1
|
Cai Y, Huang Y, Wang Y, Lin C, Qiu L, Wei H. Lactobacillus johnsonii GLJ001 prevents DSS-induced colitis in mice by inhibiting M1 macrophage polarization via gut microbiota-SCFAs axis. Int Immunopharmacol 2025; 144:113671. [PMID: 39615110 DOI: 10.1016/j.intimp.2024.113671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 10/31/2024] [Accepted: 11/17/2024] [Indexed: 12/15/2024]
Abstract
Inflammatory Bowel Disease (IBD) is increasing worldwide and has become a global emergent disease. Probiotics have been reported to be effective in relieving colitis. Previous studies found ripened Pu-erh tea (RPT) promoted gut microbiota resilience against dextran sulfate sodium (DSS)-induced colitis in mice by increasing relative abundance of Lactobacillus. However, whether and how it alleviated DSS-induced colitis in mice need to be explored. Here, we screened a probiotic Lactobacillus johnsonii GLJ001 from feces of ripened Pu-erh tea (RPT)-administrated mice. In this study, L. johnsonii GLJ001 attenuated symptoms of DSS-induced colitis in mice, including weight loss, increased disease activity index (DAI), colon shortening and colon tissue damage, as well as high expression of inflammatory cytokines and disturbances of intestine barrier function. Furthermore, abundances of short-chain fatty acids (SCFAs)-producing bacteria (i.e. Clostridium cluster IV and XIVa, Lachnospiracea_incertae_sedis and Ruminococcus) were enhanced in the cecum of mice treated with L. johnsonii GLJ001, accompanying by an increase of SCFAs. It was also found that SCFAs inhibited mRNA expression of M1 macrophage markers (Inos and CD86), inflammatory cytokines (TNF-α and Il-1β) and SCFAs receptors (Gpr41 and Gpr43) induced by lipopolysaccharide (LPS) and interferon-γ (IFN-γ) in THP-1 cell line. Collectively, L. johnsonii GLJ001 prevented DSS-induced colitis in mice by inhibiting M1 macrophage polarization via gut microbiota-SCFAs axis, and can be administered for management of colitis.
Collapse
Affiliation(s)
- Yunjie Cai
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, People's Republic of China
| | - Yina Huang
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, People's Republic of China
| | - Yu Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, People's Republic of China
| | - Cuiyao Lin
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, People's Republic of China
| | - Liang Qiu
- Centre for Translational Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330006, People's Republic of China.
| | - Hua Wei
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, People's Republic of China.
| |
Collapse
|
2
|
Huang KD, Müller M, Sivapornnukul P, Bielecka AA, Amend L, Tawk C, Lesker TR, Hahn A, Strowig T. Dietary selective effects manifest in the human gut microbiota from species composition to strain genetic makeup. Cell Rep 2024; 43:115067. [PMID: 39673707 DOI: 10.1016/j.celrep.2024.115067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/10/2024] [Accepted: 11/22/2024] [Indexed: 12/16/2024] Open
Abstract
Diet significantly influences the human gut microbiota, a key player in health. We analyzed shotgun metagenomic sequencing data from healthy individuals with long-term dietary patterns-vegan, flexitarian, or omnivore-and included detailed dietary surveys and blood biomarkers. Dietary patterns notably affected the bacterial community composition by altering the relative abundances of certain species but had a minimal impact on microbial functional repertoires. However, diet influenced microbial functionality at the strain level, with diet type linked to strain genetic variations. We also found molecular signatures of selective pressure in species enriched by specific diets. Notably, species enriched in omnivores exhibited stronger positive selection, such as multiple iron-regulating genes in the meat-favoring bacterium Odoribacter splanchnicus, an effect that was also validated in independent cohorts. Our findings offer insights into how diet shapes species and genetic diversity in the human gut microbiota.
Collapse
Affiliation(s)
- Kun D Huang
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Mattea Müller
- Institute of Food Science and Nutrition, Leibniz University of Hannover, Hannover, Germany
| | - Pavaret Sivapornnukul
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany; Center of Excellence in Systems Microbiology (CESM), Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Agata Anna Bielecka
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Lena Amend
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Caroline Tawk
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Till-Robin Lesker
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Andreas Hahn
- Institute of Food Science and Nutrition, Leibniz University of Hannover, Hannover, Germany
| | - Till Strowig
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany; Hannover Medical School (MHH), Hannover, Germany; Centre for Individualized Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany.
| |
Collapse
|
3
|
Olanrewaju OS, Glick BR, Babalola OO. Beyond correlation: Understanding the causal link between microbiome and plant health. Heliyon 2024; 10:e40517. [PMID: 39669148 PMCID: PMC11636107 DOI: 10.1016/j.heliyon.2024.e40517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 12/14/2024] Open
Abstract
Understanding the causal link between the microbiome and plant health is crucial for the future of crop production. Established studies have shown a symbiotic relationship between microbes and plants, reshaping our knowledge of plant microbiomes' role in health and disease. Addressing confounding factors in microbiome study is essential, as standardization enables precise identification of microbiome features that influence outcomes. The microbiome significantly impacts plant development, necessitating holistic investigation for maintaining plant health. Mechanistic studies have deepened our understanding of microbiome structure and function related to plant health, though much research still needs to be carried out. This review, therefore, discusses current challenges and proposes advancing studies from correlation to causation and translation. We explore current knowledge on the microbiome and plant health, emphasizing multi-omics approaches and hypothesis-driven research. Future studies should focus on developing translational research for producing probiotics and prebiotics from biomarkers that regulate the microbiome-plant health connection, promoting sustainable crop production through microbiome applications.
Collapse
Affiliation(s)
- Oluwaseyi Samuel Olanrewaju
- Unit for Environmental Sciences and Management, Microbiology, North-West University, Potchefstroom Campus, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - Bernard R. Glick
- Department of Biology, University of Waterloo, Waterloo, Ontario, N2L3G1, Canada
| | - Olubukola Oluranti Babalola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, South Africa
- Department of Life Sciences, Silwood Park Campus, Imperial College London, Buckhurst road, Ascot, Berkshire, SL5 7PY, UK
| |
Collapse
|
4
|
Kumar CK, Gleason AC, Parameswaran GG, Summan A, Klein E, Laxminarayan R, Nandi A. Routine immunization against Streptococcus pneumoniae and Haemophilus influenzae type B and antibiotic consumption in India: a dynamic modeling analysis. THE LANCET REGIONAL HEALTH. SOUTHEAST ASIA 2024; 31:100498. [PMID: 39492849 PMCID: PMC11530913 DOI: 10.1016/j.lansea.2024.100498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 09/28/2024] [Accepted: 09/30/2024] [Indexed: 11/05/2024]
Abstract
Background Childhood vaccinations can reduce disease burden and associated antibiotic use, in turn reducing the risk of antimicrobial resistance (AMR). We retrospectively estimated the population-level reductions in antibiotic use in India following the introduction of vaccines against Streptococcus pneumoniae and Haemophilius influenzae type B in the national immunization program for children in the mid-2010s and projected future gains to 2028 if vaccination coverage were to be increased. Methods Using IndiaSim, a dynamic agent-based microsimulation model (ABM) for India, we simulated the spread of Streptococcus pneumoniae and Haemophilius influenzae type B (Hib) among children to estimate reductions in antibiotic use under the scenarios of: (i) pneumococcal and Hib vaccine coverage levels equivalent to the national coverage of pentavalent diphtheria-pertussis-tetanus third dose (DPT3) compared to a baseline of no vaccination, and (ii) near-universal (90%) coverage of the vaccines compared to pre-COVID national DPT3-level coverage. Model parameters, including national DPT3 coverage rates, were based on data from the National Family Household Survey 2015-2016 and other published sources. We quantified reductions in antibiotic consumption nationally and by state and wealth quintiles. Findings We estimate that coverage of S. pneumoniae and Hib vaccines at the same level as DPT3 in India would translate to a 61.4% [95% UI: 43.8-69.5] reduction in attributable antibiotic use compared to a baseline of zero vaccination coverage. Increases in childhood vaccination coverage between 2004 and 2016 have likely reduced attributable antibiotic demand by as much as 93.4% among the poorest quintile. Increasing vaccination coverage by an additional 11 percentage points from 2016 levels results in mortality and antibiotic use across wealth quintiles becoming increasingly similar (p < 0.05), reducing in health inquities. We project that near-universal vaccine coverage would further reduce inequities in antibiotic demand and may eliminate of outbreak-associated antibiotic use from S. pneumoniae and Hib. Interpretation Though vaccination has a complex relationship with antibiotic use because both are modulated by socioeconomic factors, increasing vaccinations for S. pneumoniae and Hib may have a significant impact on reducing antibiotic use and improving health outcomes among the poorest individuals. Funding The Bill & Melinda Gates Foundation (grant numbers OPP1158136 and OPP1190803).
Collapse
Affiliation(s)
- Chirag K. Kumar
- Princeton University, Princeton, NJ, USA
- One Health Trust, Bengaluru, India
| | | | | | | | - Eili Klein
- One Health Trust, Washington, DC, USA
- Department of Emergency Medicine, Johns Hopkins University, Baltimore, MD, USA
| | | | - Arindam Nandi
- One Health Trust, Washington, DC, USA
- Population Council, New York, NY, USA
| |
Collapse
|
5
|
Kutchy NA, Morenikeji OB, Memili A, Ugur MR. Deciphering sperm functions using biological networks. Biotechnol Genet Eng Rev 2024; 40:3743-3767. [PMID: 36722689 DOI: 10.1080/02648725.2023.2168912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Indexed: 02/02/2023]
Abstract
The global human population is exponentially increasing, which requires the production of quality food through efficient reproduction as well as sustainable production of livestock. Lack of knowledge and technology for assessing semen quality and predicting bull fertility is hindering advances in animal science and food animal production and causing millions of dollars of economic losses annually. The intent of this systemic review is to summarize methods from computational biology for analysis of gene, metabolite, and protein networks to identify potential markers that can be applied to improve livestock reproduction, with a focus on bull fertility. We provide examples of available gene, metabolic, and protein networks and computational biology methods to show how the interactions between genes, proteins, and metabolites together drive the complex process of spermatogenesis and regulate fertility in animals. We demonstrate the use of the National Center for Biotechnology Information (NCBI) and Ensembl for finding gene sequences, and then use them to create and understand gene, protein and metabolite networks for sperm associated factors to elucidate global cellular processes in sperm. This study highlights the value of mapping complex biological pathways among livestock and potential for conducting studies on promoting livestock improvement for global food security.
Collapse
Affiliation(s)
- Naseer A Kutchy
- Department of Anatomy, Physiology and Pharmacology, School of Veterinary Medicine, St. George's University, St. George's, Grenada
- Department of Animal Sciences, School of Environmental and Biological Sciences Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Olanrewaju B Morenikeji
- Division of Biological and Health Sciences, University of Pittsburgh at Bradford, Bradford, PA, USA
| | - Aylin Memili
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | | |
Collapse
|
6
|
Tang Y, Tian C, Yao D, Yang S, Shi L, Yi L, Peng Q. Community assembly and potential function analysis of the endophyte in Eucommia ulmoides. BMC Microbiol 2024; 24:460. [PMID: 39511491 PMCID: PMC11542450 DOI: 10.1186/s12866-024-03601-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 10/23/2024] [Indexed: 11/15/2024] Open
Abstract
Endophytes play a pivotal role in protecting host plants from both biotic and abiotic stresses, promoting the production of active components (AC) and plant growth. However, the succession of the endophyte community in Eucommia ulmoides (E. ulmoides), particularly the community assembly and function, has not been extensively investigated. In this study, we employed high-throughput sequencing and bioinformatics tools to analyze endophyte diversity across different tree ages, parts, and periods. We examined the population differences, correlations, community assembly mechanisms, and functional roles of these endophytes. Functional predictions via PICRUSt2 revealed that most endophytic fungal functions were linked to biosynthesis, with significant differences in biosynthetic functional abundance across parts and periods. In contrast, the metabolic activity of endophytic bacteria remained stable across different periods and parts. Correlation analysis further confirmed a strong positive relationship between ACs and certain endophytic fungi. Among them, the fungal phyla Ascomycota and Basidiomycota were identified as key contributors to the metabolism of chlorogenic acid (CA), while Aucubin was significantly positively correlated with several endophytic bacteria. These findings provide valuable insights into the functional roles and community assembly mechanism of E. ulmoides endophytes, as well as their symbiotic relationships.
Collapse
Affiliation(s)
- Yunzhe Tang
- College of Biology and Environmental Sciences, Jishou University, Jishou, Hunan, China
| | - Chunlian Tian
- Hunan Provincial Key Laboratory of Forestry and Chemical Engineering, Jishou University, Jishou, Hunan, China
| | - Di Yao
- College of Biology and Environmental Sciences, Jishou University, Jishou, Hunan, China
| | - Shuai Yang
- College of Biology and Environmental Sciences, Jishou University, Jishou, Hunan, China
| | - Linfang Shi
- College of Biology and Environmental Sciences, Jishou University, Jishou, Hunan, China
| | - Langbo Yi
- College of Biology and Environmental Sciences, Jishou University, Jishou, Hunan, China.
- Key Laboratory of Ecological Conservation and Sustainable Utilization of Resources in Wuling Mountain Area, Hunan Province, Jishou University, Jishou, Hunan, China.
| | - Qingzhong Peng
- College of Biology and Environmental Sciences, Jishou University, Jishou, Hunan, China.
- Key Laboratory of Ecological Conservation and Sustainable Utilization of Resources in Wuling Mountain Area, Hunan Province, Jishou University, Jishou, Hunan, China.
| |
Collapse
|
7
|
Olbjørn C, Hagen M, Moen AEF, Havdal LB, Sommen SL, Berven LL, Thiis-Evensen E, Stiansen-Sonerud T, Selvakumar J, Wyller VBB. Longitudinal Fecal Microbiota Profiles in A Cohort of Non-Hospitalized Adolescents and Young Adults with COVID-19: Associations with SARS-CoV-2 Status and Long-Term Fatigue. Pathogens 2024; 13:953. [PMID: 39599506 PMCID: PMC11597601 DOI: 10.3390/pathogens13110953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/23/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024] Open
Abstract
Adolescents most often experience mild acute COVID-19, but may still face fatigue and persistent symptoms such as post-COVID-19 condition (PCC) and post-infective fatigue syndrome (PIFS). We explored the fecal microbiota of SARS-CoV-2 positive and negative non-hospitalized adolescents and young adults (12-25 years of age) in the "Long-Term Effects of COVID-19 in Adolescents" (LoTECA) project, a longitudinal observational cohort study. With a targeted qPCR approach, the quantities of 100 fecal bacterial taxa were measured at baseline (early convalescent stage) in 145 SARS-CoV-2-positive and 32 SARS-CoV-2 negative participants and after six months in 107 of the SARS-CoV-2-positive and 19 of the SARS-CoV-2 negative participants. Results: Faecalibacterium prausnitzii M21.2 and Gemmiger formicilis (both p < 0.001) were enriched in the SARS-CoV-2-positive participants compared to negative controls at baseline. In SARS-CoV-2-positive participants, lower baseline abundance of Faecalibacterium prausnitzii M21/2 (p = 0.013) and higher abundance of Clostridium spiroforme (p = 0.006), Sutterella wadsworthensis (p < 0.001), and Streptococcus thermophilus (p = 0.039) were associated with six-month fatigue. Sutterella wadsworthensis and Streptococcus thermophilus enrichment was additionally associated with PCC in the SARS-CoV-2-positive group (p < 0.001 and 0.042 respectively). Conclusions: Adolescents and young adults with mild acute COVID-19 infection had increased fecal abundance of the beneficial Faecalibacterium prausnitzii M21/2 and Gemmiger formicilis compared to SARS-CoV-2 negative controls in the early convalescent stage. Additionally, the abundance of both known (Faecalibacterium prausnitzii, Streptococcus thermophilus) and new (Clostridium spiroforme, Sutterella wadsworthensis) bacteria were associated with persistent symptoms such as fatigue in the COVID-19 infected group, warranting further exploration of the role of these bacteria in COVID-19 disease and PCC pathophysiology.
Collapse
Affiliation(s)
- Christine Olbjørn
- Department of Pediatric and Adolescent Medicine, Akershus University Hospital, 1478 Lørenskog, Norway; (L.B.H.); (S.L.S.); (L.L.B.); (T.S.-S.); (J.S.); (V.B.B.W.)
| | - Milada Hagen
- Department of Nursing and Health Promotion, Oslo Metropolitan University, 0130 Oslo, Norway;
| | | | - Lise Beier Havdal
- Department of Pediatric and Adolescent Medicine, Akershus University Hospital, 1478 Lørenskog, Norway; (L.B.H.); (S.L.S.); (L.L.B.); (T.S.-S.); (J.S.); (V.B.B.W.)
| | - Silke Lauren Sommen
- Department of Pediatric and Adolescent Medicine, Akershus University Hospital, 1478 Lørenskog, Norway; (L.B.H.); (S.L.S.); (L.L.B.); (T.S.-S.); (J.S.); (V.B.B.W.)
- Institute of Clinical Medicine, University of Oslo, 0318 Oslo, Norway
| | - Lise Lund Berven
- Department of Pediatric and Adolescent Medicine, Akershus University Hospital, 1478 Lørenskog, Norway; (L.B.H.); (S.L.S.); (L.L.B.); (T.S.-S.); (J.S.); (V.B.B.W.)
- Department of Microbiology and Infection Control, Akershus University Hospital, 1478 Lørenskog, Norway
| | - Espen Thiis-Evensen
- Department of Gastroenterology, Rikshospitalet, Oslo University Hospital, 0372 Oslo, Norway;
| | - Tonje Stiansen-Sonerud
- Department of Pediatric and Adolescent Medicine, Akershus University Hospital, 1478 Lørenskog, Norway; (L.B.H.); (S.L.S.); (L.L.B.); (T.S.-S.); (J.S.); (V.B.B.W.)
- Department of Clinical Molecular Biology (EpiGen), University of Oslo, Akershus University Hospital, 1478 Lørenskog, Norway
| | - Joel Selvakumar
- Department of Pediatric and Adolescent Medicine, Akershus University Hospital, 1478 Lørenskog, Norway; (L.B.H.); (S.L.S.); (L.L.B.); (T.S.-S.); (J.S.); (V.B.B.W.)
- Institute of Clinical Medicine, University of Oslo, 0318 Oslo, Norway
| | - Vegard Bruun Bratholm Wyller
- Department of Pediatric and Adolescent Medicine, Akershus University Hospital, 1478 Lørenskog, Norway; (L.B.H.); (S.L.S.); (L.L.B.); (T.S.-S.); (J.S.); (V.B.B.W.)
- Institute of Clinical Medicine, University of Oslo, 0318 Oslo, Norway
| |
Collapse
|
8
|
Ji M, Zhou J, Li Y, Ma K, Song W, Li Y, Zhou J, Tu Q. Biodiversity of mudflat intertidal viromes along the Chinese coasts. Nat Commun 2024; 15:8611. [PMID: 39367024 PMCID: PMC11452619 DOI: 10.1038/s41467-024-52996-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 09/27/2024] [Indexed: 10/06/2024] Open
Abstract
Viruses constitute the most diverse and abundant biological entities on Earth. However, our understanding of this tiniest life form in complex ecosystems remains limited. Here, we recover 20,102 viral OTUs from twelve intertidal zones along the Chinese coasts. Our analysis demonstrates high viral diversity and functional potential in intertidal zones, encoding important functional genes that can be potentially transferred to microbial hosts and mediate elemental biogeochemical cycles, especially carbon, phosphate and sulfur. Virus-host abundance dynamics vary among different microbial lineages. Viral community composition is closely associated with environmental conditions, including dissolved organic matter. Concordant biogeographic patterns are observed for viruses and microbes. Viral communities are generally habitat specific with low overlaps between intertidal and other habitats. Environmental factors and geographic distance dominate the compositional variation of intertidal viromes. Overall, these findings expand our understanding of intertidal viromes within an ecological framework, providing insights into the virus-host coevolutionary arms race.
Collapse
Affiliation(s)
- Mengzhi Ji
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
| | - Jiayin Zhou
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
| | - Yan Li
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
| | - Kai Ma
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
| | - Wen Song
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
| | - Yueyue Li
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
| | - Jizhong Zhou
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, USA
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Qichao Tu
- Institute of Marine Science and Technology, Shandong University, Qingdao, China.
- Qingdao Key Laboratory of Ocean Carbon Sequestration and Negative Emission Technology, Shandong University, Qingdao, China.
| |
Collapse
|
9
|
Vojvoda Zeljko T, Kajan K, Jalžić B, Hu A, Cukrov N, Marguš M, Cukrov N, Marković T, Sabatino R, Di Cesare A, Orlić S. Genome-centric metagenomes unveiling the hidden resistome in an anchialine cave. ENVIRONMENTAL MICROBIOME 2024; 19:67. [PMID: 39252078 PMCID: PMC11386340 DOI: 10.1186/s40793-024-00612-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/02/2024] [Indexed: 09/11/2024]
Abstract
BACKGROUND Antibiotic resistance is a critical global concern, posing significant challenges to human health and medical treatments. Studying antibiotic resistance genes (ARGs) is essential not only in clinical settings but also in diverse environmental contexts. However, ARGs in unique environments such as anchialine caves, which connect both fresh and marine water, remain largely unexplored despite their intriguing ecological characteristics. RESULTS We present the first study that comprehensively explores the occurrence and distribution of ARGs and mobile genetic elements (MGEs) within an anchialine cave. Utilizing metagenomic sequencing we uncovered a wide array of ARGs with the bacitracin resistance gene, bacA and multidrug resistance genes, being the most dominant. The cave's microbial community and associated resistome were significantly influenced by the salinity gradient. The discovery of novel β-lactamase variants revealed the cave's potential as a reservoir for previously undetected resistance genes. ARGs in the cave demonstrated horizontal transfer potential via plasmids, unveiling ecological implications. CONCLUSIONS These findings highlight the need for further exploration of the resistome in unique environments like anchialine caves. The interconnected dynamics of ARGs and MGEs within anchialine caves offer valuable insights into potential reservoirs and mechanisms of antibiotic resistance in natural ecosystems. This study not only advances our fundamental understanding but also highlights the need for a comprehensive approach to address antibiotic resistance in diverse ecological settings.
Collapse
Affiliation(s)
- Tanja Vojvoda Zeljko
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička Cesta 54, 10000, Zagreb, Croatia
| | - Katarina Kajan
- Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10000, Zagreb, Croatia
- Center of Excellence for Science and Technology-Integration of Mediterranean Region (STIM), Zagreb, Croatia
| | - Branko Jalžić
- Croatian Biospeleological Society, 10000, Zagreb, Croatia
| | - Anyi Hu
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Neven Cukrov
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička Cesta 54, 10000, Zagreb, Croatia
| | - Marija Marguš
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička Cesta 54, 10000, Zagreb, Croatia
| | - Nuša Cukrov
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička Cesta 54, 10000, Zagreb, Croatia
| | | | - Raffaella Sabatino
- Molecular Ecology Group (MEG), National Research Council of Italy (CNR), Water Research Institute (IRSA), Largo Tonolli 50, 28922, Verbania, Italy
- National Biodiversity Future Center (NBFC), Piazza Marina 61, 90133, Palermo, Italy
| | - Andrea Di Cesare
- Molecular Ecology Group (MEG), National Research Council of Italy (CNR), Water Research Institute (IRSA), Largo Tonolli 50, 28922, Verbania, Italy
- National Biodiversity Future Center (NBFC), Piazza Marina 61, 90133, Palermo, Italy
| | - Sandi Orlić
- Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10000, Zagreb, Croatia.
- Center of Excellence for Science and Technology-Integration of Mediterranean Region (STIM), Zagreb, Croatia.
| |
Collapse
|
10
|
Yi J, Wu S, He H. Causal association of inflammatory bowel disease with sarcoidosis and the mediating role of primary biliary cholangitis. Front Immunol 2024; 15:1448724. [PMID: 39290708 PMCID: PMC11406174 DOI: 10.3389/fimmu.2024.1448724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/07/2024] [Indexed: 09/19/2024] Open
Abstract
Objectives Previous observational epidemiological studies have identified a potential association between inflammatory bowel disease (IBD) and sarcoidosis. Nonetheless, the precise biological mechanisms underlying this association remain unclear. Therefore, we adopted a Mendelian randomization (MR) approach to investigate the causal relationship between IBD with genetic susceptibility to sarcoidosis, as well as to explore the potential mediating role. Methods The genetic associations were obtained from publicly available genome-wide association studies (GWASs) of European ancestry. The IBD dataset has 31,665 cases and 33,977 controls, consisting of 13,768 individuals with ulcerative colitis (UC) and 17,897 individuals with Crohn's disease (CD). The genetic associations of sarcoidosis with 4,854 cases and 446,523 controls. A bidirectional causality between IBD and sarcoidosis was implemented to be determined by a two-sample MR approach. The inverse variance weighted (IVW) method was utilized as the main statistical method, and a series of sensitivity analyses were performed to detect heterogeneity and horizontal pleiotropy. A two-step MR approach was used to investigate whether the mediating pathway from IBD to sarcoidosis was mediated by PBC. Results The forward MR analysis indicated that genetic predisposition to IBD was significantly linked to an increased risk of sarcoidosis (OR = 1.088, 95% CI: 1.023-1.158, pIBD-sar = 7.498e-03). Similar causal associations were observed in CD (OR = 1.082, 95% CI: 1.028-1.138, pCD-sar = 2.397e-03) and UC (OR = 1.079, 95% CI: 1.006-1.158, pUC-sar = 0.034). Reverse MR analysis revealed that genetic susceptibility to sarcoidosis was correlated with an augmented risk of CD (OR = 1.306, 95% CI: 1.110-1.537, psar-CD = 1.290e-03) but not IBD or UC. The mediation analysis via two-step MR showed that the causal influence of IBD and CD on sarcoidosis effects was partly mediated by PBC, and the mediating effect was 0.018 (95% CI: 0.005-0.031, p = 7.596e-03) with a mediated proportion of 21.397% in IBD, and 0.014 (95% CI: 0.004-0.024, p = 7.800e-03) with a mediated proportion of 17.737% in CD. Conclusions The MR analysis provided evidence substantiating the causal effect of IBD (CD and UC) on an increased risk of sarcoidosis, with PBC playing a mediating role in IBD and CD. However, sarcoidosis only enhances the risk of developing CD, but not IBD or UC. These findings illuminate the etiology of sarcoidosis and contribute to the management of IBD patients.
Collapse
Affiliation(s)
- Jiazhi Yi
- Department of Gastroenterology, The Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Shuyun Wu
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Hongxia He
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
11
|
Piper HG, Bording-Jorgensen M, Veniamin S, Zhang Z, Suarez RG, Armstrong H, Silverman JA, Wine E. Intestinal microbial and metabolite profile in infants with small bowel stomas after bowel resection. J Pediatr Gastroenterol Nutr 2024; 79:705-715. [PMID: 39046027 DOI: 10.1002/jpn3.12327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/31/2024] [Accepted: 06/22/2024] [Indexed: 07/25/2024]
Abstract
BACKGROUND Infants with small bowel stomas (SBstoma) frequently struggle with absorption and rely on parenteral nutrition (PN). Intestinal absorption is difficult to predict based solely on intestinal anatomy. The purpose of this study was to characterize the microbiota and metabolic by-products within stoma effluent and correlate with clinical features and intestinal absorption. METHODS Prospective cohort study collecting stoma samples from neonates with SBstoma (N = 23) or colostomy control (N = 6) at initial enteral feed (first sample) and before stoma closure (last sample). Gut bacteriome (16S ribosomal RNA [rRNA] sequencing), short-chain fatty acids (SCFAs) and bile acids (BAs) were characterized along with volume and energy content of a 48 h collection via bomb calorimetry (last sample). Hierarchical clustering and linear regression were used to compare the bacteriome and BAs/SCFAs, to bowel length, PN, and growth. RESULTS Infants with ≤50% small bowel lost more fluid on average than those with >50% and controls (22, 18, 16 mL/kg/day, p = 0.013), but had similar energy losses (7, 10, 9 kcal/kg/day, p = 0.147). Infants growing poorly had enrichment of Proteobacteria compared to infants growing well (90% vs. 15%, p = 0.004). An increase in the ratio of secondary BAs within the small bowel over time, correlated with poor prognostic factors (≤50% small bowel, >50% of calories from PN, and poor growth). CONCLUSION Infants with SBstoma and poor growth have a unique bacteriome community and those with poor enteral tolerance have metabolic differences compared to infants with improved absorption.
Collapse
Affiliation(s)
- Hannah G Piper
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Simona Veniamin
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Zhengxiao Zhang
- College of Food and Biological Engineering, Jimei University, Fujian, Xiamen, China
| | - Ricardo G Suarez
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Heather Armstrong
- Department of Internal Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Jason A Silverman
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Eytan Wine
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
12
|
Zhou Q, Huang J, Wen S, Lou Y, Qiu S, Li H, Zhou R, Tang J. Occurrence of pathogenic Mycobacteria avium and Pseudomonas aeruginosa in outdoor decorative fountain water and the associated microbial community. JOURNAL OF WATER AND HEALTH 2024; 22:1663-1676. [PMID: 39340379 DOI: 10.2166/wh.2024.117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/31/2024] [Indexed: 09/30/2024]
Abstract
Outdoor decorative fountains usually attract residents to visit. However, opportunistic pathogens (OPs) can proliferate and grow in the stagnant fountain water, posing potential health risks to visitors due to the inhalation of spaying aerosols. In this study, the abundance of selected OPs and associated microbial communities in three large outdoor decorative fountain waters were investigated using quantitative PCR and 16S rRNA sequencing. The results indicated that Mycobacteria avium and Pseudomonas aeruginosa were consistently detected in all decorative fountain waters throughout the year. Redundancy analysis showed that OPs abundance was negatively correlated with water temperature but positively correlated with nutrient concentrations. The gene copy numbers of M. avium varied between 2.4 and 3.9 log10 (gene copies/mL), which were significantly lower than P. aeruginosa by several orders of magnitude, reaching 6.5-7.1 log10 (gene copies/mL) during winter. The analysis of taxonomic composition and prediction of functional potential also revealed pathogenic microorganisms and infectious disease metabolic pathways associated with microbial communities in different decorative fountain waters. This study provided a deeper understanding of the pathogenic conditions of the outdoor decorative fountain water, and future works should focus on accurately assessing the health risks posed by OPs in aerosols.
Collapse
Affiliation(s)
- Qiaomei Zhou
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Jingang Huang
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China; China-Austria Belt and Road Joint Laboratory on Artificial Intelligence and Advanced Manufacturing, Hangzhou Dianzi University, Hangzhou 310018, China E-mail:
| | - Shilin Wen
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Yucheng Lou
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Shanshan Qiu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Huanxuan Li
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Rongbing Zhou
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Junhong Tang
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| |
Collapse
|
13
|
Lan W, Pan J, Liu H, Weng R, Zeng Y, Jin L, Shi Q, Yu Y, Guan B, Jiang Y. Assessment of microorganisms in drinking water disinfected by catalytic ozonation with fluorinated ceramic honeycomb and NaClO disinfectants under laboratory and pilot conditions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 355:124184. [PMID: 38782162 DOI: 10.1016/j.envpol.2024.124184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/26/2024] [Accepted: 05/18/2024] [Indexed: 05/25/2024]
Abstract
While sodium hypochlorite (NaClO) has long been used to disinfect drinking water, concerns have risen over its use due to causing potentially hazardous byproducts. Catalytic ozonation with metal-free catalysts has attracted increasing attention to eliminate the risk of secondary pollution of byproducts in water treatment. Here, we compared the disinfection efficiency and microbial community of catalytic ozone with a type of metal-free catalyst fluorinated ceramic honeycomb (FCH) and NaClO disinfectants under laboratory- and pilot-scale conditions. Under laboratory conditions, the disinfection rate of catalytic ozonation was 3∼6-fold that of ozone when the concentration of Escherichia coli was 1 × 106 CFU/ml, and all E. coli were killed within 15 s. However, 0.65 mg/L NaClO retained E. coli after 30 min using the traditional culturable approach. The microorganism inactivation results of raw reservoir water disinfected by catalytic ozonation and ozonation within 15 s were incomparable based on the cultural method. In pilot-scale testing, catalytic ozonation inactivated all environmental bacteria within 4 min, while 0.65 mg/L NaClO could not achieve this success. Both catalytic ozonation and NaClO-disinfected methods significantly reduced the number of microorganisms but did not change the relative abundances of different species, i.e., bacteria, viruses, eukaryotes, and archaea, based on metagenomic analyses. The abundance of virulence factors (VFs) and antimicrobial resistance genes (ARGs) was detected few in catalytic ozonation, as determined by metagenomic sequencing. Some VFs or ARGs, such as virulence gene 'FAS-II' which was hosted by Mycobacterium_tuberculosis, were detected solely by the NaClO-disinfected method. The enriched genes and pathways of cataO3-disinfected methods exhibited an opposite trend, especially in human disease, compared with NaClO disinfection. These results indicated that the disinfection effect of catalytic ozone is superior to NaClO, this finding contributed to the large-scale application of catalytic ozonation with FCH in practical water treatment.
Collapse
Affiliation(s)
- Wei Lan
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, 310016, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Jian Pan
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 320058, China
| | - Haiyang Liu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, 310016, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Rui Weng
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, 310016, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Yaxiong Zeng
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 320013, China
| | - Lili Jin
- Yiwu Second Water Supply Co., Ltd., Yiwu, 322000, China
| | - Qiucheng Shi
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, 310016, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Yunsong Yu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, 310016, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Baohong Guan
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 320058, China
| | - Yan Jiang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, 310016, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China.
| |
Collapse
|
14
|
Wang S, Fu Z, Chen W, Wu S, Ke S, Tu J, Wei B. Saccharina Japonica Polysaccharides Suppress High-Fat Diet-Induced Obesity and Modulate Gut Microbiota Composition and Function. Chem Biodivers 2024; 21:e202401088. [PMID: 38856108 DOI: 10.1002/cbdv.202401088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024]
Abstract
Recent studies have highlighted the potential of Saccharina japonica Polysaccharides (SJPs) in alleviating high-fat diet (HFD)-induced obesity by regulating gut microbiota, which warrants further exploration to elucidate the underlying structure-activity relationship. In this study, five polysaccharide fractions (Sj-T, Sj-T-1, Sj-T-2, Sj-T-3, and Sj-T-4) with different structure characteristics were prepared from S. japonica, and their effects on HFD-induced obesity and gut microbiota composition were investigated using C57BL/6J mice. The results revealed that oral administration of Sj-T considerably suppressed HFD-induced obesity, glucose metabolic dysfunction, and other disordered symptoms. While, Sj-T-2, which has the lowest molecular weight, was the most effective in alleviating HFD-induced obesity and had the second-best effect on improving HFD-induced impaired glucose tolerance among the five SJPs. Supplementation with SJPs significantly modulated HFD-induced gut microbiota dysbiosis both at the phylum and species levels, such as enriching Desulfobacterota and Actinobacteriota, while suppressing the abundance of Bacteroidota. Sj-T also dramatically restored the gut microbiota composition by modulating the abundance of many crucial gut bacterial taxa, including s_Bacteroides_acidifaciens, s_Lachnospiraceae _bacterium, and g_Lachnospiraceae_NK4A136_group. Besides, SJPs also dramatically altered the function of gut microbiota, including many carbohydrate-metabolism enzymes. This study highlights the potential of SJPs in preventing obesity and restoring intestinal homeostasis in obese individuals.
Collapse
Affiliation(s)
- Sijia Wang
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Moganshan Research Institute at Deqing County Zhejiang University of Technology, Zhejiang University of Technology, Hangzhou, 310014, China
- Center for Human Nutrition, David Geffen School of Medicine, University of California, Los Angeles, CA-90024, USA
| | - Zixi Fu
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Moganshan Research Institute at Deqing County Zhejiang University of Technology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Weibing Chen
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Moganshan Research Institute at Deqing County Zhejiang University of Technology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Sitong Wu
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Moganshan Research Institute at Deqing County Zhejiang University of Technology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Songze Ke
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Moganshan Research Institute at Deqing County Zhejiang University of Technology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jianfeng Tu
- Emergency and Critical Care Center, Department of Emergency Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, 310014, Zhejiang, PR China
| | - Bin Wei
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Moganshan Research Institute at Deqing County Zhejiang University of Technology, Zhejiang University of Technology, Hangzhou, 310014, China
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Key Laboratory of Pharmaceutical Engineering of Zhejiang Province, Zhejiang University of Technology, Hangzhou, 310014, China
| |
Collapse
|
15
|
Cupples AM, Dang H, Foss K, Bernstein A, Thelusmond JR. An investigation of soil and groundwater metagenomes for genes encoding soluble and particulate methane monooxygenase, toluene-4-monoxygenase, propane monooxygenase and phenol hydroxylase. Arch Microbiol 2024; 206:363. [PMID: 39073473 DOI: 10.1007/s00203-024-04088-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 07/30/2024]
Abstract
Soil and groundwater were investigated for the genes encoding soluble and particulate methane monooxygenase/ammonia monooxygenase (sMMO, pMMO/AMO), toluene 4-monooxygenase (T4MO), propane monooxygenase (PMO) and phenol hydroxylase (PH). The objectives were (1) to determine which subunits were present, (2) to examine the diversity of the phylotypes associated with the biomarkers and (3) to identify which metagenome associated genomes (MAGs) contained these subunits. All T4MO and PH subunits were annotated in the groundwater metagenomes, while few were annotated in the soil metagenomes. The majority of the soil metagenomes included only four sMMO subunits. Only two groundwater metagenomes contained five sMMO subunits. Gene counts for the pMMO subunits varied between samples. The majority of the soil metagenomes were annotated for all four PMO subunits, while three out of eight groundwater metagenomes contained all four PMO subunits. A comparison of the blast alignments for the sMMO alpha chain (mmoX) indicated the phylotypes differed between the soil and groundwater metagenomes. For the pMMO/AMO alpha subunit (pmoA/amoA), Nitrosospira was important for the soil metagenomes, while Methylosinus and Methylocystis were dominant for the groundwater metagenomes. The majority of pmoA alignments from both metagenomes were from uncultured bacteria. High quality MAGs were obtained from the groundwater data. Four MAGs (Methylocella and Cypionkella) contained sMMO subunits. Another three MAGs, within the order Pseudomonadales, contained all three pMMO subunits. All PH subunits were detected in seven MAGs (Azonexus, Rhodoferax, Aquabacterium). In those seven, all contained catechol 2,3-dioxagenase, and Aquabacterium also contained catechol 1,2-dioxygenase. T4MO subunits were detected in eight MAGs (Azonexus, Rhodoferax, Siculibacillus) and all, except one, contained all six subunits. Four MAGs (Rhodoferax and Azonexus) contained all subunits for PH and T4MO, as well as catechol 2,3-dixoygenase. The detection of T4MO and PH in groundwater metagenomes and MAGs has important implications for the potential oxidation of groundwater contaminants.
Collapse
Affiliation(s)
- Alison M Cupples
- Department of Civil and Environmental Engineering, Michigan State University, A135, 1449 Engineering Research Court, East Lansing, MI, 48824, USA.
| | - Hongyu Dang
- Department of Civil and Environmental Engineering, Michigan State University, A135, 1449 Engineering Research Court, East Lansing, MI, 48824, USA
| | - Katy Foss
- Department of Civil and Environmental Engineering, Michigan State University, A135, 1449 Engineering Research Court, East Lansing, MI, 48824, USA
| | - Anat Bernstein
- Zuckerberg Institute for Water Research, Ben Gurion University of the Negev, Beersheba, Israel
| | - Jean-Rene Thelusmond
- Department of Civil and Environmental Engineering, Michigan State University, A135, 1449 Engineering Research Court, East Lansing, MI, 48824, USA
| |
Collapse
|
16
|
Qiu Z, Zhu Y, Zhang Q, Qiao X, Mu R, Xu Z, Yan Y, Wang F, Zhang T, Zhuang WQ, Yu K. Unravelling biosynthesis and biodegradation potentials of microbial dark matters in hypersaline lakes. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 20:100359. [PMID: 39221074 PMCID: PMC11361885 DOI: 10.1016/j.ese.2023.100359] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/26/2023] [Accepted: 11/26/2023] [Indexed: 09/04/2024]
Abstract
Biosynthesis and biodegradation of microorganisms critically underpin the development of biotechnology, new drugs and therapies, and environmental remediation. However, most uncultured microbial species along with their metabolic capacities in extreme environments, remain obscured. Here we unravel the metabolic potential of microbial dark matters (MDMs) in four deep-inland hypersaline lakes in Xinjiang, China. Utilizing metagenomic binning, we uncovered a rich diversity of 3030 metagenome-assembled genomes (MAGs) across 82 phyla, revealing a substantial portion, 2363 MAGs, as previously unclassified at the genus level. These unknown MAGs displayed unique distribution patterns across different lakes, indicating a strong correlation with varied physicochemical conditions. Our analysis revealed an extensive array of 9635 biosynthesis gene clusters (BGCs), with a remarkable 9403 being novel, suggesting untapped biotechnological potential. Notably, some MAGs from potentially new phyla exhibited a high density of these BGCs. Beyond biosynthesis, our study also identified novel biodegradation pathways, including dehalogenation, anaerobic ammonium oxidation (Anammox), and degradation of polycyclic aromatic hydrocarbons (PAHs) and plastics, in previously unknown microbial clades. These findings significantly enrich our understanding of biosynthesis and biodegradation processes and open new avenues for biotechnological innovation, emphasizing the untapped potential of microbial diversity in hypersaline environments.
Collapse
Affiliation(s)
- Zhiguang Qiu
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
- AI for Science (AI4S)-Preferred Program, Peking University, Shenzhen, 518055, China
| | - Yuanyuan Zhu
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Qing Zhang
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Xuejiao Qiao
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Rong Mu
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Zheng Xu
- Southern University of Sciences and Technology Yantian Hospital, Shenzhen, 518081, China
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yan Yan
- State Key Laboratory of Isotope Geochemistry, CAS Center for Excellence in Deep Earth Science, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Fan Wang
- School of Atmospheric Sciences, Sun Yat-sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519082, China
| | - Tong Zhang
- Department of Civil Engineering, University of Hong Kong, 999077, Hong Kong, China
| | - Wei-Qin Zhuang
- Department of Civil and Environmental Engineering, Faculty of Engineering, University of Auckland, New Zealand
| | - Ke Yu
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
- AI for Science (AI4S)-Preferred Program, Peking University, Shenzhen, 518055, China
| |
Collapse
|
17
|
Han L, Xu R, Conwell AN, Takahashi S, Parasar B, Chang PV. Bile Salt Hydrolase Activity-Based Probes for Monitoring Gut Microbial Bile Acid Metabolism. Chembiochem 2024; 25:e202300821. [PMID: 38564329 PMCID: PMC11102598 DOI: 10.1002/cbic.202300821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/17/2024] [Accepted: 04/01/2024] [Indexed: 04/04/2024]
Abstract
Bile acids are bioactive metabolites that are biotransformed into secondary bile acids by the gut microbiota, a vast consortium of microbes that inhabit the intestines. The first step in intestinal secondary bile acid metabolism is carried out by a critical enzyme, bile salt hydrolase (BSH), that catalyzes the gateway reaction that precedes all subsequent microbial metabolism of these important metabolites. As gut microbial metabolic activity is difficult to probe due to the complex nature of the gut microbiome, approaches are needed to profile gut microbiota-associated enzymes such as BSH. Here, we develop a panel of BSH activity-based probes (ABPs) to determine how changes in diurnal rhythmicity of gut microbiota-associated metabolism affects BSH activity and substrate preference. This panel of covalent probes enables determination of BSH activity and substrate specificity from multiple gut anerobic bacteria derived from the human and mouse gut microbiome. We found that both gut microbiota-associated BSH activity and substrate preference is rhythmic, likely due to feeding patterns of the mice. These results indicate that this ABP-based approach can be used to profile changes in BSH activity in physiological and disease states that are regulated by circadian rhythms.
Collapse
Affiliation(s)
- Lin Han
- Department of Chemistry and Chemical Biology
| | - Raymond Xu
- Department of Microbiology and Immunology
| | | | | | | | - Pamela V Chang
- Department of Chemistry and Chemical Biology
- Department of Microbiology and Immunology
- Cornell Center for Immunology
- Cornell Institute of Host-Microbe Interactions and Disease
- Cornell Center for Innovative Proteomics, Cornell University, Ithaca, NY 14853
| |
Collapse
|
18
|
Jiang S, Du L, Zhao Q, Su S, Huang S, Zhang J. Tropical postbiotics alleviate the disorders in the gut microbiota and kidney damage induced by ochratoxin A exposure. Food Funct 2024; 15:3980-3992. [PMID: 38482731 DOI: 10.1039/d3fo05213c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Ochratoxin A (OTA), commonly found in various foods, significantly impacts the health of humans and animals, especially their kidneys. Our study explores OTA's effects on the gut microbiota and kidney damage while examining how postbiotics offer protection. Using metagenomic sequencing, we observed that OTA increased the potential gut pathogens such as Alistipes, elevating detrimental metabolites and inflammation. Also, OTA inhibited the Nrf2/HO-1 pathway, reducing kidney ROS elimination and leading to cellular ferroptosis and subsequent kidney damage. Postbiotics mitigate OTA's effects by downregulating the abundance of the assimilatory sulfate reduction IV pathway and virulence factors associated with iron uptake and relieving the inhibition of OTA on Nrf2/HO-1, restoring ROS-clearing capabilities and thereby alleviating chronic OTA-induced kidney damage. Understanding the OTA-gut-kidney link provides new approaches for preventing kidney damage, with postbiotics showing promise as a preventive treatment.
Collapse
Affiliation(s)
- Shuaiming Jiang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China.
| | - Lingwei Du
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China.
| | - Qian Zhao
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China.
| | - Shunyong Su
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China.
| | - Shi Huang
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China.
| | - Jiachao Zhang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China.
- One Health Institute, Hainan University, Haikou, Hainan 570228, China
| |
Collapse
|
19
|
Ortiz Sanjuán JM, Argüello H, Cabrera-Rubio R, Crispie F, Cotter PD, Garrido JJ, Ekhlas D, Burgess CM, Manzanilla EG. Effects of removing in-feed antibiotics and zinc oxide on the taxonomy and functionality of the microbiota in post weaning pigs. Anim Microbiome 2024; 6:18. [PMID: 38627869 PMCID: PMC11022352 DOI: 10.1186/s42523-024-00306-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 03/31/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Post weaning diarrhoea (PWD) causes piglet morbidity and mortality at weaning and is a major driver for antimicrobial use worldwide. New regulations in the EU limit the use of in-feed antibiotics (Ab) and therapeutic zinc oxide (ZnO) to prevent PWD. New approaches to control PWD are needed, and understanding the role of the microbiota in this context is key. In this study, shotgun metagenome sequencing was used to describe the taxonomic and functional evolution of the faecal microbiota of the piglet during the first two weeks post weaning within three experimental groups, Ab, ZnO and no medication, on commercial farms using antimicrobials regularly in the post weaning period. RESULTS Diversity was affected by day post weaning (dpw), treatment used and diarrhoea but not by the farm. Microbiota composition evolved towards the dominance of groups of species such as Prevotella spp. at day 14dpw. ZnO inhibited E. coli overgrowth, promoted higher abundance of the family Bacteroidaceae and decreased Megasphaera spp. Animals treated with Ab exhibited inconsistent taxonomic changes across time points, with an overall increase of Limosilactobacillus reuteri and Megasphaera elsdenii. Samples from non-medicated pigs showed virulence-related functions at 7dpw, and specific ETEC-related virulence factors were detected in all samples presenting diarrhoea. Differential microbiota functions of pigs treated with ZnO were related to sulphur and DNA metabolism, as well as mechanisms of antimicrobial and heavy metal resistance, whereas Ab treated animals exhibited functions related to antimicrobial resistance and virulence. CONCLUSION Ab and particularly ZnO maintained a stable microbiota composition and functionality during the two weeks post weaning, by limiting E. coli overgrowth, and ultimately preventing microbiota dysbiosis. Future approaches to support piglet health should be able to reproduce this stable gut microbiota transition during the post weaning period, in order to maintain optimal gut physiological and productive conditions.
Collapse
Affiliation(s)
- Juan M Ortiz Sanjuán
- Pig Development Department, Teagasc Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork, Ireland.
- Grupo de Genómica y Mejora Animal, Departamento de Genética, Facultad de Veterinaria, Universidad de Córdoba, Córdoba, Spain.
| | - Héctor Argüello
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| | - Raúl Cabrera-Rubio
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
- APC Microbiome Institute, University College Cork, Co. Cork, Ireland
| | - Fiona Crispie
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
- APC Microbiome Institute, University College Cork, Co. Cork, Ireland
| | - Paul D Cotter
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
- APC Microbiome Institute, University College Cork, Co. Cork, Ireland
- VistaMilk SFI Research Centre, Fermoy, Co. Cork, Ireland
| | - Juan J Garrido
- Grupo de Genómica y Mejora Animal, Departamento de Genética, Facultad de Veterinaria, Universidad de Córdoba, Córdoba, Spain
| | - Daniel Ekhlas
- Pig Development Department, Teagasc Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork, Ireland
- Department of Food Safety, Teagasc Food Research Centre, Ashtown, Dublin, Ireland
- School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Catherine M Burgess
- Department of Food Safety, Teagasc Food Research Centre, Ashtown, Dublin, Ireland
| | - Edgar G Manzanilla
- Pig Development Department, Teagasc Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork, Ireland
- School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| |
Collapse
|
20
|
Li X, Kurahara LH, Zhao Z, Zhao F, Ishikawa R, Ohmichi K, Li G, Yamashita T, Hashimoto T, Hirano M, Sun Z, Hirano K. Therapeutic Effect of Proteinase-Activated Receptor-1 Antagonist on Colitis-Associated Carcinogenesis. Cell Mol Gastroenterol Hepatol 2024; 18:105-131. [PMID: 38614455 PMCID: PMC11127032 DOI: 10.1016/j.jcmgh.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/30/2024] [Accepted: 04/03/2024] [Indexed: 04/15/2024]
Abstract
BACKGROUND & AIMS Inflammatory bowel disease is associated with carcinogenesis, which limits the prognosis of the patients. The local expression of proteinases and proteinase-activated receptor 1 (PAR1) increases in inflammatory bowel disease. The present study investigated the therapeutic effects of PAR1 antagonism on colitis-associated carcinogenesis. METHODS A colitis-associated carcinogenesis model was prepared in mice by treatment with azoxymethane (AOM) and dextran sulfate sodium (DSS). PAR1 antagonist E5555 was administered in long- and short-term protocol, starting on the day of AOM injection and 1 week after completing AOM/DSS treatment, respectively. The fecal samples were collected for metagenome analysis of gut microbiota. The intestinal myofibroblasts of the Crohn's disease patients were used to elucidate underlying cellular mechanisms. Caco-2 cells were used to investigate a possible source of PAR1 agonist proteinases. RESULTS AOM/DSS model showed weight loss, diarrhea, tumor development, inflammation, fibrosis, and increased production of inflammatory cytokines. The β-diversity, but not α-diversity, of microbiota significantly differed between AOM/DSS and control mice. E5555 alleviated these pathological changes and altered the microbiota β-diversity in AOM/DSS mice. The thrombin expression was up-regulated in tumor and non-tumor areas, whereas PAR1 mRNA expression was higher in tumor areas compared with non-tumor areas. E5555 inhibited thrombin-triggered elevation of cytosolic Ca2+ concentration and ERK1/2 phosphorylation, as well as IL6-induced signal transducer and activator of transcription 3 (STAT3) phosphorylation in intestinal myofibroblasts. Caco-2 cell-conditioned medium contained immunoreactive thrombin, which cleaved the recombinant protein containing the extracellular domain of PAR1 at the thrombin cleavage site. CONCLUSIONS PAR1 antagonism is proposed to be a novel therapeutic strategy for treatment of inflammatory bowel disease and its associated carcinogenesis.
Collapse
Affiliation(s)
- Xiaodong Li
- Department of Cardiovascular Physiology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Lin-Hai Kurahara
- Department of Cardiovascular Physiology, Faculty of Medicine, Kagawa University, Kagawa, Japan.
| | - Zhixin Zhao
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs; Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Feiyan Zhao
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs; Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Ryo Ishikawa
- Department of Diagnostic Pathology, Kagawa University Hospital, Kagawa University, Kagawa, Japan
| | - Kiyomi Ohmichi
- Department of Diagnostic Pathology, Kagawa University Hospital, Kagawa University, Kagawa, Japan
| | - Gaopeng Li
- Department of Cardiovascular Physiology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Tetsuo Yamashita
- Department of Cardiovascular Physiology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Takeshi Hashimoto
- Department of Cardiovascular Physiology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Mayumi Hirano
- Department of Cardiovascular Physiology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Zhihong Sun
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs; Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Katsuya Hirano
- Department of Cardiovascular Physiology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| |
Collapse
|
21
|
Gracia-Rodriguez C, Lopez-Ortiz C, Flores-Iga G, Ibarra-Muñoz L, Nimmakayala P, Reddy UK, Balagurusamy N. From genes to ecosystems: Decoding plant tolerance mechanisms to arsenic stress. Heliyon 2024; 10:e29140. [PMID: 38601600 PMCID: PMC11004893 DOI: 10.1016/j.heliyon.2024.e29140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/28/2024] [Accepted: 04/01/2024] [Indexed: 04/12/2024] Open
Abstract
Arsenic (As), a metalloid of considerable toxicity, has become increasingly bioavailable through anthropogenic activities, raising As contamination levels in groundwater and agricultural soils worldwide. This bioavailability has profound implications for plant biology and farming systems. As can detrimentally affect crop yield and pose risks of bioaccumulation and subsequent entry into the food chain. Upon exposure to As, plants initiate a multifaceted molecular response involving crucial signaling pathways, such as those mediated by calcium, mitogen-activated protein kinases, and various phytohormones (e.g., auxin, methyl jasmonate, cytokinin). These pathways, in turn, activate enzymes within the antioxidant system, which combat the reactive oxygen/nitrogen species (ROS and RNS) generated by As-induced stress. Plants exhibit a sophisticated genomic response to As, involving the upregulation of genes associated with uptake, chelation, and sequestration. Specific gene families, such as those coding for aquaglyceroporins and ABC transporters, are key in mediating As uptake and translocation within plant tissues. Moreover, we explore the gene regulatory networks that orchestrate the synthesis of phytochelatins and metallothioneins, which are crucial for As chelation and detoxification. Transcription factors, particularly those belonging to the MYB, NAC, and WRKY families, emerge as central regulators in activating As-responsive genes. On a post-translational level, we examine how ubiquitination pathways modulate the stability and function of proteins involved in As metabolism. By integrating omics findings, this review provides a comprehensive overview of the complex genomic landscape that defines plant responses to As. Knowledge gained from these genomic and epigenetic insights is pivotal for developing biotechnological strategies to enhance crop As tolerance.
Collapse
Affiliation(s)
- Celeste Gracia-Rodriguez
- Laboratorio de Biorremediación, Facultad de Ciencias Biológicas, Universidad Autónoma de Coahuila, Torreón, Mexico
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, Dunbar, WV 25112-1000, USA
| | - Carlos Lopez-Ortiz
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, Dunbar, WV 25112-1000, USA
| | - Gerardo Flores-Iga
- Laboratorio de Biorremediación, Facultad de Ciencias Biológicas, Universidad Autónoma de Coahuila, Torreón, Mexico
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, Dunbar, WV 25112-1000, USA
| | - Lizbeth Ibarra-Muñoz
- Laboratorio de Biorremediación, Facultad de Ciencias Biológicas, Universidad Autónoma de Coahuila, Torreón, Mexico
| | - Padma Nimmakayala
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, Dunbar, WV 25112-1000, USA
| | - Umesh K. Reddy
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, Dunbar, WV 25112-1000, USA
| | - Nagamani Balagurusamy
- Laboratorio de Biorremediación, Facultad de Ciencias Biológicas, Universidad Autónoma de Coahuila, Torreón, Mexico
| |
Collapse
|
22
|
Anju VT, Busi S, Mohan MS, Salim SA, Ar S, Imchen M, Kumavath R, Dyavaiah M, Prasad R. Surveillance and mitigation of soil pollution through metagenomic approaches. Biotechnol Genet Eng Rev 2024; 40:589-622. [PMID: 36881114 DOI: 10.1080/02648725.2023.2186330] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 02/23/2023] [Indexed: 03/08/2023]
Abstract
Soil pollution is one of the serious global threats causing risk to environment and humans. The major cause of accumulation of pollutants in soil are anthropogenic activities and some natural processes. There are several types of soil pollutants which deteriorate the quality of human life and animal health. They are recalcitrant hydrocarbon compounds, metals, antibiotics, persistent organic compounds, pesticides and different kinds of plastics. Due to the detrimental properties of pollutants present in soil on human life and ecosystem such as carcinogenic, genotoxic and mutagenic effects, alternate and effective methods to degrade the pollutants are recommended. Bioremediation is an effective and inexpensive method of biological degradation of pollutants using plants, microorganisms and fungi. With the advent of new detection methods, the identification and degradation of soil pollutants in different ecosystems were made easy. Metagenomic approaches are a boon for the identification of unculturable microorganisms and to explore the vast bioremediation potential for different pollutants. Metagenomics is a power tool to study the microbial load in polluted or contaminated land and its role in bioremediation. In addition, the negative ecosystem and health effect of pathogens, antibiotic and metal resistant genes found in the polluted area can be studied. Also, the identification of novel compounds/genes/proteins involved in the biotechnology and sustainable agriculture practices can be performed with the integration of metagenomics.
Collapse
Affiliation(s)
- V T Anju
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Siddhardha Busi
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Mahima S Mohan
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Simi Asma Salim
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Sabna Ar
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Madangchanok Imchen
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Ranjith Kumavath
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry, India
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Kerala, India
| | - Madhu Dyavaiah
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Ram Prasad
- Department of Botany, School of Life Sciences, Mahatma Gandhi Central University, Bihar, India
| |
Collapse
|
23
|
Dai JH, Tan XR, Qiao H, Liu N. Emerging clinical relevance of microbiome in cancer: promising biomarkers and therapeutic targets. Protein Cell 2024; 15:239-260. [PMID: 37946397 PMCID: PMC10984626 DOI: 10.1093/procel/pwad052] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/22/2023] [Indexed: 11/12/2023] Open
Abstract
The profound influence of microbiota in cancer initiation and progression has been under the spotlight for years, leading to numerous researches on cancer microbiome entering clinical evaluation. As promising biomarkers and therapeutic targets, the critical involvement of microbiota in cancer clinical practice has been increasingly appreciated. Here, recent progress in this field is reviewed. We describe the potential of tumor-associated microbiota as effective diagnostic and prognostic biomarkers, respectively. In addition, we highlight the relationship between microbiota and the therapeutic efficacy, toxicity, or side effects of commonly utilized treatments for cancer, including chemotherapy, radiotherapy, and immunotherapy. Given that microbial factors influence the cancer treatment outcome, we further summarize some dominating microbial interventions and discuss the hidden risks of these strategies. This review aims to provide an overview of the applications and advancements of microbes in cancer clinical relevance.
Collapse
Affiliation(s)
- Jia-Hao Dai
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510050, China
| | - Xi-Rong Tan
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510050, China
| | - Han Qiao
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510050, China
| | - Na Liu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510050, China
| |
Collapse
|
24
|
Czétány P, Balló A, Márk L, Török A, Szántó Á, Máté G. An Alternative Application of Magnetic-Activated Cell Sorting: CD45 and CD235a Based Purification of Semen and Testicular Tissue Samples. Int J Mol Sci 2024; 25:3627. [PMID: 38612438 PMCID: PMC11011735 DOI: 10.3390/ijms25073627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/18/2024] [Accepted: 03/23/2024] [Indexed: 04/14/2024] Open
Abstract
Magnetic activated cell sorting (MACS) is a well-known sperm selection technique, which is able to remove apoptotic spermatozoa from semen samples using the classic annexinV based method. Leukocytes and erythrocytes in semen samples or in testicular tissue processed for in vitro fertilization (IVF) could exert detrimental effects on sperm. In the current study, we rethought the aforementioned technique and used magnetic microbeads conjugated with anti-CD45/CD235a antibodies to eliminate contaminating leukocytes and erythrocytes from leukocytospermic semen samples and testicular tissue samples gained via testicular sperm extraction (TESE). With this technique, a 15.7- and a 30.8-fold reduction could be achieved in the ratio of leukocytes in semen and in the number of erythrocytes in TESE samples, respectively. Our results show that MACS is a method worth to reconsider, with more potential alternative applications. Investigations to find molecules labeling high-quality sperm population and the development of positive selection procedures based on these might be a direction of future research.
Collapse
Affiliation(s)
- Péter Czétány
- Urology Clinic, University of Pécs Clinical Centre, 7621 Pécs, Hungary; (P.C.); (A.B.); (G.M.)
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary;
| | - András Balló
- Urology Clinic, University of Pécs Clinical Centre, 7621 Pécs, Hungary; (P.C.); (A.B.); (G.M.)
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary;
- Pannon Reproduction Institute, 8300 Tapolca, Hungary;
| | - László Márk
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary;
- Department of Analytical Biochemistry, Institute of Biochemistry and Medical Chemistry, University of Pécs Medical School, 7624 Pécs, Hungary
- MTA-PTE Human Reproduction Scientific Research Group, 7624 Pécs, Hungary
| | - Attila Török
- Pannon Reproduction Institute, 8300 Tapolca, Hungary;
| | - Árpád Szántó
- Urology Clinic, University of Pécs Clinical Centre, 7621 Pécs, Hungary; (P.C.); (A.B.); (G.M.)
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary;
| | - Gábor Máté
- Urology Clinic, University of Pécs Clinical Centre, 7621 Pécs, Hungary; (P.C.); (A.B.); (G.M.)
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary;
- Pannon Reproduction Institute, 8300 Tapolca, Hungary;
| |
Collapse
|
25
|
Ricci F, Leggat W, Pasella MM, Bridge T, Horowitz J, Girguis PR, Ainsworth T. Deep sea treasures - Insights from museum archives shed light on coral microbial diversity within deepest ocean ecosystems. Heliyon 2024; 10:e27513. [PMID: 38468949 PMCID: PMC10926130 DOI: 10.1016/j.heliyon.2024.e27513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 02/15/2024] [Accepted: 03/01/2024] [Indexed: 03/13/2024] Open
Abstract
Deep sea benthic habitats are low productivity ecosystems that host an abundance of organisms within the Cnidaria phylum. The technical limitations and the high cost of deep sea surveys have made exploring deep sea environments and the biology of the organisms that inhabit them challenging. In spite of the widespread recognition of Cnidaria's environmental importance in these ecosystems, the microbial assemblage and its role in coral functioning have only been studied for a few deep water corals. Here, we explored the microbial diversity of deep sea corals by recovering nucleic acids from museum archive specimens. Firstly, we amplified and sequenced the V1-V3 regions of the 16S rRNA gene of these specimens, then we utilized the generated sequences to shed light on the microbial diversity associated with seven families of corals collected from depth in the Coral Sea (depth range 1309 to 2959 m) and Southern Ocean (depth range 1401 to 2071 m) benthic habitats. Surprisingly, Cyanobacteria sequences were consistently associated with six out of seven coral families from both sampling locations, suggesting that these bacteria are potentially ubiquitous members of the microbiome within these cold and deep sea water corals. Additionally, we show that Cnidaria might benefit from symbiotic associations with a range of chemosynthetic bacteria including nitrite, carbon monoxide and sulfur oxidizers. Consistent with previous studies, we show that sequences associated with the bacterial phyla Proteobacteria, Verrucomicrobia, Planctomycetes and Acidobacteriota dominated the microbial community of corals in the deep sea. We also explored genomes of the bacterial genus Mycoplasma, which we identified as associated with specimens of three deep sea coral families, finding evidence that these bacteria may aid the host immune system. Importantly our results show that museum specimens retain components of host microbiome that can provide new insights into the diversity of deep sea coral microbiomes (and potentially other organisms), as well as the diversity of microbes writ large in deep sea ecosystems.
Collapse
Affiliation(s)
- Francesco Ricci
- University of New South Wales, School of Biological, Earth and Environmental Sciences, Kensington, NSW, Australia
- University of Melbourne, School of Biosciences, Parkville, VIC, Australia
- Monash University, Department of Microbiology, Biomedicine Discovery Institute, Clayton, VIC, Australia
| | - William Leggat
- University of Newcastle, School of Environmental and Life Sciences, Callaghan, NSW, Australia
| | - Marisa M. Pasella
- University of Melbourne, School of Biosciences, Parkville, VIC, Australia
| | - Tom Bridge
- Biodiversity and Geosciences Program, Museum of Tropical Queensland, Queensland Museum, Townsville, QLD, Australia
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, Australia
| | - Jeremy Horowitz
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, Australia
- Smithsonian Institution, National Museum of Natural History, Washington, DC, USA
| | - Peter R. Girguis
- University of Harvard, Department of Organismic and Evolutionary Biology, Cambridge, MA, USA
| | - Tracy Ainsworth
- University of New South Wales, School of Biological, Earth and Environmental Sciences, Kensington, NSW, Australia
| |
Collapse
|
26
|
Lan W, Liu H, Weng R, Zeng Y, Lou J, Xu H, Yu Y, Jiang Y. Microbial community of municipal drinking water in Hangzhou using metagenomic sequencing. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123066. [PMID: 38048871 DOI: 10.1016/j.envpol.2023.123066] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/01/2023] [Accepted: 11/27/2023] [Indexed: 12/06/2023]
Abstract
While traditional culture-dependent methods can effectively detect certain microorganisms, the comprehensive composition of the municipal drinking water (DW) microbiome, including bacteria, archaea, and viruses, remains unknown. Metagenomic sequencing has opened the door to accurately determine and analyze the entire microbial community of DW, providing a comprehensive understanding of DW species diversity, especially in the context of public health concerns during the COVID-19 era. In this study, we found that most of the culturable bacteria and some fecal indicator bacteria, such as Escherichia coli and Pseudomonas aeruginosa, were non-culturable using culture-dependent methods in all samples. However, metagenomic analysis showed that the predominant bacterial species in the DW samples belonged to the phyla Proteobacteria and Planctomycetes. Notably, the genus Methylobacterium was the most abundant in all water samples, followed by Sphingomonas, Gemmata, and Azospirilum. While low levels of virulence-associated factors, such as the Esx-5 type VII secretion system (T7SS) and DevR/S, were detected, only the erythromycin resistance gene erm(X), an rRNA methyltransferase, was identified at low abundance in one sample. Hosts corresponding to virulence and resistance genes were identified in some samples, including Mycobacterium spp. Archaeal DNA (Euryarchaeota, Crenarchaeota) was found in trace amounts in some DW samples. Viruses such as rotavirus, coxsackievirus, human enterovirus, and SARS-CoV-2 were negative in all DW samples using colloidal gold and real-time reverse transcription polymerase chain reaction (RT‒PCR) methods. However, DNA encoding a new order of reverse-transcribing viruses (Ortervirales) and Herpesvirales was found in some DW samples. The metabolic pathways of the entire microbial community involve cell‒cell communication and signal secretion, contributing to cooperation between different microbial populations in the water. This study provides insight into the microbial community and metabolic process of DW in Hangzhou, China, utilizing both culture-dependent methods and metagenomic sequencing combined with bioinformatics tools during the COVID-19 pandemic era.
Collapse
Affiliation(s)
- Wei Lan
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, 310016, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Haiyang Liu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, 310016, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Rui Weng
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, 310016, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Yaxiong Zeng
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 320013, China
| | - Jian Lou
- Yiwu Water Construction Group Co., Ltd., Yiwu, 322000, China
| | - Hongxin Xu
- Yiwu Water Construction Group Co., Ltd., Yiwu, 322000, China
| | - Yunsong Yu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, 310016, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Yan Jiang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, 310016, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China.
| |
Collapse
|
27
|
Goicochea-Vargas J, Salvatierra-Alor M, Acosta-Pachorro F, Rondón-Jorge W, Herrera-Briceño A, Morales-Parra E, Mialhe E. Genomic characterization and probiotic potential of lactic acid bacteria isolated from feces of guinea pig ( Cavia porcellus). Open Vet J 2024; 14:716-729. [PMID: 38549567 PMCID: PMC10970124 DOI: 10.5455/ovj.2024.v14.i2.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 01/23/2023] [Indexed: 04/02/2024] Open
Abstract
Background Presently, there exists a growing interest in mitigating the utilization of antibiotics in response to the challenges emanating from their usage in livestock. A viable alternative strategy encompasses the introduction of live microorganisms recognized as probiotics, exerting advantageous impacts on the immune system and nutritional aspects of the host animals. Native lactic acid bacteria, inherently possessing specific properties and adaptive capabilities tailored to each animal, are deemed optimal contenders for probiotic advancement. Aim In the current investigation, microorganisms exhibiting probiotic potential were isolated, characterized, and identified from the fecal samples of guinea pigs (Cavia porcellus) belonging to the Peruvian breed. Methods The lactic acid bacteria isolated on Man, Rogosa, and Sharpe agar underwent Gram staining, catalase testing, proteolytic, amylolytic, and cellulolytic activity assays, low pH tolerance assessment, hemolytic evaluation, antagonism against Salmonella sp., determination of autoaggregation and coaggregation capacity, and genotypic characterization through sequencing of the 16S rRNA gene. Results A total of 33 lactic acid bacteria were isolated from the feces of 30 guinea pigs, also 10 isolates were selected based on Gram staining and catalase testing. All strains exhibited proteolytic activity, while only one demonstrated amylolytic capability, and none displayed cellulase activity. These bacteria showed higher tolerance to pH 5.0 and, to a lesser extent, to pH 4.0. Furthermore, they exhibited antagonistic activity against Salmonella sp. Only two bacteria demonstrated hemolytic activity, and were subsequently excluded from further evaluations. Subsequent assessments revealed autoaggregation capacities ranging from 4.55% to 23.19%, with a lesser degree of coaggregation with Salmonella sp. ranging from 3.53% to 8.94% for the remaining eight bacterial isolates. Based on these comprehensive tests, five bacteria with notable probiotic potential were identified by molecular assays as Leuconostoc citreum, Enterococcus gallinarum, Exiguobacterium sp., and Lactococcus lactis. Conclusion The identified bacteria stand out as promising probiotic candidates, deserving further assessment in Peruvian breed guinea pigs. This exploration aims to enhance production outcomes while mitigating the adverse effects induced by pathogenic microorganisms.
Collapse
Affiliation(s)
- José Goicochea-Vargas
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Hermilio Valdizan, Huánuco, Peru
- Laboratorio de Biotecnología Molecular, Unidad Central de Laboratorios, Universidad Nacional Hermilio Valdizan, Huánuco, Peru
| | - Max Salvatierra-Alor
- Laboratorio de Biotecnología Molecular, Unidad Central de Laboratorios, Universidad Nacional Hermilio Valdizan, Huánuco, Peru
| | - Fidel Acosta-Pachorro
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Hermilio Valdizan, Huánuco, Peru
| | - Wilson Rondón-Jorge
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Hermilio Valdizan, Huánuco, Peru
| | - Arnold Herrera-Briceño
- Centros de Producción Canchán y Kotosh, Universidad Nacional Hermilio Valdizan, Huánuco, Peru
| | - Edson Morales-Parra
- Centro de Información y Educación para la Prevención del Abuso de Drogas—CEDRO, Lima, Peru
| | | |
Collapse
|
28
|
Li X, Wu D, Li Q, Gu J, Gao W, Zhu X, Yin W, Zhu R, Zhu L, Jiao N. Host-microbiota interactions contributing to the heterogeneous tumor microenvironment in colorectal cancer. Physiol Genomics 2024; 56:221-234. [PMID: 38073489 DOI: 10.1152/physiolgenomics.00103.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/15/2023] [Accepted: 12/01/2023] [Indexed: 01/23/2024] Open
Abstract
Colorectal cancer (CRC) exhibits pronounced heterogeneity and is categorized into four widely accepted consensus molecular subtypes (CMSs) with unique tumor microenvironments (TMEs). However, the intricate landscape of the microbiota and host-microbiota interactions within these TMEs remains elusive. Using RNA-sequencing data from The Cancer Genome Atlas, we analyzed the host transcriptomes and intratumoral microbiome profiles of CRC samples. Distinct host genes and microbial genera were identified among the CMSs. Immune microenvironments were evaluated using CIBERSORTx and ESTIMATE, and microbial coabundance patterns were assessed with FastSpar. Through LASSO penalized regression, we explored host-microbiota associations for each CMS. Our analysis revealed distinct host gene signatures within the CMSs, which encompassed ferroptosis-related genes and specific immune microenvironments. Moreover, we identified 293, 153, 66, and 109 intratumoral microbial genera with differential abundance, and host-microbiota associations contributed to distinct TMEs, characterized by 829, 1,270, 634, and 1,882 robust gene-microbe associations for each CMS in CMS1-CMS4, respectively. CMS1 featured inflammation-related HSF1 activation and gene interactions within the endothelin pathway and Flammeovirga. Integrin-related genes displayed positive correlations with Sutterella in CMS2, whereas CMS3 spotlighted microbial associations with biosynthetic and metabolic pathways. In CMS4, genes involved in collagen biosynthesis showed positive associations with Sutterella, contributing to disruptions in homeostasis. Notably, immune-rich subtypes exhibited pronounced ferroptosis dysregulation, potentially linked to tissue microbial colonization. This comprehensive investigation delineates the diverse landscapes of the TME within each CMS, incorporating host genes, intratumoral microbiota, and their complex interactions. These findings shed light on previously uncharted mechanisms underpinning CRC heterogeneity and suggest potential therapeutic targets.NEW & NOTEWORTHY This study determined the following: 1) providing a comprehensive landscape of consensus molecular subtype (CMS)-specific tumor microenvironments (TMEs); 2) constructing CMS-specific networks, including host genes, intratumoral microbiota, and enriched pathways, analyzing their associations to uncover unique patterns that demonstrate the intricate interplay within the TME; and 3) revealing a connection between immune-rich subtypes and ferroptosis activation, suggesting a potential regulatory role of the microbiota in ferroptosis dysregulation of the colorectal cancer TME.
Collapse
Affiliation(s)
- Xiaoyi Li
- Department of Nephrology, Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Dingfeng Wu
- Department of Nephrology, Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Qiuyu Li
- Department of Nephrology, Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Jinglan Gu
- Department of Nephrology, Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Wenxing Gao
- The Shanghai Tenth People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, People's Republic of China
| | - Xinyue Zhu
- The Shanghai Tenth People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, People's Republic of China
| | - Wenjing Yin
- The Shanghai Tenth People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, People's Republic of China
| | - Ruixin Zhu
- The Shanghai Tenth People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, People's Republic of China
| | - Lixin Zhu
- Department of Colorectal Surgery, Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Na Jiao
- Department of Nephrology, Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| |
Collapse
|
29
|
Song Z, Li X, Xie J, Han F, Wang N, Hou Y, Yao J. Associations of inflammatory cytokines with inflammatory bowel disease: a Mendelian randomization study. Front Immunol 2024; 14:1327879. [PMID: 38288119 PMCID: PMC10822978 DOI: 10.3389/fimmu.2023.1327879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/27/2023] [Indexed: 01/31/2024] Open
Abstract
Objectives Previous studies have confirmed a link between specific inflammatory cytokines and inflammatory bowel disease (IBD), but the causal relationship between them is not completely clear. This Mendelian Randomization (MR) study aims to evaluate the causal relationship between 18 inflammatory cytokines and inflammatory bowel disease. Method Two-sample Mendelian randomization utilized genetic variances associated with IBD from two extensive publicly available genome-wide association studies (GWAS) (Crohn's Disease (CD): 12,194 cases and 28,072 controls; Ulcerative Colitis (UC): 12,336 cases and 33,609 controls). The data of inflammatory cytokines was acquired from a GWAS including 8,293 healthy participants. We used inverse variance weighted method, MR-Egger, weighted median, simple model and weighted model to evaluate the causal relationship between inflammatory cytokines and IBD. Sensitivity analysis includes heterogeneity and pleiotropy analysis to evaluate the robustness of the results. Results The findings indicated suggestive positive associations between Interleukin-13 (IL-13) and macrophage migration inhibitory factor (MIF) with CD (odds ratio, OR: 1.101, 95%CI: 1.021-1.188, p = 0.013; OR: 1.134, 95%CI: 1.024-1.255, p = 0.015). IL-13 also displayed a significant positive correlation with UC (OR: 1.099, 95%CI: 1.018-1.186, p = 0.016). Stem cell factor (SCF) was suggested to be associated with the development of both CD and UC (OR: 1.032, 95%CI: 0.973-1.058, p = 0.012; OR: 1.038, 95%CI: 1.005-1.072, p = 0.024). Conclusion This study proposes that IL-13 may be a factor correlated with the etiology of IBD (CD and UC), while MIF just be specifically associated with CD. Additionally, SCF appears more likely to be involved in the downstream development of IBD (CD and UC).
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jianning Yao
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, ZhengZhou, China
| |
Collapse
|
30
|
Sapoval N, Tanevski M, Treangen TJ. KombOver: Efficient k-core and K-truss based characterization of perturbations within the human gut microbiome. PACIFIC SYMPOSIUM ON BIOCOMPUTING. PACIFIC SYMPOSIUM ON BIOCOMPUTING 2024; 29:506-520. [PMID: 38160303 PMCID: PMC10764071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
The microbes present in the human gastrointestinal tract are regularly linked to human health and disease outcomes. Thanks to technological and methodological advances in recent years, metagenomic sequencing data, and computational methods designed to analyze metagenomic data, have contributed to improved understanding of the link between the human gut microbiome and disease. However, while numerous methods have been recently developed to extract quantitative and qualitative results from host-associated microbiome data, improved computational tools are still needed to track microbiome dynamics with short-read sequencing data. Previously we have proposed KOMB as a de novo tool for identifying copy number variations in metagenomes for characterizing microbial genome dynamics in response to perturbations. In this work, we present KombOver (KO), which includes four key contributions with respect to our previous work: (i) it scales to large microbiome study cohorts, (ii) it includes both k-core and K-truss based analysis, (iii) we provide the foundation of a theoretical understanding of the relation between various graph-based metagenome representations, and (iv) we provide an improved user experience with easier-to-run code and more descriptive outputs/results. To highlight the aforementioned benefits, we applied KO to nearly 1000 human microbiome samples, requiring less than 10 minutes and 10 GB RAM per sample to process these data. Furthermore, we highlight how graph-based approaches such as k-core and K-truss can be informative for pinpointing microbial community dynamics within a myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) cohort. KO is open source and available for download/use at: https://github.com/treangenlab/komb.
Collapse
Affiliation(s)
- Nicolae Sapoval
- Department of Computer Science, Rice University, Houston, TX 77005, USA,
| | | | | |
Collapse
|
31
|
Gilliland A, Chan JJ, De Wolfe TJ, Yang H, Vallance BA. Pathobionts in Inflammatory Bowel Disease: Origins, Underlying Mechanisms, and Implications for Clinical Care. Gastroenterology 2024; 166:44-58. [PMID: 37734419 DOI: 10.1053/j.gastro.2023.09.019] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 08/28/2023] [Accepted: 09/07/2023] [Indexed: 09/23/2023]
Abstract
The gut microbiota plays a significant role in the pathogenesis of both forms of inflammatory bowel disease (IBD), namely, Crohn's disease (CD) and ulcerative colitis (UC). Although evidence suggests dysbiosis and loss of beneficial microbial species can exacerbate IBD, many new studies have identified microbes with pathogenic qualities, termed "pathobionts," within the intestines of patients with IBD. The concept of pathobionts initiating or driving the chronicity of IBD has largely focused on the putative aggravating role that adherent invasive Escherichia coli may play in CD. However, recent studies have identified additional bacterial and fungal pathobionts in patients with CD and UC. This review will highlight the characteristics of these pathobionts and their implications for IBD treatment. Beyond exploring the origins of pathobionts, we discuss those associated with specific clinical features and the potential mechanisms involved, such as creeping fat (Clostridium innocuum) and impaired wound healing (Debaryomyces hansenii) in patients with CD as well as the increased fecal proteolytic activity (Bacteroides vulgatus) seen as a biomarker for UC severity. Finally, we examine the potential impact of pathobionts on current IBD therapies, and several new approaches to target pathobionts currently in the early stages of development. Despite recognizing that pathobionts likely contribute to the pathogenesis of IBD, more work is needed to define their modes of action. Determining whether causal relationships exist between pathobionts and specific disease characteristics could pave the way for improved care for patients, particularly for those not responding to current IBD therapies.
Collapse
Affiliation(s)
- Ashley Gilliland
- Division of Gastroenterology, Department of Pediatrics, BC Children's Hospital and the University of British Columbia, Vancouver, British Columbia, Canada
| | - Jocelyn J Chan
- Division of Gastroenterology, Department of Pediatrics, BC Children's Hospital and the University of British Columbia, Vancouver, British Columbia, Canada
| | - Travis J De Wolfe
- Division of Gastroenterology, Department of Pediatrics, BC Children's Hospital and the University of British Columbia, Vancouver, British Columbia, Canada
| | - Hyungjun Yang
- Division of Gastroenterology, Department of Pediatrics, BC Children's Hospital and the University of British Columbia, Vancouver, British Columbia, Canada
| | - Bruce A Vallance
- Division of Gastroenterology, Department of Pediatrics, BC Children's Hospital and the University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
32
|
Li Z, Wang X, Wang W, An R, Wang Y, Ren Q, Xuan J. Benefits of tributyrin on growth performance, gastrointestinal tract development, ruminal bacteria and volatile fatty acid formation of weaned Small-Tailed Han lambs. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 15:187-196. [PMID: 38023378 PMCID: PMC10679854 DOI: 10.1016/j.aninu.2023.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 07/23/2023] [Accepted: 08/08/2023] [Indexed: 12/01/2023]
Abstract
This study aimed to determine the effects of tributyrin on growth performance, gastrointestinal tract development, ruminal bacteria and volatile fatty acid (VFA) formation. Thirty healthy weaned Small-Tailed Han female lambs at 3 months old with BW 27.5 ± 4.1 kg (mean ± SD) were randomly assigned to five groups of six lambs each, and each group received tributyrin at 0, 0.5, 1.0, 2.0 and 4.0 g/kg in feed. Weights were measured before the start and end of the study. After 15 d adaptation, DMI, feed, faeces and urine were recorded every week. Lambs were sacrificed at d 75. Compared to lambs fed no tributyrin, lambs fed 4.0 g/kg tributyrin had higher average daily BW gain (P = 0.04) and DMI (P < 0.01). Tributyrin reduced nitrogen (P < 0.01), Ca (P < 0.01) and P (P < 0.01) losses derived from faeces and urine. The mostly important, tributyrin increased dorsal sac thickness (P < 0.01), papillae length (P = 0.04) and width (P < 0.01), ventral sac papillae length (P < 0.01) and width (P < 0.01), caudodorsal blind sac thickness (P = 0.02), papillae length (P < 0.01) and width (P < 0.01). Furthermore, tributyrin increased thicknesses of both the duodenum (P < 0.01) and ileum (P = 0.01), and villus heights of the duodenum (P = 0.01), ileum (P < 0.01), jejunum (P < 0.01) and caecum (P = 0.02), but tributyrin decreased duodenal (P < 0.01) and caecal crypt depths (P < 0.01). Tributyrin reduced rumen pH (P < 0.01) while promoting total VFA concentration (P < 0.01). Tributyrin improved the structure of rumen bacteria by enhancing Clostridium (P = 0.04), Butyrivibrio (P < 0.01), Streptococcus (P = 0.04), Prevotella (P = 0.04), Ruminobacter (P = 0.02) and Fibrobacter (P = 0.03). In conclusion, tributyrin could stimulate gastrointestinal tract development by enhancing colonization of rumen VFA-producing bacteria, and dietary supplementation of tributyrin at 4.0 g/kg of DM was recommended for the weaned lambs.
Collapse
Affiliation(s)
- Zhiwei Li
- College of Animal Science, Anhui Science and Technology University, Fengyang, 233100, China
| | - Xueer Wang
- College of Animal Science and Technology, Tarim University, Alae, 843300, China
| | - Wei Wang
- College of Animal Science, Anhui Science and Technology University, Fengyang, 233100, China
| | - Ran An
- College of Animal Science, Anhui Science and Technology University, Fengyang, 233100, China
| | - Yaxin Wang
- College of Animal Science, Anhui Science and Technology University, Fengyang, 233100, China
| | - Qingchang Ren
- College of Animal Science, Anhui Science and Technology University, Fengyang, 233100, China
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Anhui Science and Technology University, Fengyang, 233100, China
| | - Jingjing Xuan
- School of Finance and Economics, Anhui Science and Technology University, Bengbu, 233030, China
| |
Collapse
|
33
|
Kim A, Xie F, Abed OA, Moon JJ. Vaccines for immune tolerance against autoimmune disease. Adv Drug Deliv Rev 2023; 203:115140. [PMID: 37980949 PMCID: PMC10757742 DOI: 10.1016/j.addr.2023.115140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 11/21/2023]
Abstract
The high prevalence and rising incidence of autoimmune diseases have become a prominent public health issue. Autoimmune disorders result from the immune system erroneously attacking the body's own healthy cells and tissues, causing persistent inflammation, tissue injury, and impaired organ function. Existing treatments primarily rely on broad immunosuppression, leaving patients vulnerable to infections and necessitating lifelong treatments. To address these unmet needs, an emerging frontier of vaccine development aims to restore immune equilibrium by inducing immune tolerance to autoantigens, offering a potential avenue for a cure rather than mere symptom management. We discuss this burgeoning field of vaccine development against inflammation and autoimmune diseases, with a focus on common autoimmune disorders, including multiple sclerosis, type 1 diabetes, rheumatoid arthritis, inflammatory bowel disease, and systemic lupus erythematosus. Vaccine-based strategies provide a new pathway for the future of autoimmune disease therapeutics, heralding a new era in the battle against inflammation and autoimmunity.
Collapse
Affiliation(s)
- April Kim
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Fang Xie
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Omar A Abed
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - James J Moon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor 48109, USA.
| |
Collapse
|
34
|
Lawal SA, Voisin A, Olof H, Bording-Jorgensen M, Armstrong H. Diversity of the microbiota communities found in the various regions of the intestinal tract in healthy individuals and inflammatory bowel diseases. Front Immunol 2023; 14:1242242. [PMID: 38022505 PMCID: PMC10654633 DOI: 10.3389/fimmu.2023.1242242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
The severe and chronic inflammatory bowel diseases (IBD), Crohn disease and ulcerative colitis, are characterized by persistent inflammation and gut damage. There is an increasing recognition that the gut microbiota plays a pivotal role in IBD development and progression. However, studies of the complete microbiota composition (bacteria, fungi, viruses) from precise locations within the gut remain limited. In particular, studies have focused primarily on the bacteriome, with available methods limiting evaluation of the mycobiome (fungi) and virome (virus). Furthermore, while the different segments of the small and large intestine display different functions (e.g., digestion, absorption, fermentation) and varying microenvironment features (e.g., pH, metabolites), little is known about the biogeography of the microbiota in different segments of the intestinal tract or how this differs in IBD. Here, we highlight evidence of the differing microbiota communities of the intestinal sub-organs in healthy and IBD, along with method summaries to improve future studies.
Collapse
Affiliation(s)
- Samuel Adefisoye Lawal
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
- Manitoba Centre for Proteomics and Systems Biology, University of Manitoba, Winnipeg, MB, Canada
- IBD Clinical and Research Centre, University of Manitoba, Winnipeg, MB, Canada
| | - Athalia Voisin
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
- Manitoba Centre for Proteomics and Systems Biology, University of Manitoba, Winnipeg, MB, Canada
- IBD Clinical and Research Centre, University of Manitoba, Winnipeg, MB, Canada
| | - Hana Olof
- Manitoba Centre for Proteomics and Systems Biology, University of Manitoba, Winnipeg, MB, Canada
- IBD Clinical and Research Centre, University of Manitoba, Winnipeg, MB, Canada
- Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
| | | | - Heather Armstrong
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
- Manitoba Centre for Proteomics and Systems Biology, University of Manitoba, Winnipeg, MB, Canada
- IBD Clinical and Research Centre, University of Manitoba, Winnipeg, MB, Canada
- Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
- Department of Internal Medicine, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
35
|
Shao Q, Lin Z, Xu Z, Zhu Z, Zhou C, Yan X. Integrated Biogeography and Assembly Mechanisms of Microeukaryotic Communities in Coastal Waters Near Shellfish Cultivation. MICROBIAL ECOLOGY 2023; 86:2560-2573. [PMID: 37415043 DOI: 10.1007/s00248-023-02256-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/08/2023] [Indexed: 07/08/2023]
Abstract
The Lianjiang coast in the East China Sea is a typical subtropical marine ecosystem, and shellfish cultivation occupies almost all of the available tidal flats. Many studies have investigated the effects of shellfish cultivation on benthic organisms and sediments, while the impact of shellfish cultivation on plankton ecosystems is still poorly understood. This study investigated the biogeographical patterns of microeukaryotic communities from Lianjiang coastal waters in four seasons using 18S ribosomal RNA gene amplicon sequencing. Microeukaryotes were mainly comprised of Dinoflagellata, Diatomea, Arthropoda, Ciliophora, Chlorophyta, Protalveolata, Cryptophyceae, and Ochrophyta, and presented significant differences in three habitats (the aquaculture area, confluent area, and offshore area) and four seasons. Similarity percentage analysis revealed that Paracalanus parvus, Heterocapsa rotundata, Bestiolina similis, and five additional key taxa contributed to spatio-temporal differences. Seasonal environmental and spatial factors explained 27.47% of microeukaryotic community variation on average, with 11.11% of the variation shared. Environmental variables, particularly depth, pH, and nitrite concentration, were strongly associated with the microeukaryotic community compositions. The neutral community model further demonstrated that stochastic processes were sufficient in shaping substantial variation in microeukaryotic communities across four seasons, which may reveal the remaining unexplained microeukaryotic community variation. We further divided four seasons into the aquaculture stages and non-aquaculture stages, and speculated that aquaculture activities may increase the dispersal limitation of microeukaryotes in coastal waters, especially for the big bodied-microbes like Arthropoda. The results provide a better understanding of the biogeographical patterns, processes, and mechanisms of microeukaryotic communities near shellfish cultivation.
Collapse
Affiliation(s)
- Qianwen Shao
- School of Marine Science, Ministry of Education, Ningbo University, Ningbo, 315832, China
- Ningbo Institute of Oceanography, Ningbo, 315832, China
| | - Zhongzhou Lin
- School of Marine Science, Ministry of Education, Ningbo University, Ningbo, 315832, China
| | - Zhihui Xu
- School of Marine Science, Ministry of Education, Ningbo University, Ningbo, 315832, China
| | - Zhuoyi Zhu
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, 200000, China
| | - Chengxu Zhou
- College of Food and Pharmaceutical Sciences, Ministry of Education, Ningbo University, Ningbo, 315832, China.
| | - Xiaojun Yan
- School of Marine Science, Ministry of Education, Ningbo University, Ningbo, 315832, China.
- Zhejiang Ocean University, Zhoushan, 316000, China.
| |
Collapse
|
36
|
Zhou X, Lian P, Liu H, Wang Y, Zhou M, Feng Z. Causal Associations between Gut Microbiota and Different Types of Dyslipidemia: A Two-Sample Mendelian Randomization Study. Nutrients 2023; 15:4445. [PMID: 37892520 PMCID: PMC10609956 DOI: 10.3390/nu15204445] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/11/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
The determination of a causal association between gut microbiota and a range of dyslipidemia remains uncertain. To clarify these associations, we employed a two-sample Mendelian randomization (MR) analysis utilizing the inverse-variance weighted (IVW) method. This comprehensive analysis investigated the genetic variants that exhibited a significant association (p < 5 × 10-8) with 129 distinct gut microbiota genera and their potential link to different types of dyslipidemia. The results indicated a potential causal association between 22 gut microbiota genera and dyslipidemia in humans. Furthermore, these findings suggested that the impact of gut microbiota on dyslipidemia regulation is dependent on the specific phylum, family, and genus. Bacillota phylum demonstrated the greatest diversity, with 15 distinct genera distributed among eight families. Notably, gut microbiota-derived from the Lachnospiraceae and Lactobacillaceae families exhibit statistically significant associations with lipid levels that contribute to overall health (p < 0.05). The sensitivity analysis indicated that our findings possess robustness (p > 0.05). The findings of our investigation provide compelling evidence that substantiates a causal association between the gut microbiota and dyslipidemia in the human body. It is noteworthy to highlight the significant influence of the Bacillota phylum as a crucial regulator of lipid levels, and the families Lachnospiraceae and Lactobacillaceae should be recognized as probiotics that significantly contribute to this metabolic process.
Collapse
Affiliation(s)
| | | | | | | | - Meijuan Zhou
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou 510515, China; (X.Z.); (P.L.); (H.L.); (Y.W.)
| | - Zhijun Feng
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou 510515, China; (X.Z.); (P.L.); (H.L.); (Y.W.)
| |
Collapse
|
37
|
Arjomand Fard N, Bording-Jorgensen M, Wine E. A Potential Role for Gut Microbes in Mediating Effects of Omega-3 Fatty Acids in Inflammatory Bowel Diseases: A Comprehensive Review. Curr Microbiol 2023; 80:363. [PMID: 37807005 DOI: 10.1007/s00284-023-03482-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/11/2023] [Indexed: 10/10/2023]
Abstract
Omega-3 polyunsaturated fatty acids (ω-3 PUFAs) have been associated with several inflammatory conditions, including inflammatory bowel diseases (IBDs), and found to have an impact on gut microbiota. In fact, some randomized controlled studies suggest benefits to IBD patients, but others do not. Our aim was to review recent evidence on the effects of omega-3 on IBD and establish the contribution of the gut microbiome. Omega-3 mediate anti-inflammatory effects in IBD through various mechanisms, including suppression of NLR family pyrin domain-containing 3 (NLRP3) inflammasome, Toll-like receptor-4 (TLR4), and nucleotide-binding oligomerization domain 2 (NOD2) signaling; this results in the repression of the nuclear factor-kappa B (Nf-kB) pathway and the secretion of pro-inflammatory cytokines. Omega-3 can also affect gut microbiota and revert the bacterial community to patterns associated with healthy status by increasing short-chain fatty acid (SCFA)-producing bacteria and enhancing the mucosal gut barrier, thus promoting homeostasis. The combination of these immunoregulatory effects and anti-inflammation properties with the promotion of a balanced gut microbiome environment could suggest that omega-3 might benefit IBD patients. Considering the microbiota of IBD patients while using omega-3 might predict and improve omega-3 effectiveness. Combining omega-3 with bacteria-altering therapy, such as probiotics and fecal microbiota transplantation, may further enhance its efficacy; however, further studies are required to elucidate mechanisms and potential preventive or treatment roles of omega-3 in IBD.
Collapse
Affiliation(s)
- Nazanin Arjomand Fard
- Centre of Excellence for Gastrointestinal Inflammation and Immunity Research, University of Alberta, Edmonton, AB, T6G 2X8, Canada
- Department of Physiology, University of Alberta, Edmonton, AB, T6G 1C9, Canada
| | - Michael Bording-Jorgensen
- Centre of Excellence for Gastrointestinal Inflammation and Immunity Research, University of Alberta, Edmonton, AB, T6G 2X8, Canada
- Department of Pediatrics, University of Alberta, Edmonton Clinic Health Academy, Room 4-577, 11405 87Th Ave, Edmonton, AB, T6G 1C9, Canada
| | - Eytan Wine
- Centre of Excellence for Gastrointestinal Inflammation and Immunity Research, University of Alberta, Edmonton, AB, T6G 2X8, Canada.
- Department of Physiology, University of Alberta, Edmonton, AB, T6G 1C9, Canada.
- Department of Pediatrics, University of Alberta, Edmonton Clinic Health Academy, Room 4-577, 11405 87Th Ave, Edmonton, AB, T6G 1C9, Canada.
| |
Collapse
|
38
|
Frangiamone M, Lozano M, Cimbalo A, Lazaro A, Font G, Manyes L. The Protective Effect of Pumpkin and Fermented Whey Mixture against AFB1 and OTA Immune Toxicity In Vitro. A Transcriptomic Approach. Mol Nutr Food Res 2023; 67:e2200902. [PMID: 37544930 DOI: 10.1002/mnfr.202200902] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 04/04/2023] [Indexed: 08/08/2023]
Abstract
SCOPE The aim of the study is to investigate in Jurkat cells the possible beneficial effect of pumpkin (P) and fermented milk whey (FW) mixture against aflatoxin B1 (AFB1) and ochratoxin A (OTA) induced alterations in gene expression profile. METHODS AND RESULTS Human T cells are exposed for 7 days to digested bread extracts containing P-FW mixture along with AFB1 and OTA, individually and in combination. The results of RNA sequencing show that AFB1 P-FW exposure resulted in 34 differentially expressed genes (DEGs) while 3450 DEGs are found in OTA P-FW exposure and 3264 DEGs in AFB1-OTA P-FW treatment. Gene ontology analysis reveals biological processes and molecular functions related to immune system and inflammatory response. Moreover, PathVisio analysis points to eicosanoid signaling via lipoxygenase as the main pathway altered by AFB1 P-FW exposure whereas interferon signaling is the most affected pathway after OTA P-FW and AFB1-OTA P-FW treatments. CONCLUSIONS The mitigation of genes and inherent pathways typically associated with the inflammatory response suggest not only the anti-inflammatory and protective role of P-FW mixture but also their possible application in food industry to counteract AFB1 and OTA toxic effects on human and animal health.
Collapse
Affiliation(s)
- Massimo Frangiamone
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, Universitat de València, Av. Vicent Andrés Estellés s/n, Burjassot, 46100, Spain
| | - Manuel Lozano
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, Universitat de València, Av. Vicent Andrés Estellés s/n, Burjassot, 46100, Spain
| | - Alessandra Cimbalo
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, Universitat de València, Av. Vicent Andrés Estellés s/n, Burjassot, 46100, Spain
| | - Alvaro Lazaro
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, Universitat de València, Av. Vicent Andrés Estellés s/n, Burjassot, 46100, Spain
| | - Guillermina Font
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, Universitat de València, Av. Vicent Andrés Estellés s/n, Burjassot, 46100, Spain
| | - Lara Manyes
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, Universitat de València, Av. Vicent Andrés Estellés s/n, Burjassot, 46100, Spain
| |
Collapse
|
39
|
Fonseca PAS, Lam S, Chen Y, Waters SM, Guan LL, Cánovas A. Multi-breed host rumen epithelium transcriptome and microbiome associations and their relationship with beef cattle feed efficiency. Sci Rep 2023; 13:16209. [PMID: 37758745 PMCID: PMC10533831 DOI: 10.1038/s41598-023-43097-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
Understanding host-microbial interactions in the rumen and its influence on desirable production traits may lead to potential microbiota manipulation or genetic selection for improved cattle feed efficiency. This study investigated the host transcriptome and its correlation with the rumen archaea and bacteria differential abundance of two pure beef cattle breeds (Angus and Charolais) and one composite beef hybrid (Kinsella) divergent for residual feed intake (RFI; low-RFI vs. high-RFI). Using RNA-Sequencing of rumen tissue and 16S rRNA gene amplicon sequencing, differentially expressed genes (FDR ≤ 0.05, |log2(Fold-change) >|2) and differentially abundant (p-value < 0.05) archaea and bacteria amplicon sequence variants (ASV) were determined. Significant correlations between gene expression and ASVs (p-value < 0.05) were determine using Spearman correlation. Interesting associations with muscle contraction and the modulation of the immune system were observed for the genes correlated with bacterial ASVs. Potential functional candidate genes for feed efficiency status were identified for Angus (CCL17, CCR3, and CXCL10), Charolais (KCNK9, GGT1 and IL6), and Kinsella breed (ESR2). The results obtained here provide more insights regarding the applicability of target host and rumen microbial traits for the selection and breeding of more feed efficient beef cattle.
Collapse
Grants
- Beef Farmers of Ontario, Genome Canada and the Sustainable Beef and Forage Science Cluster funded by the Canadian Beef Cattle Check-Off, Beef Cattle Research Council (BCRC), Alberta Beef Producers, Alberta Cattle Feeders’ Association, Beef Farmers of Ontario, La Fédération des Productuers de bovins du Québec, and Agriculture and Agri-Food Canada’s Canadian Agricultural Partnership
- Ontario Ministry of Agriculture, Food, and Rural Affairs (OMAFRA), Ontario Ministry of Research and Innovation, and the Ontario Agri-Food Innovation Alliance
Collapse
Affiliation(s)
- P A S Fonseca
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - S Lam
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Y Chen
- Livestock Gentec, Department of Agriculture, Food & Nutritional Science, University of Alberta, Edmonton, AB, T6H 2P5, Canada
| | - S M Waters
- Teagasc, Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Grange, Dunsany, C15 PW93, Co. Meath, Ireland
| | - L L Guan
- Livestock Gentec, Department of Agriculture, Food & Nutritional Science, University of Alberta, Edmonton, AB, T6H 2P5, Canada
| | - A Cánovas
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
40
|
Siva N, Anderson CT. Assessing lignocellulosic biomass as a source of emergency foods. Curr Res Food Sci 2023; 7:100586. [PMID: 37766892 PMCID: PMC10520305 DOI: 10.1016/j.crfs.2023.100586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Catastrophes such as a nuclear war would generate atmospheric soot and reduce sunlight, making it difficult to grow crops. Under such conditions, people might turn to inedible plant biomass for nutrition, but the convertibility and nutritional content of this biomass have not been rigorously analyzed. We found that if plant biomass were converted into food at 30% efficiency, 6.7 kg of biomass per day would yield adequate carbohydrates, but contain potentially toxic or insufficient levels of other nutrients for a family of four. Therefore, exploiting biomass with low mineral content for carbohydrates and consuming other sources of protein, fat, and vitamins such as edible insects/single-cell proteins and vitamin supplements could provide a balanced diet in a global catastrophic environment.
Collapse
Affiliation(s)
- Niroshan Siva
- Department of Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Charles T. Anderson
- Department of Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
41
|
Han K, Feng G, Li T, Wan Z, Zhao W, Yang X. Extension Region Domain of Soybean 7S Globulin Contributes to Serum Triglyceride-Lowering Effect via Modulation of Bile Acids Homeostasis. Mol Nutr Food Res 2023; 67:e2200883. [PMID: 37423975 DOI: 10.1002/mnfr.202200883] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 05/14/2023] [Indexed: 07/11/2023]
Abstract
SCOPE Soybean 7S globulin (β-conglycinin), a major soybean storage protein, has been demonstrated to exert remarkable triglyceride (TG) and cholesterol-lowering effects, yet the underlying mechanism remains controversial. METHODS AND RESULTS A comparative investigation is performed to assess the contribution of different structural domains of soybean 7S globulin, including core region (CR) and extension region (ER) domains, to biological effects of soybean 7S globulin using a high-fat diet rat model. The results show that ER domain mainly contributes to the serum TG-lowering effect of soybean 7S globulin, but not for CR domain. Metabolomics analysis reveals that oral administration of ER peptides obviously influences the metabolic profiling of serum bile acids (BAs), as well as significantly increased the fecal excretion of total BAs. Meanwhile, ER peptides supplementation reshapes the composition of gut microbiota and impacts the gut microbiota-dependent biotransformation of BAs which indicate by a significantly increased secondary BAs concentration in fecal samples. These results highlight that TG-lowering effects of ER peptides mainly stem from their modulation of BAs homeostasis. CONCLUSION Oral administration of ER peptides can effectively lower serum TG level by regulating BAs metabolism. ER peptides have potential to be used as a candidate pharmaceutical for the intervention of dyslipidemia.
Collapse
Affiliation(s)
- Kaining Han
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, China
| | - Guangxin Feng
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, China
| | - Tanghao Li
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, China
| | - Zhili Wan
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, China
| | - Wenjing Zhao
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Xiaoquan Yang
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, China
| |
Collapse
|
42
|
Pu J, Yang J, Lu S, Jin D, Luo X, Xiong Y, Bai X, Zhu W, Huang Y, Wu S, Niu L, Liu L, Xu J. Species-Level Taxonomic Characterization of Uncultured Core Gut Microbiota of Plateau Pika. Microbiol Spectr 2023; 11:e0349522. [PMID: 37067438 PMCID: PMC10269723 DOI: 10.1128/spectrum.03495-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 02/13/2023] [Indexed: 04/18/2023] Open
Abstract
Rarely has the vast diversity of bacteria on Earth been profiled, particularly on inaccessible plateaus. These uncultured microbes, which are also known as "microbial dark matter," may play crucial roles in maintaining the ecosystem and are linked to human health, regarding pathogenicity and prebioticity. The plateau pika (Ochotona curzoniae) is a small burrowing steppe lagomorph that is endemic to the Qinghai-Tibetan Plateau and is a keystone species in the maintenance of ecological balance. We used a combination of full-length 16S rRNA amplicon sequencing, shotgun metagenomics, and metabolomics to elucidate the species-level community structure and the metabolic potential of the gut microbiota of the plateau pika. Using a full-length 16S rRNA metataxonomic approach, we clustered 618 (166 ± 35 per sample) operational phylogenetic units (OPUs) from 105 plateau pika samples and assigned them to 215 known species, 226 potentially new species, and 177 higher hierarchical taxa. Notably, 39 abundant OPUs (over 60% total relative abundance) are found in over 90% of the samples, thereby representing a "core microbiota." They are all classified as novel microbial lineages, from the class to the species level. Using metagenomic reads, we independently assembled and binned 109 high-quality, species-level genome bins (SGBs). Then, a precise taxonomic assignment was performed to clarify the phylogenetic consistency of the SGBs and the 16S rRNA amplicons. Thus, the majority of the core microbes possess their genomes. SGBs belonging to the genus Treponema, the families Muribaculaceae, Lachnospiraceae, and Oscillospiraceae, and the order Eubacteriales are abundant in the metagenomic samples. In addition, multiple CAZymes are detected in these SGBs, indicating their efficient utilization of plant biomass. As the most widely connected metabolite with the core microbiota, tryptophan may relate to host environmental adaptation. Our investigation allows for a greater comprehension of the composition and functional capacity of the gut microbiota of the plateau pika. IMPORTANCE The great majority of microbial species remain uncultured, severely limiting their taxonomic characterization and biological understanding. The plateau pika (Ochotona curzoniae) is a small burrowing steppe lagomorph that is endemic to the Qinghai-Tibetan Plateau and is considered to be the keystone species in the maintenance of ecological stability. We comprehensively investigated the gut microbiota of the plateau pika via a multiomics endeavor. Combining full-length 16S rRNA metataxonomics, shotgun metagenomics, and metabolomics, we elucidated the species-level taxonomic assignment of the core uncultured intestinal microbiota of the plateau pika and revealed their correlation to host nutritional metabolism and adaptation. Our findings provide insights into the microbial diversity and biological significance of alpine animals.
Collapse
Affiliation(s)
- Ji Pu
- State Key Laboratory of Infectious Disease Prevention and Control and National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jing Yang
- State Key Laboratory of Infectious Disease Prevention and Control and National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing, China
| | - Shan Lu
- State Key Laboratory of Infectious Disease Prevention and Control and National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing, China
| | - Dong Jin
- State Key Laboratory of Infectious Disease Prevention and Control and National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing, China
| | - Xuelian Luo
- State Key Laboratory of Infectious Disease Prevention and Control and National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yanwen Xiong
- State Key Laboratory of Infectious Disease Prevention and Control and National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiangning Bai
- State Key Laboratory of Infectious Disease Prevention and Control and National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Wentao Zhu
- State Key Laboratory of Infectious Disease Prevention and Control and National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yuyuan Huang
- State Key Laboratory of Infectious Disease Prevention and Control and National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Shusheng Wu
- Yushu Prefecture Center for Disease Control and Prevention, Yushu, China
| | - Lina Niu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China
| | - Liyun Liu
- State Key Laboratory of Infectious Disease Prevention and Control and National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jianguo Xu
- State Key Laboratory of Infectious Disease Prevention and Control and National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing, China
- Institute of Public Health, Nankai University, Tianjing, China
| |
Collapse
|
43
|
Dunlap DG, Yang L, Qin S, Li K, Fitch A, Huang L, McVerry BJ, Hand TW, Methé BA, Morris A. Magnetic-activated cell sorting identifies a unique lung microbiome community. MICROBIOME 2023; 11:117. [PMID: 37226179 PMCID: PMC10210470 DOI: 10.1186/s40168-022-01434-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/23/2022] [Indexed: 05/26/2023]
Abstract
BACKGROUND The advent of culture-independent, next-generation DNA sequencing has led to the discovery of distinct lung bacterial communities. Studies of lung microbiome taxonomy often reveal only subtle differences between health and disease, but host recognition and response may distinguish the members of similar bacterial communities in different populations. Magnetic-activated cell sorting has been applied to the gut microbiome to identify the numbers and types of bacteria eliciting a humoral response. We adapted this technique to examine the populations of immunoglobulin-bound bacteria in the lung. METHODS Sixty-four individuals underwent bronchoalveolar lavage (BAL). We separated immunoglobulin G-bound bacteria using magnetic-activated cell sorting and sequenced the 16S rRNA gene on the Illumina MiSeq platform. We compared microbial sequencing data in IgG-bound bacterial communities compared to raw BAL then examined the differences in individuals with and without HIV as a representative disease state. RESULTS Immunoglobulin G-bound bacteria were identified in all individuals. The community structure differed when compared to raw BAL, and there was a greater abundance of Pseudomonas and fewer oral bacteria in IgG-bound BAL. Examination of IgG-bound communities in individuals with HIV demonstrated the differences in Ig-bound bacteria by HIV status that were not seen in a comparison of raw BAL, and greater numbers of immunoglobulin-bound bacteria were associated with higher pulmonary cytokine levels. CONCLUSIONS We report a novel application of magnetic-activated cell sorting to identify immunoglobulin G-bound bacteria in the lung. This technique identified distinct bacterial communities which differed in composition from raw bronchoalveolar lavage, revealing the differences not detected by traditional analyses. Cytokine response was also associated with differential immunoglobulin binding of lung bacteria, suggesting the functional importance of these communities. Video Abstract.
Collapse
Affiliation(s)
- Daniel G. Dunlap
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, NW628, 3459 Fifth Avenue, Pittsburgh, PA 15213 USA
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, USA
| | - Libing Yang
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, NW628, 3459 Fifth Avenue, Pittsburgh, PA 15213 USA
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, USA
| | - Shulin Qin
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, NW628, 3459 Fifth Avenue, Pittsburgh, PA 15213 USA
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, USA
| | - Kelvin Li
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, USA
| | - Adam Fitch
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, USA
| | - Laurence Huang
- Department of Medicine, University of California, San Francisco, CA USA
| | - Bryan J. McVerry
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, NW628, 3459 Fifth Avenue, Pittsburgh, PA 15213 USA
| | | | - Barbara A. Methé
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, USA
| | - Alison Morris
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, NW628, 3459 Fifth Avenue, Pittsburgh, PA 15213 USA
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| |
Collapse
|
44
|
Ma M, Zhao Y, Jiang X, Guan D, Yuan M, Cao F, Li L, Zhou J, Ding J, Li J. Fertilization altered co-occurrence patterns and microbial assembly process of ammonia-oxidizing microorganisms. Sci Rep 2023; 13:8234. [PMID: 37217543 DOI: 10.1038/s41598-022-26293-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 12/13/2022] [Indexed: 05/24/2023] Open
Abstract
Ammonia-oxidizing archaea and bacteria (AOA and AOB, respectively) are important intermediate links in the nitrogen cycle. Apart from the AOA and AOB communities in soil, we further investigated co-occurrence patterns and microbial assembly processes subjected to inorganic and organic fertilizer treatments for over 35 years. The amoA copy numbers and AOA and AOB communities were found to be similar for the CK and organic fertilizer treatments. Inorganic fertilizers decreased the AOA gene copy numbers by 0.75-0.93-fold and increased the AOB gene copy numbers by 1.89-3.32-fold compared to those of the CK treatment. The inorganic fertilizer increased Nitrososphaera and Nitrosospira. The predominant bacteria in organic fertilizer was Nitrosomonadales. Furthermore, the inorganic fertilizer increased the complexity of the co-occurrence pattern of AOA and decreased the complexity pattern of AOB comparing with organic fertilizer. Different fertilizer had an insignificant effect on the microbial assembly process of AOA. However, great difference exists in the AOB community assembly process: deterministic process dominated in organic fertilizer treatment and stochastic processes dominated in inorganic fertilizer treatment, respectively. Redundancy analysis indicated that the soil pH, NO3-N, and available phosphorus contents were the main factors affecting the changes in the AOA and AOB communities. Overall, this findings expanded our knowledge concerning AOA and AOB, and ammonia-oxidizing microorganisms were more disturbed by inorganic fertilizers than organic fertilizers.
Collapse
Affiliation(s)
- Mingchao Ma
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Laboratory of Quality & Safety Risk Assessment for Microbial Products, Ministry of Agriculture, Beijing, 100081, China
| | - Yubin Zhao
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Laboratory of Quality & Safety Risk Assessment for Microbial Products, Ministry of Agriculture, Beijing, 100081, China
| | - Xin Jiang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
- Laboratory of Quality & Safety Risk Assessment for Microbial Products, Ministry of Agriculture, Beijing, 100081, China.
| | - Dawei Guan
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Laboratory of Quality & Safety Risk Assessment for Microbial Products, Ministry of Agriculture, Beijing, 100081, China
| | - Ming Yuan
- Qiqihar Sub-Academy of Heilongjiang Academy of Agricultural Sciences, Qiqihar, 161006, Heilongjiang, China
| | - Fengming Cao
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Laboratory of Quality & Safety Risk Assessment for Microbial Products, Ministry of Agriculture, Beijing, 100081, China
| | - Li Li
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Laboratory of Quality & Safety Risk Assessment for Microbial Products, Ministry of Agriculture, Beijing, 100081, China
| | - Jing Zhou
- School of Life Sciences, Qufu Normal University, Jining, 273165, China
| | - Jianli Ding
- Institute of Plant Nutrition and Resources, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Jun Li
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
- Laboratory of Quality & Safety Risk Assessment for Microbial Products, Ministry of Agriculture, Beijing, 100081, China.
| |
Collapse
|
45
|
Huang Z, Chang Y, Hao K, Tan Y, Ding L, Wang L, Wang Z, Pan Z, Gao H, Wu J, Zhu Y, Gao Q, Bi Y, Yang R. Immunomagnetic-bead enriched culturomics (IMBEC) for isolating pathobionts from feces of colorectal cancer patients. IMETA 2023; 2:e100. [PMID: 38868439 PMCID: PMC10989793 DOI: 10.1002/imt2.100] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/05/2023] [Accepted: 03/06/2023] [Indexed: 06/14/2024]
Abstract
Culturomics employs various cultivating conditions to obtain different types of bacteria and new species. However, current culturomics lacks a highly efficient method for isolating specific pathobionts. Immunomagnetic bead technology, which uses magnetic beads conjugated with antibodies for capturing the antigen to realize enrichment of the targets, has been employed as an alternative method. In this study, we developed a novel method, immunomagnetic bead-enriched culturomics (IMBEC), in which magnetic bead-conjugated antibodies purified from the fecal samples of patients with colorectal cancer (CRC) were used to enrich and isolate potential pathobionts. A protocol for enriching potential pathobionts via immunomagnetic capture was developed by optimizing the concentrations of coupling reagents, NaCl, and detergent. The efficacy of pathobiont enrichment was compared between antibody-coated magnetic beads (antibody group) and nonconjugated blank magnetic beads (blank group). To determine the proinflammatory potential of isolates from both groups, we investigated their ability to induce cytokine production in THP-1 macrophages. This protocol was employed for isolating bacteria from 10 fecal samples of patients with CRC, which were simultaneously compared with those isolated from the blank group. A total of 209 bacterial species were isolated from both groups, including 173 from the antibody group, 160 from the blank group, and 124 from both groups. Bacteria isolated from the antibody group produced more proinflammatory cytokines than those isolated from the blank group. IMBEC is a promising method for relatively specific isolation of potential pathobionts for a particular disease of interest.
Collapse
Affiliation(s)
- Ziran Huang
- The Key and Characteristic Laboratory of Modern Pathogen Biology, School of Basic Medical SciencesGuizhou Medical UniversityGuiyangChina
- State Key Laboratory of Pathogen and BiosecurityBeijing Institute of Microbiology and EpidemiologyBeijingChina
| | - Yuxiao Chang
- State Key Laboratory of Pathogen and BiosecurityBeijing Institute of Microbiology and EpidemiologyBeijingChina
| | - Kun Hao
- Beijing Key Laboratory of POCT for Bioemergency and Clinic (BZ0329)BeijingChina
| | - Yafang Tan
- State Key Laboratory of Pathogen and BiosecurityBeijing Institute of Microbiology and EpidemiologyBeijingChina
- Beijing Key Laboratory of POCT for Bioemergency and Clinic (BZ0329)BeijingChina
| | - Lei Ding
- Beijing Shijitan HospitalCapital Medical UniversityBeijingChina
| | - Likun Wang
- State Key Laboratory of Pathogen and BiosecurityBeijing Institute of Microbiology and EpidemiologyBeijingChina
| | - Zhen Wang
- State Key Laboratory of Pathogen and BiosecurityBeijing Institute of Microbiology and EpidemiologyBeijingChina
| | - Zhiyuan Pan
- State Key Laboratory of Pathogen and BiosecurityBeijing Institute of Microbiology and EpidemiologyBeijingChina
| | - Hong Gao
- Beijing Shijitan HospitalCapital Medical UniversityBeijingChina
| | - Jiahong Wu
- The Key and Characteristic Laboratory of Modern Pathogen Biology, School of Basic Medical SciencesGuizhou Medical UniversityGuiyangChina
| | - Yubing Zhu
- Beijing Shijitan HospitalCapital Medical UniversityBeijingChina
| | - Qi Gao
- Beijing Key Laboratory of POCT for Bioemergency and Clinic (BZ0329)BeijingChina
| | - Yujing Bi
- State Key Laboratory of Pathogen and BiosecurityBeijing Institute of Microbiology and EpidemiologyBeijingChina
- Beijing Key Laboratory of POCT for Bioemergency and Clinic (BZ0329)BeijingChina
| | - Ruifu Yang
- State Key Laboratory of Pathogen and BiosecurityBeijing Institute of Microbiology and EpidemiologyBeijingChina
- Beijing Key Laboratory of POCT for Bioemergency and Clinic (BZ0329)BeijingChina
| |
Collapse
|
46
|
Wu W, Lu H, Cheng J, Geng Z, Mao S, Xue Y. Undernutrition Disrupts Cecal Microbiota and Epithelium Interactions, Epithelial Metabolism, and Immune Responses in a Pregnant Sheep Model. Microbiol Spectr 2023; 11:e0532022. [PMID: 36976022 PMCID: PMC10100782 DOI: 10.1128/spectrum.05320-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 03/08/2023] [Indexed: 03/29/2023] Open
Abstract
Undernutrition may change cecal microbiota-epithelium interactions to influence cecal feed fermentation, nutrient absorption and metabolism, and immune function. Sixteen late-gestation Hu-sheep were randomly divided into control (normal feeding) and treatment (feed restriction) groups to establish an undernourished sheep model. Cecal digesta and epithelium were collected to analyze microbiota-host interactions based on 16S rRNA gene and transcriptome sequencing. Results showed that cecal weight and pH were decreased, volatile fatty acids and microbial proteins concentrations were increased, and epithelial morphology was changed upon undernutrition. Undernutrition reduced the diversity, richness, and evenness of cecal microbiota. The relative abundances of cecal genera involved in acetate production (Rikenellaceae dgA-11 gut group, Rikenellaceae RC9 gut group, and Ruminococcus) and negatively correlated with butyrate proportion (Clostridia vadinBB60 group_norank) were decreased, while genera related to butyrate (Oscillospiraceae_uncultured and Peptococcaceae_uncultured) and valerate (Peptococcaceae_uncultured) production were increased in undernourished ewes. These findings were consistent with the decreased molar proportion of acetate and the increased molar proportions of butyrate and valerate. Undernutrition changed the overall transcriptional profile and substance transport and metabolism in cecal epithelium. Undernutrition suppressed extracellular matrix-receptor interaction and intracellular phosphatidyl inositol 3-kinase (PI3K) signaling pathway then disrupted biological processes in cecal epithelium. Moreover, undernutrition repressed phagosome antigen processing and presentation, cytokine-cytokine receptor interaction, and intestinal immune network. In conclusion, undernutrition affected cecal microbial diversity and composition and fermentation parameters, inhibited extracellular matrix-receptor interaction and the PI3K signaling pathway, and then disrupted epithelial proliferation and renewal and intestinal immune functions. Our findings exposed cecal microbiota-host interactions upon undernutrition and contribute to their further exploration. IMPORTANCE Undernutrition is commonly encountered in ruminant production, especially during pregnancy and lactation in females. Undernutrition not only induces metabolic diseases and threatens pregnant mothers' health, but also inhibits fetal growth and development, leading to weakness or even death of fetuses. Cecum works importantly in hindgut fermentation, providing volatile fatty acids and microbial proteins to the organism. Intestinal epithelial tissue plays a role in nutrient absorption and transport, barrier function, and immune function. However, little is known about cecal microbiota and epithelium interactions upon undernutrition. Our findings showed that undernutrition affected bacterial structures and functions, which changed fermentation parameters and energy regimens, and therefore affected the substance transport and metabolism in cecal epithelium. Extracellular matrix-receptor interactions were inhibited, which repressed cecal epithelial morphology and cecal weight via the PI3K signaling pathway and lowered immune response function upon undernutrition. These findings will help in further exploring microbe-host interactions.
Collapse
Affiliation(s)
- Weibin Wu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Huizhen Lu
- Biotechnology Center, Anhui Agricultural University, Hefei, China
| | - Jianbo Cheng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Zhaoyu Geng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Shengyong Mao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yanfeng Xue
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| |
Collapse
|
47
|
Mendoza RM, Kim SH, Vasquez R, Hwang IC, Park YS, Paik HD, Moon GS, Kang DK. Bioinformatics and its role in the study of the evolution and probiotic potential of lactic acid bacteria. Food Sci Biotechnol 2023; 32:389-412. [PMID: 36911331 PMCID: PMC9992694 DOI: 10.1007/s10068-022-01142-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/30/2022] [Accepted: 07/13/2022] [Indexed: 11/04/2022] Open
Abstract
Due to their numerous well-established applications in the food industry, there have been many studies regarding the adaptation and evolution of lactic acid bacteria (LAB) in a wide variety of hosts and environments. Progress in sequencing technology and continual decreases in its costs have led to the availability of LAB genome sequence data. Bioinformatics has been central to the extraction of valuable information from these raw genome sequence data. This paper presents the roles of bioinformatics tools and databases in understanding the adaptation and evolution of LAB, as well as the bioinformatics methods used in the initial screening of LAB for probiotic potential. Moreover, the advantages, challenges, and limitations of employing bioinformatics for these purposes are discussed.
Collapse
Affiliation(s)
- Remilyn M. Mendoza
- Department of Animal Resources Science, Dankook University, 119 Dandae-ro, Cheonan, 31116 Republic of Korea
| | - Sang Hoon Kim
- Department of Animal Resources Science, Dankook University, 119 Dandae-ro, Cheonan, 31116 Republic of Korea
| | - Robie Vasquez
- Department of Animal Resources Science, Dankook University, 119 Dandae-ro, Cheonan, 31116 Republic of Korea
| | - In-Chan Hwang
- Department of Animal Resources Science, Dankook University, 119 Dandae-ro, Cheonan, 31116 Republic of Korea
| | - Young-Seo Park
- Department of Food Science and Biotechnology, Gachon University, Seongnam, 13120 Republic of Korea
| | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resource, Konkuk University, Seoul, 05029 Republic of Korea
| | - Gi-Seong Moon
- Division of Food Science and Biotechnology, Korea National University of Transportation, Jeungpyeong, 27909 Republic of Korea
| | - Dae-Kyung Kang
- Department of Animal Resources Science, Dankook University, 119 Dandae-ro, Cheonan, 31116 Republic of Korea
| |
Collapse
|
48
|
Jamil FN, Hashim AM, Yusof MT, Saidi NB. Association of soil fungal community composition with incidence of Fusarium wilt of banana in Malaysia. Mycologia 2023; 115:178-186. [PMID: 36893072 DOI: 10.1080/00275514.2023.2180975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
Banana (Musa spp.), an important food crop in many parts of the world, is threatened by a deadly wilt disease caused by Fusarium oxysporum f. sp. cubense Tropical Race 4 (TR4). Increasing evidence indicates that plant actively recruits beneficial microbes in the rhizosphere to suppress soil-borne pathogens. Hence, studies on the composition and diversity of the root-associated microbial communities are important for banana health. Research on beneficial microbial communities has focused on bacteria, although fungi can also influence soil-borne disease. Here, high-throughput sequencing targeting the fungal internal transcribed spacer (ITS) was employed to systematically characterize the difference in the soil fungal community associated with Fusarium wilt (FW) of banana. The community structure of fungi in the healthy and TR4-infected rhizospheres was significantly different compared with that of bulk soil within the same farm. The rhizosphere soils of infected plants exhibited higher richness and diversity compared with healthy plants, with significant abundance of Fusarium genus at 14%. In the healthy rhizosphere soil, Penicillium spp. were more abundant at 7% and positively correlated with magnesium. This study produced a detailed description of fungal community structure in healthy and TR4-infected banana soils in Malaysia and identified candidate biomarker taxa that may be associated with FW disease promotion and suppression. The findings also expand the global inventory of fungal communities associated with the components of asymptomatic and symptomatic banana plants infected by TR4.
Collapse
Affiliation(s)
- Fatin Nadiah Jamil
- Institute of Biosciences, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | - Amalia Mohd Hashim
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia
- Halal Products Research Institute, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | - Mohd Termizi Yusof
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | - Noor Baity Saidi
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia
- Laboratory of Sustainable Agronomy and Crop Protection, Institute of Plantation Studies, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia
| |
Collapse
|
49
|
Jiang Q, Xie C, Chen L, Xiao H, Xie Z, Zhu X, Ma L, Yan X. Identification of gut microbes associated with feed efficiency by daily-phase feeding strategy in growing-finishing pigs. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 12:42-53. [PMID: 36381065 PMCID: PMC9647424 DOI: 10.1016/j.aninu.2022.09.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 09/03/2022] [Accepted: 09/15/2022] [Indexed: 06/08/2023]
Abstract
Feed efficiency is one of the most important issues for sustainable pig production. Daily-phase feeding (DPF) is a form of precision feeding that could improve feed efficiency in pigs. Gut microbiota can regulate host nutrient digestion, absorption, and metabolism. However, which key microbes may play a vital role in improving the feed efficiency during DPF remains unclear. In the present study, we used a DPF program compared to a three-phase feeding (TPF) program in growing-finishing pigs to investigate the effects of gut microbiota on feed efficiency. A total of 204 Landrace × Yorkshire pigs (75 d) were randomly assigned into 2 treatments. Each treatment was replicated 8 times with 13 to 15 pigs per replicate pen. Pigs in the TPF group were fed with a commercial feeding program that supplied fixed feed for phases I, II, and III, starting at 81, 101, and 132 d of age, respectively, and pigs in the DPF group were fed a blend of adjacent phase feed from 81 to 155 d at a gradual daily ratio and phase III feed from 155 to 180 d of age. Daily feed intake and body weight were recorded by a computerized device in the feeders. Feces and blood samples were collected from 1 pig per replicate at 155 and 180 d of age. The results showed that the DPF program remarkably improved the feed efficiency at 155 d (P < 0.001) and 180 d of age (P < 0.001), with a significant reduction of the intake of crude protein (P < 0.01), net energy (P < 0.001), crude fiber (P < 0.001), ether extract (P < 0.01), and ash (P < 0.001). The daily-phase feeding program increased the abundance of Prevotella copri (P < 0.05) and Paraprevotella clara (P < 0.05), while it decreased the abundance of Ocilibacter (P < 0.05) at 155 d of age. The results of correlation analysis indicated that the differentially abundant microbiota communities were closely associated with 20 metabolites which enriched amino acid and phenylalanine metabolism. Our results suggest that 2 key microbes may contribute to feed efficiency during daily-phase feeding strategies in pigs.
Collapse
Affiliation(s)
- Qin Jiang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- The Cooperative Innovation Center of Sustainable Pig Production, Wuhan, Hubei 430070, China
- Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, Hubei 430070, China
| | - Chunlin Xie
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- The Cooperative Innovation Center of Sustainable Pig Production, Wuhan, Hubei 430070, China
- Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, Hubei 430070, China
| | - Lingli Chen
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- The Cooperative Innovation Center of Sustainable Pig Production, Wuhan, Hubei 430070, China
- Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, Hubei 430070, China
| | - Hongli Xiao
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- The Cooperative Innovation Center of Sustainable Pig Production, Wuhan, Hubei 430070, China
- Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, Hubei 430070, China
| | - Zhilian Xie
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- The Cooperative Innovation Center of Sustainable Pig Production, Wuhan, Hubei 430070, China
- Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, Hubei 430070, China
| | - Xiaoyan Zhu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- The Cooperative Innovation Center of Sustainable Pig Production, Wuhan, Hubei 430070, China
- Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, Hubei 430070, China
| | - Libao Ma
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- The Cooperative Innovation Center of Sustainable Pig Production, Wuhan, Hubei 430070, China
- Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, Hubei 430070, China
| | - Xianghua Yan
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- The Cooperative Innovation Center of Sustainable Pig Production, Wuhan, Hubei 430070, China
- Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, Hubei 430070, China
| |
Collapse
|
50
|
Zhang Z, Han P, Zheng Y, Jiao S, Dong H, Liang X, Gao D, Niu Y, Yin G, Liu M, Hou L. Spatiotemporal Dynamics of Bacterial Taxonomic and Functional Profiles in Estuarine Intertidal Soils of China Coastal Zone. MICROBIAL ECOLOGY 2023; 85:383-399. [PMID: 35298685 DOI: 10.1007/s00248-022-01996-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 03/10/2022] [Indexed: 06/14/2023]
Abstract
Bacteria play an important role in regulating carbon (C), nitrogen (N), and sulfur (S) in estuarine intertidal wetlands. To gain insights into the ecological and metabolic modes possessed by bacteria in estuarine intertidal wetlands, a total of 78 surface soil samples were collected from China's coastal intertidal wetlands to examine the spatial and seasonal variations of bacterial taxonomic composition, assembly processes, and ecological system functions through shotgun metagenomic and 16S rRNA gene sequencing. Obvious spatiotemporal dynamic patterns in the bacterial community structure were identified, with more pronounced seasonal rather than spatial variations. Dispersion limitation was observed to act as a critical factor affecting community assembly, explaining approximately half of the total variation in the bacterial community. Functional bacterial community structure exhibited a more significant latitudinal change than seasonal variability, highlighting that functional stability of the bacterial communities differed with their taxonomic variability. Identification of biogeochemically related links between C, N, and S cycles in the soils showed the adaptive routed metabolism of the bacterial communities and the strong interactions between coupled metabolic pathways. Our study broadens the insights into the taxonomic and functional profiles of bacteria in China's estuarine intertidal soils and helps us understand the effects exerted by environmental factors on the ecological health and microbial diversity of estuarine intertidal flats.
Collapse
Affiliation(s)
- Zongxiao Zhang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China
| | - Ping Han
- School of Geographic Sciences, East China Normal University, Shanghai, 200241, China
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai, 200241, China
| | - Yanling Zheng
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China
- School of Geographic Sciences, East China Normal University, Shanghai, 200241, China
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai, 200241, China
| | - Shuo Jiao
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hongpo Dong
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China
| | - Xia Liang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China
| | - Dengzhou Gao
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China
| | - Yuhui Niu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China
| | - Guoyu Yin
- School of Geographic Sciences, East China Normal University, Shanghai, 200241, China
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai, 200241, China
| | - Min Liu
- School of Geographic Sciences, East China Normal University, Shanghai, 200241, China
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai, 200241, China
| | - Lijun Hou
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|