1
|
Kosaristanova L, Bytesnikova Z, Fialova T, Pekarkova J, Svec P, Ondreas F, Jemelikova V, Ridoskova A, Makovicky P, Sivak L, Dolejska M, Zouharova M, Slama P, Adam V, Smerkova K. In vivo evaluation of selenium-tellurium based nanoparticles as a novel treatment for bovine mastitis. J Anim Sci Biotechnol 2024; 15:173. [PMID: 39707565 DOI: 10.1186/s40104-024-01128-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 11/14/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND Bovine mastitis is one of the main causes of reduced production in dairy cows. The infection of the mammary gland is mainly caused by the bacterium Staphylococcus aureus, whose resistant strains make the treatment of mastitis with conventional antibiotics very difficult and result in high losses. Therefore, it is important to develop novel therapeutic agents to overcome the resistance of mastitis-causing strains. In this study, novel selenium-tellurium based nanoparticles (SeTeNPs) were synthesized and characterized. Their antibacterial activity and biocompatibility were evaluated both in vitro and in vivo using a bovine model. A total of 10 heifers were divided into experimental and control groups (5 animals each). After intramammary infection with methicillin resistant S. aureus (MRSA) and the development of clinical signs of mastitis, a dose of SeTeNPs was administered to all quarters in the experimental group. RESULTS Based on in vitro tests, the concentration of 149.70 mg/L and 263.95 mg/L of Se and Te, respectively, was used for application into the mammary gland. Three days after SeTeNPs administration, MRSA counts in the experimental group showed a significant reduction (P < 0.01) compared to the control group. The inhibitory effect observed within the in vitro experiments was thus confirmed, resulting in the suppression of infection in animals. Moreover, the superior biocompatibility of SeTeNPs in the organism was demonstrated, as the nanoparticles did not significantly alter the inflammatory response or histopathology at the site of application, i.e., mammary gland, compared to the control group (P > 0.05). Additionally, the metabolic profile of the blood plasma as well as the histology of the main organs remained unaffected, indicating that the nanoparticles had no adverse effects on the organism. CONCLUSIONS Our findings suggest that SeTeNPs can be used as a promising treatment for bovine mastitis in the presence of resistant bacteria. However, the current study is limited by its small sample size, making it primarily a proof of the concept for the efficacy of intramammary-applied SeTeNPs. Therefore, further research with a larger sample size is needed to validate these results.
Collapse
Affiliation(s)
- Ludmila Kosaristanova
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1665/1, Brno, 613 00, Czech Republic
| | - Zuzana Bytesnikova
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1665/1, Brno, 613 00, Czech Republic
| | - Tatiana Fialova
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1665/1, Brno, 613 00, Czech Republic
| | - Jana Pekarkova
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1665/1, Brno, 613 00, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, Brno, 612 00, Czech Republic
- Department of Microelectronics, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technická 3058/10, Brno, 616 00, Czech Republic
| | - Pavel Svec
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1665/1, Brno, 613 00, Czech Republic
| | - Frantisek Ondreas
- Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, Brno, 612 00, Czech Republic
- Contipro a.s., Dolní Dobrouč 401, Dolní Dobrouč, 561 02, Czech Republic
| | - Vendula Jemelikova
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1665/1, Brno, 613 00, Czech Republic
| | - Andrea Ridoskova
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1665/1, Brno, 613 00, Czech Republic
| | - Peter Makovicky
- Department of Histology and Embryology, Faculty of Medicine, University of Ostrava, Syllabova 9, Ostrava - Vítkovice, 700 03, Czech Republic
- Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava, 845 05, Slovak Republic
| | - Ladislav Sivak
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1665/1, Brno, 613 00, Czech Republic
| | - Monika Dolejska
- Central European Institute of Technology, University of Veterinary Sciences Brno, Palackého tř. 1946/1, Brno, 612 42, Czech Republic
- Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Palackého tř. 1946/1, Brno, 612 42, Czech Republic
- Department of Microbiology, Faculty of Medicine, Charles University, Alej Svobody 76, Pilsen, 323 00, Czech Republic
- Division of Clinical Microbiology and Immunology, Department of Laboratory Medicine, The University Hospital Brno, Jihlavská 20, Brno, 625 00, Czech Republic
| | - Monika Zouharova
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Hudcova 296/70, Brno, 621 00, Czech Republic
| | - Petr Slama
- Laboratory of Animal Immunology and Biotechnology, Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1665/1, Brno, 613 00, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1665/1, Brno, 613 00, Czech Republic
| | - Kristyna Smerkova
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1665/1, Brno, 613 00, Czech Republic.
| |
Collapse
|
2
|
Mustafa S, Abbas RZ, Saeed Z, Baazaoui N, Khan AMA. Use of Metallic Nanoparticles Against Eimeria-the Coccidiosis-Causing Agents: A Comprehensive Review. Biol Trace Elem Res 2024:10.1007/s12011-024-04399-8. [PMID: 39354182 DOI: 10.1007/s12011-024-04399-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/25/2024] [Indexed: 10/03/2024]
Abstract
Coccidiosis is a protozoan disease caused by Eimeria species and is a major threat to the poultry industry. Different anti-coccidial drugs (diclazuril, amprolium, halofuginone, ionophores, sulphaquinoxaline, clopidol, and ethopabate) and vaccines have been used for their control. Still, due to the development of resistance, their efficacy has been limited. It is continuously damaging the economy of the poultry industry because under its control, almost $14 billion is spent, globally. Recent research has been introducing better and more effective control of coccidiosis by using metallic and metallic oxide nanoparticles. Zinc, zinc oxide, copper, copper oxide, silver, iron, and iron oxide are commonly used because of their drug delivery mechanism. These nanoparticles combined with other drugs enhance the effect of these drugs and give their better results. Moreover, by using nanotechnology, the resistance issue is also solved because by using several mechanisms at a time, protozoa cannot evolve and thus resistance cannot develop. Green nanotechnology has been giving better results due to its less toxic effects. Utilization of metallic and metallic oxide nanoparticles may present a new, profitable, and economical method of controlling chicken coccidiosis, thus by changing established treatment approaches and improving the health and production of chickens. Thus, the objective of this review is to discuss about economic burden of avian coccidiosis, zinc, zinc oxide, iron, iron oxide, copper, copper oxide, silver nanoparticles use in the treatment of coccidiosis, their benefits, and toxicity.
Collapse
Affiliation(s)
- Sahar Mustafa
- Department of Clinical Medicine and Surgery, University of Agriculture, Faisalabad, 38040, Pakistan.
| | - Rao Zahid Abbas
- Department of Parasitology, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Zohaib Saeed
- Department of Parasitology, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Narjes Baazaoui
- Applied College Muhayil Assir, King Khalid University, 61421, Abha, Saudi Arabia
| | | |
Collapse
|
3
|
Rihacek M, Kosaristanova L, Fialova T, Rypar T, Sterbova DS, Adam V, Zurek L, Cihalova K. Metabolic adaptations of Escherichia coli to extended zinc exposure: insights into tricarboxylic acid cycle and trehalose synthesis. BMC Microbiol 2024; 24:384. [PMID: 39354342 PMCID: PMC11443826 DOI: 10.1186/s12866-024-03463-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/16/2024] [Indexed: 10/03/2024] Open
Abstract
Balanced bacterial metabolism is essential for cell homeostasis and growth and can be impacted by various stress factors. In particular, bacteria exposed to metals, including the nanoparticle form, can significantly alter their metabolic processes. It is known that the extensive and intensive use of food and feed supplements, including zinc, in human and animal nutrition alters the intestinal microbiota and this may negatively impact the health of the host. This study examines the effects of zinc (zinc oxide and zinc oxide nanoparticles) on key metabolic pathways of Escherichia coli. Transcriptomic and proteomic analyses along with quantification of intermediates of tricarboxylic acid (TCA) were employed to monitor and study the bacterial responses. Multi-omics analysis revealed that extended zinc exposure induced mainly oxidative stress and elevated expression/production of enzymes of carbohydrate metabolism, especially enzymes for synthesis of trehalose. After the zinc withdrawal, E. coli metabolism returned to a baseline state. These findings shed light on the alteration of TCA and on importance of trehalose synthesis in metal-induced stress and its broader implications for bacterial metabolism and defense and consequently for the balance and health of the human and animal microbiome.
Collapse
Affiliation(s)
- Martin Rihacek
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, CZ-613 00, Czech Republic
| | - Ludmila Kosaristanova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, CZ-613 00, Czech Republic
| | - Tatiana Fialova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, CZ-613 00, Czech Republic
| | - Tomas Rypar
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, CZ-613 00, Czech Republic
| | - Dagmar Skopalova Sterbova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, CZ-613 00, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, CZ-613 00, Czech Republic
| | - Ludek Zurek
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, CZ-613 00, Czech Republic
| | - Kristyna Cihalova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, CZ-613 00, Czech Republic.
| |
Collapse
|
4
|
Wong-Chew RM, Nguyen TVH, Rogacion JM, Herve M, Pouteau E. Potential Complementary Effect of Zinc and Alkalihalobacillus clausii on Gut Health and Immunity: A Narrative Review. Nutrients 2024; 16:887. [PMID: 38542798 PMCID: PMC10976165 DOI: 10.3390/nu16060887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 01/03/2025] Open
Abstract
A balanced microbiota-microorganisms that live in the gut-is crucial in the early years of a child's life, while dysbiosis-altered microbiota-has been linked to the development of various diseases. Probiotics, such as Alkalihalobacillus clausii, are commonly used to restore the balance of gut microbiota and have shown additional antimicrobial and immunomodulatory properties. Intake of micronutrients can affect the structure and function of the gut barrier and of the microbiota by having multiple effects on cellular metabolism (e.g., immunomodulation, gene expression, and support structure proteins). An inadequate zinc intake increases the risk of deficiency and associated immune dysfunctions; it is responsible for an increased risk of developing gastrointestinal diseases, respiratory infections, and stunting. Paediatric zinc deficiency is a public health concern in many countries, especially in low-income areas. Currently, zinc supplementation is used to treat childhood diarrhoea. This review examines how combining A. clausii and zinc could improve dysbiosis, gut health, and immunity. It suggests that this combination could be used to prevent and treat infectious diseases and diarrhoea in children up to adolescence.
Collapse
Affiliation(s)
- Rosa María Wong-Chew
- Infectious Diseases Research Laboratory, Research Division, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 06726, Mexico;
| | - Thi Viet Ha Nguyen
- Department of Paediatrics, Hanoi Medical University, 1,Ton That Tung, Hanoi 116001, Vietnam;
- Department of Gastroenterology, National Children’s Hospital, 18 Lane 879 La Thanh Street, Lang Thuong, Dong Da, Hanoi 116001, Vietnam
| | - Jossie M. Rogacion
- Department of Paediatrics, University of the Philippines, Philippine General Hospital, Manila 1000, Philippines;
| | - Maxime Herve
- Sanofi-Aventis, 38 Beach Road, Singapore 189767, Singapore;
| | - Etienne Pouteau
- Sanofi, 157 Avenue Charles de Gaulle, 92200 Neuilly-Sur-Seine, France
| |
Collapse
|
5
|
Rihacek M, Kosaristanova L, Fialova T, Kuthanova M, Eichmeier A, Hakalova E, Cerny M, Berka M, Palkovicova J, Dolejska M, Svec P, Adam V, Zurek L, Cihalova K. Zinc effects on bacteria: insights from Escherichia coli by multi-omics approach. mSystems 2023; 8:e0073323. [PMID: 37905937 PMCID: PMC10734530 DOI: 10.1128/msystems.00733-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/25/2023] [Indexed: 11/02/2023] Open
Abstract
IMPORTANCE A long-term exposure of bacteria to zinc oxide and zinc oxide nanoparticles leads to major alterations in bacterial morphology and physiology. These included biochemical and physiological processes promoting the emergence of strains with multi-drug resistance and virulence traits. After the removal of zinc pressure, bacterial phenotype reversed back to the original state; however, certain changes at the genomic, transcriptomic, and proteomic level remained. Why is this important? The extensive and intensive use of supplements in animal feed effects the intestinal microbiota of livestock and this may negatively impact the health of animals and people. Therefore, it is crucial to understand and monitor the impact of feed supplements on intestinal microorganisms in order to adequately assess and prevent potential health risks.
Collapse
Affiliation(s)
- Martin Rihacek
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Ludmila Kosaristanova
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Tatiana Fialova
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Michaela Kuthanova
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Ales Eichmeier
- Faculty of Horticulture, Mendeleum—Institute of Genetics, Mendel University in Brno, Brno, Czechia
| | - Eliska Hakalova
- Faculty of Horticulture, Mendeleum—Institute of Genetics, Mendel University in Brno, Brno, Czechia
| | - Martin Cerny
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences Mendel University in Brno, Brno, Czechia
| | - Miroslav Berka
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences Mendel University in Brno, Brno, Czechia
| | - Jana Palkovicova
- Faculty of Medicine in Pilsen, Biomedical Center, Charles University, Pilsen, Czechia
- Central European Institute of Technology, University of Veterinary Sciences Brno, Brno, Czechia
| | - Monika Dolejska
- Faculty of Medicine in Pilsen, Biomedical Center, Charles University, Pilsen, Czechia
- Central European Institute of Technology, University of Veterinary Sciences Brno, Brno, Czechia
- Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Brno, Czechia
- Department of Clinical Microbiology and Immunology, Institute of Laboratory Medicine, The University Hospital Brno, Brno, Czechia
| | - Pavel Svec
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Ludek Zurek
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Kristyna Cihalova
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| |
Collapse
|
6
|
El-Sharkawy RM, Abbas MHH. Unveiling antibacterial and antioxidant activities of zinc phosphate-based nanosheets synthesized by Aspergillus fumigatus and its application in sustainable decolorization of textile wastewater. BMC Microbiol 2023; 23:358. [PMID: 37980459 PMCID: PMC10657121 DOI: 10.1186/s12866-023-03054-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/09/2023] [Indexed: 11/20/2023] Open
Abstract
BACKGROUND The development of an environment-friendly nanomaterial with promising antimicrobial and antioxidant properties is highly desirable. The decolorization potentiality of toxic dyes using nanoparticles is a progressively serious worldwide issue. METHODS The successful biosynthesis of zinc nanoparticles based on phosphates (ZnP-nps) was performed using the extracellular secretions of Aspergillus fumigatus. The antibacterial activity of the biosynthetic ZnP-nps was investigated against Gram-negative bacteria and Gram-positive bacteria using the agar diffusion assay method. The antioxidant property for the biosynthetic nanomaterial was evaluated by DPPH and H2O2 radical scavenging assay. RESULTS Remarkable antibacterial and antiradical scavenging activities of ZnP-nps were observed in a dose-dependent manner. The minimum inhibitory concentration (MIC) for Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli was 25 µg/ml, however, the MIC for Bacillus subtilis was 12.5 µg/ml. The maximum adsorptive performance of nanomaterial was respectively achieved at initial dye concentration of 200 mg/L and 150 mg/L using methylene blue (MB) and methyl orange (MO), where sorbent dosages were 0.5 g for MB and 0.75 g for MB; pH was 8.0 for MB and 4.0 for MO; temperature was 30 °C; contact time was 120 min. The experimental data was better obeyed with Langmuir's isotherm and pseudo-second-order kinetic model (R2 > 0.999). The maximum adsorption capacity (qmax) of MB and MO dyes on nanomaterial were 178.25 mg/g and 50.10 mg/g, respectively. The regenerated nanomaterial, respectively, persist > 90% and 60% for MB and MO after 6 successive cycles. The adsorption capacity of the prepared zinc phosphate nanosheets crystal toward MB and MO, in the present study, was comparable/superior with other previously engineered adsorbents. CONCLUSIONS Based on the above results, the biosynthesized ZnP-nanosheets are promising nanomaterial for their application in sustainable dye decolorization processes and they can be employed in controlling different pathogenic bacteria with a potential application as antiradical scavenging agent. Up to our knowledge, this is probably the first study conducted on the green synthesis of ZnP-nanosheets by filamentous fungus and its significant in sustainable dye decolorization.
Collapse
Affiliation(s)
- Reyad M El-Sharkawy
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha, 13511, Egypt.
| | - Mohamed H H Abbas
- Soils and Water Department, Faculty of Science, Benha University, Benha, Egypt
| |
Collapse
|
7
|
Fan L, Xia Y, Wang Y, Han D, Liu Y, Li J, Fu J, Wang L, Gan Z, Liu B, Fu J, Zhu C, Wu Z, Zhao J, Han H, Wu H, He Y, Tang Y, Zhang Q, Wang Y, Zhang F, Zong X, Yin J, Zhou X, Yang X, Wang J, Yin Y, Ren W. Gut microbiota bridges dietary nutrients and host immunity. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2466-2514. [PMID: 37286860 PMCID: PMC10247344 DOI: 10.1007/s11427-023-2346-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 04/05/2023] [Indexed: 06/09/2023]
Abstract
Dietary nutrients and the gut microbiota are increasingly recognized to cross-regulate and entrain each other, and thus affect host health and immune-mediated diseases. Here, we systematically review the current understanding linking dietary nutrients to gut microbiota-host immune interactions, emphasizing how this axis might influence host immunity in health and diseases. Of relevance, we highlight that the implications of gut microbiota-targeted dietary intervention could be harnessed in orchestrating a spectrum of immune-associated diseases.
Collapse
Affiliation(s)
- Lijuan Fan
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yaoyao Xia
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Youxia Wang
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Dandan Han
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yanli Liu
- College of Animal Science and Technology, Northwest A&F University, Xi'an, 712100, China
| | - Jiahuan Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jie Fu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Leli Wang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Zhending Gan
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Bingnan Liu
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Jian Fu
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Congrui Zhu
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Zhenhua Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jinbiao Zhao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Hui Han
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hao Wu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yiwen He
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Yulong Tang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Qingzhuo Zhang
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yibin Wang
- College of Animal Science and Technology, Northwest A&F University, Xi'an, 712100, China
| | - Fan Zhang
- College of Animal Science and Technology, Northwest A&F University, Xi'an, 712100, China
| | - Xin Zong
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Jie Yin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China.
| | - Xihong Zhou
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.
| | - Xiaojun Yang
- College of Animal Science and Technology, Northwest A&F University, Xi'an, 712100, China.
| | - Junjun Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| | - Yulong Yin
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China.
| | - Wenkai Ren
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
8
|
Zhou B, Li J, Zhang J, Liu H, Chen S, He Y, Wang T, Wang C. Effects of Long-Term Dietary Zinc Oxide Nanoparticle on Liver Function, Deposition, and Absorption of Trace Minerals in Intrauterine Growth Retardation Pigs. Biol Trace Elem Res 2023; 201:4746-4757. [PMID: 36585599 DOI: 10.1007/s12011-022-03547-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/24/2022] [Indexed: 12/31/2022]
Abstract
To investigate the long-term effects of dietary zinc oxide nanoparticle (Nano-ZnO, 20-40 nm) on the relative organ weight, liver function, deposition, and absorption of trace minerals in intrauterine growth retardation (IUGR) pigs, piglets were allocated to NBW (6 normal birth weight piglets fed basal diets), IUGR (6 IUGR piglets fed basal diets) and IUGR+NZ (6 IUGR piglets fed basal diets + 600 mg Zn/kg from Nano-ZnO) groups at weaning (21 days of age), which were sampled at 163 days of age. There were no noteworthy changes in the relative weight of organs, hepatic histomorphology, serum alkaline phosphatase, glutamic pyruvic transaminase and glutamic oxalacetic transaminase activities, and Mn, Cu, and Fe concentrations in leg muscle, the liver, the tibia, and feces among the IUGR, NBW, and IUGR+NZ groups (P>0.05), and no intact Nano-ZnO in the jejunum, liver, and muscle was observed, while dietary Nano-ZnO increased the Zn concentrations in the tibia, the liver, serum, and feces (P<0.05) and mRNA expression of metallothionein (MT) 1A, MT2A, solute carrier family 39 member (ZIP) 4, ZIP14, ZIP8, divalent metal transporter 1, solute carrier family 30 member (ZnT) 1, ZnT4 and metal regulatory transcription factor 1, and ZIP8 protein expression in jejunal mucosa (P<0.05). Immunohistochemistry showed that dietary Nano-ZnO increased the relative optical density of ZIP8 (mainly expressed in cells of brush border) and MT2A (mainly expressed in villus lamina propria and gland/crypt) (P<0.05). In conclusion, long-term dietary Nano-ZnO showed no obvious side effects on the development of the major organs, liver function, and metabolism of Cu, Fe, and Mn in IUGR pigs, while it increased the Zn absorption and deposition via enhancing the expression of transporters (MT, ZIP, and ZnT families) in the jejunum, rather than via endocytosis as the form of intact nanoparticles.
Collapse
Affiliation(s)
- Binbin Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Jian Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Jiaqi Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Huijuan Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Shun Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Yudan He
- Department of Animal Science, Jiangxi Biotech Vocational College, 608 Nanlian Road, Nanchang, 330200, Jiangxi, People's Republic of China
| | - Tian Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Chao Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| |
Collapse
|
9
|
Danchuk O, Levchenko A, da Silva Mesquita R, Danchuk V, Cengiz S, Cengiz M, Grafov A. Meeting Contemporary Challenges: Development of Nanomaterials for Veterinary Medicine. Pharmaceutics 2023; 15:2326. [PMID: 37765294 PMCID: PMC10536669 DOI: 10.3390/pharmaceutics15092326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/30/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
In recent decades, nanotechnology has been rapidly advancing in various fields of human activity, including veterinary medicine. The review presents up-to-date information on recent advancements in nanotechnology in the field and an overview of the types of nanoparticles used in veterinary medicine and animal husbandry, their characteristics, and their areas of application. Currently, a wide range of nanomaterials has been implemented into veterinary practice, including pharmaceuticals, diagnostic devices, feed additives, and vaccines. The application of nanoformulations gave rise to innovative strategies in the treatment of animal diseases. For example, antibiotics delivered on nanoplatforms demonstrated higher efficacy and lower toxicity and dosage requirements when compared to conventional pharmaceuticals, providing a possibility to solve antibiotic resistance issues. Nanoparticle-based drugs showed promising results in the treatment of animal parasitoses and neoplastic diseases. However, the latter area is currently more developed in human medicine. Owing to the size compatibility, nanomaterials have been applied as gene delivery vectors in veterinary gene therapy. Veterinary medicine is at the forefront of the development of innovative nanovaccines inducing both humoral and cellular immune responses. The paper provides a brief overview of current topics in nanomaterial safety, potential risks associated with the use of nanomaterials, and relevant regulatory aspects.
Collapse
Affiliation(s)
- Oleksii Danchuk
- Institute of Climate-Smart Agriculture, National Academy of Agrarian Sciences, 24 Mayatska Road, Khlibodarske Village, 67667 Odesa, Ukraine;
| | - Anna Levchenko
- Department of Microbiology, Faculty of Veterinary Medicine, Ataturk University, Yakutiye, Erzurum 25240, Turkey;
| | | | - Vyacheslav Danchuk
- Ukrainian Laboratory of Quality and Safety of Agricultural Products, Mashynobudivna Str. 7, Chabany Village, 08162 Kyiv, Ukraine;
| | - Seyda Cengiz
- Milas Faculty of Veterinary Medicine, Mugla Sitki Kocman University, Mugla 48000, Turkey; (S.C.); (M.C.)
| | - Mehmet Cengiz
- Milas Faculty of Veterinary Medicine, Mugla Sitki Kocman University, Mugla 48000, Turkey; (S.C.); (M.C.)
| | - Andriy Grafov
- Department of Chemistry, University of Helsinki, A.I. Virtasen Aukio 1 (PL 55), 00560 Helsinki, Finland
| |
Collapse
|
10
|
Duarte ME, Garavito-Duarte Y, Kim SW. Impacts of F18 +Escherichia coli on Intestinal Health of Nursery Pigs and Dietary Interventions. Animals (Basel) 2023; 13:2791. [PMID: 37685055 PMCID: PMC10487041 DOI: 10.3390/ani13172791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
This review focused on the impact of F18+E. coli on pig production and explored nutritional interventions to mitigate its deleterious effects. F18+E. coli is a primary cause of PWD in nursery pigs, resulting in substantial economic losses through diminished feed efficiency, morbidity, and mortality. In summary, the F18+E. coli induces intestinal inflammation with elevated IL6 (60%), IL8 (43%), and TNF-α (28%), disrupting the microbiota and resulting in 14% villus height reduction. Besides the mortality, the compromised intestinal health results in a 20% G:F decrease and a 10% ADFI reduction, ultimately culminating in a 28% ADG decrease. Among nutritional interventions to counter F18+E. coli impacts, zinc glycinate lowered TNF-α (26%) and protein carbonyl (45%) in jejunal mucosa, resulting in a 39% ADG increase. Lactic acid bacteria reduced TNF-α (36%), increasing 51% ADG, whereas Bacillus spp. reduced IL6 (27%), increasing BW (12%). Lactobacillus postbiotic increased BW (14%) and the diversity of beneficial bacteria. Phytobiotics reduced TNF-α (23%) and IL6 (21%), enhancing feed efficiency (37%). Additional interventions, including low crude protein formulation, antibacterial minerals, prebiotics, and organic acids, can be effectively used to combat F18+E. coli infection. These findings collectively underscore a range of effective strategies for managing the challenges posed by F18+E. coli in pig production.
Collapse
Affiliation(s)
| | | | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA; (M.E.D.); (Y.G.-D.)
| |
Collapse
|
11
|
Ma Y, Fei Y, Ding S, Jiang H, Fang J, Liu G. Trace metal elements: a bridge between host and intestinal microorganisms. SCIENCE CHINA. LIFE SCIENCES 2023; 66:1976-1993. [PMID: 37528296 DOI: 10.1007/s11427-022-2359-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/23/2023] [Indexed: 08/03/2023]
Abstract
Trace metal elements, such as iron, copper, manganese, and zinc, are essential nutrients for biological processes. Although their intake demand is low, they play a crucial role in cell homeostasis as the cofactors of various enzymes. Symbiotic intestinal microorganisms compete with their host for the use of trace metal elements. Moreover, the metabolic processes of trace metal elements in the host and microorganisms affect the organism's health. Supplementation or the lack of trace metal elements in the host can change the intestinal microbial community structure and function. Functional changes in symbiotic microorganisms can affect the host's metabolism of trace metal elements. In this review, we discuss the absorption and transport processes of trace metal elements in the host and symbiotic microorganisms and the effects of dynamic changes in the levels of trace metal elements on the intestinal microbial community structure. We also highlight the participation of trace metal elements as enzyme cofactors in the host immune process. Our findings indicate that the host uses metal nutrition immunity or metal poisoning to resist pathogens and improve immunity.
Collapse
Affiliation(s)
- Yong Ma
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, 410128, China
| | - Yanquan Fei
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, 410128, China
| | - Sujuan Ding
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, 410128, China
| | - Hongmei Jiang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, 410128, China
| | - Jun Fang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, 410128, China.
| | - Gang Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, 410128, China
| |
Collapse
|
12
|
Kausar S, Jabeen F, Latif MA, Asad M. Characterization, dose dependent assessment of hepatorenal oxidative stress, hematological parameters and histopathological divulging of the hepatic damages induced by Zinc oxide nanoparticles (ZnO-NPs) in adult male Sprague Dawley rats. Saudi J Biol Sci 2023; 30:103745. [PMID: 37588571 PMCID: PMC10425408 DOI: 10.1016/j.sjbs.2023.103745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/06/2023] [Accepted: 07/14/2023] [Indexed: 08/18/2023] Open
Abstract
Nanoparticles are beneficial in many aspects to human life but their excessive use can cause various abnormalities. They dispose in the environment through transport, industrial and agricultural usage and enter in living body through dermal, respiratory route or ingested with the lipsticks and there higher concentration produces toxicity. Therefore, current study characterized ZnO-NPs to evaluate toxic ability by X-rays diffraction (XRD) and Scanning Electron Microscopy (SEM) techniques and showed 29.83 and 35 nm size, respectively with hexagonal crystalline structure. LC50 value of ZnO-NPs was also evaluated as 72.48 ± 10.33 mg/kg BW. Male Sprague Dawley (Post weaning) rats were divided into five groups with five rats in each group. Control (C) group received no treatment, placebo (S) group received normal saline (0.9% sodium chloride) intraperitoneally and three treated groups received different levels of ZnO- NPs intraperitoneally at the dose of either 10 or 20 or 30 mg/kg for 21 days on alternate days and named as 1G1, 1G2 and 1G3, respectively for the assessment of toxicity for better understanding of precautionary measures in future. Oxidative stress enzymes of liver and kidney, hepatorenal function enzymes and hematological parameters along with hepatic histology were measured at the end of the experiment. Results showed highly significant variations in all parameters in a dose dependent manner as compared to control group while groups receiving 10 or 20 mg/kg of ZnO-NPs showed low to moderate pathological changes in both organs. Liver histological analysis showed congestion, necrosis, hemorrhage, RBC's accumulations; inflammatory cells infiltration and severe abnormalities in high dose group while medium, low dose group showed moderate and least effects, respectively. It is concluded that ZnO-NPs are highly toxic at more concentration so their careful usage is needed in daily routine.
Collapse
Affiliation(s)
- Sana Kausar
- Department of Zoology, Government College Universisty, Faisalabad, Pakistan
| | - Farhat Jabeen
- Department of Zoology, Government College Universisty, Faisalabad, Pakistan
| | | | - Muhammad Asad
- Department of Zoology, University of Education, Lahore, Pakistan
| |
Collapse
|
13
|
Baholet D, Skalickova S, Vaclavkova E, Batik A, Kolackova I, Nevrkla P, Horky P. Short-term supplementation of zinc nanoparticles in weaned piglets affects zinc bioaccumulation and carcass classification. Livest Sci 2023. [DOI: 10.1016/j.livsci.2023.105191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
14
|
Mohd Yusof H, Abdul Rahman N, Mohamad R, Zaidan UH, Samsudin AA. Influence of Dietary Biosynthesized Zinc Oxide Nanoparticles on Broiler Zinc Uptake, Bone Quality, and Antioxidative Status. Animals (Basel) 2022; 13:ani13010115. [PMID: 36611723 PMCID: PMC9817535 DOI: 10.3390/ani13010115] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/11/2022] [Accepted: 09/21/2022] [Indexed: 12/29/2022] Open
Abstract
A total of 180 broiler chickens (Cobb500) were randomly allotted to five experimental groups consisting of six replicates and six birds in each pen. Each group was fed a basal diet supplemented with 100 mg/kg ZnO (control) and 10, 40, 70, and 100 mg/kg ZnO NPs for 35 days. Resultantly, Zn uptake and accumulation in serum, breast muscle, tibia bone, and liver were linearly and significantly (p < 0.05) increased with increasing dietary ZnO NPs supplementation at 100 mg/kg compared to the control group (dietary 100 mg/kg ZnO), implying effective absorption capacity of ZnO NPs. This was followed by lower Zn excretion in feces in broilers fed ZnO NPs compared to controls (p < 0.05). Furthermore, dietary ZnO NPs at 40, 70, and 100 mg/kg levels improved broiler tibia bone morphological traits, such as weight, length, and thickness. Similarly, tibia bone mineralization increased in broilers fed ZnO NPs at 100 mg/kg compared to the control (p < 0.05), as demonstrated by tibia ash, Zn, Ca, and P retention. Antioxidative status in serum and liver tissue was also increased in broilers fed dietary ZnO NPs at 70 and 100 mg/kg compared to the control (p < 0.05). In conclusion, dietary ZnO NPs increased Zn absorption in broiler chickens and had a positive influence on tibia bone development and antioxidative status in serum and liver tissue, with dietary ZnO NPs supplementation at 70 and 100 mg/kg showing the optimum effects.
Collapse
Affiliation(s)
- Hidayat Mohd Yusof
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Nor’Aini Abdul Rahman
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Bioprocessing and Biomanufacturing Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Correspondence: (N.A.R.); (A.A.S.)
| | - Rosfarizan Mohamad
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Bioprocessing and Biomanufacturing Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Uswatun Hasanah Zaidan
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Anjas Asmara Samsudin
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Correspondence: (N.A.R.); (A.A.S.)
| |
Collapse
|
15
|
Zhou J, Ren Y, Wen X, Yue S, Wang Z, Wang L, Peng Q, Hu R, Zou H, Jiang Y, Hong Q, Xue B. Comparison of coated and uncoated trace elements on growth performance, apparent digestibility, intestinal development and microbial diversity in growing sheep. Front Microbiol 2022; 13:1080182. [PMID: 36605519 PMCID: PMC9808050 DOI: 10.3389/fmicb.2022.1080182] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/01/2022] [Indexed: 12/24/2022] Open
Abstract
The suitable supplement pattern affects the digestion and absorption of trace minerals by ruminants. This study aimed to compare the effects of coated and uncoated trace elements on growth performance, apparent digestibility, intestinal development and microbial diversity in growing sheep. Thirty 4-month-old male Yunnan semi-fine wool sheep were randomly assigned to three treatments (n = 10) and fed with following diets: basal diet without adding exogenous trace elements (CON), basal diet plus 400 mg/kg coated trace elements (CTE, the rumen passage rate was 65.87%) and basal diet plus an equal amount of trace elements in uncoated form (UTE). Compared with the CON group, the average daily weight gain and apparent digestibility of crude protein were higher (P < 0.05) in the CTE and UTE groups, while there was no difference between the CTE and UTE groups. The serum levels of selenium, iodine and cobalt were higher (P < 0.05) in the CTE and UTE groups than those in the CON group, the serum levels of selenium and cobalt were higher (P < 0.05) in the CTE group than those in the UTE group. Compared with the CON and UTE groups, the villus height and the ratio of villus height to crypt depth in duodenum and ileum were higher (P < 0.05) in the CTE groups. The addition of trace minerals in diet upregulated most of the relative gene expression of Ocludin, Claudin-1, Claudin-2, ZO-1, and ZO-2 in the duodenum and jejunum and metal ion transporters (FPN1 and ZNT4) in small intestine. The relative abundance of the genera Christensenellaceae R-7 group, Ruminococcus 1, Lachnospiraceae NK3A20 group, and Ruminococcaceae in ileum, and Ruminococcaceae UCG-014 and Lactobacillus in colon was higher in the CTE group that in the CON group. These results indicated that dietary trace mineral addition improved the growth performance and intestinal development, and altered the structure of intestinal bacteria in growing sheep. Compared to uncoated form, offering trace mineral elements to sheep in coated form had a higher absorption efficiency, however, had little effect on improving growth performance of growing sheep.
Collapse
Affiliation(s)
- Jia Zhou
- 1Key Laboratory of Low Carbon Culture and Safety Production in Cattle in Sichuan, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Yifan Ren
- 1Key Laboratory of Low Carbon Culture and Safety Production in Cattle in Sichuan, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Xiao Wen
- 1Key Laboratory of Low Carbon Culture and Safety Production in Cattle in Sichuan, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Shuangming Yue
- 2Department of Bioengineering, Sichuan Water Conservancy Vocational College, Chengdu, China
| | - Zhisheng Wang
- 1Key Laboratory of Low Carbon Culture and Safety Production in Cattle in Sichuan, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Lizhi Wang
- 1Key Laboratory of Low Carbon Culture and Safety Production in Cattle in Sichuan, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Quanhui Peng
- 1Key Laboratory of Low Carbon Culture and Safety Production in Cattle in Sichuan, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Rui Hu
- 1Key Laboratory of Low Carbon Culture and Safety Production in Cattle in Sichuan, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Huawei Zou
- 1Key Laboratory of Low Carbon Culture and Safety Production in Cattle in Sichuan, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Yahui Jiang
- 3College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Qionghua Hong
- 4Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Bai Xue
- 1Key Laboratory of Low Carbon Culture and Safety Production in Cattle in Sichuan, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China,*Correspondence: Bai Xue,
| |
Collapse
|
16
|
Michalak I, Dziergowska K, Alagawany M, Farag MR, El-Shall NA, Tuli HS, Emran TB, Dhama K. The effect of metal-containing nanoparticles on the health, performance and production of livestock animals and poultry. Vet Q 2022; 42:68-94. [PMID: 35491930 PMCID: PMC9126591 DOI: 10.1080/01652176.2022.2073399] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/28/2022] [Accepted: 04/29/2022] [Indexed: 12/06/2022] Open
Abstract
The application of high doses of mineral feed additives in the form of inorganic salts increases the growth performance of animals, but at the same, due to their low bioavailability, can contaminate the environment. Therefore, there is a need to find a replacement of administering high doses of minerals with an equally effective alternative. The application of lower doses of metal-containing nanoparticles with the same effect on animal production could be a potential solution. In the present review, zinc, silver, copper, gold, selenium, and calcium nanoparticles are discussed as potential feed additives for animals. Production of nanoparticles under laboratory conditions using traditional chemical and physical methods as well as green and sustainable methods - biosynthesis has been described. Special attention has been paid to the biological properties of nanoparticles, as well as their effect on animal health and performance. Nano-minerals supplemented to animal feed (poultry, pigs, ruminants, rabbits) acting as growth-promoting, immune-stimulating and antimicrobial agents have been highlighted. Metal nanoparticles are known to exert a positive effect on animal performance, productivity, carcass traits through blood homeostasis maintenance, intestinal microflora, oxidative damage prevention, enhancement of immune responses, etc. Metal-containing nanoparticles can also be a solution for nutrient deficiencies in animals (higher bioavailability and absorption) and can enrich animal products with microelements like meat, milk, or eggs. Metal-containing nanoparticles are proposed to partially replace inorganic salts as feed additives. However, issues related to their potential toxicity and safety to livestock animals, poultry, humans, and the environment should be carefully investigated.
Collapse
Affiliation(s)
- Izabela Michalak
- Faculty of Chemistry, Department of Advanced Material Technologies, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Katarzyna Dziergowska
- Faculty of Chemistry, Department of Advanced Material Technologies, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Mahmoud Alagawany
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Mayada R. Farag
- Forensic Medicine and Toxicology Department, Veterinary Medicine Faculty, Zagazig University, Zagazig, Egypt
| | - Nahed A. El-Shall
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Alexandria University, Edfina, El-Beheira, Egypt
| | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, India
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| |
Collapse
|
17
|
Bioactive compounds, antibiotics and heavy metals: effects on the intestinal structure and microbiome of monogastric animals – a non-systematic review. ANNALS OF ANIMAL SCIENCE 2022. [DOI: 10.2478/aoas-2022-0057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Abstract
The intestinal structure and gut microbiota are essential for the animals‘ health. Chemical components taken with food provide the right environment for a specific microbiome which, together with its metabolites and the products of digestion, create an environment, which in turn is affects the population size of specific bacteria. Disturbances in the composition of the gut microbiota can be a reason for the malformation of guts, which has a decisive impact on the animal‘ health. This review aimed to analyse scientific literature, published over the past 20 years, concerning the effect of nutritional factors on gut health, determined by the intestinal structure and microbiota of monogastric animals. Several topics have been investigated: bioactive compounds (probiotics, prebiotics, organic acids, and herbal active substances), antibiotics and heavy metals (essentaial minerals and toxic heavy metals).
Collapse
|
18
|
Trung Thong H, Nu Anh Thu L, Viet Duc H. Potential Substitutes of Antibiotics for Swine and Poultry Production. Vet Med Sci 2022. [DOI: 10.5772/intechopen.106081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Early of the last century, it was detected that antibiotics added to the animal feeds at low doses and for a long time can improve technical performances such as average daily gain and gain-to-feed ratio. Since then, the antibiotics have been used worldwide as feed additives for many decades. At the end of the twentieth century, the consequences of the uses of antibiotics in animal feeds as growth promoters were informed. Since then, many research studies have been done to find other solutions to replace partly or fully to antibiotic as growth promoters (AGPs). Many achievements in finding alternatives to AGPs in which probiotics and direct-fed microorganism, prebiotics, organic acids and their salts, feed enzymes, bacteriophages, herbs, spices, and other plant extractives (phytogenics), mineral and essential oils are included.
Collapse
|
19
|
Horky P, Nevrka P, Kopec T, Bano I, Skoric M, Skladanka J, Skalickova S. Is a new generation of mycotoxin clay adsorbents safe in a pig's diet? Porcine Health Manag 2022; 8:31. [PMID: 35787737 PMCID: PMC9254414 DOI: 10.1186/s40813-022-00275-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 06/20/2022] [Indexed: 01/04/2023] Open
Abstract
Background Bentonites, as a clay mineral, serve in pig farms as adsorbents of toxic substances. They are mainly used to reduce the negative impact of mycotoxins to maintain the performance and health status of animals. The new genotypes of pigs are highly sensitive to a range of antinutrients, including mycotoxins. Currently, attention is focused on more effective adsorbents of mycotoxins with a higher adsorption capacity. Such materials are in great demand among feed manufacturers. However, there is a concern that these new materials may also adsorb too many essential nutrients and decrease animal performance. The aim of the experiment was to evaluate the effect of the new generation of purified bentonites on the efficiency and health status of the pigs. Results Forty-eight slaughtered pigs with an average weight of 31.2 ± 2.6 kg were included in the experiment. The pigs were divided into two groups (2 × 24 pigs). Pigs were slaughtered at an average weight of 66.3 ± 5.2. The first group had a diet without clay (control—C). The second group (treatment—T) was fed a diet with a clay additive (purified bentonite) of 1.5 kg/t. Animals were fed the experimental diet for 35 days. In group T, a higher daily weight gain (by 4.8%) and feed intake (by 2.9%) was observed while the feed conversion decreased by 1.9%. There were no significant differences between the groups of pigs during observation in the evaluation of hematological, biochemical parameters of the blood. Morpho-pathological analysis of the jejunum showed similar signs of moderate lymphoplasmacytic infiltrate in the mucosa in the groups C and T, contained similar number of goblet cells. Conclusion Taken together, the addition of the new generation of bentonite clays did not negatively influence the health status and the performance of pigs.
Collapse
Affiliation(s)
- Pavel Horky
- Department of Animal Nutrition and Forage Production, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Pavel Nevrka
- Department of Animal Breeding, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Tomas Kopec
- Department of Animal Breeding, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Iqra Bano
- Department of Physiology and Biochemistry, Faculty of Bio-Sciences, Shaheed Benazir Bhutto University of Veterinary and Animal Sciences, Sakrand, 67210, Sindh, Pakistan
| | - Misa Skoric
- Department of Pathological Morphology and Parasitology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho trida 1946/1, Brno, 61200, Czech Republic
| | - Jiri Skladanka
- Department of Animal Nutrition and Forage Production, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Sylvie Skalickova
- Department of Animal Nutrition and Forage Production, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic.
| |
Collapse
|
20
|
Baholet D, Skalickova S, Batik A, Malyugina S, Skladanka J, Horky P. Importance of Zinc Nanoparticles for the Intestinal Microbiome of Weaned Piglets. Front Vet Sci 2022; 9:852085. [PMID: 35720843 PMCID: PMC9201420 DOI: 10.3389/fvets.2022.852085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/18/2022] [Indexed: 11/13/2022] Open
Abstract
The scientific community is closely monitoring the replacement of antibiotics with doses of ZnO in weaned piglets. Since 2022, the use of zinc in medical doses has been banned in the European Union. Therefore, pig farmers are looking for other solutions. Some studies have suggested that zinc nanoparticles might replace ZnO for the prevention of diarrhea in weaning piglets. Like ZnO, zinc nanoparticles are effective against pathogenic microorganisms, e.g., Enterobacteriaceae family in vitro and in vivo. However, the effect on probiotic Lactobacillaceae appears to differ for ZnO and zinc nanoparticles. While ZnO increases their numbers, zinc nanoparticles act in the opposite way. These phenomena have been also confirmed by in vitro studies that reported a strong antimicrobial effect of zinc nanoparticles against Lactobacillales order. Contradictory evidence makes this topic still controversial, however. In addition, zinc nanoparticles vary in their morphology and properties based on the method of their synthesis. This makes it difficult to understand the effect of zinc nanoparticles on the intestinal microbiome. This review is aimed at clarifying many circumstances that may affect the action of nanoparticles on the weaning piglets' microbiome, including a comprehensive overview of the zinc nanoparticles in vitro effects on bacterial species occurring in the digestive tract of weaned piglets.
Collapse
Affiliation(s)
- Daria Baholet
- Department of Animal Nutrition and Forage Production, Mendel University in Brno, Brno, Czechia
| | - Sylvie Skalickova
- Department of Animal Nutrition and Forage Production, Mendel University in Brno, Brno, Czechia
| | - Andrej Batik
- Department of Animal Morphology, Physiology and Genetics, Mendel University in Brno, Brno, Czechia
| | - Svetlana Malyugina
- Department of Animal Nutrition and Forage Production, Mendel University in Brno, Brno, Czechia
| | - Jiri Skladanka
- Department of Animal Nutrition and Forage Production, Mendel University in Brno, Brno, Czechia
| | - Pavel Horky
- Department of Animal Nutrition and Forage Production, Mendel University in Brno, Brno, Czechia
- *Correspondence: Pavel Horky
| |
Collapse
|
21
|
Three-dimensional (3D) liver cell models - a tool for bridging the gap between animal studies and clinical trials when screening liver accumulation and toxicity of nanobiomaterials. Drug Deliv Transl Res 2022; 12:2048-2074. [PMID: 35507131 PMCID: PMC9066991 DOI: 10.1007/s13346-022-01147-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2022] [Indexed: 12/13/2022]
Abstract
Despite the exciting properties and wide-reaching applications of nanobiomaterials (NBMs) in human health and medicine, their translation from bench to bedside is slow, with a predominant issue being liver accumulation and toxicity following systemic administration. In vitro 2D cell-based assays and in vivo testing are the most popular and widely used methods for assessing liver toxicity at pre-clinical stages; however, these fall short in predicting toxicity for NBMs. Focusing on in vitro and in vivo assessment, the accurate prediction of human-specific hepatotoxicity is still a significant challenge to researchers. This review describes the relationship between NBMs and the liver, and the methods for assessing toxicity, focusing on the limitations they bring in the assessment of NBM hepatotoxicity as one of the reasons defining the poor translation for NBMs. We will then present some of the most recent advances towards the development of more biologically relevant in vitro liver methods based on tissue-mimetic 3D cell models and how these could facilitate the translation of NBMs going forward. Finally, we also discuss the low public acceptance and limited uptake of tissue-mimetic 3D models in pre-clinical assessment, despite the demonstrated technical and ethical advantages associated with them.
Collapse
|
22
|
Scarpellini E, Balsiger LM, Maurizi V, Rinninella E, Gasbarrini A, Giostra N, Santori P, Abenavoli L, Rasetti C. Zinc and gut microbiota in health and gastrointestinal disease under the COVID-19 suggestion. Biofactors 2022; 48:294-306. [PMID: 35218585 PMCID: PMC9082519 DOI: 10.1002/biof.1829] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 01/30/2022] [Indexed: 12/12/2022]
Abstract
Microelements represent an emerging resource for medicine and its preventive branch. Zinc is the second most abundant element in our organism with peculiar physiologic functions and pathophysiologic implications in systemic and gastrointestinal (GI) diseases. It interacts very often with gut microbiota (GM) and can affect natural course of GI diseases through a bidirectional relationship with intestinal bugs. We aimed to review literature data regarding zinc chemistry, role in health, and GI diseases in man with a special focus on its interaction with GM. We conducted a search on the main medical databases for original articles, reviews, meta-analyses, randomized clinical trials and case series using the following keywords and acronyms and their associations: zinc, microelements, gut microbiota, gut health, and COVID-19. Zinc has a rapid and simple metabolism and limited storage within our body. Its efficacy on immune system modulation reflects on improved response to pathogens, reduced inflammatory response, and improved atopic/allergic reactions. Zinc is also involved in cell cycle regulation (namely, apoptosis) with potential anti-cancerogenic effects. All these effects are in a "symbiotic" relationship with GM. Finally, zinc shows preliminary viral antireplicative effects. Zinc seems to gain more and more evidences on its efficacy in allergic, atopic and infectious diseases treatment, and prevention. COVID-19 can be the booster for research on future applications of zinc as perfect "postbiotic" in medicine.
Collapse
Affiliation(s)
- Emidio Scarpellini
- Hepatology and Internal Medicine Unit“Madonna del soccorso” General HospitalSan Benedetto del TrontoItaly
- T.A.R.G.I.DGasthuisberg University Hospital, KULeuvenLuevenBelgium
| | | | - Valentina Maurizi
- Internal Medicine Residency ProgramUniversità Politecnica delle MarcheAnconaItaly
| | - Emanuele Rinninella
- Clinical Nutrition Unit, Gastroenterology, EndocrinologyNephrology and Urology Department, Fondazione Policlinico A. Gemelli IRCCSRomeItaly
- Institute of Medical PathologyCatholic University of the Sacred HeartRomeItaly
| | - Antonio Gasbarrini
- Institute of Medical PathologyCatholic University of the Sacred HeartRomeItaly
| | - Nena Giostra
- Hepatology and Internal Medicine Unit“Madonna del soccorso” General HospitalSan Benedetto del TrontoItaly
| | - Pierangelo Santori
- Hepatology and Internal Medicine Unit“Madonna del soccorso” General HospitalSan Benedetto del TrontoItaly
| | | | - Carlo Rasetti
- Hepatology and Internal Medicine Unit“Madonna del soccorso” General HospitalSan Benedetto del TrontoItaly
| |
Collapse
|
23
|
Yan S, Tian S, Meng Z, Sun W, Xu N, Jia M, Huang S, Wang Y, Zhou Z, Diao J, Zhu W. Synergistic effect of ZnO NPs and imidacloprid on liver injury in male ICR mice: Increase the bioavailability of IMI by targeting the gut microbiota. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 294:118676. [PMID: 34906595 DOI: 10.1016/j.envpol.2021.118676] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 11/20/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
Although many toxicological studies on pesticides and nanoparticles have been conducted, it is not clear whether nanoparticles will increase the toxicity of pesticides. In this study, we chose imidacloprid (IMI) as a representative pesticide, and explored the influence of ZnO NPs on the toxic effect of IMI. In addition, we studied the bioaccumulation of IMI in mice. Using biochemical index analysis, liver histopathological analysis, non-targeted metabolomics, and LC/MS analysis, we found that ZnO NPs increased the toxicity of IMI, which may be related to the increase in IMI bioaccumulation in mice. In addition, we used intestinal histopathological analysis, RT-qPCR, and 16sRNA sequencing to find that the disturbance of the gut microbiota and the impaired intestinal barrier caused by ZnO NPs may be the reason for the increase in IMI bioaccumulation. In summary, our results indicate that ZnO NPs disrupted the intestinal barrier and enhanced the bioaccumulation of IMI, and therefore increased the toxicity of IMI in mice. Our research has deepened the toxicological insights between nanomaterials and pesticides.
Collapse
Affiliation(s)
- Sen Yan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China
| | - Sinuo Tian
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China
| | - Zhiyuan Meng
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China; School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Wei Sun
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China
| | - Ning Xu
- Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Ming Jia
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China
| | - Shiran Huang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China
| | - Yu Wang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China
| | - Zhiqiang Zhou
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China
| | - Jinling Diao
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China
| | - Wentao Zhu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
24
|
Drider D, Boukherroub R, Le Devendec L, Belguesmia Y, Hazime N, Mourand G, Paboeuf F, Kempf I. Impact of colistin and colistin-loaded on alginate nanoparticles on pigs infected with a colistin-resistant enterotoxigenic Escherichia coli strain. Vet Microbiol 2022; 266:109359. [PMID: 35121303 DOI: 10.1016/j.vetmic.2022.109359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 01/17/2022] [Accepted: 01/26/2022] [Indexed: 01/27/2023]
Abstract
Colistin is frequently used for the control of post-weaning diarrhoea in pigs. Colistin resistance caused by plasmidic genes is a public health issue. We evaluated, in experimental animal facilities, whether free colistin or colistin-loaded on alginate nanoparticles (colistin/Alg NPs) could select a colistin-resistant Enterotoxigenic Escherichia coli. The Alg NPs were produced by a simple top-down approach through ball milling of sodium alginate polymer precursor, and colistin loading was achieved through physical adsorption. Colistin loading on Alg NPs was confirmed using various tools such Fourier transform infrared spectroscopy and dynamic light scattering measurements. Thirty-four piglets were orally inoculated or not with a mcr-1-positive, rifampicin-resistant enterotoxigenic E. coli strain, and the inoculated pigs were either treated or not during five days with commercial colistin (100,000 IU/kg) or colistin/Alg NPs (40,415 IU/kg). Clinical signs were recorded. Fecal and post-mortem samples were analyzed by culture. The result clearly indicated that colistin/Alg NPs had a slightly better therapeutic effect. Both treatments led to a transitory decrease of the total E. coli fecal population with a majority of colistin-resistant E. coli isolates during treatment, but the dominant E. coli population was found susceptible at the end of the trial. Further studies are needed to evaluate, in diverse experimental or field conditions, the therapeutic efficacy of colistin/Alg NPs for post-weaning diarrhoea.
Collapse
Affiliation(s)
- Djamel Drider
- UMR Transfrontalière BioEcoAgro1158, Univ. Lille, INRAE, Univ. Liège, UPJV, YNCREA, Univ. Artois, Univ. Littoral Côte D'Opale, ICV - Institut Charles Viollette, 59000, Lille, France
| | - Rabah Boukherroub
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000, Lille, France
| | - Laetitia Le Devendec
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan-Plouzané-Niort Laboratory, Zoopole les croix, 22440, Ploufragan, France
| | - Yanath Belguesmia
- UMR Transfrontalière BioEcoAgro1158, Univ. Lille, INRAE, Univ. Liège, UPJV, YNCREA, Univ. Artois, Univ. Littoral Côte D'Opale, ICV - Institut Charles Viollette, 59000, Lille, France
| | - Noura Hazime
- UMR Transfrontalière BioEcoAgro1158, Univ. Lille, INRAE, Univ. Liège, UPJV, YNCREA, Univ. Artois, Univ. Littoral Côte D'Opale, ICV - Institut Charles Viollette, 59000, Lille, France; Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000, Lille, France
| | - Gwenaelle Mourand
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan-Plouzané-Niort Laboratory, Zoopole les croix, 22440, Ploufragan, France
| | - Frédéric Paboeuf
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan-Plouzané-Niort Laboratory, Zoopole les croix, 22440, Ploufragan, France
| | - Isabelle Kempf
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan-Plouzané-Niort Laboratory, Zoopole les croix, 22440, Ploufragan, France.
| |
Collapse
|
25
|
Guan X, Santos RR, Kettunen H, Vuorenmaa J, Molist F. Effect of Resin Acid and Zinc Oxide on Immune Status of Weaned Piglets Challenged With E. coli Lipopolysaccharide. Front Vet Sci 2022; 8:761742. [PMID: 35004922 PMCID: PMC8733644 DOI: 10.3389/fvets.2021.761742] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/26/2021] [Indexed: 12/29/2022] Open
Abstract
With the ban of zinc oxide (ZnO) at high dosages in piglet diets in Europe by 2022, alternative nutritional solutions are being tested to support piglet immune defence during their weaning, the most critical and stressful moment of pig production. The present study evaluated the effect of zinc oxide (ZnO; 2,500 mg/kg diet) and resin acid concentrate (RAC; 200 mg/kg diet) on the immune defence of weaned piglets challenged with lipopolysaccharide (LPS). Piglets were challenged at days 7 and 21 post-weaning, and blood was sampled 1.5 and 3.0 h after each challenge to determine serum levels of pro- and anti-inflammatory cytokines. The levels of serum tumour necrosis factor alpha (TNF-α) and interleukin 8 (IL-8) increased at days 7 and 21, and those of IL-6 at day 21 when challenged piglets were fed a diet supplemented with ZnO. In challenged piglets fed with RAC, the serum levels of IL-1β, IL-6, IL-8, IL-10 and TNF-α were increased at days 7 and 21, except for that of IL-1β, which was not affected at day 21. The increased levels of these cytokines indicate the successful immune-modulatory effect of ZnO and RAC, which appears as a candidate to replace ZnO in weaned piglets' diets.
Collapse
|
26
|
Li Y, Sun T, Hong Y, Qiao T, Wang Y, Li W, Tang S, Yang X, Li J, Li X, Zhou Z, Xiao Y. Mixture of Five Fermented Herbs ( Zhihuasi Tk) Alters the Intestinal Microbiota and Promotes the Growth Performance in Piglets. Front Microbiol 2021; 12:725196. [PMID: 34764942 PMCID: PMC8576326 DOI: 10.3389/fmicb.2021.725196] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/16/2021] [Indexed: 12/17/2022] Open
Abstract
To explore the feasibility of using fermented Chinese herbal mixture Zhihuasi Tk (Z. Tk) supplementation to increase the swine production, the protective effect of dietary supplementation with Z. Tk on the intestinal oxidative stress model and the regulation of both growth performance and intestinal microbiota of weaned piglets were investigated in vitro. Our results showed that the addition of Z. Tk increased the cell viability, prevented the decrease of glutathione peroxidase, and significantly increased the total antioxidant capacity and reduced the damage caused by H2O2 to the tight junction proteins of the porcine small intestinal epithelial cell line (IPEC-J2). Furthermore, weaned piglets supplemented with either 2 kg/ton zinc oxide (ZnO) or 4 kg/ton of Z. Tk in the diet increased body weight as well as average daily feed intake and daily gain, while the feed conversion rate and diarrhea rate decreased within 0–35 days. Results of the taxonomic structure of the intestinal microbiota showed that, in 21 days after weaning, the Firmicutes/Bacteroidetes ratio in experimental group was increased, while the abundance of beneficial bacteria such, as Lactobacillus, was increased by Z. Tk, showing inhibitory effect on pathogenic bacteria such as members of Proteobacteria. In summary, dietary supplementation with Z. Tk maintained the intestinal microbiota in a favorable state for the host to effectively reduce the abnormal changes in the intestinal microbial structure and improved growth performance of weaned piglets. Therefore, Z. Tk may potentially function as a substitute for ZnO in feed additives for weaned piglets in modern husbandry.
Collapse
Affiliation(s)
- Yong Li
- COFCO Feed Co., Ltd., Beijing, China
| | - Tiehu Sun
- COFCO Nutrition and Health Research Institute, Beijing, China
| | - Yuxuan Hong
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Tong Qiao
- Hubei Huada Real Science & Technology Co., Ltd., Wuhan, China
| | - Yongsheng Wang
- COFCO Nutrition and Health Research Institute, Beijing, China
| | - Wei Li
- COFCO Feed Co., Ltd., Beijing, China
| | - Shi Tang
- COFCO Feed Co., Ltd., Beijing, China
| | - Xin Yang
- COFCO Nutrition and Health Research Institute, Beijing, China
| | - Jie Li
- COFCO Nutrition and Health Research Institute, Beijing, China
| | - Xiaowen Li
- Hubei Huada Real Science & Technology Co., Ltd., Wuhan, China
| | - Zutao Zhou
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Yuncai Xiao
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
27
|
Horky P, Gruberova HA, Aulichova T, Malyugina S, Slama P, Pavlik A, Skladanka J, Skoric M, Skalickova S. Protective effect of a new generation of activated and purified bentonite in combination with yeast and phytogenic substances on mycotoxin challenge in pigs. PLoS One 2021; 16:e0259132. [PMID: 34705867 PMCID: PMC8550360 DOI: 10.1371/journal.pone.0259132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 10/13/2021] [Indexed: 01/17/2023] Open
Abstract
The study aimed to investigate the efficacy of new mycotoxin adsorbents based on purified and activated bentonites combined with yeast and phytogenic compounds in fattening pigs. The experiment involved 96 pigs (31.2±2.4 kg). Control (C) group was fed a diet naturally contaminated with mycotoxins (5 mg/kg deoxynivalenol, DON) without an adsorbent. Treated groups received the feed with mycotoxin adsorbents: purified and activated bentonite (T1), purified and activated bentonite, yeast derivatives, phytogenic substances (T2), and purified, activated, and sulphurated bentonite with phytogenic substances (T3). Evaluated parameters involved growth performance, organ weight, small intestine and liver histopathology, complete blood count, serum biochemistry, antioxidant status of the organism and total and free DON content in urine. In all treated groups, an significant increase in intestinal GSH and GSH/GSSG ratio was observed when compared to C. No significant effects on liver and kidney weight, complete blood count, serum or intestinal malondialdehyde concentration, or total/free DON content in urine were observed. All adsorbents improved histopathological findings in the liver when compared to C. Moreover, T1, and T2 groups showed no presence of inflammatory reaction or necrotic changes in the livers. Although, mycotoxin adsorbents investigated in this study had no significant impact on pig growth performance, they reduced the oxidative stress, and on the tissue level they protected the jejunal tissue and liver parenchyma under deoxynivalenol challenge.
Collapse
Affiliation(s)
- Pavel Horky
- Faculty of AgriSciences, Department of Animal Nutrition and Forage Production, Mendel University in Brno, Brno, Czech Republic, European Union
| | - Hana Abigail Gruberova
- Faculty of AgriSciences, Department of Animal Nutrition and Forage Production, Mendel University in Brno, Brno, Czech Republic, European Union
| | - Tereza Aulichova
- Faculty of AgriSciences, Department of Animal Nutrition and Forage Production, Mendel University in Brno, Brno, Czech Republic, European Union
| | - Svetlana Malyugina
- Faculty of AgriSciences, Department of Animal Nutrition and Forage Production, Mendel University in Brno, Brno, Czech Republic, European Union
| | - Petr Slama
- Faculty of AgriSciences, Department of Animal Morphology, Physiology and Genetics, Mendel University in Brno, Brno, Czech Republic, European Union
| | - Ales Pavlik
- Faculty of AgriSciences, Department of Animal Morphology, Physiology and Genetics, Mendel University in Brno, Brno, Czech Republic, European Union
| | - Jiri Skladanka
- Faculty of AgriSciences, Department of Animal Nutrition and Forage Production, Mendel University in Brno, Brno, Czech Republic, European Union
| | - Misa Skoric
- Faculty of Veterinary Medicine, Department of Pathological Morphology and Parasitology, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic, European Union
| | - Sylvie Skalickova
- Faculty of AgriSciences, Department of Animal Nutrition and Forage Production, Mendel University in Brno, Brno, Czech Republic, European Union
- * E-mail:
| |
Collapse
|
28
|
Pajarillo EAB, Lee E, Kang DK. Trace metals and animal health: Interplay of the gut microbiota with iron, manganese, zinc, and copper. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2021; 7:750-761. [PMID: 34466679 PMCID: PMC8379138 DOI: 10.1016/j.aninu.2021.03.005] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/27/2021] [Accepted: 03/16/2021] [Indexed: 12/27/2022]
Abstract
Metals such as iron, manganese, copper, and zinc are recognized as essential trace elements. These trace metals play critical roles in development, growth, and metabolism, participating in various metabolic processes by acting as cofactors of enzymes or providing structural support to proteins. Deficiency or toxicity of these metals can impact human and animal health, giving rise to a number of metabolic and neurological disorders. Proper breakdown, absorption, and elimination of these trace metals is a tightly regulated process that requires crosstalk between the host and these micronutrients. The gut is a complex system that serves as the interface between these components, but other factors that contribute to this delicate interaction are not well understood. The gut is home to trillions of microorganisms and microbial genes (the gut microbiome) that can regulate the metabolism and transport of micronutrients and contribute to the bioavailability of trace metals through their assimilation from food sources or by competing with the host. Furthermore, deficiency or toxicity of these metals can modulate the gut microenvironment, including microbiota, nutrient availability, stress, and immunity. Thus, understanding the role of the gut microbiota in the metabolism of manganese, iron, copper, and zinc, as well as in heavy metal deficiencies and toxicities, and vice versa, may provide insight into developing improved or alternative therapeutic strategies to address emerging health concerns. This review describes the current understanding of how the gut microbiome and trace metals interact and affect host health, particularly in pigs.
Collapse
Affiliation(s)
- Edward Alain B. Pajarillo
- Department of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee 32307, FL, USA
| | - Eunsook Lee
- Department of Animal Resources Science, Dankook University, Cheonan 31116, Republic of Korea
| | - Dae-Kyung Kang
- Department of Animal Resources Science, Dankook University, Cheonan 31116, Republic of Korea
| |
Collapse
|
29
|
Ding H, Zhang Q, Xu H, Yu X, Chen L, Wang Z, Feng J. Selection of copper and zinc dosages in pig diets based on the mutual benefit of animal growth and environmental protection. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 216:112177. [PMID: 33839484 DOI: 10.1016/j.ecoenv.2021.112177] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 06/12/2023]
Abstract
Dietary copper and zinc additives facilitate the growth and development of animals, but heavy metal in feces threatens the ecological environment, and balance is the key to solving the problem. In this study, a trial of 2000 pigs (early nursery, 9-15 kg; late nursery, 15-25 kg; grower: 25-60 kg) was conducted to analyze the effects of different diets (gradient dosage of copper and zinc additives) on growth performance, antioxidant performance, immune function, and fecal heavy metal excretion of piglets and growing pigs. Although no significant differences were observed in average daily gain (ADG) and average daily feed intake (ADFI) between treatments during the entire nursery-grower period, the addition of appropriate high doses of copper and zinc to the diet had a beneficial effect on the antioxidant status and immune function of weaned piglets. Especially at early nursery, compared with the low-copper group (5 mg/kg Cu), the high-copper group (120 mg/kg Cu) could significantly increase the peroxidase (POD), glutathione peroxidase (GSH-PX), total antioxidant capacity (T-AOC), catalase (CAT) and copper/zinc superoxide dismutase (Cu/Zn-SOD), cortisol in the serum. Moreover, the addition of zinc and copper in the diet not only increased the concentration of corresponding trace elements in the serum, but also affected the concentration of other trace elements in the serum. The reduction of copper and zinc content in the diet contributed to reducing the copper and zinc content in feces. In conclusion, we have formulated the mutual benefit dosages of copper and zinc (9-15 kg: 5 mg/kg Cu and 50 mg/kg Zn; 15-25 kg: 4 mg/kg Cu and 50 mg/kg Zn; 25-60 kg: 4 mg/kg Cu and 10 mg/kg Zn) for weaning piglets and growing pigs, which would help ensure the healthy growth of animals and reduce environmental heavy metal residues. CAPSULE: This study developed a mutually beneficial dose of copper and zinc in pig diets, which promotes animal growth and protects the environment.
Collapse
Affiliation(s)
- Haoxuan Ding
- College of Animal Sciences, Zhejiang University, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Qian Zhang
- College of Animal Sciences, Zhejiang University, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Huangen Xu
- Research Center of Zhejiang Kesheng Feed Co., Ltd., Shaoxing, Zhejiang, China
| | - Xiaonan Yu
- College of Animal Sciences, Zhejiang University, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Lingjun Chen
- College of Animal Sciences, Zhejiang University, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Zhonghang Wang
- College of Animal Sciences, Zhejiang University, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Jie Feng
- College of Animal Sciences, Zhejiang University, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
30
|
Fernández MD, Obrador A, García-Gómez C. Zn concentration decline and apical endpoints recovery of earthworms (E. andrei) after removal from an acidic soil spiked with coated ZnO nanoparticles. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 211:111916. [PMID: 33485012 DOI: 10.1016/j.ecoenv.2021.111916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 01/04/2021] [Accepted: 01/06/2021] [Indexed: 06/12/2023]
Abstract
ZnO nanoparticles (ZnO-NPs) can reach soil in both deliberate and non-deliberate ways, which leads to contamination. Notwithstanding knowledge about ZnO-NPs impacts on earthworms inhabiting these soils is limited and gaps appear in the recovery of damaged functions after their migration to unpolluted environments. To estimate these impacts, earthworms (Eisenia andrei) were exposed to different concentrations of coated ZnO-NPs (20, 250, 500, 1000 mgZnkg-1) in an acidic agricultural soil (pH 5.4) for 28 days. Subsequently, earthworms were placed in the same unpolluted soil to study the depletion of Zn accumulated and the recovery potential of the affected functions for another 28-day period.In the exposure phase, ecotoxicological responses were dose-dependent. Mortality and growth were affected at 500 and 1000 mg kg- 1, and the reproduction was impaired from 250 mgZnkg- 1 compared to control (54% fecundity and 80% fertility reduction). Zn uptake increased with coated ZnO-NPs in soil but it did not exceed 163 mgZnkg- 1 earthworm. During the recovery period, the Zn in earthworms were similar to the control regardless of the initially Zn accumulated. Reproduction parameters returned to the control values in the animals pre-exposed to 250 mgZnkg- 1 as coated ZnO-NP. In the earthworms preexposed to the two highest doses, growth and fertility were stimulated compared to the control when placed in clean soil, but not fecundity. However, the total hatchlings number did not reach the control figures after 28 days, but probably would for in longer times, which would be key for maintaining earthworm populations.
Collapse
Affiliation(s)
- María Dolores Fernández
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Departamento de Medio Ambiente y Agronomía, Ctra. A Coruña, km 7.5, 28040 Madrid, Spain.
| | - Ana Obrador
- Universidad Politécnica de Madrid (UPM), Chemical and Food Technology Department, CEIGRAM, Research Centre for the Management of Agricultural and Environmental Risks, Avda. Complutense s/n, 28040 Madrid, Spain.
| | - Concepción García-Gómez
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Departamento de Medio Ambiente y Agronomía, Ctra. A Coruña, km 7.5, 28040 Madrid, Spain.
| |
Collapse
|