1
|
Wiersema AF, Rennenberg A, Smith G, Varderidou-Minasian S, Pasterkamp RJ. Shared and distinct changes in the molecular cargo of extracellular vesicles in different neurodegenerative diseases. Cell Mol Life Sci 2024; 81:479. [PMID: 39627617 PMCID: PMC11615177 DOI: 10.1007/s00018-024-05522-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/18/2024] [Accepted: 11/18/2024] [Indexed: 12/06/2024]
Abstract
Neurodegenerative disorders such as Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS) and Parkinson's disease (PD) affect millions of people worldwide. Curative treatment for these neurodegenerative disorders is still lacking and therefore a further understanding of their cause and progression is urgently needed. Extracellular vesicles (EVs) are nanosized vesicles loaded with cargo, such as proteins and miRNAs, that are released by cells and play an important role in intercellular communication. Intercellular communication through EVs can contribute to the spread of pathological proteins, such as amyloid-beta and tau, or cause pathogenesis through other mechanisms. In addition, EVs may serve as potential biomarkers for diagnosis and for monitoring disease progression. In this review, we summarize and discuss recent advances in our understanding of the role of EVs in AD, ALS an PD with an emphasis on dysregulated cargo in each disease. We highlight shared dysregulated cargo between these diseases, discuss underlying pathways, and outline future implications for therapeutic strategies.
Collapse
Affiliation(s)
- Anna F Wiersema
- Department of Translational Neuroscience, University Medical Center Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Alyssa Rennenberg
- Department of Translational Neuroscience, University Medical Center Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Grace Smith
- Department of Translational Neuroscience, University Medical Center Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Suzy Varderidou-Minasian
- Department of Translational Neuroscience, University Medical Center Brain Center, Utrecht University, Utrecht, The Netherlands
| | - R Jeroen Pasterkamp
- Department of Translational Neuroscience, University Medical Center Brain Center, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
2
|
Alberro A, Bravo-Miana RDC, Gs Iñiguez S, Iribarren-López A, Arroyo-Izaga M, Matheu A, Muñoz-Culla M, Otaegui D. Age-Related sncRNAs in Human Hippocampal Tissue Samples: Focusing on Deregulated miRNAs. Int J Mol Sci 2024; 25:12872. [PMID: 39684581 DOI: 10.3390/ijms252312872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/21/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Small non-coding RNAs (sncRNAs), particularly microRNAs (miRNAs), play an important role in transcriptome regulation by binding to mRNAs and post-transcriptionally inhibiting protein production. This regulation occurs in both physiological and pathological conditions, where the expression of many miRNAs is altered. Previous reports by our group and others have demonstrated that miRNA expression is also altered during aging. However, most studies have analyzed human peripheral blood samples or brain samples from animal models, leaving a gap in knowledge regarding miRNA expression in the human brain. In this work, we analyzed the expression of sncRNAs from coronal sections of human hippocampal samples, a tissue with a high vulnerability to deleterious conditions such as aging. Samples from young (n = 5, 27-49 years old), old (n = 8, 58-88 years old), and centenarian (n = 3, 97, 99, and 100 years old) individuals were included. Our results reveal that sncRNAs, particularly miRNAs, are differentially expressed (DE) in the human hippocampus with aging. Besides, miRNA-mediated regulatory networks revealed significant interactions with mRNAs deregulated in the same hippocampal samples. Surprisingly, 80% of DE mRNA in the centenarian vs. old comparison are regulated by hsa-miR-192-5p and hsa-miR-3135b. Additionally, validated hsa-miR-6826-5p, hsa-let-7b-3p, hsa-miR-7846, and hsa-miR-451a emerged as promising miRNAs that are deregulated with aging and should be further investigated.
Collapse
Affiliation(s)
- Ainhoa Alberro
- Neuroimmunology Group, Neuroscience Area, Biogipuzkoa Health Research Institute, 20014 San Sebastián, Spain
- Neurodegenerative Diseases Research Area of CIBER (CIBERNED), Carlos III Health Institute (ISCIII), 28029 Madrid, Spain
| | - Rocío Del Carmen Bravo-Miana
- Neuroimmunology Group, Neuroscience Area, Biogipuzkoa Health Research Institute, 20014 San Sebastián, Spain
- Neurodegenerative Diseases Research Area of CIBER (CIBERNED), Carlos III Health Institute (ISCIII), 28029 Madrid, Spain
| | - Saioa Gs Iñiguez
- Neuroimmunology Group, Neuroscience Area, Biogipuzkoa Health Research Institute, 20014 San Sebastián, Spain
| | - Andrea Iribarren-López
- Neuroimmunology Group, Neuroscience Area, Biogipuzkoa Health Research Institute, 20014 San Sebastián, Spain
- Neurodegenerative Diseases Research Area of CIBER (CIBERNED), Carlos III Health Institute (ISCIII), 28029 Madrid, Spain
| | - Marta Arroyo-Izaga
- BIOMICs Research Group, Lascaray Research Center, University of the Basque Country (UPV/EHU), Bioaraba, 01006 Vitoria-Gasteiz, Spain
| | - Ander Matheu
- Cellular Oncology Group, Oncology Area, Biogipuzkoa Health Research Institute, 20014 San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
- Frailty and Healthy Ageing Research Area of CIBER (CIBERfes), Carlos III Health Institute (ISCIII), 28029 Madrid, Spain
| | - Maider Muñoz-Culla
- Neuroimmunology Group, Neuroscience Area, Biogipuzkoa Health Research Institute, 20014 San Sebastián, Spain
- Neurodegenerative Diseases Research Area of CIBER (CIBERNED), Carlos III Health Institute (ISCIII), 28029 Madrid, Spain
- Department of Basic Psychological Processes and Their Development, University of the Basque Country (UPV/EHU), 20018 San Sebastián, Spain
| | - David Otaegui
- Neuroimmunology Group, Neuroscience Area, Biogipuzkoa Health Research Institute, 20014 San Sebastián, Spain
- Neurodegenerative Diseases Research Area of CIBER (CIBERNED), Carlos III Health Institute (ISCIII), 28029 Madrid, Spain
| |
Collapse
|
3
|
Alhenaky A, Alhazmi S, Alamri SH, Alkhatabi HA, Alharthi A, Alsaleem MA, Abdelnour SA, Hassan SM. Exosomal MicroRNAs in Alzheimer's Disease: Unveiling Their Role and Pioneering Tools for Diagnosis and Treatment. J Clin Med 2024; 13:6960. [PMID: 39598105 PMCID: PMC11594708 DOI: 10.3390/jcm13226960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disorder that presents a significant health concern, often leading to substantial cognitive decline among older adults. A prominent feature of AD is progressive dementia, which eventually disrupts daily functioning and the ability to live independently. A major challenge in addressing AD is its prolonged pre-symptomatic phase, which makes early detection difficult. Moreover, the disease's complexity and the inefficiency of current diagnostic methods impede the development of targeted therapies. Therefore, there is an urgent need to enhance diagnostic methodologies for detection and treating AD even before clinical symptoms appear. Exosomes are nanoscale biovesicles secreted by cells, including nerve cells, into biofluids. These exosomes play essential roles in the central nervous system (CNS) by facilitating neuronal communication and thus influencing major physiological and pathological processes. Exosomal cargo, particularly microRNAs (miRNAs), are critical mediators in this cellular communication, and their dysregulation affects various pathological pathways related to neurodegenerative diseases, including AD. This review discusses the significant roles of exosomal miRNAs in the pathological mechanisms related to AD, focusing on the promising use of exosomal miRNAs as diagnostic biomarkers and targeted therapeutic interventions for this devastating disease.
Collapse
Affiliation(s)
- Alhanof Alhenaky
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Immunology Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 80200, Saudi Arabia
| | - Safiah Alhazmi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Immunology Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 80200, Saudi Arabia
- Neuroscience and Geroscience Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 80200, Saudi Arabia
| | - Sultan H. Alamri
- Neuroscience and Geroscience Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 80200, Saudi Arabia
- Department of Family Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Heba A. Alkhatabi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 22254, Saudi Arabia
- Hematology Research Unit (HRU), King Fahd Medical Research Center, King Abdulaziz University, Jeddah 22254, Saudi Arabia
| | - Amani Alharthi
- Department of Biology, College of Science Al-Zulfi, Majmaah University, Majmaah 11952, Saudi Arabia
| | - Mansour A. Alsaleem
- Unit of Scientific Research, Applied College, Qassim University, Buraydah 52571, Saudi Arabia
| | - Sameh A. Abdelnour
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt
| | - Sabah M. Hassan
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Immunology Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 80200, Saudi Arabia
- Princess Najla Bint Saud Al-Saud Center for Excellence Research in Biotechnology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Genetics, Faculty of Agriculture, Ain Shams University, Cairo 11517, Egypt
| |
Collapse
|
4
|
Livkisa D, Lee TL, Yeh WT, Jaimes MSV, Szomolay B, Liao CT, Lundy DJ. Distinct immunomodulation elicited by young versus aged extracellular vesicles in bone marrow-derived macrophages. Immun Ageing 2024; 21:72. [PMID: 39434100 PMCID: PMC11492788 DOI: 10.1186/s12979-024-00472-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 10/04/2024] [Indexed: 10/23/2024]
Abstract
BACKGROUND Previous research has indicated that extracellular vesicles (EVs) potentially play significant roles in multiple ageing phenotypes. This study uses a factorial experimental design to explore the interactions between circulating EVs and bone marrow-derived macrophages (BMDMs) isolated from young (7-12 weeks) and aged (70-90 weeks) mice. RESULTS In this study, plasma EVs from young (Y_EV) and aged (O_EV) mice were isolated and compared based on abundance, size, and miRNA cargo. Compared to some previous studies, we found relatively few differences in EV miRNA cargo between Y_EVs and O_EVs. Young and old EVs were then used to stimulate naïve BMDMs isolated from young (Y_BMDM) and aged (O_BMDM) mice. A panel of five "M1" and six "M2" macrophage markers were used to assess the degree of polarisation. Our results revealed differences in the immunomodulatory effects of Y_EVs and O_EVs in Y_BMDMs and O_BMDMs. Y_EVs induced less pro-inflammatory gene expression, while O_EVs exhibited a more varied impact, promoting both pro- and anti-inflammatory markers. However, neither EV population induced a clearly defined 'M1' or 'M2' macrophage phenotype. We also report that EVs elicited responses that differed markedly from those induced by whole plasma. Plasma from old mice had strong pro-inflammatory effects on Y_BMDMs, increasing Il1b, Nlrp3 and Tnfa. However, O_EVs did not have these effects, supporting current evidence that EVs are a separate component of circulating factors during ageing. More research is needed to elucidate specific factors involved in inflammageing processes. CONCLUSIONS Our findings reveal age-related differences in EV cargo and function, with young EVs tending to suppress inflammatory markers more effectively than aged EVs. However, this is not straightforward, and EVs often promoted both M1 and M2 markers. These results suggest that EVs are a distinct component of circulating factors and hold potential for therapeutic strategies aimed at mitigating age-related inflammation and immune dysregulation.
Collapse
Affiliation(s)
- Dora Livkisa
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, 301 Yuantong Road, New Taipei City, 235603, Taiwan
| | - Tsung-Lin Lee
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 235603, Taiwan
| | - Wei-Ting Yeh
- School of Biomedical Engineering, Taipei Medical University, 301 Yuantong Road, New Taipei City, 235603, Taiwan
| | - Manuel S V Jaimes
- Graduate Institute of Biomedical Materials & Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, 301 Yuantong Road, New Taipei City, 235603, Taiwan
| | - Barbara Szomolay
- Systems Immunity Research Institute, Cardiff University School of Medicine, Cardiff, UK
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Chia-Te Liao
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 235603, Taiwan.
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 110, Taiwan.
- Taipei Medical University-Research Center of Urology and Kidney, Taipei Medical University, Taipei, 110, Taiwan.
| | - David J Lundy
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, 301 Yuantong Road, New Taipei City, 235603, Taiwan.
- Graduate Institute of Biomedical Materials & Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, 301 Yuantong Road, New Taipei City, 235603, Taiwan.
- Cell Therapy Center, Taipei Medical University Hospital, 250 Wuxing Street, Taipei, 110, Taiwan.
| |
Collapse
|
5
|
Herrero‐Lorenzo M, Pérez‐Pérez J, Escaramís G, Martínez‐Horta S, Pérez‐González R, Rivas‐Asensio E, Kulisevsky J, Gámez‐Valero A, Martí E. Small RNAs in plasma extracellular vesicles define biomarkers of premanifest changes in Huntington's disease. J Extracell Vesicles 2024; 13:e12522. [PMID: 39377487 PMCID: PMC11633361 DOI: 10.1002/jev2.12522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 08/06/2024] [Accepted: 09/10/2024] [Indexed: 10/09/2024] Open
Abstract
Despite the advances in the understanding of Huntington's disease (HD), there is a need for molecular biomarkers to categorize mutation carriers during the preclinical stage of the disease preceding functional decline. Small RNAs (sRNAs) are a promising source of biomarkers since their expression levels are highly sensitive to pathobiological processes. Here, using an optimized method for plasma extracellular vesicles (EVs) purification and an exhaustive analysis pipeline of sRNA sequencing data, we show that EV-sRNAs are downregulated early in mutation carriers and that this deregulation is associated with premanifest cognitive performance. Seven candidate sRNAs (tRF-Glu-CTC, tRF-Gly-GCC, miR-451a, miR-21-5p, miR-26a-5p, miR-27a-3p and let7a-5p) were validated in additional subjects, showing a significant diagnostic accuracy at premanifest stages. Of these, miR-21-5p was significantly decreased over time in a longitudinal study; and miR-21-5p and miR-26a-5p levels correlated with cognitive changes in the premanifest cohort. In summary, the present results suggest that deregulated plasma EV-sRNAs define an early biosignature in mutation carriers with specific species highlighting the progression and cognitive changes occurring at the premanifest stage.
Collapse
Affiliation(s)
- Marina Herrero‐Lorenzo
- Department of BiomedicineFaculty of Medicine, Institute of NeurosciencesUniversity of BarcelonaBarcelonaCatalunyaSpain
| | - Jesús Pérez‐Pérez
- Movement Disorders UnitNeurology DepartmentSant Pau HospitalBarcelonaCatalunyaSpain
- Biomedical Research Institute (IIB‐Sant Pau)BarcelonaCatalunyaSpain
- Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED)MadridSpain
| | - Georgia Escaramís
- Department of BiomedicineFaculty of Medicine, Institute of NeurosciencesUniversity of BarcelonaBarcelonaCatalunyaSpain
- Biomedical Research Networking Center for Epidemiology and Public Health (CIBERESP)Spanish Ministry of Science and InnovationMadridSpain
| | - Saül Martínez‐Horta
- Movement Disorders UnitNeurology DepartmentSant Pau HospitalBarcelonaCatalunyaSpain
- Biomedical Research Institute (IIB‐Sant Pau)BarcelonaCatalunyaSpain
- Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED)MadridSpain
| | - Rocío Pérez‐González
- Movement Disorders UnitNeurology DepartmentSant Pau HospitalBarcelonaCatalunyaSpain
- Biomedical Research Institute (IIB‐Sant Pau)BarcelonaCatalunyaSpain
- Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED)MadridSpain
- Alicante Institute for Health and Biomedical Research (ISABIAL) and Neuroscience InstituteAlicanteSpain
| | - Elisa Rivas‐Asensio
- Movement Disorders UnitNeurology DepartmentSant Pau HospitalBarcelonaCatalunyaSpain
- Biomedical Research Institute (IIB‐Sant Pau)BarcelonaCatalunyaSpain
- Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED)MadridSpain
| | - Jaime Kulisevsky
- Movement Disorders UnitNeurology DepartmentSant Pau HospitalBarcelonaCatalunyaSpain
- Biomedical Research Institute (IIB‐Sant Pau)BarcelonaCatalunyaSpain
- Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED)MadridSpain
| | - Ana Gámez‐Valero
- Department of BiomedicineFaculty of Medicine, Institute of NeurosciencesUniversity of BarcelonaBarcelonaCatalunyaSpain
- Biomedical Research Networking Center for Epidemiology and Public Health (CIBERESP)Spanish Ministry of Science and InnovationMadridSpain
| | - Eulàlia Martí
- Department of BiomedicineFaculty of Medicine, Institute of NeurosciencesUniversity of BarcelonaBarcelonaCatalunyaSpain
- Biomedical Research Networking Center for Epidemiology and Public Health (CIBERESP)Spanish Ministry of Science and InnovationMadridSpain
- August Pi i Sunyer Biomedical research Institute (IDIBAPS), BarcelonaCatalunyaSpain
| |
Collapse
|
6
|
Shah S, Mansour HM, Aguilar TM, Lucke-Wold B. Mesenchymal Stem Cell-Derived Exosomes as a Neuroregeneration Treatment for Alzheimer's Disease. Biomedicines 2024; 12:2113. [PMID: 39335626 PMCID: PMC11428860 DOI: 10.3390/biomedicines12092113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/12/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is the most prevalent kind of dementia and is a long-term degenerative disease. Pathologically, it is defined by the development of extracellular amyloid-β plaques and intracellular neurofibrillary tangles made up of hyperphosphorylated tau protein. This causes neuronal death, particularly in the hippocampus and cortex. Mesenchymal stem cell (MSC)-derived exosomes have been identified as possibly therapeutic and have promise for Alzheimer's disease due to their regenerative characteristics. METHODS A systematic retrieval of information was performed on PubMed. A total of 60 articles were found in a search on mesenchymal stem cells, exosomes, and Alzheimer's disease. A total of 16 ongoing clinical trials were searched and added from clinicaltrials.gov. We added 23 supporting articles to help provide information for certain sections. In total, we included 99 articles in this manuscript: 50 are review articles, 13 are preclinical studies, 16 are clinical studies, 16 are ongoing clinical trials, and 4 are observational studies. Appropriate studies were isolated, and important information from each of them was understood and entered into a database from which the information was used in this article. The clinical trials on mesenchymal stem cell exosomes for Alzheimer's disease were searched on clinicaltrials.gov. RESULTS Several experimental investigations have shown that MSC-Exo improves cognitive impairment in rats. In this review paper, we summarized existing understanding regarding the molecular and cellular pathways behind MSC-Exo-based cognitive function restoration, with a focus on MSC-Exo's therapeutic potential in the treatment of Alzheimer's disease. CONCLUSION AD is a significant health issue in our culture and is linked to several important neuropathological characteristics. Exosomes generated from stem cells, such as mesenchymal stem cells (MSCs) or neural stem cells (NSCs), have been examined more and more in a variety of AD models, indicating that they may be viable therapeutic agents for the treatment of diverse disorders. Exosome yields may be increased, and their therapeutic efficacy can be improved using a range of tailored techniques and culture conditions. It is necessary to provide standardized guidelines for exosome manufacture to carry out excellent preclinical and clinical research.
Collapse
Affiliation(s)
- Siddharth Shah
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA
| | - Hadeel M Mansour
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA
| | - Tania M Aguilar
- College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA
| |
Collapse
|
7
|
Su J, Song Y, Zhu Z, Huang X, Fan J, Qiao J, Mao F. Cell-cell communication: new insights and clinical implications. Signal Transduct Target Ther 2024; 9:196. [PMID: 39107318 PMCID: PMC11382761 DOI: 10.1038/s41392-024-01888-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/09/2024] [Accepted: 06/02/2024] [Indexed: 09/11/2024] Open
Abstract
Multicellular organisms are composed of diverse cell types that must coordinate their behaviors through communication. Cell-cell communication (CCC) is essential for growth, development, differentiation, tissue and organ formation, maintenance, and physiological regulation. Cells communicate through direct contact or at a distance using ligand-receptor interactions. So cellular communication encompasses two essential processes: cell signal conduction for generation and intercellular transmission of signals, and cell signal transduction for reception and procession of signals. Deciphering intercellular communication networks is critical for understanding cell differentiation, development, and metabolism. First, we comprehensively review the historical milestones in CCC studies, followed by a detailed description of the mechanisms of signal molecule transmission and the importance of the main signaling pathways they mediate in maintaining biological functions. Then we systematically introduce a series of human diseases caused by abnormalities in cell communication and their progress in clinical applications. Finally, we summarize various methods for monitoring cell interactions, including cell imaging, proximity-based chemical labeling, mechanical force analysis, downstream analysis strategies, and single-cell technologies. These methods aim to illustrate how biological functions depend on these interactions and the complexity of their regulatory signaling pathways to regulate crucial physiological processes, including tissue homeostasis, cell development, and immune responses in diseases. In addition, this review enhances our understanding of the biological processes that occur after cell-cell binding, highlighting its application in discovering new therapeutic targets and biomarkers related to precision medicine. This collective understanding provides a foundation for developing new targeted drugs and personalized treatments.
Collapse
Affiliation(s)
- Jimeng Su
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Ying Song
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
| | - Zhipeng Zhu
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
| | - Xinyue Huang
- Biomedical Research Institute, Shenzhen Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Jibiao Fan
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jie Qiao
- State Key Laboratory of Female Fertility Promotion, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China.
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China.
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China.
| | - Fengbiao Mao
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China.
- Cancer Center, Peking University Third Hospital, Beijing, China.
| |
Collapse
|
8
|
Singh R, Rai S, Bharti PS, Zehra S, Gorai PK, Modi GP, Rani N, Dev K, Inampudi KK, Y VV, Chatterjee P, Nikolajeff F, Kumar S. Circulating small extracellular vesicles in Alzheimer's disease: a case-control study of neuro-inflammation and synaptic dysfunction. BMC Med 2024; 22:254. [PMID: 38902659 PMCID: PMC11188177 DOI: 10.1186/s12916-024-03475-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/11/2024] [Indexed: 06/22/2024] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a neurodegenerative disease characterized by Aβ plaques and neurofibrillary tangles. Chronic inflammation and synaptic dysfunction lead to disease progression and cognitive decline. Small extracellular vesicles (sEVs) are implicated in AD progression by facilitating the spread of pathological proteins and inflammatory cytokines. This study investigates synaptic dysfunction and neuroinflammation protein markers in plasma-derived sEVs (PsEVs), their association with Amyloid-β and tau pathologies, and their correlation with AD progression. METHODS A total of 90 [AD = 35, mild cognitive impairment (MCI) = 25, and healthy age-matched controls (AMC) = 30] participants were recruited. PsEVs were isolated using a chemical precipitation method, and their morphology was characterized by transmission electron microscopy. Using nanoparticle tracking analysis, the size and concentration of PsEVs were determined. Antibody-based validation of PsEVs was done using CD63, CD81, TSG101, and L1CAM antibodies. Synaptic dysfunction and neuroinflammation were evaluated with synaptophysin, TNF-α, IL-1β, and GFAP antibodies. AD-specific markers, amyloid-β (1-42), and p-Tau were examined within PsEVs using Western blot and ELISA. RESULTS Our findings reveal higher concentrations of PsEVs in AD and MCI compared to AMC (p < 0.0001). Amyloid-β (1-42) expression within PsEVs is significantly elevated in MCI and AD compared to AMC. We could also differentiate between the amyloid-β (1-42) expression in AD and MCI. Similarly, PsEVs-derived p-Tau exhibited elevated expression in MCI compared with AMC, which is further increased in AD. Synaptophysin exhibited downregulated expression in PsEVs from MCI to AD (p = 0.047) compared to AMC, whereas IL-1β, TNF-α, and GFAP showed increased expression in MCI and AD compared to AMC. The correlation between the neuropsychological tests and PsEVs-derived proteins (which included markers for synaptic integrity, neuroinflammation, and disease pathology) was also performed in our study. The increased number of PsEVs correlates with disease pathological markers, synaptic dysfunction, and neuroinflammation. CONCLUSIONS Elevated PsEVs, upregulated amyloid-β (1-42), and p-Tau expression show high diagnostic accuracy in AD. The downregulated synaptophysin expression and upregulated neuroinflammatory markers in AD and MCI patients suggest potential synaptic degeneration and neuroinflammation. These findings support the potential of PsEV-associated biomarkers for AD diagnosis and highlight synaptic dysfunction and neuroinflammation in disease progression.
Collapse
Affiliation(s)
- Rishabh Singh
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Sanskriti Rai
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Prahalad Singh Bharti
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Sadaqa Zehra
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Priya Kumari Gorai
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Gyan Prakash Modi
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology BHU, Varanasi, India
| | - Neerja Rani
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Kapil Dev
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | | | - Vishnu V Y
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - Prasun Chatterjee
- Department of Geriatric Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Fredrik Nikolajeff
- Department of Health, Education, and Technology, Lulea University of Technology, Lulea, 97187, Sweden
| | - Saroj Kumar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India.
- Department of Health, Education, and Technology, Lulea University of Technology, Lulea, 97187, Sweden.
| |
Collapse
|
9
|
Vilardo B, De Marchi F, Raineri D, Manfredi M, De Giorgis V, Bebeti A, Scotti L, Kustrimovic N, Cappellano G, Mazzini L, Chiocchetti A. Shotgun Proteomics Links Proteoglycan-4 + Extracellular Vesicles to Cognitive Protection in Amyotrophic Lateral Sclerosis. Biomolecules 2024; 14:727. [PMID: 38927130 PMCID: PMC11202157 DOI: 10.3390/biom14060727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/12/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder lacking reliable biomarkers for early diagnosis and disease progression monitoring. This study aimed to identify the novel biomarkers in plasmatic extracellular vesicles (EVs) isolated from ALS patients and healthy controls (HCs). A total of 61 ALS patients and 30 age-matched HCs were enrolled in the study and the protein content of circulating EVs was analyzed by shotgun proteomics. The study was divided into a discovery phase (involving 12 ALS and 12 HC patients) and a validation one (involving 49 ALS and 20 HC patients). In the discovery phase, more than 300 proteins were identified, with 32 proteins showing differential regulation in ALS patients compared to HCs. In the validation phase, over 400 proteins were identified, with 20 demonstrating differential regulation in ALS patients compared to HCs. Notably, seven proteins were found to be common to both phases, all of which were significantly upregulated in EVs from ALS patients. Most of them have previously been linked to ALS since they have been detected in the serum or cerebrospinal fluid of ALS patients. Among them, proteoglycan (PRG)-4, also known as lubricin, was of particular interest since it was significantly increased in ALS patients with normal cognitive and motor functions. This study highlights the significance of EVs as a promising avenue for biomarker discovery in ALS. Moreover, it sheds light on the unexpected role of PRG-4 in relation to cognitive status in ALS patients.
Collapse
Affiliation(s)
- Beatrice Vilardo
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases-IRCAD, University of Eastern Piedmont, 28100 Novara, Italy; (B.V.); (D.R.); (N.K.); (G.C.)
- Center for Translational Research on Autoimmune and Allergic Diseases, University of Eastern Piedmont, 28100 Novara, Italy; (M.M.); (V.D.G.)
| | - Fabiola De Marchi
- Department of Neurology and ALS Center, University Hospital “Maggiore della Carità”, 28100 Novara, Italy; (F.D.M.); (A.B.); (L.M.)
- Department of Translational Medicine, University of Eastern Piedmont, 28100 Novara, Italy;
| | - Davide Raineri
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases-IRCAD, University of Eastern Piedmont, 28100 Novara, Italy; (B.V.); (D.R.); (N.K.); (G.C.)
- Center for Translational Research on Autoimmune and Allergic Diseases, University of Eastern Piedmont, 28100 Novara, Italy; (M.M.); (V.D.G.)
| | - Marcello Manfredi
- Center for Translational Research on Autoimmune and Allergic Diseases, University of Eastern Piedmont, 28100 Novara, Italy; (M.M.); (V.D.G.)
- Department of Translational Medicine, University of Eastern Piedmont, 28100 Novara, Italy;
| | - Veronica De Giorgis
- Center for Translational Research on Autoimmune and Allergic Diseases, University of Eastern Piedmont, 28100 Novara, Italy; (M.M.); (V.D.G.)
- Department of Translational Medicine, University of Eastern Piedmont, 28100 Novara, Italy;
| | - Alen Bebeti
- Department of Neurology and ALS Center, University Hospital “Maggiore della Carità”, 28100 Novara, Italy; (F.D.M.); (A.B.); (L.M.)
| | - Lorenza Scotti
- Department of Translational Medicine, University of Eastern Piedmont, 28100 Novara, Italy;
| | - Natasa Kustrimovic
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases-IRCAD, University of Eastern Piedmont, 28100 Novara, Italy; (B.V.); (D.R.); (N.K.); (G.C.)
- Center for Translational Research on Autoimmune and Allergic Diseases, University of Eastern Piedmont, 28100 Novara, Italy; (M.M.); (V.D.G.)
| | - Giuseppe Cappellano
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases-IRCAD, University of Eastern Piedmont, 28100 Novara, Italy; (B.V.); (D.R.); (N.K.); (G.C.)
- Center for Translational Research on Autoimmune and Allergic Diseases, University of Eastern Piedmont, 28100 Novara, Italy; (M.M.); (V.D.G.)
| | - Letizia Mazzini
- Department of Neurology and ALS Center, University Hospital “Maggiore della Carità”, 28100 Novara, Italy; (F.D.M.); (A.B.); (L.M.)
- Department of Translational Medicine, University of Eastern Piedmont, 28100 Novara, Italy;
| | - Annalisa Chiocchetti
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases-IRCAD, University of Eastern Piedmont, 28100 Novara, Italy; (B.V.); (D.R.); (N.K.); (G.C.)
- Center for Translational Research on Autoimmune and Allergic Diseases, University of Eastern Piedmont, 28100 Novara, Italy; (M.M.); (V.D.G.)
| |
Collapse
|
10
|
Sun M, Chen Z. Unveiling the Complex Role of Exosomes in Alzheimer's Disease. J Inflamm Res 2024; 17:3921-3948. [PMID: 38911990 PMCID: PMC11193473 DOI: 10.2147/jir.s466821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/11/2024] [Indexed: 06/25/2024] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative illness, characterized by memory loss and cognitive decline, accounting for 60-80% of dementia cases. AD is characterized by senile plaques made up of amyloid β (Aβ) protein, intracellular neurofibrillary tangles caused by hyperphosphorylation of tau protein linked with microtubules, and neuronal loss. Currently, therapeutic treatments and nanotechnological developments are effective in treating the symptoms of AD, but a cure for the illness has not yet been found. Recently, the increased study of extracellular vesicles (EVs) has led to a growing awareness of their significant involvement in neurodegenerative disorders, including AD. Exosomes are small extracellular vesicles that transport various components including messenger RNAs, non-coding RNAs, proteins, lipids, DNA, and other bioactive compounds from one cell to another, facilitating information transmission and material movement. There is growing evidence indicating that exosomes have complex functions in AD. Exosomes may have a dual role in Alzheimer's disease by contributing to neuronal death and also helping to alleviate the pathological progression of the disease. Therefore, the primary aim of this review is to outline the updated understandings on exosomes biogenesis and many functions of exosomes in the generation, conveyance, distribution, and elimination of hazardous proteins related to Alzheimer's disease. This review is intended to provide novel insights for understanding the development, specific treatment, and early detection of Alzheimer's disease.
Collapse
Affiliation(s)
- Mingyue Sun
- Department of Neurology, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou, 213000, People’s Republic of China
| | - Zhuoyou Chen
- Department of Neurology, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou, 213000, People’s Republic of China
| |
Collapse
|
11
|
Tao H, Gao B. Exosomes for neurodegenerative diseases: diagnosis and targeted therapy. J Neurol 2024; 271:3050-3062. [PMID: 38605227 DOI: 10.1007/s00415-024-12329-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/09/2024] [Accepted: 03/11/2024] [Indexed: 04/13/2024]
Abstract
PURPOSE OF REVIEW Neurodegenerative diseases are still challenging clinical issues, with no curative interventions available and early, accurate diagnosis remaining difficult. Finding solutions to them is of great importance. In this review, we discuss possible exosomal diagnostic biomarkers and explore current explorations in exosome-targeted therapy for some common neurodegenerative diseases, offering insights into the clinical transformation of exosomes in this field. RECENT FINDINGS The burgeoning research on exosomes has shed light on their potential applications in disease diagnosis and treatment. As a type of extracellular vesicles, exosomes are capable of crossing the blood - brain barrier and exist in various body fluids, whose components can reflect pathophysiological changes in the brain. In addition, they can deliver specific drugs to brain tissue, and even possess certain therapeutic effects themselves. And the recent advancements in engineering modification technology have further enabled exosomes to selectively target specific sites, facilitating the possibility of targeted therapy for neurodegenerative diseases. The unique properties of exosomes give them great potential in the diagnosis and treatment of neurodegenerative diseases, and provide novel ideas for dealing with such diseases.
Collapse
Affiliation(s)
- Hui Tao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Bo Gao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
12
|
Choi HK, Chen M, Goldston LL, Lee KB. Extracellular vesicles as nanotheranostic platforms for targeted neurological disorder interventions. NANO CONVERGENCE 2024; 11:19. [PMID: 38739358 PMCID: PMC11091041 DOI: 10.1186/s40580-024-00426-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 04/24/2024] [Indexed: 05/14/2024]
Abstract
Central Nervous System (CNS) disorders represent a profound public health challenge that affects millions of people around the world. Diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), and traumatic brain injury (TBI) exemplify the complexities and diversities that complicate their early detection and the development of effective treatments. Amid these challenges, the emergence of nanotechnology and extracellular vesicles (EVs) signals a new dawn for treating and diagnosing CNS ailments. EVs are cellularly derived lipid bilayer nanosized particles that are pivotal in intercellular communication within the CNS and have the potential to revolutionize targeted therapeutic delivery and the identification of novel biomarkers. Integrating EVs with nanotechnology amplifies their diagnostic and therapeutic capabilities, opening new avenues for managing CNS diseases. This review focuses on examining the fascinating interplay between EVs and nanotechnology in CNS theranostics. Through highlighting the remarkable advancements and unique methodologies, we aim to offer valuable perspectives on how these approaches can bring about a revolutionary change in disease management. The objective is to harness the distinctive attributes of EVs and nanotechnology to forge personalized, efficient interventions for CNS disorders, thereby providing a beacon of hope for affected individuals. In short, the confluence of EVs and nanotechnology heralds a promising frontier for targeted and impactful treatments against CNS diseases, which continue to pose significant public health challenges. By focusing on personalized and powerful diagnostic and therapeutic methods, we might improve the quality of patients.
Collapse
Affiliation(s)
- Hye Kyu Choi
- Department of Chemistry and Chemical Biology, The State University of New Jersey, 123 Bevier Road, Rutgers, Piscataway, NJ, 08854, USA
| | - Meizi Chen
- Department of Chemistry and Chemical Biology, The State University of New Jersey, 123 Bevier Road, Rutgers, Piscataway, NJ, 08854, USA
| | - Li Ling Goldston
- Department of Chemistry and Chemical Biology, The State University of New Jersey, 123 Bevier Road, Rutgers, Piscataway, NJ, 08854, USA
| | - Ki-Bum Lee
- Department of Chemistry and Chemical Biology, The State University of New Jersey, 123 Bevier Road, Rutgers, Piscataway, NJ, 08854, USA.
| |
Collapse
|
13
|
Monaghan TM, Ugun-Klusek A, Finelli M, Gurnani P, Chakrabarti L, Kao D, Alexander C, Polytarchou C. Connecting inflammatory bowel and neurodegenerative diseases: microRNAs as a shared therapeutic intervention. Gut 2024; 73:1034-1036. [PMID: 37137683 DOI: 10.1136/gutjnl-2022-327301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 04/24/2023] [Indexed: 05/05/2023]
Affiliation(s)
- Tanya M Monaghan
- NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
- Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Aslihan Ugun-Klusek
- Department of Biosciences, Centre for Health, Ageing and Understanding Disease (CHAUD), School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Mattea Finelli
- School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, UK
| | - Pratik Gurnani
- Division of Molecular Therapeutics & Formulation, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Lisa Chakrabarti
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, UK
- MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, Nottingham, UK
| | - Dina Kao
- Division of Gastroenterology, Department of Medicine, University of Alberta Hospital, Edmonton, Alberta, Canada
| | - Cameron Alexander
- Division of Molecular Therapeutics & Formulation, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Christos Polytarchou
- Department of Biosciences, Centre for Health, Ageing and Understanding Disease (CHAUD), School of Science and Technology, Nottingham Trent University, Nottingham, UK
- John van Geest Cancer Research Centre, School of Science & Technology, Nottingham Trent University, Nottingham, UK
| |
Collapse
|
14
|
Liu S, Geng D. Key developments and hotspots of exosomes in Alzheimer's disease: a bibliometric study spanning 2003 to 2023. Front Aging Neurosci 2024; 16:1377672. [PMID: 38752210 PMCID: PMC11094344 DOI: 10.3389/fnagi.2024.1377672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 04/17/2024] [Indexed: 05/18/2024] Open
Abstract
Background Alzheimer's disease (AD) is a degenerative illness of the central nervous system that is irreversible and is characterized by gradual behavioral impairment and cognitive dysfunction. Researches on exosomes in AD have gradually gained the attention of scholars in recent years. However, the literatures in this research area do not yet have a comprehensive visualization analysis. The aim of this work is to use bibliometrics to identify the knowledge constructs and investigate the research frontiers and hotspots related to exosomes in AD. Methods From January 2003 until June 2023, we searched the Web of Science Core Collection for literature on exosomes in AD. We found 585 papers total. The bibliometric study was completed using VOSviewer, the R package "bibliometrix," and CiteSpace. The analysis covered nations, institutions, authors, journals, and keywords. Results Following 2019, the articles on exosomes in AD increased significantly year by year. The vast majority of publications came from China and the US. The University of California System, the National Institutes of Health, and the NIH National Institute on Aging in the US were the primary research institutions. Goetzl Edward J. was frequently co-cited, while Kapogiannis Dimitrios was the most prolific author in this discipline with the greatest number of articles. Lee Mijung et al. have been prominent in the last two years in exosomes in AD. The Journal of Alzheimer's Disease was the most widely read publication, and Alzheimers & Dementia had the highest impact factor. The Journal of Biological Chemistry, Proceedings of the National Academy of Sciences of the United States of America, and Journal of Alzheimer's Disease were the three journals with more than 1,000 citations. The primary emphasis of this field was Alzheimer's disease, exosomes, and extracellular vesicles; since 2017, the number of phrases pertaining to the role of exosomes in AD pathogenesis has increased annually. "Identification of preclinical Alzheimer's disease by a profile of pathogenic proteins in neurally derived blood exosomes: a case-control study" was the reference with the greatest citing power, indicating the future steered direction in this field. Conclusion Using bibliometrics, we have compiled the research progress and tendencies on exosomes in Alzheimer's disease for the first time. This helps determine the objectives and paths for future study.
Collapse
Affiliation(s)
- Siyu Liu
- Radiology Department, Huashan Hospital, Affiliated with Fudan University, Shanghai, China
| | - Daoying Geng
- Radiology Department, Huashan Hospital, Affiliated with Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Intelligent Imaging for Critical Brain Diseases, Shanghai, China
- Institute of Functional and Molecular Medical Imaging, Fudan University, Shanghai, China
| |
Collapse
|
15
|
Bougea A, Georgakopoulou VE, Lempesis IG, Fotakopoulos G, Papalexis P, Sklapani P, Trakas N, Spandidos DA, Angelopoulou E. Role of microRNAs in cognitive decline related to COVID‑19 (Review). Exp Ther Med 2024; 27:139. [PMID: 38476899 PMCID: PMC10928821 DOI: 10.3892/etm.2024.12427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/01/2024] [Indexed: 03/14/2024] Open
Abstract
The likelihood and severity of cognitive decline related to coronavirus disease 2019 (COVID-19) have been shown to be reflected by the severity of the infection and concomitant alterations in specific biomarkers. The present review discusses the role of microRNAs (miRNAs/miRs) as biomarkers in COVID-19 and the potential molecular mechanisms of cognitive dysfunction related to COVID-19. A systematic search of published articles was carried out from January 31, 2000 to December 31, 2022 using the PubMed, ProQuest, Science Direct and Google Scholar databases, combining the following terms: 'COVID-19' OR 'SARS-CoV-2' OR 'post-COVID-19 effects' OR 'cognitive decline' OR 'neurodegeneration' OR 'microRNAs'. The quality of the evidence was evaluated as high, moderate, low, or very low based on the GRADE rating. A total of 36 studies were identified which demonstrated reduced blood levels of miR-146a, miR-155, Let-7b, miR 31 and miR-21 in patients with COVID-19 in comparison with a healthy group. The overexpression of the Let-7b may result in the downregulation of BCL-2 during COVID-9 by adjusting the immune responses between chronic inflammatory disease, type 2 diabetes, COVID-19 and cognitive impairment. The reduced expression of miR-31 is associated with cognitive dysfunction and increased microcoagulability in patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). miR-155 mediates synaptic dysfunction and the dysregulation of neurotransmitters due to acute inflammation, leading to brain atrophy and a subcortical cognitive profile. The downregulation of miR-21 in patients with COVID-19 aggravates systemic inflammation, mediating an uncontrollable immune response and the failure of T-cell function, provoking cognitive impairment in patients with SARS-CoV-2. On the whole, the present review indicates that dysregulated levels of miR-146a, miR-155, Let-7b, miR-31, and miR-21 in the blood of individuals with COVID-19 are associated with cognitive decline, the chronic activation of immune mechanisms, the cytokine storm, and the vicious cycle of damage and systemic inflammation.
Collapse
Affiliation(s)
- Anastasia Bougea
- 1st Department of Neurology, Eginition Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | | | - Ioannis G. Lempesis
- Department of Pathophysiology, Laiko General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - George Fotakopoulos
- Department of Neurosurgery, General University Hospital of Larissa, 41221 Larissa, Greece
| | - Petros Papalexis
- Unit of Endocrinology, First Department of Internal Medicine, Laiko General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Department of Biomedical Sciences, University of West Attica, 12243 Athens, Greece
| | - Pagona Sklapani
- Department of Biochemistry, Sismanogleio Hospital, 15126 Athens, Greece
| | - Nikolaos Trakas
- Department of Biochemistry, Sismanogleio Hospital, 15126 Athens, Greece
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Efthalia Angelopoulou
- 1st Department of Neurology, Eginition Hospital, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece
| |
Collapse
|
16
|
Isik FB, Knight HM, Rajkumar AP. Extracellular vesicle microRNA-mediated transcriptional regulation may contribute to dementia with Lewy bodies molecular pathology. Acta Neuropsychiatr 2024; 36:29-38. [PMID: 37339939 DOI: 10.1017/neu.2023.27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
OBJECTIVE Dementia with Lewy bodies (DLB) is the second most common dementia. Advancing our limited understanding of its molecular pathogenesis is essential for identifying novel biomarkers and therapeutic targets for DLB. DLB is an α-synucleinopathy, and small extracellular vesicles (SEV) from people with DLB can transmit α-synuclein oligomerisation between cells. Post-mortem DLB brains and serum SEV from those with DLB share common miRNA signatures, and their functional implications are uncertain. Hence, we aimed to investigate potential targets of DLB-associated SEV miRNA and to analyse their functional implications. METHODS We identified potential targets of six previously reported differentially expressed miRNA genes in serum SEV of people with DLB (MIR26A1, MIR320C2, MIR320D2, MIR548BA, MIR556, and MIR4722) using miRBase and miRDB databases. We analysed functional implications of these targets using EnrichR gene set enrichment analysis and analysed their protein interactions using Reactome pathway analysis. RESULTS These SEV miRNA may regulate 4278 genes that were significantly enriched among the genes involved in neuronal development, cell-to-cell communication, vesicle-mediated transport, apoptosis, regulation of cell cycle, post-translational protein modifications, and autophagy lysosomal pathway, after Benjamini-Hochberg false discovery rate correction at 5%. The miRNA target genes and their protein interactions were significantly associated with several neuropsychiatric disorders and with multiple signal transduction, transcriptional regulation, and cytokine signalling pathways. CONCLUSION Our findings provide in-silico evidence that potential targets of DLB-associated SEV miRNAs may contribute to Lewy pathology by transcriptional regulation. Experimental validation of these dysfunctional pathways is warranted and could lead to novel therapeutic avenues for DLB.
Collapse
Affiliation(s)
- Fatma Busra Isik
- School of Life Science, Queen's Medical Centre, University of Nottingham, Nottingham, UK
| | - Helen Miranda Knight
- School of Life Science, Queen's Medical Centre, University of Nottingham, Nottingham, UK
| | - Anto P Rajkumar
- Institute of Mental Health, Mental Health and Clinical Neurosciences Academic Unit, University of Nottingham, Nottingham, UK
- Mental Health Services for Older People, Nottinghamshire Healthcare NHS Foundation Trust, Nottingham, UK
| |
Collapse
|
17
|
Xu X, Iqbal Z, Xu L, Wen C, Duan L, Xia J, Yang N, Zhang Y, Liang Y. Brain-derived extracellular vesicles: Potential diagnostic biomarkers for central nervous system diseases. Psychiatry Clin Neurosci 2024; 78:83-96. [PMID: 37877617 DOI: 10.1111/pcn.13610] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/15/2023] [Accepted: 10/22/2023] [Indexed: 10/26/2023]
Abstract
Extracellular vesicles (EVs) are membrane-enclosed nanovesicles secreted by cells into the extracellular space and contain functional biomolecules, e.g. signaling receptors, bioactive lipids, nucleic acids, and proteins, which can serve as biomarkers. Neurons and glial cells secrete EVs, contributing to various physiological and pathological aspects of brain diseases. EVs confer their role in the bidirectional crosstalk between the central nervous system (CNS) and the periphery owing to their distinctive ability to cross the unique blood-brain barrier (BBB). Thus, EVs in the blood, cerebrospinal fluid (CSF), and urine can be intriguing biomarkers, enabling the minimally invasive diagnosis of CNS diseases. Although there has been an enormous interest in evaluating EVs as promising biomarkers, the lack of ultra-sensitive approaches for isolating and detecting brain-derived EVs (BDEVs) has hindered the development of efficient biomarkers. This review presents the recent salient findings of exosomal biomarkers, focusing on brain disorders. We summarize highly sensitive sensors for EV detection and state-of-the-art methods for single EV detection. Finally, the prospect of developing advanced EV analysis approaches for the non-invasive diagnosis of brain diseases is presented.
Collapse
Affiliation(s)
- Xiao Xu
- Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Zoya Iqbal
- Department of Orthopedics, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Limei Xu
- Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Caining Wen
- Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Li Duan
- Department of Orthopedics, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Jiang Xia
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong, China
| | - Ningning Yang
- Lake Erie College of Osteopathic Medicine School of Pharmacy, Bradenton, Florida, USA
| | - Yuanmin Zhang
- Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
- College of Rehabilitation Medicine, Jining Medical University, Jining, China
| | - Yujie Liang
- Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
- College of Rehabilitation Medicine, Jining Medical University, Jining, China
| |
Collapse
|
18
|
Rochín-Hernández LJ, Rochín-Hernández LS, Padilla-Cristerna ML, Duarte-García A, Jiménez-Acosta MA, Figueroa-Corona MP, Meraz-Ríos MA. Mesenchymal Stem Cells from Familial Alzheimer's Patients Express MicroRNA Differently. Int J Mol Sci 2024; 25:1580. [PMID: 38338859 PMCID: PMC10855944 DOI: 10.3390/ijms25031580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/13/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder and the predominant form of dementia globally. No reliable diagnostic, predictive techniques, or curative interventions are available. MicroRNAs (miRNAs) are vital to controlling gene expression, making them valuable biomarkers for diagnosis and prognosis. This study examines the transcriptome of olfactory ecto-mesenchymal stem cells (MSCs) derived from individuals with the PSEN1(A431E) mutation (Jalisco mutation). The aim is to determine whether this mutation affects the transcriptome and expression profile of miRNAs and their target genes at different stages of asymptomatic, presymptomatic, and symptomatic conditions. Expression microarrays compare the MSCs from mutation carriers with those from healthy donors. The results indicate a distinct variation in the expression of miRNAs and mRNAs among different symptomatologic groups and between individuals with the mutation. Using bioinformatics tools allows us to identify target genes for miRNAs, which in turn affect various biological processes and pathways. These include the cell cycle, senescence, transcription, and pathways involved in regulating the pluripotency of stem cells. These processes are closely linked to inter- and intracellular communication, vital for cellular functioning. These findings can enhance our comprehension and monitoring of the disease's physiological processes, identify new disorder indicators, and develop innovative treatments and diagnostic tools for preventing or treating AD.
Collapse
Affiliation(s)
- Lory J. Rochín-Hernández
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Instituto Politécnico Nacional 2508, Ciudad de México 07360, Mexico; (L.J.R.-H.); (M.L.P.-C.); (A.D.-G.); (M.A.J.-A.); (M.P.F.-C.)
| | - Lory S. Rochín-Hernández
- Departamento de Biotecnología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Instituto Politécnico Nacional 2508, Ciudad de México 07360, Mexico;
| | - Mayte L. Padilla-Cristerna
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Instituto Politécnico Nacional 2508, Ciudad de México 07360, Mexico; (L.J.R.-H.); (M.L.P.-C.); (A.D.-G.); (M.A.J.-A.); (M.P.F.-C.)
| | - Andrea Duarte-García
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Instituto Politécnico Nacional 2508, Ciudad de México 07360, Mexico; (L.J.R.-H.); (M.L.P.-C.); (A.D.-G.); (M.A.J.-A.); (M.P.F.-C.)
| | - Miguel A. Jiménez-Acosta
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Instituto Politécnico Nacional 2508, Ciudad de México 07360, Mexico; (L.J.R.-H.); (M.L.P.-C.); (A.D.-G.); (M.A.J.-A.); (M.P.F.-C.)
| | - María P. Figueroa-Corona
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Instituto Politécnico Nacional 2508, Ciudad de México 07360, Mexico; (L.J.R.-H.); (M.L.P.-C.); (A.D.-G.); (M.A.J.-A.); (M.P.F.-C.)
| | - Marco A. Meraz-Ríos
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Instituto Politécnico Nacional 2508, Ciudad de México 07360, Mexico; (L.J.R.-H.); (M.L.P.-C.); (A.D.-G.); (M.A.J.-A.); (M.P.F.-C.)
| |
Collapse
|
19
|
Palade J, Alsop E, Courtright-Lim A, Hsieh M, Whitsett TG, Galasko D, Van Keuren-Jensen K. Small RNA Changes in Plasma Have Potential for Early Diagnosis of Alzheimer's Disease before Symptom Onset. Cells 2024; 13:207. [PMID: 38334599 PMCID: PMC10854972 DOI: 10.3390/cells13030207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 02/10/2024] Open
Abstract
Alzheimer's disease (AD), due to its multifactorial nature and complex etiology, poses challenges for research, diagnosis, and treatment, and impacts millions worldwide. To address the need for minimally invasive, repeatable measures that aid in AD diagnosis and progression monitoring, studies leveraging RNAs associated with extracellular vesicles (EVs) in human biofluids have revealed AD-associated changes. However, the validation of AD biomarkers has suffered from the collection of samples from differing points in the disease time course or a lack of confirmed AD diagnoses. Here, we integrate clinical diagnosis and postmortem pathology data to form more accurate experimental groups and use small RNA sequencing to show that EVs from plasma can serve as a potential source of RNAs that reflect disease-related changes. Importantly, we demonstrated that these changes are identifiable in the EVs of preclinical patients, years before symptom manifestation, and that machine learning models based on differentially expressed RNAs can help predict disease conversion or progression. This research offers critical insight into early disease biomarkers and underscores the significance of accounting for disease progression and pathology in human AD studies.
Collapse
Affiliation(s)
- Joanna Palade
- Neurogenomics Division, Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA; (J.P.); (E.A.); (M.H.); (T.G.W.)
| | - Eric Alsop
- Neurogenomics Division, Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA; (J.P.); (E.A.); (M.H.); (T.G.W.)
| | | | - Michael Hsieh
- Neurogenomics Division, Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA; (J.P.); (E.A.); (M.H.); (T.G.W.)
| | - Timothy G. Whitsett
- Neurogenomics Division, Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA; (J.P.); (E.A.); (M.H.); (T.G.W.)
| | - Douglas Galasko
- Department of Neurosciences, San Diego and Shiley-Marcos Alzheimer’s Disease Research Center, University of California, La Jolla, CA 92037, USA;
| | - Kendall Van Keuren-Jensen
- Neurogenomics Division, Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA; (J.P.); (E.A.); (M.H.); (T.G.W.)
| |
Collapse
|
20
|
Van der Auwera S, Ameling S, Wittfeld K, Frenzel S, Bülow R, Nauck M, Völzke H, Völker U, Grabe HJ. Circulating microRNA miR-425-5p Associated with Brain White Matter Lesions and Inflammatory Processes. Int J Mol Sci 2024; 25:887. [PMID: 38255959 PMCID: PMC10815886 DOI: 10.3390/ijms25020887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
White matter lesions (WML) emerge as a consequence of vascular injuries in the brain. While they are commonly observed in aging, associations have been established with neurodegenerative and neurological disorders such as dementia or stroke. Despite substantial research efforts, biological mechanisms are incomplete and biomarkers indicating WMLs are lacking. Utilizing data from the population-based Study of Health in Pomerania (SHIP), our objective was to identify plasma-circulating micro-RNAs (miRNAs) associated with WMLs, thus providing a foundation for a comprehensive biological model and further research. In linear regression models, direct association and moderating factors were analyzed. In 648 individuals, we identified hsa-miR-425-5p as directly associated with WMLs. In subsequent analyses, hsa-miR-425-5p was found to regulate various genes associated with WMLs with particular emphasis on the SH3PXD2A gene. Furthermore, miR-425-5p was found to be involved in immunological processes. In addition, noteworthy miRNAs associated with WMLs were identified, primarily moderated by the factors of sex or smoking status. All identified miRNAs exhibited a strong over-representation in neurodegenerative and neurological diseases. We introduced hsa-miR-425-5p as a promising candidate in WML research probably involved in immunological processes. Mir-425-5p holds the potential as a biomarker of WMLs, shedding light on potential mechanisms and pathways in vascular dementia.
Collapse
Affiliation(s)
- Sandra Van der Auwera
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, 17475 Greifswald, Germany
- German Centre for Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, 17475 Greifswald, Germany
| | - Sabine Ameling
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, 17475 Greifswald, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, 17475 Greifswald, Germany; (M.N.)
| | - Katharina Wittfeld
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Stefan Frenzel
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Robin Bülow
- Institute for Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Matthias Nauck
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, 17475 Greifswald, Germany; (M.N.)
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Henry Völzke
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, 17475 Greifswald, Germany; (M.N.)
- Institute for Community Medicine, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, 17475 Greifswald, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, 17475 Greifswald, Germany; (M.N.)
| | - Hans J. Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, 17475 Greifswald, Germany
- German Centre for Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, 17475 Greifswald, Germany
| |
Collapse
|
21
|
Chopra A, Outeiro TF. Aggregation and beyond: alpha-synuclein-based biomarkers in synucleinopathies. Brain 2024; 147:81-90. [PMID: 37526295 DOI: 10.1093/brain/awad260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/12/2023] [Accepted: 07/15/2023] [Indexed: 08/02/2023] Open
Abstract
Parkinson's disease is clinically known for the loss of dopaminergic neurons in the substantia nigra pars compacta and accumulation of intraneuronal cytoplasmic inclusions rich in alpha-synuclein called 'Lewy bodies' and 'Lewy neurites'. Together with dementia with Lewy bodies and multiple system atrophy, Parkinson's disease is part of a group of disorders called synucleinopathies. Currently, diagnosis of synucleinopathies is based on the clinical assessment which often takes place in advanced disease stages. While the causal role of alpha-synuclein aggregates in these disorders is still debatable, measuring the levels, types or seeding properties of different alpha-synuclein species hold great promise as biomarkers. Recent studies indicate significant differences in peptide, protein and RNA levels in blood samples from patients with Parkinson's disease. Seed amplification assays using CSF, blood, skin biopsy, olfactory swab samples show great promise for detecting synucleinopathies and even for discriminating between different synucleinopathies. Interestingly, small extracellular vesicles, such as exosomes, display differences in their cargoes in Parkinson's disease patients versus controls. In this update, we focus on alpha-synuclein aggregation and possible sources of disease-related species released in extracellular vesicles, which promise to revolutionize the diagnosis and the monitoring of disease progression.
Collapse
Affiliation(s)
- Avika Chopra
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Tiago Fleming Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, 37073 Göttingen, Germany
- Max Planck Institute for Multidisciplinary Sciences, 37075 Göttingen, Germany
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, UK
- Scientific Employee with an Honorary Contract at Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), 37075 Göttingen, Germany
| |
Collapse
|
22
|
Cho YE, Chen S, Crouch K, Yun J, Klingelhutz A. Impact of Aging and a High-Fat Diet on Adipose-Tissue-Derived Extracellular Vesicle miRNA Profiles in Mice. Biomedicines 2024; 12:100. [PMID: 38255206 PMCID: PMC10813715 DOI: 10.3390/biomedicines12010100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/23/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Middle-aged adults have the highest obesity rates, leading to significant health complications in later years. Obesity triggers the release of altered molecules, including extracellular vesicles (EVs) from excess adipose tissue (AT), contributing to various health complications. In this study, we assessed the effects of age and a high-fat diet on AT-derived EV miRNA profiles to understand their potential roles in aging and obesity. METHOD C57BL/6 male mice were subjected to a normal chow diet (NCD) or a high-fat diet (HFD) for either 10-12 weeks (young mice, n = 10) or 50-61 weeks (middle-aged mice, n = 12). After evaluating metabolic characteristics, peri-gonadal white AT was isolated and cultured to obtain EVs. AT-derived EV miRNAs were profiled using a NanoString miRNA panel (n = 599). RESULTS Middle-aged mice exhibited obesity regardless of diet. Young mice fed an HFD showed similar metabolic traits to middle-aged mice. In the NCD group, 131 differentially expressed miRNAs (DE-miRNAs) emerged in middle-aged mice compared to young mice, including miR-21, miR-148a, and miR-29a, associated with cancer, neuro/psychological disorders, and reproductive diseases. In the HFD group, 55 DE-miRNAs were revealed in middle-aged mice compared to young mice. These miRNAs were associated with significantly suppressed IGF1R activity. CONCLUSION This study demonstrates the potential significant impact of miRNAs of AT EVs on aging- and obesity-related diseases.
Collapse
Affiliation(s)
- Young-Eun Cho
- College of Nursing, The University of Iowa, 50 Newton Road, Iowa City, IA 52242, USA
| | - Shaoshuai Chen
- College of Nursing, The University of Iowa, 50 Newton Road, Iowa City, IA 52242, USA
| | - Keith Crouch
- College of Nursing, The University of Iowa, 50 Newton Road, Iowa City, IA 52242, USA
| | - Joseph Yun
- Predictiv Care, Inc., 800 West El Camino Real, Mountain View, CA 94040, USA
| | - Aloysius Klingelhutz
- Department of Microbiology and Immunology, College of Medicine, The University of Iowa, 51 Newton Road, Iowa City, IA 52242, USA
| |
Collapse
|
23
|
Chai YL, Strohm L, Zhu Y, Chia RS, Chong JR, Suresh DD, Zhou LH, Too HP, Hilal S, Radivoyevitch T, Koo EH, Chen CP, Poplawski GHD. Extracellular Vesicle-Enriched miRNA-Biomarkers Show Improved Utility for Detecting Alzheimer's Disease Dementia and Medial Temporal Atrophy. J Alzheimers Dis 2024; 99:1317-1331. [PMID: 38788066 PMCID: PMC11191453 DOI: 10.3233/jad-230572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2024] [Indexed: 05/26/2024]
Abstract
Background Emerging diagnostic modalities suggest that miRNA profiles within extracellular vesicles (EVs) isolated from peripheral blood specimens may provide a non-invasive diagnostic alternative for dementia and neurodegenerative disorders. Given that EVs confer a protective environment against miRNA enzymatic degradation, the miRNAs enriched in the EV fraction of blood samples could serve as more stable and clinically relevant biomarkers compared to those obtained from serum. Objective To compare miRNAs isolated from EVs versus serum in blood taken from Alzheimer's disease (AD) dementia patients and control cohorts. Methods We compared 25 AD patients to 34 individuals who exhibited no cognitive impairments (NCI). Subjects were Singapore residents with Chinese heritage. miRNAs purified from serum versus blood-derived EVs were analyzed for associations with AD dementia and medial temporal atrophy detected by magnetic resonance imaging. Results Compared to serum-miRNAs, we identified almost twice as many EV-miRNAs associated with AD dementia, and they also correlated more significantly with medial temporal atrophy, a neuroimaging marker of AD-brain pathology. We further developed combination panels of serum-miRNAs and EV-miRNAs with improved performance in identifying AD dementia. Dominant in both panels was miRNA-1290. Conclusions This data indicates that miRNA profiling from EVs offers diagnostic superiority. This underscores the role of EVs as vectors harboring prognostic biomarkers for neurodegenerative disorders and suggests their potential in yielding novel biomarkers for AD diagnosis.
Collapse
Affiliation(s)
- Yuek Ling Chai
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, Singapore
- Memory Aging and Cognition Centre, National University Health System, Kent Ridge, Singapore
| | - Lea Strohm
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, Singapore
| | - Yanan Zhu
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, Singapore
- Memory Aging and Cognition Centre, National University Health System, Kent Ridge, Singapore
| | - Rachel S.L. Chia
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, Singapore
- Memory Aging and Cognition Centre, National University Health System, Kent Ridge, Singapore
| | - Joyce Ruifen Chong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, Singapore
- Memory Aging and Cognition Centre, National University Health System, Kent Ridge, Singapore
| | - Danesha Devini Suresh
- Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | | | - Heng Phon Too
- Department of Biochemistry, Yong Loo Lin School of Medicine, NUS Centre for Cancer Research (N2CR), National University of Singapore, Kent Ridge, Singapore
| | - Saima Hilal
- Memory Aging and Cognition Centre, National University Health System, Kent Ridge, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, Kent Ridge, Singapore
| | - Tomas Radivoyevitch
- Quantitative Health Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Edward H. Koo
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, Singapore
| | - Christopher P. Chen
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, Singapore
- Memory Aging and Cognition Centre, National University Health System, Kent Ridge, Singapore
| | - Gunnar Heiko Dirk Poplawski
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, Singapore
- Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| |
Collapse
|
24
|
Huang Y, Driedonks TAP, Cheng L, Turchinovich A, Pletnikova O, Redding-Ochoa J, Troncoso JC, Hill AF, Mahairaki V, Zheng L, Witwer KW. Small RNA Profiles of Brain Tissue-Derived Extracellular Vesicles in Alzheimer's Disease. J Alzheimers Dis 2024; 99:S235-S248. [PMID: 37781809 DOI: 10.3233/jad-230872] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Background Extracellular vesicles (EVs) and non-coding RNAs (ncRNAs) are emerging contributors to Alzheimer's disease (AD) pathophysiology. Differential abundance of ncRNAs carried by EVs may provide valuable insights into underlying disease mechanisms. Brain tissue-derived EVs (bdEVs) are particularly relevant, as they may offer valuable insights about the tissue of origin. However, there is limited research on diverse ncRNA species in bdEVs in AD. Objective This study explored whether the non-coding RNA composition of EVs isolated from post-mortem brain tissue is related to AD pathogenesis. Methods bdEVs from age-matched late-stage AD patients (n = 23) and controls (n = 10) that had been separated and characterized in our previous study were used for RNA extraction, small RNA sequencing, and qPCR verification. Results Significant differences of non-coding RNAs between AD and controls were found, especially for miRNAs and tRNAs. AD pathology-related miRNA and tRNA differences of bdEVs partially matched expression differences in source brain tissues. AD pathology had a more prominent association than biological sex with bdEV miRNA and tRNA components in late-stage AD brains. Conclusions Our study provides further evidence that EV non-coding RNAs from human brain tissue, including but not limited to miRNAs, may be altered and contribute to AD pathogenesis.
Collapse
Affiliation(s)
- Yiyao Huang
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Tom A P Driedonks
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lesley Cheng
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Australia
| | - Andrey Turchinovich
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Biolabs GmbH, Heidelberg, Germany
| | - Olga Pletnikova
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Javier Redding-Ochoa
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Juan C Troncoso
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Andrew F Hill
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Australia
- Institute of Health and Sport, Victoria University, Melbourne, Australia
| | - Vasiliki Mahairaki
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Richman Family Precision Medicine Center of Excellence in Alzheimer's Disease, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lei Zheng
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Kenneth W Witwer
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Richman Family Precision Medicine Center of Excellence in Alzheimer's Disease, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
25
|
Phu Pham LH, Chang CF, Tuchez K, Chen Y. Assess Alzheimer's Disease via Plasma Extracellular Vesicle-derived mRNA. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.12.26.23299985. [PMID: 38234733 PMCID: PMC10793515 DOI: 10.1101/2023.12.26.23299985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Alzheimer's disease (AD), the most prevalent neurodegenerative disorder globally, has emerged as a significant health concern, particularly due to the increasing aging population. Recently, it has been revealed that extracellular vesicles (EVs) originating from neurons play a critical role in AD pathogenesis and progression. These neuronal EVs can cross the blood-brain barrier and enter peripheral circulation, offering a less invasive means for assessing blood-based AD biomarkers. In this study, we analyzed plasma EV-derived messenger RNA (mRNA) from 82 subjects, including individuals with AD, mild cognitive impairment (MCI), and healthy controls, using next-generation sequencing (NGS) to profile their gene expression for functional enrichment and pathway analysis. Based on the differentially expressed genes identified in both MCI and AD groups, we established a diagnostic model by implementing a machine learning classifier. The refined model demonstrated an average diagnostic accuracy over 98% and showed a strong correlation with different AD stages, suggesting the potential of plasma EV-derived mRNA as a promising non-invasive biomarker for early detection and ongoing monitoring of AD.
Collapse
Affiliation(s)
| | | | | | - Yuchao Chen
- WellSIM Biomedical Technologies Inc., San Jose, CA, USA
| |
Collapse
|
26
|
Chen R, Shi J, Yang H, Zhang M, Chen Q, He Q. Dysregulation of MicroRNAs Derived from Plasma Extracellular Vesicles in Schizoaffective Disorder. Mol Neurobiol 2023; 60:6373-6382. [PMID: 37452221 DOI: 10.1007/s12035-023-03482-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
The association between peripheral blood extracellular vesicles (EVs)-derived miRNAs (EVs-miRNAs) and neuropsychiatric diseases has been extensively studied. However, it remains largely unclear about the expression profile of EVs-miRNAs in schizoaffective disorder (SAD) patients. In our study, we isolated the EVs from plasma samples of patients and healthy controls, and then analyzed the expression profiles of EVs-miRNAs through small RNA sequencing. Our results identified 32 differentially expressed (DE) miRNAs (25 upregulated and 7 downregulated) in SAD patients. A module containing 42 miRNAs closely related to SAD was identified by weighted gene co-expression network analysis (WGCNA), among which has-miR-15b-5p, has-miR-301a-3p, has-miR-342-3p, has-miR-219b-5p, and has-miR-145-5p were identified as hub miRNAs. The enrichment analysis showed that the target genes of these 42 miRNAs were significantly enriched in multiple pathways related to neuropathology and located at synapses. A total of 6 DE miRNAs (has-miR-7-5p, has-miR-144-3p, has-miR-155-5p, has-miR-342-3p, has-miR-342-5p, and has-miR-487b-3p) associated with SAD were selected for qRT-PCR verification. The level of has-miR-342-3p in SAD patients was downregulated, and hsa-miR-155-5p was upregulated. Our findings support the hypothesis that dysregulation of EVs-miRNAs in plasma might be involved in the underlying neuropathology of SAD through several biological pathways and provide important preliminary evidence supporting the use of EVs-miRNAs as potential novel biomarkers in SAD.
Collapse
Affiliation(s)
- Rui Chen
- School of Public Health, Wuhan University, Wuhan, People's Republic of China
| | - Junxia Shi
- Pingshan District Center for Disease Control and Prevention, Shenzhen, People's Republic of China
| | - Hongguang Yang
- School of Public Health, Wuhan University, Wuhan, People's Republic of China
| | - Minzhe Zhang
- School of Public Health, Wuhan University, Wuhan, People's Republic of China
| | - Qiutong Chen
- College of Language Intelligence, Sichuan International Studies University, Chongqing, People's Republic of China.
| | - Qiqiang He
- School of Public Health, Wuhan University, Wuhan, People's Republic of China.
| |
Collapse
|
27
|
Hashemi KS, Aliabadi MK, Mehrara A, Talebi E, Hemmati AA, Rezaeiye RD, Ghanbary MJ, Motealleh M, Dayeri B, Alashti SK. A meta-analysis of microarray datasets to identify biological regulatory networks in Alzheimer's disease. Front Genet 2023; 14:1225196. [PMID: 37705610 PMCID: PMC10497115 DOI: 10.3389/fgene.2023.1225196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/14/2023] [Indexed: 09/15/2023] Open
Abstract
Background: Alzheimer's Disease (AD) is an age-related progressive neurodegenerative disorder characterized by mental deterioration, memory deficit, and multiple cognitive abnormalities, with an overall prevalence of ∼2% among industrialized countries. Although a proper diagnosis is not yet available, identification of miRNAs and mRNAs could offer valuable insights into the molecular pathways underlying AD's prognosis. Method: This study aims to utilize microarray bioinformatic analysis to identify potential biomarkers of AD, by analyzing six microarray datasets (GSE4757, GSE5281, GSE16759, GSE28146, GSE12685, and GSE1297) of AD patients, and control groups. Furthermore, this study conducted gene ontology, pathways analysis, and protein-protein interaction network to reveal major pathways linked to probable biological events. The datasets were meta-analyzed using bioinformatics tools, to identify significant differentially expressed genes (DEGs) and hub genes and their targeted miRNAs'. Results: According to the findings, CXCR4, TGFB1, ITGB1, MYH11, and SELE genes were identified as hub genes in this study. The analysis of DEGs using GO (gene ontology) revealed that these genes were significantly enriched in actin cytoskeleton regulation, ECM-receptor interaction, and hypertrophic cardiomyopathy. Eventually, hsa-mir-122-5p, hsa-mir-106a-5p, hsa-mir-27a-3p, hsa-mir16-5p, hsa-mir-145-5p, hsa-mir-12-5p, hsa-mir-128-3p, hsa-mir 3200-3p, hsa-mir-103a-3p, and hsa-mir-9-3p exhibited significant interactions with most of the hub genes. Conclusion: Overall, these genes can be considered as pivotal biomarkers for diagnosing the pathogenesis and molecular functions of AD.
Collapse
Affiliation(s)
- Kimia Sadat Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohadese Koohi Aliabadi
- Faculty of Interdisciplinary Science and Technology, Tarbiat Modares University, Tehran, Iran
| | - Arian Mehrara
- School of Pharmacy, Ramsar International Campus, Mazandaran University of Medical Sciences, Ramsar, Iran
| | - Elham Talebi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ali Akbar Hemmati
- Department of Biology and Biotechnology, Molecular Biology, and Genetics, Pavia University, Lombardi, Italy
| | | | | | - Maryam Motealleh
- Department of System Biology Lab, University of Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Behnaz Dayeri
- Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Biotechnology, University of Milan, Milan, Italy
| | | |
Collapse
|
28
|
Saadeldin IM, Ehab S, Cho J. Relevance of multilamellar and multicompartmental vesicles in biological fluids: understanding the significance of proportional variations and disease correlation. Biomark Res 2023; 11:77. [PMID: 37633948 PMCID: PMC10464313 DOI: 10.1186/s40364-023-00518-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/22/2023] [Indexed: 08/28/2023] Open
Abstract
Extracellular vesicles (EVs) have garnered significant interest in the field of biomedical science due to their potential applications in therapy and diagnosis. These vesicles participate in cell-to-cell communication and carry a diverse range of bioactive cargo molecules, such as nucleic acids, proteins, and lipids. These cargoes play essential roles in various signaling pathways, including paracrine and endocrine signaling. However, our understanding of the morphological and structural features of EVs is still limited. EVs could be unilamellar or multilamellar or even multicompartmental structures. The relative proportions of these EV subtypes in biological fluids have been associated with various human diseases; however, the mechanism remains unclear. Cryo-electron microscopy (cryo-EM) holds great promise in the field of EV characterization due to high resolution properties. Cryo-EM circumvents artifacts caused by fixation or dehydration, allows for the preservation of native conformation, and eliminates the necessity for staining procedures. In this review, we summarize the role of EVs biogenesis and pathways that might have role on their structure, and the role of cryo-EM in characterization of EVs morphology in different biological samples and integrate new knowledge of the alterations of membranous structures of EVs which could be used as biomarkers to human diseases.
Collapse
Affiliation(s)
- Islam M Saadeldin
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, 99, Daehak-ro, Daejeon, 34134, Republic of Korea
- Research Institute of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Seif Ehab
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
- Zoology Graduate Program, Department of Zoology, Faculty of Science, Cairo University, Giza, Egypt
| | - Jongki Cho
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, 99, Daehak-ro, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
29
|
Sigdel S, Swenson S, Wang J. Extracellular Vesicles in Neurodegenerative Diseases: An Update. Int J Mol Sci 2023; 24:13161. [PMID: 37685965 PMCID: PMC10487947 DOI: 10.3390/ijms241713161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 08/22/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Neurodegenerative diseases affect millions of people worldwide. The likelihood of developing a neurodegenerative disease rises dramatically as life expectancy increases. Although it has drawn significant attention, there is still a lack of proper effective treatments for neurodegenerative disease because the mechanisms of its development and progression are largely unknown. Extracellular vesicles (EVs) are small bi-lipid layer-enclosed nanosized particles in tissues and biological fluids. EVs are emerging as novel intercellular messengers and regulate a series of biological responses. Increasing evidence suggests that EVs are involved in the pathogenesis of neurodegenerative disorders. In this review, we summarize the recent findings of EVs in neurodegenerative diseases and bring up the limitations in the field.
Collapse
Affiliation(s)
| | | | - Jinju Wang
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA; (S.S.); (S.S.)
| |
Collapse
|
30
|
Datta N, Johnson C, Kao D, Gurnani P, Alexander C, Polytarchou C, Monaghan TM. MicroRNA-based therapeutics for inflammatory disorders of the microbiota-gut-brain axis. Pharmacol Res 2023; 194:106870. [PMID: 37499702 DOI: 10.1016/j.phrs.2023.106870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 07/22/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
An emerging but less explored shared pathophysiology across microbiota-gut-brain axis disorders is aberrant miRNA expression, which may represent novel therapeutic targets. miRNAs are small, endogenous non-coding RNAs that are important transcriptional repressors of gene expression. Most importantly, they regulate the integrity of the intestinal epithelial and blood-brain barriers and serve as an important communication channel between the gut microbiome and the host. A well-defined understanding of the mode of action, therapeutic strategies and delivery mechanisms of miRNAs is pivotal in translating the clinical applications of miRNA-based therapeutics. Accumulating evidence links disorders of the microbiota-gut-brain axis with a compromised gut-blood-brain-barrier, causing gut contents such as immune cells and microbiota to enter the bloodstream leading to low-grade systemic inflammation. This has the potential to affect all organs, including the brain, causing central inflammation and the development of neurodegenerative and neuropsychiatric diseases. In this review, we have examined in detail miRNA biogenesis, strategies for therapeutic application, delivery mechanisms, as well as their pathophysiology and clinical applications in inflammatory gut-brain disorders. The research data in this review was drawn from the following databases: PubMed, Google Scholar, and Clinicaltrials.gov. With increasing evidence of the pathophysiological importance for miRNAs in microbiota-gut-brain axis disorders, therapeutic targeting of cross-regulated miRNAs in these disorders displays potentially transformative and translational potential. Further preclinical research and human clinical trials are required to further advance this area of research.
Collapse
Affiliation(s)
- Neha Datta
- School of Medicine, University of Nottingham, Nottingham, UK
| | - Charlotte Johnson
- NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK; Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Dina Kao
- Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Pratik Gurnani
- Division of Molecular Therapeutics & Formulation, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Cameron Alexander
- Division of Molecular Therapeutics & Formulation, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Christos Polytarchou
- Department of Biosciences, John van Geest Cancer Research Centre, School of Science & Technology, Nottingham Trent University, Nottingham, UK.
| | - Tanya M Monaghan
- NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK; Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, UK.
| |
Collapse
|
31
|
Solaguren-Beascoa M, Gámez-Valero A, Escaramís G, Herrero-Lorenzo M, Ortiz AM, Minguet C, Gonzalo R, Bravo MI, Costa M, Martí E. Phospho-RNA-Seq Highlights Specific Small RNA Profiles in Plasma Extracellular Vesicles. Int J Mol Sci 2023; 24:11653. [PMID: 37511412 PMCID: PMC10380198 DOI: 10.3390/ijms241411653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/04/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Small RNAs (sRNAs) are bioactive molecules that can be detected in biofluids, reflecting physiological and pathological states. In plasma, sRNAs are found within extracellular vesicles (EVs) and in extravesicular compartments, offering potential sources of highly sensitive biomarkers. Deep sequencing strategies to profile sRNAs favor the detection of microRNAs (miRNAs), the best-known class of sRNAs. Phospho-RNA-seq, through the enzymatic treatment of sRNAs with T4 polynucleotide kinase (T4-PNK), has been recently developed to increase the detection of thousands of previously inaccessible RNAs. In this study, we investigated the value of phospho-RNA-seq on both the EVs and extravesicular plasma subfractions. Phospho-RNA-seq increased the proportion of sRNAs used for alignment and highlighted the diversity of the sRNA transcriptome. Unsupervised clustering analysis using sRNA counts matrices correctly classified the EVs and extravesicular samples only in the T4-PNK treated samples, indicating that phospho-RNA-seq stresses the features of sRNAs in each plasma subfraction. Furthermore, T4-PNK treatment emphasized specific miRNA variants differing in the 5'-end (5'-isomiRs) and certain types of tRNA fragments in each plasma fraction. Phospho-RNA-seq increased the number of tissue-specific messenger RNA (mRNA) fragments in the EVs compared with the extravesicular fraction, suggesting that phospho-RNA-seq favors the discovery of tissue-specific sRNAs in EVs. Overall, the present data emphasizes the value of phospho-RNA-seq in uncovering RNA-based biomarkers in EVs.
Collapse
Affiliation(s)
- Maria Solaguren-Beascoa
- Department de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, C/Casanova 143, 08036 Barcelona, Spain
| | - Ana Gámez-Valero
- Department de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, C/Casanova 143, 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Ministerio de Ciencia Innovación y Universidades, 28029 Madrid, Spain
| | - Georgia Escaramís
- Department de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, C/Casanova 143, 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Ministerio de Ciencia Innovación y Universidades, 28029 Madrid, Spain
| | - Marina Herrero-Lorenzo
- Department de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, C/Casanova 143, 08036 Barcelona, Spain
| | - Ana M Ortiz
- Grifols Scientific Innovation Office, 08022 Barcelona, Spain
| | - Carla Minguet
- Grifols Scientific Innovation Office, 08022 Barcelona, Spain
| | - Ricardo Gonzalo
- Grifols Scientific Innovation Office, 08022 Barcelona, Spain
| | | | | | - Eulàlia Martí
- Department de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, C/Casanova 143, 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Ministerio de Ciencia Innovación y Universidades, 28029 Madrid, Spain
| |
Collapse
|
32
|
He A, Wang M, Li X, Chen H, Lim K, Lu L, Zhang C. Role of Exosomes in the Pathogenesis and Theranostic of Alzheimer's Disease and Parkinson's Disease. Int J Mol Sci 2023; 24:11054. [PMID: 37446231 DOI: 10.3390/ijms241311054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Alzheimer's disease (AD) and Parkinson's disease (PD) are the most common neurodegenerative diseases (NDDs) threatening the lives of millions of people worldwide, including especially elderly people. Currently, due to the lack of a timely diagnosis and proper intervention strategy, AD and PD largely remain incurable. Innovative diagnosis and therapy are highly desired. Exosomes are small vesicles that are present in various bodily fluids, which contain proteins, nucleic acids, and active biomolecules, and which play a crucial role especially in intercellular communication. In recent years, the role of exosomes in the pathogenesis, early diagnosis, and treatment of diseases has attracted ascending attention. However, the exact role of exosomes in the pathogenesis and theragnostic of AD and PD has not been fully illustrated. In the present review, we first introduce the biogenesis, components, uptake, and function of exosomes. Then we elaborate on the involvement of exosomes in the pathogenesis of AD and PD. Moreover, the application of exosomes in the diagnosis and therapeutics of AD and PD is also summarized and discussed. Additionally, exosomes serving as drug carriers to deliver medications to the central nervous system are specifically addressed. The potential role of exosomes in AD and PD is explored, discussing their applications in diagnosis and treatment, as well as their current limitations. Given the limitation in the application of exosomes, we also propose future perspectives for better utilizing exosomes in NDDs. Hopefully, it would pave ways for expanding the biological applications of exosomes in fundamental research as well as theranostics of NDDs.
Collapse
Affiliation(s)
- Aojie He
- School of Basic Medical Sciences, Shanxi Medical University, 56 Xinjiannan Road, Taiyuan 030001, China
| | - Meiling Wang
- School of Basic Medical Sciences, Shanxi Medical University, 56 Xinjiannan Road, Taiyuan 030001, China
| | - Xiaowan Li
- School of Basic Medical Sciences, Shanxi Medical University, 56 Xinjiannan Road, Taiyuan 030001, China
| | - Hong Chen
- School of Basic Medical Sciences, Shanxi Medical University, 56 Xinjiannan Road, Taiyuan 030001, China
| | - Kahleong Lim
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore 308232, Singapore
| | - Li Lu
- School of Basic Medical Sciences, Shanxi Medical University, 56 Xinjiannan Road, Taiyuan 030001, China
| | - Chengwu Zhang
- School of Basic Medical Sciences, Shanxi Medical University, 56 Xinjiannan Road, Taiyuan 030001, China
| |
Collapse
|
33
|
Couch Y. Challenges associated with using extracellular vesicles as biomarkers in neurodegenerative disease. Expert Rev Mol Diagn 2023; 23:1091-1105. [PMID: 37916853 DOI: 10.1080/14737159.2023.2277373] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/26/2023] [Indexed: 11/03/2023]
Abstract
INTRODUCTION The hunt for new biomarkers - for the diagnosis of subcategories of disease, or for the monitoring of the efficacy of novel therapeutics - is an increasingly relevant challenge in the current era of precision medicine. In neurodegenerative research, the aim is to look for simple tools which can predict cognitive or motor decline early, and to determine whether these can also be used to test the efficacy of new interventions. Extracellular vesicles (EVs) are thought to play an important role in intercellular communication and have been shown to play a vital role in a number of diseases. AREAS COVERED The aim of this review is to examine what we know about EVs in neurodegeneration and to discuss their potential to be diagnostic and prognostic biomarkers in the future. It will cover the techniques used to isolate and study EVs and what is currently known about their presence in neurodegenerative diseases. In particular, we will discuss what is required for standardization in biomarker research, and the challenges associated with using EVs within this framework. EXPERT OPINION The technical challenges associated with isolating EVs consistently, combined with the complex techniques required for their efficient analysis, might preclude 'pure' EV populations from being used as effective biomarkers. Whilst biomarker discovery is important for more effective diagnosis, monitoring, prediction and prognosis in neurodegenerative disease, reproducibility and ease-of-use should be the priorities.
Collapse
Affiliation(s)
- Yvonne Couch
- Acute Stroke Program, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| |
Collapse
|
34
|
Lukiw WJ. MicroRNA (miRNA) Complexity in Alzheimer's Disease (AD). BIOLOGY 2023; 12:788. [PMID: 37372073 DOI: 10.3390/biology12060788] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/11/2023] [Accepted: 05/18/2023] [Indexed: 06/29/2023]
Abstract
AD is a complex, progressive, age-related neurodegenerative disorder representing the most common cause of senile dementia and neurological dysfunction in our elderly domestic population. The widely observed heterogeneity of AD is a reflection of the complexity of the AD process itself and the altered molecular-genetic mechanisms operating in the diseased human brain and CNS. One of the key players in this complex regulation of gene expression in human pathological neurobiology are microRNAs (miRNAs) that, through their actions, shape the transcriptome of brain cells that normally associate with very high rates of genetic activity, gene transcription and messenger RNA (mRNA) generation. The analysis of miRNA populations and the characterization of their abundance, speciation and complexity can further provide valuable clues to our molecular-genetic understanding of the AD process, especially in the sporadic forms of this common brain disorder. Current in-depth analyses of high-quality AD and age- and gender-matched control brain tissues are providing pathophysiological miRNA-based signatures of AD that can serve as a basis for expanding our mechanistic understanding of this disorder and the future design of miRNA- and related RNA-based therapeutics. This focused review will consolidate the findings from multiple laboratories as to which are the most abundant miRNA species, both free and exosome-bound in the human brain and CNS, which miRNA species appear to be the most prominently affected by the AD process and review recent developments and advancements in our understanding of the complexity of miRNA signaling in the hippocampal CA1 region of AD-affected brains.
Collapse
Affiliation(s)
- Walter J Lukiw
- LSU Neuroscience Center, Louisiana State University Health Science Center, New Orleans, LA 70112, USA
- Alchem Biotech Research, Toronto, ON M5S 1A8, Canada
- Department of Ophthalmology, LSU Health Science Center, New Orleans, LA 70112, USA
- Department Neurology, Louisiana State University Health Science Center, New Orleans, LA 70112, USA
| |
Collapse
|
35
|
D’Amico G, Santonocito R, Vitale AM, Scalia F, Marino Gammazza A, Campanella C, Bucchieri F, Cappello F, Caruso Bavisotto C. Air Pollution: Role of Extracellular Vesicles-Derived Non-Coding RNAs in Environmental Stress Response. Cells 2023; 12:1498. [PMID: 37296619 PMCID: PMC10252408 DOI: 10.3390/cells12111498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/17/2023] [Accepted: 05/27/2023] [Indexed: 06/12/2023] Open
Abstract
Air pollution has increased over the years, causing a negative impact on society due to the many health-related problems it can contribute to. Although the type and extent of air pollutants are known, the molecular mechanisms underlying the induction of negative effects on the human body remain unclear. Emerging evidence suggests the crucial involvement of different molecular mediators in inflammation and oxidative stress in air pollution-induced disorders. Among these, non-coding RNAs (ncRNAs) carried by extracellular vesicles (EVs) may play an essential role in gene regulation of the cell stress response in pollutant-induced multiorgan disorders. This review highlights EV-transported ncRNAs' roles in physiological and pathological conditions, such as the development of cancer and respiratory, neurodegenerative, and cardiovascular diseases following exposure to various environmental stressors.
Collapse
Affiliation(s)
- Giuseppa D’Amico
- Section of Human Anatomy and Histology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy; (G.D.); (R.S.); (A.M.V.); (F.S.); (A.M.G.); (C.C.); (F.B.); (F.C.)
| | - Radha Santonocito
- Section of Human Anatomy and Histology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy; (G.D.); (R.S.); (A.M.V.); (F.S.); (A.M.G.); (C.C.); (F.B.); (F.C.)
| | - Alessandra Maria Vitale
- Section of Human Anatomy and Histology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy; (G.D.); (R.S.); (A.M.V.); (F.S.); (A.M.G.); (C.C.); (F.B.); (F.C.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Federica Scalia
- Section of Human Anatomy and Histology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy; (G.D.); (R.S.); (A.M.V.); (F.S.); (A.M.G.); (C.C.); (F.B.); (F.C.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Antonella Marino Gammazza
- Section of Human Anatomy and Histology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy; (G.D.); (R.S.); (A.M.V.); (F.S.); (A.M.G.); (C.C.); (F.B.); (F.C.)
| | - Claudia Campanella
- Section of Human Anatomy and Histology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy; (G.D.); (R.S.); (A.M.V.); (F.S.); (A.M.G.); (C.C.); (F.B.); (F.C.)
| | - Fabio Bucchieri
- Section of Human Anatomy and Histology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy; (G.D.); (R.S.); (A.M.V.); (F.S.); (A.M.G.); (C.C.); (F.B.); (F.C.)
| | - Francesco Cappello
- Section of Human Anatomy and Histology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy; (G.D.); (R.S.); (A.M.V.); (F.S.); (A.M.G.); (C.C.); (F.B.); (F.C.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Celeste Caruso Bavisotto
- Section of Human Anatomy and Histology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy; (G.D.); (R.S.); (A.M.V.); (F.S.); (A.M.G.); (C.C.); (F.B.); (F.C.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| |
Collapse
|
36
|
Feng H, Hu P, Chen Y, Sun H, Cai J, He X, Cao Q, Yin M, Zhang Y, Li Q, Gao J, Marshall C, Sheng C, Shi J, Xiao M. Decreased miR-451a in cerebrospinal fluid, a marker for both cognitive impairment and depressive symptoms in Alzheimer's disease. Theranostics 2023; 13:3021-3040. [PMID: 37284450 PMCID: PMC10240826 DOI: 10.7150/thno.81826] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/06/2023] [Indexed: 06/08/2023] Open
Abstract
Background: Alzheimer's disease (AD) patients are often accompanied by depressive symptoms, but its underlying mechanism remains unclear. The present study aimed to explore the potential role of microRNAs in the comorbidity of AD and depression. Methods: The miRNAs associated with AD and depression were screened from databases and literature and then confirmed in the cerebrospinal fluid (CSF) of AD patients and different ages of transgenic APP/PS1 mice. AAV9-miR-451a-GFP was injected into the medial prefrontal cortex (mPFC) of APP/PS1 mice at seven months, and four weeks later, a series of behavioral and pathological analyses were performed. Results: AD patients had low CSF levels of miR-451a, which was positively correlated with the cognitive assessment score, but negatively with their depression scale. In the mPFC of APP/PS1 transgenic mice, the miR-451a levels also decreased significantly in the neurons and microglia. Specific virus vector-induced overexpression of miR-451a in the mPFC of APP/PS1 mice ameliorated AD-related behavior deficits and pathologies, including long-term memory defects, depression-like phenotype, β-amyloid load, and neuroinflammation. Mechanistically, miR-451a decreased the expression of neuronal β-secretase 1 of neurons through inhibiting Toll-like receptor 4/Inhibitor of kappa B Kinase β/ Nuclear factor kappa-B signaling pathway and microglial activation by inhibiting activation of NOD-like receptor protein 3, respectively. Conclusion: This finding highlighted miR-451a as a potential target for diagnosing and treating AD, especially for those with coexisting symptoms of depression.
Collapse
Affiliation(s)
- Hu Feng
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, 211166, China
- Brain Institute, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Panpan Hu
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, 211166, China
- Department of Anesthetic Pharmacology, Faculty of Anesthesiology, Naval Medical University, Shanghai, 200082, China
| | - Yan Chen
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, 211166, China
- Brain Institute, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Huaiqing Sun
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, 211166, China
- Department of Neurology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Jiachen Cai
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, 211166, China
- Brain Institute, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Xiaoxin He
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, 211166, China
- Brain Institute, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Qiuchen Cao
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, 211166, China
| | - Mengmei Yin
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, 211166, China
- Department of Neurology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yanli Zhang
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, 211166, China
- Brain Institute, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Qian Li
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, 211166, China
- Brain Institute, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Junying Gao
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, 211166, China
- Brain Institute, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, China
| | | | - Chengyu Sheng
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, 211166, China
- Brain Institute, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Jingping Shi
- Brain Institute, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, China
- Department of Neurology, the Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Ming Xiao
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, 211166, China
- Brain Institute, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, China
| |
Collapse
|
37
|
Li W, Zheng Y. MicroRNAs in Extracellular Vesicles of Alzheimer's Disease. Cells 2023; 12:1378. [PMID: 37408212 PMCID: PMC10216432 DOI: 10.3390/cells12101378] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/29/2023] [Accepted: 05/04/2023] [Indexed: 07/07/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease with dysfunction of memory, language and thinking. More than 55 million people were diagnosed with AD or other dementia around the world in 2020. The pathology of AD is still unclear and there are no applicable therapies for AD. MicroRNAs (miRNAs) play key roles in AD pathology and have great potential for the diagnosis and treatment of AD. Extracellular vesicles (EVs) widely exist in body fluids such as blood and cerebrospinal fluid (CSF) and contain miRNAs that are involved in cell-to-cell communication. We summarized the dysregulated miRNAs in EVs derived from the different body fluids of AD patients, as well as their potential function and application in AD. We also compared these dysregulated miRNAs in EVs to those in the brain tissues of AD patients aiming to provide a comprehensive view of miRNAs in AD. After careful comparisons, we found that miR-125b-5p and miR-132-3p were upregulated and downregulated in several different brain tissues of AD and EVs of AD, respectively, suggesting their value in AD diagnosis based on EV miRNAs. Furthermore, miR-9-5p was dysregulated in EVs and different brain tissues of AD patients and had also been tested as a potential therapy for AD in mice and human cell models, suggesting that miR-9-5p could be used to design new therapies for AD.
Collapse
Affiliation(s)
- Wanran Li
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
| | - Yun Zheng
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
38
|
Zotarelli-Filho IJ, Mogharbel BF, Irioda AC, Stricker PEF, de Oliveira NB, Saçaki CS, Perussolo MC, da Rosa NN, Lührs L, Dziedzic DSM, Vaz RS, de Carvalho KAT. State of the Art of microRNAs Signatures as Biomarkers and Therapeutic Targets in Parkinson's and Alzheimer's Diseases: A Systematic Review and Meta-Analysis. Biomedicines 2023; 11:biomedicines11041113. [PMID: 37189731 DOI: 10.3390/biomedicines11041113] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/28/2023] [Accepted: 04/01/2023] [Indexed: 05/17/2023] Open
Abstract
Identifying target microRNAs (miRNAs) might serve as a basis for developing advanced therapies for Parkinson's disease (PD) and Alzheimer's disease. This review aims to identify the main therapeutic targets of miRNAs that can potentially act in Parkinson's and Alzheimer's diseases. The publication research was conducted from May 2021 to March 2022, selected from Scopus, PubMed, Embase, OVID, Science Direct, LILACS, and EBSCO. A total of 25 studies were selected from 1549 studies evaluated. The total number of miRNAs as therapeutic targets evidenced was 90 for AD and 54 for PD. An average detection accuracy of above 84% for the miRNAs was observed in the selected studies of AD and PD. The major signatures were miR-26b-5p, miR-615-3p, miR-4722-5p, miR23a-3p, and miR-27b-3p for AD and miR-374a-5p for PD. Six miRNAs of intersection were found between AD and PD. This article identified the main microRNAs as selective biomarkers for diagnosing PD and AD and therapeutic targets through a systematic review and meta-analysis. This article can act as a microRNA guideline for laboratory research and pharmaceutical industries for treating Alzheimer's and Parkinson's diseases and offers the opportunity to evaluate therapeutic interventions earlier in the disease process.
Collapse
Affiliation(s)
- Idiberto José Zotarelli-Filho
- Advanced Therapy and Cellular Biotechnology in Regenerative Medicine Department, The Pelé Pequeno Príncipe Research Institute & Pequeno Príncipe Faculties, Curitiba 80240-020, Brazil
- Faculty of Medicine of São José do Rio Preto, FACERES., São José do Rio Preto, São Paulo 15090-305, Brazil
| | - Bassam Felipe Mogharbel
- Advanced Therapy and Cellular Biotechnology in Regenerative Medicine Department, The Pelé Pequeno Príncipe Research Institute & Pequeno Príncipe Faculties, Curitiba 80240-020, Brazil
| | - Ana Carolina Irioda
- Advanced Therapy and Cellular Biotechnology in Regenerative Medicine Department, The Pelé Pequeno Príncipe Research Institute & Pequeno Príncipe Faculties, Curitiba 80240-020, Brazil
| | - Priscila Elias Ferreira Stricker
- Advanced Therapy and Cellular Biotechnology in Regenerative Medicine Department, The Pelé Pequeno Príncipe Research Institute & Pequeno Príncipe Faculties, Curitiba 80240-020, Brazil
| | - Nathalia Barth de Oliveira
- Advanced Therapy and Cellular Biotechnology in Regenerative Medicine Department, The Pelé Pequeno Príncipe Research Institute & Pequeno Príncipe Faculties, Curitiba 80240-020, Brazil
| | - Claudia Sayuri Saçaki
- Advanced Therapy and Cellular Biotechnology in Regenerative Medicine Department, The Pelé Pequeno Príncipe Research Institute & Pequeno Príncipe Faculties, Curitiba 80240-020, Brazil
| | - Maiara Carolina Perussolo
- Advanced Therapy and Cellular Biotechnology in Regenerative Medicine Department, The Pelé Pequeno Príncipe Research Institute & Pequeno Príncipe Faculties, Curitiba 80240-020, Brazil
| | - Nádia Nascimento da Rosa
- Advanced Therapy and Cellular Biotechnology in Regenerative Medicine Department, The Pelé Pequeno Príncipe Research Institute & Pequeno Príncipe Faculties, Curitiba 80240-020, Brazil
| | - Larissa Lührs
- Advanced Therapy and Cellular Biotechnology in Regenerative Medicine Department, The Pelé Pequeno Príncipe Research Institute & Pequeno Príncipe Faculties, Curitiba 80240-020, Brazil
| | - Dilcele Silva Moreira Dziedzic
- Advanced Therapy and Cellular Biotechnology in Regenerative Medicine Department, The Pelé Pequeno Príncipe Research Institute & Pequeno Príncipe Faculties, Curitiba 80240-020, Brazil
| | - Rogério Saad Vaz
- UNIFATEB Centro Universitário de Telêmaco Borba, Telêmaco Borba 84266-010, Brazil
| | - Katherine Athayde Teixeira de Carvalho
- Advanced Therapy and Cellular Biotechnology in Regenerative Medicine Department, The Pelé Pequeno Príncipe Research Institute & Pequeno Príncipe Faculties, Curitiba 80240-020, Brazil
| |
Collapse
|
39
|
Petersen JD, Mekhedov E, Kaur S, Roberts DD, Zimmerberg J. Endothelial cells release microvesicles that harbour multivesicular bodies and secrete exosomes. JOURNAL OF EXTRACELLULAR BIOLOGY 2023; 2:e79. [PMID: 38939691 PMCID: PMC11080864 DOI: 10.1002/jex2.79] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/04/2023] [Accepted: 02/23/2023] [Indexed: 06/29/2024]
Abstract
Extracellular vesicles (EVs) released by endothelial cells support vascular homeostasis. To better understand endothelial cell EV biogenesis, we examined cultured human umbilical vein endothelial cells (HUVECs) prepared by rapid freezing, freeze-substitution, and serial thin section electron microscopy (EM). Thin sections of HUVECs revealed clusters of membrane protrusions on the otherwise smooth cell surface. The protrusions contained membrane-bound organelles, including multivesicular bodies (MVBs), and appeared to be on the verge of pinching off to form microvesicles. Beyond cell peripheries, membrane-bound vesicles with internal MVBs were observed, and serial sections confirmed that they were not connected to cells. These observations are consistent with the notion that these multi-compartmented microvesicles (MCMVs) pinch-off from protrusions. Remarkably, omega figures formed by fusion of vesicles with the MCMV limiting membrane were directly observed, apparently releasing exosomes from the MCMV. In summary, MCMVs are a novel form of EV that bud from membrane protrusions on the HUVEC surface, contain MVBs and release exosomes. These observations suggest that exosomes can be harboured within and released from transiting microvesicles after departure from the parent cell, constituting a new site of exosome biogenesis occurring from endothelial and potentially additional cell types.
Collapse
Affiliation(s)
- Jennifer D. Petersen
- Section on Integrative Biophysics, Division of Basic and Translational Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentNational Institutes of HealthBethesdaMarylandUSA
| | - Elena Mekhedov
- Section on Integrative Biophysics, Division of Basic and Translational Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentNational Institutes of HealthBethesdaMarylandUSA
| | - Sukhbir Kaur
- Laboratory of Pathology, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - David D. Roberts
- Laboratory of Pathology, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - Joshua Zimmerberg
- Section on Integrative Biophysics, Division of Basic and Translational Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentNational Institutes of HealthBethesdaMarylandUSA
| |
Collapse
|
40
|
Li L, Mussack V, Görgens A, Pepeldjiyska E, Hartz AS, Aslan H, Rackl E, Rank A, Schmohl J, El Andaloussi S, Pfaffl MW, Schmetzer H. The potential role of serum extracellular vesicle derived small RNAs in AML research as non-invasive biomarker. NANOSCALE ADVANCES 2023; 5:1691-1705. [PMID: 36926576 PMCID: PMC10012871 DOI: 10.1039/d2na00959e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Extracellular vesicles (EV) are cell-derived vesicles released by all cells in health and disease. Accordingly, EVs are also released by cells in acute myeloid leukemia (AML), a hematologic malignancy characterized by uncontrolled growth of immature myeloid cells, and these EVs likely carry markers and molecular cargo reflecting the malignant transformation occurring in diseased cells. Monitoring antileukemic or proleukemic processes during disease development and treatment is essential. Therefore, EVs and EV-derived microRNA (miRNA) from AML samples were explored as biomarkers to distinguish disease-related patterns ex vivo or in vivo. METHODOLOGY EVs were purified from serum of healthy (H) volunteers and AML patients by immunoaffinity. EV surface protein profiles were analyzed by multiplex bead-based flow cytometry (MBFCM) and total RNA was isolated from EVs prior to miRNA profiling via small RNA sequencing. RESULTS MBFCM revealed different surface protein patterns in H versus AML EVs. miRNA analysis showed individual as well as highly dysregulated patterns in H and AML samples. CONCLUSIONS In this study, we provide a proof-of-concept for the discriminative potential of EV derived miRNA profiles as biomarkers in H versus AML samples.
Collapse
Affiliation(s)
- Lin Li
- Immune-Modulation, Medical Department III, University Hospital of Munich Marchioninistraße 15 81377 Munich Germany +49 89 4400 76137 +49 89 4400 73137
| | - Veronika Mussack
- Department of Animal Physiology and Immunology, TUM School of Life Sciences Weihenstephan, Technical University of Munich Freising Germany
| | - André Görgens
- Department of Laboratory Medicine, Division of Biomolecular and Cellular Medicine, Karolinska Institutet Stockholm Sweden
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen Essen Germany
| | - Elena Pepeldjiyska
- Immune-Modulation, Medical Department III, University Hospital of Munich Marchioninistraße 15 81377 Munich Germany +49 89 4400 76137 +49 89 4400 73137
| | - Anne Sophie Hartz
- Immune-Modulation, Medical Department III, University Hospital of Munich Marchioninistraße 15 81377 Munich Germany +49 89 4400 76137 +49 89 4400 73137
| | - Hazal Aslan
- Immune-Modulation, Medical Department III, University Hospital of Munich Marchioninistraße 15 81377 Munich Germany +49 89 4400 76137 +49 89 4400 73137
| | - Elias Rackl
- Immune-Modulation, Medical Department III, University Hospital of Munich Marchioninistraße 15 81377 Munich Germany +49 89 4400 76137 +49 89 4400 73137
| | - Andreas Rank
- Department of Hematology and Oncology, University Hospital of Augsburg Augsburg Germany
| | - Jörg Schmohl
- Department of Hematology and Oncology, Hospital of Stuttgart Stuttgart Germany
| | - Samir El Andaloussi
- Department of Laboratory Medicine, Division of Biomolecular and Cellular Medicine, Karolinska Institutet Stockholm Sweden
| | - Michael W Pfaffl
- Department of Animal Physiology and Immunology, TUM School of Life Sciences Weihenstephan, Technical University of Munich Freising Germany
| | - Helga Schmetzer
- Immune-Modulation, Medical Department III, University Hospital of Munich Marchioninistraße 15 81377 Munich Germany +49 89 4400 76137 +49 89 4400 73137
| |
Collapse
|
41
|
Sataer X, Qifeng Z, Yingying Z, Chunhua H, Bingzhenga F, Zhiran X, Wanli L, Yuwei Y, Shuangfeng C, Lingling W, Hongri H, Jibing C, Xiaoping R, Hongjun G. Exosomal microRNAs as diagnostic biomarkers and therapeutic applications in neurodegenerative diseases. Neurol Res 2023; 45:191-199. [PMID: 36184105 DOI: 10.1080/01616412.2022.2129768] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2022]
Abstract
Originating from slow irreversible and progressive loss and dysfunction of neurons and synapses in the nervous system, neurodegenerative diseases (NDDs) affect millions of people worldwide. Common NDDs include Parkinson's disease, Alzheimer's disease multiple sclerosis, Huntington's disease, and amyotrophic lateral sclerosis. Currently, no sensitive biomarkers are available to monitor the progression and treatment response of NDDs or to predict their prognosis. Exosomes (EXOs) are small bilipid layer-enclosed extracellular vesicles containing numerous biomolecules, including proteins, nucleic acids, and lipids. Recent evidence indicates that EXOs are pathogenic participants in the spread of neurodegenerative diseases, contributing to disease progression and spread. EXOs are also important tools for diagnosis and treatment. Recently, studies have proposed exosomal microRNAs (miRNAs) as the targets for therapies or biomarkers of NDDs. In this review, we outline the latest research on the roles of exosomal miRNAs in NDDs and their applications as potential diagnostic and therapeutic biomarkers, targets, and drugs for NDDs.
Collapse
Affiliation(s)
- Xuehereti Sataer
- Center for Translational Medicine of Integrated Traditional Chinese and Western Medicine, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, 530011 Nanning, China.,Department of Urology Surgery, Sixth Affiliated Hospital of Xinjiang Medical University, 830054 Urumqi, China
| | - Zhu Qifeng
- Center for Translational Medicine of Integrated Traditional Chinese and Western Medicine, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, 530011 Nanning, China
| | - Zhang Yingying
- Department of Foreign Language, Guangxi University of Chinese Medicine, 530200 Nanning, China
| | - He Chunhua
- Department of Urology Surgery, Sixth Affiliated Hospital of Xinjiang Medical University, 830054 Urumqi, China
| | - Feng Bingzhenga
- Center for Translational Medicine of Integrated Traditional Chinese and Western Medicine, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, 530011 Nanning, China
| | - Xu Zhiran
- Center for Translational Medicine of Integrated Traditional Chinese and Western Medicine, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, 530011 Nanning, China
| | - Li Wanli
- Department of Foreign Language, Guangxi University of Chinese Medicine, 530200 Nanning, China
| | - Yang Yuwei
- Department of Foreign Language, Guangxi University of Chinese Medicine, 530200 Nanning, China
| | - Chen Shuangfeng
- Department of Urology Surgery, Sixth Affiliated Hospital of Xinjiang Medical University, 830054 Urumqi, China
| | - Wu Lingling
- Center for Translational Medicine of Integrated Traditional Chinese and Western Medicine, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, 530011 Nanning, China
| | - Huang Hongri
- R & D Center, Guangxi Taimei Rensheng Biotechnology Co Ltd, 530006 Nanning, China
| | - Chen Jibing
- Center for Translational Medicine of Integrated Traditional Chinese and Western Medicine, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, 530011 Nanning, China
| | - Ren Xiaoping
- Center for Translational Medicine of Integrated Traditional Chinese and Western Medicine, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, 530011 Nanning, China
| | - Gao Hongjun
- Center for Translational Medicine of Integrated Traditional Chinese and Western Medicine, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, 530011 Nanning, China
| |
Collapse
|
42
|
Mankhong S, Kim S, Moon S, Choi SH, Kwak HB, Park DH, Shah P, Lee PH, Yang SW, Kang JH. Circulating micro-RNAs Differentially Expressed in Korean Alzheimer's Patients With Brain Aβ Accumulation Activate Amyloidogenesis. J Gerontol A Biol Sci Med Sci 2023; 78:292-303. [PMID: 35532940 DOI: 10.1093/gerona/glac106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Roles for extracellular vesicles (EVs) enriched with micro-RNAs (miRNAs) have been proposed in Alzheimer's disease (AD) pathogenesis, leading to the discovery of blood miRNAs as AD biomarkers. However, the diagnostic utility of specific miRNAs is not consistent. This study aimed to discover blood miRNAs that are differentially expressed in Korean AD patients, evaluate their clinical performance, and investigate their role in amyloidogenesis. METHODS We discovered miRNAs differentially expressed in AD (N = 8) from cognitively normal participants (CN, N = 7) or Parkinson's disease (PD) patients (N = 8). We evaluated the clinical performance of these miRNAs in plasma of subgroup (N = 99) and in plasma EVs isolated from the total cohort (N = 251). The effects of miRNAs on amyloidogenesis and on the regulation of their target genes were investigated in vitro. RESULTS Among 17 upregulated and one downregulated miRNAs in AD (>twofold), miR-122-5p, miR-210-3p, and miR-590-5p were differentially expressed compared with CN or PD. However, the diagnostic performance of the selected plasma or EV miRNAs in total participants were limited (area under the curve < 0.8). Nevertheless, levels of 3 miRNAs in plasma or plasma EVs of participants who were amyloid positron emission tomography (Aβ-PET) positive were significantly higher than those from the Aβ-PET negative participants (p < .05). The selected miRNAs induced Aβ production (p < .05) through activation of β-cleavage of amyloid precursor protein (CTF-β; p < .01), and downregulated their target genes (ADAM metallopeptidase domain 10, Brain-derived neurotrophic factor, and Jagged canonical notch ligand 1; p < .05), which was further supported by pathway enrichment analysis of target genes of the miRNAs. CONCLUSION In conclusion, despite of the limited diagnostic utility of selected miRNAs as plasma or plasma EV biomarkers, the discovered miRNAs may play a role in amyloidogenesis during AD onset and progression.
Collapse
Affiliation(s)
- Sakulrat Mankhong
- Department of Pharmacology and Research Center for Controlling Intercellular Communication, College of Medicine, Inha University, Incheon, Republic of Korea.,Program in Biomedical Science and Engineering, Inha University, Incheon, South Korea
| | - Sujin Kim
- Department of Pharmacology and Research Center for Controlling Intercellular Communication, College of Medicine, Inha University, Incheon, Republic of Korea
| | - Sohee Moon
- Department of Pharmacology and Research Center for Controlling Intercellular Communication, College of Medicine, Inha University, Incheon, Republic of Korea
| | - Seong-Hye Choi
- Department of Neurology, College of Medicine, Inha University, Incheon, Republic of Korea
| | - Hyo-Bum Kwak
- Program in Biomedical Science and Engineering, Inha University, Incheon, South Korea.,Department of Kinesiology, Inha University, Incheon, Republic of Korea
| | - Dong-Ho Park
- Program in Biomedical Science and Engineering, Inha University, Incheon, South Korea.,Department of Kinesiology, Inha University, Incheon, Republic of Korea
| | - Pratik Shah
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Phil Hyu Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seong Wook Yang
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Ju-Hee Kang
- Department of Pharmacology and Research Center for Controlling Intercellular Communication, College of Medicine, Inha University, Incheon, Republic of Korea.,Program in Biomedical Science and Engineering, Inha University, Incheon, South Korea
| |
Collapse
|
43
|
Agostini S, Bolognesi E, Mancuso R, Marventano I, Citterio LA, Guerini FR, Clerici M. miR-23a-3p and miR-181a-5p modulate SNAP-25 expression. PLoS One 2023; 18:e0279961. [PMID: 36649268 PMCID: PMC9844927 DOI: 10.1371/journal.pone.0279961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 12/14/2022] [Indexed: 01/18/2023] Open
Abstract
SNAP-25 protein is a key protein of the SNARE complex that is involved in synaptic vesicles fusion with plasma membranes and neurotransmitter release, playing a fundamental role in neural plasticity. Recently the concentration of three specific miRNAs-miR-27b-3p, miR-181a-5p and miR-23a-3p -was found to be associated with a specific SNAP-25 polymorphism (rs363050). in silico analysis showed that all the three miRNAs target SNAP-25, but the effect of the interaction between these miRNAs and the 3'UTR of SNAP-25 mRNA is currently unknown. For this reason, we verified in vitro whether miR-27b-3p, miR-181a-5p and miR-23a-3p modulate SNAP-25 gene and protein expression. Initial experiments using miRNAs-co-transfected Vero cells and SNAP-25 3'UTR luciferase reporter plasmids showed that miR-181a-5p (p≤0.01) and miR-23a-3p (p<0.05), but not miR-27b-3p, modulate the luciferase signal, indicating that these two miRNAs bind the SNAP-25 3'UTR. Results obtained using human oligodendroglial cell line (MO3.13) transfected with miR-181a-5p or miR-27b-3p confirmed that miR-181a-5p and miR-23a-3p regulate SNAP-25 gene and protein expression. Interestingly, the two miRNAs modulate in an opposite way SNAP-25, as miR-181a-5p significantly increases (p<0.0005), whereas miR-23a-3p decreases (p<0.0005) its expression. These results for the first time describe the ability of miR-181a-5p and miR-23a-3p to modulate SNAP-25 expression, suggesting their possible use as biomarkers or as therapeutical targets for diseases in which SNAP-25 expression is altered.
Collapse
Affiliation(s)
| | | | - Roberta Mancuso
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
- * E-mail:
| | | | | | | | - Mario Clerici
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| |
Collapse
|
44
|
Kandimalla R, Saeed M, Tyagi N, Gupta RC, Aqil F. Exosome-based approaches in the management of Alzheimer's disease. Neurosci Biobehav Rev 2023; 144:104974. [PMID: 36435392 DOI: 10.1016/j.neubiorev.2022.104974] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022]
Abstract
Alzheimer's disease (AD) has been the most extensively studied neurological disorders that affects millions of individuals globally and is associated with misfolding of proteins in the brain. Amyloid-β and tau are predominantly involved in the pathogenesis of AD. Therapeutic interventions and nanotechnological advancements are useful only in managing the AD symptoms and the cure for this disease remains elusive. Exosomes, originating from most cell and tissue types are regarded as a double-edged sword, considering their roles in the progression and treatment of AD. Exosomes can be manipulated as drug delivery vehicles for a wide range of therapeutic cargos-both small molecules and macromolecules. Herein, we review the roles of exosomes in the pathology, diagnosis, and treatment of AD and highlight their application as a drug carrier to the brain for AD treatment.
Collapse
Affiliation(s)
| | - Mohd Saeed
- Department of Biology, College of Sciences, University of Hail, PO Box 2240, Hail, Saudi Arabia
| | - Neetu Tyagi
- Department of Physiology, University of Louisville, Louisville, KY 40202, USA
| | - Ramesh C Gupta
- Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA
| | - Farrukh Aqil
- Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA; Department of Medicine, University of Louisville, Louisville, KY 40202, USA.
| |
Collapse
|
45
|
Gomes P, Tzouanou F, Skolariki K, Vamvaka-Iakovou A, Noguera-Ortiz C, Tsirtsaki K, Waites CL, Vlamos P, Sousa N, Costa-Silva B, Kapogiannis D, Sotiropoulos I. Extracellular vesicles and Alzheimer's disease in the novel era of Precision Medicine: implications for disease progression, diagnosis and treatment. Exp Neurol 2022; 358:114183. [PMID: 35952764 PMCID: PMC9985072 DOI: 10.1016/j.expneurol.2022.114183] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/17/2022] [Accepted: 07/21/2022] [Indexed: 12/13/2022]
Abstract
Extracellular vesicles (EVs), secreted membranous nano-sized particles, are critical intercellular messengers participating in nervous system homeostasis, while recent evidence implicates EVs in Alzheimer's disease (AD) pathogenesis. Specifically, small EVs have been shown to spread toxic proteins, induce neuronal loss, and contribute to neuroinflammation and AD progression. On the other hand, EVs can reduce amyloid-beta deposition and transfer neuroprotective substances between cells, mitigating disease mechanisms. In addition to their roles in AD pathogenesis, EVs also exhibit great potential for the diagnosis and treatment of other brain disorders, representing an advantageous tool for Precision Medicine. Herein, we summarize the contribution of small EVs to AD-related mechanisms and disease progression, as well as their potential as diagnostic and therapeutic agents for AD.
Collapse
Affiliation(s)
- Patrícia Gomes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Foteini Tzouanou
- Institute of Biosciences & Applications NCSR "Demokritos", Athens, Greece
| | | | - Anastasia Vamvaka-Iakovou
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal; Institute of Biosciences & Applications NCSR "Demokritos", Athens, Greece
| | - Carlos Noguera-Ortiz
- Laboratory of Clinical Investigation, Intramural Research Program, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Katerina Tsirtsaki
- Institute of Biosciences & Applications NCSR "Demokritos", Athens, Greece
| | - Clarissa L Waites
- Department of Pathology and Cell Biology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY, USA
| | | | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Bruno Costa-Silva
- Systems Oncology Group, Champalimaud Research, Champalimaud Centre for the Unknown, Av. Brasília, 1400-038 Lisbon, Portugal
| | - Dimitrios Kapogiannis
- Laboratory of Clinical Investigation, Intramural Research Program, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Ioannis Sotiropoulos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal; Institute of Biosciences & Applications NCSR "Demokritos", Athens, Greece.
| |
Collapse
|
46
|
Santos F, Cabreira V, Rocha S, Massano J. Blood Biomarkers for the Diagnosis of Neurodegenerative Dementia: A Systematic Review. J Geriatr Psychiatry Neurol 2022:8919887221141651. [PMID: 36423207 DOI: 10.1177/08919887221141651] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
IMPORTANCE Accurately diagnosing neurodegenerative dementia is often challenging due to overlapping clinical features. Disease specific biomarkers could enhance diagnostic accuracy. However, CSF analysis procedures and advanced imaging modalities are either invasive or high-priced, and routinely unavailable. Easily accessible disease biomarkers would be of utmost value for accurate differential diagnosis of dementia subtypes. OBJECTIVE To assess the diagnostic accuracy of blood-based biomarkers for the differential diagnosis of AD from Frontotemporal Lobar Degeneration (FTLD), or AD from Dementia with Lewy Bodies (DLB). METHODS Systematic review. Three databases (PubMed, Scopus, and Web of Science) were searched. Studies assessing blood-based biomarkers levels in AD versus FTLD, or AD versus DLB, and its diagnostic accuracy, were selected. When the same biomarker was assessed in three or more studies, a meta-analysis was performed. QUADAS-2 criteria were used for quality assessment. RESULTS Twenty studies were included in this analysis. Collectively, 905 AD patients were compared to 1262 FTLD patients, and 209 AD patients were compared to 246 DLB patients. Regarding biomarkers for AD versus FTLD, excellent discriminative accuracy (AUC >0.9) was found for p-tau181, p-tau217, synaptophysin, synaptopodin, GAP43 and calmodulin. Other biomarkers also demonstrated good accuracy (AUC = 0.8-0.9). For AD versus DLB distinction, only miR-21-5p and miR-451a achieved excellent accuracy (AUC >0.9). CONCLUSION Encouraging results were found for several biomarkers, alone or in combination. Prospective longitudinal designs and consensual protocols, comprising larger cohorts and homogeneous testing modalities across centres, are essential to validate the clinical value of blood biomarkers for the precise etiological diagnosis of dementia.
Collapse
Affiliation(s)
- Filipa Santos
- Department of Clinical Neurosciences and Mental Health, 26705Faculty of Medicine University of Porto, Porto, Portugal
| | - Verónica Cabreira
- Department of Clinical Neurosciences and Mental Health, 26705Faculty of Medicine University of Porto, Porto, Portugal.,Department of Neurology, 285211Centro Hospitalar Universitário de São João, Porto, Portugal
| | - Sara Rocha
- iLoF - Intelligent Lab on Fiber, Oxford, UK.,Department of Biochemistry, 26705Faculty of Medicine University of Porto, Porto, Portugal
| | - João Massano
- Department of Clinical Neurosciences and Mental Health, 26705Faculty of Medicine University of Porto, Porto, Portugal.,Department of Neurology, 285211Centro Hospitalar Universitário de São João, Porto, Portugal
| |
Collapse
|
47
|
Liu WL, Lin HW, Lin MR, Yu Y, Liu HH, Dai YL, Chen LW, Jia WW, He XJ, Li XL, Zhu JF, Xue XH, Tao J, Chen LD. Emerging blood exosome-based biomarkers for preclinical and clinical Alzheimer's disease: a meta-analysis and systematic review. Neural Regen Res 2022; 17:2381-2390. [PMID: 35535875 PMCID: PMC9120706 DOI: 10.4103/1673-5374.335832] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/29/2021] [Accepted: 10/10/2021] [Indexed: 11/10/2022] Open
Abstract
Blood exosomes, which are extracellular vesicles secreted by living cells into the circulating blood, are regarded as a relatively noninvasive novel tool for monitoring brain physiology and disease states. An increasing number of blood cargo-loaded exosomes are emerging as potential biomarkers for preclinical and clinical Alzheimer's disease. Therefore, we conducted a meta-analysis and systematic review of molecular biomarkers derived from blood exosomes to comprehensively analyze their diagnostic performance in preclinical Alzheimer's disease, mild cognitive impairment, and Alzheimer's disease. We performed a literature search in PubMed, Web of Science, Embase, and Cochrane Library from their inception to August 15, 2020. The research subjects mainly included Alzheimer's disease, mild cognitive impairment, and preclinical Alzheimer's disease. We identified 34 observational studies, of which 15 were included in the quantitative analysis (Newcastle-Ottawa Scale score 5.87 points) and 19 were used in the qualitative analysis. The meta-analysis results showed that core biomarkers including Aβ1-42, P-T181-tau, P-S396-tau, and T-tau were increased in blood neuron-derived exosomes of preclinical Alzheimer's disease, mild cognitive impairment, and Alzheimer's disease patients. Molecules related to additional risk factors that are involved in neuroinflammation (C1q), metabolism disorder (P-S312-IRS-1), neurotrophic deficiency (HGF), vascular injury (VEGF-D), and autophagy-lysosomal system dysfunction (cathepsin D) were also increased. At the gene level, the differential expression of transcription-related factors (REST) and microRNAs (miR-132) also affects RNA splicing, transport, and translation. These pathological changes contribute to neural loss and synaptic dysfunction. The data confirm that the above-mentioned core molecules and additional risk-related factors in blood exosomes can serve as candidate biomarkers for preclinical and clinical Alzheimer's disease. These findings support further development of exosome biomarkers for a clinical blood test for Alzheimer's disease. This meta-analysis was registered at the International Prospective Register of Systematic Reviews (Registration No. CRD4200173498, 28/04/2020).
Collapse
Affiliation(s)
- Wei-Lin Liu
- Academy of Rehabilitation Industry, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, China
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Hua-Wei Lin
- Academy of Rehabilitation Industry, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, China
| | - Miao-Ran Lin
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, China
| | - Yan Yu
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, China
| | - Huan-Huan Liu
- Academy of Rehabilitation Industry, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, China
| | - Ya-Ling Dai
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, China
| | - Le-Wen Chen
- Academy of Rehabilitation Industry, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, China
| | - Wei-Wei Jia
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, China
| | - Xiao-Jun He
- Academy of Rehabilitation Industry, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, China
| | - Xiao-Ling Li
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, China
| | - Jing-Fang Zhu
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, China
| | - Xie-Hua Xue
- Affiliated Rehabilitation Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, China
| | - Jing Tao
- Academy of Rehabilitation Industry, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, China
| | - Li-Dian Chen
- Academy of Rehabilitation Industry, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, China
| |
Collapse
|
48
|
López-Cepeda L, Castro JD, Aristizábal-Pachón AF, González-Giraldo Y, Pinzón A, Puentes-Rozo PJ, González J. Modulation of Small RNA Signatures by Astrocytes on Early Neurodegeneration Stages; Implications for Biomarker Discovery. Life (Basel) 2022; 12:1720. [PMID: 36362875 PMCID: PMC9696502 DOI: 10.3390/life12111720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/01/2022] [Accepted: 10/12/2022] [Indexed: 04/04/2024] Open
Abstract
Diagnosis of neurodegenerative disease (NDD) is complex, therefore simpler, less invasive, more accurate biomarkers are needed. small non-coding RNA (sncRNA) dysregulates in NDDs and sncRNA signatures have been explored for the diagnosis of NDDs, however, the performance of previous biomarkers is still better. Astrocyte dysfunction promotes neurodegeneration and thus derived scnRNA signatures could provide a more precise way to identify of changes related to NDD course and pathogenesis, and it could be useful for the dissection of mechanistic insights operating in NDD. Often sncRNA are transported outside the cell by the action of secreted particles such as extracellular vesicles (EV), which protect sncRNA from degradation. Furthermore, EV associated sncRNA can cross the BBB to be found in easier to obtain peripheral samples, EVs also inherit cell-specific surface markers that can be used for the identification of Astrocyte Derived Extracellular Vesicles (ADEVs) in a peripheral sample. By the study of the sncRNA transported in ADEVs it is possible to identify astrocyte specific sncRNA signatures that could show astrocyte dysfunction in a more simpler manner than previous methods. However, sncRNA signatures in ADEV are not a copy of intracellular transcriptome and methodological aspects such as the yield of sncRNA produced in ADEV or the variable amount of ADEV captured after separation protocols must be considered. Here we review the role as signaling molecules of ADEV derived sncRNA dysregulated in conditions associated with risk of neurodegeneration, providing an explanation of why to choose ADEV for the identification of astrocyte-specific transcriptome. Finally, we discuss possible limitations of this approach and the need to improve the detection limits of sncRNA for the use of ADEV derived sncRNA signatures.
Collapse
Affiliation(s)
- Leonardo López-Cepeda
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - Juan David Castro
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | | | - Yeimy González-Giraldo
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - Andrés Pinzón
- Laboratorio de Bioinformática y Biología de Sistemas, Universidad Nacional de Colombia, Bogotá 111321, Colombia
| | - Pedro J. Puentes-Rozo
- Grupo de Neurociencias del Caribe, Unidad de Neurociencias Cognitivas, Universidad Simón Bolívar, Barranquilla 080002, Colombia
- Grupo de Neurociencias del Caribe, Universidad del Atlántico, Barranquilla 080007, Colombia
| | - Janneth González
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| |
Collapse
|
49
|
Garcia G, Pinto S, Ferreira S, Lopes D, Serrador MJ, Fernandes A, Vaz AR, de Mendonça A, Edenhofer F, Malm T, Koistinaho J, Brites D. Emerging Role of miR-21-5p in Neuron-Glia Dysregulation and Exosome Transfer Using Multiple Models of Alzheimer's Disease. Cells 2022; 11:3377. [PMID: 36359774 PMCID: PMC9655962 DOI: 10.3390/cells11213377] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/09/2022] [Accepted: 10/19/2022] [Indexed: 08/25/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder associated with neuron-glia dysfunction and dysregulated miRNAs. We previously reported upregulated miR-124/miR-21 in AD neurons and their exosomes. However, their glial distribution, phenotypic alterations and exosomal spread are scarcely documented. Here, we show glial cell activation and miR-21 overexpression in mouse organotypic hippocampal slices transplanted with SH-SY5Y cells expressing the human APP695 Swedish mutation. The upregulation of miR-21 only in the CSF from a small series of mild cognitive impairment (MCI) AD patients, but not in non-AD MCI individuals, supports its discriminatory potential. Microglia, neurons, and astrocytes differentiated from the same induced pluripotent stem cells from PSEN1ΔE9 AD patients all showed miR-21 elevation. In AD neurons, miR-124/miR-21 overexpression was recapitulated in their exosomes. In AD microglia, the upregulation of iNOS and miR-21/miR-146a supports their activation. AD astrocytes manifested a restrained inflammatory profile, with high miR-21 but low miR-155 and depleted exosomal miRNAs. Their immunostimulation with C1q + IL-1α + TNF-α induced morphological alterations and increased S100B, inflammatory transcripts, sAPPβ, cytokine release and exosomal miR-21. PPARα, a target of miR-21, was found to be repressed in all models, except in neurons, likely due to concomitant miR-125b elevation. The data from these AD models highlight miR-21 as a promising biomarker and a disease-modifying target to be further explored.
Collapse
Affiliation(s)
- Gonçalo Garcia
- Neuroinflammation, Signaling and Neuroregeneration Lab, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Sara Pinto
- Neuroinflammation, Signaling and Neuroregeneration Lab, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Sofia Ferreira
- Neuroinflammation, Signaling and Neuroregeneration Lab, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Daniela Lopes
- Neuroinflammation, Signaling and Neuroregeneration Lab, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Maria João Serrador
- Neuroinflammation, Signaling and Neuroregeneration Lab, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Adelaide Fernandes
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
- Central Nervous System, Blood and Peripheral Inflammation Lab, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Ana Rita Vaz
- Neuroinflammation, Signaling and Neuroregeneration Lab, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | | | - Frank Edenhofer
- Department of Genomics, Stem Cell Biology and Regenerative Medicine, Center for Molecular Biosciences, University of Innsbruck, 6020 Innsbruck, Austria
| | - Tarja Malm
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Jari Koistinaho
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
- Neuroscience Center, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, 00014 Helsinki, Finland
| | - Dora Brites
- Neuroinflammation, Signaling and Neuroregeneration Lab, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| |
Collapse
|
50
|
Wang Y, Yuan P, Ding L, Zhu J, Qi X, Zhang Y, Li Y, Xia X, Zheng JC. Circulating extracellular vesicle-containing microRNAs reveal potential pathogenesis of Alzheimer’s disease. Front Cell Neurosci 2022; 16:955511. [PMID: 36339820 PMCID: PMC9630335 DOI: 10.3389/fncel.2022.955511] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 09/27/2022] [Indexed: 11/24/2022] Open
Abstract
The pathogenesis of Alzheimer’s disease (AD) remains unknown till today, hindering the research and development of AD therapeutics and diagnostics. Circulating extracellular vesicles (EVs) can be utilized as a new window to spy upon AD pathogenesis. Altered microRNA profiles were noted in both the cerebrospinal fluid (CSF)- and blood-isolated EVs of AD patients, implying the outstanding potential of circulating EV-containing miRNAs (CEmiRs) to serve as important regulators in AD pathogenesis. Although several CEmiRs were found to play a part in AD, the association of globally altered miRNA profiles in patients’ serum-derived EVs with AD pathogenesis remains unclear. In this study, we first investigated the miRNA profile in serum-derived EVs from AD, mild cognitive impairment (MCI) patients, and healthy individuals. We observed differential expression patterns of CEmiRs and classified them into 10 clusters. We identified the predicted targets of these differentially expressed CEmiRs (DECEmiRs) and analyzed their biological functions and interactions. Our study revealed the temporal regulation of complex and precise signaling networks on AD pathogenesis, shedding light on the development of novel therapeutic strategies, including multi-target drug combination for AD treatment.
Collapse
Affiliation(s)
- Yi Wang
- Translational Research Center, Shanghai Yangzhi Rehabilitation Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Ping Yuan
- Department of Cardio-Pulmonary Circulation, School of Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Lu Ding
- Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Jie Zhu
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Xinrui Qi
- Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Yanyan Zhang
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Yunxia Li
- Department of Neurology, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
- Yunxia Li,
| | - Xiaohuan Xia
- Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
- Shanghai Frontiers Science Center of Nanocatalytic Medicine, Tongji University, Shanghai, China
- Xiaohuan Xia,
| | - Jialin C. Zheng
- Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
- Shanghai Frontiers Science Center of Nanocatalytic Medicine, Tongji University, Shanghai, China
- Collaborative Innovation Center for Brain Science, Tongji University, Shanghai, China
- *Correspondence: Jialin C. Zheng,
| |
Collapse
|