1
|
Kostas JC, Brainard CS, Cristea IM. A Primer on Proteomic Characterization of Intercellular Communication in a Virus Microenvironment. Mol Cell Proteomics 2025:100913. [PMID: 39862905 DOI: 10.1016/j.mcpro.2025.100913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 01/10/2025] [Accepted: 01/12/2025] [Indexed: 01/27/2025] Open
Abstract
Intercellular communication is fundamental to multicellular life and a core determinant of outcomes during viral infection, where the common goals of virus and host for persistence and replication are generally at odds. Hosts rely on encoded innate and adaptive immune responses to detect and clear viral pathogens, while viruses can exploit or disrupt these pathways and other intercellular communication processes to enhance their spread and promote pathogenesis. While virus-induced signaling can result in systemic changes to the host, striking alterations are observed within the cellular microenvironment directly surrounding a site of infection, termed the virus microenvironment (VME). Mechanisms employed by viruses to condition their VMEs are emerging and are critical for understanding the biology and pathologies of viral infections. Recent advances in experimental approaches, including proteomic methods, have enabled study of the VME in unprecedented detail. In this review article, we provide a primer on proteomic approaches used to study how viral infections alter intercellular communication, highlighting the ways in which these approaches have been implemented and the exciting biology they have uncovered. First, we consider the different molecules secreted by an infected cell, including proteins, either soluble or contained within extracellular vesicles, and metabolites. We further discuss the modalities of interactions facilitated by alteration at the cell surface of infected cells, including immunopeptide presentation and interactions with the extracellular matrix. Finally, we review spatial profiling approaches that have allowed distinguishing how specific subpopulations of cells within a VME respond to infection and alter their protein composition, discussing valuable insights these methods have offered.
Collapse
Affiliation(s)
- James C Kostas
- Department of Molecular Biology, Princeton University; Princeton, NJ USA 08544
| | - Colter S Brainard
- Department of Molecular Biology, Princeton University; Princeton, NJ USA 08544
| | - Ileana M Cristea
- Department of Molecular Biology, Princeton University; Princeton, NJ USA 08544.
| |
Collapse
|
2
|
Delli Ponti R, Vandelli A, Tartaglia GG. Subgenomic flaviviral RNAs and human proteins: in silico exploration of anti-host defense mechanisms. Comput Struct Biotechnol J 2024; 23:3527-3536. [PMID: 39435344 PMCID: PMC11492465 DOI: 10.1016/j.csbj.2024.09.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/29/2024] [Accepted: 09/29/2024] [Indexed: 10/23/2024] Open
Abstract
Flaviviruses pose significant global health threats, infecting over 300 million people annually. Among their evasion strategies, the production of subgenomic flaviviral RNAs (sfRNAs) from the 3' UTR of viral genomes is particularly notable. Utilizing a comprehensive in silico approach with the catRAPID algorithm, we analyzed over 300,000 interactions between sfRNAs and human proteins derived from more than 8000 flavivirus genomes, including Dengue, Zika, Yellow Fever, West Nile, and Japanese Encephalitis viruses. By providing the first extensive atlas of sfRNA interactions, we offer new insights into how flaviviruses can manipulate host cellular machinery to facilitate viral survival and persistence. Our study not only validated known interactions but also revealed novel human proteins that could be involved in sfRNA-mediated host defense evasion, including helicases, splicing factors, and chemokines. These findings significantly expand the known interactome of sfRNAs with human proteins, underscoring their role in modulating host cellular pathways. Intriguingly, we predict interaction with stress granules, a critical component of the cellular response to viral infection, suggesting a mechanism by which flaviviruses inhibit their formation to evade host defenses. Moreover, a set of highly-interacting proteins in common among the sfRNAs showed predictive power to identify sfRNA-forming regions, highlighting how protein signatures could be used to annotate viruses. This atlas not only serves as a resource for exploring therapeutic targets but also aids in the identification of sfRNA biomarkers for improved flavivirus diagnostics.
Collapse
Affiliation(s)
- Riccardo Delli Ponti
- Centre for Human Technologies, Istituto Italiano di Tecnologia, Via Enrico Melen, 83, Genova GE 16152, Italy
| | - Andrea Vandelli
- Centre for Human Technologies, Istituto Italiano di Tecnologia, Via Enrico Melen, 83, Genova GE 16152, Italy
| | - Gian Gaetano Tartaglia
- Centre for Human Technologies, Istituto Italiano di Tecnologia, Via Enrico Melen, 83, Genova GE 16152, Italy
| |
Collapse
|
3
|
Zöller DDJA, Säurich J, Metzger J, Jung K, Lepenies B, Becker SC. Innate Immune Response Against Batai Virus, Bunyamwera Virus, and Their Reassortants. Viruses 2024; 16:1833. [PMID: 39772143 PMCID: PMC11680289 DOI: 10.3390/v16121833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/22/2024] [Accepted: 11/23/2024] [Indexed: 01/11/2025] Open
Abstract
Orthobunyaviruses (OBVs) represent a diverse group of RNA viruses, encompassing a progressively increasing number of arboviruses that cause disease in both humans and livestock. Yet, studies investigating these viruses remain scarce despite the critical importance of such knowledge for assessing their zoonotic potential. In this study, we conducted an evaluation of the early immune response against the understudied Batai virus (BATV), as well as the influence of reassortment with the Bunyamwera virus (BUNV) on this response. Using RNA sequencing of infected murine bone marrow-derived dendritic cells, complemented by qPCR assays, we assessed the innate immune response at the transcriptome level. Additionally, we extended the qPCR analysis by including human THP-1-derived dendritic cells and ovine SFT-R cells to identify differences across species. Our results provide the first evidence that BATV elicits a strong innate immune response compared to BUNV, which largely evades early detection. Reassortants exhibited intermediate phenotypes, although unique changes in the early immune response were found as well. These findings provide a starting point for a better understanding of the immune response to BATV. Furthermore, they raise the question of whether reassortment induces changes in the innate immune response that might contribute to the differences in pathogenicity between reassortant OBVs and their parental generations.
Collapse
Affiliation(s)
- David D. J. A. Zöller
- Institute for Parasitology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany;
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, 30559 Hannover, Germany;
| | - Josefin Säurich
- Institute for Animal Genomics, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (J.S.); (J.M.); (K.J.)
| | - Julia Metzger
- Institute for Animal Genomics, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (J.S.); (J.M.); (K.J.)
| | - Klaus Jung
- Institute for Animal Genomics, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (J.S.); (J.M.); (K.J.)
| | - Bernd Lepenies
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, 30559 Hannover, Germany;
- Institute for Immunology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Stefanie C. Becker
- Institute for Parasitology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany;
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, 30559 Hannover, Germany;
| |
Collapse
|
4
|
Holmes CM, Wagner B. Characterization of Nasal Mucosal T Cells in Horses and Their Response to Equine Herpesvirus Type 1. Viruses 2024; 16:1514. [PMID: 39459849 PMCID: PMC11512333 DOI: 10.3390/v16101514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/22/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
Equine herpesvirus type 1 (EHV-1) enters through the upper respiratory tract (URT). Mucosal immunity at the URT is crucial in limiting viral infection and morbidity. Here, intranasal immune cells were collected from horses (n = 15) during an experimental EHV-1 infection. CD4+ and CD8+ T cells were the major intranasal cell populations before infection and increased significantly by day six and fourteen post-infection, respectively. Nasal mucosal T cells were further characterized in healthy horses. Compared to peripheral blood mononuclear cells (PBMC), mucosal CD8+ T-cell percentages were elevated, while CD4+ T-cell percentages were similar. A small population of CD4+CD8+ T cells was also recovered from mucosal samples. Within the URT tissue, CD4+ cells predominantly accumulated in the epithelial layer, while most CD8+ cells resided deeper in the mucosa or the submucosa below the basement membrane. In vitro stimulation of mucosal cells from healthy horses with (n = 5) or without (n = 5) peripheral T-cell immunity against EHV-1 induced IFN-γ production in nasal T cells upon polyclonal stimulation. However, after EHV-1 re-stimulation, mucosal T cells failed to respond with IFN-γ. This work provided the first characterization of mucosal T-cell phenotypes and functions in the URT of healthy horses and during EHV-1 infection.
Collapse
Affiliation(s)
| | - Bettina Wagner
- Department of Population Medicine and Diagnostic Science, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA;
| |
Collapse
|
5
|
Tachizaki M, Kobori Y, Kawaguchi S, Seya K, Tanaka H, Imaizumi T. Cylindromatosis lysine 63 deubiquitinase (CYLD) suppress TLR3-mediated CCL5 expression in human renal proximal tubular epithelial cells. Mol Biol Rep 2024; 51:974. [PMID: 39259342 DOI: 10.1007/s11033-024-09904-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/03/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND One of the causes of tubulointerstitial nephritis is viral infection, with innate immune responses affecting its pathogenesis. Toll-like receptor 3 (TLR3) recognizes viral infections and acts antivirally by activating signaling to produce inflammatory cytokines/chemokines, including C-C motif chemokine ligand 5 (CCL5) and interferon-β (IFN-β). Although cylindromatosis lysine 63 deubiquitinase (CYLD) is known to be associated with tubulointerstitial nephritis and renal function, its role in the antiviral innate immune response in tubular epithelial cells remains unknown. In this study, we investigated the association between CYLD and TLR3-mediated CCL5 production in cultured human renal proximal tubular epithelial cells (hRPTECs). METHODS AND RESULTS Polyinosinic-polycytidylic acid (poly IC), a synthetic TLR3 ligand, was used to stimulate hRPTECs. mRNA expression was measured using reverse transcription-quantitative polymerase chain reaction. Protein expression was assayed using western blotting or an enzyme-linked immunosorbent assay. Knockdown of IFN-β, nuclear factor-kappa B (NF-κB) p65, and CYLD was performed by transfecting cells with specific small interfering RNAs. The intracellular localization of CYLD in hRPTECs was analyzed using immunofluorescence. Poly IC induced CCL5 expression in a time- and concentration-dependent manner, and knockdown of either IFN-β or p65 reduced poly IC-induced CCL5 expression. CYLD knockdown increased the poly IC-induced CCL5, phosphorylated IκB kinase α/β (IKK complex), and phosphorylated p65 expression. The CYLD protein was localized in the cytoplasm, and poly IC did not alter its expression. CONCLUSION CYLD may prevent excessive inflammation due to an antiviral innate immune response by suppressing IKK complex and NF-κB activation downstream of TLR3 in hRPTECs.
Collapse
Affiliation(s)
- Mayuki Tachizaki
- Department of Vascular and Inflammatory Medicine, Hirosaki University Graduate School of Medicine, 5 Zaifu- cho, Hirosaki, Aomori, 036-8562, Japan.
| | - Yuri Kobori
- Department of Respiratory Medicine, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, 036-8562, Japan
| | - Shogo Kawaguchi
- Department of Vascular and Inflammatory Medicine, Hirosaki University Graduate School of Medicine, 5 Zaifu- cho, Hirosaki, Aomori, 036-8562, Japan
| | - Kazuhiko Seya
- Department of Vascular and Inflammatory Medicine, Hirosaki University Graduate School of Medicine, 5 Zaifu- cho, Hirosaki, Aomori, 036-8562, Japan
| | - Hiroshi Tanaka
- Department of School Health Science, Hirosaki University Faculty of Education, 1 Bunkyo-cho, Hirosaki, Aomori, 036-8560, Japan
| | - Tadaatsu Imaizumi
- Department of Vascular and Inflammatory Medicine, Hirosaki University Graduate School of Medicine, 5 Zaifu- cho, Hirosaki, Aomori, 036-8562, Japan
| |
Collapse
|
6
|
Calvo-Alvarez E, D'Alessandro S, Zanotta N, Basilico N, Parapini S, Signorini L, Perego F, Maina KK, Ferrante P, Modenese A, Pizzocri P, Ronsivalle A, Delbue S, Comar M. Multiplex array analysis of circulating cytokines and chemokines in COVID-19 patients during the first wave of the SARS-CoV-2 pandemic in Milan, Italy. BMC Immunol 2024; 25:49. [PMID: 39061002 PMCID: PMC11282750 DOI: 10.1186/s12865-024-00641-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND The systemic inflammatory syndrome called "cytokine storm" has been described in COVID-19 pathogenesis, contributing to disease severity. The analysis of cytokine and chemokine levels in the blood of 21 SARS-CoV-2 positive patients throughout the phases of the pandemic has been studied to understand immune response dysregulation and identify potential disease biomarkers for new treatments. The present work reports the cytokine and chemokine levels in sera from a small cohort of individuals primarily infected with SARS-CoV-2 during the first wave of the COVID-19 pandemic in Milan (Italy). RESULTS Among the 27 cytokines and chemokines investigated, a significant higher expression of Interleukin-9 (IL-9), IP-10 (CXCL10), MCP-1 (CCL2) and RANTES (CCL-5) in infected patients compared to uninfected subjects was observed. When the change in cytokine/chemokine levels was monitored over time, from the hospitalization day to discharge, only IL-6 and IP-10 showed a significant decrease. Consistent with these findings, a significant negative correlation was observed between IP-10 and anti-Spike IgG antibodies in infected individuals. In contrast, IL-17 was positively correlated with the production of IgG against SARS-CoV-2. CONCLUSIONS The cytokine storm and the modulation of cytokine levels by SARS-CoV-2 infection are hallmarks of COVID-19. The current global immunity profile largely stems from widespread vaccination campaigns and previous infection exposures. Consequently, the immunological features and dynamic cytokine profiles of non-vaccinated and primarily-infected subjects reported here provide novel insights into the inflammatory immune landscape in the context of SARS-CoV-2 infection, and offer valuable knowledge for addressing future viral infections and the development of novel treatments.
Collapse
Affiliation(s)
- Estefanía Calvo-Alvarez
- Department of Pharmacological and Biomedical Sciences, Università degli Studi di Milano, Via Carlo Pascal, 36, Milano, 20133, Italy
| | - Sarah D'Alessandro
- Department of Pharmacological and Biomedical Sciences, Università degli Studi di Milano, Via Carlo Pascal, 36, Milano, 20133, Italy.
| | - Nunzia Zanotta
- Department of Advanced Translational Microbiology, Institute for Maternal and Child Health-IRCCS Burlo Garofolo, Via dell'Istria, 65, Trieste, 34137, Italy
| | - Nicoletta Basilico
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Via Carlo Pascal, 36, Milano, 20133, Italy
| | - Silvia Parapini
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Via Carlo Pascal, 36, Milano, 20133, Italy
| | - Lucia Signorini
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Via Carlo Pascal, 36, Milano, 20133, Italy
| | - Federica Perego
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Via Carlo Pascal, 36, Milano, 20133, Italy
| | - Kevin Kamau Maina
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Via Carlo Pascal, 36, Milano, 20133, Italy
| | - Pasquale Ferrante
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Via Carlo Pascal, 36, Milano, 20133, Italy
| | | | | | | | - Serena Delbue
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Via Carlo Pascal, 36, Milano, 20133, Italy
| | - Manola Comar
- Department of Advanced Translational Microbiology, Institute for Maternal and Child Health-IRCCS Burlo Garofolo, Via dell'Istria, 65, Trieste, 34137, Italy
| |
Collapse
|
7
|
Dehghan Z, Mirmotalebisohi SA, Mozafar M, Sameni M, Saberi F, Derakhshanfar A, Moaedi J, Zohrevand H, Zali H. Deciphering the similarities and disparities of molecular mechanisms behind respiratory epithelium response to HCoV-229E and SARS-CoV-2 and drug repurposing, a systems biology approach. Daru 2024; 32:215-235. [PMID: 38652363 PMCID: PMC11087451 DOI: 10.1007/s40199-024-00507-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 02/08/2024] [Indexed: 04/25/2024] Open
Abstract
PURPOSE Identifying the molecular mechanisms behind SARS-CoV-2 disparities and similarities will help find new treatments. The present study determines networks' shared and non-shared (specific) crucial elements in response to HCoV-229E and SARS-CoV-2 viruses to recommend candidate medications. METHODS We retrieved the omics data on respiratory cells infected with HCoV-229E and SARS-CoV-2, constructed PPIN and GRN, and detected clusters and motifs. Using a drug-gene interaction network, we determined the similarities and disparities of mechanisms behind their host response and drug-repurposed. RESULTS CXCL1, KLHL21, SMAD3, HIF1A, and STAT1 were the shared DEGs between both viruses' protein-protein interaction network (PPIN) and gene regulatory network (GRN). The NPM1 was a specific critical node for HCoV-229E and was a Hub-Bottleneck shared between PPI and GRN in HCoV-229E. The HLA-F, ADCY5, TRIM14, RPF1, and FGA were the seed proteins in subnetworks of the SARS-CoV-2 PPI network, and HSPA1A and RPL26 proteins were the seed in subnetworks of the PPI network of HCOV-229E. TRIM14, STAT2, and HLA-F played the same role for SARS-CoV-2. Top enriched KEGG pathways included cell cycle and proteasome in HCoV-229E and RIG-I-like receptor, Chemokine, Cytokine-cytokine, NOD-like receptor, and TNF signaling pathways in SARS-CoV-2. We suggest some candidate medications for COVID-19 patient lungs, including Noscapine, Isoetharine mesylate, Cycloserine, Ethamsylate, Cetylpyridinium, Tretinoin, Ixazomib, Vorinostat, Venetoclax, Vorinostat, Ixazomib, Venetoclax, and epoetin alfa for further in-vitro and in-vivo investigations. CONCLUSION We suggested CXCL1, KLHL21, SMAD3, HIF1A, and STAT1, ADCY5, TRIM14, RPF1, and FGA, STAT2, and HLA-F as critical genes and Cetylpyridinium, Cycloserine, Noscapine, Ethamsylate, Epoetin alfa, Isoetharine mesylate, Ribavirin, and Tretinoin drugs to study further their importance in treating COVID-19 lung complications.
Collapse
Affiliation(s)
- Zeinab Dehghan
- Department of Comparative Biomedical Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Amir Mirmotalebisohi
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Mozafar
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Marzieh Sameni
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Saberi
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amin Derakhshanfar
- Department of Comparative Biomedical Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
- Center of Comparative and Experimental Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Javad Moaedi
- Center of Comparative and Experimental Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hassan Zohrevand
- Student Research Committee, Department of Biomedical Engineering and Medical Physics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Biomedical Engineering and Medical Physics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hakimeh Zali
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Lee B, Lee J, Lim S, Seong M, Yun H, Han S, Kim KW, Lee S, Jeong SM, Park MC, Hong WS, Kwon SR, Park Y. Effects of Low-Lipid Diets on Growth, Haematology, Histology and Immune Responses of Parr-Stage Atlantic Salmon ( Salmo salar). Animals (Basel) 2024; 14:1581. [PMID: 38891628 PMCID: PMC11171226 DOI: 10.3390/ani14111581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/23/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Lipids in fish diets provide energy and play important roles in immunity and metabolism. Atlantic salmon, a species that migrates from freshwater to seawater, requires high energy, especially during smoltification. Juvenile teleosts have low lipid requirements, and a high dietary lipid content is known to have negative effects on their growth and digestion. Therefore, this study evaluated the effect of two commercial rainbow trout feeds (low-lipid, 13.41% and 14.6%) on the growth and immune responses of early parr-stage Atlantic salmon compared to commercial salmon feed (high-lipid, 29.52%). Atlantic salmon parr (weight: 14.56 ± 2.1 g; length: 11.23 ± 0.44 cm) were randomly divided into three groups and fed either one of two commercial rainbow trout feeds (RTF1 and RTF2) or the commercial salmon feed (ASF) for 12 weeks. At the end of the feeding trial, growth, haematology, histology and gene expression analyses were performed. There were no significant differences in weight gain rates or feed efficiency between the groups (p > 0.05). Superoxidate dismutase, glutathione peroxidase, lysozyme and immunoglobulin M activities were not different among the experimental groups (p > 0.05). A histological examination of the liver and intestinal tissues showed no pathological symptoms of inflammatory response or lipid accumulation in any of the groups. In an intestinal transcriptome analysis using RNA-seq, the expression levels of several genes linked to lipids, immune-related proteins, cytokines and chemokines did not differ significantly between the groups (p > 0.05). Commercial rainbow trout feed with low lipid content has no clear negative impact on the development of Atlantic salmon during the early parr stage (14.5 to 39.6 g). This study provides basic information for the development of economical feed for early parr-stage Atlantic salmon.
Collapse
Affiliation(s)
- Byoungyoon Lee
- Department of Aquatic Life Medical Sciences, Sunmoon University, Asan 31460, Republic of Korea; (B.L.); (J.L.); (S.L.); (M.S.); (H.Y.); (S.H.); (S.R.K.)
| | - Junoh Lee
- Department of Aquatic Life Medical Sciences, Sunmoon University, Asan 31460, Republic of Korea; (B.L.); (J.L.); (S.L.); (M.S.); (H.Y.); (S.H.); (S.R.K.)
| | - Saeyeon Lim
- Department of Aquatic Life Medical Sciences, Sunmoon University, Asan 31460, Republic of Korea; (B.L.); (J.L.); (S.L.); (M.S.); (H.Y.); (S.H.); (S.R.K.)
| | - Minjae Seong
- Department of Aquatic Life Medical Sciences, Sunmoon University, Asan 31460, Republic of Korea; (B.L.); (J.L.); (S.L.); (M.S.); (H.Y.); (S.H.); (S.R.K.)
| | - Hanbin Yun
- Department of Aquatic Life Medical Sciences, Sunmoon University, Asan 31460, Republic of Korea; (B.L.); (J.L.); (S.L.); (M.S.); (H.Y.); (S.H.); (S.R.K.)
| | - Sijun Han
- Department of Aquatic Life Medical Sciences, Sunmoon University, Asan 31460, Republic of Korea; (B.L.); (J.L.); (S.L.); (M.S.); (H.Y.); (S.H.); (S.R.K.)
| | - Kang-Woong Kim
- Aquafeed Research Center, National Institute of Fisheries Science (NIFS), Pohang 37517, Republic of Korea; (K.-W.K.); (S.L.); (S.-M.J.)
| | - Seunghan Lee
- Aquafeed Research Center, National Institute of Fisheries Science (NIFS), Pohang 37517, Republic of Korea; (K.-W.K.); (S.L.); (S.-M.J.)
| | - Seong-Mok Jeong
- Aquafeed Research Center, National Institute of Fisheries Science (NIFS), Pohang 37517, Republic of Korea; (K.-W.K.); (S.L.); (S.-M.J.)
| | - Mun Chang Park
- Gangwon State Inland Water Resource Center, Chuncheon 24210, Republic of Korea; (M.C.P.); (W.S.H.)
| | - Woo Seok Hong
- Gangwon State Inland Water Resource Center, Chuncheon 24210, Republic of Korea; (M.C.P.); (W.S.H.)
| | - Se Ryun Kwon
- Department of Aquatic Life Medical Sciences, Sunmoon University, Asan 31460, Republic of Korea; (B.L.); (J.L.); (S.L.); (M.S.); (H.Y.); (S.H.); (S.R.K.)
| | - Youngjin Park
- Department of Aquatic Life Medical Sciences, Sunmoon University, Asan 31460, Republic of Korea; (B.L.); (J.L.); (S.L.); (M.S.); (H.Y.); (S.H.); (S.R.K.)
| |
Collapse
|
9
|
Chen Y, Chen C. Gut microbiota, inflammatory proteins and COVID-19: a Mendelian randomisation study. Front Immunol 2024; 15:1406291. [PMID: 38803488 PMCID: PMC11128586 DOI: 10.3389/fimmu.2024.1406291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 04/30/2024] [Indexed: 05/29/2024] Open
Abstract
Background The human gut microbiota has been identified as a potentially important factor influencing the development of COVID-19. It is believed that the disease primarily affects the organism through inflammatory pathways. With the aim of improving early diagnosis and targeted therapy, it is crucial to identify the specific gut microbiota associated with COVID-19 and to gain a deeper understanding of the underlying processes. The present study sought to investigate the potential causal relationship between the gut microbiota and COVID-19, and to determine the extent to which inflammatory proteins act as mediators in this relationship. Methods Bidirectional mendelian randomization (MR) and Two-step mediated MR analyses were applied to examine causative associations among 196 gut microbiota, 91 inflammatory proteins and COVID-19. The main analytical method used in the MR was the random effects inverse variance weighted (IVW) method. This was complemented by the Bayesian weighted Mendelian randomization (BWMR) method, which was utilized to test the hypothesis of MR. In order for the results to be deemed reliable, statistical significance was required for both methods. Validation was then carried out using an external dataset, and further meta-analyses were conducted to authenticate that the association was reliable. Results Results of our research indicated that seven gut microbiota were actively associated to the COVID-19 risk. Five inflammatory proteins were associated with COVID-19 risk, of which three were positively and two were negatively identified with COVID-19. Further validation was carried out using sensitivity analyses. Mediated MR results revealed that CCL2 was a possible mediator of causality of family Bifidobacteriaceae and order Bifidobacteriales with COVID-19, mediating at a ratio of 12.73%. Conclusion Suggesting a genetic causation between specific gut microbiota and COVID-19, our present research emphasizes the underlying mediating role of CCL2, an inflammatory factor, and contributes to a deeper understanding of the mechanism of action underlying COVID-19.
Collapse
Affiliation(s)
- Yuling Chen
- Department of Clinical Laboratory, Nanchong Central Hospital (Nanchong Hospital of Beijing Anzhen Hospital, Capital Medical University), The Second Clinical Medical College of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Chang Chen
- Medical Department, Nanchong Guoning Mental Health Hospital, Nanchong, Sichuan, China
| |
Collapse
|
10
|
Zhang C, Zhang Y, Zhuang R, Yang K, Chen L, Jin B, Ma Y, Zhang Y, Tang K. Alterations in CX3CL1 Levels and Its Role in Viral Pathogenesis. Int J Mol Sci 2024; 25:4451. [PMID: 38674036 PMCID: PMC11050295 DOI: 10.3390/ijms25084451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
CX3CL1, also named fractalkine or neurotactin, is the only known member of the CX3C chemokine family that can chemoattract several immune cells. CX3CL1 exists in both membrane-anchored and soluble forms, with each mediating distinct biological activities. CX3CL1 signals are transmitted through its unique receptor, CX3CR1, primarily expressed in the microglia of the central nervous system (CNS). In the CNS, CX3CL1 acts as a regulator of microglia activation in response to brain disorders or inflammation. Recently, there has been a growing interest in the role of CX3CL1 in regulating cell adhesion, chemotaxis, and host immune response in viral infection. Here, we provide a comprehensive review of the changes and function of CX3CL1 in various viral infections, such as human immunodeficiency virus (HIV), SARS-CoV-2, influenza virus, and cytomegalovirus (CMV) infection, to highlight the emerging roles of CX3CL1 in viral infection and associated diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yun Zhang
- Department of Immunology, The Fourth Military Medical University, Xi’an 710032, China; (C.Z.); (Y.Z.); (R.Z.); (K.Y.); (L.C.); (B.J.); (Y.M.)
| | - Kang Tang
- Department of Immunology, The Fourth Military Medical University, Xi’an 710032, China; (C.Z.); (Y.Z.); (R.Z.); (K.Y.); (L.C.); (B.J.); (Y.M.)
| |
Collapse
|
11
|
Lee JE, Yoon T, Lee SW, Ahn SS. Chemokine expression in sera of patients with microscopic polyangiitis and granulomatosis with polyangiitis. Sci Rep 2024; 14:8680. [PMID: 38622321 PMCID: PMC11018871 DOI: 10.1038/s41598-024-59484-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/11/2024] [Indexed: 04/17/2024] Open
Abstract
We evaluated chemokine expression and its correlation with disease activity in patients with microscopic polyangiitis (MPA) and granulomatosis with polyangiitis (GPA) (MPA/GPA). Serum CCL2, CCL4, CCL19, CXCL1, CXCL2, and CX3CL1 level in 80 patients were analysed using multiple enzyme-linked immunosorbent assays. Correlations between variables were investigated using Pearson's correlation analysis, and receiver operator curve analysis was performed to identify optimal CX3CL1 values in determining active disease. Multivariate logistic regression analysis was done to evaluate predictors of active disease. CCL4 (r = 0.251, p = 0.025), CXCL1 (r = 0.270, p = 0.015), and CX3CL1 (r = 0.295, p = 0.008) significantly correlated with BVAS, while CX3CL1 was associated with five-factor score (r = - 0.290, p = 0.009). Correlations were revealed between CCL2 and CCL4 (r = 0.267, p = 0.017), CCL4 and CXCL1 (r = 0.368, p < 0.001), CCL4 and CXCL2 (r = 0.436, p < 0.001), and CXCL1 and CXCL2 (r = 0.518, p < 0.001). Multivariate analysis revealed serum CX3CL1 levels > 2408.92 pg/mL could predict active disease (odds ratio, 27.401, p < 0.001). Serum chemokine levels of CCL4, CXCL1, and CX3CL1 showed association with disease activity and especially, CX3CL1 > 2408.92 pg/mL showed potential in predicting active MPA/GPA.
Collapse
Affiliation(s)
- Ji Eun Lee
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Taejun Yoon
- Department of Medical Science, College of Medicine, BK21 Plus Project, Yonsei University, Seoul, Republic of Korea
| | - Sang-Won Lee
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Sung Soo Ahn
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Yongin Severance Hospital, 363 Dongbaekjukjeon-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 16995, Republic of Korea.
| |
Collapse
|
12
|
Zhang Y, Zhao L, Zhang J, Zhang X, Han S, Sun Q, Yao M, Pang B, Duan Q, Jiang X. Antibody and transcription landscape in peripheral blood mononuclear cells of elderly adults over 70 years of age with third dose of COVID-19 BBIBP-CorV and ZF2001 booster vaccine. Immun Ageing 2024; 21:11. [PMID: 38280989 PMCID: PMC10821575 DOI: 10.1186/s12979-023-00408-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/20/2023] [Indexed: 01/29/2024]
Abstract
BACKGROUND In the context of the COVID-19 pandemic and extensive vaccination, it is important to explore the immune response of elderly adults to homologous and heterologous booster vaccines of COVID-19. At this point, we detected serum IgG antibodies and PBMC sample transcriptome profiles in 46 participants under 70 years old and 25 participants over 70 years old who received the third dose of the BBIBP-CorV and ZF2001 vaccines. RESULTS On day 7, the antibody levels of people over 70 years old after the third dose of booster vaccine were lower than those of young people, and the transcriptional responses of innate and adaptive immunity were also weak. The age of the participants showed a significant negative correlation with functions related to T-cell differentiation and costimulation. Nevertheless, 28 days after the third dose, the IgG antibodies of elderly adults reached equivalence to those of younger adults, and immune-related transcriptional regulation was significantly improved. The age showed a significant positive correlation with functions related to "chemokine receptor binding", "chemokine activity", and "chemokine-mediated signaling pathway". CONCLUSIONS Our results document that the response of elderly adults to the third dose of the vaccine was delayed, but still able to achieve comparable immune effects compared to younger adults, in regard to antibody responses as well as at the transcript level.
Collapse
Affiliation(s)
- Yuwei Zhang
- Infectious Disease Prevention and Control Section, Shandong Center for Disease Control and Prevention, Jinan, Shandong Province, China
| | - Lianxiang Zhao
- School of Public Health and Management, Binzhou Medical University, Yantai , Shandong Province, China
| | - Jinzhong Zhang
- Liaocheng Center for Disease Control and Prevention, Liaocheng, Shandong Province, China
| | - Xiaomei Zhang
- Infectious Disease Prevention and Control Section, Shandong Center for Disease Control and Prevention, Jinan, Shandong Province, China
| | - Shanshan Han
- School of Public Health and Health Management, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong Province, China
| | - Qingshuai Sun
- School of Public Health and Health Management, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong Province, China
| | - Mingxiao Yao
- Infectious Disease Prevention and Control Section, Shandong Center for Disease Control and Prevention, Jinan, Shandong Province, China
| | - Bo Pang
- Infectious Disease Prevention and Control Section, Shandong Center for Disease Control and Prevention, Jinan, Shandong Province, China
| | - Qing Duan
- Infectious Disease Prevention and Control Section, Shandong Center for Disease Control and Prevention, Jinan, Shandong Province, China
| | - Xiaolin Jiang
- School of Public Health and Management, Binzhou Medical University, Yantai , Shandong Province, China.
- School of Public Health and Health Management, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong Province, China.
- Shandong Provincial Key Laboratory of Infectious Disease Control and Prevention, Shandong Center for Disease Control and Prevention, 16992 Jingshi Road , Jinan, 250014, Shandong Province, China.
| |
Collapse
|
13
|
Cianciosi D, Diaz YA, Gaddi AV, Capello F, Savo MT, Palí Casanova RDJ, Martínez Espinosa JC, Pascual Barrera AE, Navarro‐Hortal M, Tian L, Bai W, Giampieri F, Battino M. Can alpha‐linolenic acid be a modulator of “cytokine storm,” oxidative stress and immune response in SARS‐CoV‐2 infection? FOOD FRONTIERS 2024; 5:73-93. [DOI: 10.1002/fft2.319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
AbstractAlpha‐linolenic acid (ALA) is a long‐chain polyunsaturated essential fatty acid of the Ω3 series found mainly in vegetables, especially in the fatty part of oilseeds, dried fruit, berries, and legumes. It is very popular for its preventive use in several diseases: It seems to reduce the risk of the onset or decrease some phenomena related to inflammation, oxidative stress, and conditions of dysregulation of the immune response. Recent studies have confirmed these unhealthy situations also in patients with severe coronavirus disease 2019 (COVID‐19). Different findings (in vitro, in vivo, and clinical ones), summarized and analyzed in this review, have showed an important role of ALA in other various non‐COVID physiological and pathological situations against “cytokines storm,” chemokines secretion, oxidative stress, and dysregulation of immune cells that are also involved in the infection of the 2019 novel coronavirus. According to the effects of ALA against all the aforementioned situations (also present in patients with a severe clinical picture of severe acute respiratory syndrome‐(CoV‐2) infection), there may be the biologic plausibility of a prophylactic effect of this compound against COVID‐19 symptoms and fatality.
Collapse
Affiliation(s)
- Danila Cianciosi
- Dipartimento di Scienze Cliniche Specialistiche, Facoltà di Medicina Università Politecnica delle Marche Ancona Italy
| | - Yasmany Armas Diaz
- Dipartimento di Scienze Cliniche Specialistiche, Facoltà di Medicina Università Politecnica delle Marche Ancona Italy
| | | | - Fabio Capello
- International Study Center of Society of Telemedicine and Digital Health Bologna Italy
| | | | - Ramón del Jesús Palí Casanova
- Universidad Europea del Atlántico Santander Spain
- Universidad Internacional Iberoamericana Campeche México México
- Universidad Internacional Iberoamericana Arecibo Puerto Rico USA
| | - Julio César Martínez Espinosa
- Universidad Europea del Atlántico Santander Spain
- Universidad Internacional Iberoamericana Campeche México México
- Fundación Universitaria Internacional de Colombia Bogotá Colombia
| | - Alina Eugenia Pascual Barrera
- Universidad Europea del Atlántico Santander Spain
- Universidad Internacional Iberoamericana Campeche México México
- Fundación Universitaria Internacional de Colombia Bogotá Colombia
| | - Maria‐Dolores Navarro‐Hortal
- Department of Physiology, Institute of Nutrition and Food Technology “José Mataix Verdú”, Biomedical Research Centre University of Granada Armilla Spain
| | - Lingmin Tian
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection Jinan University Guangzhou China
| | - Weibin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection Jinan University Guangzhou China
| | - Francesca Giampieri
- Dipartimento di Scienze Cliniche Specialistiche, Facoltà di Medicina Università Politecnica delle Marche Ancona Italy
- Research Group on Food, Nutritional Biochemistry and Health Universidad Europea del Atlántico Santander Spain
| | - Maurizio Battino
- Dipartimento di Scienze Cliniche Specialistiche, Facoltà di Medicina Università Politecnica delle Marche Ancona Italy
- Research Group on Food, Nutritional Biochemistry and Health Universidad Europea del Atlántico Santander Spain
- International Joint Research Laboratory of Intelligent Agriculture and Agri‐Products Processing Jiangsu University Zhenjiang China
| |
Collapse
|
14
|
Larsen O, Schuermans S, Walser A, Louka S, Lillethorup IA, Våbenø J, Qvortrup K, Proost P, Rosenkilde MM. Chemokine N-terminal-derived peptides differentially regulate signaling by the receptors CCR1 and CCR5. FEBS Lett 2023; 597:3049-3060. [PMID: 37994578 DOI: 10.1002/1873-3468.14778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 11/24/2023]
Abstract
Inflammatory chemokines are often elevated in disease settings, where the largest group of CC-chemokines are the macrophage inflammatory proteins (MIP), which are promiscuous for the receptors CCR1 and CCR5. MIP chemokines, such as CCL3 and CCL5 are processed at the N terminus, which influences signaling in a highly diverse manner. Here, we investigate the signaling capacity of peptides corresponding to truncated N termini. These 3-10-residue peptides displayed weak potency but, surprisingly, retained their signaling on CCR1. In contrast, none of the peptides generated a signal on CCR5, but a CCL3-derived tetrapeptide was a positive modulator boosting the signal of several chemokine variants on CCR5. In conclusion, chemokine N termini can be mimicked to produce small CCR1-selective agonists, as well as CCR5-selective modulators.
Collapse
Affiliation(s)
- Olav Larsen
- Laboratory of Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Belgium
| | - Sara Schuermans
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Belgium
| | - Anna Walser
- Laboratory of Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Stavroula Louka
- Department of Chemistry, Technical University of Denmark, Kgs Lyngby, Denmark
| | | | - Jon Våbenø
- Helgeland Hospital Trust, Sandnessjøen, Norway
| | - Katrine Qvortrup
- Department of Chemistry, Technical University of Denmark, Kgs Lyngby, Denmark
| | - Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Belgium
| | - Mette M Rosenkilde
- Laboratory of Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| |
Collapse
|
15
|
Esparcia-Pinedo L, Lancho-Sánchez Á, Tsukalov I, Pacheco MI, Martínez-Fleta P, Pérez-Miés B, Palacios-Calvo J, Sánchez-Madrid F, Martín-Gayo E, Alfranca A. T regulatory lymphocytes specific for SARS-CoV-2 display increased functional plasticity. Clin Immunol 2023; 256:109806. [PMID: 37827267 DOI: 10.1016/j.clim.2023.109806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/22/2023] [Accepted: 10/07/2023] [Indexed: 10/14/2023]
Abstract
The study of phenotypic and functional characteristics of immune cells involved in host response to SARS-CoV-2 is relevant for understanding COVID-19 pathogenesis and individual differences in disease progression. We have analyzed chemokine receptor expression in SARS-CoV-2-specific CD4+ T lymphocytes from vaccinated donors, and have found an increase of CCR9+ and CCR6+ cells. CCR9+ specific CD4+ cells are enriched in T regulatory (Treg) lymphocytes. These cells specifically show heterogeneous regulatory activity, associated with different profiles of CCR9/CCR6 expression, individual differences in IL-10 and IL-17 production, and variable FoxP3 and Notch4 expression. A higher heterogeneity in FoxP3 is selectively observed in convalescent individuals within vaccinated population. Accordingly, SARS-CoV-2-specific CD4+ lymphocytes from COVID-19 patients are also enriched in CCR9+ and CCR6+ cells. CCR6+ specific Treg lymphocytes are mainly increased in critically ill individuals, indicating a preferential role for these cells in lung injury pathogenesis. We provide experimental evidence for a SARS-CoV-2-specific Treg population with increased plasticity, which may contribute to the differential pathogenic response against SARS-CoV-2 among individuals, and underlie the development of autoimmune conditions following SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Laura Esparcia-Pinedo
- Immunology Department, Hospital Universitario de La Princesa and Instituto de Investigación Sanitaria Princesa, Madrid, Spain
| | - Ángel Lancho-Sánchez
- Immunology Department, Hospital Universitario de La Princesa and Instituto de Investigación Sanitaria Princesa, Madrid, Spain
| | | | - María I Pacheco
- Medical Oncology Department Hospital Universitario de La Princesa, and Instituto de Investigación Sanitaria Princesa, Madrid, Spain
| | - Pedro Martínez-Fleta
- Immunology Department, Hospital Universitario de La Princesa and Instituto de Investigación Sanitaria Princesa, Madrid, Spain
| | - Belén Pérez-Miés
- Pathology Department, Ramón y Cajal University Hospital, CIBERONC, IRYCIS and University of Alcalá, Madrid, Spain
| | - José Palacios-Calvo
- Pathology Department, Ramón y Cajal University Hospital, CIBERONC, IRYCIS and University of Alcalá, Madrid, Spain
| | - Francisco Sánchez-Madrid
- Immunology Department, Hospital Universitario de La Princesa and Instituto de Investigación Sanitaria Princesa, Madrid, Spain; Universidad Autónoma de Madrid, Madrid, Spain; Centro de Investigación Biomédica en Red Cardiovascular, CIBERCV, 28029 Madrid, Spain
| | - Enrique Martín-Gayo
- Universidad Autónoma de Madrid, Madrid, Spain; Centro de Investigación Biomédica en Red Enfermedades Infecciosas, CIBERINFEC, 28029 Madrid, Spain
| | - Arantzazu Alfranca
- Immunology Department, Hospital Universitario de La Princesa and Instituto de Investigación Sanitaria Princesa, Madrid, Spain; Universidad Autónoma de Madrid, Madrid, Spain; Centro de Investigación Biomédica en Red Cardiovascular, CIBERCV, 28029 Madrid, Spain.
| |
Collapse
|
16
|
Guo G, He W, Zhou Z, Diao Y, Sui J, Li W. PreS1- targeting chimeric antigen receptor T cells diminish HBV infection in liver humanized FRG mice. Virology 2023; 586:23-34. [PMID: 37478771 DOI: 10.1016/j.virol.2023.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/15/2023] [Accepted: 06/27/2023] [Indexed: 07/23/2023]
Abstract
Current therapies control but rarely achieve a cure for hepatitis B virus (HBV) infection. Restoration of the HBV-specific immunity by cell-based therapy represents a potential approach for a cure. In this study, we generated HBV specific CAR T cells based on an antibody 2H5-A14 targeting a preS1 region of the HBV large envelope protein. We show that the A14 CAR T cell is capable of killing hepatocytes infected by HBV with high specificity; adoptive transfer of A14 CAR T cells to HBV infected humanized FRG mice resulted in reductions of all serum and intrahepatic virological markers to levels below the detection limit. A14 CAR T cells treatment increased the levels of human IFN-γ, GM-CSF, and IL-8/CXCL-8 in the mice. These results show that A14 CAR T cells may be further developed for curative therapy against HBV infection by eliminating HBV-infected hepatocytes and inducing production of pro-inflammatory and antiviral cytokines.
Collapse
Affiliation(s)
- Guilan Guo
- College of Life Sciences, Beijing Normal University, Beijing, China; National Institute of Biological Sciences, Beijing, China
| | - Wenhui He
- National Institute of Biological Sciences, Beijing, China
| | - Zhongmin Zhou
- College of Life Sciences, Beijing Normal University, Beijing, China; National Institute of Biological Sciences, Beijing, China
| | - Yan Diao
- National Institute of Biological Sciences, Beijing, China; Zhongshan School of Medicine, Sun Yet-Sen University, Guangzhou, China
| | - Jianhua Sui
- National Institute of Biological Sciences, Beijing, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 102206, China
| | - Wenhui Li
- National Institute of Biological Sciences, Beijing, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 102206, China.
| |
Collapse
|
17
|
Chen Q, Li N, Zeng S, Wu S, Luo X, Zhang S, Zhu L, Wu J, Xie T, Bai S, Zhang H, Jiang Z, Lin S, Wu N, Jiang Y, Fang S, Wang X, Shu Y, Luo H. ZIKV infection differentially affects the transcriptional profiles in HTR8 and U251 cells. Virus Res 2023; 334:199166. [PMID: 37390859 PMCID: PMC10410584 DOI: 10.1016/j.virusres.2023.199166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/02/2023]
Abstract
The mechanism by which Zika virus (ZIKV) causes severe birth defects in pregnant women remains unclear. Cell tropisms in placenta and brain play a crucial role in ZIKV pathogenesis, leading to congenital Zika syndrome (CZS). To identify the host factors involved in ZIKV infection, we compared the transcriptional profiles of ZIKV-infected human first-trimester placental trophoblast cells HTR8/SVneo and a human glioblastoma astrocytoma cell line U251. Our results demonstrated that ZIKV exhibited lower rates of mRNA replication and protein expression in HTR8 than in U251 cells, while showing a higher release of infectious viral particles. However, a greater number of differentially expressed genes (DEGs) were found in ZIKV-infected U251 cells than in ZIKV-infected HTR8 cells. Several of these DEGs were enriched in distinct biological processes related to the characteristics of each cell type that may contribute to foetal damage. Both cell types exhibited activation of common interferons, inflammatory cytokines, and chemokine production upon ZIKV infection. Moreover, the neutralization of tumour necrosis factor-alpha (TNF-α) promoted ZIKV infection in both trophoblasts and glioblastoma astrocytoma cells. Overall, we identified multiple DEGs associated with ZIKV pathogenesis.
Collapse
Affiliation(s)
- Qiqi Chen
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China
| | - Nina Li
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China
| | - Shike Zeng
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China; Huizhou Municipal Central Hospital, Huizhou 516001, PR China
| | - Shu Wu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China; Cancer Hospital Chinese Academy of Medical Sciences, Shenzhen Center, Shenzhen 518172, PR China
| | - Xin Luo
- The Emergency Department, Eighth People's Hospital of Nanyang City, Nanyang 473000, PR China
| | - Shengze Zhang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China
| | - Lin Zhu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China
| | - Jiani Wu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China; Shaoxing Center for Disease Control and Prevention, Shaoxing 312075, PR China
| | - Ting Xie
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China
| | - Shaohui Bai
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China
| | - Hao Zhang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China
| | - Zhiyuan Jiang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China
| | - Shaoli Lin
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China
| | - Nan Wu
- Shenzhen Nanshan Center for Disease Control and Prevention, Shenzhen 518054, PR China
| | - Ying Jiang
- Shenzhen Nanshan Center for Disease Control and Prevention, Shenzhen 518054, PR China
| | - Shisong Fang
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518073, PR China
| | - Xin Wang
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518073, PR China
| | - Yuelong Shu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China; Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100176, PR China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, PR China
| | - Huanle Luo
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, PR China.
| |
Collapse
|
18
|
Kembou-Ringert JE, Steinhagen D, Thompson KD, Daly JM, Adamek M. Immune responses to Tilapia lake virus infection: what we know and what we don't know. Front Immunol 2023; 14:1240094. [PMID: 37622112 PMCID: PMC10445761 DOI: 10.3389/fimmu.2023.1240094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 07/20/2023] [Indexed: 08/26/2023] Open
Abstract
Tilapia lake virus (TiLV) is a novel contagious pathogen associated with a lethal disease affecting and decimating tilapia populations on several continents across the globe. Fish viral diseases, such as Tilapia lake virus disease (TiLVD), represent a serious threat to tilapia aquaculture. Therefore, a better understanding of the innate immune responses involved in establishing an antiviral state can help shed light on TiLV disease pathogenesis. Moreover, understanding the adaptive immune mechanisms involved in mounting protection against TiLV could greatly assist in the development of vaccination strategies aimed at controlling TiLVD. This review summarizes the current state of knowledge on the immune responses following TiLV infection. After describing the main pathological findings associated with TiLVD, both the innate and adaptive immune responses and mechanisms to TiLV infection are discussed, in both disease infection models and in vitro studies. In addition, our work, highlights research questions, knowledge gaps and research areas in the immunology of TiLV infection where further studies are needed to better understand how disease protection against TiLV is established.
Collapse
Affiliation(s)
- Japhette E. Kembou-Ringert
- Department of Infection, Immunity and Inflammation, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Dieter Steinhagen
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Kim D. Thompson
- Moredun Research Institute, Pentlands Science Park, Penicuik, United Kingdom
| | - Janet M. Daly
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, United Kingdom
| | - Mikolaj Adamek
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
19
|
Assou S, Ahmed E, Morichon L, Nasri A, Foisset F, Bourdais C, Gros N, Tieo S, Petit A, Vachier I, Muriaux D, Bourdin A, De Vos J. The Transcriptome Landscape of the In Vitro Human Airway Epithelium Response to SARS-CoV-2. Int J Mol Sci 2023; 24:12017. [PMID: 37569398 PMCID: PMC10418806 DOI: 10.3390/ijms241512017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/19/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Airway-liquid interface cultures of primary epithelial cells and of induced pluripotent stem-cell-derived airway epithelial cells (ALI and iALI, respectively) are physiologically relevant models for respiratory virus infection studies because they can mimic the in vivo human bronchial epithelium. Here, we investigated gene expression profiles in human airway cultures (ALI and iALI models), infected or not with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), using our own and publicly available bulk and single-cell transcriptome datasets. SARS-CoV-2 infection significantly increased the expression of interferon-stimulated genes (IFI44, IFIT1, IFIT3, IFI35, IRF9, MX1, OAS1, OAS3 and ISG15) and inflammatory genes (NFKBIA, CSF1, FOSL1, IL32 and CXCL10) by day 4 post-infection, indicating activation of the interferon and immune responses to the virus. Extracellular matrix genes (ITGB6, ITGB1 and GJA1) were also altered in infected cells. Single-cell RNA sequencing data revealed that SARS-CoV-2 infection damaged the respiratory epithelium, particularly mature ciliated cells. The expression of genes encoding intercellular communication and adhesion proteins was also deregulated, suggesting a mechanism to promote shedding of infected epithelial cells. These data demonstrate that ALI/iALI models help to explain the airway epithelium response to SARS-CoV-2 infection and are a key tool for developing COVID-19 treatments.
Collapse
Affiliation(s)
- Said Assou
- IRMB, University of Montpellier, INSERM, CHU Montpellier, 34295 Montpellier, France; (E.A.); (L.M.); (A.N.); (F.F.); (C.B.); (J.D.V.)
| | - Engi Ahmed
- IRMB, University of Montpellier, INSERM, CHU Montpellier, 34295 Montpellier, France; (E.A.); (L.M.); (A.N.); (F.F.); (C.B.); (J.D.V.)
- Department of Respiratory Diseases, CHU Montpellier, Arnaud de Villeneuve Hospital, INSERM, 34000 Montpellier, France; (A.P.); (I.V.)
- PhyMedExp, University of Montpellier, INSERM U1046, CNRS UMR 9214, 34090 Montpellier, France
| | - Lisa Morichon
- IRMB, University of Montpellier, INSERM, CHU Montpellier, 34295 Montpellier, France; (E.A.); (L.M.); (A.N.); (F.F.); (C.B.); (J.D.V.)
- CEMIPAI, Université de Montpellier, CNRS UAR3725, 34090 Montpellier, France; (N.G.); (D.M.)
| | - Amel Nasri
- IRMB, University of Montpellier, INSERM, CHU Montpellier, 34295 Montpellier, France; (E.A.); (L.M.); (A.N.); (F.F.); (C.B.); (J.D.V.)
| | - Florent Foisset
- IRMB, University of Montpellier, INSERM, CHU Montpellier, 34295 Montpellier, France; (E.A.); (L.M.); (A.N.); (F.F.); (C.B.); (J.D.V.)
| | - Carine Bourdais
- IRMB, University of Montpellier, INSERM, CHU Montpellier, 34295 Montpellier, France; (E.A.); (L.M.); (A.N.); (F.F.); (C.B.); (J.D.V.)
| | - Nathalie Gros
- CEMIPAI, Université de Montpellier, CNRS UAR3725, 34090 Montpellier, France; (N.G.); (D.M.)
| | - Sonia Tieo
- CEFE, University of Montpellier, CNRS, EPHE, IRD, 34090 Montpellier, France;
| | - Aurelie Petit
- Department of Respiratory Diseases, CHU Montpellier, Arnaud de Villeneuve Hospital, INSERM, 34000 Montpellier, France; (A.P.); (I.V.)
- PhyMedExp, University of Montpellier, INSERM U1046, CNRS UMR 9214, 34090 Montpellier, France
| | - Isabelle Vachier
- Department of Respiratory Diseases, CHU Montpellier, Arnaud de Villeneuve Hospital, INSERM, 34000 Montpellier, France; (A.P.); (I.V.)
- PhyMedExp, University of Montpellier, INSERM U1046, CNRS UMR 9214, 34090 Montpellier, France
| | - Delphine Muriaux
- CEMIPAI, Université de Montpellier, CNRS UAR3725, 34090 Montpellier, France; (N.G.); (D.M.)
- IRIM, Université de Montpellier, CNRS UMR9004, 34090 Montpellier, France
| | - Arnaud Bourdin
- Department of Respiratory Diseases, CHU Montpellier, Arnaud de Villeneuve Hospital, INSERM, 34000 Montpellier, France; (A.P.); (I.V.)
- PhyMedExp, University of Montpellier, INSERM U1046, CNRS UMR 9214, 34090 Montpellier, France
| | - John De Vos
- IRMB, University of Montpellier, INSERM, CHU Montpellier, 34295 Montpellier, France; (E.A.); (L.M.); (A.N.); (F.F.); (C.B.); (J.D.V.)
- Department of Cell and Tissue Engineering, University of Montpellier, CHU Montpellier, 34090 Montpellier, France
| |
Collapse
|
20
|
Singhvi N, Talwar C, Mahanta U, Kaur J, Mondal K, Ahmad N, Tyagi I, Sharma G, Gupta V. Comparative genomics and integrated system biology approach unveiled undirected phylogeny patterns, mutational hotspots, functional patterns, and molecule repurposing for monkeypox virus. Funct Integr Genomics 2023; 23:231. [PMID: 37432480 DOI: 10.1007/s10142-023-01168-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/08/2023] [Accepted: 07/03/2023] [Indexed: 07/12/2023]
Abstract
Monkeypox is a viral zoonosis with symptoms that are reminiscent of those experienced in previous smallpox cases. The GSAID database (Global Initiative on Sharing Avian Influenza Data) was used to assess 630 genomes of MPXV. The phylogenetic study revealed six primary clades, as well as a smaller percentage in radiating clades. Individual clades that make up various nationalities may have formed as a result of a particular SNP hotspot type that mutated in a specific population. The most significant mutation based on a mutational hotspot analysis was found at G3729A and G5143A. The gene ORF138, which encodes the Ankyrin repeat (ANK) protein, was found to have the most mutations. This protein mediates molecular recognition via protein-protein interactions. It was shown that 243 host proteins interacted with 10 monkeypox proteins identified as the hub proteins E3, SPI2, C5, K7, E8, G6, N2, B14, CRMB, and A41 through 262 direct connections. The interaction with chemokine system-related proteins provides further evidence that the monkeypox virus suppresses human proteins to facilitate its survival against innate immunity. Several FDA-approved molecules were evaluated as possible inhibitors of F13, a significant envelope protein on the membrane of extracellular versions of the virus. A total of 2500 putative ligands were individually docked with the F13 protein. The interaction between the F13 protein and these molecules may help prevent the monkeypox virus from spreading. After being confirmed by experiments, these putative inhibitors could have an impact on the activity of these proteins and be used in monkeypox treatments.
Collapse
Affiliation(s)
- Nirjara Singhvi
- Department of Zoology, School of Allied Sciences, Dev Bhoomi Uttarakhand University, Dehradun, 248007, India
| | - Chandni Talwar
- Department of Zoology, University of Delhi, Delhi, India, 110007
| | - Utkarsha Mahanta
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Bengaluru, Karnataka, 560100, India
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Telangana, 502284, India
| | - Jasvinder Kaur
- Department of Zoology, Gargi College, University of Delhi, New Delhi, 110049, India
| | - Krishnendu Mondal
- Ministry of Environment, Forest and Climate Change, Integrated Regional Office, Dehradun, 248001, India
| | - Nabeel Ahmad
- Department of Biotechnology, School of Allied Sciences, Dev Bhoomi Uttarakhand University, Dehradun, 248007, India
| | - Inderjeet Tyagi
- Centre of DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India,, Kolkata, 700053, India
| | - Gaurav Sharma
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Bengaluru, Karnataka, 560100, India
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Telangana, 502284, India
| | - Vipin Gupta
- Ministry of Environment, Forest and Climate Change, Integrated Regional Office, Dehradun, 248001, India.
| |
Collapse
|
21
|
Safarzadeh A, Mahmud Hussen B, Taheri M, Ghafouri-Fard S, Hajiesmaeili M. Identification of key differentially expressed genes in SARS-CoV-2 using RNA-seq analysis with a systems biology approach. Cytokine 2023; 166:156187. [PMID: 37018908 PMCID: PMC10036311 DOI: 10.1016/j.cyto.2023.156187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/31/2023] [Accepted: 03/14/2023] [Indexed: 03/26/2023]
Abstract
COVID-19 is associated with dysregulation of several genes and signaling pathways. Based on the importance of expression profiling in identification of the pathogenesis of COVID-19 and proposing novel therapies for this disorder, we have employed an in silico approach to find differentially expressed genes between COVID-19 patients and healthy controls and their relevance with cellular functions and signaling pathways. We obtained 630 DEmRNAs, including 486 down-regulated DEGs (such as CCL3 and RSAD2) and 144 up-regulated DEGs (such as RHO and IQCA1L), and 15 DElncRNAs, including 9 down-regulated DElncRNAs (such as PELATON and LINC01506) and 6 up-regulated DElncRNAs (such as AJUBA-DT and FALEC). The PPI network of DEGs showed the presence of a number immune-related genes such as those coding for HLA molecules and interferon regulatory factors. Taken together, these results highlight the importance of immune-related genes and pathways in the pathogenesis of COVID-19 and suggest novel targets for treatment of this disorder.
Collapse
Affiliation(s)
- Arash Safarzadeh
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Institute of Human Genetics, Jena University Hospital, Jena, Germany.
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammadreza Hajiesmaeili
- Anesthesia and Critical Care Department, Critical Care Quality Improvement Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
22
|
Lee H, Lee G, Cho YH, Song Y, Ko G. Chemokine CCL6 Plays Key Role in the Inhibitory Effect of Vitamin A on Norovirus Infection. J Microbiol 2023:10.1007/s12275-023-00047-3. [PMID: 37233907 DOI: 10.1007/s12275-023-00047-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 05/27/2023]
Abstract
Norovirus (NoV) is the most common viral cause of acute gastroenteritis worldwide. Vitamin A has demonstrated the potential to protect against gastrointestinal infections. However, the effects of vitamin A on human norovirus (HuNoV) infections remain poorly understood. This study aimed to investigate how vitamin A administration affects NoV replication. We demonstrated that treatment with retinol or retinoic acid (RA) inhibited NoV replication in vitro based on their effects on HuNoV replicon-bearing cells and murine norovirus-1 (MNV-1) replication in murine cells. MNV replication in vitro showed significant transcriptomic changes, which were partially reversed by retinol treatment. RNAi knockdown of CCL6, a chemokine gene that was downregulated by MNV infection but upregulated by retinol administration, resulted in increased MNV replication in vitro. This suggested a role of CCL6 in the host response to MNV infections. Similar gene expression patterns were observed in the murine intestine after oral administration of RA and/or MNV-1.CW1. CCL6 directly decreased HuNoV replication in HG23 cells, and might indirectly regulate the immune response against NoV infection. Finally, relative replication levels of MNV-1.CW1 and MNV-1.CR6 were significantly increased in CCL6 knockout RAW 264.7 cells. This study is the first to comprehensively profile transcriptomes in response to NoV infection and vitamin A treatment in vitro, and thus may provide new insights into dietary prophylaxis and NoV infections.
Collapse
Affiliation(s)
- Heetae Lee
- College of Pharmacy, Sahmyook University, Seoul, 01795, Republic of Korea.
| | - Giljae Lee
- Center for Human and Environmental Microbiome, School of Public Health, Seoul National University, Seoul, 08826, Republic of Korea
| | - You-Hee Cho
- Department of Pharmacy, College of Pharmacy, CHA University, Seongnam, 13488, Republic of Korea
| | - Youngcheon Song
- College of Pharmacy, Sahmyook University, Seoul, 01795, Republic of Korea
| | - GwangPyo Ko
- Center for Human and Environmental Microbiome, School of Public Health, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
23
|
Dragan P, Merski M, Wiśniewski S, Sanmukh SG, Latek D. Chemokine Receptors-Structure-Based Virtual Screening Assisted by Machine Learning. Pharmaceutics 2023; 15:pharmaceutics15020516. [PMID: 36839838 PMCID: PMC9965785 DOI: 10.3390/pharmaceutics15020516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023] Open
Abstract
Chemokines modulate the immune response by regulating the migration of immune cells. They are also known to participate in such processes as cell-cell adhesion, allograft rejection, and angiogenesis. Chemokines interact with two different subfamilies of G protein-coupled receptors: conventional chemokine receptors and atypical chemokine receptors. Here, we focused on the former one which has been linked to many inflammatory diseases, including: multiple sclerosis, asthma, nephritis, and rheumatoid arthritis. Available crystal and cryo-EM structures and homology models of six chemokine receptors (CCR1 to CCR6) were described and tested in terms of their usefulness in structure-based drug design. As a result of structure-based virtual screening for CCR2 and CCR3, several new active compounds were proposed. Known inhibitors of CCR1 to CCR6, acquired from ChEMBL, were used as training sets for two machine learning algorithms in ligand-based drug design. Performance of LightGBM was compared with a sequential Keras/TensorFlow model of neural network for these diverse datasets. A combination of structure-based virtual screening with machine learning allowed to propose several active ligands for CCR2 and CCR3 with two distinct compounds predicted as CCR3 actives by all three tested methods: Glide, Keras/TensorFlow NN, and LightGBM. In addition, the performance of these three methods in the prediction of the CCR2/CCR3 receptor subtype selectivity was assessed.
Collapse
|
24
|
Filgueira TO, Carvalho PRC, de Sousa Fernandes MS, Castoldi A, Teixeira AM, de Albuquerque RB, de Lima-Filho JL, Souto FO. The impact of supervised physical exercise on chemokines and cytokines in recovered COVID-19 patients. Front Immunol 2023; 13:1051059. [PMID: 36685603 PMCID: PMC9846636 DOI: 10.3389/fimmu.2022.1051059] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/09/2022] [Indexed: 01/06/2023] Open
Abstract
COVID-19 is an infectious disease caused by the SARS-CoV-2 virus, which induces a high release of pro-inflammatory chemokines and cytokines, leading to severe systemic disorders. Further, evidence has shown that recovered COVID-19 patients still have some symptoms and disorders from COVID-19. Physical exercise can have many health benefits. It is known to be a potent regulator of the immune system, which includes frequency, intensity, duration, and supervised by a professional. Given the confinement and social isolation or hospitalization of COVID-19 patients, the population became sedentary or opted for physical exercise at home, assuming the guarantee of the beneficial effects of physical exercise and reducing exposure to SARS-CoV-2. This study aimed to investigate the effects of a supervised exercise protocol and a home-based unsupervised exercise protocol on chemokine and cytokine serum levels in recovered COVID-19 patients. This study was a prospective, parallel, two-arm clinical trial. Twenty-four patients who had moderate to severe COVID-19 concluded the intervention protocols of this study. Participants were submitted to either supervised exercise protocol at the Clinical Hospital of the Federal University of Pernambuco or home-based unsupervised exercise for 12 weeks. We analyzed serum levels of chemokines (CXCL8/IL-8, CCL5/RANTES, CXCL9/MIG, CCL2/MCP-1, and CXCL10/IP-10) and cytokines (IL-2, IL-4, IL-6, IL-10, IL-17A, TNF-α, and IFN-γ). Before the interventions, no significant differences were observed in the serum levels of chemokines and cytokines between the supervised and home-based unsupervised exercise groups. The CXCL8/IL-8 (p = 0.04), CCL2/MCP-1 (p = 0.03), and IFN-γ (p = 0.004) levels decreased after 12 weeks of supervised exercise. In parallel, an increase in IL-2 (p = 0.02), IL-6 (p = 0.03), IL-4 (p = 0.006), and IL-10 (p = 0.04) was observed after the supervised protocol compared to pre-intervention levels. No significant differences in all the chemokines and cytokines were found after 12 weeks of the home-based unsupervised exercise protocol. Given the results, the present study observed that supervised exercise was able to modulate the immune response in individuals with post-COVID-19, suggesting that supervised exercise can mitigate the inflammatory process associated with COVID-19 and its disorders. Clinical trial registration https://ensaiosclinicos.gov.br/rg/RBR-7z3kxjk, identifier U1111-1272-4730.
Collapse
Affiliation(s)
- Tayrine Ordonio Filgueira
- Postgraduate Program in Biology Applied to Health, Center of Biosciences, Federal University of Pernambuco, Recife, Brazil
| | | | - Matheus Santos de Sousa Fernandes
- Postgraduate Program in Neuropsychiatry and Behavioral Sciences, Center of Medical Sciences, Federal University of Pernambuco, Recife, Brazil
| | - Angela Castoldi
- Postgraduate Program in Biology Applied to Health, Center of Biosciences, Federal University of Pernambuco, Recife, Brazil
- Keizo Asami Institute, Federal University of Pernambuco, Recife, Brazil
- Life Sciences Center, Agreste Academic Center, Federal University of Pernambuco, Caruaru, Brazil
| | - Ana Maria Teixeira
- Faculty of Sport Sciences and Physical Education, Research Center for Sport and Physical Activity, University of Coimbra, Coimbra, Portugal
| | - Renata Bezerra de Albuquerque
- Postgraduate Program in Biology Applied to Health, Center of Biosciences, Federal University of Pernambuco, Recife, Brazil
| | - José Luiz de Lima-Filho
- Postgraduate Program in Biology Applied to Health, Center of Biosciences, Federal University of Pernambuco, Recife, Brazil
- Keizo Asami Institute, Federal University of Pernambuco, Recife, Brazil
| | - Fabrício Oliveira Souto
- Postgraduate Program in Biology Applied to Health, Center of Biosciences, Federal University of Pernambuco, Recife, Brazil
- Keizo Asami Institute, Federal University of Pernambuco, Recife, Brazil
- Life Sciences Center, Agreste Academic Center, Federal University of Pernambuco, Caruaru, Brazil
| |
Collapse
|
25
|
Speeckaert R, Belpaire A, Speeckaert MM, van Geel N. A meta-analysis of chemokines in vitiligo: Recruiting immune cells towards melanocytes. Front Immunol 2023; 14:1112811. [PMID: 36911664 PMCID: PMC9999440 DOI: 10.3389/fimmu.2023.1112811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/16/2023] [Indexed: 03/14/2023] Open
Abstract
Chemokine research offers insightful information on the pathogenesis of cutaneous immune disorders, such as vitiligo. Compared to cytokines, the higher detectable levels of chemokines display promising potential as future disease biomarkers. Nonetheless, some published study results are contradictory, which can be attributed to patient characteristics and methodological differences. In this study, a meta-analysis was performed to compare chemokine expression in blood and skin samples from vitiligo patients versus healthy controls. Furthermore, the relationship between chemokine expression and disease activity was evaluated. Chemokine levels were investigated in 15 articles in the circulation and in 9 articles in vitiligo skin. Overall, some clear trends were observed. CXCR3 signaling by CXCL10 and CXCL9 has been confirmed by several reports, although CXCL10 showed more robust findings in blood samples. In this meta-analysis, CCL5, CXCL8, CXCL12, and CXCL16 levels were also significantly elevated. This indicates a complex immune pathway activation in vitiligo that overall supports a Th1-dominant response. Chemokines linked to the Th2 and Th17 pathways were less prevalent. Despite these findings, study protocols that examine a broader range of chemokines are encouraged, because current research is mostly focused on a small number of chemokines that were differentially expressed in previous studies.
Collapse
Affiliation(s)
| | - Arno Belpaire
- Department of Dermatology, Ghent University Hospital, Gent, Belgium
| | | | - Nanja van Geel
- Department of Dermatology, Ghent University Hospital, Gent, Belgium
| |
Collapse
|
26
|
Ranjbar M, Rahimi A, Baghernejadan Z, Ghorbani A, Khorramdelazad H. Role of CCL2/CCR2 axis in the pathogenesis of COVID-19 and possible Treatments: All options on the Table. Int Immunopharmacol 2022; 113:109325. [PMID: 36252475 PMCID: PMC9561120 DOI: 10.1016/j.intimp.2022.109325] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/05/2022] [Accepted: 10/05/2022] [Indexed: 11/05/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is cause of the novel coronavirus disease (COVID-19). In the last two years, SARS-CoV-2 has infected millions of people worldwide with different waves, resulting in the death of many individuals. The evidence disclosed that the host immune responses to SARS-CoV-2 play a pivotal role in COVID-19 pathogenesis and clinical manifestations. In addition to inducing antiviral immune responses, SARS-CoV-2 can also cause dysregulated inflammatory responses characterized by the noticeable release of proinflammatory mediators in COVID-19 patients. Among these proinflammatory mediators, chemokines are considered a subset of cytokines that participate in the chemotaxis process to recruit immune and non-immune cells to the site of inflammation and infection. Researchers have demonstrated that monocyte chemoattractant protein-1 (MCP-1/CCL2) and its receptor (CCR2) are involved in the recruitment of monocytes and infiltration of these cells into the lungs of patients suffering from COVID-19. Moreover, elevated levels of CCL2 have been reported in the bronchoalveolar lavage fluid (BALF) obtained from patients with severe COVID-19, initiating cytokine storm and promoting CD163+ myeloid cells infiltration in the airways and further alveolar damage. Therefore, CCL2/CCR axis plays a key role in the immunopathogenesis of COVID-19 and targeted therapy of involved molecules in this axis can be a potential therapeutic approach for these patients. This review discusses the biology of the CCL2/CCR2 axis as well as the role of this axis in COVID-19 immunopathogenesis, along with therapeutic options aimed at inhibiting CCL2/CCR2 and modulating dysregulated inflammatory responses in patients with severe SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Mitra Ranjbar
- Department of Infectious Disease, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Rahimi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zeinab Baghernejadan
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Atousa Ghorbani
- Department of Biology, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Hossein Khorramdelazad
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| |
Collapse
|
27
|
Sugrue JA, Posseme C, Tan Z, Pou C, Charbit B, Bondet V, Bourke NM, Brodin P, Duffy D, O'Farrelly C. Enhanced TLR3 responsiveness in hepatitis C virus resistant women from the Irish anti-D cohort. Cell Rep Med 2022; 3:100804. [PMID: 36334594 PMCID: PMC9729829 DOI: 10.1016/j.xcrm.2022.100804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 08/03/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022]
Abstract
Natural resistance to infection is an overlooked outcome after hepatitis C virus (HCV) exposure. Between 1977 and 1979, 1,200 Rhesus D-negative Irish women were exposed to HCV-contaminated anti-D immunoglobulin. Here, we investigate why some individuals appear to resist infection despite exposure (exposed seronegative [ESN]). We screen HCV-resistant and -susceptible donors for anti-HCV adaptive immune responses using ELISpots and VirScan to profile antibodies against all know human viruses. We perform standardized ex vivo whole blood stimulation (TruCulture) assays with antiviral ligands and assess antiviral responses using NanoString transcriptomics and Luminex proteomics. We describe an enhanced TLR3-type I interferon response in ESNs compared with seropositive women. We also identify increased inflammatory cytokine production in response to polyIC in ESNs compared with seropositive women. These enhanced responses may have contributed to innate immune protection against HCV infection in our cohort.
Collapse
Affiliation(s)
- Jamie A Sugrue
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Céline Posseme
- Translational Immunology Unit, Institut Pasteur, Paris, France
| | - Ziyang Tan
- Science for Life Laboratory, Department of Women's and Children Health, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Christian Pou
- Science for Life Laboratory, Department of Women's and Children Health, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Bruno Charbit
- Cytometry and Biomarkers UTechS, CRT, Institut Pasteur, Paris, France
| | - Vincent Bondet
- Translational Immunology Unit, Institut Pasteur, Paris, France
| | - Nollaig M Bourke
- Discipline of Medical Gerontology, School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Petter Brodin
- Science for Life Laboratory, Department of Women's and Children Health, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Darragh Duffy
- Translational Immunology Unit, Institut Pasteur, Paris, France; Cytometry and Biomarkers UTechS, CRT, Institut Pasteur, Paris, France
| | - Cliona O'Farrelly
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; School of Medicine, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
28
|
Rarani FZ, Rashidi B, Jafari Najaf Abadi MH, Hamblin MR, Reza Hashemian SM, Mirzaei H. Cytokines and microRNAs in SARS-CoV-2: What do we know? MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 29:219-242. [PMID: 35782361 PMCID: PMC9233348 DOI: 10.1016/j.omtn.2022.06.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic constitutes a global health emergency. Currently, there are no completely effective therapeutic medications for the management of this outbreak. The cytokine storm is a hyperinflammatory medical condition due to excessive and uncontrolled release of pro-inflammatory cytokines in patients suffering from severe COVID-19, leading to the development of acute respiratory distress syndrome (ARDS) and multiple organ dysfunction syndrome (MODS) and even mortality. Understanding the pathophysiology of COVID-19 can be helpful for the treatment of patients. Evidence suggests that the levels of tumor necrosis factor alpha (TNF-α) and interleukin (IL)-1 and IL-6 are dramatically different between mild and severe patients, so they may be important contributors to the cytokine storm. Several serum markers can be predictors for the cytokine storm. This review discusses the cytokines involved in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, focusing on interferons (IFNs) and ILs, and whether they can be used in COVID-19 treatment. Moreover, we highlight several microRNAs that are involved in these cytokines and their role in the cytokine storm caused by COVID-19.
Collapse
Affiliation(s)
- Fahimeh Zamani Rarani
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Bahman Rashidi
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Seyed Mohammad Reza Hashemian
- Chronic Respiratory Diseases Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, IR, Iran
| |
Collapse
|
29
|
Karimabad MN, Hassanshahi G, Kounis NG, Mplani V, Roditis P, Gogos C, Lagadinou M, Assimakopoulos SF, Dousdampanis P, Koniari I. The Chemokines CXC, CC and C in the Pathogenesis of COVID-19 Disease and as Surrogates of Vaccine-Induced Innate and Adaptive Protective Responses. Vaccines (Basel) 2022; 10:vaccines10081299. [PMID: 36016187 PMCID: PMC9416781 DOI: 10.3390/vaccines10081299] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/08/2022] [Accepted: 08/08/2022] [Indexed: 02/07/2023] Open
Abstract
COVID-19 is one of the progressive viral pandemics that originated from East Asia. COVID-19 or SARS-CoV-2 has been shown to be associated with a chain of physio-pathological mechanisms that are basically immunological in nature. In addition, chemokines have been proposed as a subgroup of chemotactic cytokines with different activities ranging from leukocyte recruitment to injury sites, irritation, and inflammation to angiostasis and angiogenesis. Therefore, researchers have categorized the chemotactic elements into four classes, including CX3C, CXC, CC, and C, based on the location of the cysteine motifs in their structures. Considering the severe cases of COVID-19, the hyperproduction of particular chemokines occurring in lung tissue as well as pro-inflammatory cytokines significantly worsen the disease prognosis. According to the studies conducted in the field documenting the changing expression of CXC and CC chemokines in COVID-19 cases, the CC and CXC chemokines contribute to this pandemic, and their impact could reflect the development of reasonable strategies for COVID-19 management. The CC and the CXC families of chemokines are important in host immunity to viral infections and along with other biomarkers can serve as the surrogates of vaccine-induced innate and adaptive protective responses, facilitating the improvement of vaccine efficacy. Furthermore, the immunogenicity elicited by the chemokine response to adenovirus vector vaccines may constitute the basis of vaccine-induced immune thrombotic thrombocytopaenia.
Collapse
Affiliation(s)
- Mojgan Noroozi Karimabad
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan 7717933777, Iran
| | - Gholamhossein Hassanshahi
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan 7717933777, Iran
| | - Nicholas G. Kounis
- Department of Internal Medicine, Division of Cardiology, University of Patras Medical School, 26500 Patras, Greece
- Correspondence:
| | - Virginia Mplani
- Intensive Care Unit, Patras University Hospital, 26500 Patras, Greece
| | - Pavlos Roditis
- Department of Cardiology, Mamatsio Kozanis General Hospital, 50100 Kozani, Greece
| | - Christos Gogos
- COVID-19 Unit, Papageorgiou General Hospital, 56403 Thessaloniki, Greece
| | - Maria Lagadinou
- Department of Internal Medicine, Division of Infectious Diseases, University of Patras Medical School, 26500 Patras, Greece
| | - Stelios F. Assimakopoulos
- Department of Internal Medicine, Division of Infectious Diseases, University of Patras Medical School, 26500 Patras, Greece
| | - Periklis Dousdampanis
- Department of Nephrology, Saint Andrews State General Hospital, 26221 Patras, Greece
| | - Ioanna Koniari
- Department of Cardiology, University Hospital of South Manchester, NHS Foundation Trust, Manchester M23 9LT, UK
| |
Collapse
|
30
|
Rodrigues P, Costa RS, Henriques R. Enrichment analysis on regulatory subspaces: A novel direction for the superior description of cellular responses to SARS-CoV-2. Comput Biol Med 2022; 146:105443. [PMID: 35533463 PMCID: PMC9040465 DOI: 10.1016/j.compbiomed.2022.105443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/13/2022] [Accepted: 03/20/2022] [Indexed: 12/16/2022]
Abstract
STATEMENT Enrichment analysis of cell transcriptional responses to SARS-CoV-2 infection from biclustering solutions yields broader coverage and superior enrichment of GO terms and KEGG pathways against alternative state-of-the-art machine learning solutions, thus aiding knowledge extraction. MOTIVATION AND METHODS The comprehensive understanding of the impacts of SARS-CoV-2 virus on infected cells is still incomplete. This work aims at comparing the role of state-of-the-art machine learning approaches in the study of cell regulatory processes affected and induced by the SARS-CoV-2 virus using transcriptomic data from both infectable cell lines available in public databases and in vivo samples. In particular, we assess the relevance of clustering, biclustering and predictive modeling methods for functional enrichment. Statistical principles to handle scarcity of observations, high data dimensionality, and complex gene interactions are further discussed. In particular, and without loos of generalization ability, the proposed methods are applied to study the differential regulatory response of lung cell lines to SARS-CoV-2 (α-variant) against RSV, IAV (H1N1), and HPIV3 viruses. RESULTS Gathered results show that, although clustering and predictive algorithms aid classic stances to functional enrichment analysis, more recent pattern-based biclustering algorithms significantly improve the number and quality of enriched GO terms and KEGG pathways with controlled false positive risks. Additionally, a comparative analysis of these results is performed to identify potential pathophysiological characteristics of COVID-19. These are further compared to those identified by other authors for the same virus as well as related ones such as SARS-CoV-1. The findings are particularly relevant given the lack of other works utilizing more complex machine learning algorithms within this context.
Collapse
Affiliation(s)
- Pedro Rodrigues
- IDMEC, Instituto Superior Tecnico, Universidade de Lisboa, Lisbon, Portugal; INESC-ID and Instituto Superior Tecnico, Universidade de Lisboa, Lisbon, Portugal
| | - Rafael S Costa
- IDMEC, Instituto Superior Tecnico, Universidade de Lisboa, Lisbon, Portugal; LAQV-REQUIMTE, DQ, NOVA School of Science and Technology, Caparica, Portugal
| | - Rui Henriques
- INESC-ID and Instituto Superior Tecnico, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
31
|
Gehrke M, Diedrichs-Möhring M, Bogedein J, Büning H, Michalakis S, Wildner G. Immunogenicity of Novel AAV Capsids for Retinal Gene Therapy. Cells 2022; 11:cells11121881. [PMID: 35741009 PMCID: PMC9221425 DOI: 10.3390/cells11121881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/03/2022] [Accepted: 06/04/2022] [Indexed: 11/16/2022] Open
Abstract
Objectives: AAV vectors are widely used in gene therapy, but the prevalence of neutralizing antibodies raised against AAV serotypes in the course of a natural infection, as well as innate and adaptive immune responses induced upon vector administration, is still considered an important limitation. In ocular gene therapy, vectors applied subretinally bear the risk of retinal detachment or vascular leakage. Therefore, new AAV vectors that are suitable for intravitreal administration for photoreceptor transduction were developed. Methods: Here, we compared human immune responses from donors with suspected previous AAV2 infections to the new vectors AAV2.GL and AAV2.NN—two capsid peptide display variants with an enhanced tropism for photoreceptors—with the parental serotype AAV2 (AAV2 WT). We investigated total and neutralizing antibodies, adaptive and innate cellular immunogenicity determined by immunofluorescence staining and flow cytometry, and cytokine secretion analyzed with multiplex beads. Results: While we did not observe obvious differences in overall antibody binding, variants—particularly AAV2.GL—were less sensitive to neutralizing antibodies than the AAV2 WT. The novel variants did not differ from AAV2 WT in cellular immune responses and cytokine production in vitro. Conclusion: Due to their enhanced retinal tropism, which allows for dose reduction, the new vector variants are likely to be less immunogenic for gene therapy than the parental AAV2 vector.
Collapse
Affiliation(s)
- Miranda Gehrke
- Department of Ophthalmology, University Hospital, LMU Munich, Mathildenstr. 8, 80336 Munich, Germany; (M.G.); (M.D.-M.); (J.B.)
| | - Maria Diedrichs-Möhring
- Department of Ophthalmology, University Hospital, LMU Munich, Mathildenstr. 8, 80336 Munich, Germany; (M.G.); (M.D.-M.); (J.B.)
| | - Jacqueline Bogedein
- Department of Ophthalmology, University Hospital, LMU Munich, Mathildenstr. 8, 80336 Munich, Germany; (M.G.); (M.D.-M.); (J.B.)
| | - Hildegard Büning
- Institute of Experimental Hematology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
- Correspondence: (H.B.); (S.M.); (G.W.); Tel.: +49-89-2180-77325 (S.M.); +49-89-44005-3888 (G.W.); Fax: +49-89-44005-3045 (S.M. & G.W.)
| | - Stylianos Michalakis
- Department of Ophthalmology, University Hospital, LMU Munich, Mathildenstr. 8, 80336 Munich, Germany; (M.G.); (M.D.-M.); (J.B.)
- Correspondence: (H.B.); (S.M.); (G.W.); Tel.: +49-89-2180-77325 (S.M.); +49-89-44005-3888 (G.W.); Fax: +49-89-44005-3045 (S.M. & G.W.)
| | - Gerhild Wildner
- Department of Ophthalmology, University Hospital, LMU Munich, Mathildenstr. 8, 80336 Munich, Germany; (M.G.); (M.D.-M.); (J.B.)
- Correspondence: (H.B.); (S.M.); (G.W.); Tel.: +49-89-2180-77325 (S.M.); +49-89-44005-3888 (G.W.); Fax: +49-89-44005-3045 (S.M. & G.W.)
| |
Collapse
|
32
|
Serum Levels of Chemokine Ligand-7 and Interferon-γ-induced Protein-10: Possible Severity and Prognostic Markers in Patients with COVID-19. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022. [DOI: 10.22207/jpam.16.2.58] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Patients with coronavirus disease-19 (COVID-19) present as mildly, moderately, or severely and critically ill. Cytokine storm is responsible for fatal pneumonia and acute respiratory distress syndrome. Interferon-γ-induced protein-10 (IP-10) and chemokine ligand-7 (CCL-7) are chemokines that play a role in the chemotaxis of inflammatory cells and the release of pro-inflammatory cytokines. In this study, we assessed the serum levels of IP-10 and CCL-7 chemokines in COVID-19 patients and their correlation with disease severity and prognosis. The serum levels of CCL-7 and IP-10 were assessed in 67 COVID-19 patients and 10 healthy controls. Serum samples were collected and examined for these two markers using direct enzyme-linked immunosorbent assay. Patients were divided into two groups according to their disease severity. Serum levels of the test markers were compared between patients and controls, and between patients with different disease severities and correlated with other clinical and laboratory parameters. CCL-7 and IP-10 levels were significantly higher in patients than in controls and in severe than in mild/moderate cases. The receiver operating characteristic curve analysis of the two markers showed better performance of the combined markers as predictors of disease severity (area under the curve = 0.792). The results of our study suggest a potential role of IP-10 and CCL-7 as predictors of COVID-19 severity.
Collapse
|
33
|
Initial TK-deficient HSV-1 infection in the lip alters contralateral lip challenge immune dynamics. Sci Rep 2022; 12:8489. [PMID: 35590057 PMCID: PMC9119387 DOI: 10.1038/s41598-022-12597-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 05/12/2022] [Indexed: 11/08/2022] Open
Abstract
Primary infection with herpes simplex type 1 (HSV-1) occurring around the mouth and nose switches rapidly to lifelong latent infection in sensitive trigeminal ganglia (TG) neurons. Sporadic reactivation of these latent reservoirs later in life is the cause of acute infections of the corneal epithelium, which can cause potentially blinding herpes simplex keratitis (HSK). There is no effective vaccine to protect against HSK, and antiviral drugs provide only partial protection against recurrences. We previously engendered an acute disease-free, non-reactivating latent state in mice when challenged with virulent HSV-1 in orofacial mucosa, by priming with non-neurovirulent HSV-1 (TKdel) before the challenge. Herein, we define the local immune infiltration and inflammatory chemokine production changes after virulent HSV-1 challenge, which were elicited by TKdel prime. Heightened immunosurveillance before virulent challenge, and early enhanced lymphocyte-enriched infiltration of the challenged lip were induced, which corresponded to attenuation of inflammation in the TG and enhanced viral control. Furthermore, classical latent-phase T cell persistence around latent HSV-1 reservoirs were severely reduced. These findings identify the immune processes that are likely to be responsible for establishing non-reactivating latent HSV-1 reservoirs. Stopping reactivation is essential for development of efficient vaccine strategies against HSV-1.
Collapse
|
34
|
Tkach M, Thalmensi J, Timperi E, Gueguen P, Névo N, Grisard E, Sirven P, Cocozza F, Gouronnec A, Martin-Jaular L, Jouve M, Delisle F, Manel N, Rookhuizen DC, Guerin CL, Soumelis V, Romano E, Segura E, Théry C. Extracellular vesicles from triple negative breast cancer promote pro-inflammatory macrophages associated with better clinical outcome. Proc Natl Acad Sci U S A 2022; 119:e2107394119. [PMID: 35439048 PMCID: PMC9169908 DOI: 10.1073/pnas.2107394119] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 03/14/2022] [Indexed: 12/11/2022] Open
Abstract
Tumor associated macrophages (TAMs), which differentiate from circulating monocytes, are pervasive across human cancers and comprise heterogeneous populations. The contribution of tumor-derived signals to TAM heterogeneity is not well understood. In particular, tumors release both soluble factors and extracellular vesicles (EVs), whose respective impact on TAM precursors may be different. Here, we show that triple negative breast cancer cells (TNBCs) release EVs and soluble molecules promoting monocyte differentiation toward distinct macrophage fates. EVs specifically promoted proinflammatory macrophages bearing an interferon response signature. The combination in TNBC EVs of surface CSF-1 promoting survival and cargoes promoting cGAS/STING or other activation pathways led to differentiation of this particular macrophage subset. Notably, macrophages expressing the EV-induced signature were found among patients’ TAMs. Furthermore, higher expression of this signature was associated with T cell infiltration and extended patient survival. Together, this data indicates that TNBC-released CSF-1-bearing EVs promote a tumor immune microenvironment associated with a better prognosis in TNBC patients.
Collapse
Affiliation(s)
- Mercedes Tkach
- INSERM U932, Institut Curie, PSL Research University, 75005, Paris, France
| | - Jessie Thalmensi
- INSERM U932, Institut Curie, PSL Research University, 75005, Paris, France
| | - Eleonora Timperi
- INSERM U932, Institut Curie, PSL Research University, 75005, Paris, France
| | - Paul Gueguen
- INSERM U932, Institut Curie, PSL Research University, 75005, Paris, France
| | - Nathalie Névo
- INSERM U932, Institut Curie, PSL Research University, 75005, Paris, France
| | - Eleonora Grisard
- INSERM U932, Institut Curie, PSL Research University, 75005, Paris, France
| | - Philemon Sirven
- INSERM U932, Institut Curie, PSL Research University, 75005, Paris, France
| | - Federico Cocozza
- INSERM U932, Institut Curie, PSL Research University, 75005, Paris, France
| | - Alizée Gouronnec
- INSERM U932, Institut Curie, PSL Research University, 75005, Paris, France
| | | | - Mabel Jouve
- CNRS UMR3215, Institut Curie, PSL Research University, 75005, Paris, France
| | - Fabien Delisle
- INSERM U932, Institut Curie, PSL Research University, 75005, Paris, France
| | - Nicolas Manel
- INSERM U932, Institut Curie, PSL Research University, 75005, Paris, France
| | | | - Coralie L. Guerin
- Cytometry Platform, CurieCoreTech, Institut Curie, Paris, F-75005 France
- Innovative Therapies in Haemostasis, INSERM, Université de Paris, Paris, F-75006 France
| | - Vassili Soumelis
- Université de Paris, Inserm, U976 HIPI Unit, F-75006, Paris, France
- Assistance Publique-Hôpitaux de Paris (AP-HP), Laboratoire d'Immunologie et Histocompatibilité, Hôpital Saint-Louis, F-75010, Paris, France
| | - Emanuela Romano
- INSERM U932, Institut Curie, PSL Research University, 75005, Paris, France
| | - Elodie Segura
- INSERM U932, Institut Curie, PSL Research University, 75005, Paris, France
| | - Clotilde Théry
- INSERM U932, Institut Curie, PSL Research University, 75005, Paris, France
| |
Collapse
|
35
|
Domi E, Hoxha M, Kolovani E, Tricarico D, Zappacosta B. The Importance of Nutraceuticals in COVID-19: What's the Role of Resveratrol? MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27082376. [PMID: 35458574 PMCID: PMC9030369 DOI: 10.3390/molecules27082376] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/26/2022] [Accepted: 03/29/2022] [Indexed: 12/21/2022]
Abstract
Since COVID-19 has affected global public health, there has been an urgency to find a solution to limit both the number of infections, and the aggressiveness of the disease once infected. The main characteristic of this infection is represented by a strong alteration of the immune system which, day by day, increases the risk of mortality, and can lead to a multiorgan dysfunction. Because nutritional profile can influence patient’s immunity, we focus our interest on resveratrol, a polyphenolic compound known for its immunomodulating and anti-inflammatory properties. We reviewed all the information concerning the different roles of resveratrol in COVID-19 pathophysiology using PubMed and Scopus as the main databases. Interestingly, we find out that resveratrol may exert its role through different mechanisms. In fact, it has antiviral activity inhibiting virus entrance in cells and viral replication. Resveratrol also improves autophagy and decreases pro-inflammatory agents expression acting as an anti-inflammatory agent. It regulates immune cell response and pro-inflammatory cytokines and prevents the onset of thrombotic events that usually occur in COVID-19 patients. Since resveratrol acts through different mechanisms, the effect could be enhanced, making a totally natural agent particularly effective as an adjuvant in anti COVID-19 therapy.
Collapse
Affiliation(s)
- Elisa Domi
- Department for Chemical-Toxicological and Pharmacological Evaluation of Drugs, Faculty of Pharmacy, Catholic University Our Lady of Good Counsel, Rruga Dritan Hoxha, 1000 Tirana, Albania; (E.D.); (M.H.)
| | - Malvina Hoxha
- Department for Chemical-Toxicological and Pharmacological Evaluation of Drugs, Faculty of Pharmacy, Catholic University Our Lady of Good Counsel, Rruga Dritan Hoxha, 1000 Tirana, Albania; (E.D.); (M.H.)
| | - Entela Kolovani
- Infectious Diseases Department, Faculty of Medicine, University of Medicine, Tirana, Rruga e Dibrës, 1005 Tirana, Albania;
| | - Domenico Tricarico
- Section of Pharmacology, Department of Pharmacy-Pharmaceutical Sciences, University of Bari, Via Orabona 4, 70125 Bari, Italy;
| | - Bruno Zappacosta
- Department for Chemical-Toxicological and Pharmacological Evaluation of Drugs, Faculty of Pharmacy, Catholic University Our Lady of Good Counsel, Rruga Dritan Hoxha, 1000 Tirana, Albania; (E.D.); (M.H.)
- Correspondence: ; Tel.: +355-42-273-290
| |
Collapse
|
36
|
Dill-McFarland KA, Schwartz JT, Zhao H, Shao B, Fulkerson PC, Altman MC, Gill MA. Eosinophil-mediated suppression and Anti-IL-5 enhancement of plasmacytoid dendritic cell interferon responses in asthma. J Allergy Clin Immunol 2022; 150:666-675. [DOI: 10.1016/j.jaci.2022.03.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 02/25/2022] [Accepted: 03/03/2022] [Indexed: 10/18/2022]
|
37
|
Zheng W, Wang T, Wu P, Yan Q, Liu C, Wu H, Zhan S, Liu X, Jiang Y, Zhuang H. Host Factor Interaction Networks Identified by Integrative Bioinformatics Analysis Reveals Therapeutic Implications in COPD Patients With COVID-19. Front Pharmacol 2021; 12:718874. [PMID: 35002688 PMCID: PMC8733735 DOI: 10.3389/fphar.2021.718874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 11/11/2021] [Indexed: 01/08/2023] Open
Abstract
Background: The COVID-19 pandemic poses an imminent threat to humanity, especially for those who have comorbidities. Evidence of COVID-19 and COPD comorbidities is accumulating. However, data revealing the molecular mechanism of COVID-19 and COPD comorbid diseases is limited. Methods: We got COVID-19/COPD -related genes from different databases by restricted screening conditions (top500), respectively, and then supplemented with COVID-19/COPD-associated genes (FDR<0.05, |LogFC|≥1) from clinical sample data sets. By taking the intersection, 42 co-morbid host factors for COVID-19 and COPD were finally obtained. On the basis of shared host factors, we conducted a series of bioinformatics analysis, including protein-protein interaction analysis, gene ontology and pathway enrichment analysis, transcription factor-gene interaction network analysis, gene-microRNA co-regulatory network analysis, tissue-specific enrichment analysis and candidate drug prediction. Results: We revealed the comorbidity mechanism of COVID-19 and COPD from the perspective of host factor interaction, obtained the top ten gene and 3 modules with different biological functions. Furthermore, we have obtained the signaling pathways and concluded that dexamethasone, estradiol, progesterone, and nitric oxide shows effective interventions. Conclusion: This study revealed host factor interaction networks for COVID-19 and COPD, which could confirm the potential drugs for treating the comorbidity, ultimately, enhancing the management of the respiratory disease.
Collapse
Affiliation(s)
- Wenjiang Zheng
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ting Wang
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Peng Wu
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qian Yan
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chengxin Liu
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hui Wu
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shaofeng Zhan
- The First Affiliated Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaohong Liu
- The First Affiliated Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yong Jiang
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, China
| | - Hongfa Zhuang
- The First Affiliated Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
38
|
Ganguli S, Chavali PL. Intrauterine Viral Infections: Impact of Inflammation on Fetal Neurodevelopment. Front Neurosci 2021; 15:771557. [PMID: 34858132 PMCID: PMC8631423 DOI: 10.3389/fnins.2021.771557] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/18/2021] [Indexed: 12/22/2022] Open
Abstract
Intrauterine viral infections during pregnancy by pathogens such as Zika virus, Cytomegalovirus, Rubella and Herpes Simplex virus can lead to prenatal as well as postnatal neurodevelopmental disorders. Although maternal viral infections are common during pregnancy, viruses rarely penetrate the trophoblast. When they do cross, viruses can cause adverse congenital health conditions for the fetus. In this context, maternal inflammatory responses to these neurotropic pathogens play a significant role in negatively affecting neurodevelopment. For instance, intrauterine inflammation poses an increased risk of neurodevelopmental disorders such as microcephaly, schizophrenia, autism spectrum disorder, cerebral palsy and epilepsy. Severe inflammatory responses have been linked to stillbirths, preterm births, abortions and microcephaly. In this review, we discuss the mechanistic basis of how immune system shapes the landscape of the brain and how different neurotropic viral pathogens evoke inflammatory responses. Finally, we list the consequences of neuroinflammation on fetal brain development and discuss directions for future research and intervention strategies.
Collapse
Affiliation(s)
- Sourav Ganguli
- CSIR-Center for Cellular and Molecular Biology, Hyderabad, India.,Academy of Scientific and Innovative Research (AcCSIR), Ghaziabad, India
| | - Pavithra L Chavali
- CSIR-Center for Cellular and Molecular Biology, Hyderabad, India.,Academy of Scientific and Innovative Research (AcCSIR), Ghaziabad, India
| |
Collapse
|
39
|
Feige L, Sáenz-de-Santa-María I, Regnault B, Lavenir R, Lepelletier A, Halacu A, Rajerison R, Diop S, Nareth C, Reynes JM, Buchy P, Bourhy H, Dacheux L. Transcriptome Profile During Rabies Virus Infection: Identification of Human CXCL16 as a Potential New Viral Target. Front Cell Infect Microbiol 2021; 11:761074. [PMID: 34804996 PMCID: PMC8602097 DOI: 10.3389/fcimb.2021.761074] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/23/2021] [Indexed: 12/24/2022] Open
Abstract
Rabies virus (RABV), the causative agent for rabies disease is still presenting a major public health concern causing approximately 60,000 deaths annually. This neurotropic virus (genus Lyssavirus, family Rhabdoviridae) induces an acute and almost always fatal form of encephalomyelitis in humans. Despite the lethal consequences associated with clinical symptoms of rabies, RABV limits neuro-inflammation without causing major histopathological lesions in humans. Nevertheless, information about the mechanisms of infection and cellular response in the central nervous system (CNS) remain scarce. Here, we investigated the expression of inflammatory genes involved in immune response to RABV (dog-adapted strain Tha) in mice, the most common animal model used to study rabies. To better elucidate the pathophysiological mechanisms during natural RABV infection, we compared the inflammatory transcriptome profile observed at the late stage of infection in the mouse brain (cortex and brain stem/cerebellum) with the ortholog gene expression in post-mortem brain biopsies of rabid patients. Our data indicate that the inflammatory response associated with rabies is more pronounced in the murine brain compared to the human brain. In contrast to murine transcription profiles, we identified CXC motif chemokine ligand 16 (CXCL16) as the only significant differentially expressed gene in post-mortem brains of rabid patients. This result was confirmed in vitro, in which Tha suppressed interferon alpha (IFN-α)-induced CXCL16 expression in human CNS cell lines but induced CXCL16 expression in IFN-α-stimulated murine astrocytes. We hypothesize that RABV-induced modulation of the CXCL16 pathway in the brain possibly affects neurotransmission, natural killer (NK) and T cell recruitment and activation. Overall, we show species-specific differences in the inflammatory response of the brain, highlighted the importance of understanding the potential limitations of extrapolating data from animal models to humans.
Collapse
Affiliation(s)
- Lena Feige
- Institut Pasteur, Université de Paris, Lyssavirus Epidemiology and Neuropathology Unit, National Reference Center for Rabies, WHO Collaborating Center for Reference and Research on Rabies, Department of Global Health, Paris, France
| | | | | | - Rachel Lavenir
- Institut Pasteur, Université de Paris, Lyssavirus Epidemiology and Neuropathology Unit, National Reference Center for Rabies, WHO Collaborating Center for Reference and Research on Rabies, Department of Global Health, Paris, France
| | - Anthony Lepelletier
- Institut Pasteur, Université de Paris, Lyssavirus Epidemiology and Neuropathology Unit, National Reference Center for Rabies, WHO Collaborating Center for Reference and Research on Rabies, Department of Global Health, Paris, France
| | - Ala Halacu
- National Agency for Public Health, Chișinău, Moldova
| | | | - Sylvie Diop
- Infectious Diseases Department, National and University Hospital Center of Fann-Dakar, Dakar, Senegal
| | | | - Jean-Marc Reynes
- Virology Unit, Institut Pasteur de Madagascar, Tananarive, Madagascar
| | - Philippe Buchy
- Virology Unit, Institut Pasteur in Cambodia, Phnom Penh, Cambodia
| | - Hervé Bourhy
- Institut Pasteur, Université de Paris, Lyssavirus Epidemiology and Neuropathology Unit, National Reference Center for Rabies, WHO Collaborating Center for Reference and Research on Rabies, Department of Global Health, Paris, France
| | - Laurent Dacheux
- Institut Pasteur, Université de Paris, Lyssavirus Epidemiology and Neuropathology Unit, National Reference Center for Rabies, WHO Collaborating Center for Reference and Research on Rabies, Department of Global Health, Paris, France
| |
Collapse
|
40
|
Hossainey MRH, Yaparla A, Hauser KA, Moore TE, Grayfer L. The Roles of Amphibian ( Xenopus laevis) Macrophages during Chronic Frog Virus 3 Infections. Viruses 2021; 13:v13112299. [PMID: 34835105 PMCID: PMC8621048 DOI: 10.3390/v13112299] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/06/2021] [Accepted: 11/16/2021] [Indexed: 12/27/2022] Open
Abstract
Infections by Frog Virus 3 (FV3) and other ranavirus genus members are significantly contributing to global amphibian decline. The Xenopus laevis frog is an ideal research platform upon which to study the roles of distinct frog leukocyte populations during FV3 infections. Frog macrophages (MΦs) are integrally involved during FV3 infection, as they facilitate viral dissemination and persistence but also participate in immune defense against this pathogen. In turn, MΦ differentiation and functionality depend on the colony-stimulating factor-1 receptor (CSF-1R), which is ligated by CSF-1 and iterleukin-34 (IL-34) cytokines. Our past work indicated that X. laevis CSF-1 and IL-34 give rise to morphologically and functionally distinct frog MΦ subsets, and that these CSF-1- and IL-34-MΦs respectively confer susceptibility and antiviral resistance to FV3. Because FV3 targets the frog kidneys and establishes chronic infections therein, presently we examined the roles of the frog CSF-1- and IL-34-MΦs in seeding and maintaining these chronic kidney infections. Our findings indicate that the frog CSF-1-MΦs result in more prominent kidney FV3 infections, which develop into greater reservoirs of lingering FV3 marked by infiltrating leukocytes, fibrosis, and overall immunosuppressive states. Moreover, the antiviral effects of IL-34-MΦs are short-lived and are lost as FV3 infections progress.
Collapse
|
41
|
Kumar NP, Banurekha VV, C P GK, Nancy A, Padmapriyadarsini C, Mary AS, Devi KRU, Murhekar M, Babu S. Prime-Boost Vaccination With Covaxin/BBV152 Induces Heightened Systemic Cytokine and Chemokine Responses. Front Immunol 2021; 12:752397. [PMID: 34721425 PMCID: PMC8554328 DOI: 10.3389/fimmu.2021.752397] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/22/2021] [Indexed: 11/13/2022] Open
Abstract
Covaxin/BBV152 is a whole virion inactivated SARS-CoV-2 vaccine. The effect of prime-boost vaccination with Covaxin on systemic immune responses is not known. We investigated the effect of Covaxin on the plasma levels of a wide panel of cytokines and chemokines at baseline (M0) and at months 1 (M1), 2 (M2) and 3 (M3) following prime-boost vaccination in healthy volunteers. Our results demonstrate that Covaxin induces enhanced plasma levels of Type 1 cytokines (IFNγ, IL-2, TNFα), Type 2/regulatory cytokines (IL-4, IL-5, IL-10 and IL-13), Type 17 cytokine (IL-17A), other pro-inflammatory cytokines (IL-6, IL-12, IL-1α, IL-1β) and other cytokines (IL-3 and IL-7) but diminished plasma levels of IL-25, IL-33, GM-CSF and Type 1 IFNs. Covaxin also induced enhanced plasma levels of CC chemokine (CCL4) and CXC chemokines (CXCL1, CXCL2 and CX3CL1) but diminished levels of CXCL10. Covaxin vaccination induces enhanced cytokine and chemokine responses as early as month 1, following prime-boost vaccination, indicating robust activation of innate and adaptive immune responses in vaccine recipients.
Collapse
Affiliation(s)
- Nathella Pavan Kumar
- Indian Council of Medical Research (ICMR)-National Institute for Research in Tuberculosis, Chennai, India
| | - V V Banurekha
- Indian Council of Medical Research (ICMR)-National Institute for Research in Tuberculosis, Chennai, India
| | - Girish Kumar C P
- Indian Council of Medical Research-National Institute of Epidemiology, Chennai, India
| | - Arul Nancy
- Indian Council of Medical Research (ICMR)-National Institute for Research in Tuberculosis, Chennai, India
| | - C Padmapriyadarsini
- Indian Council of Medical Research (ICMR)-National Institute for Research in Tuberculosis, Chennai, India
| | - A Stella Mary
- Indian Council of Medical Research (ICMR)-National Institute for Research in Tuberculosis, Chennai, India
| | - K R Uma Devi
- Indian Council of Medical Research (ICMR)-National Institute for Research in Tuberculosis, Chennai, India
| | - Manoj Murhekar
- Indian Council of Medical Research-National Institute of Epidemiology, Chennai, India
| | - Subash Babu
- Indian Council of Medical Research (ICMR)-National Institute for Research in Tuberculosis, Chennai, India
| |
Collapse
|
42
|
Elevated Anti-SARS-CoV-2 Antibodies and IL-6, IL-8, MIP-1β, Early Predictors of Severe COVID-19. Microorganisms 2021; 9:microorganisms9112259. [PMID: 34835384 PMCID: PMC8624589 DOI: 10.3390/microorganisms9112259] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/22/2021] [Accepted: 10/22/2021] [Indexed: 12/27/2022] Open
Abstract
Viral and host immune kinetics during acute COVID-19 and after remission of acute symptoms need better characterization. SARS-CoV-2 RNA, anti-SARS-CoV-2 IgA, IgM, and IgG antibodies, and proinflammatory cytokines were measured in sequential samples from hospitalized COVID-19 patients during acute infection and six months following diagnosis. Twenty four laboratory confirmed COVID-19 patients with mild/moderate and severe COVID-19 were included. Most were males (83%) with a median age of 61 years. Twenty one percent were admitted to the intensive care unit (ICU) and eight of them (33.3%) met the criteria for severe COVID-19 disease. A delay in SARS-CoV-2 levels’ decline during the first six days of follow up, and viral load persistence until month 3 were related to severe COVID-19, but not viral load levels at the diagnosis. Higher levels of anti-SARS-CoV-2 IgA, IgM, IgG and the cytokines IL-6, IL-8 and MIP-1β at the diagnosis time were related to the severe COVID-19 outcome. Higher levels of MIP-1β, IL-1β, MIP-1α and IFN-γ were observed at month 1 and 3 during mild/moderate disease, compared to severe COVID-19. IgG persisted at low levels after six months of diagnosis. In conclusion, higher concentrations of IgA, IgM, and IgG, and IL-6, IL-8 and MIP-1β are identified as early predictors of COVID-19 severity, whereas no significant association is found between baseline SARS-COV-2 viral load and COVID-19 severity.
Collapse
|
43
|
Ponia SS, Robertson SJ, McNally KL, Subramanian G, Sturdevant GL, Lewis M, Jessop F, Kendall C, Gallegos D, Hay A, Schwartz C, Rosenke R, Saturday G, Bosio CM, Martens C, Best SM. Mitophagy antagonism by ZIKV reveals Ajuba as a regulator of PINK1 signaling, PKR-dependent inflammation, and viral invasion of tissues. Cell Rep 2021; 37:109888. [PMID: 34706234 DOI: 10.1016/j.celrep.2021.109888] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 08/16/2021] [Accepted: 10/05/2021] [Indexed: 12/30/2022] Open
Abstract
Dysregulated inflammation dominated by chemokine expression is a key feature of disease following infection with the globally important human pathogens Zika virus (ZIKV) and dengue virus, but a mechanistic understanding of how pro-inflammatory responses are initiated is lacking. Mitophagy is a quality-control mechanism that regulates innate immune signaling and cytokine production through selective degradation of damaged mitochondria. Here, we demonstrate that ZIKV nonstructural protein 5 (NS5) antagonizes mitophagy by binding to the host protein Ajuba and preventing its translocation to depolarized mitochondria where it is required for PINK1 activation and downstream signaling. Consequent mitophagy suppression amplifies the production of pro-inflammatory chemokines through protein kinase R (PKR) sensing of mitochondrial RNA. In Ajuba-/- mice, ZIKV induces early expression of pro-inflammatory chemokines associated with significantly enhanced dissemination to tissues. This work identifies Ajuba as a critical regulator of mitophagy and demonstrates a role for mitophagy in limiting systemic inflammation following infection by globally important human viruses.
Collapse
Affiliation(s)
- Sanket S Ponia
- Innate Immunity and Pathogenesis Section, Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, MT 59840, USA
| | - Shelly J Robertson
- Innate Immunity and Pathogenesis Section, Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, MT 59840, USA
| | - Kristin L McNally
- Innate Immunity and Pathogenesis Section, Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, MT 59840, USA
| | - Gayatri Subramanian
- Innate Immunity and Pathogenesis Section, Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, MT 59840, USA
| | - Gail L Sturdevant
- Innate Immunity and Pathogenesis Section, Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, MT 59840, USA
| | - Matthew Lewis
- Innate Immunity and Pathogenesis Section, Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, MT 59840, USA
| | - Forrest Jessop
- Immunity to Pulmonary Pathogens Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, MT 59840, USA
| | - Catherine Kendall
- Innate Immunity and Pathogenesis Section, Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, MT 59840, USA; School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Dylan Gallegos
- Innate Immunity and Pathogenesis Section, Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, MT 59840, USA
| | - Arielle Hay
- Innate Immunity and Pathogenesis Section, Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, MT 59840, USA
| | - Cindi Schwartz
- Research Technology Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, MT 59840, USA
| | - Rebecca Rosenke
- Rocky Mountain Veterinary Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, MT 59840, USA
| | - Greg Saturday
- Rocky Mountain Veterinary Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, MT 59840, USA
| | - Catherine M Bosio
- Immunity to Pulmonary Pathogens Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, MT 59840, USA
| | - Craig Martens
- Research Technology Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, MT 59840, USA
| | - Sonja M Best
- Innate Immunity and Pathogenesis Section, Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, MT 59840, USA.
| |
Collapse
|
44
|
Ouyang T, Yang Z, Wan J, Zhang Y, Wang X, Kong L, Wang T, Li Y. Transcriptome analysis of host response to porcine epidemic diarrhea virus nsp15 in IPEC-J2 cells. Microb Pathog 2021; 162:105195. [PMID: 34571150 DOI: 10.1016/j.micpath.2021.105195] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/14/2021] [Accepted: 09/11/2021] [Indexed: 01/01/2023]
Abstract
BACKGROUND Porcine epidemic diarrhea virus (PEDV) is an enveloped positive-sense ssRNA virus which is highly lethal to piglets, causing enormous economic losses to swine industry worldwide. Nsp15 protein is an endoribonuclease of PEDV and plays an indispensable role in the viral proliferation. We reported the transcription files of nsp15 transfected IPEC-J2 cells for the first time to broaden our understanding of PEDV pathogenesis. METHODS RNA-seq was performed to compare gene expression profiles between pCAGGS-HA-nsp15 transfected IPEC-J2 cells and pCAGGS-HA (empty vector) transfected IPEC-J2 cells. Immune-related genes and pathways were identified and analyzed to deepen our understanding of nsp15 for PEDV pathogenicity. IPEC-J2 cells transfected with pCAGGS-HA-CCL5/CXCL8/CXCL10 were infected with CV777 and the virus load of PEDV was detected by qRT-PCR. RESULTS A total of 21,654 genes were obtained by RNA-Seq and 415 differential expressed genes (DEGs) were identified, including 136 up-regulated and 279 down-regulated genes. A number of effect genes involved in immune responses and inflammation were differentially expressed. GO and KEGG enrichment analysis showed that 32 GO terms were significantly enriched and the DEGs were mainly enriched in immune-related pathways such as TNF signaling pathway, RIG-I-like receptor signaling pathway and Cytosolic DNA-sensing pathway. qRT-PCR results indicated the overexpression of selected chemokines, CCL5/CXCL8/CXCL10, can inhibit PEDV proliferation in IPEC-J2 cells. CONCLUSIONS Our transcriptome profile illustrated a number of genes involving in immune responses and inflammation were inhibited by nsp15, such as CCL5, CXCL8, CXCL10, OAS, MXs, STAT1 and IRF9. The results suggested that nsp15 can antagonize IFNs and block chemokine system to provide an adequate intracellular environment for viral proliferation.
Collapse
Affiliation(s)
- Tao Ouyang
- Institute of Pathogenic Microorganism and College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Zibing Yang
- Institute of Pathogenic Microorganism and College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Jiawu Wan
- Institute of Pathogenic Microorganism and College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Yanni Zhang
- Jiangxi Province Center for Disease Control and Prevention, Nanchang, Jiangxi, China
| | - Xiaoling Wang
- Institute of Pathogenic Microorganism and College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Lingbao Kong
- Institute of Pathogenic Microorganism and College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Ting Wang
- Institute of Pathogenic Microorganism and College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China.
| | - Yihan Li
- Institute of Pathogenic Microorganism and College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China.
| |
Collapse
|
45
|
Zheng HY, He XY, Li W, Song TZ, Han JB, Yang X, Liu FL, Luo RH, Tian RR, Feng XL, Ma YH, Liu C, Li MH, Zheng YT. Pro-inflammatory microenvironment and systemic accumulation of CXCR3+ cell exacerbate lung pathology of old rhesus macaques infected with SARS-CoV-2. Signal Transduct Target Ther 2021; 6:328. [PMID: 34471088 PMCID: PMC8409077 DOI: 10.1038/s41392-021-00734-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 08/01/2021] [Accepted: 08/10/2021] [Indexed: 01/07/2023] Open
Abstract
Understanding the pathological features of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in an animal model is crucial for the treatment of coronavirus disease 2019 (COVID-19). Here, we compared immunopathological changes in young and old rhesus macaques (RMs) before and after SARS-CoV-2 infection at the tissue level. Quantitative analysis of multiplex immunofluorescence staining images of formalin-fixed paraffin-embedded (FFPE) sections showed that SARS-CoV-2 infection specifically induced elevated levels of apoptosis, autophagy, and nuclear factor kappa-B (NF-κB) activation of angiotensin-converting enzyme 2 (ACE2)+ cells, and increased interferon α (IFN-α)- and interleukin 6 (IL-6)-secreting cells and C-X-C motif chemokine receptor 3 (CXCR3)+ cells in lung tissue of old RMs. This pathological pattern, which may be related to the age-related pro-inflammatory microenvironment in both lungs and spleens, was significantly correlated with the systemic accumulation of CXCR3+ cells in lungs, spleens, and peripheral blood. Furthermore, the ratio of CXCR3+ to T-box protein expression in T cell (T-bet)+ (CXCR3+/T-bet+ ratio) in CD8+ cells may be used as a predictor of severe COVID-19. These findings uncovered the impact of aging on the immunopathology of early SARS-CoV-2 infection and demonstrated the potential application of CXCR3+ cells in predicting severe COVID-19.
Collapse
Affiliation(s)
- Hong-Yi Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Xiao-Yan He
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Wei Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Tian-Zhang Song
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Jian-Bao Han
- Kunming National High-Level Biosafety Research Center for Non-Human Primates, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Xiang Yang
- Kunming National High-Level Biosafety Research Center for Non-Human Primates, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Feng-Liang Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Rong-Hua Luo
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Ren-Rong Tian
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Xiao-Li Feng
- Kunming National High-Level Biosafety Research Center for Non-Human Primates, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Yu-Hua Ma
- National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Chao Liu
- National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Ming-Hua Li
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Yong-Tang Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China.
- Kunming National High-Level Biosafety Research Center for Non-Human Primates, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.
- National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China.
| |
Collapse
|
46
|
Lack of Interferon Regulatory Factor 8 Associated with Restricted IFN-gamma expression Augmented Japanese Encephalitis Virus Replication in the Mouse Brain. J Virol 2021; 95:e0040621. [PMID: 34379515 PMCID: PMC8513486 DOI: 10.1128/jvi.00406-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Interferon Regulatory Factor 8 (IRF8), a myeloid lineage transcription factor, emerges as an essential regulator for microglia activation. However, the precise role of IRF8 during Japanese encephalitis virus (JEV) infection in the brain remains elusive. Here we report that JEV infection enhances IRF8 expression in the infected mice brain. Comparative transcriptional profiling of whole-brain RNA analysis and validation by qRT-PCR reveals an impaired IFNγ and related gene expression in Irf8 knockout (Irf8-/-) infected mice. Further, Ifnγ knockout (Ifnγ-/-) mice exhibit a reduced level of Irf8. Both Ifnγ-/- and Irf8-/- mice exhibit significantly reduced levels of activated (CD11b+CD45hi, CD11b+CD45lo, Cd68, and CD86) and infiltrating immune cells (Ly6C+, CD4, and CD8) in the infected brain as compared to WT mice. However, a higher level of granulocyte cells (Ly6G+) infiltration is evident in Irf8-/- mice and the increased concentration of TNFα, IL6, MCP1 levels in the brain. Interestingly, neither Irf8-/- nor Ifnγ-/- has conferred protection against lethal JEV challenge to mice and exhibits augmentation in JEV replication in the brain. The gain of function of Irf8 by overexpressing functional IRF8 in an IRF8 deficient cell line attenuates viral replication and enhances IFNγ production. Overall, we summarise that in the murine model of JEV encephalitis, IRF8 modulation affects JEV replication. We also evidence that lack of Irf8 affects immune cells abundance in circulation and the infected brain leading to a reduction in IFNγ level and increased viral load in the brain. Importance Microglial cells, the resident macrophages in the brain, play a vital role in Japanese encephalitis virus (JEV) pathogenesis. The deregulated activity of microglia can be lethal for the brain. Therefore, it is crucial to understand the regulators that drive microglia's phenotype changes and induce inflammation in the brain. Interferon regulatory factor 8 (IRF8) is a myeloid lineage transcription factor involved in microglial activation. However, the impact of IRF8 modulation on JEV replication remains elusive. Moreover, the pathways regulated by IRF8 to initiate and amplify pathological neuroinflammation are not well understood. Here, we demonstrated the effect of IRF8 modulation on JEV replication, microglial activation, and immune cells infiltration in the brain.
Collapse
|
47
|
Ye J, Wang H, Cui L, Chu S, Chen N. The progress of chemokines and chemokine receptors in autism spectrum disorders. Brain Res Bull 2021; 174:268-280. [PMID: 34077795 DOI: 10.1016/j.brainresbull.2021.05.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/19/2021] [Accepted: 05/27/2021] [Indexed: 12/16/2022]
Abstract
Autism spectrum disorders (ASD) are a group of neurodevelopmental disorders and the main symptoms of ASD are impairments in social communication and abnormal behavioral patterns. Studies have shown that immune dysfunction and neuroinflammation play a key role in ASD patients and experimental models. Chemokines are groups of small proteins that regulate cell migration and mediate inflammation responses via binding to chemokine receptors. Thus, chemokines/chemokine receptors may be involved in neurodevelopmental disorders and associated with ASD. In this review, we summarize the research progress of chemokine aberrations in ASD and also review the recent progress of clinical treatment of ASD and pharmacological research related to chemokines/chemokine receptors. This review highlights the possible connection between chemokines/chemokine receptors and ASD, and provides novel potential targets for drug discovery of ASD.
Collapse
Affiliation(s)
- Junrui Ye
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Hongyun Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Liyuan Cui
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Shifeng Chu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Naihong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
48
|
Promoting platelets is a therapeutic option to combat severe viral infection of the lung. Blood Adv 2021; 4:1640-1642. [PMID: 32315397 PMCID: PMC7189284 DOI: 10.1182/bloodadvances.2020001669] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 03/25/2020] [Indexed: 02/07/2023] Open
|
49
|
Sood N, Verma DK, Paria A, Yadav SC, Yadav MK, Bedekar MK, Kumar S, Swaminathan TR, Mohan CV, Rajendran KV, Pradhan PK. Transcriptome analysis of liver elucidates key immune-related pathways in Nile tilapia Oreochromis niloticus following infection with tilapia lake virus. FISH & SHELLFISH IMMUNOLOGY 2021; 111:208-219. [PMID: 33577877 DOI: 10.1016/j.fsi.2021.02.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/01/2021] [Accepted: 02/04/2021] [Indexed: 06/12/2023]
Abstract
Nile tilapia (Oreochromis niloticus) is one of the most important aquaculture species farmed worldwide. However, the recent emergence of tilapia lake virus (TiLV) disease, also known as syncytial hepatitis of tilapia, has threatened the global tilapia industry. To gain more insight regarding the host response against the disease, the transcriptional profiles of liver in experimentally-infected and control tilapia were compared. Analysis of RNA-Seq data identified 4640 differentially expressed genes (DEGs), which were involved among others in antigen processing and presentation, MAPK, apoptosis, necroptosis, chemokine signaling, interferon, NF-kB, acute phase response and JAK-STAT pathways. Enhanced expression of most of the DEGs in the above pathways suggests an attempt by tilapia to resist TiLV infection. However, upregulation of some of the key genes such as BCL2L1 in apoptosis pathway; NFKBIA in NF-kB pathway; TRFC in acute phase response; and SOCS, EPOR, PI3K and AKT in JAK-STAT pathway and downregulation of the genes, namely MAP3K7 in MAPK pathway; IFIT1 in interferon; and TRIM25 in NF-kB pathway suggested that TiLV was able to subvert the host immune response to successfully establish the infection. The study offers novel insights into the cellular functions that are affected following TiLV infection and will serve as a valuable genomic resource towards our understanding of susceptibility of tilapia to TiLV infection.
Collapse
Affiliation(s)
- Neeraj Sood
- ICAR-National Bureau of Fish Genetic Resources, Canal Ring Road, P.O. Dilkusha, Lucknow, 226002, Uttar Pradesh, India
| | - Dev Kumar Verma
- ICAR-National Bureau of Fish Genetic Resources, Canal Ring Road, P.O. Dilkusha, Lucknow, 226002, Uttar Pradesh, India
| | - Anutosh Paria
- ICAR-National Bureau of Fish Genetic Resources, Canal Ring Road, P.O. Dilkusha, Lucknow, 226002, Uttar Pradesh, India
| | - Shrish Chandra Yadav
- ICAR-National Bureau of Fish Genetic Resources, Canal Ring Road, P.O. Dilkusha, Lucknow, 226002, Uttar Pradesh, India
| | - Manoj Kumar Yadav
- ICAR-National Bureau of Fish Genetic Resources, Canal Ring Road, P.O. Dilkusha, Lucknow, 226002, Uttar Pradesh, India
| | - Megha Kadam Bedekar
- ICAR-Central Institute of Fisheries Education, Versova, Andheri (W), Mumbai, 400 061, Maharashtra, India
| | - Saurav Kumar
- ICAR-Central Institute of Fisheries Education, Versova, Andheri (W), Mumbai, 400 061, Maharashtra, India
| | - Thangaraj Raja Swaminathan
- Peninsular and Marine Fish Genetic Resources Centre, ICAR-NBFGR, CMFRI Campus, Kochi, 682 018, Kerala, India
| | | | - K V Rajendran
- ICAR-Central Institute of Fisheries Education, Versova, Andheri (W), Mumbai, 400 061, Maharashtra, India
| | - Pravata Kumar Pradhan
- ICAR-National Bureau of Fish Genetic Resources, Canal Ring Road, P.O. Dilkusha, Lucknow, 226002, Uttar Pradesh, India.
| |
Collapse
|
50
|
Peter AE, Sandeep BV, Rao BG, Kalpana VL. Calming the Storm: Natural Immunosuppressants as Adjuvants to Target the Cytokine Storm in COVID-19. Front Pharmacol 2021; 11:583777. [PMID: 33708109 PMCID: PMC7941276 DOI: 10.3389/fphar.2020.583777] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 12/09/2020] [Indexed: 12/15/2022] Open
Abstract
The COVID-19 pandemic has caused a global health crisis, with no specific antiviral to treat the infection and the absence of a suitable vaccine to prevent it. While some individuals contracting the SARS-CoV-2 infection exhibit a well coordinated immune response and recover, others display a dysfunctional immune response leading to serious complications including ARDS, sepsis, MOF; associated with morbidity and mortality. Studies revealed that in patients with a dysfunctional immune response, there is a massive cytokine and chemokine release, referred to as the 'cytokine storm'. As a result, such patients exhibit higher levels of pro-inflammatory/modulatory cytokines and chemokines like TNFα, INFγ, IL-1β, IL-2, IL-4, IL-6, IL-7, IL-9, IL-10, IL-12, IL-13, IL-17, G-CSF, GM-CSF, MCSF, HGF and chemokines CXCL8, MCP1, IP10, MIP1α and MIP1β. Targeting this cytokine storm is a novel, promising treatment strategy to alleviate this excess influx of cytokines observed at the site of infection and their subsequent disastrous consequences. Natural immunosuppressant compounds, derived from plant sources like curcumin, luteolin, piperine, resveratrol are known to inhibit the production and release of pro-inflammatory cytokines and chemokines. This inhibitory effect is mediated by altering signal pathways like NF-κB, JAK/STAT, MAPK/ERK that are involved in the production and release of cytokines and chemokines. The use of these natural immunosuppressants as adjuvants to ameliorate the cytokine storm; in combination with antiviral agents and other treatment drugs currently in use presents a novel, synergistic approach for the treatment and effective cure of COVID-19. This review briefly describes the immunopathogenesis of the cytokine storm observed in SARS-CoV-2 infection and details some natural immunosuppressants that can be used as adjuvants in treating COVID-19 disease.
Collapse
Affiliation(s)
- Angela E. Peter
- Department of Biotechnology, College of Science and Technology, Andhra University, Visakhapatnam, India
| | - B. V. Sandeep
- Department of Biotechnology, College of Science and Technology, Andhra University, Visakhapatnam, India
| | - B. Ganga Rao
- Andhra University College of Pharmaceutical Sciences, Andhra University, Visakhapatnam, India
| | - V. Lakshmi Kalpana
- Department of Human Genetics, College of Science and Technology, Andhra University, Visakhapatnam, India
| |
Collapse
|