1
|
Schiebel CS, Bueno LR, Pargas RB, de Mello Braga LLV, da Silva KS, Fernandes ACVU, Dos Santos Maia MH, de Oliveira NMT, Bach C, Maria-Ferreira D. Exploring the biological activities and potential therapeutic applications of agro-industrial waste products through non-clinical studies: A systematic review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175317. [PMID: 39111448 DOI: 10.1016/j.scitotenv.2024.175317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/19/2024] [Accepted: 08/04/2024] [Indexed: 08/12/2024]
Abstract
The latent potential of active ingredients derived from agro-industrial waste remains largely untapped and offers a wealth of unexplored resources. While these types of materials have applications in various fields, their ability to benefit human health needs to be further explored and investigated. This systematic review was conducted to systematically evaluate non-clinical studies that have investigated the biological effects of fractions, extracts and bioactive compounds from agro-industrial wastes and their potential therapeutic applications. Articles were selected via PubMed, Embase and Medline using the descriptors (by-products[title/abstract]) AND (agro-industrial[title/abstract]). The systematic review was registered in the International Prospective Register of Systematic Reviews (Prospero) under the number CRD42024491021. After a detailed analysis based on inclusion and exclusion criteria, a total of 38 articles were used for data extraction and discussion of the results. Information was found from in vitro and in vivo experiments investigating a variety of residues from the agro-industry. The studies investigated peels, pomace/bagasse, pulp, seeds, aerial parts, cereals/grains and other types of waste. The most studied activities include mainly antioxidant and anti-inflammatory effects, but other activities such as antimicrobial, cytotoxic, antiproliferative, antinociceptive, hypoglycemic, antihyperglycemic and anticoagulant effects have also been described. Finally, the studies included in this review demonstrate the potential of agro-industrial waste and can drive future research with a focus on clinical application.
Collapse
Affiliation(s)
- Carolina Silva Schiebel
- Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba 80250-200, Brazil; Instituto de Pesquisa Pelé Pequeno Príncipe, Av. Silva Jardim No 1532, Curitiba 80250-200, Brazil
| | - Laryssa Regis Bueno
- Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba 80250-200, Brazil; Instituto de Pesquisa Pelé Pequeno Príncipe, Av. Silva Jardim No 1532, Curitiba 80250-200, Brazil
| | - Romulo Barreiro Pargas
- Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba 80250-200, Brazil; Instituto de Pesquisa Pelé Pequeno Príncipe, Av. Silva Jardim No 1532, Curitiba 80250-200, Brazil
| | - Lara Luisa Valerio de Mello Braga
- Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba 80250-200, Brazil; Instituto de Pesquisa Pelé Pequeno Príncipe, Av. Silva Jardim No 1532, Curitiba 80250-200, Brazil
| | - Karien Sauruk da Silva
- Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba 80250-200, Brazil; Instituto de Pesquisa Pelé Pequeno Príncipe, Av. Silva Jardim No 1532, Curitiba 80250-200, Brazil
| | - Ana Carolina Vieira Ulysséa Fernandes
- Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba 80250-200, Brazil; Instituto de Pesquisa Pelé Pequeno Príncipe, Av. Silva Jardim No 1532, Curitiba 80250-200, Brazil
| | - Mateus Henrique Dos Santos Maia
- Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba 80250-200, Brazil; Instituto de Pesquisa Pelé Pequeno Príncipe, Av. Silva Jardim No 1532, Curitiba 80250-200, Brazil
| | - Natalia Mulinari Turin de Oliveira
- Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba 80250-200, Brazil; Instituto de Pesquisa Pelé Pequeno Príncipe, Av. Silva Jardim No 1532, Curitiba 80250-200, Brazil
| | - Camila Bach
- Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba 80250-200, Brazil; Instituto de Pesquisa Pelé Pequeno Príncipe, Av. Silva Jardim No 1532, Curitiba 80250-200, Brazil
| | - Daniele Maria-Ferreira
- Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba 80250-200, Brazil; Instituto de Pesquisa Pelé Pequeno Príncipe, Av. Silva Jardim No 1532, Curitiba 80250-200, Brazil.
| |
Collapse
|
2
|
Kang S, Kim H, Bang C, Park JH, Go GW. The Herbal Blend of Sphaeranthus indicus and Garcinia mangostana Reduces Adiposity in High-Fat Diet Obese Mice. Foods 2024; 13:3013. [PMID: 39335940 PMCID: PMC11431088 DOI: 10.3390/foods13183013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/05/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Obesity is swiftly becoming a global epidemic, leading to numerous metabolic disorders and substantial socio-economic burdens. Investigating natural bioactive compounds is crucial to support the use of traditional anti-obesity medications while mitigating the adverse effects. This study posited that a combination of Sphaeranthus indicus and Garcinia mangostana (Meratrim) could prevent fat accumulation in obese mice. We used 4-week-old C57BL/6NTac mice, dividing them into six groups: (1) normal diet (ND); (2) high-fat diet (HFD, 45% kcal from fat); (3-5) Meratrim150, Meratrim300, and Meratrim450 (HFD with 150, 300, and 450 mg/kg bw of Meratrim); and (6) Metformin (HFD with 150 mg/kg bw of metformin). Meratrim was administered orally each day for 20 weeks. The group receiving 450 mg/kg of Meratrim showed a significant reduction in body weight and fat mass without changes in food consumption. The Meratrim450 group had markedly lower triglyceride levels in both serum and liver. Importantly, Meratrim-supplemented mice improved lipid homeostasis by inhibiting hepatic de novo lipogenesis and activating energy catabolic pathways such as non-shivering thermogenesis in brown adipose tissue. Our results suggest that the herbal mixture of Sphaeranthus indicus and Garcinia mangostana (Meratrim) is a promising natural anti-obesity agent, owing to its efficacy in reducing body fat and enhancing lipid homeostasis.
Collapse
Affiliation(s)
- Sumin Kang
- Department of Food and Nutrition, Hanyang University, Seoul 04763, Republic of Korea
| | - Hayoon Kim
- Department of Food and Nutrition, Hanyang University, Seoul 04763, Republic of Korea
| | - Chaeyoung Bang
- Green Store Inc., R&D Center, Seoul 08501, Republic of Korea
| | - Jung Hyeon Park
- Green Store Inc., R&D Center, Seoul 08501, Republic of Korea
| | - Gwang-Woong Go
- Department of Food and Nutrition, Hanyang University, Seoul 04763, Republic of Korea
| |
Collapse
|
3
|
Lee YG, Lee HM, Hwang JT, Choi HK. Licochalcone D from Glycyrrhiza uralensis Improves High-Glucose-Induced Insulin Resistance in Hepatocytes. Int J Mol Sci 2024; 25:10066. [PMID: 39337550 PMCID: PMC11432222 DOI: 10.3390/ijms251810066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
This study investigated the therapeutic potential of licochalcone D (LicoD), which is derived from Glycyrrhiza uralensis, for improving glucose metabolism in AML12 hepatocytes with high-glucose-induced insulin resistance (IR). Ultra-high-performance liquid chromatography-mass spectrometry revealed that the LicoD content of G. uralensis was 8.61 µg/100 mg in the ethanol extract (GUE) and 0.85 µg/100 mg in the hot water extract. GUE and LicoD enhanced glucose consumption and uptake, as well as Glut2 mRNA expression, in high-glucose-induced IR AML12 cells. These effects were associated with the activation of the insulin receptor substrate/phosphatidylinositol-3 kinase signaling pathway, increased protein kinase B α phosphorylation, and suppression of gluconeogenesis-related genes, such as Pepck and G6pase. Furthermore, GUE and LicoD promoted glycogen synthesis by downregulating glycogen phosphorylase. Furthermore, LicoD and GUE mitigated the downregulated expression of mitochondrial oxidative phosphorylation proteins in IR hepatocytes by activating the PPARα/PGC1α pathway and increasing the mitochondrial DNA content. These findings demonstrate the potential of LicoD and GUE as therapeutic options for alleviating IR-induced metabolic disorders by improving glucose metabolism and mitochondrial function.
Collapse
Affiliation(s)
- Yu Geon Lee
- Personalized Diet Research Group, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea; (Y.G.L.); (J.-T.H.)
| | - Hee Min Lee
- Kimchi Industry Promotion Division, World Institute of Kimchi, Gwangju 61755, Republic of Korea;
| | - Jin-Taek Hwang
- Personalized Diet Research Group, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea; (Y.G.L.); (J.-T.H.)
| | - Hyo-Kyoung Choi
- Personalized Diet Research Group, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea; (Y.G.L.); (J.-T.H.)
| |
Collapse
|
4
|
Moradnia M, Mohammadkhani N, Azizi B, Mohammadi M, Ebrahimpour S, Tabatabaei-Malazy O, Mirsadeghi S, Ale-Ebrahim M. The power of Punica granatum: A natural remedy for oxidative stress and inflammation; a narrative review. JOURNAL OF ETHNOPHARMACOLOGY 2024; 330:118243. [PMID: 38677577 DOI: 10.1016/j.jep.2024.118243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 12/18/2023] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Pomegranate 'Punica granatum' offers multiple health benefits, including managing hypertension, dyslipidemia, hyperglycemia, insulin resistance, and enhancing wound healing and infection resistance, thanks to its potent antioxidant and anti-inflammatory properties. It has been symbolized by life, health, femininity, fecundity, and spirituality. AIM OF THE STUDY Although laboratory and animal studies have been conducted on the healing effects of pomegranate, there needs to be a comprehensive review on its anti-oxidative and anti-inflammatory effects in chronic disorders. We aim to provide a comprehensive review of these effects based on in-vitro, in-vivo, and clinical studies conducted in managing various disorders. MATERIALS AND METHODS A comprehensive search of in-vitro, in-vivo, and clinical findings of pomegranate and its derivatives focusing on the highly qualified original studies and systematic reviews are carried out in valid international web databases, including Web of Science, PubMed, Scopus, and Cochrane Library. RESULTS Relevant studies have demonstrated that pomegranate and its derivatives can modulate the expression and activity of several genes, enzymes, and receptors through influencing oxidative stress and inflammation pathways. Different parts of pomegranate; roots, bark, blossoms, fruits, and leaves contain various bioactive compounds, such as polyphenols, flavonoids, anthocyanins, and ellagitannins, that have preventive and therapeutic effects against many disorders such as cardiovascular diseases, diabetes, neurological diseases, and cancers without any serious adverse effects. CONCLUSIONS Most recent scientific evidence indicates that all parts of the pomegranate can be helpful in treating a wide range of chronic disorders due to its anti-oxidative and anti-inflammatory activities. Since the safety of pomegranate fruit, juice, and extracts is established, further investigations can be designed by targeting its active antioxidant and anti-inflammatory constituents to discover new drugs.
Collapse
Affiliation(s)
- Mahdis Moradnia
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran; Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Niyoosha Mohammadkhani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran; Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Bayan Azizi
- Cardiac Primary Prevention Research Center (CPPRC), Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Mohammadi
- Department of Clinical Pharmacy, School of Pharmacy, Alborz University of Medical Sciences, Karaj, Iran
| | - Sholeh Ebrahimpour
- Department of Clinical Pharmacy, School of Pharmacy, Alborz University of Medical Sciences, Karaj, Iran
| | - Ozra Tabatabaei-Malazy
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Somayeh Mirsadeghi
- KonadHerbs Co., Sharif Innovation Area, Sharif University of Technology, Tehran, Iran.
| | - Mahsa Ale-Ebrahim
- Department of Physiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
5
|
Mihaylova R, Gevrenova R, Petrova A, Savov Y, Zheleva-Dimitrova D, Balabanova V, Momekov G, Simeonova R. Mitigating Effects of Tanacetum balsamita L. on Metabolic Dysfunction-Associated Fatty Liver Disease (MAFLD). PLANTS (BASEL, SWITZERLAND) 2024; 13:2086. [PMID: 39124206 PMCID: PMC11314425 DOI: 10.3390/plants13152086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/17/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024]
Abstract
The metabolic syndrome and its associated co-morbidities have been recognized as predisposing risk factors for the development of metabolic-associated fatty liver disease (MAFLD). The present study reports on the beneficial effect of the Tanacetum balsamita methanol-aqueous extract (ETB) at 150 and 300 mg/kg bw on biochemical parameters related to oxidative stress, metabolic syndrome, and liver function in rat animal models with induced MAFLD. ETB was found to be non-toxic with LD50 > 3000 mg/kg and did not affect cell viability of hepatic HEP-G2 cells in a concentration up to 800 μg/mL. The pathology was established by a high-calorie diet and streptozotocin. Acarbose and atorvastatin were used as positive controls. At the higher dose, ETB reduced significantly (p < 0.05) the blood glucose levels by about 20%, decreased lipase activity by 52%, total cholesterol and triglycerides by 50% and 57%, respectively, and restored the amylase activity and leukocytes compared to the MAFLD group. ETB ameliorated oxidative stress biomarkers reduced glutathione and malondialdehyde in a dose-dependent manner. At 300 mg/kg, the beneficial effect of the extract on antioxidant enzymes was evidenced by the elevated catalase, glutathione peroxidase, and superoxide dismutase activity by 70%, 29%, and 44%, accordingly, compared to the MAFLD rats. ETB prevents the histopathological changes related to MAFLD. ETB, rich in 3,5-dicafeoylquinic, chlorogenic, and rosmarinic acids together with the isorhamnetin- and luteolin-glucoside provides a prominent amelioration of MAFLD.
Collapse
Affiliation(s)
- Rositsa Mihaylova
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, Sofia 1000, Bulgaria; (R.M.); (A.P.); (G.M.); (R.S.)
| | - Reneta Gevrenova
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Sofia, Sofia 1000, Bulgaria; (D.Z.-D.); (V.B.)
| | - Alexandra Petrova
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, Sofia 1000, Bulgaria; (R.M.); (A.P.); (G.M.); (R.S.)
| | - Yonko Savov
- Institute of Emergency Medicine “N. I. Pirogov”, Bul. Totleben 21, Sofia 1000, Bulgaria;
| | - Dimitrina Zheleva-Dimitrova
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Sofia, Sofia 1000, Bulgaria; (D.Z.-D.); (V.B.)
| | - Vessela Balabanova
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Sofia, Sofia 1000, Bulgaria; (D.Z.-D.); (V.B.)
| | - Georgi Momekov
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, Sofia 1000, Bulgaria; (R.M.); (A.P.); (G.M.); (R.S.)
| | - Rumyana Simeonova
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, Sofia 1000, Bulgaria; (R.M.); (A.P.); (G.M.); (R.S.)
| |
Collapse
|
6
|
Scarpa ES, Antonelli A, Balercia G, Sabatelli S, Maggi F, Caprioli G, Giacchetti G, Micucci M. Antioxidant, Anti-Inflammatory, Anti-Diabetic, and Pro-Osteogenic Activities of Polyphenols for the Treatment of Two Different Chronic Diseases: Type 2 Diabetes Mellitus and Osteoporosis. Biomolecules 2024; 14:836. [PMID: 39062550 PMCID: PMC11275061 DOI: 10.3390/biom14070836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/27/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Polyphenols are natural bioactives occurring in medicinal and aromatic plants and food and beverages of plant origin. Compared with conventional therapies, plant-derived phytochemicals are more affordable and accessible and have no toxic side effects. Thus, pharmaceutical research is increasingly inclined to discover and study new and innovative natural molecules for the treatment of several chronic human diseases, like type 2 diabetes mellitus (T2DM) and osteoporosis. These pathological conditions are characterized by a chronic inflammatory state and persistent oxidative stress, which are interconnected and lead to the development and worsening of these two health disorders. Oral nano delivery strategies have been used to improve the bioavailability of polyphenols and to allow these natural molecules to exert their antioxidant, anti-inflammatory, anti-diabetic, and pro-osteogenic biological activities in in vivo experimental models and in patients. Polyphenols are commonly used in the formulations of nutraceuticals, which can counteract the detrimental effects of T2DM and osteoporosis pathologies. This review describes the polyphenols that can exert protective effects against T2DM and osteoporosis through the modulation of specific molecular markers and pathways. These bioactives could be used as adjuvants, in combination with synthetic drugs, in the future to develop innovative therapeutic strategies for the treatment of T2DM and osteoporosis.
Collapse
Affiliation(s)
| | - Antonella Antonelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (A.A.); (M.M.)
| | - Giancarlo Balercia
- Division of Endocrinology, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy;
| | - Sofia Sabatelli
- Clinic of Endocrinology and Metabolic Diseases, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy; (S.S.); (G.G.)
| | - Filippo Maggi
- Chemistry Interdisciplinary Project (CHIP) Research Center, School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (F.M.); (G.C.)
| | - Giovanni Caprioli
- Chemistry Interdisciplinary Project (CHIP) Research Center, School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (F.M.); (G.C.)
| | - Gilberta Giacchetti
- Clinic of Endocrinology and Metabolic Diseases, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy; (S.S.); (G.G.)
| | - Matteo Micucci
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (A.A.); (M.M.)
| |
Collapse
|
7
|
Sharma K, Sharma V. Allium sativum Essential Oil Supplementation Reverses the Hepatic Inflammation, Genotoxicity and Apoptotic Effects in Swiss Albino Mice Intoxicated with the Lead Nitrate. Biol Trace Elem Res 2024; 202:3258-3277. [PMID: 37964042 DOI: 10.1007/s12011-023-03924-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/19/2023] [Indexed: 11/16/2023]
Abstract
Prolonged lead (Pb) exposure impairs human health due to its interference with physiological and biochemical processes. Therefore, it is necessary to investigate natural therapeutics to alleviate Pb-induced intoxication. In the current investigation, essential oil extracted from the fresh bulbs of Allium sativum was considered as a natural remedy. Initially, in vitro antioxidant and anti-inflammatory activity of A. sativum essential oil (ASEO) were explored. The results reported that ASEO exhibits potent antioxidant and anti-inflammatory potential. Additionally, an in vivo study was conducted to elucidate its preventive role against Lead-nitrate (LN)-induced hepatic damage in Swiss albino mice. The experimental mice were allocated into six groups: Control, LN-intoxicated group (50 mg/kg), LN + ASEO (50 mg/kg), LN + ASEO (80 mg/kg), LN + Silymarin (25 mg/kg), and LN + vehicle oil control group. The entire duration of the study was of 30 days. From the results, it was determined that LN exposure elevated the Pb content in hepatic tissues which subsequently increased the serum biomarkers, inflammatory cytokines (NF-kB, TNF-α, IL-6) as well as apoptotic factors (caspase-3, BAX), all of which contribute to DNA damage. Meanwhile, it reduced anti-inflammatory (IFN-γ and IL-10) and anti-apoptotic factors (Bcl-2). Furthermore, Pb accumulation in hepatic tissues changed the histological architecture, which was linked to necrosis, central vein dilation, inflammatory cell infiltration and Kupffer cell activation. In contrast to this, ASEO administration decreased the Pb content, which in turn reduced the level of serum biomarkers, inflammatory and apoptotic factors. At the same time, it increased the anti-inflammatory and anti-apoptotic factors, thereby reduced DNA damage and restored the hepatic histology. In conclusion, exhaustive research is of the utmost demand to elucidate the precise defense mechanisms of ASEO against LN-induced hepatotoxicity.
Collapse
Affiliation(s)
- Kusum Sharma
- Banasthali Vidyapith, Department of Bioscience and Biotechnology, Tonk, Rajasthan, 304022, India
| | - Veena Sharma
- Banasthali Vidyapith, Department of Bioscience and Biotechnology, Tonk, Rajasthan, 304022, India.
| |
Collapse
|
8
|
Xin A, Guo L. The Effects of Tai Chi Rouli Ball Exercise on Bone Mineral Content and Bone Metabolism Indicators in Perimenopausal Women. J Clin Densitom 2024; 27:101503. [PMID: 38820968 DOI: 10.1016/j.jocd.2024.101503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/05/2024] [Accepted: 05/10/2024] [Indexed: 06/02/2024]
Abstract
Background Perimenopause is associated with a decline in estrogen levels, leading to decreased bone mineral density (BMD) and altered bone metabolism, increasing the risk of osteoporosis. Tai Chi Rouli Ball, a traditional Chinese sport, is thought to have beneficial effects on physical health, but its impact on bone health in perimenopausal women is not well understood. Methods This study involved a randomized controlled trial with 52 perimenopausal women aged 45-55 years from community senior centers. Participants were divided into two groups: the Tai Chi Rouli Ball group and the control group. Baseline assessments of bone density, bone mineral content (BMC), and bone metabolism markers, including estrogen levels, were conducted. The Tai Chi Rouli Ball group underwent regular training for a specific period, while the control group did not receive any intervention. Post-experiment assessments were then compared to the baseline. Results Post-intervention, the Tai Chi Rouli Ball group showed a significant increase in spine bone density and BMC in various body parts, including the whole body, trunk/torso, and spine, compared to the control group. Bone metabolism indicators also improved, with increased levels of estrogen and a decrease in follicle-stimulating hormone (FSH) and luteinizing hormone (LH). Calcium levels showed a significant increase, while other markers like alkaline phosphatase (ALP), phosphorus (P), and magnesium (Mg) had non-significant changes. Conclusions Tai Chi Rouli Ball exercise may positively influence bone health by improving bone density, BMC, and altering bone metabolism markers in perimenopausal women. These findings suggest that Tai Chi Rouli Ball could be a viable non-pharmacological approach to prevent osteoporosis in this demographic.
Collapse
Affiliation(s)
- Aili Xin
- Department of Nursing, the First Affiliated Hospital of Xi'an Jiaotong University, China.
| | - Liumei Guo
- Plastic and Aesthetic Maxillofacial Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, China
| |
Collapse
|
9
|
Tian W, Liu L, Wang R, Quan Y, Tang B, Yu D, Zhang L, Hua H, Zhao J. Gut microbiota in insulin resistance: a bibliometric analysis. J Diabetes Metab Disord 2024; 23:173-188. [PMID: 38932838 PMCID: PMC11196565 DOI: 10.1007/s40200-023-01342-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 11/06/2023] [Indexed: 06/28/2024]
Abstract
Background Insulin resistance (IR) is considered the pathogenic driver of diabetes, and can lead to obesity, hypertension, coronary artery disease, metabolic syndrome, and other metabolic disorders. Accumulating evidence indicates that the connection between gut microbiota and IR. This bibliometric analysis aimed to summarize the knowledge structure of gut microbiota in IR. Methods Articles and reviews related to gut microbiota in IR from 2013 to 2022 were retrieved from the Web of Science Core Collection (WoSCC), and the bibliometric analysis and visualization were performed by Microsoft Excel, Origin, R package (bibliometrix), Citespace, and VOSviewer. Results A total of 4 749 publications from WoSCC were retrieved, including 3 050 articles and 1 699 reviews. The majority of publications were from China and USA. The University Copenhagen and Shanghai Jiao Tong University were the most active institutions. The journal of Nutrients published the most papers, while Nature was the top 1 co-cited journal, and the major area of these publications was molecular, biology, and immunology. Nieuwdorp M published the highest number of papers, and Cani PD had the highest co-citations. Keyword analysis showed that the most frequently occurring keywords were "gut microbiota", "insulin-resistance", "obesity", and "inflammation". Trend topics and thematic maps showed that serum metabolome and natural products, such as resveratrol, flavonoids were the research hotspots in this field. Conclusion This bibliometric analysis summarised the hotspots, frontiers, pathogenesis, and treatment strategies, providing a clear and comprehensive profile of gut microbiota in IR. Supplementary Information The online version contains supplementary material available at 10.1007/s40200-023-01342-x.
Collapse
Affiliation(s)
- Weiwei Tian
- Key Lab.: Biological Evaluation of TCM Quality of the State Administration of Traditional Chinese Medicine, Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Sichuan Provincial Engineering Research Center of Formation Principle and Quality Evaluation of Genuine Medicinal Materials, Sichuan Academy of Chinese Medical Sciences, Sichuan Institute for Translational Chinese Medicine, 610041 Chengdu, China
| | - Li Liu
- Key Lab.: Biological Evaluation of TCM Quality of the State Administration of Traditional Chinese Medicine, Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Sichuan Provincial Engineering Research Center of Formation Principle and Quality Evaluation of Genuine Medicinal Materials, Sichuan Academy of Chinese Medical Sciences, Sichuan Institute for Translational Chinese Medicine, 610041 Chengdu, China
| | - Ruirui Wang
- Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, 201203 Shanghai, China
| | - Yunyun Quan
- Key Lab.: Biological Evaluation of TCM Quality of the State Administration of Traditional Chinese Medicine, Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Sichuan Provincial Engineering Research Center of Formation Principle and Quality Evaluation of Genuine Medicinal Materials, Sichuan Academy of Chinese Medical Sciences, Sichuan Institute for Translational Chinese Medicine, 610041 Chengdu, China
| | - Bihua Tang
- Key Lab.: Biological Evaluation of TCM Quality of the State Administration of Traditional Chinese Medicine, Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Sichuan Provincial Engineering Research Center of Formation Principle and Quality Evaluation of Genuine Medicinal Materials, Sichuan Academy of Chinese Medical Sciences, Sichuan Institute for Translational Chinese Medicine, 610041 Chengdu, China
| | - Dongmei Yu
- Key Lab.: Biological Evaluation of TCM Quality of the State Administration of Traditional Chinese Medicine, Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Sichuan Provincial Engineering Research Center of Formation Principle and Quality Evaluation of Genuine Medicinal Materials, Sichuan Academy of Chinese Medical Sciences, Sichuan Institute for Translational Chinese Medicine, 610041 Chengdu, China
| | - Lei Zhang
- Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, 201203 Shanghai, China
| | - Hua Hua
- Key Lab.: Biological Evaluation of TCM Quality of the State Administration of Traditional Chinese Medicine, Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Sichuan Provincial Engineering Research Center of Formation Principle and Quality Evaluation of Genuine Medicinal Materials, Sichuan Academy of Chinese Medical Sciences, Sichuan Institute for Translational Chinese Medicine, 610041 Chengdu, China
| | - Junning Zhao
- Key Lab.: Biological Evaluation of TCM Quality of the State Administration of Traditional Chinese Medicine, Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Sichuan Provincial Engineering Research Center of Formation Principle and Quality Evaluation of Genuine Medicinal Materials, Sichuan Academy of Chinese Medical Sciences, Sichuan Institute for Translational Chinese Medicine, 610041 Chengdu, China
| |
Collapse
|
10
|
Hijová E. Postbiotics as Metabolites and Their Biotherapeutic Potential. Int J Mol Sci 2024; 25:5441. [PMID: 38791478 PMCID: PMC11121590 DOI: 10.3390/ijms25105441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/06/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
This review highlights the role of postbiotics, which may provide an underappreciated avenue doe promising therapeutic alternatives. The discovery of natural compounds obtained from microorganisms needs to be investigated in the future in terms of their effects on various metabolic disorders and molecular pathways, as well as modulation of the immune system and intestinal microbiota in children and adults. However, further studies and efforts are needed to evaluate and describe new postbiotics. This review provides available knowledge that may assist future research in identifying new postbiotics and uncovering additional mechanisms to combat metabolic diseases.
Collapse
Affiliation(s)
- Emília Hijová
- Center of Clinical and Preclinical Research MEDIPARK, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 040 11 Košice, Slovakia
| |
Collapse
|
11
|
Ali A, Mashwani ZUR, Raja NI, Mohammad S, Ahmad MS, Luna-Arias JP. Antioxidant and Hypoglycemic Potential of Phytogenic Selenium Nanoparticle- and Light Regime-Mediated In Vitro Caralluma tuberculata Callus Culture Extract. ACS OMEGA 2024; 9:20101-20118. [PMID: 38737082 PMCID: PMC11079897 DOI: 10.1021/acsomega.3c10222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 05/14/2024]
Abstract
In vitro plant cultures have emerged as a viable source, holding auspicious reservoirs for medicinal applications. This study aims to delineate the antioxidant and hypoglycemic potential of phytosynthesized selenium nanoparticle (SeNP)- and light stress-mediated in vitro callus cultures of Caralluma tuberculata extract. The morphophysicochemical characteristics of biogenic SeNPs were assessed through a combination of analytical techniques, including UV-visible spectrophotometry, scanning electron microscopy, energy-dispersive X-rays, Fourier transform infrared spectrometry, and zeta potential spectroscopy. The antioxidative potential of the callus extract 200 and 800 μg/mL concentrations was assessed through various tests and exhibited pronounced scavenging potential in reducing power (26.29%), ABTS + scavenging (42.51%), hydrogen peroxide inhibition (37.26%), hydroxyl radical scavenging (40.23%), and phosphomolybdate (71.66%), respectively. To inspect the hypoglycemic capacity of the callus extract, various assays consistently demonstrated a dosage-dependent relationship, with higher concentrations of the callus extract exerting a potent inhibitory impact on the catalytic sites of the alpha-amylase (78.24%), alpha-glucosidase (71.55%), antisucrase (59.24%), and antilipase (74.26%) enzyme activities, glucose uptake by yeast cells at 5, 10, and 25 mmol/L glucose solution (72.18, 60.58 and 69.33%), and glucose adsorption capacity at 5, 10, and 25 mmol/L glucose solution (74.37, 83.55, and 86.49%), respectively. The findings of this study propose selenium NPs and light-stress-mediated in vitro callus cultures of C. tuberculata potentially operating as competitive inhibitors. The outcomes of the study were exceptional and hold promising implications for future medicinal applications.
Collapse
Affiliation(s)
- Amir Ali
- Department
of Botany, PMAS Arid Agriculture University
Rawalpindi, Rawalpindi 46000, Pakistan
| | - Zia-ur-Rehman Mashwani
- Department
of Botany, PMAS Arid Agriculture University
Rawalpindi, Rawalpindi 46000, Pakistan
- Pakistan
Academy of Sciences, Islamabad 44000, Pakistan
| | - Naveed Iqbal Raja
- Department
of Botany, PMAS Arid Agriculture University
Rawalpindi, Rawalpindi 46000, Pakistan
| | - Sher Mohammad
- Biotechnology
Laboratory, Agricultural Research Institute
(ARI) Tarnab Peshawar, Peshawar 25000, Pakistan
| | - M. Sheeraz Ahmad
- University
Institute of Biochemistry and Biotechnology (UIBB), PMAS-Arid Agriculture University Rawalpindi, Rawalpindi 46000, Pakistan
| | - Juan Pedro Luna-Arias
- Department
of Cell Biology, and Nanoscience and Nanotechnology Ph.D. Program, Center for Research and Advanced Studies of the National
Polytechnic Institute (CINVESTAV), Mexico City 07360, Mexico
| |
Collapse
|
12
|
Adel Mehraban MS, Mosallanejad A, Mohammadi M, Tabatabaei Malazy O, Larijani B. Navigating ethical dilemmas in complementary and alternative medicine: a narrative review. J Med Ethics Hist Med 2024; 17:3. [PMID: 38993999 PMCID: PMC11234793 DOI: 10.18502/jmehm.v17i3.15391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 01/17/2024] [Indexed: 07/13/2024] Open
Abstract
Complementary and alternative medicine (CAM) is a rapidly growing industry, with millions worldwide seeking these treatments for various ailments. While many CAM therapies have shown promise in improving health outcomes, there are also ethical challenges associated with them. In this article, we explore some of the most pressing ethical issues in CAM, including informed consent, justice in accessibility, and evidence-based therapies. This survey provides a comprehensive overview of the ethical issues in CAM and offers practical guidance for health-care providers navigating these complex issues. By understanding the ethical dilemmas in CAM, health-care providers can offer their patients safe and effective care while maintaining their professional and ethical obligations.
Collapse
Affiliation(s)
- Mohammad Sadegh Adel Mehraban
- PhD Candidate of Traditional Medicine, Department of Traditional Medicine, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran;Traditional Persian Medicine and Complementary Medicine, Student Association, Students’ Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Asieh Mosallanejad
- Assistant Professor, Department of Pediatric Endocrinology & Metabolism, Imam Hossein Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mehdi Mohammadi
- Assistant Professor, Department of Clinical Pharmacy, School of Pharmacy, Alborz University of Medical Sciences, Karaj, Iran.
| | - Ozra Tabatabaei Malazy
- Associate Professor, Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran; Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Bagher Larijani
- 5.Professor,Medical Ethics and History of Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Hwang SJ, Choi YJ, Wang JH, Son CG. Lactobacillus Casei-fermented Amomum Xanthioides Mitigates non-alcoholic fatty liver disease in a high-fat diet mice model. Biomed Pharmacother 2024; 172:116250. [PMID: 38320334 DOI: 10.1016/j.biopha.2024.116250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/08/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a substantial global health issue owing to its high prevalence and the lack of effective therapies. Fermentation of medicinal herbs has always been considered a feasible strategy for enhancing efficacy in treating various ailments. This study aimed to investigate the potential benefits of the Lactobacillus casei-fermented Amomum xanthioides (LAX) on NAFLD in a high-fat diet model. HFD-fed C57BL6/j mice were administered with 200 mg/kg of LAX or unfermented Amomum xanthioides (AX) or 100 mg/kg of metformin for 6 weeks from the 4th week. The 10-week HFD-induced alterations of hepatic lipid accumulation and hepatic inflammation were significantly attenuated by LAX dominantly (more than AX or metformin), which evidenced by pathohistological findings, lipid contents, inflammatory cytokines including tumor necrosis factor (TNF)-α, interleukin (IL)- 6 and IL-1β, oxidative parameters such as reactive oxygen species (ROS) and malondialdehyde (MDA), and molecular changes reversely between lipogenic proteins such as glycerol-3-phosphate acyltransferase (GPAM) and sterol regulatory element-binding protein (SREBP)- 1, and lipolytic proteins including peroxisome proliferator-activated receptor (PPAR-α) and AMP-activated kinase (AMPK)-α in the liver tissues. In addition, the abnormal serum lipid parameters (triglyceride, total cholesterol and LDL-cholesterol) notably ameliorated by LAX. In conclusion, these findings support the potential of LAX as a promising plant-derived remedy for NAFLD.
Collapse
Affiliation(s)
- Seung-Ju Hwang
- Institute of Bioscience & Integrative Medicine, Daejeon University, 75, Daedukdae-ro 176 bun-gil, Seo-gu, Daejeon 35235, the Republic of Korea; Liver and Immunology Research Center, Daejeon Oriental Hospital of Daejeon University, 75, Daedukdae-ro 176 bun-gil, Seo-gu, Daejeon 35235, the Republic of Korea
| | - Yu-Jin Choi
- Institute of Bioscience & Integrative Medicine, Daejeon University, 75, Daedukdae-ro 176 bun-gil, Seo-gu, Daejeon 35235, the Republic of Korea; Department of Internal Medicine, College of Korean Medicine, Se-Myung University, Semyeong-ro 65, Jecheon-si, Chungcheongbuk-do, 27136, the Republic of Korea
| | - Jing-Hua Wang
- Institute of Bioscience & Integrative Medicine, Daejeon University, 75, Daedukdae-ro 176 bun-gil, Seo-gu, Daejeon 35235, the Republic of Korea; Liver and Immunology Research Center, Daejeon Oriental Hospital of Daejeon University, 75, Daedukdae-ro 176 bun-gil, Seo-gu, Daejeon 35235, the Republic of Korea.
| | - Chang-Gue Son
- Institute of Bioscience & Integrative Medicine, Daejeon University, 75, Daedukdae-ro 176 bun-gil, Seo-gu, Daejeon 35235, the Republic of Korea; Liver and Immunology Research Center, Daejeon Oriental Hospital of Daejeon University, 75, Daedukdae-ro 176 bun-gil, Seo-gu, Daejeon 35235, the Republic of Korea.
| |
Collapse
|
14
|
El-Seedi HR, Salama S, El-Wahed AAA, Guo Z, Di Minno A, Daglia M, Li C, Guan X, Buccato DG, Khalifa SAM, Wang K. Exploring the Therapeutic Potential of Royal Jelly in Metabolic Disorders and Gastrointestinal Diseases. Nutrients 2024; 16:393. [PMID: 38337678 PMCID: PMC10856930 DOI: 10.3390/nu16030393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/07/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Metabolic disorders, encompassing diabetes mellitus, cardiovascular diseases, gastrointestinal disorders, etc., pose a substantial global health threat, with rising morbidity and mortality rates. Addressing these disorders is crucial, as conventional drugs often come with high costs and adverse effects. This review explores the potential of royal jelly (RJ), a natural bee product rich in bioactive components, as an alternative strategy for managing metabolic diseases. RJ exhibits diverse therapeutic properties, including antimicrobial, estrogen-like, anti-inflammatory, hypotensive, anticancer, and antioxidant effects. This review's focus is on investigating how RJ and its components impact conditions like diabetes mellitus, cardiovascular disease, and gastrointestinal illnesses. Evidence suggests that RJ serves as a complementary treatment for various health issues, notably demonstrating cholesterol- and glucose-lowering effects in diabetic rats. Specific RJ-derived metabolites, such as 10-hydroxy-2-decenoic acid (10-HDA), also known as the "Queen bee acid," show promise in reducing insulin resistance and hyperglycemia. Recent research highlights RJ's role in modulating immune responses, enhancing anti-inflammatory cytokines, and suppressing key inflammatory mediators. Despite these promising findings, further research is needed to comprehensively understand the mechanisms underlying RJ's therapeutic effects.
Collapse
Affiliation(s)
- Hesham R. El-Seedi
- Pharmacognosy Group, Department of Pharmaceutical Biosciences, Uppsala University, Biomedical Centre, P.O. Box 591, SE-751 24 Uppsala, Sweden
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China;
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing, Jiangsu University, Zhenjiang 210024, China
| | - Suzy Salama
- Indigenous Knowledge and Heritage Center, Ghibaish College of Science and Technology, Ghibaish 51111, Sudan;
| | - Aida A. Abd El-Wahed
- Department of Bee Research, Plant Protection Research Institute, Agricultural Research Centre, Giza 12627, Egypt;
| | - Zhiming Guo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China;
| | - Alessandro Di Minno
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy; (A.D.M.); (M.D.); (D.G.B.)
- CEINGE-Biotecnologie Avanzate, Via Gaetano Salvatore 486, 80145 Naples, Italy
| | - Maria Daglia
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy; (A.D.M.); (M.D.); (D.G.B.)
- CEINGE-Biotecnologie Avanzate, Via Gaetano Salvatore 486, 80145 Naples, Italy
| | - Chuan Li
- School of Food Science and Engineering, Hainan University, Haikou 570228, China;
| | - Xiao Guan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China;
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai 200093, China
| | - Daniele Giuseppe Buccato
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy; (A.D.M.); (M.D.); (D.G.B.)
| | - Shaden A. M. Khalifa
- Psychiatry and Neurology Department, Capio Saint Göran’s Hospital, Sankt Göransplan 1, 112 19 Stockholm, Sweden
| | - Kai Wang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| |
Collapse
|
15
|
Kaliaperumal K, Bhat BA, Subramanian K, Ramakrishnan T, Chakravarthy E, Al-Keridis LA, Ahmad I, Alabdallah NM, Saeed M, Karunakaran R. In-vivo anti-hyperglycemic effect of herbal extracts Tribulus terrestris (L) and Curcuma amada (R) on streptozotocin-induced diabetic rats and its associated histopathological studies. Heliyon 2024; 10:e24009. [PMID: 38230238 PMCID: PMC10789602 DOI: 10.1016/j.heliyon.2024.e24009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 12/13/2023] [Accepted: 01/02/2024] [Indexed: 01/18/2024] Open
Abstract
Dia/betes is a serious health concern in many countries with high blood glucose, obesity, and multiple organ failures in late stages. Treating diabetes with effective drugs is still a challenging issue since most of the available diabetic drugs are not effective in combating diabetes, especially in secondary disease complications like obesity, retinopathy, and nephropathy associated with diabetes. Hence search for effective antidiabetic medication, especially from natural sources is mandatory with no adverse side effects. In the present study, a combined herbal aqueous extract of Tribulus terrestris and Curcuma amada was administered to diabetic-induced rats for 37 days. During experimentation, the mean blood glucose level was estimated and at the end of the experiment on the 37th day, the animal was sacrificed and observed for weight gain, plasma insulin, glycogen, glycated hemoglobin, urea, and creatinine level. The results revealed that TT and CA extract-treated diabetic groups significantly lowered the mean blood glucose level followed by increased glycogen and insulin level. Urea, creatinine, and HbA1c levels were considerably reduced in TT and CA-treated diabetic animals as compared to that of antidiabetic drug Glibenclamide-treated groups. TT and CA-treated diabetic animals showed considerable net body weight gain at the end of the experimental day. A concluding remark of the study shows that TT and CA herbal extract is effective against diabetes and it can be considered as an antidiabetic agent in ayurvedic medicine practice.
Collapse
Affiliation(s)
- Kumaravel Kaliaperumal
- Unit of Biomaterials Research, Department of Orthodontics, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India
| | - Bilal Ahmad Bhat
- Unit of Ethnopharmacology, Department of Zoology, Annamalai University, Chidambaram, Tamil Nadu, India
| | - Kumaran Subramanian
- P.G.Research Department of Microbiology, Sri Sankara Arts and Science College (Autonomous), Enathur, Kanchipuram, Tamil Nadu, India
| | | | | | - Lamya Ahmed Al-Keridis
- Department of Biology, Faculty of Science, Princess Nourah Bint Abdulrahman University, P.O.Box 84428, Riyadh, 11671, Saudi Arabia
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Nadiyah M. Alabdallah
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, P.O.Box 1982, 31441, Dammam, Saudi Arabia
- Basic and Applied Scientific Research Centre, Imam Abdulrahman Bin Faisal University, P.O.Box 1982, 31441, Dammam, Saudi Arabia
| | - Mohd Saeed
- Department of Biology, College of Sciences, University of Hail, Hail, Saudi Arabia
| | - Rohini Karunakaran
- Department of Computational Biology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India
- Unit of Biochemistry, Faculty of Medicine, AIMST University, Semeling, Bedong, Malaysia
| |
Collapse
|
16
|
Martemucci G, Fracchiolla G, Muraglia M, Tardugno R, Dibenedetto RS, D’Alessandro AG. Metabolic Syndrome: A Narrative Review from the Oxidative Stress to the Management of Related Diseases. Antioxidants (Basel) 2023; 12:2091. [PMID: 38136211 PMCID: PMC10740837 DOI: 10.3390/antiox12122091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/15/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
Metabolic syndrome (MS) is a growing disorder affecting thousands of people worldwide, especially in industrialised countries, increasing mortality. Oxidative stress, hyperglycaemia, insulin resistance, inflammation, dysbiosis, abdominal obesity, atherogenic dyslipidaemia and hypertension are important factors linked to MS clusters of different pathologies, such as diabesity, cardiovascular diseases and neurological disorders. All biochemical changes observed in MS, such as dysregulation in the glucose and lipid metabolism, immune response, endothelial cell function and intestinal microbiota, promote pathological bridges between metabolic syndrome, diabesity and cardiovascular and neurodegenerative disorders. This review aims to summarise metabolic syndrome's involvement in diabesity and highlight the link between MS and cardiovascular and neurological diseases. A better understanding of MS could promote a novel strategic approach to reduce MS comorbidities.
Collapse
Affiliation(s)
- Giovanni Martemucci
- Department of Agricultural and Environmental Sciences, University of Bari Aldo Moro, 70126 Bari, Italy;
| | - Giuseppe Fracchiolla
- Department of Pharmacy–Drug Sciences, University of Bari Aldo Moro, 70126 Bari, Italy; (M.M.); (R.T.); (R.S.D.)
| | - Marilena Muraglia
- Department of Pharmacy–Drug Sciences, University of Bari Aldo Moro, 70126 Bari, Italy; (M.M.); (R.T.); (R.S.D.)
| | - Roberta Tardugno
- Department of Pharmacy–Drug Sciences, University of Bari Aldo Moro, 70126 Bari, Italy; (M.M.); (R.T.); (R.S.D.)
| | - Roberta Savina Dibenedetto
- Department of Pharmacy–Drug Sciences, University of Bari Aldo Moro, 70126 Bari, Italy; (M.M.); (R.T.); (R.S.D.)
| | | |
Collapse
|
17
|
Osqueei MR, Mahmoudabadi AZ, Bahari Z, Meftahi GH, Movahedi M, Taghipour R, Mousavi N, Huseini HF, Jangravi Z. Eryngium billardieri extract affects cardiac gene expression of master regulators of cardiomyaopathy in rats with high fatdiet-induced insulin resistance. Clin Nutr ESPEN 2023; 56:59-66. [PMID: 37344084 DOI: 10.1016/j.clnesp.2023.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 04/05/2023] [Accepted: 04/21/2023] [Indexed: 06/23/2023]
Abstract
BACKGROUND For years, numerous studies have focused on identifying approaches to increase insulin sensitivity by modifying the signaling factors. In the present study, we examined the effects of Eryngium billardieri extract, as an anti-diabetic herbal medication, on the heart mRNA level of Akt serine/threonine kinase (Akt), mechanistic target of rapamycin kinase (mTOR), peroxisome proliferator-activated receptor gamma (PPARγ), and Forkhead box o1 (Foxo1) in rats with high-fat diet (HFD)-induced insulin resistance (IR). We also assessed the anti-diabetic effects of E. billardieri extract in rats with insulin resistance. METHODS Twenty-seven male Wistar rats were divided into two groups. Nine rats were fed a normal diet (control group), and 18 rats were fed an HFD for 13 weeks (HFD group). To confirm the induction of insulin resistance, the oral glucose tolerance test (OGTT) was performed and homeostatic model assessment for insulin resistance (HOMA-IR) was calculated. Then rats with IR were randomly divided into the following groups: the HFD group, which continued an HFD, and the group treated with E. billardieri extract, which received the extract at a concentration of 50 mg/kg for 30 days. On the 30th day, the animals were sacrificed and serum samples were collected for biochemistry analyses. Furthermore, the expression of Akt, mTOR, PPARγ, and Foxo1 was measured in heart tissue using the real-time polymerase chain reaction (PCR) method. RESULTS Real-time PCR analyses revealed that an HFD can significantly decrease the expression level of Akt, mTOR, and PPARγ in the heart tissue. However, an HFD significantly increased the expression level of Foxo1 in the HFD group compared to the control group (P < 0.05). In addition, our data showed that the administration of E. billardieri extract significantly enhanced the mRNA levels of Akt, PPARγ, and mTOR in the heart tissue compared to the HFD group (P < 0.05), while it significantly decreased the Foxo1 mRNA levels (P < 0.01). CONCLUSION Given that Akt, mTOR, PPARγ, and Foxo1 are critical factors in insulin resistance, the present study suggests that E. billardieri could probably be used as an alternative treatment for IR as a major feature of metabolic syndrome.
Collapse
Affiliation(s)
- Mohaddeseh Rashedi Osqueei
- Department of Biochemistry, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Ali Zaree Mahmoudabadi
- Department of Biochemistry, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran; Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Zahra Bahari
- Department of Physiology and Medical Physics, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Iran
| | | | - Monireh Movahedi
- Department of Biochemistry, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Reza Taghipour
- Department of Biochemistry, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Naser Mousavi
- Department of Biochemistry, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hasan Fallah Huseini
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
| | - Zohreh Jangravi
- Department of Biochemistry, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran; Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
18
|
Bhushan A, Rani D, Tabassum M, Kumar S, Gupta PN, Gairola S, Gupta AP, Gupta P. HPLC-PDA Method for Quantification of Bioactive Compounds in Crude Extract and Fractions of Aucklandia costus Falc. and Cytotoxicity Studies against Cancer Cells. Molecules 2023; 28:4815. [PMID: 37375368 DOI: 10.3390/molecules28124815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 06/29/2023] Open
Abstract
Aucklandia costus Falc. (Synonym: Saussurea costus (Falc.) Lipsch.) is a perennial herb of the family Asteraceae. The dried rhizome is an essential herb in the traditional systems of medicine in India, China and Tibet. The important pharmacological activities reported for Aucklandia costus are anticancer, hepatoprotective, antiulcer, antimicrobial, antiparasitic, antioxidant, anti-inflammatory and anti-fatigue activities. The objective of this study was the isolation and quantification of four marker compounds in the crude extract and different fractions of A. costus and the evaluation of the anticancer activity of the crude extract and its different fractions. The four marker compounds isolated from A. costus include dehydrocostus lactone, costunolide, syringin and 5-hydroxymethyl-2-furaldehyde. These four compounds were used as standard compounds for quantification. The chromatographic data showed good resolution and excellent linearity (r2 ˃ 0.993). The validation parameters, such as inter- and intraday precision (RSD < 1.96%) and analyte recovery (97.52-110.20%; RSD < 2.00%),revealed the high sensitivity and reliability of the developed HPLC method. The compounds dehydrocostus lactone and costunolide were concentrated in the hexane fraction (222.08 and 65.07 µg/mg, respectively) and chloroform fraction (99.02 and 30.21 µg/mg, respectively), while the n-butanol fraction is a rich source of syringin (37.91 µg/mg) and 5-hydroxymethyl-2-furaldehyde (7.94 µg/mg). Further, the SRB assay was performed for the evaluation of anticancer activity using lung, colon, breast and prostate cancer cell lines. The hexane and chloroform fractions show excellent IC50 values of 3.37 ± 0.14 and 7.527 ± 0.18 µg/mL, respectively, against the prostate cancer cell line (PC-3).
Collapse
Affiliation(s)
- Anil Bhushan
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Dixhya Rani
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Misbah Tabassum
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Saajan Kumar
- Drug Testing Laboratory, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Prem N Gupta
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Sumeet Gairola
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Plant Science and Agrotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Ajai P Gupta
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Drug Testing Laboratory, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Prasoon Gupta
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
19
|
Nainu F, Frediansyah A, Mamada SS, Permana AD, Salampe M, Chandran D, Emran TB, Simal-Gandara J. Natural products targeting inflammation-related metabolic disorders: A comprehensive review. Heliyon 2023; 9:e16919. [PMID: 37346355 PMCID: PMC10279840 DOI: 10.1016/j.heliyon.2023.e16919] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/23/2023] Open
Abstract
Currently, the incidence of metabolic disorders is increasing, setting a challenge to global health. With major advancement in the diagnostic tools and clinical procedures, much has been known in the etiology of metabolic disorders and their corresponding pathophysiologies. In addition, the use of in vitro and in vivo experimental models prior to clinical studies has promoted numerous biomedical breakthroughs, including in the discovery and development of drug candidates to treat metabolic disorders. Indeed, chemicals isolated from natural products have been extensively studied as prospective drug candidates to manage diabetes, obesity, heart-related diseases, and cancer, partly due to their antioxidant and anti-inflammatory properties. Continuous efforts have been made in parallel to improve their bioactivity and bioavailability using selected drug delivery approaches. Here, we provide insights on recent progress in the role of inflammatory-mediated responses on the initiation of metabolic disorders, with particular reference to diabetes mellitus, obesity, heart-related diseases, and cancer. In addition, we discussed the prospective role of natural products in the management of diabetes, obesity, heart-related diseases, and cancers and provide lists of potential biological targets for high throughput screening in drug discovery and development. Lastly, we discussed findings observed in the preclinical and clinical studies prior to identifying suitable approaches on the phytochemical drug delivery systems that are potential to be used in the treatment of metabolic disorders.
Collapse
Affiliation(s)
- Firzan Nainu
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Tamalanrea, Makassar 90245, Indonesia
| | - Andri Frediansyah
- Research Center for Food Technology and Processing (PRTPP), National Research and Innovation Agency (BRIN), Yogyakarta 55861, Indonesia
| | - Sukamto S. Mamada
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Tamalanrea, Makassar 90245, Indonesia
| | - Andi Dian Permana
- Department of Pharmaceutical Science and Technology, Faculty of Pharmacy, Hasanuddin University, Tamalanrea, Makassar 90245, Indonesia
| | | | - Deepak Chandran
- Department of Veterinary Sciences and Animal Husbandry, Amrita School of Agricultural Sciences, Amrita Vishwa Vidyapeetham University, Coimbatore 642109, India
| | - Talha Bin Emran
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School & Legorreta Cancer Center, Brown University, Providence, RI 02912, USA
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Jesus Simal-Gandara
- Universidade de Vigo, Nutrition and Bromatology Group, Analytical Chemistry and Food Science Department, Faculty of Science, E32004 Ourense, Spain
| |
Collapse
|
20
|
Abraão A, Martins-Gomes C, Domínguez-Perles R, Barros A, Silva AM. Molecular Characterization of Prunus lusitanica L. Fruit Extracts and Their Health-Promoting Potential in Inflammation, Diabetes, and Neurodegenerative Diseases. Int J Mol Sci 2023; 24:8830. [PMID: 37240175 PMCID: PMC10219113 DOI: 10.3390/ijms24108830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/30/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Prunus lusitanica L. is a shrub belonging to the genus Prunus L. (Rosaceae family) that produces small fruits with none known application. Thus, the aim of this study was to determine the phenolic profile and some health-promoting activities of hydroethanolic (HE) extracts obtained from P. lusitanica fruits, harvested from three different locations. Qualitative and quantitative analysis of extracts was performed using HPLC/DAD-ESI-MS and antioxidant activity was assessed by in vitro methods. Antiproliferative/cytotoxic activity was determined on Caco-2, HepG2, and RAW 264.7 cells, anti-inflammatory activity was assessed using lipopolysaccharide (LPS)-stimulated RAW 264.7 cells, and the antidiabetic, antiaging, and neurobiological action of extracts was determined in vitro by assessing their inhibitory effect against the activity of α-amylase, α-glucosidase, elastase, tyrosinase, and acetylcholinesterase (AChE). Results showed that P. lusitanica fruit HE extracts from the three different locations showed identical phytochemical profile and bioactivities, although small differences were observed regarding the quantities of some compounds. Extracts of P. lusitanica fruits contain high levels in total phenolic compounds, namely, hydroxycinnamic acids, as well as flavan-3-ols and anthocyanins, primarily cyanidin-3-(6-trans-p-coumaroyl)glucoside. P. lusitanica fruit extracts have a low cytotoxic/antiproliferative effect, with the lowest IC50 value obtained in HepG2 cells (352.6 ± 10.0 μg/mL, at 48 h exposure), but high anti-inflammatory activity (50-60% NO release inhibition, at 100 μg/mL extract) and neuroprotective potential (35-39% AChE inhibition, at 1 mg/mL), and moderate antiaging (9-15% tyrosinase inhibition, at 1 mg/mL) and antidiabetic (9-15% α-glucosidase inhibition, at 1 mg/mL) effects. The bioactive molecules present in the fruits of P. lusitanica deserve to be further explored for the development of new drugs of interest to the pharmaceutical and cosmetic industry.
Collapse
Affiliation(s)
- Ana Abraão
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), 5001-801 Vila Real, Portugal; (A.A.); (C.M.-G.); (A.B.)
| | - Carlos Martins-Gomes
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), 5001-801 Vila Real, Portugal; (A.A.); (C.M.-G.); (A.B.)
| | - Raúl Domínguez-Perles
- Phytochemistry and Healthy Foods Lab (LabFAS), Department of Food Science and Technology (CEBAS-CSIC), University Campus of Espinardo, Edif. 25, 30100 Murcia, Spain;
| | - Ana Barros
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), 5001-801 Vila Real, Portugal; (A.A.); (C.M.-G.); (A.B.)
| | - Amélia M. Silva
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), 5001-801 Vila Real, Portugal; (A.A.); (C.M.-G.); (A.B.)
- Department of Biology and Environment (DeBA-ECVA), University of Trás-os-Montes and Alto Douro (UTAD), 5001-801 Vila Real, Portugal
| |
Collapse
|
21
|
Sokan-Adeaga AA, Sokan-Adeaga MA, Sokan-Adeaga ED, Oparaji AN, Edris H, Tella EO, Balogun FA, Aledeh M, Amubieya OE. Environmental toxicants and health adversities: A review on interventions of phytochemicals. J Public Health Res 2023; 12:22799036231181226. [PMID: 37440795 PMCID: PMC10334012 DOI: 10.1177/22799036231181226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 04/28/2023] [Indexed: 07/15/2023] Open
Abstract
Toxicity arising from environmental contaminants has attracted global interest in the last few decades, due to the high morbidity and mortality associated with them. Efforts have been made to combat the consequential outcomes of environmental toxicity in humans through traditional remediation techniques and therapeutic measures which have been hampered by one or more limitations. Consequently, this scenario has triggered interest in the medicinal properties of phytochemicals. Thus, this review gives a succinct and in-depth elucidation of the various environmental contaminants and their toxicity effects on humans. It delves into the various classes of phytochemicals and their intervention roles. The study adopted a desk review of existing literatures from scientific reports and peer reviewed articles through triangulation of data sources. "Phytochemicals" are group of secondary metabolites obtained from plants with medicinal properties. These groups of compounds are included but not limited to flavonoids, tannins, saponins, alkaloids, cardenoloids, terpenoids, and phytosteroids. This review corroborates the prophylactic and therapeutics efficacy of these phytochemicals as anti-metastatic, anti-inflammatory, anti-aging, anti-oxidant, anti-microbial and live saving substances with empirical findings from several laboratory, clinical trials and epidemiologic studies. It conclude that given the wide range of medicinal properties of phytochemicals, there is an urgent need for its full optimization in the pharmaceutical industry and future studies should focus on identifying the bioactive molecules in these compounds and its effectiveness against mixer toxicity.
Collapse
Affiliation(s)
- Adewale Allen Sokan-Adeaga
- Department of Environmental Health
Science, Faculty of Public Health, College of Medicine, Lead City University,
Ibadan, Nigeria
| | - Micheal Ayodeji Sokan-Adeaga
- Department of Community Health and
Primary Health Care, Faculty of Clinical Sciences, College of Medicine, University
of Lagos, Lagos, Nigeria
| | - Eniola Deborah Sokan-Adeaga
- Department of Physiology, Faculty of
Basic Medical Sciences, College of Medicine, Ladoke Akintola University of
Technology (LAUTECH), Ogbomosho, Oyo State, Nigeria
| | | | - Hoseinzadeh Edris
- Incubation and Innovation Center, Saveh
University of Medical Sciences, Saveh, Iran
| | - Esther Oluwabukunola Tella
- Department of Environmental Health
Science, Faculty of Public Health, College of Medicine, Lead City University,
Ibadan, Nigeria
| | - Francis Adeniyi Balogun
- Department of Community Health, Faculty
of Public Health, College of Medicine, Lead City University, Ibadan, Nigeria
| | - Muhammad Aledeh
- College of Health, Psychology and
Social Care, University of Derby, Derby, United Kingdom
- Wiener Gesundheitsverbund, Psychiatric
Department, Klinik Donaustadt, Vienna, Austria
| | | |
Collapse
|
22
|
Wilson AD, Forse LB. Potential for Early Noninvasive COVID-19 Detection Using Electronic-Nose Technologies and Disease-Specific VOC Metabolic Biomarkers. SENSORS (BASEL, SWITZERLAND) 2023; 23:2887. [PMID: 36991597 PMCID: PMC10054641 DOI: 10.3390/s23062887] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/19/2023] [Accepted: 03/03/2023] [Indexed: 06/12/2023]
Abstract
The established efficacy of electronic volatile organic compound (VOC) detection technologies as diagnostic tools for noninvasive early detection of COVID-19 and related coronaviruses has been demonstrated from multiple studies using a variety of experimental and commercial electronic devices capable of detecting precise mixtures of VOC emissions in human breath. The activities of numerous global research teams, developing novel electronic-nose (e-nose) devices and diagnostic methods, have generated empirical laboratory and clinical trial test results based on the detection of different types of host VOC-biomarker metabolites from specific chemical classes. COVID-19-specific volatile biomarkers are derived from disease-induced changes in host metabolic pathways by SARS-CoV-2 viral pathogenesis. The unique mechanisms proposed from recent researchers to explain how COVID-19 causes damage to multiple organ systems throughout the body are associated with unique symptom combinations, cytokine storms and physiological cascades that disrupt normal biochemical processes through gene dysregulation to generate disease-specific VOC metabolites targeted for e-nose detection. This paper reviewed recent methods and applications of e-nose and related VOC-detection devices for early, noninvasive diagnosis of SARS-CoV-2 infections. In addition, metabolomic (quantitative) COVID-19 disease-specific chemical biomarkers, consisting of host-derived VOCs identified from exhaled breath of patients, were summarized as possible sources of volatile metabolic biomarkers useful for confirming and supporting e-nose diagnoses.
Collapse
Affiliation(s)
- Alphus Dan Wilson
- Pathology Department, Center for Forest Health & Disturbance, Forest Genetics and Ecosystems Biology, Southern Research Station, USDA Forest Service, Stoneville, MS 38776, USA
| | - Lisa Beth Forse
- Southern Hardwoods Laboratory, Southern Research Station, USDA Forest Service, Stoneville, MS 38776, USA
| |
Collapse
|
23
|
Kewlani P, Tiwari D, Singh L, Balodi S, Bhatt ID. Food and Antioxidant Supplements with Therapeutic Properties of Morchella esculenta (Ascomycetes): A Review. Int J Med Mushrooms 2023; 25:11-29. [PMID: 37824403 DOI: 10.1615/intjmedmushrooms.2023049147] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Morchella esculenta, commonly known as yellow morels, is an edible and medicinal mushroom popular worldwide for its unique flavor and culinary purposes. The traditional medical system effectively uses morels against infertility, fatigue, cancer, muscular pain, cough, and cold. The M. esculenta possesses many health-promoting nutritional components such as mono and polyunsaturated fatty acids, polyphenols, protein hydrolysates, vitamins, amino acids and minerals. The potential medicinal properties of morels is due to polysaccharides (galactomannan, chitin, β-glucans, and β-1,3-1,6-glucan) present that has high economic importance worldwide. Polysaccharides present possess a broad spectrum of biological activities such as anti-cancer, anti-inflammatory, anti-microbial, anti-diabetic, and antioxidant. However, the toxicity and clinical trials to prove its safety and efficacy for medicinal uses are yet to be evaluated. Moreover, the separation, purification, identification, and structural elucidation of active compounds responsible for the unique flavors and biological activities are still lacking in M. esculenta. The available information provides a new base for future perspectives. It highlights the need for further studies of this potent medicinal mushroom species as a source of beneficial therapeutic drugs and nutraceutical supplements.
Collapse
Affiliation(s)
- Pushpa Kewlani
- G.B. Pant National Institute of Himalayan Environment, Kosi-Katarmal, Almora 263 643, Uttarakhand, India
| | - Deepti Tiwari
- G.B. Pant National Institute of Himalayan Environment, Kosi-Katarmal, Almora 263 643, Uttarakhand, India
| | - Laxman Singh
- G.B. Pant National Institute of Himalayan Environment, Kosi-Katarmal, Almora 263 643, Uttarakhand, India
| | - Shivani Balodi
- G.B. Pant National Institute of Himalayan Environment, Kosi-Katarmal, Almora 263 643, Uttarakhand, India
| | - Indra D Bhatt
- G.B. Pant National Institute of Himalayan Environment, Kosi-Katarmal, Almora 263 643, Uttarakhand, India
| |
Collapse
|
24
|
Therapeutics in Metabolic Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1396:255-273. [DOI: 10.1007/978-981-19-5642-3_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
25
|
Varghese C, Chakraborty K, Asharaf S. Pharmacological potential of seaweed-associated heterotrophic bacterium Bacillus atrophaeus. Arch Microbiol 2022; 205:6. [PMID: 36449106 DOI: 10.1007/s00203-022-03338-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/24/2022] [Accepted: 11/15/2022] [Indexed: 12/03/2022]
Abstract
Extremities in marine environmental conditions led the marine macroalga-associated bacteria to adapt and biosynthesize potential bioactive agents. The myriad of marine macroalgae and the bacterial flora they are associated with constitute a potential source of bioactive components with significant biotechnological and pharmacological applications. Heterotrophic bacteria associated with the intertidal macroalgae were isolated and assessed for their pharmacological properties. Subsequently, Firmicutes dominated more than half of the 152 cultivable isolates from macroalgae-associated bacteria collected from the Gulf of Mannar (9°17'0'' N, 79°7'0'' E), on Peninsular India's southern coast. A total of 43 of those demonstrated steady antibacterial activities against a wide range of nosocomial pathogens. Among the bacteria isolated from marine macroalgae, Bacillus atrophaeus SHB2097 (MW821482) exhibited significant antimicrobial activities against clinically important pathogens. Organic extract of B. atrophaeus SHB2097 showed potential antimicrobial activities against test pathogens (minimum inhibitory concentration 6.25 µg/mL). Organic extract of B. atrophaeus SHB2097 revealed promising inhibition potential against cyclooxygenase-2 (IC90 53.26 µg/mL) and 5-lipoxygenase (IC90 9.74 µg/mL). The carbolytic enzyme α-glucosidase inhibition potential of the organic extract of the studied heterotrophic bacterium was significantly greater than (IC90 118 µg/mL) than that displayed by acarbose (IC90 645 µg/mL, p < 0.05). The significance of nuclear magnetic resonance-centered analyses of distinguishing signals in the organic extract and correlating those with bioactive potential was accentuated. The utilities of nuclear magnetic resonance-based fingerprinting emphasized the assessment of the distinctive signals in the solvent extracts and their correlation with the pharmacological properties. Thus, the heterotrophic B. atrophaeus SHB2097 could be used to develop potential therapeutic and biomedical agents.
Collapse
Affiliation(s)
- Chesvin Varghese
- Marine Biotechnology Fish Nutrition and Health Division, Central Marine Fisheries Research Institute, Ernakulam North, P.B. No. 1603, Cochin, Kerala, 682018, India.,School of Biotechnology, Amrita Vishwa Vidyapeetham, Vallikavu PO, Amritapuri, Kollam, Kerala, 690525, India
| | - Kajal Chakraborty
- Marine Biotechnology Fish Nutrition and Health Division, Central Marine Fisheries Research Institute, Ernakulam North, P.B. No. 1603, Cochin, Kerala, 682018, India.
| | - Sumayya Asharaf
- Marine Biotechnology Fish Nutrition and Health Division, Central Marine Fisheries Research Institute, Ernakulam North, P.B. No. 1603, Cochin, Kerala, 682018, India.,Faculty of Marine Sciences, Lakeside Campus, Cochin University of Science and Technology, Cochin, Kerala, India
| |
Collapse
|
26
|
Kydonaki EK, Freitas L, Reguengo H, Simón CR, Bastos AR, Fernandes EM, Canadas RF, Oliveira JM, Correlo VM, Reis RL, Vliora M, Gkiata P, Koutedakis Y, Ntina G, Pinto R, Carrillo AE, Marques F, Amorim T. Pharmacological and Non-Pharmacological Agents versus Bovine Colostrum Supplementation for the Management of Bone Health Using an Osteoporosis-Induced Rat Model. Nutrients 2022; 14:nu14142837. [PMID: 35889794 PMCID: PMC9317446 DOI: 10.3390/nu14142837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/05/2022] [Accepted: 07/08/2022] [Indexed: 11/16/2022] Open
Abstract
Osteoporosis is defined by loss of bone mass and deteriorated bone microarchitecture. The present study compared the effects of available pharmacological and non-pharmacological agents for osteoporosis [alendronate (ALE) and concomitant supplementation of vitamin D (VD) and calcium (Ca)] with the effects of bovine colostrum (BC) supplementation in ovariectomized (OVX) and orchidectomized (ORX) rats. Seven-month-old rats were randomly allocated to: (1) placebo-control, (2) ALE group (7.5 μg/kg of body weight/day/5 times per week), (3) VD/Ca group (VD: 35 μg/kg of body weight/day/5 times per week; Ca: 13 mg/kg of body weight/day/3 times per week), and (4) BC supplementation (OVX: 1.5 g/day/5 times per week; ORX: 2 g/day/5 times per week). Following four months of supplementation, bone microarchitecture, strength and bone markers were evaluated. ALE group demonstrated significantly higher Ct.OV, Ct.BMC, Tb.Th, Tb.OV and Tb.BMC and significantly lower Ct.Pr, Tb.Pr, Tb.Sp, Ct.BMD and Tb.BMD, compared to placebo (p < 0.05). BC presented significantly higher Ct.Pr, Ct.BMD, Tb.Pr, Tb.Sp, and Tb.BMD and significantly lower Ct.OV, Ct.BMC, Tb.Th, Tb.OV and Tb.BMC compared to ALE in OVX rats (p < 0.05). OVX rats receiving BC experienced a significant increase in serum ALP and OC levels post-supplementation (p < 0.05). BC supplementation may induce positive effects on bone metabolism by stimulating bone formation, but appear not to be as effective as ALE.
Collapse
Affiliation(s)
- Eirini K. Kydonaki
- UCIBIO/REQUIMTE, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (E.K.K.); (L.F.); (H.R.); (F.M.)
| | - Laura Freitas
- UCIBIO/REQUIMTE, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (E.K.K.); (L.F.); (H.R.); (F.M.)
| | - Henrique Reguengo
- UCIBIO/REQUIMTE, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (E.K.K.); (L.F.); (H.R.); (F.M.)
| | - Carlos Raposo Simón
- Centro de Estudios Superiores de la Industria Farmacéutica (CESIF, SA), 28010 Madrid, Spain;
| | - Ana R. Bastos
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Guimarães, Portugal; (A.R.B.); (E.M.F.); (R.F.C.); (J.M.O.); (V.M.C.); (R.L.R.)
- ICVS/3B’s-PT Government Associate Laboratory, 4805-017 Braga, Portugal
| | - Emanuel M. Fernandes
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Guimarães, Portugal; (A.R.B.); (E.M.F.); (R.F.C.); (J.M.O.); (V.M.C.); (R.L.R.)
- ICVS/3B’s-PT Government Associate Laboratory, 4805-017 Braga, Portugal
| | - Raphaël F. Canadas
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Guimarães, Portugal; (A.R.B.); (E.M.F.); (R.F.C.); (J.M.O.); (V.M.C.); (R.L.R.)
- ICVS/3B’s-PT Government Associate Laboratory, 4805-017 Braga, Portugal
| | - Joaquim M. Oliveira
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Guimarães, Portugal; (A.R.B.); (E.M.F.); (R.F.C.); (J.M.O.); (V.M.C.); (R.L.R.)
- ICVS/3B’s-PT Government Associate Laboratory, 4805-017 Braga, Portugal
| | - Vitor M. Correlo
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Guimarães, Portugal; (A.R.B.); (E.M.F.); (R.F.C.); (J.M.O.); (V.M.C.); (R.L.R.)
- ICVS/3B’s-PT Government Associate Laboratory, 4805-017 Braga, Portugal
| | - Rui L. Reis
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Guimarães, Portugal; (A.R.B.); (E.M.F.); (R.F.C.); (J.M.O.); (V.M.C.); (R.L.R.)
- ICVS/3B’s-PT Government Associate Laboratory, 4805-017 Braga, Portugal
| | - Maria Vliora
- School of Sports and Exercise Sciences, University of Thessaly, 42100 Trikala, Greece; (M.V.); (P.G.); (Y.K.)
| | - Paraskevi Gkiata
- School of Sports and Exercise Sciences, University of Thessaly, 42100 Trikala, Greece; (M.V.); (P.G.); (Y.K.)
| | - Yiannis Koutedakis
- School of Sports and Exercise Sciences, University of Thessaly, 42100 Trikala, Greece; (M.V.); (P.G.); (Y.K.)
- Faculty of Education, Health and Wellbeing, University of Wolverhampton, Walsall WS1 3BD, UK
| | - Georgia Ntina
- BME, Biomechanical Solutions, 43150 Karditsa, Greece;
| | - Rui Pinto
- iMed.UL, Faculty of Pharmacy, University of Lisbon, 1649-003 Lisbon, Portugal;
- JCS, Laboratório de Análises Clínicas Dr. Joaquim Chaves, Avenida General Norton de Matos, 1495-148 Algés, Portugal
| | - Andres E. Carrillo
- Department of Exercise Science, Chatham University, Pittsburgh, PA 15232, USA;
- Move-Cor Inc., Pittsburgh, PA 15017, USA
| | - Franklim Marques
- UCIBIO/REQUIMTE, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (E.K.K.); (L.F.); (H.R.); (F.M.)
| | - Tânia Amorim
- UCIBIO/REQUIMTE, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (E.K.K.); (L.F.); (H.R.); (F.M.)
- Correspondence:
| |
Collapse
|
27
|
Anti-obesity effects of Erythrina abyssinica stem bark extract in flies exposed to a high fat diet. Heliyon 2022; 8:e09886. [PMID: 35847607 PMCID: PMC9284455 DOI: 10.1016/j.heliyon.2022.e09886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/13/2022] [Accepted: 07/01/2022] [Indexed: 11/30/2022] Open
Abstract
Background An in vitro assay on Sigmoidin A from Erythrina abyssinica stem bark revealed its potency to inhibit pancreatic lipase. However, studies indicate activity of extract bioactive compounds in combination far exceed the favorable effects of each individual compound due to synergy and additive effects. In this study, we provide information on the effect of E. abyssinica stem bark extract in Drosophila melanogaster. The objective of the study was to determine the safety and effects of E. abyssinica stem bark extract on fly survival, body weight, triglycerides, sterol, total protein, and catalase activity of obese male D. melanogaster. Methods Obesity was induced by exposing D. melanogaster white mutant w1118 to coconut food for two weeks. Groups 1–3 were fed on coconut food + fenofibrate at 25 mM, 50 mM, and 75 mM. Groups 4–6 were fed on coconut food + E. abyssinica stem bark extract at concentrations of 2.5 g/ml, 5.0 g/ml, and 7.5 g/ml. The positive control was exposed to only coconut food while the negative control was on regular food. Fly survival observations were done for 15 days, while acute and chronic effects were done at 30 min and after 48 h respectively following treatment. Body mass, negative geotaxis, reducing power of the extract, triglycerides (TG/TP), sterol, total protein levels, and catalase activity were measured after 10 days of exposure to the experimental diets. Results Fly survival changes were observed after 10 days and E. abyssinica stem bark extract had the strongest reducing power at 7.5 g/ml extract concentration. E. abyssinica stem bark extract reduced body mass, triglyceride levels (TG/TP), sterol levels, and modulated catalase activity at 7.5 g/ml extract concentration. Though the standard drug fenofibrate had the highest fat accumulation reduction potential, the extract at 7.5 g/ml was much safer in reducing fat accumulation in obese male D. melanogaster than other concentration used. Conclusion Antioxidants in E. abyssinica stem bark extract are responsible for the observed anti-obesity activity.
Collapse
|
28
|
Asharaf S, Chakraborty K. Pharmacological potential of seaweed-associated heterotrophic Firmicutes. Lett Appl Microbiol 2022; 75:1042-1054. [PMID: 35771159 DOI: 10.1111/lam.13780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/11/2022] [Accepted: 06/21/2022] [Indexed: 11/27/2022]
Abstract
Seaweed-associated bacterial symbionts are sources of potential pharmacological properties. The present study resulted in the culture-dependent isolation of bioactive heterotrophs belonging to the bacterial phylum Firmicutes, which were dominated more than 30% of the 127 cultivable isolates, among which 23 of them showed potential antimicrobial activities against a wide range of pathogens. The symbionts isolated from the seaweed Sargassum wightii showed significant bioactivity. Those were characterised as Bacillus safensis MTCC13040, B. valismortis MTCC13041, B. velezensis MTCC13044, B. methylotrophicus MTCC13042, Oceanobacillus profundus MTCC13045, B. tequilensis MTCC13043, and B. altitudinis MTCC13046. The organic extracts of the studied isolates showed potential antimicrobial properties against methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococci (minimum inhibitory concentration 6.25-12.5 μg ml-1 ). The organic extract of B. altitudinis MTCC13046 displayed significantly greater radical quenching ability (IC90 133 μg ml-1 , p < 0.05) other than attenuating hydroxymethyl glutaryl coenzyme A reductase (IC90 10.21 μg ml-1 , p < 0.05) and angiotensin converting enzyme-1 (IC90 498 μg ml-1 , p < 0.05) relative to other studied heterotrophs. The organic extract of B. tequilensis MTCC13043 displayed significantly greater attenuation potential against pro-inflammatory 5-lipooxygenase (IC90 5.94 μg ml-1 , p < 0.05) and dipeptidyl peptidase-4 (IC90 271 μg ml-1 , p < 0.05). The seaweed-associated B. altitudinis MTCC13046 and B. tequilensis MTCC13043 could be used to develop promising pharmacological leads.
Collapse
Affiliation(s)
- Sumayya Asharaf
- Marine Biotechnology Division, Central Marine Fisheries Research Institute, Ernakulam North, P.B. No, 1603, Cochin, -682018, Kerala State, India.,Faculty of Marine Sciences, Lakeside Campus, Cochin University of Science and Technology, Cochin, Kerala State, India
| | - Kajal Chakraborty
- Marine Biotechnology Division, Central Marine Fisheries Research Institute, Ernakulam North, P.B. No, 1603, Cochin, -682018, Kerala State, India
| |
Collapse
|
29
|
Shah MA, Haris M, Faheem HI, Hamid A, Yousaf R, Rasul A, Shah GM, Khalil AAK, Wahab A, Khan H, Alhasani RH, Althobaiti NA. Cross-Talk between Obesity and Diabetes: Introducing Polyphenols as an Effective Phytomedicine to Combat the Dual Sword Diabesity. Curr Pharm Des 2022; 28:1523-1542. [PMID: 35762558 DOI: 10.2174/1381612828666220628123224] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 02/06/2022] [Indexed: 12/15/2022]
Abstract
: Obesity-associated diabetes mellitus, a chronic metabolic affliction accounting for 90% of all diabetic patients, has been affecting humanity extremely badly and escalating the risk of developing other serious disorders. It is observed that 0.4 billion people globally have diabetes, whose major cause is obesity. Currently, innumerable synthetic drugs like alogliptin and rosiglitazone are being used to get through diabetes, but they have certain complications, restrictions with severe side effects, and toxicity issues. Recently, the frequency of plant-derived phytochemicals as advantageous substitutes against diabesity is increasing progressively due to their unparalleled benefit of producing less side effects and toxicity. Of these phytochemicals, dietary polyphenols have been accepted as potent agents against the dual sword "diabesity". These polyphenols target certain genes and molecular pathways through dual mechanisms such as adiponectin upregulation, cannabinoid receptor antagonism, free fatty acid oxidation, ghrelin antagonism, glucocorticoid inhibition, sodium-glucose cotransporter inhibition, oxidative stress and inflammation inhibition etc. which sequentially help to combat both diabetes and obesity. In this review, we have summarized the most beneficial natural polyphenols along with their complex molecular pathways during diabesity.
Collapse
Affiliation(s)
| | - Muhammad Haris
- Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Hafiza Ishmal Faheem
- Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Ayesha Hamid
- Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Rimsha Yousaf
- Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Azhar Rasul
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Ghulam Mujtaba Shah
- Department of Pharmacy, Hazara University, Mansehra, Pakistan.,Department of Botany, Hazara University, Mansehra, Pakistan
| | - Atif Ali Khan Khalil
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi 46000, Pakistan
| | - Abdul Wahab
- Department of Pharmacy, Kohat University of Science & Technology, Kohat, Pakistan
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, Pakistan
| | - Reem Hasaballah Alhasani
- Department of Biology, Faculty of Applied Science, Umm Al-Qura University, 21961 Makkah, Saudi Arabia
| | - Nora A Althobaiti
- Department of Biology, College of Science and Humanities-Al Quwaiiyah, Shaqra University, Al Quwaiiyah, Saudi Arabia
| |
Collapse
|
30
|
Nurcahyanti ADR, Cokro F, Wulanjati MP, Mahmoud MF, Wink M, Sobeh M. Curcuminoids for Metabolic Syndrome: Meta-Analysis Evidences Toward Personalized Prevention and Treatment Management. Front Nutr 2022; 9:891339. [PMID: 35757255 PMCID: PMC9218575 DOI: 10.3389/fnut.2022.891339] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/21/2022] [Indexed: 12/22/2022] Open
Abstract
The metabolic syndrome (MS) is a multifactorial syndrome associated with a significant economic burden and healthcare costs. MS management often requires multiple treatments (polydrug) to ameliorate conditions such as diabetes mellitus, insulin resistance, obesity, cardiovascular diseases, hypertension, and non-alcoholic fatty liver disease (NAFLD). However, various therapeutics and possible drug-drug interactions may also increase the risk of MS by altering lipid and glucose metabolism and promoting weight gain. In addition, the medications cause side effects such as nausea, flatulence, bloating, insomnia, restlessness, asthenia, palpitations, cardiac arrhythmias, dizziness, and blurred vision. Therefore, is important to identify and develop new safe and effective agents based on a multi-target approach to treat and manage MS. Natural products, such as curcumin, have multi-modalities to simultaneously target several factors involved in the development of MS. This review discusses the recent preclinical and clinical findings, and up-to-date meta-analysis from Randomized Controlled Trials regarding the effects of curcumin on MS, as well as the metabonomics and a pharma-metabolomics outlook considering curcumin metabolites, the gut microbiome, and environment for a complementary personalized prevention and treatment for MS management.
Collapse
Affiliation(s)
- Agustina Dwi Retno Nurcahyanti
- Department of Pharmacy, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Jakarta, Indonesia
| | - Fonny Cokro
- Department of Pharmacy, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Jakarta, Indonesia
| | - Martha P Wulanjati
- Research Division for Natural Products Technology (BPTBA), National Research and Innovation Agency (BRIN), Yogyakarta, Indonesia
| | - Mona F Mahmoud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Michael Wink
- Institute of Pharmacy and Molecular Biotechnology (IPMB), Heidelberg University, Heidelberg, Germany
| | - Mansour Sobeh
- AgroBioSciences Department, Mohammed VI Polytechnic University, Ben-Guerir, Morocco
| |
Collapse
|
31
|
Bourebaba Y, Marycz K, Mularczyk M, Bourebaba L. Postbiotics as potential new therapeutic agents for metabolic disorders management. Biomed Pharmacother 2022; 153:113138. [PMID: 35717780 DOI: 10.1016/j.biopha.2022.113138] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/07/2022] [Accepted: 05/15/2022] [Indexed: 11/24/2022] Open
Abstract
The prevalence of obesity, diabetes, non-alcoholic fatty liver disease, and related metabolic disorders has been steadily increasing in the past few decades. Apart from the establishment of caloric restrictions in combination with improved physical activity, there are no effective pharmacological treatments for most metabolic disorders. Many scientific-studies have described various beneficial effects of probiotics in regulating metabolism but others questioned their effectiveness and safety. Postbiotics are defined as preparation of inanimate microorganisms, and/or their components, which determine their safety of use and confers a health benefit to the host. Additionally, unlike probiotics postbiotics do not require stringent production/storage conditions. Recently, many lines of evidence demonstrated that postbiotics may be beneficial in metabolic disorders management via several potential effects including anti-inflammatory, antibacterial, immunomodulatory, anti-carcinogenic, antioxidant, antihypertensive, anti-proliferative, and hypocholesterolaemia properties that enhance both the immune system and intestinal barrier functions by acting directly on specific tissues of the intestinal epithelium, but also on various organs or tissues. In view of the many reports that demonstrated the high biological activity and safety of postbiotics, we summarized in the present review the current findings reporting the beneficial effects of various probiotics derivatives for the management of metabolic disorders and related alterations.
Collapse
Affiliation(s)
- Yasmina Bourebaba
- Laboratoire de Biomathématique, Biophysique, Biochimie et Scientométrie (L3BS), Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, 06000 Bejaia, Algeria.
| | - Krzysztof Marycz
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375 Wrocław, Poland; Department of Medicine and Epidemiology, UC Davis School of Veterinary Medicine, Davis, CA 95516, USA
| | - Malwina Mularczyk
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375 Wrocław, Poland; International Institute of Translational Medicine, Jesionowa, 11, Malin, 55-114 Wisznia Mała, Poland
| | - Lynda Bourebaba
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375 Wrocław, Poland; International Institute of Translational Medicine, Jesionowa, 11, Malin, 55-114 Wisznia Mała, Poland.
| |
Collapse
|
32
|
Hemagirri M, Sasidharan S. In vitro antiaging activity of polyphenol rich Polyalthia longifolia (Annonaceae) leaf extract in Saccharomyces cerevisiae BY611 yeast cells. JOURNAL OF ETHNOPHARMACOLOGY 2022; 290:115110. [PMID: 35181488 DOI: 10.1016/j.jep.2022.115110] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 02/02/2022] [Accepted: 02/13/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Polyalthia longifolia var. angustifolia Thw. (Annonaceae) is commonly used in traditional medicine as a tonic for rejuvenation and exhibiting good antioxidant activities. AIM OF THE STUDY To evaluate P. longifolia methanolic leaf extract (PLME) antiaging activity at 1 mg/mL in Saccharomyces cerevisiae BY611 yeast. MATERIALS AND METHODS The antiaging effect of PLME was studied via replicative lifespan assay, antioxidative stress assays, reactive oxygen species (ROS) determination, reduced glutathione (GSH) determination, superoxide dismutase (SOD) and Sirtuin 1 (SIRT1) genes regulation studies and SOD and SIRT1 proteins activities. RESULTS The PLME treatment increased the growth and prolonged the lifespan of the yeast significantly (p < 0.05) compared to the untreated yeast group. Besides, the PLME also protected the yeast from oxidative stress induced by 4-mM-H2O2 via decreasing (p < 0.05) the ROS from 143.207 to 127.223. The antioxidative action of PLME was proved by spot assay. Phloxine B staining was further confirmed the PLME antioxidative action of PLME, where more whitish-pink live yeast cells were observed. In addition, the PLME also enhanced GSH content significantly (p < 0.05) in yeast treated with PLME from 16.81 to 25.31 μmol. Furthermore, PLME increased the SOD and SIRT1 genes expression significantly (p < 0.05) with ΔCt values of 1.11 and 1.15, respectively. The significantly (p < 0.05) elevated SOD and SIRT1 protein activities were recorded as 51.54 U/mg Prot and 1716 ng/mL, respectively. CONCLUSIONS PLME exhibited good antiaging activities in S. cerevisiae, by modulating oxidative stress, enhancing GSH content, and increasing SOD and SIRT1 genes expression.
Collapse
Affiliation(s)
- Manisekaran Hemagirri
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, USM, 11800, Pulau, Pinang, Malaysia
| | - Sreenivasan Sasidharan
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, USM, 11800, Pulau, Pinang, Malaysia.
| |
Collapse
|
33
|
Hu F, Sun DS, Wang KL, Shang DY. Nanomedicine of Plant Origin for the Treatment of Metabolic Disorders. Front Bioeng Biotechnol 2022; 9:811917. [PMID: 35223819 PMCID: PMC8873594 DOI: 10.3389/fbioe.2021.811917] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/22/2021] [Indexed: 12/17/2022] Open
Abstract
Metabolic disorders are major clinical challenges of health that are progressing globally. A concurrence of metabolic disorders such as obesity, insulin resistance, atherogenic dyslipidemia, and systematic hypertension leads to metabolic syndrome. Over the past years, the metabolic syndrome leads to a five- and two-fold rise in diabetes mellitus type II and cardiovascular diseases. Natural products specifically plant extracts have insulin-sensitizing, anti-inflammatory, and antioxidant properties and are also considered as an alternative option due to few adverse effects. Nanotechnology is one of the promising strategies, which improves the effectiveness of treatment and limits side effects. This review mainly focuses on plant extract-based nanosystems in the management of the metabolic syndrome. Numerous nano-drug delivery systems, i.e., liposomes, hydrogel nanocomposites, nanoemulsions, micelles, solid lipid, and core–shell nanoparticles, have been designed using plant extracts. It has been found that most of the nano-formulations successfully reduced oxidative stress, insulin resistance, chronic inflammation, and lipid profile in in vitro and in vivo studies as plant extracts interfere with the pathways of metabolic syndrome. Thus, these novel plant-based nanosystems could act as a promising candidate for clinical applications.
Collapse
Affiliation(s)
- Fang Hu
- Medical Department, Chun’an First People’s Hospital (Zhejiang Provincial People’s Hospital Chun’an Branch), Hangzhou, China
| | - Dong-Sheng Sun
- Department of Geriatric Medicine, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital of Hangzhou Medical College, Hangzhou, China
| | - Kai-Li Wang
- Department of Cardiology, Chun’an First People’s Hospital (Zhejiang Provincial People’s Hospital Chun’an Branch), Hangzhou, China
| | - Dan-Ying Shang
- Department of Dermatology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital of Hangzhou Medical College, Hangzhou, China
- *Correspondence: Dan-Ying Shang,
| |
Collapse
|
34
|
Quercetin and vitamin E ameliorate cardio-apoptotic risks in diabetic rats. Mol Cell Biochem 2022; 477:793-803. [PMID: 35048283 DOI: 10.1007/s11010-021-04332-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 12/09/2021] [Indexed: 01/05/2023]
Abstract
Apoptosis is upregulated in all forms of diabetes, and the mitochondria act as target in diabetes pathophysiology. Quercetin and vitamin E have both shown usefulness in the delay of progression of diabetes-induced complications. However, their effect on the apoptotic process in diabetes mellitus is unknown. We hypothesize that quercetin treatment in diabetes may decrease the propensity for cardiomyocytic death via regulation of the mitochondria permeability transition (mPT) pore opening. Hearts from normal and streptozotocin-induced diabetic rats were used for the study. Low ionic strength heart mitochondria were used for swelling assay and mitochondrial lipid peroxidation (mLPO) activity was spectrophotometrically assessed. Levels of cytochrome c and caspase 3 and 9 were determined by immunohistochemistry, while lesions assessed by histology. Diabetic heart mPT pore showed larger amplitude swelling than control, while mLPO levels were increased in diabetic rats relative to control, this resulted in cytochrome c release. This initiated increased caspase 3 and 9 activity in diabetic rats (p < 0.05). Histology showed hemorrhagic lesions in diabetic rat hearts. Quercetin and vitamin E treatment reversed these effects, suggestive of their anti-apoptotic effect. Quercetin and vitamin E protection in diabetes is mediated by mPT pore inhibition and modulation of mitochondrial-mediated apoptosis.
Collapse
|
35
|
Li H, Rafie R, Xu Z, Siddiqui RA. Phytochemical profile and anti-oxidation activity changes during ginger ( Zingiber officinale) harvest: Baby ginger attenuates lipid accumulation and ameliorates glucose uptake in HepG2 cells. Food Sci Nutr 2022; 10:133-144. [PMID: 35035916 PMCID: PMC8751441 DOI: 10.1002/fsn3.2654] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/30/2021] [Accepted: 10/24/2021] [Indexed: 12/15/2022] Open
Abstract
We determined the phenolic content and anti-oxidation properties of ginger at different harvesting time and tested its effects on lipid droplet formation and glucose uptake in HepG2 cells. Ginger samples at different stages of maturity were harvested every two weeks starting from mid-October for 16 weeks. Our data indicate that ginger has the highest phenolic contents and superior anti-oxidation activity when harvested early (immature baby ginger); however, the concentration of phenolic contents and its anti-oxidation activity were progressively reduced up to 50% as ginger matures. Furthermore, the data indicate that baby ginger extract inhibits lipid accumulation and triglyceride content in oleic acid-induced HepG2 cells up to 20% in a dose-dependent manner. Baby ginger exhibited significant inhibition of α-amylase enzyme activity by 29.5% and ameliorated glucose uptake in HepG2 cell at similar level. Our results suggest that harvesting ginger at an appropriate (early) time may be beneficial for optimizing its biological active contents and qualitative properties. The data also suggest that a regular use of ginger can potentially lower incidences of obesity and diabetes.
Collapse
Affiliation(s)
- Haiwen Li
- Food Chemistry and Nutrition Science Laboratory, Agricultural Research StationVirginia State UniversityPetersburgVirginiaUSA
| | - Reza Rafie
- Cooperate ExtensionCollege of AgricultureVirginia State UniversityPetersburgVirginiaUSA
| | - Zhidong Xu
- Key Laboratory of Molecular Chemistry for Medicine of Hebei ProvinceCollege of Chemical & Pharmaceutical EngineeringHebei University of Science & TechnologyShijiazhuangChina
| | - Rafat A. Siddiqui
- Food Chemistry and Nutrition Science Laboratory, Agricultural Research StationVirginia State UniversityPetersburgVirginiaUSA
| |
Collapse
|
36
|
Septiana E, Rizka NM, Yadi Y, Simanjuntak P. Antidiabetic Activity of Extract Combination of Orthosiphon aristatus and Oryza sativa L. var glutinosa. BORNEO JOURNAL OF PHARMACY 2021. [DOI: 10.33084/bjop.v4i3.2154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Traditionally and scientifically, research has shown that Orthosiphon aristatus and Oryza sativa L. var. glutinosa have antidiabetic activity. The combination of two medicinal plants can increase their biological activity. This study aimed to determine the antidiabetic activity of O. aristatus and O. sativa L. var. glutinosa on single and combined extracts. Phytochemical screening of the single extract was done qualitatively. The α-glucosidase inhibitory method was used as an antidiabetic activity. The results showed that every extract contained alkaloids, steroids/triterpenoids, flavonoids, tannins, quinones, and coumarins. A single extract of O. sativa L. var glutinosa, O. aristatus, and their combinations (1:1, 1:2, and 2:1) had an α-glucosidase enzyme inhibitory activity with an IC50 value of 67.82, 80.93, 73.81, 88.72, and 61.51 µg/ml, respectively. The combination shows that the ratio of 1:1 was nearly additive, 1:2 was slight to moderate antagonism, and 2:1 was moderate to slight synergism. The combination of 96% ethanol extract of O. sativa L. var. glutinosa and O. aristatus in a ratio of 2:1 was the most effective in increasing its inhibitory activity.
Collapse
|
37
|
The Trend of Scientific Productions on the Use of Herbal Medicines in Metabolic Disorders in the Middle East Countries. Jundishapur J Nat Pharm Prod 2021. [DOI: 10.5812/jjnpp.102434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Context: Prevalence of metabolic disorders, type 2 diabetes mellitus (T2DM), dyslipidemia, obesity, metabolic syndrome (MetS), and osteoporosis has been increased. Herbal medicine is an accessible, safe, and low-cost option in managing and caring for metabolic disorders. We conducted a bibliometric analysis of global scientific productions in herbal medications and metabolic disorders in the Middle East countries. Study Selection: Our search terms were “diabetes”, “dyslipidemia”, “obesity”, “osteoporosis”, “metabolic syndrome”, “herb”, and “herbal medicine” in Middle East countries through the Scopus database until January 2020. We analyzed the data regarding publication year, main journal, geographical distribution, document type, subject area, co-authorship network, the h-index of citations by Scopus analysis tools, Visualizing Scientific Landscapes (VOSviewer) version 1.6.4, and SPSS version 15. Results: Among 6408 global publications, most of the papers (> 85%) were original articles, and mostly (44.26%) were about dyslipidemia. A significant time-trend was shown in the number of documents (P < 0.001), mostly in 2019. Medicine and pharmacology were subject areas in > 80% of papers. The top country in the global publication number was Iran. The highest cited papers in dyslipidemia, obesity and osteoporosis were original articles from Turkey and Egypt, but in T2DM and MetS the highest cited paper was a review article from Iran. The top sources were “Phytotherapy Research” and “the Journal of Ethnopharmacology”. The top institutes were from Egypt, Iran, and Saudi Arabia and the principal author in the co-authorship network assessment was from Iran. Conclusions: The time-trend growth in producing scholarly papers in the studied disorders is appreciated, but more evidence-based articles are still needed.
Collapse
|
38
|
Adel Mehraban MS, Tabatabaei-Malazy O, Rahimi R, Daniali M, Khashayar P, Larijani B. Targeting dyslipidemia by herbal medicines: A systematic review of meta-analyses. JOURNAL OF ETHNOPHARMACOLOGY 2021; 280:114407. [PMID: 34252530 DOI: 10.1016/j.jep.2021.114407] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/18/2021] [Accepted: 07/08/2021] [Indexed: 12/18/2022]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The worldwide increasing prevalence of dyslipidemia has become a global health concern. Various herbal remedies have been claimed to be effective for the treatment of dyslipidemia in traditional and folkloric medicine of different regions clinical trials have been conducted to investigate their efficacy. The aim of the current systematic review is to critically assess the meta-analyses of controlled trials (CT) evaluated herb medicines for dyslipidemia. MATERIALS AND METHODS Relevant studies from Web of Science, PubMed, Scopus, and Cochrane Library databases based on Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) checklist until January 2021 have been searched. All meta-analyses which pooled studies on the effect of herbal medicines on lipid profile including total cholesterol (TC), triglyceride (TG), and low- or high-density lipoprotein cholesterol (LDL-C, HDL-C) were also included. Meta-analyses of in vitro, animal or observational studies were excluded. RESULTS The overall of 141 meta-analyses were revealed. Vegetable oils, phytosterols, tea, soy protein, nuts, and curcumin have been studied frequently among the herbal medicines. Among 13 meta-analyses on vegetable oils, the greater reduce of TC (18.95 mg/dl), LDL-C (16.24 mg/dl) and TG (13.69 mg/dl) were exhibited from sunflower oil. Furthermore, rice bran oil (6.65 mg/dl) increased HDL-C significantly. Phytosterols in 12 meta-analyses demonstrated significant improvements in reducing TC, LDL-C and TG as 16.4, 23.7, and 8.85 mg/dl, respectively, and rise in HDL-C as 10.6 mg/dl. The highest reduction in serum level of TC, LDL-C and TG was reported while intake Green tea; 27.57, 24.75, and 31.87 mg/dl, accordingly within 9 meta-analyses. Average improvement of lipid profiles by 6 meta-analyses on plant proteins were 23.2, 21.7, 15.06, and 1.55 mg/dl for TC, LDL-C, TG, and HDL-C, respectively. Among 11 meta-analyses on nuts, almond showed better and significant alleviations in TC (10.69 mg/dl), walnut in LDL-C (9.23 mg/dl), pistachio in TG (22.14 mg/dl), and peanut in HDL-C (2.72 mg/dl). Overall, Curcumin, Curcuminoid, and Turmeric have resulted in the reduction of TC (25.13 mg/dl), LDL-C (39.83 mg/dl), TG (33.65 mg/dl), and an increase in the HDL-C (4.31 mg/dl). CONCLUSION The current systematic review shed light on the use of herbal medicines for the management of dyslipidemia. However, more well-conducted CTs are required to determine effective doses of herbal medicines.
Collapse
Affiliation(s)
- Mohammad Sadegh Adel Mehraban
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran; Department of Traditional Medicine, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ozra Tabatabaei-Malazy
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Roja Rahimi
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran; PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Marzieh Daniali
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran; Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Patricia Khashayar
- Center for Microsystem Technology, Imec and Ghent University, Gent-Zwijnaarde, 9052, Belgium; Osteoporosis Research Center, Endocrinpology & Metabolism Clinical Science Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
39
|
Mohseni S, Tabatabaei-Malazy O, Peimani M, Ejtahed HS, Khodaeian M, Nazeri E, Nouhi Z, Khodamoradi K, Aboeerad M, Larijani B. Withdrawal reasons of randomized controlled trials on type 2 diabetes: a systematic review. Daru 2021; 29:39-50. [PMID: 33389690 PMCID: PMC8149490 DOI: 10.1007/s40199-020-00380-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 12/18/2020] [Indexed: 10/22/2022] Open
Abstract
PURPOSE Type 2 diabetes mellitus (T2DM) is the subject of numerous randomized controlled trials (RCTs). The validity of RCTs may be threatened by attrition bias due to the discontinuation of the study. The aim of this systematic review is to evaluate the reasons of patient's withdrawal from these RCTs. METHODS A systematic literature search on PubMed, Cochrane Library, Web of Science, and Scopus databases was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flow diagram. The aim was to obtain all relevant blinded RCTs published before January 2017 in which the effectiveness of synthetic drugs, vitamins/minerals were compared to that of placebo or active control in T2DM. The quality of RCTs was assessed using the Jadad score. The frequency of withdrawal reasons was presented based on treatments with placebo/active control, national/international level of the studies, and publication year. Meta-analysis was not performed due to the heterogeneity. RESULTS Overall, 1368 articles comprising of 640,780 subjects were included. In the majority of the RCTs (75.0%), the intervention and the placebo arms were compared. Most of the included studies (96%) were classified in the high-quality category (Jadad score≥3). The highest proportion of reported withdrawal cases was found in international studies, national RCTs conducted in Japan, and RCTs published in 2011. The withdrawal reasons were reported for 91,669 (63.75%) of the total 143,794 participants who had withdrawn from these studies. The main reported reasons were "adverse effects" (24.04%), "withdraw consent" (16.10%), and "missing data" (11.08%). Variations in the reported withdrawal reasons were based on the country or published year. RCTs with triple blinded design as well as those in which anti-hyperlipidemia and anti-obesity medications were applied, showed significantly higher probability of reported the withdrawal. CONCLUSION High proportion of reported discontinuation in blinded RCTs on patients with T2DM was related to drug adverse effects. Overall, the total number and reason of drop out were unsatisfactory.
Collapse
Affiliation(s)
- Shahrzad Mohseni
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ozra Tabatabaei-Malazy
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Peimani
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hanieh-Sadat Ejtahed
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehrnoosh Khodaeian
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Elahe Nazeri
- Genetics Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Zahra Nouhi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Kajal Khodamoradi
- Department of Urology, Miller School of Medicine, University of Miami, Miami, FL USA
| | - Maryam Aboeerad
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
40
|
Sugimoto M, Ko R, Goshima H, Koike A, Shibano M, Fujimori K. Formononetin attenuates H 2O 2-induced cell death through decreasing ROS level by PI3K/Akt-Nrf2-activated antioxidant gene expression and suppressing MAPK-regulated apoptosis in neuronal SH-SY5Y cells. Neurotoxicology 2021; 85:186-200. [PMID: 34077701 DOI: 10.1016/j.neuro.2021.05.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/21/2021] [Accepted: 05/25/2021] [Indexed: 12/18/2022]
Abstract
Formononetin is an isoflavone, found in herbs like Trifolium pratense, which executes a variety of physiological activities including anti-neurodegenerative effect. However, the molecular mechanism of formononetin-mediated neuroprotection remains unclear. In this study, we investigated the protective effect of formononetin on hydrogen peroxide (H2O2)-induced death of human neuroblastoma SH-SY5Y cells and its underlying molecular mechanism. Formononetin suppressed H2O2-induced cytotoxicity. H2O2-induced increase in the intracellular reactive oxygen species (ROS) levels was decreased by formononetin, together with the enhanced expression of the antioxidant genes. H2O2-induced elevation of the Bax/Bcl-2 ratio and cleaved caspase-3 and caspase-7 levels were lowered by formononetin treatment. Moreover, formononetin repressed H2O2-induced phosphorylation of mitogen-activated protein kinases (MAPKs). Nuclear factor erythroid 2-related factor 2 (Nrf2) siRNA decreased antioxidant gene expression and elevated the H2O2-induced ROS level in the formononetin-treated cells. Furthermore, the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) signaling is involved in the activation of the nuclear translocation of Nrf2. These results indicate that the neuroprotective effect of formononetin against H2O2-induced cell death is due to a decrease in the ROS level with the enhanced expression of the antioxidant genes through activation of the PI3K/Akt-Nrf2 signaling. In addition, formononetin suppressed apoptosis through inhibition of phosphorylation of MAPKs in SH-SY5Y cells. Thus, formononetin is a potential therapeutic agent for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Mayuko Sugimoto
- Department of Pathobiochemistry, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Risa Ko
- Department of Pathobiochemistry, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Hiromi Goshima
- Department of Pathobiochemistry, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Atsushi Koike
- Department of Pathobiochemistry, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Makio Shibano
- Department of Clinical Kampo Medicines, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Ko Fujimori
- Department of Pathobiochemistry, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan.
| |
Collapse
|
41
|
Nephroprotective effect of Vanillic acid in STZ-induced diabetic rats. J Diabetes Metab Disord 2021; 20:571-582. [PMID: 34222078 DOI: 10.1007/s40200-021-00782-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 03/20/2021] [Indexed: 01/15/2023]
Abstract
Purpose To investigate the protective effect of vanillic acid (VA) in streptozotocin (STZ)-induced diabetic nephropathy (DN) in rats. Methods Experimental diabetes mellitus in rats was induced by intraperitoneally administration of single dose of STZ (55 mg/kg). The animals were divided into 5 groups viz., normal control, diabetic control, glimepiride (0.5 mg/kg, orally) and VA treatment (50 and 100 mg/kg, orally) groups. The treatment was started after the confirmation of hyperglycemia (> 250 mg/dl) and continued for 6 weeks. Serum glucose level, and body weight were measured weekly. At the end of study, HbA1c in whole blood, insulin, lipid profile, urea, creatinine and albumin in serum. Creatinine and albumin were measured in urine along with creatinine clearance. In addition, kidney weight and histopathology were assessed. Results Treatment with VA markedly attenuated STZ-induced body weight loss and hyperglycemia, along with improved lipid profile and HbA1c, without significant alteration of serum insulin levels. It also decreased urea, creatinine and increased albumin in serum. Moreover, VA, significantly reduced urine volume, urinary albumin along with marked improvement in creatinine clearance. Further, the VA treatment significantly reverse the raised levels of oxidative stress markers, pro-inflammatory and fibrotic markers viz. TNF-α, IL-1β, IL-6, TGF-β1 and NFκB activity in kidney tissue. These effects are associated with amelioration of histopathological alterations compared to diabetic control rats. While glimepiride produced similar antihyperglycemic effect but the effect on albuminuria, oxidative stress markers and cytokine levels were less significant as compared to VA (100 mg/kg). Conclusions In conclusion, VA exhibited nephroprotective effect through amelioration of kidney dysfunction and damage in diabetic rats. The observed nephroprotective effect of VA may be ascribed to inhibition of hyperglycemia induced oxido-inflammatory stress and necroptosis of renal tissue possibly due to its antihyperglycemic, antioxidant and anti-inflammatory actions.
Collapse
|
42
|
Elekofehinti OO, Oyedokun VO, Iwaloye O, Lawal AO, Ejelonu OC. Momordica charantia silver nanoparticles modulate S OCS/JAK/STAT and P13K/Akt/PTEN signalling pathways in the kidney of streptozotocin-induced diabetic rats. J Diabetes Metab Disord 2021; 20:245-260. [PMID: 34178835 DOI: 10.1007/s40200-021-00739-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 01/10/2021] [Indexed: 12/23/2022]
Abstract
Objectives Diabetes nephropathy (DN) is one of the complications of diabetes mellitus (DM) marked by gradual progressive loss of renal function. SOCS/JAK/STAT and PI3K/Akt/PTEN signalling pathways are among the chain of interactions implicated in the onset, progression and pathology of DN. Momordica charantia (bitter melon) is often used in folk medicine as therapy for DM due to its hypoglycemic properties. This study was designed to evaluate M. charantia silver nanoparticles' therapeutic effect on DN-induced by streptozotocin (STZ) in Wistar rats. Methods The M. charantia nanoparticles used was synthesized using the filtrate from the plant methanolic extract added to 1 mM concentration of aqueous silver nitrate. DM was induced in Wistar rats by intraperitoneal injection of STZ (65 mg/kg). The animals' treatment groups were divided into; Diabetic control (65 mg/kg STZ), Control, and groups treated with silver nitrate (10 mg/kg), M. charantia nanoparticles (50 mg/kg), metformin (100 mg/kg), and plant extract (100 mg/kg). Treatment was terminated after 11 days. RT-PCR determined renal mRNA expression of Akt, PI3k, PTEN, TGF-β, JAK2, STAT3, STAT5, SOCS3, SOCS4 and glucokinase (GCK). Consequently, characterized compounds from M. charantia identified from literatures were docked with PI3K, JAK2 and TGF-β and STAT3 to retrieve potential hits. Results Oral administration of M. charantia nanoparticles (50 mg/kg) to STZ-induced diabetic untreated rats significantly ((p < 0.05) down-regulated the mRNA expression of Akt, PI3k, TGF-β, JAK2, STAT3 and upregulated the mRNA expression of PTEN, SOCS3 and SOCS4, thus establishing the role of M. charantia nanoparticles in alleviating DN in diabetic rats. Additionally, there was a significant up-regulation of glucose metabolizing gene (glucokinase) upon administering M. charantia nanoparticles. Molecular docking results showed 12 compounds from bitter melon with docking score ranging from -6.114 kcal/mol to -8.221 kcal/mol that are likely to exert anti-diabetic properties. Conclusion Observation drawn from this study suggests that M. charantia nanoparticles ameliorate DN through regulation of SOCS/JAK/STAT and PI3K/Akt/PTEN signalling pathways.
Collapse
Affiliation(s)
- Olusola Olalekan Elekofehinti
- Bioinformatics and Molecular Biology Unit, Department of Biochemistry, Federal University of Technology Akure, Akure, Ondo State Nigeria
| | - Victor Oluwatoyin Oyedokun
- Bioinformatics and Molecular Biology Unit, Department of Biochemistry, Federal University of Technology Akure, Akure, Ondo State Nigeria
| | - Opeyemi Iwaloye
- Bioinformatics and Molecular Biology Unit, Department of Biochemistry, Federal University of Technology Akure, Akure, Ondo State Nigeria
| | - Akeem Olalekan Lawal
- Bioinformatics and Molecular Biology Unit, Department of Biochemistry, Federal University of Technology Akure, Akure, Ondo State Nigeria
| | - Oluwamodupe Cecilia Ejelonu
- Biochemistry Programme, Department of Chemical Sciences, School of Sciences, Olusegun Agagu University of Science and Technology, Okitipupa, Ondo State Nigeria
| |
Collapse
|
43
|
Novel Organic Mineral Complex Prevents High-Fat Diet-Induced Changes in the Gut and Liver of Male Sprague-Dawley Rats. J Nutr Metab 2021; 2020:8846401. [PMID: 33414960 PMCID: PMC7768589 DOI: 10.1155/2020/8846401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 12/02/2020] [Accepted: 12/08/2020] [Indexed: 12/31/2022] Open
Abstract
Diet-induced obesity and metabolic syndrome are associated with the onset of gastrointestinal diseases, such as hepatic steatosis and gut inflammation. Prior research shows that a proprietary soil-derived organic mineral complex (OMC) prevents hyperglycemia, endotoxemia, and liver injury in rats fed a high-fat diet (HFD) for 10 weeks. The aim of this study was to further examine the effects of OMC on the liver and gastrointestinal health of these rats. Six-week-old male Sprague-Dawley rats (n = 36) were divided into two dietary groups: Chow or HFD fed for 10 weeks. Animals were further divided (n = 6/group) and administered 0, 0.6, or 3.0 mg/mL OMC in their drinking water. The 10-week HFD resulted in significant liver fat accumulation. Both OMC doses prevented hepatic increases in the glycation end product Nε-(carboxymethyl)lysine (CML) induced by HFD (p < 0.05). Low-dose OMC was associated with higher expression of occludin in the small intestine of rats fed either diet (two-way ANOVA, p < 0.042). Linear discriminant analysis (LDA) effect size (LEfSe) indicated significant differences in fecal microbial composition of untreated HFD-fed rats in comparison to untreated Chow rats at 10 weeks (LDA score > 2.0 : 18). After 10 weeks, untreated HFD-fed rats were also more abundant in bacteria associated with obesity and metabolic disease in comparison to corresponding week 0 samples (LDA score > 2.0 : 31), 10-week untreated Chow (LDA > 2.0 : 18), or 10-week OMC-treated HFD-fed rats (0.6 mg/mL; LDA > 2.0 : 80, 3.0 mg/mL; LDA > 2.0 : 8). Low-dose OMC prevented the HFD-induced increase in the Firmicutes-to-Bacteroidetes (F/B) ratio (p < 0.0416). Study animals treated with OMC exhibited no significant changes in the gut microbiota at week 10, although gut inflammatory biomarkers were not significantly altered by diet or OMC treatment. These results indicate that OMC supplementation ameliorates glycosylation reactions and modifies HFD-induced alterations in the intestinal microbiota.
Collapse
|
44
|
Lee JH, Zhu J. Analyses of short-chain fatty acids and exhaled breath volatiles in dietary intervention trials for metabolic diseases. Exp Biol Med (Maywood) 2020; 246:778-789. [PMID: 33327781 DOI: 10.1177/1535370220979952] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
As an alternative to pharmacological treatment to diseases, lifestyle interventions, such as dietary changes and physical activities, can help maintain healthy metabolic conditions. Recently, the emerging analyses of volatile organic compounds (VOCs) from breath and short-chain fatty acids (SCFAs) from plasma/feces have been considered as useful tools for the diagnosis and mechanistic understanding of metabolic diseases. Furthermore, diet-induced changes of SCFAs in individuals with diagnosed metabolic abnormalities have been correlated with the composition changes of the gut microbiome. More interestingly, the analysis of exhaled breath (breathomics) has gained attention as a useful technique to measure the human VOC profile altered as a result of dietary interventions. In this mini-review, we examined recent clinical trials that performed promising dietary interventions, SCFAs analysis in plasma/feces, and VOC profile analysis in exhaling breath to understand the relationship between dietary intervention and metabolic health.
Collapse
Affiliation(s)
- Jisun Hj Lee
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA.,James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Jiangjiang Zhu
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA.,James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
45
|
Nacer W, Baba Ahmed FZ, Merzouk H, Benyagoub O, Bouanane S. Evaluation of the anti-inflammatory and antioxidant effects of the microalgae Nannochloropsis gaditana in streptozotocin-induced diabetic rats. J Diabetes Metab Disord 2020; 19:1483-1490. [PMID: 33553035 PMCID: PMC7843831 DOI: 10.1007/s40200-020-00681-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 10/28/2020] [Indexed: 12/17/2022]
Abstract
PURPOSE This study aims to evaluate the anti-inflammatory and antioxidant effects of N. gaditana on streptozotocin (STZ)-induced diabetes mellitus in Wistar rats. METHODS Diabetes was induced in male Wistar rats by single intraperitoneal injection of STZ (45 mg/kg). Male rats were fed on control diet supplemented or not with N. gaditana (10%) for a period of 2 months. At the end of the experiment, biochemical parameters and oxidant/antioxidant markers in liver and pancreas tissues, as well as mitochondria isolated from liver of rats, were determined. RESULTS It was notice that levels of glucose, glycated hemoglobin (HbA1c), lipid profile, kidney functions and liver enzymes in addition to markers of the inflammatory reactions interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) increased significantly (P < 0.05) in diabetic rats. Moreover, undesirable alterations of oxidative stress markers of tissue and mitochondria isolated from the liver were noted in these rats. N. gaditana supplementation was shown effective in lowering the levels of glucose, HbA1c and improving the renal and hepatic function and also in attenuating the oxidative stress and inflammation in diabetic rats. CONCLUSION N. gaditana possesses antioxidant properties that might have beneficial effect in treatment of diabetes.
Collapse
Affiliation(s)
- Wassila Nacer
- Laboratory of Physiology, Physiopathology and Biochemistry of Nutrition, Department of Biology, Faculty of Natural and Life Sciences, Earth and Universe, University Abou-Bekr Belkaïd, 13000 Tlemcen, Algeria
| | - Fatima Zohra Baba Ahmed
- Laboratory of Physiology, Physiopathology and Biochemistry of Nutrition, Department of Biology, Faculty of Natural and Life Sciences, Earth and Universe, University Abou-Bekr Belkaïd, 13000 Tlemcen, Algeria
| | - Hafida Merzouk
- Laboratory of Physiology, Physiopathology and Biochemistry of Nutrition, Department of Biology, Faculty of Natural and Life Sciences, Earth and Universe, University Abou-Bekr Belkaïd, 13000 Tlemcen, Algeria
| | - Ouahiba Benyagoub
- Laboratory of Physiology, Physiopathology and Biochemistry of Nutrition, Department of Biology, Faculty of Natural and Life Sciences, Earth and Universe, University Abou-Bekr Belkaïd, 13000 Tlemcen, Algeria
| | - Samira Bouanane
- Laboratory of Physiology, Physiopathology and Biochemistry of Nutrition, Department of Biology, Faculty of Natural and Life Sciences, Earth and Universe, University Abou-Bekr Belkaïd, 13000 Tlemcen, Algeria
| |
Collapse
|
46
|
Ferrante C, Chiavaroli A, Angelini P, Venanzoni R, Angeles Flores G, Brunetti L, Petrucci M, Politi M, Menghini L, Leone S, Recinella L, Zengin G, Ak G, Di Mascio M, Bacchin F, Orlando G. Phenolic Content and Antimicrobial and Anti-Inflammatory Effects of Solidago virga-aurea, Phyllanthus niruri, Epilobium angustifolium, Peumus boldus, and Ononis spinosa Extracts. Antibiotics (Basel) 2020; 9:antibiotics9110783. [PMID: 33172081 PMCID: PMC7694769 DOI: 10.3390/antibiotics9110783] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/30/2020] [Accepted: 11/04/2020] [Indexed: 12/11/2022] Open
Abstract
Prostatitis is an inflammatory condition that is related to multiple infectious agents, including bacteria and fungi. Traditional herbal extracts proved efficacious in controlling clinical symptoms associated with prostatitis. In this context, the aim of the present study was to explore the efficacy of extracts from Solidago virga-aurea, Ononis spinosa, Peumus boldus, Epilobium angustifolium, and Phyllanthus niruri against bacterial (Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Bacillus cereus) and fungi strains (Candida albicans; C. tropicalis) involved in prostatitis. Additionally, anti-mycotic effects were tested against multiple species of dermatophytes (Trichophyton rubrum, T. tonsurans, T. erinacei, Arthroderma crocatum, A. quadrifidum, A. gypseum, A. currey, and A. insingulare). Antioxidant effects were also evaluated in isolated rat prostates challenged with lipopolysaccharide (LPS), and phytochemical analyses were conducted to identify and quantify selected phenolic compounds, in the extracts. Finally, a bioinformatics analysis was conducted to predict putative human and microbial enzymes targeted by extracts’ phytocompounds and underlying the observed bio-pharmacological effects. The phytochemical analysis highlighted that rutin levels could be crucial for explaining the highest antibacterial activity of P. boldus extract, especially against E. coli and B. cereus. On the other hand, in the E. angustifolium extract, catechin concentration could partially explain the highest efficacy of this extract in reducing lipid peroxidation, in isolated rat prostates stimulated with LPS. Concluding, the results of the present study showed moderate antimicrobial and anti-inflammatory effects induced by water extracts of S. virga-aurea, P. boldus, E. angustifolium, P. niruri, and O. spinosa that could be related, at least partially, to the phenolic composition of the phytocomplex.
Collapse
Affiliation(s)
- Claudio Ferrante
- Department of Pharmacy, Università degli Studi “Gabriele d’Annunzio”, via dei Vestini 31, 66100 Chieti, Italy; (C.F.); (A.C.); (L.B.); (M.P.); (L.M.); (S.L.); (L.R.); (G.O.)
| | - Annalisa Chiavaroli
- Department of Pharmacy, Università degli Studi “Gabriele d’Annunzio”, via dei Vestini 31, 66100 Chieti, Italy; (C.F.); (A.C.); (L.B.); (M.P.); (L.M.); (S.L.); (L.R.); (G.O.)
| | - Paola Angelini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06100 Perugia, Italy; (R.V.); (G.A.F.)
- Correspondence: (P.A.); (G.Z.)
| | - Roberto Venanzoni
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06100 Perugia, Italy; (R.V.); (G.A.F.)
| | - Giancarlo Angeles Flores
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06100 Perugia, Italy; (R.V.); (G.A.F.)
| | - Luigi Brunetti
- Department of Pharmacy, Università degli Studi “Gabriele d’Annunzio”, via dei Vestini 31, 66100 Chieti, Italy; (C.F.); (A.C.); (L.B.); (M.P.); (L.M.); (S.L.); (L.R.); (G.O.)
| | | | - Matteo Politi
- Department of Pharmacy, Università degli Studi “Gabriele d’Annunzio”, via dei Vestini 31, 66100 Chieti, Italy; (C.F.); (A.C.); (L.B.); (M.P.); (L.M.); (S.L.); (L.R.); (G.O.)
| | - Luigi Menghini
- Department of Pharmacy, Università degli Studi “Gabriele d’Annunzio”, via dei Vestini 31, 66100 Chieti, Italy; (C.F.); (A.C.); (L.B.); (M.P.); (L.M.); (S.L.); (L.R.); (G.O.)
| | - Sheila Leone
- Department of Pharmacy, Università degli Studi “Gabriele d’Annunzio”, via dei Vestini 31, 66100 Chieti, Italy; (C.F.); (A.C.); (L.B.); (M.P.); (L.M.); (S.L.); (L.R.); (G.O.)
| | - Lucia Recinella
- Department of Pharmacy, Università degli Studi “Gabriele d’Annunzio”, via dei Vestini 31, 66100 Chieti, Italy; (C.F.); (A.C.); (L.B.); (M.P.); (L.M.); (S.L.); (L.R.); (G.O.)
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk Universtiy, Campus, Konya, 42130 Konya, Turkey;
- Correspondence: (P.A.); (G.Z.)
| | - Gunes Ak
- Department of Biology, Science Faculty, Selcuk Universtiy, Campus, Konya, 42130 Konya, Turkey;
| | - Massimo Di Mascio
- Veridia Italia Srl, via Raiale 285, 65100 Pescara, Italy; (M.D.M.); (F.B.)
| | - Francesco Bacchin
- Veridia Italia Srl, via Raiale 285, 65100 Pescara, Italy; (M.D.M.); (F.B.)
| | - Giustino Orlando
- Department of Pharmacy, Università degli Studi “Gabriele d’Annunzio”, via dei Vestini 31, 66100 Chieti, Italy; (C.F.); (A.C.); (L.B.); (M.P.); (L.M.); (S.L.); (L.R.); (G.O.)
| |
Collapse
|
47
|
Jung DS, Son YJ, Shin JM, Won HJ, Le TT, Jung SH, Lee CH, Nho CW. Gymnaster Koraiensis Extract Alleviated Metabolic Syndrome Symptoms and Stimulated UCP1-Independent Energy Consumption via AMPK Activation in White Adipose Tissue. Mol Nutr Food Res 2020; 64:e2000490. [PMID: 33022138 DOI: 10.1002/mnfr.202000490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/14/2020] [Indexed: 12/29/2022]
Abstract
SCOPE Metabolic syndrome and obesity are rising worldwide concerns that are accompanied by adverse health consequences. Here, it is hypothesized that the ethanol extract from Gymnaster koraiensis (GK), an edible Korean plant known for its anti-cancer and hepatoprotective properties, could attenuate metabolic syndrome-related symptoms in high-fat dietary-induced obese (DIO) mice. METHODS AND RESULTS Administration of 100 mg kg-1 GK extract to DIO mice effectively reduces body and white adipose tissue (WAT) weight. It also reduces cardiovascular disease risk and improves insulin resistance by lowering the fasting blood glucose levels and mitigating oxidative stress and inflammation. Moreover, supplementation with GK causes elevated energy expenditure in WAT by increasing the mitochondrial oxidative capacity and lipid catabolism through upregulated adenosine monophosphate-activated protein kinase (AMPK) signaling. Orlistat is used as a positive control drug due to its widespread use in previous studies. It is found that GK extract causes weight loss, similar to Orlistat, and it additionally shows unique functions, such as upregulation of energy consumption in WAT. CONCLUSION GK extract treatment prominently reduces obesity and its associated metabolic complications, such as hyperlipidemia, hyperglycemia, and insulin resistance. Hence, It can be used as a promising multi-target functional food that can improve metabolic syndrome-related symptoms.
Collapse
Affiliation(s)
- Da Seul Jung
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung, Gangwon-do, 25451, Republic of Korea.,Department of Biology, College of Natural Sciences, Gangneung-Wonju National University, Gangneung, Gangwon-do, 25457, Republic of Korea
| | - Yang-Ju Son
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung, Gangwon-do, 25451, Republic of Korea
| | - Ji Min Shin
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung, Gangwon-do, 25451, Republic of Korea.,Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Hyo Jun Won
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung, Gangwon-do, 25451, Republic of Korea.,Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Tam Thi Le
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Daejeon, 34113, Republic of Korea.,Natural Product Research Center, Korea Institute of Science and Technology (KIST), Gangneung, Gangwon-do, 25451, Republic of Korea
| | - Sang Hoon Jung
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Daejeon, 34113, Republic of Korea.,Natural Product Research Center, Korea Institute of Science and Technology (KIST), Gangneung, Gangwon-do, 25451, Republic of Korea
| | - Chang-Ho Lee
- Department of Biology, College of Natural Sciences, Gangneung-Wonju National University, Gangneung, Gangwon-do, 25457, Republic of Korea
| | - Chu Won Nho
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung, Gangwon-do, 25451, Republic of Korea.,Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| |
Collapse
|
48
|
Abdel-Wahab AHA, Effat H, Mahrous EA, Ali MA, Al-Shafie TA. A Licorice Roots Extract Induces Apoptosis and Cell Cycle Arrest and Improves Metabolism via Regulating MiRNAs in Liver Cancer Cells. Nutr Cancer 2020; 73:1047-1058. [PMID: 32578448 DOI: 10.1080/01635581.2020.1783329] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Targeting altered metabolism in cancer provides a promising preventive and therapeutic approach. Natural products interplay between gene expression and metabolism either by targeting altered metabolic enzymes and/or affecting the regulating miRNAs. Licorice is a widely known product used as flavoring agent. Glycyrrhizin and other metabolites were reported to exert several metabolic benefits. Here, we investigated the effect of licorice roots extract on some metabolic pathways and their regulating miRNAs in hepatocellular carcinoma cells. Our data showed various beneficial effects of licorice roots extract including induction of apoptosis and cell cycle arrest. Second, upregulating tumor suppressor miRNAs; let7a-3p, miR-34c-5p, miR-122-5p, miR-126-3p, miR195-5p, miR-199a-5p, miR-206, and miR-326-5p. Third, inhibiting HIF1α, PI3K and C-Myc and activating AMPK and p53. Fourth, inhibiting enzymes of glycolysis; HK-2, LDH-A and PK-M2; pentose phosphate pathway; G6PD and glutaminolysis; glutaminase. However, such an extract upregulated oncogenic miRNAs; miR-21, miR-221, and miR-222. Although the present data highlights the ability of licorice roots extract to enhance apoptosis and cell cycle arrest and correct altered metabolism, it warns against its unfavorable effects, hence, its use for prevention and therapy should proceed with caution. Further experiments are required to investigate whether a specific bioactive ingredient is responsible for upregulating the oncogenic miRNAs.
Collapse
Affiliation(s)
| | - Heba Effat
- Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Engy A Mahrous
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mennatallah A Ali
- Pharmacology and Therapeutics Department, Faculty of Pharmacy and Drug Manufacturing, Pharos University in Alexandria, Alexandria, Egypt
| | - Tamer A Al-Shafie
- Biochemistry Department, Faculty of Dentistry, Pharos University in Alexandria, Alexandria, Egypt
| |
Collapse
|
49
|
Naseri R, Navabi SJ, Samimi Z, Mishra AP, Nigam M, Chandra H, Olatunde A, Tijjani H, Morais-Urano RP, Farzaei MH. Targeting Glycoproteins as a therapeutic strategy for diabetes mellitus and its complications. Daru 2020; 28:333-358. [PMID: 32006343 PMCID: PMC7095136 DOI: 10.1007/s40199-020-00327-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 01/10/2020] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVES Glycoproteins are organic compounds formed from proteins and carbohydrates, which are found in many parts of the living systems including the cell membranes. Furthermore, impaired metabolism of glycoprotein components plays the main role in the pathogenesis of diabetes mellitus. The aim of this study is to investigate the influence of glycoprotein levels in the treatment of diabetes mellitus. METHODS All relevant papers in the English language were compiled by searching electronic databases, including Scopus, PubMed and Cochrane library. The keywords of glycoprotein, diabetes mellitus, glycan, glycosylation, and inhibitor were searched until January 2019. RESULTS Glycoproteins are pivotal elements in the regulation of cell proliferation, growth, maturation and signaling pathways. Moreover, they are involved in drug binding, drug transportation, efflux of chemicals and stability of therapeutic proteins. These functions, structure, composition, linkages, biosynthesis, significance and biological effects are discussed as related to their use as a therapeutic strategy for the treatment of diabetes mellitus and its complications. CONCLUSIONS The findings revealed several chemical and natural compounds have significant beneficial effects on glycoprotein metabolism. The comprehension of glycoprotein structure and functions are very essential and inevitable to enhance the knowledge of glycoengineering for glycoprotein-based therapeutics as may be required for the treatment of diabetes mellitus and its associated complications. Graphical abstract.
Collapse
Affiliation(s)
- Rozita Naseri
- Internal Medicine Department, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyed Jafar Navabi
- Internal Medicine Department, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zeinab Samimi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Abhay Prakash Mishra
- Department of Pharmaceutical Chemistry, Hemwati Nandan Bahuguna Garhwal (A Central) University, Srinagar Garhwal, Uttarakhand, 246174, India.
| | - Manisha Nigam
- Department of Biochemistry, Hemwati Nandan Bahuguna Garhwal University, Srinagar Garhwal, Uttarakhand, 246174, India
| | - Harish Chandra
- Department of Microbiology, Gurukul Kangri Vishwavidhyalya, Haridwar, Uttarakhand, 249404, India
| | - Ahmed Olatunde
- Department of Biochemistry, Abubakar Tafawa Balewa University, Bauchi, Nigeria
| | - Habibu Tijjani
- Natural Product Research Laboratory, Department of Biochemistry, Bauchi State University, Gadau, Nigeria
| | - Raquel P Morais-Urano
- Instituto de Química de São Carlos, Universidade de São Paulo, 13560-970, São Carlos, SP, Brasil
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
50
|
Belwal T, Bisht A, Devkota HP, Ullah H, Khan H, Pandey A, Bhatt ID, Echeverría J. Phytopharmacology and Clinical Updates of Berberis Species Against Diabetes and Other Metabolic Diseases. Front Pharmacol 2020; 11:41. [PMID: 32132921 PMCID: PMC7040237 DOI: 10.3389/fphar.2020.00041] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 01/14/2020] [Indexed: 02/05/2023] Open
Abstract
The incidences of diabetic mellitus and other metabolic diseases such as hypertension and hyperlipidemia are increasing worldwide; however, the current treatment is not able to control the rapidly increasing trend in diabetes mortality and morbidity. Studies related to the effectiveness of extracts and pure compounds obtained from plants have shown promising responses in preclinical and clinical studies related to these metabolic diseases. Plants belonging to the genus Berberis (Family: Berberidaceae) are widely distributed with nearly 550 species worldwide. Extracts and compounds obtained from Berberis species, especially Berberine alkaloid, showed effectiveness in the management of diabetes and other metabolic diseases. Various pharmacological experiments have been performed to evaluate the effects of Berberis extracts, berberine, and its natural and chemically synthesized derivatives against various cell and animal disease models with promising results. Various clinical trials conducted so far also showed preventive effects of Berberis extracts and berberine against metabolic diseases. The present review focuses on i) research updates on traditional uses, ii) phytopharmacology and clinical studies on Berberis species, and iii) active metabolites in the prevention and treatment of diabetes and other metabolic diseases with a detailed mechanism of action. Furthermore, the review critically analyzes current research gaps in the therapeutic use of Berberis species and berberine and provides future recommendations.
Collapse
Affiliation(s)
- Tarun Belwal
- Centre for Biodiversity Conservation and Management, G. B. Pant National Institute of Himalayan Environment and Sustainable Development (GBPNIHESD), Kosi-Katarmal, Almora, India
| | - Aarti Bisht
- Centre for Biodiversity Conservation and Management, G. B. Pant National Institute of Himalayan Environment and Sustainable Development (GBPNIHESD), Kosi-Katarmal, Almora, India
| | - Hari Prasad Devkota
- Department of Instrumental Analysis, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan.,Program for Leading Graduate Schools, Health Life Science: Interdisciplinary and Glocal Oriented (HIGO) Program, Kumamoto University, Kumamoto, Japan
| | - Hammad Ullah
- Department of Pharmacy, Abdul Wali Khan University, Mardan, Pakistan
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, Pakistan
| | - Aseesh Pandey
- Centre for Biodiversity Conservation and Management, G.B. Pant National Institute of Himalayan Environment and Sustainable Development, Sikkim Regional Centre, Pangthang, Gangtok, India
| | - Indra Dutt Bhatt
- Centre for Biodiversity Conservation and Management, G. B. Pant National Institute of Himalayan Environment and Sustainable Development (GBPNIHESD), Kosi-Katarmal, Almora, India
| | - Javier Echeverría
- Department of Environmental Sciences, Faculty of Chemistry and Biology, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|