1
|
Drexhage HA, Bergink V, Poletti S, Benedetti F, Osborne LM. Conventional and new immunotherapies for immune system dysregulation in postpartum mood disorders: comparisons to immune system dysregulations in bipolar disorder, major depression, and postpartum autoimmune thyroid disease. Expert Rev Clin Immunol 2024:1-23. [PMID: 39441185 DOI: 10.1080/1744666x.2024.2420053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/17/2024] [Accepted: 10/18/2024] [Indexed: 10/25/2024]
Abstract
INTRODUCTION Postpartum mood disorders are heterogenous disorders and comprise postpartum psychosis and postpartum depression. Evidence is accumulating that systemic monocyte/macrophage activation, low-grade inflammation and (premature senescence related) T cell defects increase the risk for mood disorders outside pregnancy by affecting the function of microglia and T cells in the emotional brain (the cortico-limbic system) leading to inadequate mood regulation upon stress. AREAS COVERED The evidence in the literature that similar immune dysregulations are present in postpartum mood disorders. RESULTS The physiological postpartum period is characterized by a rapid T cell surge and a mild activation of the monocyte/macrophage system. Postpartum mood disorder patients show a diminished T cell surge (including that of T regulatory cells) and an increase in low grade inflammation, that is, an increased inflammatory state of monocytes/macrophages and higher levels of serum pro-inflammatory cytokines. EXPERT OPINION Anti-inflammatory agents (e.g. COX-2 inhibitors) and T cell boosting agents (e.g. low-dose IL-2 therapy) should be further investigated as treatment. The hypothesis should be investigated that postpartum mood disorders are active episodes (triggered by changes in the postpartum immuno-endocrine milieu) in ongoing, dynamically fluctuating aberrant neuro-immune-endocrine trajectories leading to mood disorders in women (inheritably) vulnerable to these disorders.
Collapse
Affiliation(s)
- Hemmo A Drexhage
- Department of Immunology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Veerle Bergink
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Sara Poletti
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milano, Italy
- Università Vita-Salute San Raffaele, Milano, Italy
| | - Francesco Benedetti
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milano, Italy
- Università Vita-Salute San Raffaele, Milano, Italy
| | - Lauren M Osborne
- Departments of Obstetrics and Gynecology and of Psychiatry, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
2
|
Du J, Baranova A, Zhang G, Zhang F. The causal relationship between immune cell traits and schizophrenia: a Mendelian randomization analysis. Front Immunol 2024; 15:1452214. [PMID: 39399496 PMCID: PMC11466782 DOI: 10.3389/fimmu.2024.1452214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/09/2024] [Indexed: 10/08/2024] Open
Abstract
Introduction The complex and unresolved pathogenesis of schizophrenia has posed significant challenges to its diagnosis and treatment. While recent research has established a clear association between immune function and schizophrenia, the causal relationship between the two remains elusive. Methods We employed a bidirectional two-sample Mendelian randomization approach to investigate the causal relationship between schizophrenia and 731 immune cell traits by utilizing public GWAS data. We further validated the causal relationship between schizophrenia and six types of white cell measures. Results We found the overall causal effects of schizophrenia on immune cell traits were significantly higher than the reverse ones (0.011 ± 0.049 vs 0.001 ± 0.016, p < 0.001), implying that disease may lead to an increase in immune cells by itself. We also identified four immune cell traits that may increase the risk of schizophrenia: CD11c+ monocyte %monocyte (odds ratio (OR): 1.06, 95% confidence interval (CI): 1.03~1.09, FDR = 0.027), CD11c+ CD62L- monocyte %monocyte (OR:1.06, 95% CI: 1.03~1.09, FDR = 0.027), CD25 on IgD+ CD38- naive B cell (OR:1.03, 95% CI:1.01~1.06, FDR = 0.042), and CD86 on monocyte (OR = 1.04, 95% CI:1.01~1.06, FDR = 0.042). However, we did not detect any significant causal effects of schizophrenia on immune cell traits. Using the white blood cell traits data, we identified that schizophrenia increases the lymphocyte counts (OR:1.03, 95%CI: 1.01-1.04, FDR = 0.007), total white blood cell counts (OR:1.02, 95%CI: 1.01-1.04, FDR = 0.021) and monocyte counts (OR:1.02, 95%CI: 1.00-1.03, FDR = 0.034). The lymphocyte counts were nominally associated with the risk of schizophrenia (OR:1.08,95%CI:1.01-1.16, P=0.019). Discussion Our study found that the causal relationship between schizophrenia and the immune system is complex, enhancing our understanding of the role of immune regulation in the development of this disorder. These findings offer new insights for exploring diagnostic and therapeutic options for schizophrenia.
Collapse
Affiliation(s)
- Jianbin Du
- Department of Geriatric Psychiatry, The Affiliated Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, Jiangsu, China
| | - Ancha Baranova
- School of Systems Biology, George Mason University, Fairfax, VA, United States
- Research Centre for Medical Genetics, Moscow, Russia
| | - Guofu Zhang
- Department of Geriatric Psychiatry, The Affiliated Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, Jiangsu, China
| | - Fuquan Zhang
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
- Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
3
|
Chen S, Tan Y, Tian L. Immunophenotypes in psychosis: is it a premature inflamm-aging disorder? Mol Psychiatry 2024; 29:2834-2848. [PMID: 38532012 PMCID: PMC11420084 DOI: 10.1038/s41380-024-02539-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 03/28/2024]
Abstract
Immunopsychiatric field has rapidly accumulated evidence demonstrating the involvement of both innate and adaptive immune components in psychotic disorders such as schizophrenia. Nevertheless, researchers are facing dilemmas of discrepant findings of immunophenotypes both outside and inside the brains of psychotic patients, as discovered by recent meta-analyses. These discrepancies make interpretations and interrogations on their roles in psychosis remain vague and even controversial, regarding whether certain immune cells are more activated or less so, and whether they are causal or consequential, or beneficial or harmful for psychosis. Addressing these issues for psychosis is not at all trivial, as immune cells either outside or inside the brain are an enormously heterogeneous and plastic cell population, falling into a vast range of lineages and subgroups, and functioning differently and malleably in context-dependent manners. This review aims to overview the currently known immunophenotypes of patients with psychosis, and provocatively suggest the premature immune "burnout" or inflamm-aging initiated since organ development as a potential primary mechanism behind these immunophenotypes and the pathogenesis of psychotic disorders.
Collapse
Affiliation(s)
- Song Chen
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, PR China
| | - Yunlong Tan
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, PR China
| | - Li Tian
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
4
|
Bonomi R, Hillmer AT, Woodcock E, Bhatt S, Rusowicz A, Angarita GA, Carson RE, Davis MT, Esterlis I, Nabulsi N, Huang Y, Krystal JH, Pietrzak RH, Cosgrove KP. Microglia-mediated neuroimmune suppression in PTSD is associated with anhedonia. Proc Natl Acad Sci U S A 2024; 121:e2406005121. [PMID: 39172786 PMCID: PMC11363315 DOI: 10.1073/pnas.2406005121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/16/2024] [Indexed: 08/24/2024] Open
Abstract
Dynamic brain immune function in individuals with posttraumatic stress disorder is rarely studied, despite evidence of peripheral immune dysfunction. Positron emission tomography brain imaging using the radiotracer [11C]PBR28 was used to measure the 18-kDa translocator protein (TSPO), a microglial marker, at baseline and 3 h after administration of lipopolysaccharide (LPS), a potent immune activator. Data were acquired in 15 individuals with PTSD and 15 age-matched controls. The PTSD group exhibited a significantly lower magnitude LPS-induced increase in TSPO availability in an a priori prefrontal-limbic circuit compared to controls. Greater anhedonic symptoms in the PTSD group were associated with a more suppressed neuroimmune response. In addition, while a reduced granulocyte-macrophage colony-stimulating factor response to LPS was observed in the PTSD group, other measured cytokine responses and self-reported sickness symptoms did not differ between groups; these findings highlight group differences in central-peripheral immune system relationships. The results of this study provide evidence of a suppressed microglia-mediated neuroimmune response to a direct immune system insult in individuals with PTSD that is associated with the severity of symptoms. They also provide further support to an emerging literature challenging traditional concepts of microglial and immune function in psychiatric disease.
Collapse
Affiliation(s)
- Robin Bonomi
- Department of Psychiatry, Yale School of Medicine, New Haven, CT06511
| | - Ansel T. Hillmer
- Department of Psychiatry, Yale School of Medicine, New Haven, CT06511
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT06520
- Yale Positron Emission Tomography Center, Yale School of Medicine, New Haven, CT06519
| | - Eric Woodcock
- Department of Psychiatry, Yale School of Medicine, New Haven, CT06511
| | - Shivani Bhatt
- Department of Psychiatry, Yale School of Medicine, New Haven, CT06511
| | | | | | - Richard E. Carson
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT06520
- Yale Positron Emission Tomography Center, Yale School of Medicine, New Haven, CT06519
| | - Margaret T. Davis
- Department of Psychiatry, Yale School of Medicine, New Haven, CT06511
- U.S. Department of Veterans Affairs, National Center for Posttraumatic Stress Disorder, Clinical Neurosciences Division, Veterans Affairs Connecticut Healthcare System, West Haven, CT06516
| | - Irina Esterlis
- Department of Psychiatry, Yale School of Medicine, New Haven, CT06511
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT06520
- U.S. Department of Veterans Affairs, National Center for Posttraumatic Stress Disorder, Clinical Neurosciences Division, Veterans Affairs Connecticut Healthcare System, West Haven, CT06516
| | - Nabeel Nabulsi
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT06520
- Yale Positron Emission Tomography Center, Yale School of Medicine, New Haven, CT06519
| | - Yiyun Huang
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT06520
- Yale Positron Emission Tomography Center, Yale School of Medicine, New Haven, CT06519
| | - John H. Krystal
- Department of Psychiatry, Yale School of Medicine, New Haven, CT06511
- U.S. Department of Veterans Affairs, National Center for Posttraumatic Stress Disorder, Clinical Neurosciences Division, Veterans Affairs Connecticut Healthcare System, West Haven, CT06516
| | - Robert H. Pietrzak
- Department of Psychiatry, Yale School of Medicine, New Haven, CT06511
- U.S. Department of Veterans Affairs, National Center for Posttraumatic Stress Disorder, Clinical Neurosciences Division, Veterans Affairs Connecticut Healthcare System, West Haven, CT06516
| | - Kelly P. Cosgrove
- Department of Psychiatry, Yale School of Medicine, New Haven, CT06511
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT06520
- U.S. Department of Veterans Affairs, National Center for Posttraumatic Stress Disorder, Clinical Neurosciences Division, Veterans Affairs Connecticut Healthcare System, West Haven, CT06516
| |
Collapse
|
5
|
Dar W. Aspartame-induced cognitive dysfunction: Unveiling role of microglia-mediated neuroinflammation and molecular remediation. Int Immunopharmacol 2024; 135:112295. [PMID: 38776852 DOI: 10.1016/j.intimp.2024.112295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
Aspartame, an artificial sweetener, is consumed by millions of people globally. There are multiple reports of aspartame and its metabolites affecting cognitive functions in animal models and humans, which include learning problems, headaches, seizures, migraines, irritable moods, anxiety, depression, and insomnia. These cognitive deficits and associated symptoms are partly attributed to dysregulated excitatory and inhibitory neurotransmitter balance due to aspartate released from aspartame, resulting in an excitotoxic effect in neurons, leading to neuronal damage. However, microglia, a central immunocompetent cell type in brain tissue and a significant player in inflammation can contribute to the impact. Microglia rapidly respond to changes in CNS homeostasis. Aspartame consumption might affect the microglia phenotype directly via methanol-induced toxic effects and indirectly via aspartic acid-mediated excitotoxicity, exacerbating symptoms of cognitive decline. Long-term oral consumption of aspartame thus might change microglia's phenotype from ramified to activated, resulting in chronic or sustained activation, releasing excess pro-inflammatory molecules. This pro-inflammatory surge might lead to the degeneration of healthy neurons and other glial cells, impairing cognition. This review will deliberate on possible links and research gaps that need to be explored concerning aspartame consumption, ecotoxicity and microglia-mediated inflammatory cognitive impairment. The study covers a comprehensive analysis of the impact of aspartame consumption on cognitive function, considering both direct and indirect effects, including the involvement of microglia-mediated neuroinflammation. We also propose a novel intervention strategy involving tryptophan supplementation to mitigate cognitive decline symptoms in individuals with prolonged aspartame consumption, providing a potential solution to address the adverse effects of aspartame on cognitive function.
Collapse
Affiliation(s)
- Waseem Dar
- Translational Neurobiology and Disease Modelling Laboratory, Department of Life Sciences, School of Natural Sciences, Shiv Nadar Institution of Eminence, Greater Noida, 201314, India.
| |
Collapse
|
6
|
Poletti S, Mazza MG, Benedetti F. Inflammatory mediators in major depression and bipolar disorder. Transl Psychiatry 2024; 14:247. [PMID: 38851764 PMCID: PMC11162479 DOI: 10.1038/s41398-024-02921-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 06/10/2024] Open
Abstract
Major depressive disorder (MDD) and bipolar disorder (BD) are highly disabling illnesses defined by different psychopathological, neuroimaging, and cognitive profiles. In the last decades, immune dysregulation has received increasing attention as a central factor in the pathophysiology of these disorders. Several aspects of immune dysregulations have been investigated, including, low-grade inflammation cytokines, chemokines, cell populations, gene expression, and markers of both peripheral and central immune activation. Understanding the distinct immune profiles characterizing the two disorders is indeed of crucial importance for differential diagnosis and the implementation of personalized treatment strategies. In this paper, we reviewed the current literature on the dysregulation of the immune response system focusing our attention on studies using inflammatory markers to discriminate between MDD and BD. High heterogeneity characterized the available literature, reflecting the heterogeneity of the disorders. Common alterations in the immune response system include high pro-inflammatory cytokines such as IL-6 and TNF-α. On the contrary, a greater involvement of chemokines and markers associated with innate immunity has been reported in BD together with dynamic changes in T cells with differentiation defects during childhood which normalize in adulthood, whereas classic mediators of immune responses such as IL-4 and IL-10 are present in MDD together with signs of immune-senescence.
Collapse
Affiliation(s)
- Sara Poletti
- Psychiatry and Clinical Psychobiology Unit, Division of Neurosciences, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| | - Mario Gennaro Mazza
- Psychiatry and Clinical Psychobiology Unit, Division of Neurosciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesco Benedetti
- Psychiatry and Clinical Psychobiology Unit, Division of Neurosciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
7
|
Apweiler M, Saliba SW, Sun L, Streyczek J, Normann C, Hellwig S, Bräse S, Fiebich BL. Modulation of neuroinflammation and oxidative stress by targeting GPR55 - new approaches in the treatment of psychiatric disorders. Mol Psychiatry 2024:10.1038/s41380-024-02614-5. [PMID: 38796643 DOI: 10.1038/s41380-024-02614-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 05/10/2024] [Accepted: 05/15/2024] [Indexed: 05/28/2024]
Abstract
Pharmacological treatment of psychiatric disorders remains challenging in clinical, pharmacological, and scientific practice. Even if many different substances are established for treating different psychiatric conditions, subgroups of patients show only small or no response to the treatment. The neuroinflammatory hypothesis of the genesis of psychiatric disorders might explain underlying mechanisms in these non-responders. For that reason, recent research focus on neuroinflammatory processes and oxidative stress as possible causes of psychiatric disorders. G-protein coupled receptors (GPCRs) form the biggest superfamily of membrane-bound receptors and are already well known as pharmacological targets in various diseases. The G-protein coupled receptor 55 (GPR55), a receptor considered part of the endocannabinoid system, reveals promising modulation of neuroinflammatory and oxidative processes. Different agonists and antagonists reduce pro-inflammatory cytokine release, enhance the synthesis of anti-inflammatory mediators, and protect cells from oxidative damage. For this reason, GPR55 ligands might be promising compounds in treating subgroups of patients suffering from psychiatric disorders related to neuroinflammation or oxidative stress. New approaches in drug design might lead to new compounds targeting different pathomechanisms of those disorders in just one molecule.
Collapse
Affiliation(s)
- Matthias Apweiler
- Neuroimmunology and Neurochemistry Research Group, Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, D-79104, Freiburg, Germany
- Department of Cardiology and Angiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, D-79106 Freiburg, Germany
| | - Soraya Wilke Saliba
- Neuroimmunology and Neurochemistry Research Group, Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, D-79104, Freiburg, Germany
| | - Lu Sun
- Neuroimmunology and Neurochemistry Research Group, Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, D-79104, Freiburg, Germany
| | - Jana Streyczek
- Neuroimmunology and Neurochemistry Research Group, Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, D-79104, Freiburg, Germany
| | - Claus Normann
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, D-79104, Freiburg, Germany
| | - Sabine Hellwig
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, D-79104, Freiburg, Germany
| | - Stefan Bräse
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, D-76131, Karlsruhe, Germany
- Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, D-76131, Karlsruhe, Germany
| | - Bernd L Fiebich
- Neuroimmunology and Neurochemistry Research Group, Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, D-79104, Freiburg, Germany.
| |
Collapse
|
8
|
Jing X, Menghua L, Lihui Z, Qian W, Xueli W, Xuelong Z, Zhihui L, Guofu D, Changzhen W. Multi-frequency electromagnetic radiation induces anxiety in mice via inflammation in the cerebral cortex. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:35161-35172. [PMID: 38724846 DOI: 10.1007/s11356-024-33447-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/19/2024] [Indexed: 05/30/2024]
Abstract
Modern life is filled with radiofrequency electromagnetic radiation (RF-EMR) in various frequency bands, while the health risks are not clear. In this study, mice were whole-body exposed to 0.9/1.5/2.65 GHz radiofrequency radiation at 4 W/kg for 2 h per day for 4 weeks to investigate the emotional effects. It was found that the mice showed anxiety but no severe depression. The ELISA results showed a significant decrease in amino acid neurotransmitters (GABA, DA, 5-HT), although acetylcholine (ACH) levels were not significantly altered. Furthermore, Western blot results showed that BDNF, TrkB, and CREB levels were increased in the cerebral cortex, while NF-κB levels were decreased. In addition, pro-inflammatory factors (IL-6, IL-1β, TNF-α) were significantly elevated, and anti-inflammatory factors (IL-4, IL-10) tended to decrease. In conclusion, multi-frequency electromagnetic radiation induces an inflammatory response through the CREB-BDNF-TrkB and NF-κB pathways in the cerebral cortex and causes a decrease in excitatory neurotransmitters, which ultimately causes anxiety in mice.
Collapse
Affiliation(s)
- Xu Jing
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, China
- School of Life Sciences, Hebei University, Baoding, 071000, China
| | - Li Menghua
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Zhang Lihui
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Wei Qian
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Wang Xueli
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Zhao Xuelong
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Li Zhihui
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Dong Guofu
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Wang Changzhen
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, China.
| |
Collapse
|
9
|
Queissner R, Buchmann A, Demjaha R, Tafrali C, Benkert P, Kuhle J, Jerkovic A, Dalkner N, Fellendorf F, Birner A, Platzer M, Tmava-Berisha A, Maget A, Stross T, Lenger M, Häussl A, Khalil M, Reininghaus E. Serum neurofilament light as a potential marker of illness duration in bipolar disorder. J Affect Disord 2024; 350:366-371. [PMID: 38215991 DOI: 10.1016/j.jad.2024.01.088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/14/2024]
Abstract
INTRODUCTION Investigation on specific biomarkers for diagnostic or prognostic usage in mental diseases and especially bipolar disorder BD seems to be one outstanding field in current research. Serum neurofilament light (sNfL), a marker for neuro-axonal injury, is increased in various acute and chronic neurological disorders, but also neuro-psychiatric conditions, including affective disorders. The aim of our study was to determine a potential relation between a neuron-specific marker like sNfL and different clinical states of BD. METHODS In the current investigation, 51 patients with BD and 35 HC were included. Mood ratings with the Hamilton depression scale (HAMD) and the Young mania rating scale (YMRS) have been included. Illness duration was defined as the period from the time of diagnosis out of self-report and medical records. sNFL was quantified by a commercial ultrasensitive single molecule array (Simoa). RESULTS There was a significant positive correlation between the number of manic episodes in the past and sNfL, controlled for age and duration of illness. (R = 0.49, p = 0.03) Depressive episodes were not associated to sNfL values. (R = 0.311, p = n.s.) Patients with >3 years of illness duration showed significantly higher levels of sNfL (M18.59; SD 11.89) than patients with shorter illness duration (M = 12.38, p = 0.03) and HC (M = 11.35, p = 0.02). Patients with <3 years of illness and HC did not differ significantly in sNfL levels. DISCUSSION Interestingly, individuals with BD and HC did not differ in sNFL levels in general. Nevertheless, looking at the BD cohort more specifically, we found that individuals with BD with longer duration of illness (>3 years) had higher levels of sNfL than those with an illness duration below 3 years. Our results confirm previous reports on the relation of neuro-axonal injury as evidenced by sNfL and illness specific variables in bipolar disorder. Further studies are needed to clarify if sNfL may predict the disease course and/or indicated response to treatment regimes.
Collapse
Affiliation(s)
- R Queissner
- Medical University of Graz, Department for Psychiatry, Austria
| | - A Buchmann
- Medical University of Graz, Department for Neurology, Austria
| | - R Demjaha
- Medical University of Graz, Department for Neurology, Austria
| | - C Tafrali
- Medical University of Graz, Department for Neurology, Austria
| | - P Benkert
- Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
| | - J Kuhle
- Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
| | - A Jerkovic
- Institute of Molecular Biosciences, University of Graz, Austria
| | - N Dalkner
- Medical University of Graz, Department for Psychiatry, Austria
| | - F Fellendorf
- Medical University of Graz, Department for Psychiatry, Austria
| | - A Birner
- Medical University of Graz, Department for Psychiatry, Austria
| | - M Platzer
- Medical University of Graz, Department for Psychiatry, Austria
| | - A Tmava-Berisha
- Medical University of Graz, Department for Psychiatry, Austria
| | - A Maget
- Medical University of Graz, Department for Psychiatry, Austria
| | - T Stross
- Medical University of Graz, Department for Psychiatry, Austria
| | - M Lenger
- Medical University of Graz, Department for Psychiatry, Austria
| | - A Häussl
- Medical University of Graz, Department for Psychiatry, Austria
| | - M Khalil
- Medical University of Graz, Department for Neurology, Austria.
| | - E Reininghaus
- Medical University of Graz, Department for Psychiatry, Austria
| |
Collapse
|
10
|
Chai Y, Sheng D, Ji X, Meng Y, Shen F, He R, Ma R, Wang Y. Developmental and neurobehavioral toxicity of 2,2'-methylenebis(6-tert-butyl-4-methylphenol) (antioxidant AO2246) during the early life stage of zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:166306. [PMID: 37586501 DOI: 10.1016/j.scitotenv.2023.166306] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 07/30/2023] [Accepted: 08/12/2023] [Indexed: 08/18/2023]
Abstract
BACKGROUND 2,2'-Methylenebis (4-methyl-6-tert-butylphenol) (AO2246) is a synthetic phenolic antioxidant extensively used in food packaging bags and cosmetics. Recently, AO2246 was detected with unexpectedly high concentrations in plasma and breast milk samples from pregnant and lactating women. Hence, it is essential to conduct a thorough investigation to evaluate the detrimental effects of AO2246 on biota. OBJECTIVE To investigate the developmental and behavioral toxicity of AO2246 in zebrafish, as well as the molecular mechanisms underlying these effects. METHODS Zebrafish embryos were exposed to AO2246 at concentrations ranging from 0.05 to 10 μM for up to 6 days postfertilization (dpf). Hatching rate, survival rate, heart rate, and body length were measured. Locomotor behavioral and electrophysiologal analyses were performed. Two fluorescence-labeled transgenic zebrafish lines (endothelium-Tg and macrophage/microglia-Tg) were employed. RNA sequencing was carried out. RESULTS AO2246 has a 96-hour LC50 value of 3 μM. The exposure of AO2246 resulted in a significant reduction in both hatching rate and heart rate. Analysis of locomotor behavior demonstrated that larvae exposed to AO2246 doses exceeding 2 μM exhibited a significant decrease in both total distance and mean velocity. Electrophysiological recordings demonstrated a noteworthy reduction in spike activity at a concentration of 3 μM, relative to control conditions. The administration of AO2246 at 3 μM elicited morphological reactivity and immune alteration of the midbrain microglia in the macrophage/microglia-transgenic zebrafish line, indicating a potential contribution of neurological disorders to behavioral defects. RNA sequencing analysis revealed altered gene expression profiles at high AO2246 concentrations, particularly the dysregulation of pathways associated with neuronal function. CONCLUSIONS The present study demonstrates that AO2246 exposure elicits developmental and neurobehavioral toxicity in zebrafish larvae. Specifically, exposure to AO2246 was found to cause disturbances in neuronal electrophysiological activity and neurological disorders, which ultimately led to the impairment of locomotor behavior in zebrafish larvae.
Collapse
Affiliation(s)
- Yinan Chai
- Key Laboratory of Organ Development and Regeneration of Zhejiang Province, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 311121, China; College of stomatology, Hangzhou Normal University, Hangzhou 311121, China
| | - Donglai Sheng
- Key Laboratory of Organ Development and Regeneration of Zhejiang Province, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 311121, China
| | - Xiaowei Ji
- Key Laboratory of Organ Development and Regeneration of Zhejiang Province, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 311121, China; Department of Stomatology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China
| | - Yanlong Meng
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
| | - Feihao Shen
- Key Laboratory of Organ Development and Regeneration of Zhejiang Province, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 311121, China; College of stomatology, Hangzhou Normal University, Hangzhou 311121, China
| | - Rui He
- College of stomatology, Hangzhou Normal University, Hangzhou 311121, China
| | - Runjia Ma
- College of Nursing and Rehabilitation, North China University of Science and Technology, Tangshan 063210, China
| | - Yuying Wang
- Key Laboratory of Organ Development and Regeneration of Zhejiang Province, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 311121, China; College of stomatology, Hangzhou Normal University, Hangzhou 311121, China.
| |
Collapse
|
11
|
Jonker I, Doorduin J, Knegtering H, van't Hag E, Dierckx RA, de Vries EFJ, Schoevers RA, Klein HC. Antiviral treatment in schizophrenia: a randomized pilot PET study on the effects of valaciclovir on neuroinflammation. Psychol Med 2023; 53:7087-7095. [PMID: 37016791 PMCID: PMC10719624 DOI: 10.1017/s0033291723000430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 01/22/2023] [Accepted: 02/03/2023] [Indexed: 04/06/2023]
Abstract
BACKGROUND Patients with schizophrenia experience cognitive impairment, which could be related to neuroinflammation in the hippocampus. The cause for such hippocampal inflammation is still unknown, but it has been suggested that herpes virus infection is involved. This study therefore aimed to determine whether add-on treatment of schizophrenic patients with the anti- viral drug valaciclovir would reduce hippocampal neuroinflammation and consequently improve cognitive symptoms. METHODS We performed a double-blind monocenter study in 24 male and female patients with schizophrenia, experiencing active psychotic symptoms. Patients were orally treated with the anti-viral drug valaciclovir for seven consecutive days (8 g/day). Neuroinflammation was measured with Positron Emission Tomography using the translocator protein ligand [11C]-PK11195, pre-treatment and at seven days post-treatment, as were psychotic symptoms and cognition. RESULTS Valaciclovir treatment resulted in reduced TSPO binding (39%) in the hippocampus, as well as in the brainstem, frontal lobe, temporal lobe, parahippocampal gyrus, amygdala, parietal lobe, occipital lobe, insula and cingulate gyri, nucleus accumbens and thalamus (31-40%) when using binding potential (BPND) as an outcome. With total distribution volume (VT) as outcome we found essentially the same results, but associations only approached statistical significance (p = 0.050 for hippocampus). Placebo treatment did not affect neuroinflammation. No effects of valaciclovir on psychotic symptoms or cognitive functioning were found. CONCLUSION We found a decreased TSPO binding following antiviral treatment, which could suggest a viral underpinning of neuroinflammation in psychotic patients. Whether this reduced neuroinflammation by treatment with valaciclovir has clinical implications and is specific for schizophrenia warrants further research.
Collapse
Affiliation(s)
- Iris Jonker
- Department of Psychiatry, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Janine Doorduin
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Henderikus Knegtering
- Department of Psychiatry, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Lentis Mental Health Institution, Groningen, The Netherlands
| | - Erna van't Hag
- Department of Psychiatry, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Rudi A. Dierckx
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Erik F. J. de Vries
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Robert A. Schoevers
- Department of Psychiatry, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Hans C. Klein
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
12
|
Cui J, Tian S, Gu Y, Wu X, Wang L, Wang J, Chen X, Meng Z. Toxicity effects of pesticides based on zebrafish (Danio rerio) models: Advances and perspectives. CHEMOSPHERE 2023; 340:139825. [PMID: 37586498 DOI: 10.1016/j.chemosphere.2023.139825] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/02/2023] [Accepted: 08/12/2023] [Indexed: 08/18/2023]
Abstract
Pesticides inevitably enter aquatic environments, posing potential risks to organisms. The common aquatic model organism, zebrafish (Danio rerio), are widely used to evaluate the toxicity of pesticides. In this review, we searched the Web of Science database for articles published between 2012 and 2022, using the keywords "pesticide", "zebrafish", and "toxicity", retrieving 618 publications. Furthermore, we described the main pathways by which pesticides enter aquatic environments and the fate of their residues in these environments. We systematically reviewed the toxicity effects of pesticides on zebrafish, including developmental toxicity, endocrine-disrupting effects, reproductive toxicity, neurotoxicity, immunotoxicity, and genotoxicity. Importantly, we summarized the latest research progress on the toxicity mechanism of pesticides to zebrafish based on omics technologies, including transcriptomics, metabolomics, and microbiomics. Finally, we discussed future research prospects, focusing on the combined exposure of multiple pollutants including pesticides, the risk of multigenerational exposure to pesticides, and the chronic toxicity of aquatic nanopesticides. This review provides essential data support for ecological risk assessments of pesticides in aquatic environments, and has implications for water management in the context of pesticide pollution.
Collapse
Affiliation(s)
- Jiajia Cui
- Department of Pesticide Science, College of Plant Protection, Yangzhou University, Jiangsu Yangzhou, 225009, China
| | - Sinuo Tian
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Yuntong Gu
- Department of Pesticide Science, College of Plant Protection, Yangzhou University, Jiangsu Yangzhou, 225009, China
| | - Xinyi Wu
- Department of Pesticide Science, College of Plant Protection, Yangzhou University, Jiangsu Yangzhou, 225009, China
| | - Lei Wang
- Department of Pesticide Science, College of Plant Protection, Yangzhou University, Jiangsu Yangzhou, 225009, China
| | - Jianjun Wang
- Department of Pesticide Science, College of Plant Protection, Yangzhou University, Jiangsu Yangzhou, 225009, China
| | - Xiaojun Chen
- Department of Pesticide Science, College of Plant Protection, Yangzhou University, Jiangsu Yangzhou, 225009, China.
| | - Zhiyuan Meng
- Department of Pesticide Science, College of Plant Protection, Yangzhou University, Jiangsu Yangzhou, 225009, China.
| |
Collapse
|
13
|
Aghajani Mir M. Brain Fog: a Narrative Review of the Most Common Mysterious Cognitive Disorder in COVID-19. Mol Neurobiol 2023:10.1007/s12035-023-03715-y. [PMID: 37874482 DOI: 10.1007/s12035-023-03715-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/14/2023] [Indexed: 10/25/2023]
Abstract
It has been more than three years since COVID-19 impacted the lives of millions of people, many of whom suffer from long-term effects known as long-haulers. Notwithstanding multiorgan complaints in long-haulers, signs and symptoms associated with cognitive characteristics commonly known as "brain fog" occur in COVID patients over 50, women, obesity, and asthma at excessive. Brain fog is a set of symptoms that include cognitive impairment, inability to concentrate and multitask, and short-term and long-term memory loss. Of course, brain fog contributes to high levels of anxiety and stress, necessitating an empathetic response to this group of COVID patients. Although the etiology of brain fog in COVID-19 is currently unknown, regarding the mechanisms of pathogenesis, the following hypotheses exist: activation of astrocytes and microglia to release pro-inflammatory cytokines, aggregation of tau protein, and COVID-19 entry in the brain can trigger an autoimmune reaction. There are currently no specific tests to detect brain fog or any specific cognitive rehabilitation methods. However, a healthy lifestyle can help reduce symptoms to some extent, and symptom-based clinical management is also well suited to minimize brain fog side effects in COVID-19 patients. Therefore, this review discusses mechanisms of SARS-CoV-2 pathogenesis that may contribute to brain fog, as well as some approaches to providing therapies that may help COVID-19 patients avoid annoying brain fog symptoms.
Collapse
Affiliation(s)
- Mahsa Aghajani Mir
- Deputy of Research and Technology, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
14
|
Berentschot JC, Drexhage HA, Aynekulu Mersha DG, Wijkhuijs AJM, GeurtsvanKessel CH, Koopmans MPG, Voermans JJC, Hendriks RW, Nagtzaam NMA, de Bie M, Heijenbrok-Kal MH, Bek LM, Ribbers GM, van den Berg-Emons RJG, Aerts JGJV, Dik WA, Hellemons ME. Immunological profiling in long COVID: overall low grade inflammation and T-lymphocyte senescence and increased monocyte activation correlating with increasing fatigue severity. Front Immunol 2023; 14:1254899. [PMID: 37881427 PMCID: PMC10597688 DOI: 10.3389/fimmu.2023.1254899] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/14/2023] [Indexed: 10/27/2023] Open
Abstract
Background Many patients with SARS-CoV-2 infection develop long COVID with fatigue as one of the most disabling symptoms. We performed clinical and immune profiling of fatigued and non-fatigued long COVID patients and age- and sex-matched healthy controls (HCs). Methods Long COVID symptoms were assessed using patient-reported outcome measures, including the fatigue assessment scale (FAS, scores ≥22 denote fatigue), and followed up to one year after hospital discharge. We assessed inflammation-related genes in circulating monocytes, serum levels of inflammation-regulating cytokines, and leukocyte and lymphocyte subsets, including major monocyte subsets and senescent T-lymphocytes, at 3-6 months post-discharge. Results We included 37 fatigued and 36 non-fatigued long COVID patients and 42 HCs. Fatigued long COVID patients represented a more severe clinical profile than non-fatigued patients, with many concurrent symptoms (median 9 [IQR 5.0-10.0] vs 3 [1.0-5.0] symptoms, p<0.001), and signs of cognitive failure (41%) and depression (>24%). Immune abnormalities that were found in the entire group of long COVID patients were low grade inflammation (increased inflammatory gene expression in monocytes, increased serum pro-inflammatory cytokines) and signs of T-lymphocyte senescence (increased exhausted CD8+ TEMRA-lymphocytes). Immune profiles did not significantly differ between fatigued and non-fatigued long COVID groups. However, the severity of fatigue (total FAS score) significantly correlated with increases of intermediate and non-classical monocytes, upregulated gene levels of CCL2, CCL7, and SERPINB2 in monocytes, increases in serum Galectin-9, and higher CD8+ T-lymphocyte counts. Conclusion Long COVID with fatigue is associated with many concurrent and persistent symptoms lasting up to one year after hospitalization. Increased fatigue severity associated with stronger signs of monocyte activation in long COVID patients and potentially point in the direction of monocyte-endothelial interaction. These abnormalities were present against a background of immune abnormalities common to the entire group of long COVID patients.
Collapse
Affiliation(s)
- Julia C. Berentschot
- Department of Respiratory Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Hemmo A. Drexhage
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | | | | | | | - Marion P. G. Koopmans
- Department of Viroscience, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Jolanda J. C. Voermans
- Department of Viroscience, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Rudi W. Hendriks
- Department of Respiratory Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Nicole M. A. Nagtzaam
- Laboratory Medical Immunology, Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Maaike de Bie
- Laboratory Medical Immunology, Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Majanka H. Heijenbrok-Kal
- Department of Rehabilitation Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- Rijndam Rehabilitation, Rotterdam, Netherlands
| | - L. Martine Bek
- Department of Rehabilitation Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Gerard M. Ribbers
- Department of Rehabilitation Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- Rijndam Rehabilitation, Rotterdam, Netherlands
| | | | - Joachim G. J. V. Aerts
- Department of Respiratory Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Willem A. Dik
- Laboratory Medical Immunology, Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Merel E. Hellemons
- Department of Respiratory Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| |
Collapse
|
15
|
Steen NE, Rahman Z, Szabo A, Hindley GFL, Parker N, Cheng W, Lin A, O’Connell KS, Sheikh MA, Shadrin A, Bahrami S, Karthikeyan S, Hoseth EZ, Dale AM, Aukrust P, Smeland OB, Ueland T, Frei O, Djurovic S, Andreassen OA. Shared Genetic Loci Between Schizophrenia and White Blood Cell Counts Suggest Genetically Determined Systemic Immune Abnormalities. Schizophr Bull 2023; 49:1345-1354. [PMID: 37319439 PMCID: PMC10483470 DOI: 10.1093/schbul/sbad082] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
BACKGROUND Immune mechanisms are indicated in schizophrenia (SCZ). Recent genome-wide association studies (GWAS) have identified genetic variants associated with SCZ and immune-related phenotypes. Here, we use cutting edge statistical tools to identify shared genetic variants between SCZ and white blood cell (WBC) counts and further understand the role of the immune system in SCZ. STUDY DESIGN GWAS results from SCZ (patients, n = 53 386; controls, n = 77 258) and WBC counts (n = 56 3085) were analyzed. We applied linkage disequilibrium score regression, the conditional false discovery rate method and the bivariate causal mixture model for analyses of genetic associations and overlap, and 2 sample Mendelian randomization to estimate causal effects. STUDY RESULTS The polygenicity for SCZ was 7.5 times higher than for WBC count and constituted 32%-59% of WBC count genetic loci. While there was a significant but weak positive genetic correlation between SCZ and lymphocytes (rg = 0.05), the conditional false discovery rate method identified 383 shared genetic loci (53% concordant effect directions), with shared variants encompassing all investigated WBC subtypes: lymphocytes, n = 215 (56% concordant); neutrophils, n = 158 (49% concordant); monocytes, n = 146 (47% concordant); eosinophils, n = 135 (56% concordant); and basophils, n = 64 (53% concordant). A few causal effects were suggested, but consensus was lacking across different Mendelian randomization methods. Functional analyses indicated cellular functioning and regulation of translation as overlapping mechanisms. CONCLUSIONS Our results suggest that genetic factors involved in WBC counts are associated with the risk of SCZ, indicating a role of immune mechanisms in subgroups of SCZ with potential for stratification of patients for immune targeted treatment.
Collapse
Affiliation(s)
- Nils Eiel Steen
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Zillur Rahman
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Attila Szabo
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- K.G. Jebsen Centre for Neurodevelopmental Disorders, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Guy F L Hindley
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Nadine Parker
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Weiqiu Cheng
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Aihua Lin
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Kevin S O’Connell
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Mashhood A Sheikh
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Alexey Shadrin
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Shahram Bahrami
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Sandeep Karthikeyan
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Eva Z Hoseth
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health, Helse Møre Romsdal HF, Kristiansund, Norway
| | - Anders M Dale
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA
- Department of Cognitive Sciences, University of California, San Diego, La Jolla, CA, USA
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Olav B Smeland
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Thor Ueland
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
- K.G. Jebsen—Thrombosis Research and Expertise Center (TREC), University of Tromsø, Tromsø, Norway
| | - Oleksandr Frei
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Center for Bioinformatics, Department of Informatics, University of Oslo, Oslo, Norway
| | - Srdjan Djurovic
- NORMENT Centre, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Ole A Andreassen
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- K.G. Jebsen Centre for Neurodevelopmental Disorders, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
16
|
Yang EJ, Rahim MA, Griggs E, Iban-Arias R, Pasinetti GM. Transient anxiety-and depression-like behaviors are linked to the depletion of Foxp3-expressing cells via inflammasome in the brain. PNAS NEXUS 2023; 2:pgad251. [PMID: 37614669 PMCID: PMC10443660 DOI: 10.1093/pnasnexus/pgad251] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/17/2023] [Accepted: 07/20/2023] [Indexed: 08/25/2023]
Abstract
Forkhead box P3 (Foxp3) is a transcription factor that influences functioning of regulatory T cells (Tregs) that modulate peripheral immune response. Treg-mediated innate immunity and Treg-mediated adaptive immunity are receiving considerable attention for their implication in mechanisms associated with anxiety and depression. Here, we demonstrated that depletion of Foxp3-expressing cells causally promotes transient anxiety- and depression-like behaviors associated with inflammasome activation in "depletion of regulatory T cell" (DEREG) mice. We found that restoration of Foxp3-expressing cells causally reverses neurobehavioral changes through alteration of innate immune responses as assessed by caspase-1 activity and interleukin-1β (IL-1β) release in the hippocampal formation of DEREG mice. Moreover, we found that depletion of Foxp3-expressing cells induces a significant elevation of granulocytes, monocytes, and macrophages in the blood, which are associated with transient expression of the matrix metalloprotease-9. Similarly, we found that depletion of Foxp3-expressing cells in 5xFAD, a mouse model of Alzheimer's disease (AD), exhibits elevated activated caspase-1 and promotion of IL-1β secretion and increased the level of amyloid-beta (Aβ)1-42 and Aβ plaque burden in the hippocampal formation that coincided with an acceleration of cognitive decline at a presymptomatic age in the 5xFAD mice. Thus, our study provides evidence supporting the idea that Foxp3 may have a causal influence on peripheral immune responses. This, in turn, can promote an innate immune response within the brain, potentially leading to anxiety- and depression-like behaviors or cognitive decline.
Collapse
Affiliation(s)
- Eun-Jeong Yang
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Md Al Rahim
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Elizabeth Griggs
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ruth Iban-Arias
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Giulio Maria Pasinetti
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Geriatric Research, Education and Clinical Center, James J. Peters Veterans Affairs Medical Center, Bronx, NY 10468, USA
| |
Collapse
|
17
|
Huang X, Wang B, Yang J, Lian YJ, Yu HZ, Wang YX. HMGB1 in depression: An overview of microglial HMBG1 in the pathogenesis of depression. Brain Behav Immun Health 2023; 30:100641. [PMID: 37288063 PMCID: PMC10242493 DOI: 10.1016/j.bbih.2023.100641] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 05/14/2023] [Accepted: 05/18/2023] [Indexed: 06/09/2023] Open
Abstract
Depression is a prevalent psychiatric disorder with elusive pathogenesis. Studies have proposed that enhancement and persistence of aseptic inflammation in the central nervous system (CNS) may be closely associated with the development of depressive disorder. High mobility group box 1 (HMGB1) has obtained significant attention as an evoking and regulating factor in various inflammation-related diseases. It is a non-histone DNA-binding protein that can be released as a pro-inflammatory cytokine by glial cells and neurons in the CNS. Microglia, as the immune cell of the brain, interacts with HMGB1 and induces neuroinflammation and neurodegeneration in the CNS. Therefore, in the current review, we aim to investigate the role of microglial HMGB1 in the pathogenetic process of depression.
Collapse
Affiliation(s)
- Xiao Huang
- Department of Nautical Psychology, Faculty of Psychology, Naval Medical University, Shanghai, 200433, China
- Department of Anaesthesiology, West China Hospital of Sichuan University, Sichuan Province, Chengdu, 610041, China
| | - Bo Wang
- Department of Nautical Psychology, Faculty of Psychology, Naval Medical University, Shanghai, 200433, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Occupational Disease, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Jing Yang
- Department of Anaesthesiology, West China Hospital of Sichuan University, Sichuan Province, Chengdu, 610041, China
| | - Yong-Jie Lian
- Department of Nautical Psychology, Faculty of Psychology, Naval Medical University, Shanghai, 200433, China
| | - Hong-Zhang Yu
- Department of Nautical Psychology, Faculty of Psychology, Naval Medical University, Shanghai, 200433, China
| | - Yun-Xia Wang
- Department of Nautical Psychology, Faculty of Psychology, Naval Medical University, Shanghai, 200433, China
| |
Collapse
|
18
|
Corrigan M, O'Rourke A, Moran B, Fletcher J, Harkin A. Inflammation in the pathogenesis of depression: a disorder of neuroimmune origin. Neuronal Signal 2023; 7:NS20220054. [PMID: 37457896 PMCID: PMC10345431 DOI: 10.1042/ns20220054] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 07/18/2023] Open
Abstract
There are several hypotheses concerning the underlying pathophysiological mechanisms of major depression, which centre largely around adaptive changes in neuronal transmission and plasticity, neurogenesis, and circuit and regional connectivity. The immune and endocrine systems are commonly implicated in driving these changes. An intricate interaction of stress hormones, innate immune cells and the actions of soluble mediators of immunity within the nervous system is described as being associated with the symptoms of depression. Bridging endocrine and immune processes to neurotransmission and signalling within key cortical and limbic brain circuits are critical to understanding depression as a disorder of neuroimmune origins. Emergent areas of research include a growing recognition of the adaptive immune system, advances in neuroimaging techniques and mechanistic insights gained from transgenic animals. Elucidation of glial-neuronal interactions is providing additional avenues into promising areas of research, the development of clinically relevant disease models and the discovery of novel therapies. This narrative review focuses on molecular and cellular mechanisms that are influenced by inflammation and stress. The aim of this review is to provide an overview of our current understanding of depression as a disorder of neuroimmune origin, focusing on neuroendocrine and neuroimmune dysregulation in depression pathophysiology. Advances in current understanding lie in pursuit of relevant biomarkers, as the potential of biomarker signatures to improve clinical outcomes is yet to be fully realised. Further investigations to expand biomarker panels including integration with neuroimaging, utilising individual symptoms to stratify patients into more homogenous subpopulations and targeting the immune system for new treatment approaches will help to address current unmet clinical need.
Collapse
Affiliation(s)
- Myles Corrigan
- Neuropsychopharmacology Research Group, School of Pharmacy and Pharmaceutical Sciences and Trinity College Institute of Neuroscience, Trinity College, Dublin, Ireland
- Transpharmation Ireland, Trinity College Institute of Neuroscience, Trinity College, Dublin, Ireland
| | - Aoife M. O'Rourke
- School of Biochemistry and Immunology, Trinity Biosciences Institute, Trinity College, Dublin, Ireland
| | - Barry Moran
- School of Biochemistry and Immunology, Trinity Biosciences Institute, Trinity College, Dublin, Ireland
| | - Jean M. Fletcher
- School of Biochemistry and Immunology, Trinity Biosciences Institute, Trinity College, Dublin, Ireland
| | - Andrew Harkin
- Neuropsychopharmacology Research Group, School of Pharmacy and Pharmaceutical Sciences and Trinity College Institute of Neuroscience, Trinity College, Dublin, Ireland
| |
Collapse
|
19
|
Dehdar K, Salimi M, Tabasi F, Dehghan S, Sumiyoshi A, Garousi M, Jamaati H, Javan M, Reza Raoufy M. Allergen induces depression-like behavior in association with altered prefrontal-hippocampal circuit in male rats. Neuroscience 2023:S0306-4522(23)00254-3. [PMID: 37286161 DOI: 10.1016/j.neuroscience.2023.05.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 05/27/2023] [Accepted: 05/30/2023] [Indexed: 06/09/2023]
Abstract
Allergic asthma is a common chronic inflammatory condition associated with psychiatric comorbidities. Notably depression, correlated with adverse outcomes in asthmatic patients. Peripheral inflammation's role in depression has been shown previously. However, evidence regarding the effects of allergic asthma on the medial prefrontal cortex (mPFC)-ventral hippocampus (vHipp) interactions, an important neurocircuitry in affective regulation, is yet to be demonstrated. Herein, we investigated the effects of allergen exposure in sensitized rats on the immunoreactivity of glial cells, depression-like behavior, brain regions volume, as well as activity and connectivity of the mPFC-vHipp circuit. We found that allergen-induced depressive-like behavior was associated with more activated microglia and astrocytes in mPFC and vHipp, as well as reduced hippocampus volume. Intriguingly, depressive-like behavior was negatively correlated with mPFC and hippocampus volumes in the allergen-exposed group. Moreover, mPFC and vHipp activity were altered in asthmatic animals. Allergen disrupted the strength and direction of functional connectivity in the mPFC-vHipp circuit so that, unlike normal conditions, mPFC causes and modulates vHipp activity. Our results provide new insight into the underlying mechanism of allergic inflammation-induced psychiatric disorders, aiming to develop new interventions and therapeutic approaches for improving asthma complications.
Collapse
Affiliation(s)
- Kolsoum Dehdar
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Morteza Salimi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Farhad Tabasi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; Institute for Brain Sciences and Cognition, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Samaneh Dehghan
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran; Eye Research Center, The Five Senses Institute, Rassoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Akira Sumiyoshi
- Institute of Development, Aging and Cancer, Tohoku University, Seiryo-machi, Aoba-ku, Sendai, Japan; National Institutes for Quantum and Radiological Science and Technology, Anagawa, Inage-ku, Chiba, Japan
| | - Mani Garousi
- Department of Electrical and Engineering, Tarbiat Modares University, Tehran, Iran
| | - Hamidreza Jamaati
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Javan
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; Institute for Brain Sciences and Cognition, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Reza Raoufy
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; Institute for Brain Sciences and Cognition, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
20
|
Jørgensen JL, Macoveanu J, Petersen JZ, Knudsen GM, Kessing LV, Jørgensen MB, Miskowiak KW. Association of childhood trauma with cognitive impairment and structural brain alterations in remitted patients with bipolar disorder. J Affect Disord 2023:S0165-0327(23)00719-X. [PMID: 37236273 DOI: 10.1016/j.jad.2023.05.078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 05/18/2023] [Accepted: 05/21/2023] [Indexed: 05/28/2023]
Abstract
BACKGROUND Cognitive impairment affects many patients with bipolar disorder (BD). No pro-cognitive treatment with robust efficacy exists partly due to limited insight into underlying neurobiological abnormalities. METHODS This magnetic resonance imaging (MRI) study investigates structural neuronal correlates of cognitive impairment in BD by comparing brain measures in a large sample of cognitively impaired versus cognitively intact patients with BD or cognitively impaired patients with major depressive disorder (MDD) and healthy controls (HC). Participants underwent neuropsychological assessments and MRI scans. The cognitively impaired and - intact BD and MDD patient groups were compared with each other and HC regarding prefrontal cortex measures, hippocampus shape/volume, and total cerebral white (WM) and grey matter (GM). RESULTS Cognitively impaired BD patients showed lower total cerebral WM volume than HC, which scaled with poorer global cognitive performance and more childhood trauma. Cognitively impaired BD patients also showed lower adjusted GM volume and thickness in the frontopolar cortex than HC but greater adjusted GM volume in the temporal cortex than cognitively normal BD patients. Cognitively impaired BD patients showed decreased cingulate volume than cognitively impaired MDD patients. Hippocampal measures were similar across all groups. LIMITATIONS The cross-sectional study design prevented insights into causal relationships. CONCLUSIONS Lower total cerebral WM and regional frontopolar and temporal GM abnormalities may constitute structural neuronal correlates of cognitive impairment in BD, of which the WM deficits scale with the degree of childhood trauma. The results deepen the understanding of cognitive impairment in BD and provide a neuronal target for pro-cognitive treatment development.
Collapse
Affiliation(s)
- Josefine Lærke Jørgensen
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Julian Macoveanu
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Jeff Zarp Petersen
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark; Department of Psychology, University of Copenhagen, Copenhagen, Denmark
| | - Gitte Moos Knudsen
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Science, University of Copenhagen, Denmark
| | - Lars Vedel Kessing
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Science, University of Copenhagen, Denmark
| | - Martin Balslev Jørgensen
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Science, University of Copenhagen, Denmark
| | - Kamilla Woznica Miskowiak
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark; Department of Psychology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
21
|
Simon MS, Ioannou M, Arteaga-Henríquez G, Wijkhuijs A, Berghmans R, Musil R, Müller N, Drexhage HA. Premature T cell aging in major depression: A double hit by the state of disease and cytomegalovirus infection. Brain Behav Immun Health 2023; 29:100608. [PMID: 36909830 PMCID: PMC9995284 DOI: 10.1016/j.bbih.2023.100608] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 02/08/2023] [Accepted: 02/25/2023] [Indexed: 03/02/2023] Open
Abstract
Introduction Previous research indicates that premature T cell senescence is a characteristic of major depressive disorder (MDD). However, known senescence inducing factors like cytomegalovirus (CMV) infection or, probably, childhood adversity (CA) have not been taken into consideration so far. Objective Differentiation and senescent characteristics of T cells of MDD patients were investigated in relation to healthy controls (HC), taking the CMV seropositivity and CA into account. Methods 127 MDD and 113 HC of the EU-MOODSTRATIFICATION cohort were analyzed. Fluorescence activated cell sorting (FACS) analysis was performed to determine B, NK, and T cell frequencies. In a second FACS analysis, naïve, effector memory (Tem), central memory (Tcm), effector memory cells re-expressing RA (TEMRA), as well as CD28+ and CD27+ memory populations, were determined of the CD4+ and CD8+ T cell populations in a subsample (N = 35 MDD and N = 36 HC). CMV-antibody state was measured by IgG ELISA and CA by the Childhood Trauma Questionnaire. Results We detected a CMV-antibody positivity in 40% of MDD patients (35% HC, n. s.) with seropositive MDD cases showing a higher total childhood trauma score. Second, a higher inflation of memory CD4+ T helper cells in CMV seronegative patients as compared to seronegative HC and reduced numbers of naïve CD4+ T helper cells in CMV seropositive patients (not in CMV seropositive HC) were found. Third, a higher inflation of memory CD8+ T cytotoxic cells in CMV seropositive cases as compared to CMV seropositive HC, particularly of the TEMRA cells, became apparent. Higher percentages of CD4+ TEMRA and late stage CD27-CD28- TEMRA cells were similar in both HC and MDD with CMV seropositivity. Overall, apportioning of T cell subpopulations did not differ between CA positive vs negative cases. Conclusions MDD patients show several signs of a CMV independent "MDD specific" premature T cell aging, such as a CMV independent increase in CD4+ T memory cells and a latent naïve CD4 T-cell reduction and a latent CD8+ T-cell increase. However, these two latent T cell senescence abnormalities only become evident with CMV infection (double hit).
Collapse
Affiliation(s)
- Maria S Simon
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig-Maximilians-University, 80336, Munich, Germany
| | - Magdalini Ioannou
- Department of Psychiatry, University Medical Center Groningen, University of Groningen, Groningen, 9713, GZ, Netherlands
| | - Gara Arteaga-Henríquez
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.,Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain
| | - Annemarie Wijkhuijs
- Department of Immunology, Erasmus Medical Center, Rotterdam, 3015, GD, Netherlands
| | - Raf Berghmans
- Advanced Practical Diagnostics BVBA, Turnhout, 2300, Belgium
| | - Richard Musil
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig-Maximilians-University, 80336, Munich, Germany
| | - Norbert Müller
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig-Maximilians-University, 80336, Munich, Germany
| | - Hemmo A Drexhage
- Department of Immunology, Erasmus Medical Center, Rotterdam, 3015, GD, Netherlands
| |
Collapse
|
22
|
D'Acquisto F, D'Addario C, Cooper D, Pallanti S, Blacksell I. Peripheral control of psychiatric disorders: Focus on OCD. Are we there yet? Compr Psychiatry 2023; 123:152388. [PMID: 37060625 DOI: 10.1016/j.comppsych.2023.152388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 12/13/2022] [Accepted: 04/04/2023] [Indexed: 04/17/2023] Open
Abstract
"We are all in this together" - we often hear this phrase when we want to flag up a problem that is not for a single individual but concerns us all. A similar reflection has been recently made in the field of mental disorders where brain-centric scientists have started to zoom out their brain-focused graphical representations of the mechanisms regulating psychiatric diseases to include other organs or mediators that did not belong historically to the world of neuroscience. The brain itself - that has long been seen as a master in command secluded in its fortress (the blood brain barrier), has now become a collection of Airbnb(s) where all sorts of cells come in and out and sometimes even rearrange the furniture! Under this new framework of reference, mental disorders have become multisystem pathologies where different biological systems - not just the CNS -contribute 'all together' to the development and severity of the disease. In this narrative review article, we will focus on one of the most popular biological systems that has been shown to influence the functioning of the CNS: the immune system. We will specifically highlight the two main features of the immune system and the CNS that we think are important in the context of mental disorders: plasticity and memory.
Collapse
Affiliation(s)
- Fulvio D'Acquisto
- School of Life and Health Science, University of Roehampton, London, UK.
| | - Claudio D'Addario
- Faculty of Bioscience, University of Teramo, Teramo, Italy; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Dianne Cooper
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Stefano Pallanti
- Albert Einstein College of Medicine,New York, USA; Istituto di Neuroscienze, Florence, Italy
| | - Isobel Blacksell
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
23
|
Wang Q, Zhong Y, Chen N, Chen J. From the immune system to mood disorders especially induced by Toxoplasma gondii: CD4+ T cell as a bridge. Front Cell Infect Microbiol 2023; 13:1078984. [PMID: 37077528 PMCID: PMC10106765 DOI: 10.3389/fcimb.2023.1078984] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 03/23/2023] [Indexed: 04/05/2023] Open
Abstract
Toxoplasma gondii (T. gondii), a ubiquitous and obligatory intracellular protozoa, not only alters peripheral immune status, but crosses the blood-brain barrier to trigger brain parenchymal injury and central neuroinflammation to establish latent cerebral infection in humans and other vertebrates. Recent findings underscore the strong correlation between alterations in the peripheral and central immune environment and mood disorders. Th17 and Th1 cells are important pro-inflammatory cells that can drive the pathology of mood disorders by promoting neuroinflammation. As opposed to Th17 and Th1, regulatory T cells have inhibitory inflammatory and neuroprotective functions that can ameliorate mood disorders. T. gondii induces neuroinflammation, which can be mediated by CD4+ T cells (such as Tregs, Th17, Th1, and Th2). Though the pathophysiology and treatment of mood disorder have been currently studied, emerging evidence points to unique role of CD4+ T cells in mood disorder, especially those caused by T. gondii infection. In this review, we explore some recent studies that extend our understanding of the relationship between mood disorders and T. gondii.
Collapse
|
24
|
Kelly JR, Clarke G, Harkin A, Corr SC, Galvin S, Pradeep V, Cryan JF, O'Keane V, Dinan TG. Seeking the Psilocybiome: Psychedelics meet the microbiota-gut-brain axis. Int J Clin Health Psychol 2023; 23:100349. [PMID: 36605409 PMCID: PMC9791138 DOI: 10.1016/j.ijchp.2022.100349] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/16/2022] [Indexed: 12/15/2022] Open
Abstract
Moving towards a systems psychiatry paradigm embraces the inherent complex interactions across all levels from micro to macro and necessitates an integrated approach to treatment. Cortical 5-HT2A receptors are key primary targets for the effects of serotonergic psychedelics. However, the therapeutic mechanisms underlying psychedelic therapy are complex and traverse molecular, cellular, and network levels, under the influence of biofeedback signals from the periphery and the environment. At the interface between the individual and the environment, the gut microbiome, via the gut-brain axis, plays an important role in the unconscious parallel processing systems regulating host neurophysiology. While psychedelic and microbial signalling systems operate over different timescales, the microbiota-gut-brain (MGB) axis, as a convergence hub between multiple biofeedback systems may play a role in the preparatory phase, the acute administration phase, and the integration phase of psychedelic therapy. In keeping with an interconnected systems-based approach, this review will discuss the gut microbiome and mycobiome and pathways of the MGB axis, and then explore the potential interaction between psychedelic therapy and the MGB axis and how this might influence mechanism of action and treatment response. Finally, we will discuss the possible implications for a precision medicine-based psychedelic therapy paradigm.
Collapse
Affiliation(s)
- John R. Kelly
- Department of Psychiatry, Trinity College, Dublin, Ireland
- Tallaght University Hospital, Dublin, Ireland
| | - Gerard Clarke
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | | | - Sinead C. Corr
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Microbiology, Trinity College Dublin, Ireland
| | - Stephen Galvin
- Department of Psychiatry, Trinity College, Dublin, Ireland
| | - Vishnu Pradeep
- Department of Psychiatry, Trinity College, Dublin, Ireland
- Tallaght University Hospital, Dublin, Ireland
| | - John F. Cryan
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Veronica O'Keane
- Department of Psychiatry, Trinity College, Dublin, Ireland
- Tallaght University Hospital, Dublin, Ireland
- Trinity College Institute of Neuroscience, Ireland
| | - Timothy G. Dinan
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
25
|
Inhibition of Microglial GSK3β Activity Is Common to Different Kinds of Antidepressants: A Proposal for an In Vitro Screen to Detect Novel Antidepressant Principles. Biomedicines 2023; 11:biomedicines11030806. [PMID: 36979785 PMCID: PMC10045655 DOI: 10.3390/biomedicines11030806] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/17/2023] [Accepted: 03/04/2023] [Indexed: 03/09/2023] Open
Abstract
Depression is a major public health concern. Unfortunately, the present antidepressants often are insufficiently effective, whilst the discovery of more effective antidepressants has been extremely sluggish. The objective of this review was to combine the literature on depression with the pharmacology of antidepressant compounds, in order to formulate a conceivable pathophysiological process, allowing proposals how to accelerate the discovery process. Risk factors for depression initiate an infection-like inflammation in the brain that involves activation microglial Toll-like receptors and glycogen synthase kinase-3β (GSK3β). GSK3β activity alters the balance between two competing transcription factors, the pro-inflammatory/pro-oxidative transcription factor NFκB and the neuroprotective, anti-inflammatory and anti-oxidative transcription factor NRF2. The antidepressant activity of tricyclic antidepressants is assumed to involve activation of GS-coupled microglial receptors, raising intracellular cAMP levels and activation of protein kinase A (PKA). PKA and similar kinases inhibit the enzyme activity of GSK3β. Experimental antidepressant principles, including cannabinoid receptor-2 activation, opioid μ receptor agonists, 5HT2 agonists, valproate, ketamine and electrical stimulation of the Vagus nerve, all activate microglial pathways that result in GSK3β-inhibition. An in vitro screen for NRF2-activation in microglial cells with TLR-activated GSK3β activity, might therefore lead to the detection of totally novel antidepressant principles with, hopefully, an improved therapeutic efficacy.
Collapse
|
26
|
Mojiri-Forushani H, Khajehali E, Adelipour M, Mohammadi A. Inhibitory effects of fluoxetine on the secretion of inflammatory mediators and JAK/STAT3 and JNK/TLR4 gene expression. Mol Biol Rep 2023; 50:2231-2241. [PMID: 36571654 PMCID: PMC9791631 DOI: 10.1007/s11033-022-08219-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/16/2022] [Indexed: 12/27/2022]
Abstract
BACKGROUND Selective serotonin reuptake inhibitors (SSRIs) are the most common class of medicines used for the treatment of major depression. Recent studies have reported an association between depression and inflammation and suggested the significant effects of SSRIs on inflammatory processes. METHODS The current study aimed to evaluate the effects of fluoxetine, an SSRI, on the level of inflammatory cytokines, including interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α), in the rat serum and RAW264.7 mouse macrophage cell line, using ELISA sandwich assays. Also, the expression of inflammatory genes, including JAK/STAT3 and TLR4/JNK, was examined in macrophages, using real-time quantitative reverse transcription PCR to determine the potential mechanism of fluoxetine in inflammation. The rats received fluoxetine (10, 20, and 40 mg/kg) 30 min before lipopolysaccharide (LPS) treatment for 90 min. The cells received different doses of fluoxetine (5, 10, and 20 µg/mL) before stimulation with LPS for 24 or 48 h. RESULTS The serum concentrations of IL-1β, IL-6, and TNF-α were reduced in rats and cells treated with fluoxetine. Following fluoxetine administration, the expression of JAK/STAT3 and TLR4/JNK genes was significantly decreased in the RAW264.7 cells treated with LPS for 24 h. However, after 48 h of treatment with LPS, fluoxetine failed to diminish the elevated expression of JAK and JNK genes, while it significantly decreased the expression of STAT3 and TLR4 genes. CONCLUSION The findings revealed that fluoxetine has anti-inflammatory properties, mainly due to the reduction of inflammatory cytokines and inhibition of JAK/STAT3 and TLR4/JNK gene expression in macrophages.
Collapse
Affiliation(s)
| | - Elham Khajehali
- Department of Anatomy & Physiology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Victoria, 3010, Australia.
| | - Maryam Adelipour
- Department of Clinical Biochemistry, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | |
Collapse
|
27
|
Kılıç N, Tasci G, Yılmaz S, Öner P, Korkmaz S. Monocyte/HDL Cholesterol Ratios as a New Inflammatory Marker in Patients with Schizophrenia. J Pers Med 2023; 13:276. [PMID: 36836510 PMCID: PMC9958934 DOI: 10.3390/jpm13020276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 02/04/2023] Open
Abstract
PURPOSE Monocyte/HDL cholesterol ratio (MHR) is a novel inflammatory marker that is used as a prognostic factor for cardiovascular diseases and has been studied in many diseases. The aim of this study was to investigate the role of inflammatory factors in schizophrenia patients by examining MHR levels and to compare schizophrenia patients and healthy controls in terms of cardiovascular disease risk. METHOD A total of 135 participants between the ages of 18-65, 85 diagnosed with schizophrenia, and 50 healthy individuals in the control group were included in this cross-sectional study. Venous blood samples were taken from the participants and CBC parameters and lipid profiles were analyzed. The sociodemographic and clinical data form and positive and negative symptoms scale (PANSS) were administered to all participants. RESULTS Although monocyte levels were significantly higher in the patient group, HDL-C levels were lower at significant levels. MHR was found to be higher in the patient group compared to the control group at significant levels. When compared to the control group, total cholesterol, triglyceride, WBC, neutrophil, basophil, and platelet levels were higher in the patient group at significant levels, and RBC, hemoglobin, and hematocrit levels were significantly lower. CONCLUSION The elevated MHR in patients with schizophrenia may contribute to our understanding that inflammation plays important roles in the pathophysiology of schizophrenia. Additionally, knowing the levels of MHR and considering the recommendations, such as diet and exercise, in the treatment approaches made us think that it might be beneficial in protecting schizophrenia patients against cardiovascular diseases and early death.
Collapse
Affiliation(s)
- Nülüfer Kılıç
- Elazığ Fethi Sekin City Hospital, Department of Psychiatry, Elazığ 23100, Türkiye
| | - Gulay Tasci
- Elazığ Fethi Sekin City Hospital, Department of Psychiatry, Elazığ 23100, Türkiye
| | - Seda Yılmaz
- Elazığ Fethi Sekin City Hospital, Department of Psychiatry, Elazığ 23100, Türkiye
| | - Pınar Öner
- Elazığ Fethi Sekin City Hospital, Department of Microbiology, Elazığ 23100, Türkiye
| | - Sevda Korkmaz
- Fırat University School of Medicine, Department of Psychiatry, Elazığ 23100, Türkiye
| |
Collapse
|
28
|
Safari H, Mashayekhan S. Inflammation and Mental Health Disorders: Immunomodulation as a Potential Therapy for Psychiatric Conditions. Curr Pharm Des 2023; 29:2841-2852. [PMID: 37946352 DOI: 10.2174/0113816128251883231031054700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 09/22/2023] [Indexed: 11/12/2023]
Abstract
Mood disorders are the leading cause of disability worldwide and their incidence has significantly increased after the COVID-19 pandemic. Despite the continuous surge in the number of people diagnosed with psychiatric disorders, the treatment methods for these conditions remain limited. A significant number of people either do not respond to therapy or discontinue the drugs due to their severe side effects. Therefore, alternative therapeutic interventions are needed. Previous studies have shown a correlation between immunological alterations and the occurrence of mental health disorders, yet immunomodulatory therapies have been barely investigated for combating psychiatric conditions. In this article, we have reviewed the immunological alterations that occur during the onset of mental health disorders, including microglial activation, an increased number of circulating innate immune cells, reduced activity of natural killer cells, altered T cell morphology and functionality, and an increased secretion of pro-inflammatory cytokines. This article also examines key studies that demonstrate the therapeutic efficacy of anti-inflammatory medications in mental health disorders. These studies suggest that immunomodulation can potentially be used as a complementary therapy for controlling psychiatric conditions after careful screening of candidate drugs and consideration of their efficacy and side effects in clinical trials.
Collapse
Affiliation(s)
- Hanieh Safari
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Shohreh Mashayekhan
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| |
Collapse
|
29
|
Bond DJ, Andreazza AC, Torres IJ, Honer WG, Lam RW, Yatham LN. Association of total peripheral inflammation with lower frontal and temporal lobe volumes in early-stage bipolar disorder: A proof-of-concept study. J Affect Disord 2022; 319:229-234. [PMID: 36155232 DOI: 10.1016/j.jad.2022.09.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 05/26/2022] [Accepted: 09/20/2022] [Indexed: 10/14/2022]
Abstract
BACKGROUND We previously reported that in early-stage bipolar disorder (BD), frontal and temporal lobe volume reductions were more pronounced in patients with elevated BMI and more rapidly progressive in patients with additional weight gain. Elevated BMI is a pro-inflammatory state, and inflammation may contribute to brain volume reductions in BD. However, few studies have investigated the relationship between inflammation and brain volumes. METHODS We conducted a proof-of-concept analysis to investigate whether a composite measure of total peripheral inflammation derived from 9 cytokines predicted lower frontal and temporal lobe volumes, measured with 3 T MRI, in early-stage BD. RESULTS In 25 early-stage patients, linear regression models showed that greater total inflammation predicted lower white matter (WM) volumes in the left frontal lobe (β = -0.691, p = 0.001) and bilateral temporal lobes (left: β = -0.617, p = 0.003; right: β = -0.636, p = 0.001). Greater inflammation also predicted lower right frontal WM, although this did not survive correction for multiple comparisons (β = -0.557, p = 0.020). It did not predict frontal or temporal GM. Total inflammation was a stronger predictor of lower WM volumes than were individual cytokines. LIMITATIONS Although the magnitude of the association between total inflammation and lower WM volumes was large, our sample was small. Our findings require confirmation in further studies, with samples large enough to determine whether inflammation mediates the relationship between elevated BMI and brain volumes. CONCLUSIONS This study supports the hypothesis that inflammation contributes to brain volume reductions in BD and suggests that total inflammatory burden best captures the impact of inflammation on the brain.
Collapse
Affiliation(s)
- David J Bond
- Mood Disorders Centre, University of British Columbia, Vancouver, BC, Canada; Department of Psychiatry and Behavioral Sciences, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Ana C Andreazza
- Departments of Psychiatry and Pharmacology, University of Toronto and Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Ivan J Torres
- Mood Disorders Centre, University of British Columbia, Vancouver, BC, Canada
| | - William G Honer
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Raymond W Lam
- Mood Disorders Centre, University of British Columbia, Vancouver, BC, Canada
| | - Lakshmi N Yatham
- Mood Disorders Centre, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
30
|
Majerczyk D, Ayad E, Brewton K, Saing P, Hart P. Systemic maternal inflammation promotes ASD via IL-6 and IFN-γ. Biosci Rep 2022; 42:BSR20220713. [PMID: 36300375 PMCID: PMC9670245 DOI: 10.1042/bsr20220713] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 09/30/2022] [Accepted: 10/26/2022] [Indexed: 07/25/2023] Open
Abstract
Autism spectrum disorder (ASD) is a neurological disorder that manifests during early development, impacting individuals through their ways of communicating, social behaviors, and their ability to perform day-to-day activities. There have been different proposed mechanisms on how ASD precipitates within a patient, one of which being the impact cytokines have on fetal development once a mother's immune system has been activated (referred to as maternal immune activation, MIA). The occurrence of ASD has long been associated with elevated levels of several cytokines, including interleukin-6 (IL-6) and interferon gamma (IFN-γ). These proinflammatory cytokines can achieve high systemic levels in response to immune activating pathogens from various extrinsic sources. Transfer of cytokines such as IL-6 across the placental barrier allows accumulation in the fetus, potentially inducing neuroinflammation and consequently altering neurodevelopmental processes. Individuals who have been later diagnosed with ASD have been observed to have elevated levels of IL-6 and other proinflammatory cytokines during gestation. Moreover, the outcome of MIA has been associated with neurological effects such as impaired social interaction and an increase in repetitive behavior in animal models, supporting a mechanistic link between gestational inflammation and development of ASD-like characteristics. The present review attempts to provide a concise overview of the available preclinical and clinical data that suggest cross-talk between IL-6 and IFN-γ through both extrinsic and intrinsic factors as a central mechanism of MIA that may promote the development of ASD.
Collapse
Affiliation(s)
- Daniel Majerczyk
- College of Science, Health and Pharmacy, Roosevelt University, Illinois 60173, U.S.A
- Loyola Medicine, Berwyn, Illinois 60402, U.S.A
| | - Elizabeth G. Ayad
- College of Science, Health and Pharmacy, Roosevelt University, Illinois 60173, U.S.A
| | - Kari L. Brewton
- College of Science, Health and Pharmacy, Roosevelt University, Illinois 60173, U.S.A
| | - Pichrasmei Saing
- College of Science, Health and Pharmacy, Roosevelt University, Illinois 60173, U.S.A
| | - Peter C. Hart
- College of Science, Health and Pharmacy, Roosevelt University, Illinois 60173, U.S.A
| |
Collapse
|
31
|
Monocyte-Lymphocyte Ratio and Dysglycemia: A Retrospective, Cross-Sectional Study of the Saudi Population. Healthcare (Basel) 2022; 10:healthcare10112289. [PMID: 36421613 PMCID: PMC9690849 DOI: 10.3390/healthcare10112289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/10/2022] [Accepted: 11/13/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Abnormalities in fasting blood glucose (FBG) resulting in hypoglycemia (OG), impaired fasting glycemia (IFG), or hyperglycemia (HG) arise from disordered metabolic regulation caused in part by inflammation. To date, there is a dearth of evidence regarding the clinical utility of the monocyte−lymphocyte ratio (MLR), an emerging inflammatory index, in the management of dysglycemia. Methods: This retrospective, cross-sectional study explored MLR fluctuations as a function of glycemic control in 14,173 Saudi subjects. Data collected from 11 August 2014 to 18 July 2020 were retrieved from Al-Borg Medical Laboratories. Medians were compared by Mann−Whitney U or Kruskal−Wallis tests and the prevalence, relative risk (RR), and odds ratio (OR) were calculated. Results: MLR was significantly elevated in IFG (p < 0.0001) and HG (p < 0.05) groups compared to the normoglycemia (NG) group, and individuals with elevated MLR (>0.191) had significantly increased FBG (p < 0.001). The risk of IFG (RR = 1.12, 95% CI: 1.06−1.19, p < 0.0002) and HG (RR = 1.10, 95% CI: 1.01−1.20, p < 0.0216) was significantly increased if MLR was elevated, and individuals with elevated MLR were 1.17 times more likely to have IFG (OR = 1.17, 95% CI: 1.08−1.26, p < 0.0002) and 1.13 times more likely to have HG (OR = 1.13, 95% CI: 1.02−1.24, p < 0.0216). Conclusion: Elevated MLR is correlated with and carries a greater risk for IFG and HG. However, large prospective cohort studies are needed to establish the temporal relationship between MLR and FBG and to examine the prognostic value of this novel marker.
Collapse
|
32
|
Biltz RG, Sawicki CM, Sheridan JF, Godbout JP. The neuroimmunology of social-stress-induced sensitization. Nat Immunol 2022; 23:1527-1535. [PMID: 36369271 PMCID: PMC10000282 DOI: 10.1038/s41590-022-01321-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022]
Abstract
Myriad clinical findings provide links between chronic stressors, inflammation, and mood disorders. Furthermore, traumatic or chronic exposure to psychological stressors may promote stress sensitization, in which individuals have long-term complications, including increased vulnerability to subsequent stressors. Post-traumatic stress disorder (PTSD) is a clinically relevant example of stress sensitization. PTSD alters neuronal circuitry and mood; however, the mechanisms underlying long-term stress sensitization within this disorder are unclear. Rodent models of chronic social defeat recapitulate several key physiological, immunological, and behavioral responses associated with psychological stress in humans. Repeated social defeat (RSD) uniquely promotes the convergence of neuronal, central inflammatory (microglial), and peripheral immune (monocyte) pathways, leading to prolonged anxiety, social withdrawal, and cognitive impairment. Moreover, RSD promotes stress sensitization, in which mice are highly sensitive to subthreshold stress exposure and recurrence of anxiety weeks after the cessation of stress. Therefore, the purpose of this Review is to discuss the influence of social-defeat stress on the immune system that may underlie stress sensitization within three key cellular compartments: neurons, microglia, and monocytes. Delineating the mechanisms of stress sensitization is critical in understanding and treating conditions such as PTSD.
Collapse
Affiliation(s)
- Rebecca G Biltz
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Caroline M Sawicki
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, OH, USA
| | - John F Sheridan
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, OH, USA.
- Chronic Brain Injury Program, The Ohio State University, Columbus, OH, USA.
- Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| | - Jonathan P Godbout
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
- Chronic Brain Injury Program, The Ohio State University, Columbus, OH, USA.
- Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
33
|
Liu X, Wang X, Wen C, Wan L. Decision tree distinguish affective disorder diagnosis from psychotic disorder diagnosis with clinical and lab factors. Heliyon 2022; 8:e11514. [PMID: 36406667 PMCID: PMC9672315 DOI: 10.1016/j.heliyon.2022.e11514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 09/18/2022] [Accepted: 11/04/2022] [Indexed: 11/13/2022] Open
Abstract
Background Affective symptoms usually occur at the same time of psychotic symptoms. An effective predictive method would help the differential diagnosis at an early stage of the mental disorder. The purpose of the study was to establish a predictive model by using laboratory indexes and clinical factors to improve the diagnostic accuracy. Methods Subjects were patients diagnosed with psychiatric disorders with affective and/or psychotic symptoms. Two patient samples were collected in the study (n = 309) With three classification methods (logistic regression, decision tree, and discriminant analysis), we established the models and verified the models. Results Seven predictors were found to be significant to distinguish the affective disorder diagnosis from the psychotic disorder diagnosis in all three methods, the 7 factors were Activities of daily living, direct bilirubin, apolipoproteinA1, lactic dehydrogenase, creatinine, monocyte count and interleukin-8. The decision tree outperformed the other 2 methods in area under the receiver operating characteristic curve, and also had the highest percentage of correctly classification. Conclusion We established a predictive model that included activities of daily living, biochemical, and immune indicators. In addition, the model established by the decision tree method had the highest predictive power, which provided a reliable basis for future clinical work. Our work would help make diagnosis more accurate at an early stage of the disorder.
Collapse
|
34
|
Langhein M, Seitz-Holland J, Lyall AE, Pasternak O, Chunga N, Cetin-Karayumak S, Kubicki A, Mulert C, Espinoza RT, Narr KL, Kubicki M. Association between peripheral inflammation and free-water imaging in Major Depressive Disorder before and after ketamine treatment - A pilot study. J Affect Disord 2022; 314:78-85. [PMID: 35779673 PMCID: PMC11186306 DOI: 10.1016/j.jad.2022.06.043] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 05/27/2022] [Accepted: 06/20/2022] [Indexed: 10/17/2022]
Abstract
BACKGROUND Alterations in the peripheral inflammatory profile and white matter (WM) deterioration are frequent in Major Depressive Disorder (MDD). The present study applies free-water imaging to investigate the relationship between altered peripheral inflammation and WM microstructure and their predictive value in determining response to ketamine treatment in MDD. METHODS Ten individuals with MDD underwent diffusion-weighted magnetic resonance imaging and a blood-draw before and 24 h after ketamine infusion. We utilized MANCOVAs and ANCOVAs to compare tissue-specific fractional anisotropy (FAT) and free-water (FW) of the forceps and cingulum, and the ratio of pro-inflammatory interleukin(IL)-8/anti-inflammatory IL-10 between individuals with MDD and 15 healthy controls at baseline. Next, we compared all baseline measures between ketamine responders (6) and non-responders (4) and analyzed changes in imaging and blood data after ketamine infusion. RESULTS The MDD group exhibited an increased IL-8/IL-10 ratio compared to controls at baseline (p = .040), which positively correlated with average FW across regions of interest (p = .013). Ketamine responders demonstrated higher baseline FAT in the left cingulum than non-responders (p = .023). Ketamine infusion did not influence WM microstructure but decreased the IL-8/IL-10 ratio (p = .043). LIMITATIONS The small sample size and short follow-up period limit the conclusion regarding the longer-term effects of ketamine in MDD. CONCLUSIONS This pilot study provides evidence for the role of inflammation in MDD by illustrating an association between peripheral inflammation and WM microstructure. Additionally, we demonstrate that free-water diffusion-weighted imaging might be a valuable tool to determine which individuals with MDD benefit from the anti-inflammatory mediated effects of ketamine treatment.
Collapse
Affiliation(s)
- Mina Langhein
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Johanna Seitz-Holland
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Amanda E Lyall
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ofer Pasternak
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Natalia Chunga
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Suheyla Cetin-Karayumak
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Antoni Kubicki
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, Geffen School of Medicine at the University of California, Los Angeles, CA, USA
| | - Christoph Mulert
- Centre for Psychiatry, Justus-Liebig-University, Giessen, Germany
| | - Randall T Espinoza
- Jane and Terry Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, Geffen School of Medicine at the University of California, Los Angeles, CA, USA
| | - Katherine L Narr
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, Geffen School of Medicine at the University of California, Los Angeles, CA, USA; Jane and Terry Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, Geffen School of Medicine at the University of California, Los Angeles, CA, USA
| | - Marek Kubicki
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
35
|
Yu Z, Sakai M, Fukushima H, Ono C, Kikuchi Y, Koyama R, Matsui K, Furuyashiki T, Kida S, Tomita H. Contextual fear conditioning regulates synapse-related gene transcription in mouse microglia. Brain Res Bull 2022; 189:57-68. [PMID: 35987296 DOI: 10.1016/j.brainresbull.2022.08.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/04/2022] [Accepted: 08/14/2022] [Indexed: 11/02/2022]
Abstract
Microglia have been suggested to be involved in the underlying mechanism of conditional fear memory formation by regulating inflammatory cytokines. However, the mechanism linking microglia and neuronal activity related to fear conditioning remains unclear. This study characterized the transcription profile of microglia in a fear memory conditional mouse model. Compared with those in control mice microglia, the most significantly induced genes were synapse-related, whereas immune-related genes were reduced due to fear memory consolidation. Whilst the increased expression of synapse-related genes was reversed after fear memory extinction, that of immunological genes was not, strongly suggesting a connection between microglia, neurons, and a dysregulated immune response following contextual fear conditioning. Furthermore, in the hippocampal microglia, we found that the expression of neurotransmitter release regulators, γ-aminobutyric acid (GABA) receptor GABRB3 and synapsin 1/2, increased under fear memory consolidation and restored (decreased) after extinction. In addition, compared with the transcription profile in peripheral monocytes, few overlapping genes were not enriched in biological processes. Taken together, the identified conditional fear stress-induced changes in mouse microglial transcription profiles suggest that microglia-neuron communication mediates contextual fear conditioning.
Collapse
Affiliation(s)
- Zhiqian Yu
- Department of Psychiatry, Graduate School of Medicine, Tohoku University, Sendai, Japan; Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan.
| | - Mai Sakai
- Department of Psychiatry Nursing, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Hotaka Fukushima
- Department of Bioscience, Faculty of Life Sciences, Tokyo University of Agriculture, Tokyo, Japan
| | - Chiaki Ono
- Department of Psychiatry, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Yoshie Kikuchi
- Department of Psychiatry, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Ryuta Koyama
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Ko Matsui
- Super-network Brain Physiology, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Tomoyuki Furuyashiki
- Division of Pharmacology, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Satoshi Kida
- Department of Bioscience, Faculty of Life Sciences, Tokyo University of Agriculture, Tokyo, Japan; Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Hiroaki Tomita
- Department of Psychiatry, Graduate School of Medicine, Tohoku University, Sendai, Japan; Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan; Department of Disaster Psychiatry, International Research Institute for Disaster Science, Tohoku University, Sendai, Japan
| |
Collapse
|
36
|
Wu X, Ding Z, Fan T, Wang K, Li S, Zhao J, Zhu W. Childhood social isolation causes anxiety-like behaviors via the damage of blood-brain barrier in amygdala in female mice. Front Cell Dev Biol 2022; 10:943067. [PMID: 36051441 PMCID: PMC9424755 DOI: 10.3389/fcell.2022.943067] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/05/2022] [Indexed: 12/04/2022] Open
Abstract
Social interaction plays an essential role in species survival for socialized animals. Previous studies have shown that a lack of social interaction such as social isolation, especially in the early-life phase, increases the risk of developing mental diseases in adulthood. Chronic social stress alters blood-brain barrier (BBB) integrity and increases peripheral cytokines to infiltrate the brain, which is linked to the development of depressive-like behaviors in mice, suggesting that BBB function is crucial in environmental stimuli-driven mood disorders via increased neuroinflammation in the brain. However, the precise mechanisms of inflammation and BBB integrity underlying the behavioral profiles induced by social isolation remain poorly understood. Here we showed that chronic childhood social isolation from post-weaning for consecutive 8 weeks in female but not male C57BL/6J mice induces anxiety-like behaviors. The levels of peripheral inflammatory cytokines including interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α in the plasma of socially isolated female mice were increased. Importantly, we found decreased expression of the endothelial cell tight junction protein Claudin-5, increased BBB breakdown and microglial activation in the amygdala of isolated but not group-housed female mice. Moreover, the neuronal activity in the amygdala was increased as evidenced by c-fos positive cells, and the levels of IL-1β in the amygdala, a critical brain region for regulating social processing and interaction, were also higher in female mice exposed to social isolation. Finally, down-regulation of Claudin-5 induced anxiety-like behaviors in group-housed females and overexpression of Claudin-5 with adeno-associated virus in the amygdala to restore BBB integrity decreased subsequent anxiety-like behaviors. Together, these findings suggest that chronic childhood social isolation impaired BBB permeability and caused neuroinflammation in the amygdala by recruiting peripheral cytokines into the brain and activating microglia, consequently triggering the development of anxiety-like behaviors in female mice.
Collapse
Affiliation(s)
- Xiao Wu
- School of Basic Medical Sciences, Peking University, Beijing, China
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Zengbo Ding
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Tengteng Fan
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Ke Wang
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Suxia Li
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Jing Zhao
- Department of Neurology, Minhang Hospital, Fudan University, Shanghai, China
- *Correspondence: Jing Zhao, ; Weili Zhu,
| | - Weili Zhu
- School of Basic Medical Sciences, Peking University, Beijing, China
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
- *Correspondence: Jing Zhao, ; Weili Zhu,
| |
Collapse
|
37
|
Chen Z, Liu H, Ye Y, Chen D, Lu Q, Lu X, Huang C. Granulocyte-macrophage colony-stimulating factor-triggered innate immune tolerance against chronic stress-induced behavioral abnormalities in mice. Int Immunopharmacol 2022; 109:108924. [PMID: 35704970 DOI: 10.1016/j.intimp.2022.108924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/25/2022] [Accepted: 06/02/2022] [Indexed: 11/05/2022]
Abstract
Pre-stimulation of the innate immune is considered a potential strategy to prevent chronic stress-induced behavioral abnormalities in animals. In this study, we investigated whether granulocyte-macrophage colony-stimulating factor (GM-CSF), an immunostimulant used in the clinic to treat diseases of the hematopoietic system, can prevent chronic stress-induced behavioral abnormalities in mice. Our results showed that a single intraperitoneal injection of GM-CSF (100 μg/kg) one day before stress exposure prevented the depression- and anxiety-like behaviors induced by chronic social defeat stress (CSDS) in mice, including preventing the CSDS-induced increase in the immobility time in the tail suspension test and forced swimming test and decrease in the time spent in the interaction zone in the social interaction test, as well as preventing the CSDS-induced decrease in the time spent (i) in open arms in the elevated plus maze test, (ii) on the illuminated side in the light-dark test, and (iii) in the central region of the open field test. The single GM-CSF preinjection (100 μg/kg) also prevented the CSDS-induced increase in the expression levels of interleukin-6 (IL-6), IL-1β, and tumor necrosis factor-α (TNF-α) mRNA in the hippocampus and medial prefrontal cortex of the mice. Further analysis showed that the preventive effect of GM-CSF on CSDS-induced depression- and anxiety-like behaviors and neuroinflammatory responses was abolished by pretreatment with minocycline (an innate immune inhibitor). These results indicate that a single low dose of GM-CSF before injection could be a potential way to prevent behavioral abnormalities induced by chronic stress in mice.
Collapse
Affiliation(s)
- Zhuo Chen
- Invasive Technology Department, Affiliated Hospital 2 of Nantong University, First People's Hospital of Nantong City, No. 6 Haierxiang North Road, Nantong, 226001, China.
| | - Huijun Liu
- Department of Pharmacy, Yancheng First Hopital, the Fourth Affiliated Hospital of Nantong University, #66 Renmin South Road, Yancheng 224008, Jiangsu, China
| | - Ying Ye
- Department of Ultrasound, Affiliated Hospital of Nantong University, #20 Xisi Road, Nantong 226001, Jiangsu, China
| | - Dongjian Chen
- Invasive Technology Department, Affiliated Hospital 2 of Nantong University, First People's Hospital of Nantong City, No. 6 Haierxiang North Road, Nantong, 226001, China
| | - Qun Lu
- Department of Pharmacy, Nantong Third Hospital Affiliated to Nantong University, #60 Middle Qingnian Road, Nantong 226006, Jiangsu, China
| | - Xu Lu
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Chao Huang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China.
| |
Collapse
|
38
|
Zhao F, Li B, Yang W, Ge T, Cui R. Brain-immune interaction mechanisms: Implications for cognitive dysfunction in psychiatric disorders. Cell Prolif 2022; 55:e13295. [PMID: 35860850 PMCID: PMC9528770 DOI: 10.1111/cpr.13295] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 04/28/2022] [Accepted: 06/07/2022] [Indexed: 12/15/2022] Open
Abstract
Objectives Cognitive dysfunction has been identified as a major symptom of a series of psychiatric disorders. Multidisciplinary studies have shown that cognitive dysfunction is monitored by a two‐way interaction between the neural and immune systems. However, the specific mechanisms of cognitive dysfunction in immune response and brain immune remain unclear. Materials and methods In this review, we summarized the relevant research to uncover our comprehension of the brain–immune interaction mechanisms underlying cognitive decline. Results The pathophysiological mechanisms of brain‐immune interactions in psychiatric‐based cognitive dysfunction involve several specific immune molecules and their associated signaling pathways, impairments in neural and synaptic plasticity, and the potential neuro‐immunological mechanism of stress. Conclusions Therefore, this review may provide a better theoretical basis for integrative therapeutic considerations for psychiatric disorders associated with cognitive dysfunction.
Collapse
Affiliation(s)
- Fangyi Zhao
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Bingjin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Wei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Tongtong Ge
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
39
|
Wei Y, Feng J, Ma J, Chen D, Chen J. Neutrophil/lymphocyte, platelet/lymphocyte and monocyte/lymphocyte ratios in patients with affective disorders. J Affect Disord 2022; 309:221-228. [PMID: 35460739 DOI: 10.1016/j.jad.2022.04.092] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 03/02/2022] [Accepted: 04/13/2022] [Indexed: 10/18/2022]
Abstract
OBJECTIVE There is substantial evidence to support that the alterations in the immune-inflammation system play a crucial role in the pathogenic mechanism of affective disorders. The neutrophil/lymphocyte ratio (NLR), platelet/lymphocyte ratio (PLR) and monocyte/lymphocyte ratio (MLR) have been recently investigated as simple, rapid, and inexpensive inflammation markers. The purpose of the research is to use large-scale clinical data to study the difference of the inflammation ratios in first-episode MDD, recurrent MDD, BD depressive episodes and manic episode. METHODS A cross-sectional design was applied to retrospectively analyse the data that were extracted from electronic health records. A total of 16,174 Chinese affective disorder patients were enrolled in this study, and 6681 healthy subjects served as controls. The differences in the NLR, MLR, PLR and whole blood count data among different groups were compared, and the contributing factors for the occurrence of MDD and BD were analysed. RESULTS First-episode and recurrent MDD patients exhibited significantly elevated NLRs and MLRs compared to healthy controls. Compared with the MDD patients, the BD patients showed higher NLRs and MLRs and lower PLRs. Further analysis showed that the BD manic episode patients had significantly elevated NLRs and MLRs compared to patients with BD depressive episodes or MDD. MLR was a risk factor for the occurrence of MDD and that the NLR and MLR were risk factors for the occurrence of BD. CONCLUSIONS Our study highlights the role of systemic inflammation in the pathophysiology of MDD and BD, particularly during manic BD episodes.
Collapse
Affiliation(s)
- Yanyan Wei
- Beijing Hui-Long-Guan Hospital, Peking University, Beijing 100096, China
| | - Junhui Feng
- Jining Psychiatric Hospital, Jidai Road 1#, Jining 272000, Shandong, China
| | - Jinbao Ma
- Beijing Tongren Hospital, Dongjiaomin Road 1#, Beijing 100000, China
| | - Dongning Chen
- Beijing Tongren Hospital, Dongjiaomin Road 1#, Beijing 100000, China
| | - Jingxu Chen
- Beijing Hui-Long-Guan Hospital, Peking University, Beijing 100096, China.
| |
Collapse
|
40
|
Jansma J, van Essen R, Haarman BCM, Chatziioannou AC, Borkent J, Ioannou M, van Hemert S, Sommer IEC, El Aidy S. Metabolic phenotyping reveals a potential link between elevated faecal amino acids, diet and symptom severity in individuals with severe mental illness. J Psychiatr Res 2022; 151:507-515. [PMID: 35636025 DOI: 10.1016/j.jpsychires.2022.05.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 04/06/2022] [Accepted: 05/09/2022] [Indexed: 10/18/2022]
Abstract
The brain-gut axis is increasingly recognized as an important contributing factor in the onset and progression of severe mental illnesses such as schizophrenia spectrum disorders and bipolar disorder. This study investigates associations between levels of faecal metabolites identified using 1H-NMR, clinical parameters, and dietary components of forty-two individuals diagnosed in a transdiagnostic approach to have severe mental illness. Faecal levels of the amino acids; alanine, leucine, and valine showed a significant positive correlation with psychiatric symptom severity as well as with dairy intake. Overall, this study proposes a diet-induced link between the brain-gut axis and the severity of psychiatric symptoms, which could be valuable in the design of novel dietary or therapeutic interventions to improve psychiatric symptoms.
Collapse
Affiliation(s)
- Jack Jansma
- Host-microbe Interactions, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Groningen, the Netherlands
| | - Rogier van Essen
- Host-microbe Interactions, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Groningen, the Netherlands
| | | | | | - Jenny Borkent
- Department of Biomedical Sciences of Cells & Systems, University Medical Center Groningen, Groningen, the Netherlands
| | - Magdalini Ioannou
- Department of Psychiatry, University Medical Center Groningen, Groningen, the Netherlands; Department of Biomedical Sciences of Cells & Systems, University Medical Center Groningen, Groningen, the Netherlands
| | | | - Iris E C Sommer
- Department of Biomedical Sciences of Cells & Systems, University Medical Center Groningen, Groningen, the Netherlands.
| | - Sahar El Aidy
- Host-microbe Interactions, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
41
|
A retrospective cohort study of the change in inflammatory parameters in childhood schizophrenia and bipolar disorder from childhood to adulthood. JOURNAL OF SURGERY AND MEDICINE 2022. [DOI: 10.28982/josam.1109124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Background/Aim: The etiologies of childhood schizophrenia and bipolar disorder have not yet been clarified. In cases in which the symptoms of mood are not dominant and psychotic symptoms are more dominant, it may be difficult to distinguish between childhood schizophrenia and bipolar disorder diagnoses. Follow-up studies concerning this subject have indicated that approximately half of the adolescents diagnosed with bipolar disorder were first (and incorrectly) diagnosed with schizophrenia. Therefore, strong markers are still needed to be used in the differential diagnosis at the time of the first application. An increase in the number of studies on the neuroinflammatory process in pediatric schizophrenia and bipolar illness have started to appear in the literature. The neutrophil–lymphocyte, thrombocyte–lymphocyte, and thrombocyte–neutrophil ratio (NLR, TLR, and TNR, respectively) levels in patients with childhood schizophrenia and childhood bipolar disorder at the time of admission and five years later were evaluated to determine whether inflammatory markers changed over time.
Methods: Twelve patients diagnosed with childhood schizophrenia and 14 patients diagnosed with childhood bipolar disorder were included in the study. Active infections, medical, neurological, endocrine, and metabolic illnesses, mental retardation, further concomitant psychiatric diagnoses, and intoxication were all exclusion factors. Hemograms from the same patients who satisfied the inclusion criteria when they originally applied and again at the fifth year follow-up were evaluated. Age, gender, neutrophil, lymphocyte, leukocyte, and thrombocyte values were recorded. NLR was calculated by dividing the neutrophil count by lymphocyte count. TLR value was calculated by dividing the thrombocyte count by lymphocyte count. TNR value was calculated by dividing the thrombocyte count by neutrophil count. Bipolar disorder and schizophrenia status were compared using NLR, TLR, and TNR parameters both at the time of initial diagnosis and at the fifth year of follow-up.
Results: When the initial admission hemograms of patients with childhood schizophrenia or childhood bipolar disorder were examined, no statistically significant differences between the two groups in terms of NLR (P = 0.150) and TLR (P = 0.440) were found. TNR was significantly higher in childhood bipolar disorder patients than in childhood schizophrenia (P = 0.015). At the fifth year follow-up, the hemograms of individuals diagnosed with either childhood schizophrenia or childhood bipolar disorder were compared, and no statistically significant differences between the two groups in NLR, (P = 0.572),TLR (P = 0.758), and TNR (P = 0.328) were found.
Conclusion: It was concluded that NLR and TLR levels did not change significantly over time in either disease and could not be used for the differential diagnosis of either disease. TNR may be considered for differential diagnoses in childhood schizophrenia and bipolar disease, particularly at the time of the first episode after confirmation of this study's findings with future studies.
Collapse
|
42
|
Wang S, Guan YG, Zhu YH, Wang MZ. Role of high mobility group box protein 1 in depression: A mechanistic and therapeutic perspective. World J Psychiatry 2022; 12:779-786. [PMID: 35978968 PMCID: PMC9258272 DOI: 10.5498/wjp.v12.i6.779] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 04/12/2022] [Accepted: 05/14/2022] [Indexed: 02/06/2023] Open
Abstract
As a common and serious psychiatric disorder, depression significantly affects psychosocial functioning and quality of life. However, the mechanism of depression is still enigmatic and perplexing, which limits its precise and effective therapeutic methods. Recent studies demonstrated that neuroinflammation activation plays an important role in the pathophysiology of depression. In this respect, high mobility group box 1 (HMGB1) may be a possible signaling inducer of neuroinflammation and can be a potential mechanistic and therapeutic target for depression. Herein, we review recent studies on the mechanistic and therapeutic targets of HMGB1 in depression and propose potential perspectives on this topic.
Collapse
Affiliation(s)
- Shu Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Yu-Guang Guan
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
- Beijing Key Laboratory of Epilepsy, Center of Epilepsy, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100093, China
| | - Yan-Hua Zhu
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong Province, China
| | - Min-Zhong Wang
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong Province, China
| |
Collapse
|
43
|
Coentre R, Levy P, Góis C, Figueira ML. Metabolic syndrome following a first episode of psychosis: results of a 1-year longitudinal study conducted in metropolitan Lisbon, Portugal. J Int Med Res 2022; 50:3000605221106703. [PMID: 35726606 PMCID: PMC9218473 DOI: 10.1177/03000605221106703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Objective We aimed to assess the prevalence and course of metabolic syndrome (MetS) and the associated metabolic parameters during the year following a first episode pf psychosis (FEP). Methods We performed a 1-year longitudinal observation of 60 patients who experienced FEP. MetS was defined using the modified definition of the National Cholesterol Education Program Adult Treatment Panel III. We assessed the metabolic parameters and socio-demographic and psychopathological data for the participants. Results The mean age of the participants was 27.1 years, and 33.3% of them were women. There was an increase in the prevalence of MetS from 6.7% to 11.7% during the year following the baseline assessment during the year following the baseline assessment (p = 0.250). There were also significant increases in the prevalences of abnormal triglyceride concentration, waist circumference, and high-density lipoprotein (HDL)-cholesterol concentration during this period. In addition, there was a considerable worsening of the metabolic profile of the participants. No baseline parameters were identified to be predictors of MetS over the 1-year follow-up period. Conclusions We can conclude that metabolic abnormalities are common in patients with FEP and that these rapidly worsen during the first year following the diagnosis of FEP. Studies on interventions are needed to reduce metabolic risk to cardiovascular diseases following the FEP.
Collapse
Affiliation(s)
- Ricardo Coentre
- Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Department of Psychiatry, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Lisboa, Portugal
| | - Pedro Levy
- Department of Psychiatry, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Lisboa, Portugal
| | - Carlos Góis
- Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Department of Psychiatry, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Lisboa, Portugal
| | | |
Collapse
|
44
|
Mostafa M, Fathy AA, Elwasify M, Abdelsalam M. Analysis of selected polymorphisms in FOXP3 gene in a cohort of Egyptian patients with schizophrenia. J Genet Eng Biotechnol 2022; 20:83. [PMID: 35641708 PMCID: PMC9156649 DOI: 10.1186/s43141-022-00371-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 05/20/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND Schizophrenia is a chronic mental disorder with different symptoms. The environmental and genetic factors are suggested to be the etiology of schizophrenia. However, the exact cause and pathogenesis of schizophrenia are still unclear. Different studies suggested that the immune system may have a role in schizophrenia. A genetic study found a relation between the disease and the HLA region on the sixth chromosome. Regulatory T cells (Treg) have a role in the regulation of immune response, especially the balance between TH1 and TH2 cells. The FOXP3 protein is a key regulator for Treg cell's functions. FOXP3 is a transcriptional factor, and its gene is present on the short arm of the X chromosome. The selected SNPs present in the promoter region which act as binding sites for transcriptional factors. This study investigated FOXP3 gene polymorphisms (rs3761548, rs3761549, and rs2232365) in Egyptian patients with schizophrenia. There are no previous studies about the association of FOXP3 gene polymorphisms with schizophrenia. The three selected single-nucleotide polymorphisms (SNPs) were investigated using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) for 125 schizophrenia patients and 160 healthy controls. The Positive and Negative Syndrome Scale (PANSS) was used to evaluate patients with schizophrenia. RESULTS No significant associations were found between schizophrenia patients and healthy controls for the alleles and genotypes of the selected SNPs (P-value > 0.05). However, a significant association with ACC and ATC haplotypes was detected (P-value 0.001). No significant association was detected between the PANSS score and any of the studied SNPs. CONCLUSION The ATC haplotype of rs2232365, rs3761549, and rs3761548 could be considered a risk factor for schizophrenia in Egyptian patients.
Collapse
Affiliation(s)
- Maged Mostafa
- Clinical Pathology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Aya Ahmed Fathy
- Public Health and Community Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Mohamed Elwasify
- Psychiatry Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Maha Abdelsalam
- Clinical Pathology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt. .,Immunology Department, Egypt Center for Research and Regenerative Medicine (ECRRM), Cairo, Egypt.
| |
Collapse
|
45
|
Ermakov EA, Melamud MM, Buneva VN, Ivanova SA. Immune System Abnormalities in Schizophrenia: An Integrative View and Translational Perspectives. Front Psychiatry 2022; 13:880568. [PMID: 35546942 PMCID: PMC9082498 DOI: 10.3389/fpsyt.2022.880568] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 03/30/2022] [Indexed: 12/12/2022] Open
Abstract
The immune system is generally known to be the primary defense mechanism against pathogens. Any pathological conditions are reflected in anomalies in the immune system parameters. Increasing evidence suggests the involvement of immune dysregulation and neuroinflammation in the pathogenesis of schizophrenia. In this systematic review, we summarized the available evidence of abnormalities in the immune system in schizophrenia. We analyzed impairments in all immune system components and assessed the level of bias in the available evidence. It has been shown that schizophrenia is associated with abnormalities in all immune system components: from innate to adaptive immunity and from humoral to cellular immunity. Abnormalities in the immune organs have also been observed in schizophrenia. Evidence of increased C-reactive protein, dysregulation of cytokines and chemokines, elevated levels of neutrophils and autoantibodies, and microbiota dysregulation in schizophrenia have the lowest risk of bias. Peripheral immune abnormalities contribute to neuroinflammation, which is associated with cognitive and neuroanatomical alterations and contributes to the pathogenesis of schizophrenia. However, signs of severe inflammation are observed in only about 1/3 of patients with schizophrenia. Immunological parameters may help identify subgroups of individuals with signs of inflammation who well respond to anti-inflammatory therapy. Our integrative approach also identified gaps in knowledge about immune abnormalities in schizophrenia, and new horizons for the research are proposed.
Collapse
Affiliation(s)
- Evgeny A. Ermakov
- Laboratory of Repair Enzymes, Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Mark M. Melamud
- Laboratory of Repair Enzymes, Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
| | - Valentina N. Buneva
- Laboratory of Repair Enzymes, Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Svetlana A. Ivanova
- Laboratory of Molecular Genetics and Biochemistry, Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| |
Collapse
|
46
|
Singh D, Guest PC, Dobrowolny H, Vasilevska V, Meyer-Lotz G, Bernstein HG, Borucki K, Neyazi A, Bogerts B, Jacobs R, Steiner J. Changes in leukocytes and CRP in different stages of major depression. J Neuroinflammation 2022; 19:74. [PMID: 35379263 PMCID: PMC8981816 DOI: 10.1186/s12974-022-02429-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 03/11/2022] [Indexed: 11/10/2022] Open
Abstract
Background We recently reported increased levels of neutrophils, monocytes and C-reactive protein (CRP) correlated with symptom severity in acute schizophrenia. Here, we investigated if a similar pattern of innate immune system activation occurs in major depression (MD). Methods We assessed differential blood counts, CRP, depression symptoms (HAMD-21) and psychosocial functioning (GAF) in controls (n = 129) and patients with first (FEMD: n = 82) or recurrent (RMD: n = 47) disease episodes of MD at baseline (T0; hospital admission) and after 6-weeks treatment (T6). Results Considering smoking, BMI and gender as covariates, neutrophils (FEMD: p = 0.034, RMD: p = 0.034) and CRP (FEMD: p < 0.001, RMD: p = 0.021) were higher, and eosinophils (FEMD: p = 0.005, RMD: p = 0.004) lower in patients versus controls at T0. Baseline lymphocyte counts were elevated in RMD (p = 0.003) but not FEMD. Results were confirmed by analyses of nonsmokers. At follow-up, eosinophils rose significantly in FEMD (p = 0.011) but no significant changes were observed in RMD. Improvement in HAMD-21 correlated with T0–T6 changes of neutrophil counts in FEMD (r = 0.364, p = 0.024). Compared with our previous schizophrenia study, raised baseline neutrophil and reduced eosinophil counts in MD had smaller effect sizes and treatment had a weaker association with T0-T6 changes in neutrophils. In addition, lymphocytes were elevated at T0 in recurrent MD but not in schizophrenia patients. Conclusions These findings suggest that innate immunity may be involved in early stages of MD, and adaptive immunity may be involved in chronic disease. Thus, further studies may lead to new disease stage-dependent MD treatment strategies targeting different aspects of immune system activation. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02429-7.
Collapse
Affiliation(s)
- Deepti Singh
- Department of Psychiatry and Psychotherapy, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany.,Laboratory of Translational Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Paul C Guest
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Henrik Dobrowolny
- Department of Psychiatry and Psychotherapy, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany.,Laboratory of Translational Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Veronika Vasilevska
- Department of Psychiatry and Psychotherapy, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany.,Laboratory of Translational Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Gabriela Meyer-Lotz
- Department of Psychiatry and Psychotherapy, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany.,Laboratory of Translational Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Hans-Gert Bernstein
- Department of Psychiatry and Psychotherapy, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany.,Laboratory of Translational Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Katrin Borucki
- Institute of Clinical Chemistry and Pathobiochemistry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Alexandra Neyazi
- Department of Psychiatry and Psychotherapy, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany.,Laboratory of Translational Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany.,Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Bernhard Bogerts
- Department of Psychiatry and Psychotherapy, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany.,Laboratory of Translational Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany.,Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany.,Salus Institute, Magdeburg, Germany
| | - Roland Jacobs
- Department of Rheumatology and Clinical Immunology, Hannover Medical School (MHH), Hannover, Germany
| | - Johann Steiner
- Department of Psychiatry and Psychotherapy, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany. .,Laboratory of Translational Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany. .,Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany. .,Center for Health und Medical Prevention (CHaMP), Magdeburg, Germany. .,German Center for Mental Health (DZP), Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Germany.
| |
Collapse
|
47
|
Xu Y, Zhao H, Wang Z, Gao H, Liu J, Li K, Song Z, Yuan C, Lan X, Pan C, Zhang S. Developmental exposure to environmental levels of cadmium induces neurotoxicity and activates microglia in zebrafish larvae: From the perspectives of neurobehavior and neuroimaging. CHEMOSPHERE 2022; 291:132802. [PMID: 34752834 DOI: 10.1016/j.chemosphere.2021.132802] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/15/2021] [Accepted: 11/04/2021] [Indexed: 06/13/2023]
Abstract
Cadmium (Cd) is a worldwide environmental pollutant that postures serious threats to humans and ecosystems. Over the years, its adverse effects on the central nervous system (CNS) have been concerned, whereas the underlying cellular/molecular mechanisms remain unclear. In this study, taking advantages of zebrafish model in high-throughput imaging and behavioral tests, we have explored the potential developmental neurotoxicity of Cd at environmentally relevant levels, from the perspectives of neurobehavior and neuroimaging. Briefly, Cd2+ exposure resulted in a general impairment of zebrafish early development. Zebrafish neurobehavioral patterns including locomotion and reactivity to environmental signals were significantly perturbed upon Cd2+ exposure. Importantly, a combination of in vivo two-photon neuroimaging, flow cytometry and gene expression analyses revealed notable neurodevelopmental disorders as well as neuroimmune responses induced by Cd2+ exposure. Both cell-cycle arrest and apoptosis contributed jointly to a significant decrease of neuronal density in zebrafish larvae exposed to Cd2+. The dramatic morphological alterations of microglia from multi-branched to amoeboid, the microgliosis, as well as the modulation of gene expression profiles demonstrated a strong activation of microglia and neuroinflammation triggered by environmental levels of Cd2+. Together, our study points to the developmental toxicity of Cd in inducing CNS impairment and neuroinflammation thereby providing visualized etiological evidence of this heavy metal induced neurodevelopmental disorders. It's tempting to speculate that this research model might represent a promising tool not only for understanding the molecular mechanisms of Cd-induced neurotoxicity, but also for developing pharmacotherapies to mitigate the neurological damage resulting from exposure to Cd, and other neurotoxicants.
Collapse
Affiliation(s)
- Yanyi Xu
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, 730000, Gansu Province, China
| | - Haiyu Zhao
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, 730000, Gansu Province, China.
| | - Zuo Wang
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, 730000, Gansu Province, China
| | - Hao Gao
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, 730000, Gansu Province, China
| | - Junru Liu
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, 730000, Gansu Province, China
| | - Kemin Li
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, 730000, Gansu Province, China
| | - Zan Song
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, 730000, Gansu Province, China
| | - Cong Yuan
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, 730000, Gansu Province, China
| | - Xianyong Lan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, 712100, Shaanxi Province, China
| | - Chuanying Pan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, 712100, Shaanxi Province, China
| | - Shengxiang Zhang
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, 730000, Gansu Province, China.
| |
Collapse
|
48
|
Old and New Biomarkers for Infection, Inflammation, and Autoimmunity in Treatment-Resistant Affective and Schizophrenic Spectrum Disorders. Pharmaceuticals (Basel) 2022; 15:ph15030299. [PMID: 35337097 PMCID: PMC8949012 DOI: 10.3390/ph15030299] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/24/2022] [Accepted: 02/24/2022] [Indexed: 02/06/2023] Open
Abstract
Affective (AF) and Schizophrenic (SZ) Spectrum disorders manifest with risk factors, involving inflammatory processes linked to infections and autoimmunity. This study searched for novel biomarkers in cerebrospinal fluid (CSF) and peripheral blood. A total of 29 AF and 39 SZ patients with treatment-resistant disease were included. In CSF, the chemokine IL-8 was significantly elevated in AF and SZ patients. IL-8 promotes chemotaxis by neutrophils and may originate from different tissues. S100B, a glia-derived brain damage marker, was higher in CSF from AF than SZ patients. Among the plasma-derived biomarkers, ferritin was elevated in AF and SZ. Soluble CD25, indicating Treg dysfunction, was higher in SZ than in AF patients. Interferon-γ, implying virus-specific immune activation, was positive in selective AF patients, only. Both groups showed elevated expression of immunosuppressive CD33 on monocytes, but higher amounts of CD123+ plasmacytoid dendritic cells were restricted to SZ. In conclusion, chemotactic IL-8 indicates neuronal stress and inflammation in the CSF of both groups. Novel plasma-derived biomarkers such as sCD25 and monocytic CD33 distinguish SZ from AF with an autoimmune phenotype.
Collapse
|
49
|
Coelho AA, Vila-Verde C, Sartim AG, Uliana DL, Braga LA, Guimarães FS, Lisboa SF. Inducible Nitric Oxide Synthase Inhibition in the Medial Prefrontal Cortex Attenuates the Anxiogenic-Like Effect of Acute Restraint Stress via CB 1 Receptors. Front Psychiatry 2022; 13:923177. [PMID: 35911236 PMCID: PMC9330908 DOI: 10.3389/fpsyt.2022.923177] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Stress exposure can result in several proinflammatory alterations in the brain, including overexpression of the inducible isoform of nitric oxide synthase (iNOS) in the medial prefrontal cortex (mPFC). These changes may be involved in the development of many psychiatric conditions. However, it is unknown if iNOS in mPFC plays a significant role in stress-induced behavioral changes. The endocannabinoid (ECB) system is also influenced by stress. Its activation seems to be a counter regulatory mechanism to prevent or decrease the stress-mediated neuroinflammatory consequences. However, it is unclear if the ECB system and iNOS interact to influence stress consequences. This study aimed to test the hypothesis that the anti-stress effect of iNOS inhibition in mPFC involves the local ECB system, particularly the CB1 cannabinoid receptors. Male Wistar rats with guide cannula aimed at the mPFC were submitted to acute restraint stress (RS) for 2 h. In the following morning, rats received bilateral microinjections of vehicle, AM251 (CB1 antagonist; 100 pmol), and/or 1400W (iNOS selective inhibitor; 10-4, 10-3, or 10-2 nmol) into the prelimbic area of mPFC (PL-mPFC) before being tested in the elevated plus-maze (EPM). iNOS inhibition by 1400W prevented the anxiogenic-like effect observed in animals submitted to RS. The drug did not promote behavior changes in naive animals, demonstrating a stress-dependent effect. The 1400W-anti-stress effect was prevented by local pretreatment with AM251. Our data suggest that iNOS inhibition may facilitate the local endocannabinoid signaling, attenuating stress effects.
Collapse
Affiliation(s)
- Arthur A Coelho
- Pharmacology Department, Ribeirão Preto Medical School-University of São Paulo, São Paulo, Brazil.,Biomolecular Sciences Department, School of Pharmaceutical Sciences of Ribeirão Preto-University of São Paulo, São Paulo, Brazil
| | - Carla Vila-Verde
- Pharmacology Department, Ribeirão Preto Medical School-University of São Paulo, São Paulo, Brazil
| | - Ariandra G Sartim
- Biomolecular Sciences Department, School of Pharmaceutical Sciences of Ribeirão Preto-University of São Paulo, São Paulo, Brazil
| | - Daniela L Uliana
- Pharmacology Department, Ribeirão Preto Medical School-University of São Paulo, São Paulo, Brazil.,Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Laura A Braga
- Pharmacology Department, Ribeirão Preto Medical School-University of São Paulo, São Paulo, Brazil
| | - Francisco S Guimarães
- Pharmacology Department, Ribeirão Preto Medical School-University of São Paulo, São Paulo, Brazil
| | - Sabrina F Lisboa
- Pharmacology Department, Ribeirão Preto Medical School-University of São Paulo, São Paulo, Brazil.,Biomolecular Sciences Department, School of Pharmaceutical Sciences of Ribeirão Preto-University of São Paulo, São Paulo, Brazil
| |
Collapse
|
50
|
Su L, Shuai Y, Mou S, Shen Y, Shen X, Shen Z, Zhang X. Development and validation of a nomogram based on lymphocyte subsets to distinguish bipolar depression from major depressive disorder. Front Psychiatry 2022; 13:1017888. [PMID: 36276314 PMCID: PMC9583168 DOI: 10.3389/fpsyt.2022.1017888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/13/2022] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVE Bipolar depression (BD) and major depressive disorder (MDD) are both common affective disorders. The common depression episodes make it difficult to distinguish between them, even for experienced clinicians. Failure to properly diagnose them in a timely manner leads to inappropriate treatment strategies. Therefore, it is important to distinguish between BD and MDD. The aim of this study was to develop and validate a nomogram model that distinguishes BD from MDD based on the characteristics of lymphocyte subsets. MATERIALS AND METHODS A prospective cross-sectional study was performed. Blood samples were obtained from participants who met the inclusion criteria. The least absolute shrinkage and selection operator (LASSO) regression model was used for factor selection. A differential diagnosis nomogram for BD and MDD was developed using multivariable logistic regression and the area under the curve (AUC) with 95% confidence interval (CI) was calculated, as well as the internal validation using a bootstrap algorithm with 1,000 repetitions. Calibration curve and decision curve analysis (DCA) were used to evaluate the calibration and clinical utility of the nomogram, respectively. RESULTS A total of 166 participants who were diagnosed with BD (83 cases) or MDD (83 cases), as well as 101 healthy controls (HCs) between June 2018 and January 2022 were enrolled in this study. CD19+ B cells, CD3+ T cells, CD3-CD16/56+ NK cells, and total lymphocyte counts were strong predictors of the diagnosis of BD and MDD and were included in the differential diagnosis nomogram. The AUC of the nomogram and internal validation were 0.922 (95%; CI, 0.879-0.965), and 0.911 (95% CI, 0.838-0.844), respectively. The calibration curve used to discriminate BD from MDD showed optimal agreement between the nomogram and the actual diagnosis. The results of DCA showed that the net clinical benefit was significant. CONCLUSION This is an easy-to-use, repeatable, and economical nomogram for differential diagnosis that can help clinicians in the individual diagnosis of BD and MDD patients, reduce the risk of misdiagnosis, facilitate the formulation of appropriate treatment strategies and intervention plans.
Collapse
Affiliation(s)
- Liming Su
- Department of Neurosis and Psychosomatic Diseases, Huzhou Third Municipal Hospital, The Affiliated Hospital of Huzhou University, Huzhou, China
| | - Yibing Shuai
- Department of Neurosis and Psychosomatic Diseases, Huzhou Third Municipal Hospital, The Affiliated Hospital of Huzhou University, Huzhou, China
| | - Shaoqi Mou
- Department of Psychiatry, Wenzhou Medical University, Wenzhou, China
| | - Yue Shen
- Department of Neurosis and Psychosomatic Diseases, Huzhou Third Municipal Hospital, The Affiliated Hospital of Huzhou University, Huzhou, China
| | - Xinhua Shen
- Department of Neurosis and Psychosomatic Diseases, Huzhou Third Municipal Hospital, The Affiliated Hospital of Huzhou University, Huzhou, China
| | - Zhongxia Shen
- Department of Neurosis and Psychosomatic Diseases, Huzhou Third Municipal Hospital, The Affiliated Hospital of Huzhou University, Huzhou, China
| | - Xiaomei Zhang
- Department of Neurosis and Psychosomatic Diseases, Huzhou Third Municipal Hospital, The Affiliated Hospital of Huzhou University, Huzhou, China
| |
Collapse
|