1
|
Zheng J, Luo W, Kong C, Xie W, Chen X, Qiu J, Wang K, Wei H, Zhou Y. Impact of aerobic exercise on brain metabolism: Insights from spatial metabolomic analysis. Behav Brain Res 2025; 478:115339. [PMID: 39549874 DOI: 10.1016/j.bbr.2024.115339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 10/23/2024] [Accepted: 11/12/2024] [Indexed: 11/18/2024]
Abstract
BACKGROUND Exercise is acknowledged for its beneficial effects on brain health; however, the intricate underlying molecular mechanisms remain poorly understood. AIMS This study aimed to explore aerobic exercise-induced metabolic alterations in the brain. METHODS We conducted an eight-week treadmill running exercise program in two-month-old male C57/BL6J mice. Body weight, serum lipid, glucose levels, and spatial cognition were measured. Spatial metabolomic analysis was performed to compare the metabolomic profiles across different brain regions. Immunohistochemical methods were used to compare the expression of carnitine palmitoyltransferase 1c (CPT1c). RESULTS Exercise induced significant changes in the analysed metabolomic profiles. There were 904 differentially expressed metabolites (DEMs) detected in the whole brain section. Notable alterations in lipid profiles were observed, and among the 292 lipids detected, there were 74 (25.34 %), 85 (29.11 %), and 78 (26.71 %) lipids differentially expressed in the hippocampus, thalamus, and hypothalamus of the Exe group, respectively. Lipid metabolism related pathways and enzymes were also altered, with L-carnitine and CPT1c upregulated in the three regions (p<0.05), and epinephrine levels decreased in the hippocampus (p<0.05). Furthermore, the vitamin B6 metabolism pathway was altered in the hypothalamus. CONCLUSIONS This study highlighted the significant changes in lipid metabolism induced by involuntary exercise in the brains of young male mice. Exercise also altered epinephrine levels and the vitamin B12 metabolic pathway in specific brain regions, which indicated the multifaceted effects of exercise on the brain.
Collapse
Affiliation(s)
- Jiaping Zheng
- Department of Rehabilitation Medicine, School of Health, Fujian Medical University, Fuzhou, China
| | - Wei Luo
- Department of Rehabilitation Medicine, School of Health, Fujian Medical University, Fuzhou, China
| | - Chenghua Kong
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Wenhuo Xie
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Xiuyun Chen
- Department of Rehabilitation Medicine, School of Health, Fujian Medical University, Fuzhou, China
| | - Jiaxian Qiu
- Department of Rehabilitation Medicine, School of Health, Fujian Medical University, Fuzhou, China
| | - Kexin Wang
- Department of Rehabilitation Medicine, School of Health, Fujian Medical University, Fuzhou, China
| | - Hong Wei
- Cadre Healthcare Office, Fujian Provincial Hospital, Fuzhou, China.
| | - Yu Zhou
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
2
|
Perera N, De Blasio MJ, Febbraio MA. Harnessing the therapeutic potential of exercise in extracellular vesicle-based therapy in metabolic disease associated cardiovascular complications. Free Radic Biol Med 2025; 226:230-236. [PMID: 39549882 DOI: 10.1016/j.freeradbiomed.2024.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 10/10/2024] [Accepted: 11/13/2024] [Indexed: 11/18/2024]
Abstract
Cardiovascular disease (CVD) is a leading cause of mortality, affecting ∼18 million individuals each year. Obesity and type 2 diabetes mellitus in particular, both chronic metabolic disorders, are risk factors for CVD. The salutary effects of physical activity in preventing and ameliorating CVD have long been acknowledged, as it improves glucose and lipid homeostasis, alongside attenuating oxidative damage, increasing mitochondrial function, and ultimately improving cardiac function. Exercise serves as a catalyst for the secretion of extracellular vesicles (EVs), facilitating inter-tissue communication, by which tissues can deliver important signals from one tissue to another. In recent years, an increasing number of studies have focused on the cargo encapsulated within exercise-derived EVs, as well as the orchestration of inter-tissue crosstalk aimed at modulating metabolism and tissue function in CVDs. The precise mechanisms underpinning the cardioprotective properties of exercise-derived EVs, however, remains only partially elucidated. This review explores novel EV based therapeutic options in CVD and, in particular, EVs derived from models of exercise to alter metabolism and enhance cardiovascular outcomes.
Collapse
Affiliation(s)
- Nimna Perera
- Monash Institute of Pharmaceutical Sciences, Parkville, Melbourne, Australia
| | - Miles J De Blasio
- Monash Institute of Pharmaceutical Sciences, Parkville, Melbourne, Australia
| | - Mark A Febbraio
- Monash Institute of Pharmaceutical Sciences, Parkville, Melbourne, Australia.
| |
Collapse
|
3
|
Campbell MD, Djukovic D, Raftery D, Marcinek DJ. Age-related changes of skeletal muscle metabolic response to contraction are also sex-dependent. J Physiol 2025; 603:69-86. [PMID: 37742081 PMCID: PMC10959763 DOI: 10.1113/jp285124] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/08/2023] [Indexed: 09/25/2023] Open
Abstract
Mitochondria adapt to increased energy demands during muscle contraction by acutely altering metabolite fluxes and substrate oxidation. With age, an impaired mitochondrial metabolic response may contribute to reduced exercise tolerance and decreased skeletal muscle mass, specific force, increased overall fatty depositions in the skeletal muscle, frailty and depressed energy maintenance. We hypothesized that elevated energy stress in mitochondria with age alters the capacity of mitochondria to utilize different substrates following muscle contraction. To test this hypothesis, we used in vivo electrical stimulation to simulate high-intensity intervals (HII) or low intensity steady-state (LISS) exercise in young (5-7 months) and aged (27-29 months) male and female mice to characterize effects of age and sex on mitochondrial substrate utilization in skeletal muscle following contraction. Mitochondrial respiration using glutamate decreased in aged males following HII and glutamate oxidation was inhibited following HII in both the contracted and non-stimulated muscle of aged female muscle. Analyses of the muscle metabolome of female mice indicated that changes in metabolic pathways induced by HII and LISS contractions in young muscle are absent in aged muscle. To test improved mitochondrial function on substrate utilization following HII, we treated aged females with elamipretide (ELAM), a mitochondrially-targeted peptide shown to improve mitochondrial bioenergetics and restore redox status in aged muscle. ELAM removed inhibition of glutamate oxidation and showed increased metabolic pathway changes following HII, suggesting rescuing redox status and improving bioenergetic function in mitochondria from aged muscle increases glutamate utilization and enhances the metabolic response to muscle contraction in aged muscle. KEY POINTS: Acute local contraction of gastrocnemius can systemically alter mitochondrial respiration in non-stimulated muscle. Age-related changes in mitochondrial respiration using glutamate or palmitoyl carnitine following contraction are sex-dependent. Respiration using glutamate after high-intensity contraction is inhibited in aged female muscle. Metabolite level and pathway changes following muscle contraction decrease with age in female mice. Treatment with the mitochondrially-targeted peptide elamipretide can partially rescue metabolite response to muscle contraction.
Collapse
Affiliation(s)
| | - Danijel Djukovic
- Anesthesiology & Pain Medicine, University of Washington, Seattle, WA
| | - Daniel Raftery
- Anesthesiology & Pain Medicine, University of Washington, Seattle, WA
| | | |
Collapse
|
4
|
Malla S, Saha R. Pathway Thermodynamic Analysis Postulates Change in Glutamate Metabolism as a Key Factor in Modulating Immune Responses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.06.627255. [PMID: 39713476 PMCID: PMC11661115 DOI: 10.1101/2024.12.06.627255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Background Temperature, as seen during fever, plays a pivotal role in modulating immune responses and maintaining cellular homeostasis. Shifts in temperature influence the thermodynamic feasibility of metabolic reactions, with Gibbs free energy (ΔG) serving as a key indicator of the spontaneity of reactions under specific conditions. By altering ΔG in response to temperature changes across various metabolite concentrations and cell types, we can gain insights into the thermodynamic properties of metabolic pathways and identify critical factors involved in metabolism and immune function. Using Max-Min Driving Force (MDF) analysis, we can assess changes in ΔG by varying temperature and metabolite concentrations, allowing for a detailed examination of thermodynamic feasibility at both the pathway and individual reaction levels. Results In this study, MDF analysis is applied to measure the changes in the driving force of pathways and the ΔG of each reaction at normal human core temperature (310.15 K) and elevated temperatures (up to 315.15 K). Additionally, we explore how shifts in the thermodynamic feasibility of reactions under immune activation, compared to normal physiological conditions, highlight key metabolic intermediates-such as fructose-1,6-bisphosphate, glucose-6-phosphate, and several steps in glutamate metabolism-as important regulators of metabolic processes and immune responses. Conclusion The goal of this study is to underscore the value of thermodynamic parameters such as ΔG, concentration, and temperature in identifying potential therapeutic targets, with the aim of mitigating the detrimental effects of fever while preserving its beneficial aspects.
Collapse
|
5
|
MacGregor K, Ellefsen S, Pillon NJ, Hammarström D, Krook A. Sex differences in skeletal muscle metabolism in exercise and type 2 diabetes mellitus. Nat Rev Endocrinol 2024:10.1038/s41574-024-01058-9. [PMID: 39604583 DOI: 10.1038/s41574-024-01058-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/24/2024] [Indexed: 11/29/2024]
Abstract
This Review focuses on currently available literature describing sex differences in skeletal muscle metabolism in humans, as well as highlighting current research gaps within the field. These discussions serve as a call for action to address the current lack of sufficient sex-balanced studies in skeletal muscle research, and the resulting limitations in understanding sex-specific physiological and pathophysiological responses. Although the participation of women in studies has increased, parity between the sexes remains elusive, affecting the validity of conclusions drawn from studies with limited numbers of participants. Changes in skeletal muscle metabolism contribute to the development of metabolic disease (such as type 2 diabetes mellitus), and maintenance of skeletal muscle mass is a key component for health and the ability to maintain an independent life during ageing. Exercise is an important factor in maintaining skeletal muscle health and insulin sensitivity, and offers promise for both prevention and treatment of metabolic disease. With the increased realization of the promise of precision medicine comes the need to increase patient stratification and improve the understanding of responses in different populations. In this context, a better understanding of sex-dependent differences in skeletal muscle metabolism is essential.
Collapse
Affiliation(s)
- Kirstin MacGregor
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Stian Ellefsen
- Inland University of Applied Sciences, Lillehammer, Norway
| | - Nicolas J Pillon
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | | | - Anna Krook
- Inland University of Applied Sciences, Lillehammer, Norway.
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
6
|
Chai L, Cao Q, Liu K, Zhu R, Li H, Yu Y, Wang J, Niu R, Zhang D, Yang B, Ommati MM, Sun Z. Exercise Alleviates Fluoride-Induced Learning and Memory Impairment in Mice: Role of miR-206-3p and PREG. Biol Trace Elem Res 2024; 202:5126-5144. [PMID: 38244175 DOI: 10.1007/s12011-024-04068-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/12/2024] [Indexed: 01/22/2024]
Abstract
Fluorosis decreases the learning and memory ability in humans and animals, while exercise can reduce the risk of cognitive decline. However, the effect of exercise on learning and memory in fluoride-exposed mice is unclear. For this purpose, in this study, mice were randomly allotted into four groups (16 mice per group, half male and half female): control group (group C), fluoride group (group F, 100 mg/L sodium fluoride (NaF)), exercise group (group E, treadmill exercise), and E plus F group (group EF, treadmill exercise, and 100 mg/L NaF). During 6 months of exposure, exercise alleviated the NaF-induced decline in memory and learning. In addition, NaF induced injuries in mitochondria and myelin sheath ultrastructure and reduced the neurons number, while exercise restored them. Metabolomics results showed that phosphatidylethanolamine, pregnenolone (PREG), and lysophosphatidic acid (LysoPA) were altered among groups C, F, and EF. Combined with previous studies, it can be suggested that PREG might be a biomarker in response to exercise-relieving fluorine neurotoxicity. The miRNA sequencing results indicated that in the differently expressed miRNAs (DEmiRNAs), miR-206-3p, miR-96-5p, and miR-144-3p were shared in groups C, F, and EF. After the QRT-PCR validation and in vitro experiments, it was proved that miR-206-3p could reduce cell death and regulate AP-1 transcription factor subunit (JunD) and histone deacetylase 4 (HDAC4) to alleviate fluoride neurotoxicity. To sum up, the current study reveals that exercise could alleviate NaF-induced neurotoxicity by targeting miR-206-3p or PREG, which will contribute to revealing the pathogenesis and therapeutic method of fluoride neurotoxicity.
Collapse
Affiliation(s)
- Lei Chai
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, Shanxi, China
| | - Qiqi Cao
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, Shanxi, China
| | - Ke Liu
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, Shanxi, China
| | - Run Zhu
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, Shanxi, China
| | - Hao Li
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, Shanxi, China
| | - Yanghuan Yu
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, Shanxi, China
| | - Jixiang Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, Shanxi, China
| | - Ruiyan Niu
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, Shanxi, China
| | - Ding Zhang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, Shanxi, China
| | - Bo Yang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, Shanxi, China
| | - Mohammad Mehdi Ommati
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, Shanxi, China.
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Luoyang, 471000, Henan, China.
| | - Zilong Sun
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, Shanxi, China.
| |
Collapse
|
7
|
Chellappoo A. Postgenomic understandings of fatness and metabolism. HISTORY AND PHILOSOPHY OF THE LIFE SCIENCES 2024; 46:34. [PMID: 39476192 PMCID: PMC11525248 DOI: 10.1007/s40656-024-00630-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 08/26/2024] [Indexed: 11/02/2024]
Abstract
'Obesity' has, for decades, been a subject of intense scientific and public interest, and remains a key target for postgenomic science. I examine the emergence of determinism in research into 'obesity' in the postgenomic field of metabolomics. I argue that determinism appears in metabolomics research in two ways: firstly, fragmentation and narrow construal of the environment is evident in metabolomics studies on weight loss interventions, resulting in particular features of the environment (notably, dietary intake) having outsized influence while the wider social environment is neglected. Secondly, studies aiming to characterize the metabolic signature of 'obesity' are guided by a commitment to a deterministic connection between 'obesity' and dysfunction, leading to a neglect or distortion of metabolic heterogeneity across individuals regardless of body size.
Collapse
Affiliation(s)
- Azita Chellappoo
- The Open University, Walton Hall, Kents Hill, Milton Keynes, MK7 6AA, UK.
| |
Collapse
|
8
|
Hanaoka C, Pichika R, Dayanidhi S, Jayabalan P. Serum metabolomics after exercise in ambulatory individuals with cerebral palsy. Dev Med Child Neurol 2024. [PMID: 39431769 DOI: 10.1111/dmcn.16105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 07/31/2024] [Accepted: 08/20/2024] [Indexed: 10/22/2024]
Abstract
AIM To evaluate whether serum metabolomics differ between ambulatory individuals with cerebral palsy (CP) compared with individuals with typical development and whether functional capacity is associated with metabolite abundance. METHOD Thirty-eight adolescents and young adults were enrolled (CP: n = 19; typical development: n = 19). After functional capacity testing (10-meter walk, sit-to-stand, and peak knee flexion/extension torques), blood was drawn. Targeted serum metabolomics on hydrophilic metabolites were performed by high-performance liquid chromatography coupled with high-resolution and tandem mass spectrometry. Metabolite dimensionality reduction, pathway analysis, fold change, and t-tests evaluated changes in metabolite abundance. Associations were tested between functional measures and metabolite abundance. RESULTS Individuals with CP had a significant increase in the abundance of essential amino acids, catabolic products of protein metabolism, and tricarboxylic acid cycle substrates, such as valine, tryptophan, kynurenic acid, and pyruvate (p < 0.05). Importantly, the abundance of numerous metabolites was only highly associated with functional capacity in individuals with CP such that greater abundance was associated with greater capacity, but not in those with typical development. INTERPRETATION Our findings show clear increases in serum metabolites in individuals with CP, which are associated with functional capacity for movement. The altered metabolite profile measured after exercise might reflect increased energy production needed for movement. Appropriate nutritional intake during exercise might be needed given increased energy requirements.
Collapse
Affiliation(s)
- Chad Hanaoka
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Shirley Ryan AbilityLab, Chicago, IL, USA
| | - Rajeswari Pichika
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Shirley Ryan AbilityLab, Chicago, IL, USA
- Edward Hines VA Medical Center, Hines, IL, USA
| | - Sudarshan Dayanidhi
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Shirley Ryan AbilityLab, Chicago, IL, USA
| | - Prakash Jayabalan
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Shirley Ryan AbilityLab, Chicago, IL, USA
| |
Collapse
|
9
|
Muniz-Santos R, Bassini A, Falcão J, Prado E, Martin L, Chandran V, Jurisica I, Cameron LC. Sportomics Analyses of the Exercise-Induced Impact on Amino Acid Metabolism and Acute-Phase Protein Kinetics in Female Olympic Athletes. Nutrients 2024; 16:3538. [PMID: 39458532 PMCID: PMC11510449 DOI: 10.3390/nu16203538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/12/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Exercise can be used as a model to understand immunometabolism. Biological data on elite athletes are limited, especially for female athletes, including relevant data on acute-phase proteins and amino acid metabolism. METHODS We analyzed acute-phase proteins and amino acids collected at South American, Pan-American, and Olympic Games for 16 Olympic sports. We compared female and male elite athletes (447 vs. 990 samples) across four states (fasting, pre-exercise, post-exercise, and resting) to understand sex-specific immunometabolic responses in elite athletes. RESULTS Considering all states and sports, we found that elite female athletes exhibited higher concentrations of C-reactive protein, lipopolysaccharide-binding protein, myeloperoxidase, haptoglobin, and IGF1, with ratios ranging from 1.2 to 2.0 (p < 0.001). Women exhibited lower concentrations of most amino acids, except for glutamate and alanine. Although almost 30% lower in women, branched-chain amino acids (BCAAs) showed a similar pattern in all states (ρ ≥ 0.9; p < 0.001), while aromatic amino acids (AAAs) showed higher consumption during exercise in women. CONCLUSION We established sex dimorphism in elite athletes' metabolic and inflammatory responses during training and competition. Our data suggest that female athletes present a lower amino acid response towards central fatigue development than male athletes. Understanding these differences can lead to insights into sex-related immuno-metabolic responses in sports or other inflammatory conditions.
Collapse
Affiliation(s)
- Renan Muniz-Santos
- Lorraine Protein Biochemistry Group, Graduate Program in Neurology, Gaffrée e Guinle University Hospital, Rio de Janeiro 20270-004, Brazil; (R.M.-S.); (E.P.)
| | - Adriana Bassini
- Laboratory of Protein Biochemistry, The Federal University of the State of Rio de Janeiro, Rio de Janeiro 22290-250, Brazil;
| | - Jefferson Falcão
- Laboratory for Research in Physical Exercise and Metabolism, Federal University of Alagoas, Maceió 57072-970, Brazil;
- Graduate Program in Nutrition, Faculty of Nutrition, Federal University of Alagoas, Maceió 57072-970, Brazil
| | - Eduardo Prado
- Lorraine Protein Biochemistry Group, Graduate Program in Neurology, Gaffrée e Guinle University Hospital, Rio de Janeiro 20270-004, Brazil; (R.M.-S.); (E.P.)
- Laboratory for Research in Physical Exercise and Metabolism, Federal University of Alagoas, Maceió 57072-970, Brazil;
| | | | - Vinod Chandran
- Arthritis Program, Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, ON M5T 0S8, Canada;
- Division of Rheumatology, Department of Medicine, Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Igor Jurisica
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute and Data Science Discovery Centre for Chronic Diseases, Krembil Research Institute, University Health Network, Toronto, ON M5T 0S8, Canada;
- Departments of Medical Biophysics and Computer Science, Faculty of Dentistry, University of Toronto, Toronto, ON M5G 2L3, Canada
- Institute of Neuroimmunology, Slovak Academy of Sciences, 845 10 Bratislava, Slovakia
| | - L. C. Cameron
- Lorraine Protein Biochemistry Group, Graduate Program in Neurology, Gaffrée e Guinle University Hospital, Rio de Janeiro 20270-004, Brazil; (R.M.-S.); (E.P.)
- Arthritis Program, Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, ON M5T 0S8, Canada;
| |
Collapse
|
10
|
Ojanen T, Margolis L, van der Sanden K, Haman F, Kingma B, Simonelli G. Cold operational readiness in the military: from science to practice. BMJ Mil Health 2024:military-2024-002740. [PMID: 39353679 DOI: 10.1136/military-2024-002740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 09/12/2024] [Indexed: 10/04/2024]
Abstract
Cold weather operations are logistically difficult to orchestrate and extremely challenging for soldiers. Decades of research and empirical evidence indicate that humans are extremely vulnerable to cold and that individual responses are highly variable. In this context, it may be necessary to develop personalised strategies to sustain soldiers' performance and ensure overall mission success in the cold. Systematic cold weather training is essential for soldiers to best prepare to operate during, and recover from, cold weather operations. The purpose of this review is to highlight key aspects of cold weather training, including (1) human responses to cold, (2) nutrition, (3) sleep and (4) protective equipment requirements. Bringing science to practice to improve training principles can facilitate soldiers performing safely and effectively in the cold. Cold weather training prepares soldiers for operations in cold, harsh environments. However, decreases in physical, psychological and thermoregulatory performance have been reported following such training, which influences operational ability and increases the overall risk of injuries. When optimising the planning of field training exercises or operational missions, it is important to understand the soldiers' physical and cognitive performance capacity, as well as their capacity to cope and recover during and after the exercise or mission. Even though the body is fully recovered in terms of body composition or hormonal concentrations, physical or cognitive performance can still be unrecovered. When overlooked, symptoms of overtraining and risk of injury may increase, decreasing operational readiness.
Collapse
Affiliation(s)
- Tommi Ojanen
- Finnish Defence Research Agency, Järvenpää, Finland
| | | | - K van der Sanden
- Netherlands Organization of Applied Scientific Research, Soesterberg, The Netherlands
| | - F Haman
- University of Ottawa, Ottawa, Ontario, Canada
| | - B Kingma
- Netherlands Organization of Applied Scientific Research, Soesterberg, The Netherlands
| | - G Simonelli
- Department of Medicine, University of Montreal, Montreal, Quebec, Canada
- Centre d'études avancées en médecine du sommeil, Hôpital du Sacré-Coeur de Montréal, Montreal, Quebec, Canada
- Department of Neuroscience, University of Montreal, Montreal, Québec, Canada
| |
Collapse
|
11
|
Yang J, Yuan M, Zhang W. The major biogenic amine metabolites in mood disorders. Front Psychiatry 2024; 15:1460631. [PMID: 39381610 PMCID: PMC11458445 DOI: 10.3389/fpsyt.2024.1460631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 09/04/2024] [Indexed: 10/10/2024] Open
Abstract
Mood disorders, including major depressive disorder and bipolar disorder, have a profound impact on more than 300 million people worldwide. It has been demonstrated mood disorders were closely associated with deviations in biogenic amine metabolites, which are involved in numerous critical physiological processes. The peripheral and central alteration of biogenic amine metabolites in patients may be one of the potential pathogeneses of mood disorders. This review provides a concise overview of the latest research on biogenic amine metabolites in mood disorders, such as histamine, kynurenine, and creatine. Further studies need larger sample sizes and multi-center collaboration. Investigating the changes of biogenic amine metabolites in mood disorders can provide biological foundation for diagnosis, offer guidance for more potent treatments, and aid in elucidating the biological mechanisms underlying mood disorders.
Collapse
Affiliation(s)
- Jingyi Yang
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Minlan Yuan
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Zhang
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
- Big Data Center, Sichuan University, Chengdu, China
| |
Collapse
|
12
|
Karlsson Ø, Govus AD, McGawley K, Hanstock HG. Metabolic Phenotyping from Whole-Blood Responses to a Standardized Exercise Test May Discriminate for Physiological, Performance, and Illness Outcomes: A Pilot Study in Highly-Trained Cross-Country Skiers. SPORTS MEDICINE - OPEN 2024; 10:99. [PMID: 39289269 PMCID: PMC11408465 DOI: 10.1186/s40798-024-00770-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/08/2024] [Indexed: 09/19/2024]
Abstract
BACKGROUND This study used metabolic phenotyping to explore the responses of highly-trained cross-country skiers to a standardized exercise test, which was part of the athletes' routine testing, and determine whether metabolic phenotyping could discriminate specific physiological, performance, and illness characteristics. METHODS Twenty-three highly-trained cross-country skiers (10 women and 13 men) participated in this study. Capillary whole-blood samples were collected before (at rest) and 2.5 min after (post-exercise) a roller-ski treadmill test consisting of 5-6 × 4-min submaximal stages followed by a self-paced time trial (~ 3 min) and analyzed using mass spectrometry. Performance level was defined by International Ski Federation distance and sprint rankings. Illness data were collected prospectively for 33 weeks using the Oslo Sports Trauma Research Center Questionnaire on Health Problems. Orthogonal partial least squares-discriminant analyses (OPLS-DA) followed by enrichment analyses were used to identify metabolic phenotypes of athlete groups with specific physiological, performance, and illness characteristics. RESULTS Blood metabolite phenotypes were significantly different after the standardized exercise test compared to rest for metabolites involved in energy, purine, and nucleotide metabolism (all OPLS-DA p < 0.001). Acute changes in the metabolic phenotype from rest to post-exercise could discriminate athletes with: (1) higher vs. lower peak blood lactate concentrations; (2) superior vs. inferior performance levels in sprint skiing, and (3) ≥ 2 vs. ≤ 1 self-reported illness episodes in the 33-week study period (all p < 0.05). The most important metabolites contributing to the distinction of groups according to (1) post-exercise blood lactate concentrations, (2) sprint performance, and (3) illness frequency were: (1) inosine, hypoxanthine, and deoxycholic acid, (2) sorbitol, adenosine monophosphate, and 2-hydroxyleuroylcarnitine, and (3) glucose-6-phosphate, squalene, and deoxycholic acid, respectively. CONCLUSION Metabolic phenotyping discriminated between athlete groups with higher vs. lower post-exercise blood lactate concentrations, superior vs. inferior sprint skiing performance, and more vs. less self-reported illnesses. While the biological relevance of the identified biomarkers requires validation in future research, metabolic phenotyping shows promise as a tool for routine monitoring of highly-trained endurance athletes.
Collapse
Affiliation(s)
- Øyvind Karlsson
- Swedish Winter Sports Research Centre, Department of Health Sciences, Mid Sweden University, Studentplan 4, Östersund, 831 40, Sweden
| | - Andrew D Govus
- Department of Sport, Exercise, and Nutrition, La Trobe University, Melbourne, VIC, Australia
| | - Kerry McGawley
- Swedish Winter Sports Research Centre, Department of Health Sciences, Mid Sweden University, Studentplan 4, Östersund, 831 40, Sweden
| | - Helen G Hanstock
- Swedish Winter Sports Research Centre, Department of Health Sciences, Mid Sweden University, Studentplan 4, Östersund, 831 40, Sweden.
| |
Collapse
|
13
|
Ottosen RN, Seefeldt JM, Hansen J, Nielsen R, Møller N, Johannsen M, Poulsen TB. Preparation and Preclinical Characterization of a Simple Ester for Dual Exogenous Supply of Lactate and Beta-hydroxybutyrate. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19883-19890. [PMID: 39214666 PMCID: PMC11403612 DOI: 10.1021/acs.jafc.4c04849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Elevation of the plasma levels of (S)-lactate (Lac) and/or (R)-beta-hydroxybutyrate (BHB) occurs naturally in response to strenuous exercise and prolonged fasting, respectively, resulting in millimolar concentrations of these two metabolites. It is increasingly appreciated that Lac and BHB have wide-ranging beneficial physiological effects, suggesting that novel nutritional solutions, compatible with high-level and/or sustained consumption, which allow direct control of plasma levels of Lac and BHB, are of strong interest. In this study, we present a molecular hybrid between (S)-lactate and the BHB-precursor (R)-1,3-butanediol in the form of a simple ester referred to as LaKe. We show that LaKe can be readily prepared on the kilogram scale and undergoes rapid hydrolytic conversion under a variety of physiological conditions to release its two constituents. Oral ingestion of LaKe, in rats, resulted in dose-dependent elevation of plasma levels of Lac and BHB triggering expected physiological responses such as reduced lipolysis and elevation of the appetite-suppressing compound N-L-lactoyl-phenylalanine (Lac-Phe).
Collapse
Affiliation(s)
- Rasmus N Ottosen
- Department of Chemistry, Aarhus University, Langelandsgade 140, Aarhus C DK-8000, Denmark
| | - Jacob M Seefeldt
- Department of Cardiology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, Aarhus N DK-8200, Denmark
| | - Jakob Hansen
- Department of Forensic Medicine, Aarhus University, Palle Juul-Jensens Boulevard. 99, Aarhus N DK-8200, Denmark
| | - Roni Nielsen
- Department of Cardiology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, Aarhus N DK-8200, Denmark
| | - Niels Møller
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Palle Juul-Jensens Boulevard 11, Aarhus N DK-8200, Denmark
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 82, Aarhus N DK-8200, Denmark
| | - Mogens Johannsen
- Department of Forensic Medicine, Aarhus University, Palle Juul-Jensens Boulevard. 99, Aarhus N DK-8200, Denmark
| | - Thomas B Poulsen
- Department of Chemistry, Aarhus University, Langelandsgade 140, Aarhus C DK-8000, Denmark
| |
Collapse
|
14
|
Sampaio J, Pinto J, Pizarro A, Oliveira B, Moreira A, Padrão P, Moreira P, Guedes de Pinho P, Carvalho J, Barros R. Combined mediterranean diet-based sustainable healthy diet and multicomponent training intervention impact on plasma biomarkers and metabolome in older adults. Clin Nutr 2024; 43:2125-2135. [PMID: 39116619 DOI: 10.1016/j.clnu.2024.07.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/22/2024] [Accepted: 07/22/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND AND AIMS Healthy dietary patterns and exercise practices have been associated with improved metabolic and inflammatory profiles. However, studies regarding the combined effect of these interventions on plasma biomarkers and metabolome in older adults are sparser. The primary aim of this study was to investigate the impact of a combined Mediterranean Diet-based Sustainable Healthy Diet (SHD) and Multicomponent Training (MT) intervention on the plasma biomarkers and metabolome and how dietary intake and exercise could modulate these effects. METHODS SHD intervention included a weekly supply of Mediterranean Diet-based SHD food and four nutrition sessions involving a Mediterranean-Diet culinary workshop, and the exercise program included 50-min MT group sessions, held three times a week, lasting both 12 weeks. Plasma biomarkers were obtained through standard biochemical analysis. A proton (1H) nuclear magnetic resonance (NMR) spectroscopy-based metabolomics approach was used to study the metabolome in blood plasma. Repeated measures ANOVA were performed and adjusted for confounders. RESULTS SHD + MT intervention significantly decreased HDL-C and calcium. SHD + MT showed some changes in common with the SHD and MT group, namely a significant decrease in citrate levels (p = 0.009 for SHD + MT; p = 0.037 for SHDT) and an increase in pyruvate (p < 0.001 for MT and SHD + MT). The SHD + MT group also revealed specific changes in the levels of some amino acids (decrease in alanine, glutamine and lysine: p = 0.026; p < 0.001; p = 0.038, respectively). Increases in formate (p = 0.025) and unsaturated lipids (p = 0.011) are consistent with changes in energy and lipoprotein metabolism. CONCLUSION Our data show that a combined lifestyle intervention program, including a Mediterranean Diet-based SHD and MT, could modulate biomarker and metabolome and there seems to be a metabolic path associated to these interventions in older adults. Due to its wide-ranging relevance, it is pertinent to assess to what extent combined SHD and MT can contribute to better clinical profiles.
Collapse
Affiliation(s)
- Joana Sampaio
- Faculty of Sport (FADEUP), University of Porto, Porto, Portugal; Research Centre in Physical Activity, Health, and Leisure (CIAFEL), University of Porto, Porto, Portugal; Epidemiology Unit (EPIUnit), Public Health Institute (ISPUP), University of Porto, Porto, Portugal; Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal.
| | - Joana Pinto
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, University of Porto, Porto, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Andreia Pizarro
- Faculty of Sport (FADEUP), University of Porto, Porto, Portugal; Research Centre in Physical Activity, Health, and Leisure (CIAFEL), University of Porto, Porto, Portugal; Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal
| | - Bruno Oliveira
- Faculty of Nutrition and Food Sciences (FCNAUP), University of Porto, Porto, Portugal
| | - André Moreira
- Epidemiology Unit (EPIUnit), Public Health Institute (ISPUP), University of Porto, Porto, Portugal; Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal; Faculty of Medicine (FMUP), University of Porto, Porto, Portugal
| | - Patrícia Padrão
- Epidemiology Unit (EPIUnit), Public Health Institute (ISPUP), University of Porto, Porto, Portugal; Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal; Faculty of Nutrition and Food Sciences (FCNAUP), University of Porto, Porto, Portugal
| | - Pedro Moreira
- Research Centre in Physical Activity, Health, and Leisure (CIAFEL), University of Porto, Porto, Portugal; Epidemiology Unit (EPIUnit), Public Health Institute (ISPUP), University of Porto, Porto, Portugal; Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal; Faculty of Nutrition and Food Sciences (FCNAUP), University of Porto, Porto, Portugal
| | - Paula Guedes de Pinho
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, University of Porto, Porto, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Joana Carvalho
- Faculty of Sport (FADEUP), University of Porto, Porto, Portugal; Research Centre in Physical Activity, Health, and Leisure (CIAFEL), University of Porto, Porto, Portugal; Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal.
| | - Renata Barros
- Epidemiology Unit (EPIUnit), Public Health Institute (ISPUP), University of Porto, Porto, Portugal; Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal; Faculty of Nutrition and Food Sciences (FCNAUP), University of Porto, Porto, Portugal.
| |
Collapse
|
15
|
Zhou Y, Liu X, Qi Z, Huang C, Yang L, Lin D. Lactate-induced metabolic remodeling and myofiber type transitions via activation of the Ca 2+-NFATC1 signaling pathway. J Cell Physiol 2024; 239:e31290. [PMID: 38686599 DOI: 10.1002/jcp.31290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/09/2024] [Accepted: 04/18/2024] [Indexed: 05/02/2024]
Abstract
Lactate can serve as both an energy substrate and a signaling molecule, exerting diverse effects on skeletal muscle physiology. Due to the apparently positive effects, it would be interesting to consider it as a sports supplement. However, the mechanism behind these effects are yet to be comprehensively understood. In this study, we observed that lactate administration could improve the ability of antifatigue, and we further found that lactate upregulated the expression of myosin heavy chain (MYHC I) and MYHC IIa, while downregulating the expression of MYHC IIb. Besides, transcriptomics and metabolomics revealed significant changes in the metabolic profile of gastrocnemius muscle following lactate administration. Furthermore, lactate enhanced the activities of metabolic enzymes, including HK, LDHB, IDH, SDM, and MDH, and promoted the expression of lactate transport-related proteins MCT1 and CD147, thereby improving the transport and utilization of lactate in both vivo and vitro. More importantly, lactate administration increased cellular Ca2+ concentration and facilitated nuclear translocation of nuclear factor of activated T cells (NFATC1) in myotubes, whereas inhibition of NFATC1 significantly attenuated the effects of lactate treatment on NFATC1 nuclear translocation and MyHC expression. Our results elucidate the ability of lactate to induce metabolic remodeling in skeletal muscle and promote myofiber-type transitions by activating the Ca2+-NFATC1 signaling pathway. This study is useful in exploring the potential of lactate as a nutritional supplement for skeletal muscle adaptation and contributing to a mechanistic understanding of the central role of lactate in exercise physiology.
Collapse
Affiliation(s)
- Yu Zhou
- Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Xi Liu
- Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Zhen Qi
- Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Caihua Huang
- Research and Communication Center of Exercise and Health, Xiamen University of Technology, Xiamen, China
| | - Longhe Yang
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Donghai Lin
- Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| |
Collapse
|
16
|
Du B, Mu K, Sun M, Yu Z, Li L, Hou L, Wang Q, Sun J, Chen J, Zhang X, Zhang W. Biliary atresia and cholestasis plasma non-targeted metabolomics unravels perturbed metabolic pathways and unveils a diagnostic model for biliary atresia. Sci Rep 2024; 14:15796. [PMID: 38982277 PMCID: PMC11233669 DOI: 10.1038/s41598-024-66893-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/05/2024] [Indexed: 07/11/2024] Open
Abstract
The clinical diagnosis of biliary atresia (BA) poses challenges, particularly in distinguishing it from cholestasis (CS). Moreover, the prognosis for BA is unfavorable and there is a dearth of effective non-invasive diagnostic models for detection. Therefore, the aim of this study is to elucidate the metabolic disparities among children with BA, CS, and normal controls (NC) without any hepatic abnormalities through comprehensive metabolomics analysis. Additionally, our objective is to develop an advanced diagnostic model that enables identification of BA. The plasma samples from 90 children with BA, 48 children with CS, and 47 NC without any liver abnormalities children were subjected to metabolomics analysis, revealing significant differences in metabolite profiles among the 3 groups, particularly between BA and CS. A total of 238 differential metabolites were identified in the positive mode, while 89 differential metabolites were detected in the negative mode. Enrichment analysis revealed 10 distinct metabolic pathways that differed, such as lysine degradation, bile acid biosynthesis. A total of 18 biomarkers were identified through biomarker analysis, and in combination with the exploration of 3 additional biomarkers (LysoPC(18:2(9Z,12Z)), PC (22:5(7Z,10Z,13Z,16Z,19Z)/14:0), and Biliverdin-IX-α), a diagnostic model for BA was constructed using logistic regression analysis. The resulting ROC area under the curve was determined to be 0.968. This study presents an innovative and pioneering approach that utilizes metabolomics analysis to develop a diagnostic model for BA, thereby reducing the need for unnecessary invasive examinations and contributing to advancements in diagnosis and prognosis for patients with BA.
Collapse
Affiliation(s)
- Bang Du
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450018, China
| | - Kai Mu
- Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China
| | - Meng Sun
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450018, China
| | - Zhidan Yu
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450018, China
| | - Lifeng Li
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450018, China
| | - Ligong Hou
- Henan International Joint Laboratory for Prevention and Treatment of Pediatric Disease, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450018, China
| | - Qionglin Wang
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450018, China
| | - Jushan Sun
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450018, China.
| | - Jinhua Chen
- Department of Pharmacy, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, 450008, China.
| | - Xianwei Zhang
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450018, China.
- Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China.
| | - Wancun Zhang
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450018, China.
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450018, China.
- Henan International Joint Laboratory for Prevention and Treatment of Pediatric Disease, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450018, China.
| |
Collapse
|
17
|
Daniels M, Margolis LM, Rood JC, Lieberman HR, Pasiakos SM, Karl JP. Comparative analysis of circulating metabolomic profiles identifies shared metabolic alterations across distinct multistressor military training exercises. Physiol Genomics 2024; 56:457-468. [PMID: 38738316 PMCID: PMC11368567 DOI: 10.1152/physiolgenomics.00008.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/26/2024] [Accepted: 05/03/2024] [Indexed: 05/14/2024] Open
Abstract
Military training provides insight into metabolic responses under unique physiological demands that can be comprehensively characterized by global metabolomic profiling to identify potential strategies for improving performance. This study identified shared changes in metabolomic profiles across three distinct military training exercises, varying in magnitude and type of stress. Blood samples collected before and after three real or simulated military training exercises were analyzed using the same untargeted metabolomic profiling platform. Exercises included a 2-wk survival training course (ST, n = 36), a 4-day cross-country ski march arctic training (AT, n = 24), and a 28-day controlled diet- and exercise-induced energy deficit (CED, n = 26). Log2-fold changes of greater than ±1 in 191, 121, and 64 metabolites were identified in the ST, AT, and CED datasets, respectively. Most metabolite changes were within the lipid (57-63%) and amino acid metabolism (18-19%) pathways and changes in 87 were shared across studies. The largest and most consistent increases in shared metabolites were found in the acylcarnitine, fatty acid, ketone, and glutathione metabolism pathways, whereas the largest decreases were in the diacylglycerol and urea cycle metabolism pathways. Multiple shared metabolites were consistently correlated with biomarkers of inflammation, tissue damage, and anabolic hormones across studies. These three studies of real and simulated military training revealed overlapping alterations in metabolomic profiles despite differences in environment and the stressors involved. Consistent changes in metabolites related to lipid metabolism, ketogenesis, and oxidative stress suggest a potential common metabolomic signature associated with inflammation, tissue damage, and suppression of anabolic signaling that may characterize the unique physiological demands of military training.NEW & NOTEWORTHY The extent to which metabolomic responses are shared across diverse military training environments is unknown. Global metabolomic profiling across three distinct military training exercises identified shared metabolic responses with the largest changes observed for metabolites related to fatty acids, acylcarnitines, ketone metabolism, and oxidative stress. These changes also correlated with alterations in markers of tissue damage, inflammation, and anabolic signaling and comprise a potential common metabolomic signature underlying the unique physiological demands of military training.
Collapse
Affiliation(s)
- Michael Daniels
- Military Nutrition Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts, United States
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, United States
| | - Lee M Margolis
- Military Nutrition Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts, United States
| | - Jennifer C Rood
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, United States
| | - Harris R Lieberman
- Military Nutrition Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts, United States
| | - Stefan M Pasiakos
- Military Nutrition Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts, United States
- Office of Dietary Supplements, National Institutes of Health, Bethesda, Maryland, United States
| | - J Philip Karl
- Military Nutrition Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts, United States
| |
Collapse
|
18
|
Owens DJ, Bennett S. An exercise physiologist's guide to metabolomics. Exp Physiol 2024; 109:1066-1079. [PMID: 38358958 PMCID: PMC11215473 DOI: 10.1113/ep091059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 01/25/2024] [Indexed: 02/17/2024]
Abstract
The field of exercise physiology has undergone significant technological advancements since the pioneering works of exercise physiologists in the early to mid-20th century. Historically, the ability to detect metabolites in biofluids from exercising participants was limited to single-metabolite analyses. However, the rise of metabolomics, a discipline focused on the comprehensive analysis of metabolites within a biological system, has facilitated a more intricate understanding of metabolic pathways and networks in exercise. This review explores some of the pivotal technological and bioinformatic advancements that have propelled metabolomics to the forefront of exercise physiology research. Metabolomics offers a unique 'fingerprint' of cellular activity, offering a broader spectrum than traditional single-metabolite assays. Techniques, including mass spectrometry and nuclear magnetic resonance spectroscopy, have significantly improved the speed and sensitivity of metabolite analysis. Nonetheless, challenges persist, including study design and data interpretation issues. This review aims to serve as a guide for exercise physiologists to facilitate better research design, data analysis and interpretation within metabolomics. The potential of metabolomics in bridging the gap between genotype and phenotype is emphasised, underscoring the critical importance of careful study design and the selection of appropriate metabolomics techniques. Furthermore, the paper highlights the need to deeply understand the broader scientific context to discern meaningful metabolic changes. The emerging field of fluxomics, which seeks to quantify metabolic reaction rates, is also introduced as a promising avenue for future research.
Collapse
Affiliation(s)
- Daniel J. Owens
- Research Institute of Sport and Exercise Science (RISES)Liverpool John Moores UniversityLiverpoolUK
| | - Samuel Bennett
- Center for Biological Clocks Research, Department of BiologyTexas A&M UniversityCollege StationTexasUSA
| |
Collapse
|
19
|
Walzik D, Wences Chirino TY, Zimmer P, Joisten N. Molecular insights of exercise therapy in disease prevention and treatment. Signal Transduct Target Ther 2024; 9:138. [PMID: 38806473 PMCID: PMC11133400 DOI: 10.1038/s41392-024-01841-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 05/30/2024] Open
Abstract
Despite substantial evidence emphasizing the pleiotropic benefits of exercise for the prevention and treatment of various diseases, the underlying biological mechanisms have not been fully elucidated. Several exercise benefits have been attributed to signaling molecules that are released in response to exercise by different tissues such as skeletal muscle, cardiac muscle, adipose, and liver tissue. These signaling molecules, which are collectively termed exerkines, form a heterogenous group of bioactive substances, mediating inter-organ crosstalk as well as structural and functional tissue adaption. Numerous scientific endeavors have focused on identifying and characterizing new biological mediators with such properties. Additionally, some investigations have focused on the molecular targets of exerkines and the cellular signaling cascades that trigger adaption processes. A detailed understanding of the tissue-specific downstream effects of exerkines is crucial to harness the health-related benefits mediated by exercise and improve targeted exercise programs in health and disease. Herein, we review the current in vivo evidence on exerkine-induced signal transduction across multiple target tissues and highlight the preventive and therapeutic value of exerkine signaling in various diseases. By emphasizing different aspects of exerkine research, we provide a comprehensive overview of (i) the molecular underpinnings of exerkine secretion, (ii) the receptor-dependent and receptor-independent signaling cascades mediating tissue adaption, and (iii) the clinical implications of these mechanisms in disease prevention and treatment.
Collapse
Affiliation(s)
- David Walzik
- Division of Performance and Health (Sports Medicine), Institute for Sport and Sport Science, TU Dortmund University, 44227, Dortmund, North Rhine-Westphalia, Germany
| | - Tiffany Y Wences Chirino
- Division of Performance and Health (Sports Medicine), Institute for Sport and Sport Science, TU Dortmund University, 44227, Dortmund, North Rhine-Westphalia, Germany
| | - Philipp Zimmer
- Division of Performance and Health (Sports Medicine), Institute for Sport and Sport Science, TU Dortmund University, 44227, Dortmund, North Rhine-Westphalia, Germany.
| | - Niklas Joisten
- Division of Performance and Health (Sports Medicine), Institute for Sport and Sport Science, TU Dortmund University, 44227, Dortmund, North Rhine-Westphalia, Germany.
- Division of Exercise and Movement Science, Institute for Sport Science, University of Göttingen, 37075, Göttingen, Lower Saxony, Germany.
| |
Collapse
|
20
|
Nicolas S, Dohm-Hansen S, Lavelle A, Bastiaanssen TFS, English JA, Cryan JF, Nolan YM. Exercise mitigates a gut microbiota-mediated reduction in adult hippocampal neurogenesis and associated behaviours in rats. Transl Psychiatry 2024; 14:195. [PMID: 38658547 PMCID: PMC11043361 DOI: 10.1038/s41398-024-02904-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 04/03/2024] [Accepted: 04/08/2024] [Indexed: 04/26/2024] Open
Abstract
Lifestyle factors, especially exercise, impact the manifestation and progression of psychiatric and neurodegenerative disorders such as depression and Alzheimer's disease, mediated by changes in hippocampal neuroplasticity. The beneficial effects of exercise may be due to its promotion of adult hippocampal neurogenesis (AHN). Gut microbiota has also been showed to be altered in a variety of brain disorders, and disturbances of the microbiota have resulted in alterations in brain and behaviour. However, whether exercise can counteract the negative effects of altered gut microbiota on brain function remains under explored. To this end, chronic disruption of the gut microbiota was achieved using an antibiotic cocktail in rats that were sedentary or allowed voluntary access to running wheels. Sedentary rats with disrupted microbiota displayed impaired performance in hippocampal neurogenesis-dependent tasks: the modified spontaneous location recognition task and the novelty suppressed feeding test. Performance in the elevated plus maze was also impaired due to antibiotics treatment. These behaviours, and an antibiotics-induced reduction in AHN were attenuated by voluntary exercise. The effects were independent of changes in the hippocampal metabolome but were paralleled by caecal metabolomic changes. Taken together these data highlight the importance of the gut microbiota in AHN-dependent behaviours and demonstrate the power of lifestyle factors such as voluntary exercise to attenuate these changes.
Collapse
Affiliation(s)
- Sarah Nicolas
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Sebastian Dohm-Hansen
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Aonghus Lavelle
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Thomaz F S Bastiaanssen
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Jane A English
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- INFANT Research Centre, Cork University Hospital, Wilton, Cork, Ireland
| | - John F Cryan
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Yvonne M Nolan
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
- APC Microbiome Ireland, University College Cork, Cork, Ireland.
| |
Collapse
|
21
|
Fotakis C, Amanatidou AI, Kafyra M, Andreou V, Kalafati IP, Zervou M, Dedoussis GV. Circulatory Metabolite Ratios as Indicators of Lifestyle Risk Factors Based on a Greek NAFLD Case-Control Study. Nutrients 2024; 16:1235. [PMID: 38674925 PMCID: PMC11055137 DOI: 10.3390/nu16081235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
An ensemble of confounding factors, such as an unhealthy diet, obesity, physical inactivity, and smoking, have been linked to a lifestyle that increases one's susceptibility to chronic diseases and early mortality. The circulatory metabolome may provide a rational means of pinpointing the advent of metabolite variations that reflect an adherence to a lifestyle and are associated with the occurrence of chronic diseases. Data related to four major modifiable lifestyle factors, including adherence to the Mediterranean diet (estimated on MedDietScore), body mass index (BMI), smoking, and physical activity level (PAL), were used to create the lifestyle risk score (LS). The LS was further categorized into four groups, where a higher score group indicates a less healthy lifestyle. Drawing on this, we analyzed 223 NMR serum spectra, 89 MASLD patients and 134 controls; these were coupled to chemometrics to identify "key" features and understand the biological processes involved in specific lifestyles. The unsupervised analysis verified that lifestyle was the factor influencing the samples' differentiation, while the supervised analysis highlighted metabolic signatures. Τhe metabolic ratios of alanine/formic acid and leucine/formic acid, with AUROC > 0.8, may constitute discriminant indexes of lifestyle. On these grounds, this research contributed to understanding the impact of lifestyle on the circulatory metabolome and highlighted "prudent lifestyle" biomarkers.
Collapse
Affiliation(s)
- Charalambos Fotakis
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vas. Constantinou Ave., 11635 Athens, Greece; (C.F.); (V.A.)
| | - Athina I. Amanatidou
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University of Athens, 17671 Athens, Greece; (A.I.A.); (M.K.); (I.P.K.)
| | - Maria Kafyra
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University of Athens, 17671 Athens, Greece; (A.I.A.); (M.K.); (I.P.K.)
| | - Vasiliki Andreou
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vas. Constantinou Ave., 11635 Athens, Greece; (C.F.); (V.A.)
| | - Ioanna Panagiota Kalafati
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University of Athens, 17671 Athens, Greece; (A.I.A.); (M.K.); (I.P.K.)
| | - Maria Zervou
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vas. Constantinou Ave., 11635 Athens, Greece; (C.F.); (V.A.)
| | - George V. Dedoussis
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University of Athens, 17671 Athens, Greece; (A.I.A.); (M.K.); (I.P.K.)
| |
Collapse
|
22
|
Moosavi D, Vuckovic I, Kunz HE, Lanza IR. Metabolomic response to acute resistance exercise in healthy older adults by 1H-NMR. PLoS One 2024; 19:e0301037. [PMID: 38547208 PMCID: PMC10977811 DOI: 10.1371/journal.pone.0301037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 03/03/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND The favorable health-promoting adaptations to exercise result from cumulative responses to individual bouts of physical activity. Older adults often exhibit anabolic resistance; a phenomenon whereby the anabolic responses to exercise and nutrition are attenuated in skeletal muscle. The mechanisms contributing to age-related anabolic resistance are emerging, but our understanding of how chronological age influences responsiveness to exercise is incomplete. The objective was to determine the effects of healthy aging on peripheral blood metabolomic response to a single bout of resistance exercise and whether any metabolites in circulation are predictive of anabolic response in skeletal muscle. METHODS Thirty young (20-35 years) and 49 older (65-85 years) men and women were studied in a cross-sectional manner. Participants completed a single bout of resistance exercise consisting of eight sets of 10 repetitions of unilateral knee extension at 70% of one-repetition maximum. Blood samples were collected before exercise, immediately post exercise, and 30-, 90-, and 180-minutes into recovery. Proton nuclear magnetic resonance spectroscopy was used to profile circulating metabolites at all timepoints. Serial muscle biopsies were collected for measuring muscle protein synthesis rates. RESULTS Our analysis revealed that one bout of resistance exercise elicits significant changes in 26 of 33 measured plasma metabolites, reflecting alterations in several biological processes. Furthermore, 12 metabolites demonstrated significant interactions between exercise and age, including organic acids, amino acids, ketones, and keto-acids, which exhibited distinct responses to exercise in young and older adults. Pre-exercise histidine and sarcosine were negatively associated with muscle protein synthesis, as was the pre/post-exercise fold change in plasma histidine. CONCLUSIONS This study demonstrates that while many exercise-responsive metabolites change similarly in young and older adults, several demonstrate age-dependent changes even in the absence of evidence of sarcopenia or frailty. TRIAL REGISTRATION Clinical trial registry: ClinicalTrials.gov NCT03350906.
Collapse
Affiliation(s)
- Darya Moosavi
- Department of Internal Medicine, Endocrine Research Unit, Division of Endocrinology, Mayo Clinic, Rochester, MN, United States of America
- Department of Biobehavioral Sciences, Teachers College, Columbia University, New York, NY, United States of America
| | - Ivan Vuckovic
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States of America
| | - Hawley E. Kunz
- Department of Internal Medicine, Endocrine Research Unit, Division of Endocrinology, Mayo Clinic, Rochester, MN, United States of America
| | - Ian R. Lanza
- Department of Internal Medicine, Endocrine Research Unit, Division of Endocrinology, Mayo Clinic, Rochester, MN, United States of America
| |
Collapse
|
23
|
Nemkov T, Cendali F, Dzieciatkowska M, Stephenson D, Hansen KC, Jankowski CM, D’Alessandro A, Marker RJ. A Multiomics Assessment of Preoperative Exercise in Pancreatic Cancer Survivors Receiving Neoadjuvant Therapy: A Case Series. PATHOPHYSIOLOGY 2024; 31:166-182. [PMID: 38535623 PMCID: PMC10975467 DOI: 10.3390/pathophysiology31010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 04/01/2024] Open
Abstract
To molecularly characterize the impact of exercise on mitigating neoadjuvant treatment (NAT)-induced physical decline in pancreatic ductal adenocarcinoma (PDAC) patients, a multi-omics approach was employed for the analysis of plasma samples before and after a personalized exercise intervention. Consisting of personalized aerobic and resistance exercises, this intervention was associated with significant molecular changes that correlated with improvements in lean mass, appendicular skeletal muscle index (ASMI), and performance in the 400-m walk test (MWT) and sit-to-stand test. These alterations indicated exercise-induced modulation of inflammation and mitochondrial function markers. This case study provides proof-of-principal application for multiomics-based assessments of supervised exercise, thereby supporting this intervention as a feasible and beneficial intervention for PDAC patients to potentially enhance treatment response and patient quality of life. The molecular changes observed here underscore the importance of physical activity in cancer treatment protocols, advocating for the development of accessible multiomics-guided exercise programs for cancer patients.
Collapse
Affiliation(s)
- Travis Nemkov
- Department of Biochemistry and Molecular Genetics, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA; (F.C.); (M.D.); (D.S.); (A.D.)
| | - Francesca Cendali
- Department of Biochemistry and Molecular Genetics, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA; (F.C.); (M.D.); (D.S.); (A.D.)
| | - Monika Dzieciatkowska
- Department of Biochemistry and Molecular Genetics, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA; (F.C.); (M.D.); (D.S.); (A.D.)
| | - Daniel Stephenson
- Department of Biochemistry and Molecular Genetics, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA; (F.C.); (M.D.); (D.S.); (A.D.)
| | - Kirk C. Hansen
- Department of Biochemistry and Molecular Genetics, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA; (F.C.); (M.D.); (D.S.); (A.D.)
| | | | - Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA; (F.C.); (M.D.); (D.S.); (A.D.)
| | - Ryan J. Marker
- Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA
| |
Collapse
|
24
|
Hernández-Saavedra D, Hinkley JM, Baer LA, Pinckard KM, Vidal P, Nirengi S, Brennan AM, Chen EY, Narain NR, Bussberg V, Tolstikov VV, Kiebish MA, Markunas C, Ilkayeva O, Goodpaster BH, Newgard CB, Goodyear LJ, Coen PM, Stanford KI. Chronic exercise improves hepatic acylcarnitine handling. iScience 2024; 27:109083. [PMID: 38361627 PMCID: PMC10867450 DOI: 10.1016/j.isci.2024.109083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 12/21/2023] [Accepted: 01/28/2024] [Indexed: 02/17/2024] Open
Abstract
Exercise mediates tissue metabolic function through direct and indirect adaptations to acylcarnitine (AC) metabolism, but the exact mechanisms are unclear. We found that circulating medium-chain acylcarnitines (AC) (C12-C16) are lower in active/endurance trained human subjects compared to sedentary controls, and this is correlated with elevated cardiorespiratory fitness and reduced adiposity. In mice, exercise reduced serum AC and increased liver AC, and this was accompanied by a marked increase in expression of genes involved in hepatic AC metabolism and mitochondrial β-oxidation. Primary hepatocytes from high-fat fed, exercise trained mice had increased basal respiration compared to hepatocytes from high-fat fed sedentary mice, which may be attributed to increased Ca2+ cycling and lipid uptake into mitochondria. The addition of specific medium- and long-chain AC to sedentary hepatocytes increased mitochondrial respiration, mirroring the exercise phenotype. These data indicate that AC redistribution is an exercise-induced mechanism to improve hepatic function and metabolism.
Collapse
Affiliation(s)
- Diego Hernández-Saavedra
- Dorothy M. Davis Heart and Lung Research Institute; Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - J. Matthew Hinkley
- AdventHealth Translational Research Institute, AdventHealth, Orlando, FL 32804, USA
| | - Lisa A. Baer
- Dorothy M. Davis Heart and Lung Research Institute; Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Kelsey M. Pinckard
- Dorothy M. Davis Heart and Lung Research Institute; Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Pablo Vidal
- Dorothy M. Davis Heart and Lung Research Institute; Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Shinsuke Nirengi
- Dorothy M. Davis Heart and Lung Research Institute; Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Andrea M. Brennan
- AdventHealth Translational Research Institute, AdventHealth, Orlando, FL 32804, USA
| | | | | | | | | | | | - Christina Markunas
- Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute, Departments of Pharmacology and Cancer Biology and Medicine, Durham, NC 27701, USA
| | - Olga Ilkayeva
- Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute, Departments of Pharmacology and Cancer Biology and Medicine, Durham, NC 27701, USA
| | - Bret H. Goodpaster
- AdventHealth Translational Research Institute, AdventHealth, Orlando, FL 32804, USA
| | - Christopher B. Newgard
- Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute, Departments of Pharmacology and Cancer Biology and Medicine, Durham, NC 27701, USA
| | - Laurie J. Goodyear
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Boston, MA 02215, USA
| | - Paul M. Coen
- AdventHealth Translational Research Institute, AdventHealth, Orlando, FL 32804, USA
| | - Kristin I. Stanford
- Dorothy M. Davis Heart and Lung Research Institute; Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| |
Collapse
|
25
|
Clemente-Suárez VJ, Peris-Ramos HC, Redondo-Flórez L, Beltrán-Velasco AI, Martín-Rodríguez A, David-Fernandez S, Yáñez-Sepúlveda R, Tornero-Aguilera JF. Personalizing Nutrition Strategies: Bridging Research and Public Health. J Pers Med 2024; 14:305. [PMID: 38541047 PMCID: PMC10970995 DOI: 10.3390/jpm14030305] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 11/11/2024] Open
Abstract
In recent years, although life expectancy has increased significantly, non-communicable diseases (NCDs) continue to pose a significant threat to the health of the global population. Therefore, eating habits have been recognized as key modifiable factors that influence people's health and well-being. For this reason, it is interesting to study dietary patterns, since the human diet is a complex mixture of macronutrients, micronutrients, and bioactive compounds, and can modulate multiple physiological processes, including immune function, the metabolism, and inflammation. To ensure that the data we acquired were current and relevant, we searched primary and secondary sources, including scientific journals, bibliographic indexes, and databases in the last 15 years with the most relevant articles. After this search, we observed that all the recent research on NCDs suggests that diet is a critical factor in shaping an individual's health outcomes. Thus, cardiovascular, metabolic, mental, dental, and visual health depends largely on the intake, habits and patterns, and nutritional behaviors. A diet high in processed and refined foods, added sugars, and saturated fats can increase the risk of developing chronic diseases. On the other hand, a diet rich in whole, nutrient-dense foods, such as vegetables, fruits, nuts, legumes, and a high adherence to Mediterranean diet can improve health's people.
Collapse
Affiliation(s)
- Vicente Javier Clemente-Suárez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (V.J.C.-S.); (J.F.T.-A.)
- Grupo de Investigación en Cultura, Educación y Sociedad, Universidad de la Costa, Barranquilla 080002, Colombia
| | - Helia Carmen Peris-Ramos
- Faculty of Biomedical and Health Sciences, Clinical Odontology Department, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (H.C.P.-R.); (S.D.-F.)
| | - Laura Redondo-Flórez
- Department of Health Sciences, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Tajo Street, s/n, Villaviciosa de Odón, 28670 Madrid, Spain;
| | | | - Alexandra Martín-Rodríguez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (V.J.C.-S.); (J.F.T.-A.)
| | - Susana David-Fernandez
- Faculty of Biomedical and Health Sciences, Clinical Odontology Department, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (H.C.P.-R.); (S.D.-F.)
| | - Rodrigo Yáñez-Sepúlveda
- Faculty of Education and Social Sciences, Universidad Andres Bello, Viña del Mar 2520000, Chile;
| | | |
Collapse
|
26
|
Chrysopoulou M, Rinschen MM. Metabolic Rewiring and Communication: An Integrative View of Kidney Proximal Tubule Function. Annu Rev Physiol 2024; 86:405-427. [PMID: 38012048 DOI: 10.1146/annurev-physiol-042222-024724] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
The kidney proximal tubule is a key organ for human metabolism. The kidney responds to stress with altered metabolite transformation and perturbed metabolic pathways, an ultimate cause for kidney disease. Here, we review the proximal tubule's metabolic function through an integrative view of transport, metabolism, and function, and embed it in the context of metabolome-wide data-driven research. Function (filtration, transport, secretion, and reabsorption), metabolite transformation, and metabolite signaling determine kidney metabolic rewiring in disease. Energy metabolism and substrates for key metabolic pathways are orchestrated by metabolite sensors. Given the importance of renal function for the inner milieu, we also review metabolic communication routes with other organs. Exciting research opportunities exist to understand metabolic perturbation of kidney and proximal tubule function, for example, in hypertension-associated kidney disease. We argue that, based on the integrative view outlined here, kidney diseases without genetic cause should be approached scientifically as metabolic diseases.
Collapse
Affiliation(s)
| | - Markus M Rinschen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark;
- III. Department of Medicine and Hamburg Center for Kidney Health, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Aarhus Institute of Advanced Studies, Aarhus University, Aarhus, Denmark
| |
Collapse
|
27
|
Oliveira TM, Ferreira TJ, Franca PAP, da Cruz RR, Bara-Filho MG, Cahuê FLC, Valente AP, Pierucci APTR. A Decrease in Branched-Chain Amino Acids after a Competitive Male Professional Volleyball Game-A Metabolomic-Based Approach. Metabolites 2024; 14:115. [PMID: 38393007 PMCID: PMC10890579 DOI: 10.3390/metabo14020115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/30/2023] [Accepted: 01/21/2024] [Indexed: 02/25/2024] Open
Abstract
A competitive volleyball game is a highly metabolic and physically demanding event for professional players. This study aimed to investigate whether a single game at the end of a preseason promotes changes in the biochemical markers of physical exercise responses and the metabolomic profile of professional volleyball players. This cross-sectional study included 13 male Brazilian professional volleyball players. Food intake, body composition, heart rate, physical movement variables, and blood biochemical indicators were evaluated. For non-target metabolomic analysis, serum samples were subjected to 500 MHz Nuclear Magnetic Resonance. Data analysis showed no significant difference in the biochemical indicators after the game (p > 0.05). The level of metabolites present in the groups of the main components (β-hydroxybutyrate, arginine/lysine, isoleucine, leucine, and valine) had decreased after the game. However, formic acid and histidine levels increased. Among the compounds not part of the main components, hypoxanthine and tyrosine increased, whereas low-density lipoprotein and very low-density lipoprotein levels decreased. After the game, the metabolomic profiles of players showed significant negative variations in essential amino acids (leucine, valine, and isoleucine). These decreases might be influenced by athlete diet and reduced glycogen storage due to lower carbohydrate intake, potentially impacting serum-essential amino acid levels via oxidation in skeletal muscle. The study provides insights for developing metabolic compensation strategies in athletes.
Collapse
Affiliation(s)
- Taillan Martins Oliveira
- Laboratory of Food Development for Special Health Purpose and Education (DAFEE), Nutrition Institute Josué de Castro (INJC), Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Rio de Janeiro, Brazil
| | - Tathiany Jéssica Ferreira
- Laboratory of Food Development for Special Health Purpose and Education (DAFEE), Nutrition Institute Josué de Castro (INJC), Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Rio de Janeiro, Brazil
| | - Paula Albuquerque Penna Franca
- Laboratory of Food Development for Special Health Purpose and Education (DAFEE), Nutrition Institute Josué de Castro (INJC), Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Rio de Janeiro, Brazil
| | - Rudson Ribeiro da Cruz
- Laboratory of Food Development for Special Health Purpose and Education (DAFEE), Nutrition Institute Josué de Castro (INJC), Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Rio de Janeiro, Brazil
| | | | - Fábio Luiz Candido Cahuê
- Laboratory of Food Development for Special Health Purpose and Education (DAFEE), Nutrition Institute Josué de Castro (INJC), Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Rio de Janeiro, Brazil
| | - Ana Paula Valente
- Medical Biochemistry Institute, National Center for Nuclear Magnetic Resonance, Universidade Federal Do Rio de Janeiro, Rio de Janeiro 21941-902, Rio de Janeiro, Brazil
| | - Anna Paola Trindade Rocha Pierucci
- Laboratory of Food Development for Special Health Purpose and Education (DAFEE), Nutrition Institute Josué de Castro (INJC), Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Rio de Janeiro, Brazil
| |
Collapse
|
28
|
Chengolova Z, Ivanova R, Gabrovska K. Lactose Intolerance - Single Nucleotide Polymorphisms and Treatment. JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2024; 43:213-220. [PMID: 37640502 DOI: 10.1080/27697061.2023.2251557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 08/13/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023]
Abstract
The majority (about 70%) of the world's population suffers from lactose intolerance. Lactose intolerance leads to long-term discomfort when consuming milk and dairy products, and hence, to their avoidance. Consequently, the intake of important nutrients is reduced, which potentially has a negative impact on the overall health. Knowing the condition - lactose intolerance - will prevent people from unnecessarily restricting dairy products in their diets. In this study, lactose synthesis and catabolism in the human body are presented, also the types of lactose intolerance, as well as the methods of diagnosing this condition, are discussed. Special attention is paid to the genetic causes of this discomfort and to the tests that can be performed. Solutions for the treatment of lactose intolerance have also been proposed, both up-to-date and easily applicable, as well as future developments.
Collapse
Affiliation(s)
- Zlatina Chengolova
- Biotechnology Department, "Prof. Dr Assen Zlatarov" University, Burgas, Bulgaria
| | - Radina Ivanova
- Genetic Department, "St. Kliment Ohridski" University, Sofia, Bulgaria
| | - Katya Gabrovska
- Biotechnology Department, "Prof. Dr Assen Zlatarov" University, Burgas, Bulgaria
| |
Collapse
|
29
|
Smit AP, Herber GCM, Kuiper LM, Loef B, Picavet HSJ, Verschuren WMM. Past or Present; Which Exposures Predict Metabolomic Aging Better? The Doetinchem Cohort Study. J Gerontol A Biol Sci Med Sci 2024; 79:glad202. [PMID: 37642222 PMCID: PMC10799759 DOI: 10.1093/gerona/glad202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Indexed: 08/31/2023] Open
Abstract
People age differently. Differences in aging might be reflected by metabolites, also known as metabolomic aging. Predicting metabolomic aging is of interest in public health research. However, the added value of longitudinal over cross-sectional predictors of metabolomic aging is unknown. We studied exposome-related exposures as potential predictors of metabolomic aging, both cross-sectionally and longitudinally in men and women. We used data from 4 459 participants, aged 36-75 of Round 4 (2003-2008) of the long-running Doetinchem Cohort Study (DCS). Metabolomic age was calculated with the MetaboHealth algorithm. Cross-sectional exposures were demographic, biological, lifestyle, and environmental at Round 4. Longitudinal exposures were based on the average exposure over 15 years (Round 1 [1987-1991] to 4), and trend in these exposure over time. Random Forest was performed to identify model performance and important predictors. Prediction performances were similar for cross-sectional and longitudinal exposures in both men (R2 6.8 and 5.8, respectively) and women (R2 14.8 and 14.4, respectively). Biological and diet exposures were most predictive for metabolomic aging in both men and women. Other important predictors were smoking behavior for men and contraceptive use and menopausal status for women. Taking into account history of exposure levels (longitudinal) had no added value over cross-sectionally measured exposures in predicting metabolomic aging in the current study. However, the prediction performances of both models were rather low. The most important predictors for metabolomic aging were from the biological and lifestyle domain and differed slightly between men and women.
Collapse
Affiliation(s)
- Annelot P Smit
- Center for Prevention, Lifestyle and Health, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Gerrie-Cor M Herber
- Center for Prevention, Lifestyle and Health, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Lieke M Kuiper
- Center for Prevention, Lifestyle and Health, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Bette Loef
- Center for Prevention, Lifestyle and Health, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - H Susan J Picavet
- Center for Prevention, Lifestyle and Health, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - W M Monique Verschuren
- Center for Prevention, Lifestyle and Health, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
30
|
Lone JB, Long JZ, Svensson KJ. Size matters: the biochemical logic of ligand type in endocrine crosstalk. LIFE METABOLISM 2024; 3:load048. [PMID: 38425548 PMCID: PMC10904031 DOI: 10.1093/lifemeta/load048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
The endocrine system is a fundamental type of long-range cell-cell communication that is important for maintaining metabolism, physiology, and other aspects of organismal homeostasis. Endocrine signaling is mediated by diverse blood-borne ligands, also called hormones, including metabolites, lipids, steroids, peptides, and proteins. The size and structure of these hormones are fine-tuned to make them bioactive, responsive, and adaptable to meet the demands of changing environments. Why has nature selected such diverse ligand types to mediate communication in the endocrine system? What is the chemical, signaling, or physiologic logic of these ligands? What fundamental principles from our knowledge of endocrine communication can be applied as we continue as a field to uncover additional new circulating molecules that are claimed to mediate long-range cell and tissue crosstalk? This review provides a framework based on the biochemical logic behind this crosstalk with respect to their chemistry, temporal regulation in physiology, specificity, signaling actions, and evolutionary development.
Collapse
Affiliation(s)
- Jameel Barkat Lone
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jonathan Z. Long
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA 94305, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA
- Wu Tsai Human Performance Alliance, Stanford University, Stanford, CA 94305, USA
| | - Katrin J. Svensson
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA 94305, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA
- Wu Tsai Human Performance Alliance, Stanford University, Stanford, CA 94305, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, CA 94305, USA
| |
Collapse
|
31
|
Park J, Kim J, Kang J, Choi J, Kim JE, Min KJ, Choi SW, Cho JY, Lee M, Choi JY. A 6-month exercise intervention clinical trial in women: effects of physical activity on multi-omics biomarkers and health during the first wave of COVID-19 in Korea. BMC Sports Sci Med Rehabil 2024; 16:30. [PMID: 38287431 PMCID: PMC10826212 DOI: 10.1186/s13102-024-00824-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/24/2024] [Indexed: 01/31/2024]
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19) was first reported in December 2019 and the first case in Korea was confirmed on January 20, 2020. Due to the absence of therapeutic agents and vaccines, the Korean government implemented social distancing on February 29, 2020. This study aimed to examine the effect of physical activity (PA) on health through changes in multi-omics biomarkers with a 6-month of exercise intervention during the first wave of COVID-19 in Korea. METHODS Twenty-seven healthy middle-aged women were recruited and 14 subjects completed the exercise intervention. The mean age (± SD) was 46.3 (± 5.33) and the mean BMI (± SD) was 24.9 (± 3.88). A total of three blood and stool samples were collected at enrollment, after period 1, and after period 2 (3-month intervals). The amount of PA was measured with an accelerometer and by questionnaire. Clinical variables were used, including blood pressure, grip strength, flexibility, and blood glucose levels and lipid markers obtained from laboratory tests. The concentration of blood metabolites was measured by targeted metabolomics. Fecal microbiome data were obtained by 16 S rRNA gene amplicon sequencing. RESULTS During the second half period (period 2), Coronavirus disease 2019 occurred and spread out in Korea, and PA decreased compared with the first half period (period 1) (185.9 ± 168.73 min/week to 102.5 ± 82.30 min/week; p = 0.0101). Blood pressure, hemoglobin A1c (HbA1c), and low-density lipoprotein cholesterol (LDL-C) decreased in period 1 (p < 0.05) and tended to increase again during period 2 (p < 0.05). Forty metabolites were changed significantly during period 1 (FDR p < 0.05), and we found that 6 of them were correlated with changes in blood pressure, HbA1c, and LDL-C via network analysis. CONCLUSIONS Our results may suggest that exercise improves health through changes in biomarkers at multi-omics levels. However, reduced PA due to COVID-19 can adversely affect health, emphasizing the necessity for sustained exercise and support for home-based fitness to maintain health. TRIAL REGISTRATION The trial is retrospectively registered on ClinicalTrials.gov (NCT05927675; June 30, 2023).
Collapse
Affiliation(s)
- JooYong Park
- Department of Big Data Medical Convergence, Eulji University, Seongnam-Si, Gyeonggi-Do, Korea
- Department of Biomedical Sciences Graduate School, Seoul National University, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
| | - Jaemyung Kim
- School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, USA
| | - Jihyun Kang
- Department of Biomedical Sciences Graduate School, Seoul National University, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Korea
| | - Jaesung Choi
- Institute of Health Policy and Management, Seoul National University Medical Research Center, Seoul, Korea
| | - Ji-Eun Kim
- Department of Biomedical Sciences Graduate School, Seoul National University, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
| | | | | | - Joo-Youn Cho
- Department of Biomedical Sciences Graduate School, Seoul National University, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Korea
| | - Miyoung Lee
- College of Physical Education and Sport Science, Kookmin University, 77 Jeongneung-ro, Seongbuk-gu, Seoul, 02707, Korea.
| | - Ji-Yeob Choi
- Department of Biomedical Sciences Graduate School, Seoul National University, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Korea.
- Institute of Health Policy and Management, Seoul National University Medical Research Center, Seoul, Korea.
- Cancer Research Institute, Seoul National University, Seoul, Korea.
| |
Collapse
|
32
|
Qi S, Li X, Yu J, Yin L. Research advances in the application of metabolomics in exercise science. Front Physiol 2024; 14:1332104. [PMID: 38288351 PMCID: PMC10822880 DOI: 10.3389/fphys.2023.1332104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/27/2023] [Indexed: 01/31/2024] Open
Abstract
Exercise training can lead to changes in the metabolic composition of an athlete's blood, the magnitude of which depends largely on the intensity and duration of exercise. A variety of behavioral, biochemical, hormonal, and immunological biomarkers are commonly used to assess an athlete's physical condition during exercise training. However, traditional invasive muscle biopsy testing methods are unable to comprehensively detect physiological differences and metabolic changes in the body. Metabolomics technology is a high-throughput, highly sensitive technique that provides a comprehensive assessment of changes in small molecule metabolites (molecular weight <1,500 Da) in the body. By measuring the overall metabolic characteristics of biological samples, we can study the changes of endogenous metabolites in an organism or cell at a certain moment in time, and investigate the interconnection and dynamic patterns between metabolites and physiological changes, thus further understanding the interactions between genes and the environment, and providing possibilities for biomarker discovery, precise training and nutritional programming of athletes. This paper summaries the progress of research on the application of exercise metabolomics in sports science, and looks forward to the future development of exercise metabolomics, with a view to providing new approaches and perspectives for improving human performance, promoting exercise against chronic diseases, and advancing sports science research.
Collapse
Affiliation(s)
- Shuo Qi
- School of Sport and Health, Shandong Sport University, Jinan, China
| | - Xun Li
- School of Sport and Health, Shandong Sport University, Jinan, China
| | - Jinglun Yu
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Lijun Yin
- School of Sport, Shenzhen University, Shenzhen, China
| |
Collapse
|
33
|
Zhyvolozhnyi A, Samoylenko A, Bart G, Kaisanlahti A, Hekkala J, Makieieva O, Pratiwi F, Miinalainen I, Kaakinen M, Bergman U, Singh P, Nurmi T, Khosrowbadi E, Abdelrady E, Kellokumpu S, Kosamo S, Reunanen J, Röning J, Hiltunen J, Vainio SJ. Enrichment of sweat-derived extracellular vesicles of human and bacterial origin for biomarker identification. Nanotheranostics 2024; 8:48-63. [PMID: 38164498 PMCID: PMC10750121 DOI: 10.7150/ntno.87822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/15/2023] [Indexed: 01/03/2024] Open
Abstract
Sweat contains biomarkers for real-time non-invasive health monitoring, but only a few relevant analytes are currently used in clinical practice. In the present study, we investigated whether sweat-derived extracellular vesicles (EVs) can be used as a source of potential protein biomarkers of human and bacterial origin. Methods: By using ExoView platform, electron microscopy, nanoparticle tracking analysis and Western blotting we characterized EVs in the sweat of eight volunteers performing rigorous exercise. We compared the presence of EV markers as well as general protein composition of total sweat, EV-enriched sweat and sweat samples collected in alginate skin patches. Results: We identified 1209 unique human proteins in EV-enriched sweat, of which approximately 20% were present in every individual sample investigated. Sweat derived EVs shared 846 human proteins (70%) with total sweat, while 368 proteins (30%) were captured by medical grade alginate skin patch and such EVs contained the typical exosome marker CD63. The majority of identified proteins are known to be carried by EVs found in other biofluids, mostly urine. Besides human proteins, EV-enriched sweat samples contained 1594 proteins of bacterial origin. Bacterial protein profiles in EV-enriched sweat were characterized by high interindividual variability, that reflected differences in total sweat composition. Alginate-based sweat patch accumulated only 5% proteins of bacterial origin. Conclusion: We showed that sweat-derived EVs provide a rich source of potential biomarkers of human and bacterial origin. Use of commercially available alginate skin patches selectively enrich for human derived material with very little microbial material collected.
Collapse
Affiliation(s)
- Artem Zhyvolozhnyi
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, InfoTech Oulu, University of Oulu, Oulu, Finland
| | - Anatoliy Samoylenko
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, InfoTech Oulu, University of Oulu, Oulu, Finland
| | - Geneviève Bart
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, InfoTech Oulu, University of Oulu, Oulu, Finland
| | - Anna Kaisanlahti
- Faculty of Medicine, Biocenter of Oulu, University of Oulu, Finland
| | - Jenni Hekkala
- Faculty of Medicine, Biocenter of Oulu, University of Oulu, Finland
| | - Olha Makieieva
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, InfoTech Oulu, University of Oulu, Oulu, Finland
| | - Feby Pratiwi
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, InfoTech Oulu, University of Oulu, Oulu, Finland
| | - Ilkka Miinalainen
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, InfoTech Oulu, University of Oulu, Oulu, Finland
| | - Mika Kaakinen
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, InfoTech Oulu, University of Oulu, Oulu, Finland
| | - Ulrich Bergman
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, InfoTech Oulu, University of Oulu, Oulu, Finland
| | - Prateek Singh
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, InfoTech Oulu, University of Oulu, Oulu, Finland
| | - Tuomas Nurmi
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, InfoTech Oulu, University of Oulu, Oulu, Finland
| | - Elham Khosrowbadi
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, InfoTech Oulu, University of Oulu, Oulu, Finland
| | - Eslam Abdelrady
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, InfoTech Oulu, University of Oulu, Oulu, Finland
| | - Sakari Kellokumpu
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, InfoTech Oulu, University of Oulu, Oulu, Finland
| | - Susanna Kosamo
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, InfoTech Oulu, University of Oulu, Oulu, Finland
| | - Justus Reunanen
- Faculty of Medicine, Biocenter of Oulu, University of Oulu, Finland
| | - Juha Röning
- Department of Computer Science and Engineering, University of Oulu, Finland
| | | | - Seppo J. Vainio
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, InfoTech Oulu, University of Oulu, Oulu, Finland
| |
Collapse
|
34
|
Zhang M, Xiao B, Chen X, Ou B, Wang S. Physical exercise plays a role in rebalancing the bile acids of enterohepatic axis in non-alcoholic fatty liver disease. Acta Physiol (Oxf) 2024; 240:e14065. [PMID: 38037846 DOI: 10.1111/apha.14065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 10/09/2023] [Accepted: 11/15/2023] [Indexed: 12/02/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is considered as one of the most common diseases of lipid metabolism disorders, which is closely related to bile acids disorders and gut microbiota disorders. Bile acids are synthesized from cholesterol in the liver, and processed by gut microbiota in intestinal tract, and participate in metabolic regulation through the enterohepatic circulation. Bile acids not only promote the consumption and absorption of intestinal fat but also play an important role in biological metabolic signaling network, affecting fat metabolism and glucose metabolism. Studies have demonstrated that exercise plays an important role in regulating the composition and function of bile acid pool in enterohepatic axis, which maintains the homeostasis of the enterohepatic circulation and the health of the host gut microbiota. Exercise has been recommended by several health guidelines as the first-line intervention for patients with NAFLD. Can exercise alter bile acids through the microbiota in the enterohepatic axis? If so, regulating bile acids through exercise may be a promising treatment strategy for NAFLD. However, the specific mechanisms underlying this potential connection are largely unknown. Therefore, in this review, we tried to review the relationship among NAFLD, physical exercise, bile acids, and gut microbiota through the existing data and literature, highlighting the role of physical exercise in rebalancing bile acid and microbial dysbiosis.
Collapse
Affiliation(s)
- Minyu Zhang
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| | - Biyang Xiao
- College of Life Sciences, Zhaoqing University, Zhaoqing, China
| | - Xiaoqi Chen
- College of Life Sciences, Zhaoqing University, Zhaoqing, China
| | - Bingming Ou
- College of Life Sciences, Zhaoqing University, Zhaoqing, China
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Songtao Wang
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| |
Collapse
|
35
|
Mahnic N, Geremia A, Straub T, Zorzato S, Schönfelder M, von Lüttichau I, Steiger K, Saller MM, Blaauw B, Wackerhage H. One bout of endurance exercise does not change gene expression or proliferation in a C26 colon carcinoma in immunocompetent mice. J Cancer Res Clin Oncol 2023; 149:17361-17369. [PMID: 37840045 PMCID: PMC10657308 DOI: 10.1007/s00432-023-05447-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/26/2023] [Indexed: 10/17/2023]
Abstract
PURPOSE Exercise typically reduces tumour growth, proliferation and improves outcomes. Many of these effects require exercise to change gene expression within a tumour, but whether exercise actually affects gene expression within a tumour has not been investigated yet. The aim of this study was, therefore, to find out whether one bout of endurance exercise alters gene expression and proliferation in a C26 carcinoma in immunocompetent mice. METHODS BALB/c were injected with C26 colon carcinoma cells. Once the tumours had formed, the mice either ran for 65 min with increasing intensity or rested before the tumour was dissected. The tumours were then analysed by RNA-Seq and stained for the proliferation marker KI67. RESULTS One bout of running for 65 min did not systematically change gene expression in C26 carcinomas of BALB/c mice when compared to BALB/c mice that were rested. However, when analysed for sex, the expression of 17, mostly skeletal muscle-related genes was higher in the samples of the female mice taken post-exercise. Further histological analysis showed that this signal likely comes from the presence of muscle fibres from the panniculus carnosus muscle inside the tumours. Also, we found no differences in the positivity for the proliferation marker KI67 in the control and exercise C26 carcinomas. CONCLUSION A bout of exercise did not systematically affect gene expression or proliferation in C26 carcinomas in immunocompetent BALB/c mice.
Collapse
Affiliation(s)
- Nik Mahnic
- Professorship of Exercise Biology, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Alessia Geremia
- Venetian Institute of Molecular Medicine (VIMM), Padua, Italy
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Tobias Straub
- Bioinformatics Core, Biomedical Center, Faculty of Medicine, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Sabrina Zorzato
- Venetian Institute of Molecular Medicine (VIMM), Padua, Italy
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Martin Schönfelder
- Professorship of Exercise Biology, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Irene von Lüttichau
- Kinderklinik München Schwabing, Department of Pediatrics and Children's Cancer Research Center, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Katja Steiger
- Comparative Experimental Pathology, Institute of Pathology, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Maximilian Michael Saller
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal UniversityCenter Munich (MUM), Ludwig-Maximilians-University (LMU) University Hospital, LMU Munich, Fraunhoferstraße 20, 82152, Planegg-Martinsried, Germany
| | - Bert Blaauw
- Venetian Institute of Molecular Medicine (VIMM), Padua, Italy
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Henning Wackerhage
- Professorship of Exercise Biology, School of Medicine and Health, Technical University of Munich, Munich, Germany.
| |
Collapse
|
36
|
Jin A, Kan Z, Tan Q, Shao J, Han Q, Chang Y, An N, Yi M. Supplementation with food-derived oligopeptides promotes lipid metabolism in young male cyclists: a randomized controlled crossover trial. J Int Soc Sports Nutr 2023; 20:2254741. [PMID: 37674290 PMCID: PMC10486287 DOI: 10.1080/15502783.2023.2254741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 08/29/2023] [Indexed: 09/08/2023] Open
Abstract
BACKGROUND Accumulation of body fat and dyslipidemia are associated with the development of obesity and cardiometabolic diseases. Moreover, the degree to which lipids can be metabolized has been cited as a determinant of cardiometabolic health and prolonged endurance capacity. In the backdrop of increasing obesity and cardiometabolic diseases, lipid metabolism and its modulation by physical activity, dietary adjustments, and supplementation play a significant role in maintaining health and endurance. Food-derived oligopeptides, such as rice and soybean peptides, have been shown to directly regulate abnormal lipid metabolism or promote hypolipidemia and fat oxidation in cell culture models, animal models, and human studies. However, whether supplementation with oligopeptides derived from multiple food sources can promote lipid degradation and fat oxidation in athletes remains unclear. Therefore, in a randomized controlled crossover trial, we investigated the impact of food-derived oligopeptide supplementation before and during exercise on lipid metabolism in young male cyclists. METHODS Sixteen young male cyclists (age: 17.0 ± 1.0 years; height: 178.4 ± 6.9 cm; body mass: 68.7 ± 12.7 kg, body mass index: 21.5 ± 3.4 kg/m2; maximum oxygen uptake: 56.3 ± 5.8 mL/min/kg) participated in this randomized controlled crossover trial. Each participant drank two beverages, one containing a blend of three food-derived oligopeptides (treatment, 0.5 g/kg body weight in total) and the other without (control), with a 2-week washout period between two experiments. The cyclists completed a one-day pattern protocol that consisted of intraday fasting, 30 min of sitting still, 85 min of prolonged exercise plus a 5-min sprint (PE), a short recovery period of 60 min, a 20-min time trial (TT), and recovery till next morning. Blood samples were collected for biochemical analyses of serum lipids and other biomarkers. We analyzed plasma triglyceride species (TGs), free amino acids (FAAs), and tricarboxylic acid (TCA) cycle intermediates using omics methods. In addition, exhaled gas was collected to assess the fat oxidation rate. RESULTS Five of 20 plasma FAAs were elevated pre-exercise (pre-Ex) only 20 min after oligopeptide ingestion, and most FAAs were markedly increased post PE and TT. Serum levels of TG and non-esterified fatty acids were lower in the experimental condition than in the control condition at the post PE and TT assessments, respectively. Further, the omics analysis of plasma TGs for the experimental condition demonstrated that most TGs were lower post PE and at the next fasting when compared with control levels. Simultaneously, the fat oxidation rate began to increase only 20 min after ingestion and during the preceding 85 min of PE. Levels of TCA cycle intermediates did not differ between the conditions. CONCLUSIONS The study noted that continuous ingestion of food-derived oligopeptides accelerated total body triglyceride breakdown, non-esterified fatty acid uptake, and fat oxidation during both sedentary and exercise states. Elevated circulating and intracellular FAA flux may modulate the selection of substrates for metabolic pathways in conjunction with the release of neuroendocrinological factors that slow down carbohydrate metabolism via acetyl coenzyme A feedback inhibition. This may increase the availability of fatty acids for energy production, with FAAs supplying more substrates for the TCA cycle. The findings of this study provide novel insight into strategies for promoting lipid metabolism in populations with dyslipidemia-related metabolic disorders such as obesity and for improving physiological functioning during endurance training. However, the absence of a non-exercising control group and verification of long-term supplementation effects was a limitation. Future studies will emphasize the impacts of whole protein supplementation as a control and of combined food-derived peptides or oligopeptides with probiotics and healthy food components on lipid metabolism in individuals who exercise.
Collapse
Affiliation(s)
- Aina Jin
- Beijing Sport University, Exercise Biochemistry, Beijing, China
- National Institute of Sports Medicine, Center for Sports Nutrition, Beijing, China
| | - Zhaobo Kan
- National Institute of Sports Medicine, Center for Sports Nutrition, Beijing, China
| | - Qiushi Tan
- National Institute of Sports Medicine, Center for Sports Nutrition, Beijing, China
| | - Jing Shao
- National Institute of Sports Medicine, Center for Sports Nutrition, Beijing, China
| | - Qi Han
- National Institute of Sports Medicine, Center for Sports Nutrition, Beijing, China
| | - Yashan Chang
- National Institute of Sports Medicine, Center for Sports Nutrition, Beijing, China
| | - Nan An
- National Institute of Sports Medicine, Center for Sports Nutrition, Beijing, China
| | - Muqing Yi
- National Institute of Sports Medicine, Center for Sports Nutrition, Beijing, China
| |
Collapse
|
37
|
Meihua S, Jiahui J, Yujia L, Shuang Z, Jingjing Z. Research on sweat metabolomics of athlete's fatigue induced by high intensity interval training. Front Physiol 2023; 14:1269885. [PMID: 38033334 PMCID: PMC10684900 DOI: 10.3389/fphys.2023.1269885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/06/2023] [Indexed: 12/02/2023] Open
Abstract
Objective: Sweat is an important specimen of human metabolism, which can simply and non-invasively monitor the metabolic state of the body, and its metabolites can be used as biomarkers for disease diagnosis, while the changes of sweat metabolites before and after exercise-induced fatigue are still unclear. Methods: In this experiment, high-performance chemical isotope labeling liquid chromatography-mass spectrometry (LC-MS) was used to metabolomic 28 sweat samples before and after exercise-induced fatigue of 14 long-distance runners, also IsoMS PRO and SPSS22.0 software were used to analyze the metabolite changes and differential metabolic pathways. Results: A total of 446 metabolites with high confidence were identified, and the sweat metabolome group before and after high-intensity interval exercise-induced fatigue was obvious, among which the upregulated differential metabolites mainly included hypoxanthine, pyruvate, several amino acids, etc., while the downregulated differential metabolites mainly included amino acid derivatives, vitamin B6, theophylline, etc. Conclusion: The change of hypoxanthine concentration in sweat can be used as a good biomarker for the diagnosis of exercise-induced fatigue, while the change of pyruvate content in sweat can be used as a discriminant index for the energy metabolism mode of the body before and after exercise. The main metabolic pathways involved in differential metabolites produced before and after HIIT exercise-induced fatigue are purine metabolism and amino acid metabolism.
Collapse
Affiliation(s)
- Su Meihua
- School of Physical Education, Jimei University, Xiamen, Fujian, China
| | - Jin Jiahui
- School of Physical Education, Jimei University, Xiamen, Fujian, China
| | - Li Yujia
- School of Physical Education, Jimei University, Xiamen, Fujian, China
| | - Zhao Shuang
- Xiamen Meliomics Technology Co., Ltd., Xiamen, Fujian, China
| | - Zhan Jingjing
- Xiamen Meliomics Technology Co., Ltd., Xiamen, Fujian, China
| |
Collapse
|
38
|
Du Y, Li YY, Choi BY, Fernadez R, Su KJ, Sharma K, Qi L, Yin Z, Zhao Q, Shen H, Qiu C, Zhao LJ, Luo Z, Wu L, Tian Q, Deng HW. Metabolomic profiles associated with physical activity in White and African American adult men. PLoS One 2023; 18:e0289077. [PMID: 37943870 PMCID: PMC10635561 DOI: 10.1371/journal.pone.0289077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 07/11/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Physical activity (PA) is associated with various health benefits, especially in improving chronic health conditions. However, the metabolic changes in host metabolism in response to PA remain unclear, especially in racially/ethnically diverse populations. OBJECTIVE This study is to assess the metabolic profiles associated with the frequency of PA in White and African American (AA) men. METHODS Using the untargeted metabolomics data collected from 698 White and AA participants (mean age: 38.0±8.0, age range: 20-50) from the Louisiana Osteoporosis Study (LOS), we conducted linear regression models to examine metabolites that are associated with PA levels (assessed by self-reported regular exercise frequency levels: 0, 1-2, and ≥3 times per week) in White and AA men, respectively, as well as in the pooled sample. Covariates considered for statistical adjustments included race (only for the pooled sample), age, BMI, waist circumstance, smoking status, and alcohol drinking. RESULTS Of the 1133 untargeted compounds, we identified 7 metabolites associated with PA levels in the pooled sample after covariate adjustment with a false discovery rate of 0.15. Specifically, compared to participants who did not exercise, those who exercised at a frequency ≥3 times/week showed higher abundances in uracil, orotate, 1-(1-enyl-palmitoyl)-2-oleoyl-GPE (P-16:0/18:1) (GPE), threonate, and glycerate, but lower abundances in salicyluric glucuronide and adenine in the pooled sample. However, in Whites, salicyluric glucuronide and orotate were not significant. Adenine, GPE, and threonate were not significant in AAs. In addition, the seven metabolites were not significantly different between participants who exercised ≥3 times/week and 1-2 times/week, nor significantly different between participants with 1-2 times/week and 0/week in the pooled sample and respective White and AA groups. CONCLUSIONS Metabolite responses to PA are dose sensitive and may differ between White and AA populations. The identified metabolites may help advance our knowledge of guiding precision PA interventions. Studies with rigorous study designs are warranted to elucidate the relationship between PA and metabolites.
Collapse
Affiliation(s)
- Yan Du
- School of Nursing, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Yuan-Yuan Li
- Department of Nutrition, Nutrition Research Institute, University of North Carolina at Chapel Hill School of Public Health, Kannapolis, North Carolina, United States of America
| | - Byeong Yeob Choi
- Department of Population Health Sciences, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Roman Fernadez
- Department of Population Health Sciences, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Kuan-Jui Su
- Tulane Center for Biomedical Informatics and Genomics, School of Medicine, Tulane University; New Orleans, LA, United States of America
| | - Kumar Sharma
- Center for Precision Medicine, School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Lu Qi
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University; New Orleans, LA, United States of America
| | - Zenong Yin
- Department of Public Health, University of Texas at San Antonio, San Antonio, TX, United States of America
| | - Qi Zhao
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Hui Shen
- Tulane Center for Biomedical Informatics and Genomics, School of Medicine, Tulane University; New Orleans, LA, United States of America
| | - Chuan Qiu
- Tulane Center for Biomedical Informatics and Genomics, School of Medicine, Tulane University; New Orleans, LA, United States of America
| | - Lan-Juan Zhao
- Tulane Center for Biomedical Informatics and Genomics, School of Medicine, Tulane University; New Orleans, LA, United States of America
| | - Zhe Luo
- Tulane Center for Biomedical Informatics and Genomics, School of Medicine, Tulane University; New Orleans, LA, United States of America
| | - Li Wu
- Tulane Center for Biomedical Informatics and Genomics, School of Medicine, Tulane University; New Orleans, LA, United States of America
| | - Qing Tian
- Tulane Center for Biomedical Informatics and Genomics, School of Medicine, Tulane University; New Orleans, LA, United States of America
| | - Hong-Wen Deng
- Tulane Center for Biomedical Informatics and Genomics, School of Medicine, Tulane University; New Orleans, LA, United States of America
| |
Collapse
|
39
|
Muniz-Santos R, Magno-França A, Jurisica I, Cameron LC. From Microcosm to Macrocosm: The -Omics, Multiomics, and Sportomics Approaches in Exercise and Sports. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2023; 27:499-518. [PMID: 37943554 DOI: 10.1089/omi.2023.0169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
This article explores the progressive integration of -omics methods, including genomics, metabolomics, and proteomics, into sports research, highlighting the development of the concept of "sportomics." We discuss how sportomics can be used to comprehend the multilevel metabolism during exercise in real-life conditions faced by athletes, enabling potential personalized interventions to improve performance and recovery and reduce injuries, all with a minimally invasive approach and reduced time. Sportomics may also support highly personalized investigations, including the implementation of n-of-1 clinical trials and the curation of extensive datasets through long-term follow-up of athletes, enabling tailored interventions for athletes based on their unique physiological responses to different conditions. Beyond its immediate sport-related applications, we delve into the potential of utilizing the sportomics approach to translate Big Data regarding top-level athletes into studying different human diseases, especially with nontargeted analysis. Furthermore, we present how the amalgamation of bioinformatics, artificial intelligence, and integrative computational analysis aids in investigating biochemical pathways, and facilitates the search for various biomarkers. We also highlight how sportomics can offer relevant information about doping control analysis. Overall, sportomics offers a comprehensive approach providing novel insights into human metabolism during metabolic stress, leveraging cutting-edge systems science techniques and technologies.
Collapse
Affiliation(s)
- Renan Muniz-Santos
- Laboratory of Protein Biochemistry, The Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alexandre Magno-França
- Laboratory of Protein Biochemistry, The Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Igor Jurisica
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute and Data Science Discovery Centre for Chronic Diseases, Krembil Research Institute, University Health Network, Toronto, Canada
- Departments of Medical Biophysics and Computer Science, and Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - L C Cameron
- Laboratory of Protein Biochemistry, The Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
40
|
Smith IC, Chakraborty S, Bourque PR, Sampaio ML, Melkus G, Lochmüller H, Woulfe J, Parks RJ, Brais B, Warman-Chardon J. Emerging and established biomarkers of oculopharyngeal muscular dystrophy. Neuromuscul Disord 2023; 33:824-834. [PMID: 37926637 DOI: 10.1016/j.nmd.2023.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 11/07/2023]
Abstract
Oculopharyngeal muscular dystrophy (OPMD) is a rare, primarily autosomal dominant, late onset muscular dystrophy commonly presenting with ptosis, dysphagia, and subsequent weakness of proximal muscles. Although OPMD diagnosis can be confirmed with high confidence by genetic testing, the slow progression of OPMD poses a significant challenge to clinical monitoring and a barrier to assessing the efficacy of treatments during clinical trials. Accordingly, there is a pressing need for more sensitive measures of OPMD progression, particularly those which do not require a muscle biopsy. This review provides an overview of progress in OPMD biomarkers from clinical assessment, quantitative imaging, histological assessments, and genomics, as well as hypothesis-generating "omics" approaches. The ongoing search for biomarkers relevant to OPMD progression needs an integrative, longitudinal approach combining validated and experimental approaches which may include clinical, imaging, demographic, and biochemical assessment methods. A multi-omics approach to biochemical biomarker discovery could help provide context for differences found between individuals with varying levels of disease activity and provide insight into pathomechanisms and prognosis of OPMD.
Collapse
Affiliation(s)
- Ian C Smith
- The Ottawa Hospital Research Institute, Ottawa, ON K1Y 4E9, Canada
| | | | - Pierre R Bourque
- Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Department of Medicine, The Ottawa Hospital/University of Ottawa, Ottawa, ON K1H 8L6, Canada; Eric Poulin Centre for Neuromuscular Disease, University of Ottawa, Ottawa, ON K1Y 4E9, Canada
| | - Marcos L Sampaio
- Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Eric Poulin Centre for Neuromuscular Disease, University of Ottawa, Ottawa, ON K1Y 4E9, Canada; Department of Medical Imaging, The Ottawa Hospital, Ottawa, Ontario K1Y 4E9, Canada; Department of Radiology, Radiation Oncology and Medical Physics, University of Ottawa, Ottawa, ON K1H 8L6, Canada
| | - Gerd Melkus
- Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Eric Poulin Centre for Neuromuscular Disease, University of Ottawa, Ottawa, ON K1Y 4E9, Canada; Department of Medical Imaging, The Ottawa Hospital, Ottawa, Ontario K1Y 4E9, Canada; Department of Physics, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Hanns Lochmüller
- The Ottawa Hospital Research Institute, Ottawa, ON K1Y 4E9, Canada; Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Department of Medicine, The Ottawa Hospital/University of Ottawa, Ottawa, ON K1H 8L6, Canada; Eric Poulin Centre for Neuromuscular Disease, University of Ottawa, Ottawa, ON K1Y 4E9, Canada; Genetics, Children's Hospital of Eastern Ontario, Ottawa, ON K1H 8L1, Canada
| | - John Woulfe
- The Ottawa Hospital Research Institute, Ottawa, ON K1Y 4E9, Canada; Eric Poulin Centre for Neuromuscular Disease, University of Ottawa, Ottawa, ON K1Y 4E9, Canada; Department of Pathology and Laboratory Medicine, The Ottawa Hospital, Ottawa, ON K1Y 4E9, Canada
| | - Robin J Parks
- The Ottawa Hospital Research Institute, Ottawa, ON K1Y 4E9, Canada; Department of Medicine, The Ottawa Hospital/University of Ottawa, Ottawa, ON K1H 8L6, Canada; Eric Poulin Centre for Neuromuscular Disease, University of Ottawa, Ottawa, ON K1Y 4E9, Canada
| | - Bernard Brais
- Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Jodi Warman-Chardon
- The Ottawa Hospital Research Institute, Ottawa, ON K1Y 4E9, Canada; Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Department of Medicine, The Ottawa Hospital/University of Ottawa, Ottawa, ON K1H 8L6, Canada; Eric Poulin Centre for Neuromuscular Disease, University of Ottawa, Ottawa, ON K1Y 4E9, Canada; Genetics, Children's Hospital of Eastern Ontario, Ottawa, ON K1H 8L1, Canada; Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec H3A 2B4, Canada.
| |
Collapse
|
41
|
Smith AM, Donley ELR, Ney DM, Amaral DG, Burrier RE, Natowicz MR. Metabolomic biomarkers in autism: identification of complex dysregulations of cellular bioenergetics. Front Psychiatry 2023; 14:1249578. [PMID: 37928922 PMCID: PMC10622772 DOI: 10.3389/fpsyt.2023.1249578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/30/2023] [Indexed: 11/07/2023] Open
Abstract
Autism Spectrum Disorder (ASD or autism) is a phenotypically and etiologically heterogeneous condition. Identifying biomarkers of clinically significant metabolic subtypes of autism could improve understanding of its underlying pathophysiology and potentially lead to more targeted interventions. We hypothesized that the application of metabolite-based biomarker techniques using decision thresholds derived from quantitative measurements could identify autism-associated subpopulations. Metabolomic profiling was carried out in a case-control study of 499 autistic and 209 typically developing (TYP) children, ages 18-48 months, enrolled in the Children's Autism Metabolome Project (CAMP; ClinicalTrials.gov Identifier: NCT02548442). Fifty-four metabolites, associated with amino acid, organic acid, acylcarnitine and purine metabolism as well as microbiome-associated metabolites, were quantified using liquid chromatography-tandem mass spectrometry. Using quantitative thresholds, the concentrations of 4 metabolites and 149 ratios of metabolites were identified as biomarkers, each identifying subpopulations of 4.5-11% of the CAMP autistic population. A subset of 42 biomarkers could identify CAMP autistic individuals with 72% sensitivity and 90% specificity. Many participants were identified by several metabolic biomarkers. Using hierarchical clustering, 30 clusters of biomarkers were created based on participants' biomarker profiles. Metabolic changes associated with the clusters suggest that altered regulation of cellular metabolism, especially of mitochondrial bioenergetics, were common metabolic phenotypes in this cohort of autistic participants. Autism severity and cognitive and developmental impairment were associated with increased lactate, many lactate containing ratios, and the number of biomarker clusters a participant displayed. These studies provide evidence that metabolic phenotyping is feasible and that defined autistic subgroups can lead to enhanced understanding of the underlying pathophysiology and potentially suggest pathways for targeted metabolic treatments.
Collapse
Affiliation(s)
- Alan M. Smith
- Stemina Biomarker Discovery, Inc, Madison, WI, United States
| | | | - Denise M. Ney
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, United States
| | - David G. Amaral
- Department of Psychiatry and Behavioral Sciences, The MIND Institute, University of California, Davis, Davis, CA, United States
| | | | - Marvin R. Natowicz
- Pathology and Laboratory Medicine, Genomic Medicine, Neurological and Pediatrics Institutes, Cleveland Clinic, Cleveland, OH, United States
| |
Collapse
|
42
|
Li C, Bundy JD, Tian L, Zhang R, Chen J, Kelly TN, He J. Examination of Serum Metabolome Altered by Dietary Carbohydrate, Milk Protein, and Soy Protein Interventions Identified Novel Metabolites Associated with Blood Pressure: The ProBP Trial. Mol Nutr Food Res 2023; 67:e2300044. [PMID: 37650262 PMCID: PMC10592004 DOI: 10.1002/mnfr.202300044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/08/2023] [Indexed: 09/01/2023]
Abstract
SCOPE This study aims to discover metabolites of dietary carbohydrate, soy and milk protein supplements and evaluate their roles in blood pressure (BP) regulation in the protein and blood pressure (ProBP), a cross-over trial. METHODS AND RESULTS Plasma metabolites are profiled at pre-trial baseline and after 8 weeks of supplementation with carbohydrate, soy protein, and milk protein, respectively, among 80 ProBP participants. After Bonferroni correction (α = 6.49 × 10-4 ), dietary interventions significantly changed 40 metabolites. Changes of erucate (22:1n9), an omega-9 fatty acid, are positively associated with systolic BP changes (Beta = 1.90, p = 6·27 × 10-4 ). This metabolite is also associated with higher odds of hypertension among 1261 participants of an independent cohort (odds ratio per unit increase = 1.34; 95% confidence interval: 1.07-1.68). High levels of acylcholines dihomo-linolenoyl-choline (p = 4.71E-04) and oleoylcholine (p = 3.48E-04) at baseline predicted larger BP lowering effects of soy protein. Increasing cheese intake during the trial, as reflected by isobutyrylglycine and isovalerylglycine, reduces the BP lowering effect of soy protein. CONCLUSIONS The study identifies molecular signatures of dietary interventions. Erucate (22:1n9) increases systolic BP. Acylcholine enhances and cheese intake reduces the BP lowering effect of soy protein supplement.
Collapse
Affiliation(s)
- Changwei Li
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine
| | - Joshua D. Bundy
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine
| | - Ling Tian
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine
| | - Ruiyuan Zhang
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine
| | - Jing Chen
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine
- Department of Medicine, Tulane University School of Medicine
| | - Tanika N. Kelly
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine
| | - Jiang He
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine
- Department of Medicine, Tulane University School of Medicine
| |
Collapse
|
43
|
Shi Y, Wu W. Multimodal non-invasive non-pharmacological therapies for chronic pain: mechanisms and progress. BMC Med 2023; 21:372. [PMID: 37775758 PMCID: PMC10542257 DOI: 10.1186/s12916-023-03076-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 09/11/2023] [Indexed: 10/01/2023] Open
Abstract
BACKGROUND Chronic pain conditions impose significant burdens worldwide. Pharmacological treatments like opioids have limitations. Non-invasive non-pharmacological therapies (NINPT) encompass diverse interventions including physical, psychological, complementary and alternative approaches, and other innovative techniques that provide analgesic options for chronic pain without medications. MAIN BODY This review elucidates the mechanisms of major NINPT modalities and synthesizes evidence for their clinical potential across chronic pain populations. NINPT leverages peripheral, spinal, and supraspinal mechanisms to restore normal pain processing and limit central sensitization. However, heterogeneity in treatment protocols and individual responses warrants optimization through precision medicine approaches. CONCLUSION Future adoption of NINPT requires addressing limitations in standardization and accessibility as well as synergistic combination with emerging therapies. Overall, this review highlights the promise of NINPT as a valuable complementary option ready for integration into contemporary pain medicine paradigms to improve patient care and outcomes.
Collapse
Affiliation(s)
- Yu Shi
- Department of Rehabilitation, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Wen Wu
- Department of Rehabilitation, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China.
| |
Collapse
|
44
|
Loureiro LL, Ferreira TJ, Cahuê FLC, Bittencourt VZ, Valente AP, Pierucci APTR. Comparison of the effects of pea protein and whey protein on the metabolic profile of soccer athletes: a randomized, double-blind, crossover trial. Front Nutr 2023; 10:1210215. [PMID: 37810915 PMCID: PMC10556705 DOI: 10.3389/fnut.2023.1210215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/31/2023] [Indexed: 10/10/2023] Open
Abstract
Introduction Pea protein (PP) concentrate is a plant-based alternative to animal protein sources, such as whey protein (WP). In addition to its valuable amino acid composition, PP has a low environmental impact, making it a sustainable, nutritious, and viable alternative for enhanced sports performance, such as in soccer. PP Therefore, this study aimed to evaluate the effects of PP and WP supplementation on biochemical and metabolic parameters in soccer players. Methods Twelve male under-20 soccer players were included in this double-blind, randomized crossover intervention study. For 10 consecutive days, each participant received either 0.5 g/kg of the PP or WP supplementation after training, starting 7 days before the test game, and continuing until 2 days after. After a 4-day washout period, the athletes switched groups and the intervention was restarted. Blood samples were collected before and after the game, as well as 24 h, 48 h, and 72 h intervals thereafter. Creatine kinase (CK), aspartate transaminase, alanine transaminase (ALT), lactate (LA), urea, creatinine, and uric acid were analyzed using commercial kits. Exploratory metabolic profiling of the serum samples was performed using nuclear magnetic resonance spectroscopy. Results A comparison of biochemical markers showed that the PP group had lower CK in the post-game moment, 24 h, and 48 h. Lower LA in the post-game moment, and lower ALT in the post-game moment and at 24 h. Of the 48 metabolites analyzed, 22 showed significant differences between the time points, such as amino acids, ketone bodies, and glucose metabolism. Glutamate and lactate levels significantly increased between the pre- and post-game moments in the WP group. After the game, the WP group exhibited reduced levels of metabolites such as arginine and taurine, whereas no such change was observed in the PP group. There was no difference in metabolites 72 h after the game. Conclusions Despite the slight advantage of the PP group in specific biochemical markers, these differences are not sufficient to justify the choice of a particular type of protein. However, the results highlight the viability of plant protein as a potential alternative to animal protein without compromising athletic performance or recovery.
Collapse
Affiliation(s)
- Luiz Lannes Loureiro
- DAFEE Laboratory, Institute of Nutrition, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tathiany Jéssica Ferreira
- DAFEE Laboratory, Institute of Nutrition, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fábio Luiz Candido Cahuê
- DAFEE Laboratory, Institute of Nutrition, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Victor Zaban Bittencourt
- DAFEE Laboratory, Institute of Nutrition, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Paula Valente
- CNRMN, Structural Biology, Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | |
Collapse
|
45
|
Khataei T, Benson CJ. ASIC3 plays a protective role in delayed-onset muscle soreness (DOMS) through muscle acid sensation during exercise. FRONTIERS IN PAIN RESEARCH 2023; 4:1215197. [PMID: 37795390 PMCID: PMC10546048 DOI: 10.3389/fpain.2023.1215197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 08/10/2023] [Indexed: 10/06/2023] Open
Abstract
Immediate exercise-induced pain (IEIP) and DOMS are two types of exercise-induced muscle pain and can act as barriers to exercise. The burning sensation of IEIP occurs during and immediately after intensive exercise, whereas the soreness of DOMS occurs later. Acid-sensing ion channels (ASICs) within muscle afferents are activated by H+ and other chemicals and have been shown to play a role in various chronic muscle pain conditions. Here, we further defined the role of ASICs in IEIP, and also tested if ASIC3 is required for DOMS. After undergoing exhaustive treadmill exercise, exercise-induced muscle pain was assessed in wild-type (WT) and ASIC3-/- mice at baseline via muscle withdrawal threshold (MWT), immediately, and 24 h after exercise. Locomotor movement, grip strength, and repeat exercise performance were tested at baseline and 24 h after exercise to evaluate DOMS. We found that ASIC3-/- had similar baseline muscle pain, locomotor activity, grip strength, and exercise performance as WT mice. WT showed diminished MWT immediately after exercise indicating they developed IEIP, but ASIC3-/- mice did not. At 24 h after baseline exercise, both ASIC3-/- and WT had similarly lower MWT and grip strength, however, ASIC3-/- displayed significantly lower locomotor activity and repeat exercise performance at 24 h time points compared to WT. In addition, ASIC3-/- mice had higher muscle injury as measured by serum lactate dehydrogenase and creatine kinase levels at 24 h after exercise. These results show that ASIC3 is required for IEIP, but not DOMS, and in fact might play a protective role to prevent muscle injury associated with strenuous exercise.
Collapse
Affiliation(s)
- Tahsin Khataei
- Department of Internal Medicine, Roy J and Lucile A. Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Iowa City VA Healthcare System, Iowa City, IA, United States
- Department of Health and Human Physiology, University of Iowa, Iowa City, IA, United States
| | - Christopher J. Benson
- Department of Internal Medicine, Roy J and Lucile A. Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Iowa City VA Healthcare System, Iowa City, IA, United States
| |
Collapse
|
46
|
Osuna-Prieto FJ, Jurado-Fasoli L, Plaza-Florido A, Yang W, Kohler I, Di X, Rubio-López J, Sanchez-Delgado G, Rensen PCN, Ruiz JR, Martinez-Tellez B. A bout of endurance and resistance exercise transiently decreases plasma levels of bile acids in young, sedentary adults. Scand J Med Sci Sports 2023; 33:1607-1620. [PMID: 37278109 DOI: 10.1111/sms.14405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/28/2023] [Accepted: 05/12/2023] [Indexed: 06/07/2023]
Abstract
Circulating bile acids (BA) are signaling molecules that control glucose and lipid metabolism. However, the effects of acute exercise on plasma levels of BA in humans remain poorly understood. Here, we evaluate the effects of a bout of maximal endurance exercise (EE) and resistance exercise (RE) on plasma levels of BA in young, sedentary adults. Concentration of eight plasma BA was measured by liquid chromatography-tandem mass spectrometry before and 3, 30, 60, and 120 min after each exercise bout. Cardiorespiratory fitness (CRF) was assessed in 14 young adults (21.8 ± 2.5 yo, 12 women); muscle strength was assessed in 17 young adults (22.4 ± 2.5 yo, 11 women). EE transiently decreased plasma levels of total, primary, and secondary BA at 3 and 30 min after exercise. RE exerted a prolonged reduction in plasma levels of secondary BA (p < 0.001) that lasted until 120 min. Primary BA levels of cholic acid (CA) and chenodeoxycholic acid (CDCA) were different across individuals with low/high CRF levels after EE (p ≤ 0.044); CA levels were different across individuals with low/high handgrip strength levels. High CRF individuals presented higher levels of CA and CDCA 120 min after exercise vs baseline (+77% and +65%) vs the low CRF group (-5% and -39%). High handgrip strength levels individuals presented higher levels of CA 120 min after exercise versus baseline (+63%) versus the low handgrip strength group (+6%). The study findings indicate that an individual's level of physical fitness can influence how circulating BA respond to both endurance and resistance exercise. Additionally, the study suggests that changes in plasma BA levels after exercising could be related to the control of glucose homeostasis in humans.
Collapse
Affiliation(s)
- Francisco J Osuna-Prieto
- Department of Physical Education and Sports, Faculty of Sports Science, Sport and Health University Research Institute (iMUDS), University of Granada, Granada, Spain
- Department of Analytical Chemistry, University of Granada, Granada, Spain
| | - Lucas Jurado-Fasoli
- Department of Physical Education and Sports, Faculty of Sports Science, Sport and Health University Research Institute (iMUDS), University of Granada, Granada, Spain
- Department of Physiology, Faculty of Medicine, University of Granada, Granada, Spain
| | - Abel Plaza-Florido
- Department of Physical Education and Sports, Faculty of Sports Science, Sport and Health University Research Institute (iMUDS), University of Granada, Granada, Spain
- Pediatric Exercise and Genomics Research Center, University of California at Irvine, Irvine, California, USA
| | - Wei Yang
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, the Netherlands
| | - Isabelle Kohler
- Division of BioAnalytical Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Amsterdam, the Netherlands
- Center for Analytical Sciences Amsterdam, Amsterdam, the Netherlands
| | - Xinyu Di
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, the Netherlands
| | - José Rubio-López
- Department of Physical Education and Sports, Faculty of Sports Science, Sport and Health University Research Institute (iMUDS), University of Granada, Granada, Spain
- Cirugía General y del Aparato Digestivo, Complejo Hospitalario de Jaen, Jaen, Spain
| | - Guillermo Sanchez-Delgado
- Department of Physical Education and Sports, Faculty of Sports Science, Sport and Health University Research Institute (iMUDS), University of Granada, Granada, Spain
- Pennington Biomedical Research Center, Baton Rouge, Baton Rouge, Louisiana, USA
- Department of Medicine, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Canada
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Granada, Spain
| | - Patrick C N Rensen
- Department of Medicine, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Centre, Leiden, the Netherlands
| | - Jonatan R Ruiz
- Department of Physical Education and Sports, Faculty of Sports Science, Sport and Health University Research Institute (iMUDS), University of Granada, Granada, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Granada, Spain
- Instituto de Investigación Biosanitaria, ibs. Granada, Granada, Spain
| | - Borja Martinez-Tellez
- Department of Physical Education and Sports, Faculty of Sports Science, Sport and Health University Research Institute (iMUDS), University of Granada, Granada, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Granada, Spain
- Department of Medicine, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Centre, Leiden, the Netherlands
- Department of Education, Faculty of Education Sciences and SPORT Research Group (CTS-1024), CERNEP Research Center, University of Almería, Almería, Spain
| |
Collapse
|
47
|
Almuraikhy S, Anwardeen N, Doudin A, Sellami M, Domling A, Agouni A, Althani AA, Elrayess MA. Antioxidative Stress Metabolic Pathways in Moderately Active Individuals. Metabolites 2023; 13:973. [PMID: 37755253 PMCID: PMC10535328 DOI: 10.3390/metabo13090973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/23/2023] [Accepted: 08/23/2023] [Indexed: 09/28/2023] Open
Abstract
Physical activity (PA) is known to have beneficial effects on health, primarily through its antioxidative stress properties. However, the specific metabolic pathways that underlie these effects are not fully understood. This study aimed to investigate the metabolic pathways that are involved in the protective effects of moderate PA in non-obese and healthy individuals. Data on 305 young, non-obese participants were obtained from the Qatar Biobank. The participants were classified as active or sedentary based on their self-reported PA levels. Plasma metabolomics data were collected and analyzed to identify differences in metabolic pathways between the two groups. The results showed that active participants had increased activation of antioxidative, stress-related pathways, including lysoplasmalogen, plasmalogen, phosphatidylcholine, vitamin A, and glutathione. Additionally, there were significant associations between glutathione metabolites and certain clinical traits, including bilirubin, uric acid, hemoglobin, and iron. This study provides new insights into the metabolic pathways that are involved in the protective effects of moderate PA in non-obese and healthy individuals. The findings may have implications for the development of new therapeutic strategies that target these pathways.
Collapse
Affiliation(s)
- Shamma Almuraikhy
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar
- Groningen Research Institute of Pharmacy, Drug Design, Groningen University, 9713 AV Groningen, The Netherlands
| | - Najeha Anwardeen
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar
| | - Asmma Doudin
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar
| | - Maha Sellami
- Physical Education Department (PE), College of Education, Qatar University, Doha P.O. Box 2713, Qatar
| | - Alexander Domling
- Groningen Research Institute of Pharmacy, Drug Design, Groningen University, 9713 AV Groningen, The Netherlands
| | - Abdelali Agouni
- College of Pharmacy, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| | - Asmaa A. Althani
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar
- Department of Biomedical Sciences, College of Health Science, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| | - Mohamed A. Elrayess
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar
- College of Pharmacy, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| |
Collapse
|
48
|
Kanope T, Santos CGM, Marinho F, Monnerat G, Campos-Junior M, da Fonseca ACP, Zembrzuski VM, de Assis M, Pfaffl MW, Pimenta E. Replicative Study in Performance-Related Genes of Brazilian Elite Soccer Players Highlights Genetic Differences from African Ancestry and Similarities between Professional and U20 Youth Athletes. Genes (Basel) 2023; 14:1446. [PMID: 37510350 PMCID: PMC10379729 DOI: 10.3390/genes14071446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Classically, genetic association studies have attempted to assess genetic polymorphisms related to human physiology and physical performance. However, the heterogeneity of some findings drives the research to replicate, validate, and confirmation as essential aspects for ensuring their applicability in sports sciences. Genetic distance matrix and molecular variance analyses may offer an alternative approach to comparing athletes' genomes with those from public databases. Thus, we performed a complete sequencing of 44 genomes from male Brazilian first-division soccer players under 20 years of age (U20_BFDSC). The performance-related SNP genotypes were obtained from players and from the "1000 Genomes" database (European, African, American, East Asian, and South Asian). Surprisingly, U20_BFDSC performance-related genotypes had significantly larger FST levels (p < 0.00001) than African populations, although studies using ancestry markers have shown an important similarity between Brazilian and African populations (12-24%). U20_BFDSC were genetically similar to professional athletes, showing the intense genetic selection pressure likely to occur before this maturation stage. Our study highlighted that performance-related genes might undergo selective pressure due to physical performance and environmental, cognitive, and sociocultural factors. This replicative study suggests that molecular variance and Wright's statistics can yield novel conclusions in exercise science.
Collapse
Affiliation(s)
- Tane Kanope
- UFMG Soccer Science Center, School of Physical Education, Physiotherapy and Occupational Therapy, Federal University of Minas Gerais, Belo Horizonte 31250810, Brazil
| | - Caleb G M Santos
- Department of Animal Physiology and Immunology, School of Life Sciences, Technical University of Munich, Weihenstephaner Berg 3, 85354 Freising, Germany
- Teaching and Research Division, Brazilian Army Institute of Biology, Rio de Janeiro 20911270, Brazil
| | | | - Gustavo Monnerat
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941902, Brazil
| | - Mario Campos-Junior
- Human Genetics Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro 21040360, Brazil
| | - Ana Carolina P da Fonseca
- Human Genetics Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro 21040360, Brazil
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Rio de Janeiro 21045900, Brazil
| | - Verônica M Zembrzuski
- Human Genetics Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro 21040360, Brazil
| | - Miller de Assis
- UFMG Soccer Science Center, School of Physical Education, Physiotherapy and Occupational Therapy, Federal University of Minas Gerais, Belo Horizonte 31250810, Brazil
| | - Michael W Pfaffl
- Department of Animal Physiology and Immunology, School of Life Sciences, Technical University of Munich, Weihenstephaner Berg 3, 85354 Freising, Germany
| | - Eduardo Pimenta
- UFMG Soccer Science Center, School of Physical Education, Physiotherapy and Occupational Therapy, Federal University of Minas Gerais, Belo Horizonte 31250810, Brazil
| |
Collapse
|
49
|
Hintikka JE, Ahtiainen JP, Permi P, Jalkanen S, Lehtonen M, Pekkala S. Aerobic exercise training and gut microbiome-associated metabolic shifts in women with overweight: a multi-omic study. Sci Rep 2023; 13:11228. [PMID: 37433843 DOI: 10.1038/s41598-023-38357-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/06/2023] [Indexed: 07/13/2023] Open
Abstract
Physical activity is essential in weight management, improves overall health, and mitigates obesity-related risk markers. Besides inducing changes in systemic metabolism, habitual exercise may improve gut's microbial diversity and increase the abundance of beneficial taxa in a correlated fashion. Since there is a lack of integrative omics studies on exercise and overweight populations, we studied the metabolomes and gut microbiota associated with programmed exercise in obese individuals. We measured the serum and fecal metabolites of 17 adult women with overweight during a 6-week endurance exercise program. Further, we integrated the exercise-responsive metabolites with variations in the gut microbiome and cardiorespiratory parameters. We found clear correlation with several serum and fecal metabolites, and metabolic pathways, during the exercise period in comparison to the control period, indicating increased lipid oxidation and oxidative stress. Especially, exercise caused co-occurring increase in levels of serum lyso-phosphatidylcholine moieties and fecal glycerophosphocholine. This signature was associated with several microbial metagenome pathways and the abundance of Akkermansia. The study demonstrates that, in the absence of body composition changes, aerobic exercise can induce metabolic shifts that provide substrates for beneficial gut microbiota in overweight individuals.
Collapse
Affiliation(s)
- Jukka E Hintikka
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland.
| | - Juha P Ahtiainen
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Perttu Permi
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
- Department of Chemistry, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Sirpa Jalkanen
- MediCity and InFLAMES Flagship, University of Turku, Turku, Finland
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Marko Lehtonen
- Faculty of Health Sciences, School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Satu Pekkala
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
50
|
Wei W, Riley NM, Lyu X, Shen X, Guo J, Raun SH, Zhao M, Moya-Garzon MD, Basu H, Sheng-Hwa Tung A, Li VL, Huang W, Wiggenhorn AL, Svensson KJ, Snyder MP, Bertozzi CR, Long JZ. Organism-wide, cell-type-specific secretome mapping of exercise training in mice. Cell Metab 2023; 35:1261-1279.e11. [PMID: 37141889 PMCID: PMC10524249 DOI: 10.1016/j.cmet.2023.04.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 02/21/2023] [Accepted: 04/05/2023] [Indexed: 05/06/2023]
Abstract
There is a significant interest in identifying blood-borne factors that mediate tissue crosstalk and function as molecular effectors of physical activity. Although past studies have focused on an individual molecule or cell type, the organism-wide secretome response to physical activity has not been evaluated. Here, we use a cell-type-specific proteomic approach to generate a 21-cell-type, 10-tissue map of exercise training-regulated secretomes in mice. Our dataset identifies >200 exercise training-regulated cell-type-secreted protein pairs, the majority of which have not been previously reported. Pdgfra-cre-labeled secretomes were the most responsive to exercise training. Finally, we show anti-obesity, anti-diabetic, and exercise performance-enhancing activities for proteoforms of intracellular carboxylesterases whose secretion from the liver is induced by exercise training.
Collapse
Affiliation(s)
- Wei Wei
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Biology, Stanford University, Stanford, CA 94305, USA; Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA
| | - Nicholas M Riley
- Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA; Department of Chemistry, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Xuchao Lyu
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA; Wu Tsai Human Performance Alliance, Stanford University, Stanford, CA 94305, USA
| | - Xiaotao Shen
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94035, USA
| | - Jing Guo
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Steffen H Raun
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Meng Zhao
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA 94305, USA; Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Maria Dolores Moya-Garzon
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA
| | - Himanish Basu
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Alan Sheng-Hwa Tung
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA
| | - Veronica L Li
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA; Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Wentao Huang
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Amanda L Wiggenhorn
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA; Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Katrin J Svensson
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA 94305, USA; Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michael P Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94035, USA; Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA 94305, USA; Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Carolyn R Bertozzi
- Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA; Department of Chemistry, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Jonathan Z Long
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA; Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA 94305, USA; Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Wu Tsai Human Performance Alliance, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|