α, and IL-6 in AD, PD, and depression development. Given the strong sex bias seen in these illnesses, we additionally examine the role of sex hormones, e.g., estrogen and testosterone in mediating neuroinflammation at the cellular level. Systematically, we detail how sex hormones may contribute to distinct behavioral and clinical symptoms and prognosis between males and females with AD, PD, or depression. Finally, we highlight the possible role of exercise in alleviating neuroinflammation, as well as evidence that antiinflammatory drug therapies improve cognitive symptoms observed in brain-related diseases.
Collapse
Affiliation(s)
- Deepika Mukhara
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, United States
| | - Unsong Oh
- Department of Neurology, Virginia Commonwealth University, Richmond, VA, United States
| | - Gretchen N Neigh
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, United States.
| |
Collapse
|
34
|
Giatti S, Diviccaro S, Serafini MM, Caruso D, Garcia-Segura LM, Viviani B, Melcangi RC. Sex differences in steroid levels and steroidogenesis in the nervous system: Physiopathological role. Front Neuroendocrinol 2020; 56:100804. [PMID: 31689419 DOI: 10.1016/j.yfrne.2019.100804] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/10/2019] [Accepted: 10/30/2019] [Indexed: 12/13/2022]
Abstract
The nervous system, in addition to be a target for steroid hormones, is the source of a variety of neuroactive steroids, which are synthesized and metabolized by neurons and glial cells. Recent evidence indicates that the expression of neurosteroidogenic proteins and enzymes and the levels of neuroactive steroids are different in the nervous system of males and females. We here summarized the state of the art of neuroactive steroids, particularly taking in consideration sex differences occurring in the synthesis and levels of these molecules. In addition, we discuss the consequences of sex differences in neurosteroidogenesis for the function of the nervous system under healthy and pathological conditions and the implications of neuroactive steroids and neurosteroidogenesis for the development of sex-specific therapeutic interventions.
Collapse
Affiliation(s)
- Silvia Giatti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Silvia Diviccaro
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Melania Maria Serafini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Donatella Caruso
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Luis Miguel Garcia-Segura
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Barbara Viviani
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Roberto C Melcangi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy.
| |
Collapse
|
35
|
Wu HF, Lu TY, Chu MC, Chen PS, Lee CW, Lin HC. Targeting the inhibition of fatty acid amide hydrolase ameliorate the endocannabinoid-mediated synaptic dysfunction in a valproic acid-induced rat model of Autism. Neuropharmacology 2020; 162:107736. [DOI: 10.1016/j.neuropharm.2019.107736] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 08/02/2019] [Accepted: 08/05/2019] [Indexed: 10/26/2022]
|
36
|
Wilkinson CL, Gabard-Durnam LJ, Kapur K, Tager-Flusberg H, Levin AR, Nelson CA. Use of longitudinal EEG measures in estimating language development in infants with and without familial risk for autism spectrum disorder. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2020; 1:33-53. [PMID: 32656537 PMCID: PMC7351149 DOI: 10.1162/nol_a_00002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
Abstract
Language development in children with autism spectrum disorder (ASD) varies greatly among affected individuals and is a strong predictor of later outcomes. Younger siblings of children with ASD have increased risk of ASD, but also language delay. Identifying neural markers of language outcomes in infant siblings could facilitate earlier intervention and improved outcomes. This study aimed to determine whether EEG measures from the first 2-years of life can explain heterogeneity in language development in children at low- and high-risk for ASD, and to determine whether associations between EEG measures and language development are different depending on ASD risk status or later ASD diagnosis. In this prospective longitudinal study EEG measures collected between 3-24 months were used in a multivariate linear regression model to estimate participants' 24-month language development. Individual baseline longitudinal EEG measures included (1) the slope of EEG power across 3-12 months or 3-24 months of life for 6 canonical frequency bands, (2) estimated EEG power at age 6-months for the same frequency bands, and (3) terms representing the interaction between ASD risk status and EEG power measures. Modeled 24-month language scores using EEG data from either the first 2-years (Pearson R = 0.70, 95% CI 0.595-0.783, P=1x10-18) or the first year of life (Pearson R=0.66, 95% CI 0.540-0.761, P=2.5x10-14) were highly correlated with observed scores. All models included significant interaction effects of risk on EEG measures, suggesting that EEG-language associations are different depending on risk status, and that different brain mechanisms effect language development in low-versus high-risk infants.
Collapse
Affiliation(s)
| | | | - Kush Kapur
- Department of Neurology, Boston Children’s Hospital, Boston, MA
| | | | - April R. Levin
- Department of Neurology, Boston Children’s Hospital, Boston, MA
| | - Charles A. Nelson
- Division of Developmental Medicine, Boston Children’s Hospital, Boston, MA
| |
Collapse
|
37
|
Mossa A, Manzini MC. Molecular causes of sex-specific deficits in rodent models of neurodevelopmental disorders. J Neurosci Res 2019; 99:37-56. [PMID: 31872500 PMCID: PMC7754327 DOI: 10.1002/jnr.24577] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 11/02/2019] [Accepted: 12/09/2019] [Indexed: 12/12/2022]
Abstract
Neurodevelopmental disorders (NDDs) such as intellectual disability and autism spectrum disorder consistently show a male bias in prevalence, but it remains unclear why males and females are affected with different frequency. While many behavioral studies of transgenic NDD models have focused only on males, the requirement by the National Institutes of Health to consider sex as a biological variable has promoted the comparison of male and female performance in wild-type and mutant animals. Here, we review examples of rodent models of NDDs in which sex-specific deficits were identified in molecular, physiological, and/or behavioral responses, showing sex differences in susceptibility to disruption of genes mutated in NDDs. Haploinsufficiency in genes involved in mechanisms such as synaptic function (GABRB3 and NRXN1), chromatin remodeling (CHD8, EMHT1, and ADNP), and intracellular signaling (CC2D1A and ERK1) lead to more severe behavioral outcomes in males. However, in the absence of behavioral deficits, females can still present with cellular and electrophysiological changes that could be due to compensatory mechanisms or differential allocation of molecular and cellular functions in the two sexes. By contrasting these findings with mouse models where females are more severely affected (MTHFR and AMBRA1), we propose a framework to approach the study of sex-specific deficits possibly leading to sex bias in NDDs.
Collapse
Affiliation(s)
- Adele Mossa
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - M Chiara Manzini
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA.,Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| |
Collapse
|
38
|
Tahira AC, Barbosa AR, Feltrin AS, Gastaldi VD, de Toledo VHC, de Carvalho Pereira JG, Lisboa BCG, de Souza Reis VN, dos Santos ACF, Maschietto M, Brentani H. Putative contributions of the sex chromosome proteins SOX3 and SRY to neurodevelopmental disorders. Am J Med Genet B Neuropsychiatr Genet 2019; 180:390-414. [PMID: 30537354 PMCID: PMC6767407 DOI: 10.1002/ajmg.b.32704] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 11/08/2018] [Accepted: 11/12/2018] [Indexed: 12/12/2022]
Abstract
The male-biased prevalence of certain neurodevelopmental disorders and the sex-biased outcomes associated with stress exposure during gestation have been previously described. Here, we hypothesized that genes distinctively targeted by only one or both homologous proteins highly conserved across therian mammals, SOX3 and SRY, could induce sexual adaptive changes that result in a differential risk for neurodevelopmental disorders. ChIP-seq/chip data showed that SOX3/SRY gene targets were expressed in different brain cell types in mice. We used orthologous human genes in rodent genomes to extend the number of SOX3/SRY set (1,721). These genes were later found to be enriched in five modules of coexpressed genes during the early and mid-gestation periods (FDR < 0.05), independent of sexual hormones. Genes with differential expression (24, p < 0.0001) and methylation (40, p < 0.047) between sexes were overrepresented in this set. Exclusive SOX3 or SRY target genes were more associated with the late gestational and postnatal periods. Using autism as a model sex-biased disorder, the SOX3/SRY set was enriched in autism gene databases (FDR ≤ 0.05), and there were more de novo variations from the male autism spectrum disorder (ASD) samples under the SRY peaks compared to the random peaks (p < 0.024). The comparison of coexpressed networks of SOX3/SRY target genes between male autism and control samples revealed low preservation in gene modules related to stress response (99 genes) and neurogenesis (78 genes). This study provides evidence that while SOX3 is a regulatory mechanism for both sexes, the male-exclusive SRY also plays a role in gene regulation, suggesting a potential mechanism for sex bias in ASD.
Collapse
Affiliation(s)
- Ana Carolina Tahira
- LIM23, Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao PauloSao PauloSPBrazil
| | - André Rocha Barbosa
- LIM23, Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao PauloSao PauloSPBrazil
- Inter‐institutional Grad Program on BioinformaticsUniversity of São PauloSão PauloSPBrazil
| | | | - Vinicius Daguano Gastaldi
- LIM23, Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao PauloSao PauloSPBrazil
| | - Victor Hugo Calegari de Toledo
- LIM23, Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao PauloSao PauloSPBrazil
| | | | - Bianca Cristina Garcia Lisboa
- LIM23, Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao PauloSao PauloSPBrazil
| | - Viviane Neri de Souza Reis
- LIM23, Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao PauloSao PauloSPBrazil
| | - Ana Cecília Feio dos Santos
- LIM23, Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao PauloSao PauloSPBrazil
- Laboratório de Pesquisas Básicas em Malária – EntomologiaSeção de Parasitologia – Instituto Evandro Chagas/SVS/MSAnanindeuaPABrazil
| | - Mariana Maschietto
- Brazilian Biosciences National Laboratory (LNBio)Brazilian Center for Research in Energy and Materials (CNPEM)CampinasSPBrazil
| | - Helena Brentani
- LIM23, Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao PauloSao PauloSPBrazil
- Inter‐institutional Grad Program on BioinformaticsUniversity of São PauloSão PauloSPBrazil
- Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao PauloSPBrazil
- National Institute of Developmental Psychiatry for Children and Adolescents (INPD)Sao PauloSPBrazil
- Faculdade de Medicina FMUSPUniversidade de Sao PauloSao PauloSPBrazil
| |
Collapse
|
39
|
Wilkinson CL, Levin AR, Gabard-Durnam LJ, Tager-Flusberg H, Nelson CA. Reduced frontal gamma power at 24 months is associated with better expressive language in toddlers at risk for autism. Autism Res 2019; 12:1211-1224. [PMID: 31119899 PMCID: PMC7771228 DOI: 10.1002/aur.2131] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 04/20/2019] [Indexed: 01/31/2023]
Abstract
Frontal gamma power has been associated with early language development in typically developing toddlers, and gamma band abnormalities have been observed in individuals with autism spectrum disorder (ASD), as well as high-risk infant siblings (those having an older sibling with ASD), as early as 6 months of age. The current study investigated differences in baseline frontal gamma power and its association with language development in toddlers at high versus low familial risk for autism. Electroencephalography recordings as well as cognitive and behavioral assessments were acquired at 24 months as part of prospective, longitudinal study of infant siblings of children with and without autism. Diagnosis of autism was determined at 24-36 months, and data were analyzed across three outcome groups-low-risk without ASD (n = 43), high-risk without ASD (n = 42), and high-risk with ASD (n = 16). High-risk toddlers without ASD had reduced baseline frontal gamma power (30-50 Hz) compared to low-risk toddlers. Among high-risk toddlers increased frontal gamma was only marginally associated with ASD diagnosis (P = 0.06), but significantly associated with reduced expressive language ability (P = 0.007). No association between gamma power and language was present in the low-risk group. These findings suggest that differences in gamma oscillations in high-risk toddlers may represent compensatory mechanisms associated with improved developmental outcomes. Autism Res 2019, 12: 1211-1224. © 2019 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY: This study looked at differences in neural activity in the gamma range and its association with language in toddlers with and without increased risk for ASD. At 2 years of age, gamma power was lower in high-risk toddlers without ASD compared to a low-risk comparison group. Among high-risk toddlers both with and without later ASD, reduced gamma power was also associated with better language outcomes, suggesting that gamma power may be a marker of language development in high-risk children.
Collapse
Affiliation(s)
- Carol L Wilkinson
- Division of Developmental Medicine, Boston Children's Hospital, Boston, Massachusetts
| | - April R Levin
- Department of Neurology, Boston Children's Hospital, Boston, Massachusetts
| | | | - Helen Tager-Flusberg
- Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts
| | - Charles A Nelson
- Division of Developmental Medicine, Boston Children's Hospital, Boston, Massachusetts
| |
Collapse
|
40
|
Kappel DB, Schuch JB, Rovaris DL, da Silva BS, Müller D, Breda V, Teche SP, S Riesgo R, Schüler-Faccini L, Rohde LA, Grevet EH, Bau CHD. ADGRL3 rs6551665 as a Common Vulnerability Factor Underlying Attention-Deficit/Hyperactivity Disorder and Autism Spectrum Disorder. Neuromolecular Med 2019; 21:60-67. [PMID: 30652248 DOI: 10.1007/s12017-019-08525-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 01/10/2019] [Indexed: 12/27/2022]
Abstract
Neurodevelopmental disorders are prevalent, frequently occur in comorbidity and share substantial genetic correlation. Previous evidence has suggested a role for the ADGRL3 gene in Attention-Deficit/Hyperactivity Disorder (ADHD) susceptibility in several samples. Considering ADGRL3 functionality in central nervous system development and its previous association with neurodevelopmental disorders, we aimed to assess ADGRL3 influence in early-onset ADHD (before 7 years of age) and Autism Spectrum Disorder (ASD). The sample comprises 187 men diagnosed with early-onset ADHD, 135 boys diagnosed with ASD and 468 male blood donors. We tested the association of an ADGRL3 variant (rs6551665) with both early-onset ADHD and ASD susceptibility. We observed significant associations between ADGRL3-rs6551665 on ADHD and ASD susceptibilities; we found that G-carriers were at increased risk of ADHD and ASD, in accordance with previous studies. The overall evidence from the literature, corroborated by our results, suggests that ADGRL3 might be involved in brain development, and genetic modifications related to it might be part of a shared vulnerability factor associated with the underlying neurobiology of neurodevelopmental disorders such as ADHD and ASD.
Collapse
Affiliation(s)
- Djenifer B Kappel
- Department of Genetics, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre, RS, CEP: 91501-970, Brazil.,ADHD Outpatient Program - Adult Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Jaqueline B Schuch
- Department of Genetics, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre, RS, CEP: 91501-970, Brazil.,ADHD Outpatient Program - Adult Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Graduate Program in Biomedical Gerontology, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Diego L Rovaris
- Department of Genetics, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre, RS, CEP: 91501-970, Brazil.,ADHD Outpatient Program - Adult Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Bruna S da Silva
- Department of Genetics, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre, RS, CEP: 91501-970, Brazil.,ADHD Outpatient Program - Adult Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Diana Müller
- Department of Genetics, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre, RS, CEP: 91501-970, Brazil.,ADHD Outpatient Program - Adult Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Vitor Breda
- ADHD Outpatient Program - Adult Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Department of Psychiatry, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Stefania P Teche
- ADHD Outpatient Program - Adult Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Department of Psychiatry, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Rudimar S Riesgo
- Child Neurology Unit, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Lavínia Schüler-Faccini
- Department of Genetics, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre, RS, CEP: 91501-970, Brazil
| | - Luís A Rohde
- ADHD Outpatient Program - Adult Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Department of Psychiatry, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,National Institute of Developmental Psychiatry for Children and Adolescents, Porto Alegre, Brazil
| | - Eugenio H Grevet
- ADHD Outpatient Program - Adult Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Department of Psychiatry, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Claiton H D Bau
- Department of Genetics, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre, RS, CEP: 91501-970, Brazil. .,ADHD Outpatient Program - Adult Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.
| |
Collapse
|
41
|
Rezzani R, Franco C, Rodella LF. Sex differences of brain and their implications for personalized therapy. Pharmacol Res 2019; 141:429-442. [PMID: 30659897 DOI: 10.1016/j.phrs.2019.01.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/14/2019] [Accepted: 01/15/2019] [Indexed: 01/06/2023]
Abstract
Nowadays, it is known that the sex differences regard many organs, e.g., liver, vessels, pancreas, lungs, bronchi and also the brain. Sex differences are not just a matter of ethical and moral principles, as they are central to explain many still unknown diseases and their understanding is a prerequisite to develop an effective therapy for each individual. This review reports on those sex differences that are not only macroscopic and morphological, but also involve molecular and functional dimorphism in the brain. It will recapitulate the main structural differences between male and female brain including the neurotransmission systems; in particular, the main objective is to identify a correlation, already known or to be investigated in the future, between the differences that characterize male and female brains from a morphological and biochemical point of view and neurological syndromes. This correlation could provide a starting point for future scientific research aimed to investigate and define a personalized therapy.
Collapse
Affiliation(s)
- Rita Rezzani
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy; Interdipartimental University Center of Research "Adaption and Regeneration of Tissues and Organs-(ARTO)", University of Brescia, 25123 Brescia, Italy.
| | - Caterina Franco
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Luigi F Rodella
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy; Interdipartimental University Center of Research "Adaption and Regeneration of Tissues and Organs-(ARTO)", University of Brescia, 25123 Brescia, Italy
| |
Collapse
|
42
|
Berkel S, Eltokhi A, Fröhlich H, Porras-Gonzalez D, Rafiullah R, Sprengel R, Rappold GA. Sex Hormones Regulate SHANK Expression. Front Mol Neurosci 2018; 11:337. [PMID: 30319350 PMCID: PMC6167484 DOI: 10.3389/fnmol.2018.00337] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 08/28/2018] [Indexed: 01/15/2023] Open
Abstract
Autism spectrum disorders (ASD) have a higher prevalence in male individuals compared to females, with a ratio of affected boys compared to girls of 4:1 for ASD and 11:1 for Asperger syndrome. Mutations in the SHANK genes (comprising SHANK1, SHANK2 and SHANK3) coding for postsynaptic scaffolding proteins have been tightly associated with ASD. As early brain development is strongly influenced by sex hormones, we investigated the effect of dihydrotestosterone (DHT) and 17β-estradiol on SHANK expression in a human neuroblastoma cell model. Both sex hormones had a significant impact on the expression of all three SHANK genes, which could be effectively blocked by androgen and estrogen receptor antagonists. In neuron-specific androgen receptor knock-out mice (ArNesCre), we found a nominal significant reduction of all Shank genes at postnatal day 7.5 in the cortex. In the developing cortex of wild-type (WT) CD1 mice, a sex-differential protein expression was identified for all Shanks at embryonic day 17.5 and postnatal day 7.5 with significantly higher protein levels in male compared to female mice. Together, we could show that SHANK expression is influenced by sex hormones leading to a sex-differential expression, thus providing novel insights into the sex bias in ASD.
Collapse
Affiliation(s)
- Simone Berkel
- Department of Human Molecular Genetics, Institute of Human Genetics, Ruprecht-Karls-University, Heidelberg, Germany
| | - Ahmed Eltokhi
- Department of Human Molecular Genetics, Institute of Human Genetics, Ruprecht-Karls-University, Heidelberg, Germany.,Research Group of the Max Planck Institute for Medical Research at the Institute of Anatomy and Cell Biology, Ruprecht-Karls-University, Heidelberg, Germany
| | - Henning Fröhlich
- Department of Human Molecular Genetics, Institute of Human Genetics, Ruprecht-Karls-University, Heidelberg, Germany
| | - Diana Porras-Gonzalez
- Department of Human Molecular Genetics, Institute of Human Genetics, Ruprecht-Karls-University, Heidelberg, Germany
| | - Rafiullah Rafiullah
- Department of Human Molecular Genetics, Institute of Human Genetics, Ruprecht-Karls-University, Heidelberg, Germany
| | - Rolf Sprengel
- Research Group of the Max Planck Institute for Medical Research at the Institute of Anatomy and Cell Biology, Ruprecht-Karls-University, Heidelberg, Germany
| | - Gudrun A Rappold
- Department of Human Molecular Genetics, Institute of Human Genetics, Ruprecht-Karls-University, Heidelberg, Germany
| |
Collapse
|
43
|
Melancia F, Schiavi S, Servadio M, Cartocci V, Campolongo P, Palmery M, Pallottini V, Trezza V. Sex-specific autistic endophenotypes induced by prenatal exposure to valproic acid involve anandamide signalling. Br J Pharmacol 2018; 175:3699-3712. [PMID: 29968249 DOI: 10.1111/bph.14435] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/05/2018] [Accepted: 06/25/2018] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND AND PURPOSE Autism spectrum disorder (ASD) is more commonly diagnosed in males than in females. Prenatal exposure to the antiepileptic drug valproic acid (VPA) is an environmental risk factor of ASD. Male rats prenatally exposed to VPA show socio-emotional autistic-like dysfunctions that have been related to changes in the activity of the endocannabinoid anandamide. Here, we have investigated if prenatal VPA induced sex-specific autistic endophenotypes involving anandamide signalling. EXPERIMENTAL APPROACH We studied sex-specific differences in the ASD-like socio-emotional, cognitive and repetitive symptoms displayed during development of Wistar rats of both sexes, prenatally exposed to VPA. The involvement of anandamide was followed by Western blotting of cannabinoid CB1 receptors and by inhibiting its metabolism. KEY RESULTS Female rats were less vulnerable to the deleterious effects of prenatal VPA exposure on social communication, emotional reactivity and cognitive performance than male rats. Conversely, as observed in male rats, prenatal VPA exposure induced selective deficits in social play behaviour and stereotypies in the female rat offspring. At the neurochemical level, prenatal VPA exposure altered phosphorylation of CB1 receptors in a sex-specific, age-specific and tissue-specific manner. Enhancing anandamide signalling through inhibition of its degradation reversed the behavioural deficits displayed by VPA-exposed animals of both sexes. CONCLUSIONS AND IMPLICATIONS These findings highlight sexually dimorphic consequences of prenatal VPA exposure that may be related to sex-specific effects of VPA on endocannabinoid neurotransmission in the course of development and introduce a new therapeutic target for reversing autistic-like symptoms in both sexes.
Collapse
Affiliation(s)
- Francesca Melancia
- Department of Science, Section of Biomedical Sciences and Technologies, University 'Roma Tre', Rome, Italy
| | - Sara Schiavi
- Department of Science, Section of Biomedical Sciences and Technologies, University 'Roma Tre', Rome, Italy
| | - Michela Servadio
- Department of Science, Section of Biomedical Sciences and Technologies, University 'Roma Tre', Rome, Italy
| | - Veronica Cartocci
- Department of Science, Section of Biomedical Sciences and Technologies, University 'Roma Tre', Rome, Italy
| | - Patrizia Campolongo
- Department of Physiology and Pharmacology 'V. Erspamer', Sapienza University of Rome, Rome, Italy
| | - Maura Palmery
- Department of Physiology and Pharmacology 'V. Erspamer', Sapienza University of Rome, Rome, Italy
| | - Valentina Pallottini
- Department of Science, Section of Biomedical Sciences and Technologies, University 'Roma Tre', Rome, Italy
| | - Viviana Trezza
- Department of Science, Section of Biomedical Sciences and Technologies, University 'Roma Tre', Rome, Italy
| |
Collapse
|
44
|
Baum DM, Saussereau M, Jeton F, Planes C, Voituron N, Cardot P, Fiamma MN, Bodineau L. Effect of Gender on Chronic Intermittent Hypoxic Fosb Expression in Cardiorespiratory-Related Brain Structures in Mice. Front Physiol 2018; 9:788. [PMID: 29988603 PMCID: PMC6026892 DOI: 10.3389/fphys.2018.00788] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 06/06/2018] [Indexed: 12/19/2022] Open
Abstract
We aimed to delineate sex-based differences in neuroplasticity that may be associated with previously reported sex-based differences in physiological alterations caused by repetitive succession of hypoxemia-reoxygenation encountered during obstructive sleep apnea (OSA). We examined long-term changes in the activity of brainstem and diencephalic cardiorespiratory neuronal populations induced by chronic intermittent hypoxia (CIH) in male and female mice by analyzing Fosb expression. Whereas the overall baseline and CIH-induced Fosb expression in females was higher than in males, possibly reflecting different neuroplastic dynamics, in contrast, structures responded to CIH by Fosb upregulation in males only. There was a sex-based difference at the level of the rostral ventrolateral reticular nucleus of the medulla, with an increase in the number of FOSB/ΔFOSB-positive cells induced by CIH in males but not females. This structure contains neurons that generate the sympathetic tone and which are involved in CIH-induced sustained hypertension during waking hours. We suggest that the sex-based difference in neuroplasticity of this structure contributes to the reported sex-based difference in CIH-induced hypertension. Moreover, we highlighted a sex-based dimorphic phenomenon in serotoninergic systems induced by CIH, with increased serotoninergic immunoreactivity in the hypoglossal nucleus and a decreased number of serotoninergic cells in the dorsal raphe nucleus in male but not female mice. We suggest that this dimorphism in the neuroplasticity of serotoninergic systems predisposes males to a greater alteration of neuronal control of the upper respiratory tract associated with the greater collapsibility of upper airways described in male OSA subjects.
Collapse
Affiliation(s)
- David M Baum
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, UMR-S1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France
| | - Maud Saussereau
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, UMR-S1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France
| | - Florine Jeton
- Sorbonne Paris Cité, Université Paris 13, EA2363 Hypoxie et Poumon, Bobigny, France
| | - Carole Planes
- Sorbonne Paris Cité, Université Paris 13, EA2363 Hypoxie et Poumon, Bobigny, France
| | - Nicolas Voituron
- Sorbonne Paris Cité, Université Paris 13, EA2363 Hypoxie et Poumon, Bobigny, France
| | - Philippe Cardot
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, UMR-S1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France
| | - Marie-Noëlle Fiamma
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, UMR-S1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France
| | - Laurence Bodineau
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, UMR-S1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France
| |
Collapse
|
45
|
Rotem RS, Chodick G, Davidovitch M, Hauser R, Coull BA, Weisskopf MG. Congenital Abnormalities of the Male Reproductive System and Risk of Autism Spectrum Disorders. Am J Epidemiol 2018; 187:656-663. [PMID: 29452340 DOI: 10.1093/aje/kwx367] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 08/24/2017] [Indexed: 12/24/2022] Open
Abstract
Androgens have an extensive influence on brain development in regions of the brain that are relevant for autism spectrum disorder (ASD), yet their etiological involvement remains unclear. Hypospadias (abnormal positioning of the urethral opening) and cryptorchidism (undescended testes) are 2 relatively common male birth defects that are strongly associated with prenatal androgen deficiencies. Having either disorder is a proxy indicator of atypical gestational androgen exposure, yet the association between these disorders and autism has not been extensively studied. We analyzed male singleton live births (n = 224,598) occurring from January 1, 1999, through December 31, 2013, in a large Israeli health-care organization. Boys with autism, cryptorchidism, and hypospadias were identified via International Classification of Diseases, Ninth Revision, codes, with further verification of autism case status by review of medical records. In multivariable-adjusted analyses, the odds ratio for ASD among boys with either condition was 1.62 (95% confidence interval (CI): 1.44, 1.82). The odds ratio for boys with cryptorchidism only was 1.55 (95% CI: 1.34, 1.78), and that for boys with hypospadias only was 1.65 (95% CI: 1.38, 1.98). ASD risk was not elevated among unaffected brothers of hypospadias or cryptorchidism cases, despite familial aggregation of all 3 conditions, providing some indication for the possibility of pregnancy-specific risk factors driving the observed associations. Results suggest that in-utero hypoandrogenicity could play a role in ASD etiology.
Collapse
Affiliation(s)
- Ran S Rotem
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Gabriel Chodick
- Maccabi Institute for Research and Innovation, Maccabi Healthcare Services, Tel Aviv, Israel
| | | | - Russ Hauser
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Brent A Coull
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Marc G Weisskopf
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| |
Collapse
|
46
|
Del Giudice M, Barrett ES, Belsky J, Hartman S, Martel MM, Sangenstedt S, Kuzawa CW. Individual differences in developmental plasticity: A role for early androgens? Psychoneuroendocrinology 2018; 90:165-173. [PMID: 29500952 PMCID: PMC5864561 DOI: 10.1016/j.psyneuen.2018.02.025] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 02/20/2018] [Accepted: 02/22/2018] [Indexed: 11/16/2022]
Abstract
Developmental plasticity is a widespread property of living organisms, but different individuals in the same species can vary greatly in how susceptible they are to environmental influences. In humans, research has sought to link variation in plasticity to physiological traits such as stress reactivity, exposure to prenatal stress-related hormones such as cortisol, and specific genes involved in major neurobiological pathways. However, the determinants of individual differences in plasticity are still poorly understood. Here we present the novel hypothesis that, in both sexes, higher exposure to androgens during prenatal and early postnatal life should lead to increased plasticity in traits that display greater male variability (i.e., a majority of physical and behavioral traits). First, we review evidence of greater phenotypic variation and higher susceptibility to environmental factors in males; we then consider evolutionary models that explain greater male variability and plasticity as a result of sexual selection. These empirical and theoretical strands converge on the hypothesis that androgens may promote developmental plasticity, at least for traits that show greater male variability. We discuss a number of potential mechanisms that may mediate this effect (including upregulation of neural plasticity), and address the question of whether androgen-induced plasticity is likely to be adaptive or maladaptive. We conclude by offering suggestions for future studies in this area, and considering some research designs that could be used to empirically test our hypothesis.
Collapse
Affiliation(s)
- Marco Del Giudice
- Department of Psychology, University of New Mexico, Albuquerque, NM, USA.
| | - Emily S Barrett
- School of Public Health, Rutgers University, Piscataway, NJ, USA
| | - Jay Belsky
- Department of Human Ecology, University of California - Davis, Davis, CA, USA
| | - Sarah Hartman
- Department of Human Ecology, University of California - Davis, Davis, CA, USA
| | | | | | | |
Collapse
|
47
|
Dachtler J, Fox K. Do cortical plasticity mechanisms differ between males and females? J Neurosci Res 2017; 95:518-526. [PMID: 27870449 PMCID: PMC5111614 DOI: 10.1002/jnr.23850] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 06/20/2016] [Accepted: 07/06/2016] [Indexed: 12/24/2022]
Abstract
The difference between male and female behavior and male and female susceptibility to a number of neuropsychiatric conditions is not controversial. From a biological perspective, one might expect to see at least some of these differences underpinned by identifiable physical differences in the brain. This Mini‐Review focuses on evidence that plasticity mechanisms differ between males and females and ask at what scale of organization the differences might exist, at the systems level, the circuits level, or the synaptic level. Emerging evidence suggests that plasticity differences may extend to the scale of synaptic mechanisms. In particular, the CaMKK, NOS1 and estrogen receptor pathways show sexual dimorphisms with implications for plasticity in the hippocampus and cerebral cortex. © 2016 The Authors. Journal of Neuroscience Research Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- James Dachtler
- Department of Psychology, Durham University, Durham, United Kingdom
| | - Kevin Fox
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
48
|
Kovalchuk A, Kolb B. Low dose radiation effects on the brain - from mechanisms and behavioral outcomes to mitigation strategies. Cell Cycle 2017; 16:1266-1270. [PMID: 28656797 DOI: 10.1080/15384101.2017.1320003] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Based on the most recent estimates by the Canadian Cancer Society, 2 in 5 Canadians will develop cancer in their lifetimes. More than half of all cancer patients receive some type of radiation therapy, and all patients undergo radiation-based diagnostics. While radiation is one of the most important diagnostic and treatments modalities, high-dose cranial radiation therapy causes numerous central nervous system side-effects, including declines in cognitive function, memory, and attention. While the mechanisms of these effects have been studies, they still need to be further elucidated. On the other hand, the effects of low dose radiation as well as indirect radiation bystander effects on the brain remain elusive. We pioneered analysis of the molecular and cellular effects of low dose direct, bystander and scatter radiation on the brain. Using a rat model, we showed that low dose radiation exposures cause molecular and cellular changes in the brain and impacts animal behavior. Here we reflect upon our recent findings and current state of knowledge in the field, and suggest novel radiation effect biomarkers and means of prevention. We propose strategies and interventions to prevent and mitigate radiation effects on the brain.
Collapse
Affiliation(s)
- Anna Kovalchuk
- a Department of Neuroscience , University of Lethbridge , Lethbridge , AB , Canada.,b Canadian Institute for Advanced Research , Toronto , ON , Canada.,c Alberta Epigenetics Network , AB , Canada
| | - Bryan Kolb
- a Department of Neuroscience , University of Lethbridge , Lethbridge , AB , Canada.,b Canadian Institute for Advanced Research , Toronto , ON , Canada.,c Alberta Epigenetics Network , AB , Canada
| |
Collapse
|
49
|
Schumann CM, Sharp FR, Ander BP, Stamova B. Possible sexually dimorphic role of miRNA and other sncRNA in ASD brain. Mol Autism 2017; 8:4. [PMID: 28184278 PMCID: PMC5294827 DOI: 10.1186/s13229-017-0117-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 01/06/2017] [Indexed: 12/18/2022] Open
Abstract
Background Autism spectrum disorder (ASD) is sexually dimorphic in brain structure, genetics, and behaviors. In studies of brain tissue, the age of the population is clearly a factor in interpreting study outcome, yet sex is rarely considered. To begin to address this issue, we extend our previously published microarray analyses to examine expression of small noncoding RNAs (sncRNAs), including microRNAs (miRNAs), in ASD and in the control temporal cortex in males and females. Predicted miRNA targets were identified as well as the pathways they overpopulate. Findings After considering age, sexual dimorphism in ASD sncRNA expression persists in the temporal cortex and in the patterning that distinguishes regions. Among the sexually dimorphic miRNAs are miR-219 and miR-338, which promote oligodendrocyte differentiation, miR-125, implicated in neuronal differentiation, and miR-488, implicated in anxiety. Putative miRNA targets are significantly over-represented in immune and nervous system pathways in both sexes, consistent with previous mRNA studies. Even for common pathways, the specific target mRNAs are often sexually dimorphic. For example, both male and female target genes significantly populate the Axonal Guidance Signaling pathway, yet less than a third of the targets are common to both sexes. Conclusions Our findings of sexual dimorphism in sncRNA levels underscore the importance of considering sex, in addition to age, when interpreting molecular findings on ASD brain. Electronic supplementary material The online version of this article (doi:10.1186/s13229-017-0117-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cynthia M Schumann
- Department of Psychiatry and Behavioral Sciences, University of California at Davis, School of Medicine, 2805 50th Street, Sacramento, CA 95817 USA.,MIND Institute, University of California, 2805 50th Street, Sacramento, CA 95817 USA
| | - Frank R Sharp
- Department of Neurology, University of California at Davis, School of Medicine, 2805 50th Street, Sacramento, CA 95817 USA
| | - Bradley P Ander
- Department of Neurology, University of California at Davis, School of Medicine, 2805 50th Street, Sacramento, CA 95817 USA
| | - Boryana Stamova
- Department of Neurology, University of California at Davis, School of Medicine, 2805 50th Street, Sacramento, CA 95817 USA
| |
Collapse
|
50
|
Cheung TT, Weston MK, Wilson MJ. Selection and evaluation of reference genes for analysis of mouse (Mus musculus) sex-dimorphic brain development. PeerJ 2017; 5:e2909. [PMID: 28133578 PMCID: PMC5251938 DOI: 10.7717/peerj.2909] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 12/08/2016] [Indexed: 11/24/2022] Open
Abstract
The development of the brain is sex-dimorphic, and as a result so are many neurological disorders. One approach for studying sex-dimorphic brain development is to measure gene expression in biological samples using RT-qPCR. However, the accuracy and consistency of this technique relies on the reference gene(s) selected. We analyzed the expression of ten reference genes in male and female samples over three stages of brain development, using popular algorithms NormFinder, GeNorm and Bestkeeper. The top ranked reference genes at each time point were further used to quantify gene expression of three sex-dimorphic genes (Wnt10b, Xist and CYP7B1). When comparing gene expression between the sexes expression at specific time points the best reference gene combinations are: Sdha/Pgk1 at E11.5, RpL38/Sdha E12.5, and Actb/RpL37 at E15.5. When studying expression across time, the ideal reference gene(s) differs with sex. For XY samples a combination of Actb/Sdha. In contrast, when studying gene expression across developmental stage with XX samples, Sdha/Gapdh were the top reference genes. Our results identify the best combination of two reference genes when studying male and female brain development, and emphasize the importance of selecting the correct reference genes for comparisons between developmental stages.
Collapse
Affiliation(s)
- Tanya T Cheung
- Department of Anatomy, University of Otago , Dunedin , New Zealand
| | | | - Megan J Wilson
- Department of Anatomy, University of Otago , Dunedin , New Zealand
| |
Collapse
|